序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 空调系统和用于空调系统的控制方法 CN201410550438.7 2014-10-16 CN104279791A 2015-01-14 徐美俊; 黄章义; 陈培生; 唐育辉
发明提供了一种空调系统和用于空调系统的控制方法。空调系统包括热回收换热器、热回收管路组件和压缩机,压缩机的排气端与热回收换热器连接,热回收管路组件的至少一部分与热回收换热器相邻以换热,空调系统还包括用于检测压缩机的排气端的实际排气温度的第一检测部,第一检测部设置在压缩机的排气端,热回收管路组件包括:主管路,主管路的至少一部分与热回收换热器相邻以换热;用于控制主管路的输出流量的流量控制部,流量控制部设置在主管路上。在空调系统启动时,通过控制流量控制部可以使空调系统的热回收能得到调节,从而使热回收能力符合压缩机的工作条件,避免出现因热回收能力与压缩机工作状态不符而导致的异常停机的问题。
2 分支制冷剂中继单元及其制造方法 CN200680013276.7 2006-04-12 CN101163925A 2008-04-16 村田胜则; 北川武
发明提供一种可容易进行分解作业的分支制冷剂中继单元及其制造方法。分支单元(5)将制冷剂配管(41)分支为多个分支制冷剂配管(11、21、31),并且包括绝热材料树脂外壳(51)和泡沫绝热材料外壳(54)。绝热材料树脂外壳(51)确保与分支部分(88)之间的绝热空间(50S),并包围分支部分(88)。泡沫绝热材料外壳(54)设置于绝热材料树脂外壳(51)的外周。
3 分体式制冷装置 CN201610952353.0 2016-10-27 CN106546024A 2017-03-29 刘越; 李大伟; 丁剑波; 成俊亮; 彭灿; 张天鹏
发明提供一种分体式制冷装置,包括制冷系统和机,制冷系统包括压缩机、热端冷凝器、节流装置和冷端蒸发器,还包括室外机壳和多个独立的室内储物柜,压缩机、热端冷凝器、节流装置和风机设置在室外机壳中,每个室内储物柜中设置有冷端蒸发器;制冷系统还包括气液分离器和换热器;冷凝器与气液分离器的进口连接;气液分离器的出气口和换热器的第一换热通道连接,第一换热通道与第二蒸发器连接,第二蒸发器连接压缩机的进口;气液分离器的出液口与第一蒸发器连接,第一蒸发器与换热器的第二换热通道连接,第二换热通道与压缩机的进口连接。实现提高分体式制冷装置的使用便利性和通用性,并提高用户使用舒适性和体验性。
4 新型的低温废热吸收式制冷器 CN201610328277.6 2016-05-18 CN106196716A 2016-12-07 于慎波; 洛塔尔P.M.沃尔夫; 夏鹏鹏; 李红; 李野
发明公开一种新型的低温废热吸收式制冷器,包括:、吸收式制冷器,其特点是:热泵将低温废热转化为可供吸收式制冷器工作时使用的高温热量,热泵和吸收式制冷器之间没有传统的热能转换系统,热泵通过热量传递部件直接将热量提供给吸收式制冷器,吸热式制冷器的发生器的加热部件直接被热泵的冷凝器所替代。本发明降低了可利用的废热温度的最低阈值,提高了废热的利用率,由于该系统中热泵和制冷器之间没有传统的热能转换系统,热能从热泵到吸收式制冷器传送过程中没有热量损失,整个系统的热能利用率得到显著提高,大大提升了系统的效率。
5 箱用回气管制作工艺 CN201510206603.1 2015-04-27 CN104864640A 2015-08-26 杨胜群; 谢建良; 洪伟国; 黄兰芳
发明涉及一种箱用回气管制作工艺,包括如下步骤:选用材料制作的金属管作为第一管材,在第一管材的扩口端部装插入与第一管材内部连通的第二管材,在第一管材、第二管材外表面包覆上铝箔胶带,在第一管材、第二管材的结合处套上热缩套管,将第一管材与第三管材采用绑方式捆绑在一起;在第一管材与第三管材外套上套管;将套上套管的第一管材、第三管材放置到烘干炉中进行加热,通过弯折设备将由第一管材、第二管材、第三管材构成的回气管进行弯折成型,这样完成回气管的制作。本发明的制作工艺能够提升工作效率且能够保证回气管的质量,减轻工作人员的劳动强度。
6 空调装置的管道单元 CN201380062466.8 2013-12-05 CN104822996B 2017-07-07 中津延彦
管道单元(50)设置在供制冷剂循环以进行蒸气压缩式制冷循环的制冷剂回路中。并且,管道单元(50)包括管道主体(53)和隔热材(54),所述管道主体(53)具有供制冷剂回路中的液态制冷剂流动的液管(51)和供制冷剂回路中的气态制冷剂流动的气管(52),液管(51)和气管(52)分别单独被所述隔热材(54)覆盖。已分别覆盖了隔热材(54)的液管(51)和气管(52)被固定为一体。因为如上所述的那样使制冷剂回路部分地实现单元化,所以能够谋求施工工期的短期化。
7 空调装置的管道单元 CN201380062466.8 2013-12-05 CN104822996A 2015-08-05 中津延彦
管道单元(50)设置在供制冷剂循环以进行蒸气压缩式制冷循环的制冷剂回路中。并且,管道单元(50)包括管道主体(53)和隔热材(54),所述管道主体(53)具有供制冷剂回路中的液态制冷剂流动的液管(51)和供制冷剂回路中的气态制冷剂流动的气管(52),液管(51)和气管(52)分别单独被所述隔热材(54)覆盖。已分别覆盖了隔热材(54)的液管(51)和气管(52)被固定为一体。因为如上所述的那样使制冷剂回路部分地实现单元化,所以能够谋求施工工期的短期化。
8 蒸发器集成组件 CN201310415153.8 2013-09-12 CN104457037A 2015-03-25 不公告发明人
发明提供一种蒸发器集成组件,包括热交换器、连接膨胀,连接块通过焊接固定安装在热交换器的集流管上,热力膨胀阀通过螺钉固定安装在连接块上,集流管上设置有将集流管密封分隔成第一腔室和第二腔室的隔板,热交换器的进出口分别位于第一腔室和第二腔室,热交换器的进出口通过连接块与热力膨胀阀连通。本发明可以实现膨胀阀与作为蒸发器的热交换器的进出口之间均无需管路连接,有利于制冷剂在蒸发器中的均匀分配,也防止了制冷剂在连接管路中的能量流失,而且结构简单,能够有效的提高空调系统的效率和节能性能。
9 装置 CN201410306852.3 2014-06-30 CN104344605A 2015-02-11 松永训明
压缩机(1)的电动机(6)具备:固定在密闭容器(10)中并经由绝缘材(7)卷绕有绕组(6w)的定子(6s)、和由该定子(6s)包围的转子(6r),绝缘材(7)是单体成分以对羟基苯甲酸(PHB)为必需成分,其他单体成分是仅将具有苯环的单体用酯键构成分子主链的全芳族液晶聚合物(LCP),在40℃、相对湿度80%时,冷冻机油的饱和分含有量为1%以下。
10 分支制冷剂中继单元及其制造方法 CN200680013276.7 2006-04-12 CN101163925B 2011-02-16 村田胜则; 北川武
发明提供一种可容易进行分解作业的分支制冷剂中继单元及其制造方法。分支单元(5)将制冷剂配管(41)分支为多个分支制冷剂配管(11、21、31),并且包括绝热材料树脂外壳(51)和泡沫绝热材料外壳(54)。绝热材料树脂外壳(51)确保与分支部分(88)之间的绝热空间(50S),并包围分支部分(88)。泡沫绝热材料外壳(54)设置于绝热材料树脂外壳(51)的外周。
11 ヒートポンプ装置 JP2015529424 2014-05-23 JPWO2015015881A1 2017-03-02 訓明 松永
吸湿性が高く油中分率の高い冷凍機油を使用しても加水分解をし難い絶縁材を使用することで、ヒートポンプ装置の長期信頼性を得る。圧縮機1の電動機6は、密閉容器10に固定され、絶縁材7を介して巻線6wが巻き付けられている固定子6sと、固定子6sに包囲された回転子6rとを具備し、絶縁材7は、モノマーとしてパラヒドロキシ安息香酸(PHB)を必須成分とし、その他のモノマーとしてベンゼン環を有するものだけをエステル結合で分子の主鎖を構成した全芳香族液晶ポリエステル(LCP)であり、冷凍機油の飽和水分量は、40℃、相対湿度80%において、1%以下である。
12 Infrared detector assembly JP50574886 1986-04-29 JPH0731080B2 1995-04-10 PETSUKU REONAADO II JUNIA; NEITSUERU FURETSUDO JEI; SAAJENTO UETSUSEN PII; MAKUDONARUDO JEEMUSU PII
13 COMPRESSOR US14367839 2012-12-24 US20150300337A1 2015-10-22 Arno Göerlich
A compressor (10, 100), comprising a compressor housing (15), a drive mechanism (12), and a compressing unit (14) having one or several compression levels (14-1, 14-2) for compressing a cooling agent, wherein the compressor (10, 110) is further provided with one or several cooling agent feeder units (20, 36) for feeding cooling agents to the compressing unit (14) and with one or several cooling agent discharge units (24, 38) for discharging cooling agents from the compressing unit (14). At least one segment of the one cooling agent feeder unit or at least one segment of at least one, in particular each one of the several cooling agent feeder units (20, 36), is arranged thermally separated from the one cooling agent discharge unit or at least one, in particular each one of the several cooling agent discharge units (24, 38).
14 Phase Change Compressor Cover US14577614 2014-12-19 US20150192334A1 2015-07-09 Stephen Stewart Hancock
A phase change compressor cover may include a first layer configured to provide sound attenuation from undesirable noise produced as a result of operating a compressor and/or thermal isolation of the compressor and a second layer comprising a cavity filled with a phase change material that is configured to absorb heat discharged as a result of operating the compressor and subsequently discharge the absorbed heat onto the compressor in response to discontinuing operation of the compressor to keep the compressor warm and prevent refrigerant migration to the compressor. The phase change compressor cover may be used to substantially envelope the compressor in a heat pump heating, ventilation, and/or air conditioning (HVAC) system.
15 COMPRESSOR STRUCTURE FOR A REFRIGERATION SYSTEM US11719733 2007-01-11 US20090155114A1 2009-06-18 Hoe Chuan Kwan; Kok How Wan
A compressor structure for a refrigeration system and a component for a refrigeration system. The compressor structure comprises a compression cylinder; a suction line leading gas to be compressed towards the cylinder; and a discharge line leading the compressed gas away from the cylinder; wherein at least one component of the suction line, the discharge line, or both comprises a thermal barrier layer on a surface of the at least one component.
16 Ejector cycle with insulation of ejector US10855900 2004-05-27 US06978637B2 2005-12-27 Haruyuki Nishijima; Hirotsugu Takeuchi; Makoto Ikegami; Hisatsugu Matsunaga
In an ejector cycle with an ejector including a nozzle for decompressing refrigerant, an insulation member is provided on an outer surface of the ejector to suppress a heat exchange with an external side. When a suction portion of the ejector is insulated by the insulation member, pressure loss in the suction portion can be reduced, a gas refrigerant ratio at an inlet port of the mixing portion can be reduced, and a liquid refrigerant amount to be supplied to the evaporator can be increased. In addition, when a mixing portion and a diffuser portion of the ejector are insulated, it can prevent liquid refrigerant from being excessively evaporated. As a result, it can effectively restrict heat loss due to a heat exchange in the ejector with the external side.
17 Temperature adjustment device and laser module US10662521 2003-09-16 US06837059B2 2005-01-04 Tatsuhiko Ueki; Mamoru Shimada; Yuji Hiratani
A temperature adjustment device has a first thermoelectric cooling module, a second thermoelectric cooling module on which the first thermoelectric cooling module is provided, and a heat generating element which is provided on the first thermoelectric cooling module and a temperature thereof is adjusted, where assuming that a substrate area of the first thermoelectric cooling module on which the heat generating element is provided is S1(mm2) and that an amount of generated heat of the heat generating element is Qd(mW), the relationship of 20≦Qd/S1≦200 is met.
18 Temperature adjustment device and laser module US10662521 2003-09-16 US20040211190A1 2004-10-28 Tatsuhiko Ueki; Mamoru Shimada; Yuji Hiratani
A temperature adjustment device has a first thermoelectric cooling module, a second thermoelectric cooling module on which the first thermoelectric cooling module is provided, and a heat generating element which is provided on the first thermoelectric cooling module and a temperature thereof is adjusted, where assuming that a substrate area of the first thermoelectric cooling module on which the heat generating element is provided is S1 (mm2) and that an amount of generated heat of the heat generating element is Qd (mW), the relationship of 20nullQd/S1null200 is met.
19 Sub-surface and optionally accessible direct expansion refrigerant flow regulating device US10335514 2002-12-31 US06751974B1 2004-06-22 B. Ryland Wiggs
A sub-surface direct expansion geothermal heat exchange unit, which can be placed in sub-surface ground and/or water, consisting of at least one smaller interior diameter refrigerant liquid/fluid transport line with an optional vertically oriented U bend at the bottom, operatively connected to at least one larger interior diameter refrigerant liquid/fluid transport line, with at least one refrigerant flow metering device installed at either an accessible location in the liquid/fluid line or at the sub-surface point where the liquid/fluid line connects with the vapor/fluid line, for use when the system is operating in the heating mode, together with a refrigerant flow metering device by-pass means so as to enable additional refrigerant fluid flow around the refrigerant metering device when the system is operating in the cooling mode.
20 Expansion valve unit US10193617 2002-07-11 US06550262B2 2003-04-22 Takeshi Kaneko
An expansion valve unit which prevents a temperature-sensing error from occurring due to transmission of a temperature lowered by the expansion of the refrigerant to a temperature-sensing chamber. An expansion valve unit is configured such that a high-pressure refrigerant guide groove is formed circumferentially in a body between a temperature-sensing chamber and a low-pressure refrigerant passage so as to guide a high-temperature and high-pressure refrigerant from the high-pressure refrigerant guide groove to a valve hole by way of a high-pressure refrigerant passage. By providing the high-pressure refrigerant guide groove, a heat conduction area for conducting heat from the temperature-sensing chamber to the low-pressure refrigerant passage is reduced, and the high-pressure refrigerant guide groove, which is supplied with the high-temperature and high-pressure refrigerant and hence always heated to a high temperature, thermally insulates the temperature-sensing chamber from the low-pressure refrigerant passage. This prevents the temperature-sensing chamber from being adversely affected by the low temperature of the low-pressure refrigerant passage, thereby preventing occurrence of a temperature-sensing error.
QQ群二维码
意见反馈