序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
161 Exhaust heat-utilizing system of small-scale cogeneration JP2001114962 2001-04-13 JP2002310502A 2002-10-23 KIKUZAWA HIROTADA
PROBLEM TO BE SOLVED: To provide the exhaust heat-utilizing system of a small-scale cogeneration capable of performing space hating utilizing the exhaust heat of a small-sized cogeneration source through the thermal storage of the stored water in a water storage tank even in the case when the operation of the small- sized cogeneration source is stopped and having the reduced depth of the water storage tank. SOLUTION: When the operation of a fuel cell 11 is started, the stored water in hot water storage tanks 15A, 15B and 15C after passing through the first heat exchanger 13 and the second heat exchanger 18 is circulated by a circulating pump 14. Consequently, the exhaust heat of the fuel cell 11 is stored as the sensible heat of the stored water in the hot water storage tanks 15A, 15B and 15C. Moreover, the fluid flowing a heating line L4 is heated by the sensible heat of the stored water in the hot water storage tanks 15A, 15B and 15C by the second heat exchanger 18, even when the operation of the small-sized fuel cell 11 is stopped.
162 Fuel cell co-generation system JP2001085721 2001-03-23 JP2002289227A 2002-10-04 NAKANISHI OSAMU; OSADA KAZUHIRO; ISHIKAWA TAKASHI
PROBLEM TO BE SOLVED: To prevent increase of the size and cost of a device by optimumly utilizing off-gas energy to prevent degradation of cell performance, by dispensing with warming up of the cell by a heater to restrain energy loss, and by reducing a starting period and dispensing with a storage tank. SOLUTION: This fuel cell co-generation system uses and is fed with electric power and hot water. The system is provided with: an off-gas combustor 5 for burning an anode off-gas of a fuel cell stack 4; a heat exchanger 6 installed in downstream the stack cooling water for recovering off-gas combustion heat 5 in hot water; and a three-way selector valve 9 for switching a feed destination of a reformed gas from a reformer according to the operation state of the system and to demand for the hot water. The system optimumly utilizes the energy of the off-gas.
163 Fuel cell power generation system JP2000268134 2000-09-05 JP2002075391A 2002-03-15 YOSHIDA TOSHIHIKO; KASHIWAGI YOICHIRO; TSUDA SOICHI; KOJIMA TAKEO; FUKUDA TERUJI
PROBLEM TO BE SOLVED: To provide a fuel cell power generation system enhancing the total cost efficiency by appropriating the production quantity (hot water storage volume) of hot water. SOLUTION: The hot water produced by waste heat from a fuel cell 11 is stored in a hot water storage tank 19 via a pipe 18 so as to be fed. When the fuel cell 11 is made to generate such power as causing waste heat capable of producing the hot water, a control device 17 controls the opening/closing of a valve 20 so as to feed the hot water to the hot water storage tank 19. A signal related to the hot water volume of the hot water storage tank 19 is constantly inputted from a hot water gage 22 provided in the hot water storage tank 19 into the control device 17. The control device 17 determines a target hot water storage volume of the hot water storage tank 19 based on the hot water consumption pattern grasped from the signal, and the feed volume of the hot water to the hot water storage tank 19 is controlled by controlling the action of the fuel cell 11 so that the hot water storage volume of the hot water storage tank 19 reaches the target hot storage volume. This constitution can suppress the excessive production of the hot water. COPYRIGHT: (C)2002,JPO
164 Cogeneration system JP2000214056 2000-07-14 JP2002031408A 2002-01-31 UEDA TETSUYA; MIYAUCHI SHINJI; YAMAMOTO YOSHIAKI
PROBLEM TO BE SOLVED: To solve problems in a conventional cogeneration system disposed with two heat exchangers in series that the temperature of hot water in a water-supply line 46 connected to a heat exchanger 44 for a downstream water- heater drops, and that in a constitution with two heat-exchangers serially provided, hot-water temperature in a hot-water pipe 54, or in a heating medium pipe 55 drops, for example, in the case where a flow rate in a pipe is increased in order to increase a supply heat-quantity. SOLUTION: In this system, the heat exchanger transfers exhaust heat of a generator to a hot water line, a hot-water storing tank is provided with a water-supply pipe connected to a hot-water storing line branched from the hot-water line and a hot-water supply pipe. One or more second heat-exchanger are connected to heat-exchange lines branched from the hot-water line, and transfer heat to heat-load lines. A flow distributor appropriately distributes hot water to the water storage line in the hot-water line and each of the heat exchange lines. A circulation pump is provided in the hot-water line.
165 Method and device for operating plant JP2236193 1993-02-10 JPH06236202A 1994-08-23 YAMADA AKIHIKO; SHIMODA MAKOTO; NAKAHARA SHOJI; YOSHIOKA MASAHIRO
PURPOSE:To improve economic efficiency and to decide the method for practically operating a heat source equipment. CONSTITUTION:This device is provided with a data storage means 1000 for basic plan, basic plan preparing means 2000 for deciding the operating method of the equipment so as to minimize operational cost corresponding to a linear planning method, operation knowledge storage means 3000 for storing operation knowledge such as equipment characteristics or operation knowhow, plan evaluating means 4000 for evaluating a basic plan based on the operation knowledge, correction rule storage means 5000 for storing rules to correct the plan based on the evaluation, and basic plan correcting means 6000 for correcting the plan according to the correction rules. Thus, conditions to be hardly formulated or conditions to take too long calculation time because of the increase of a parameter amount although they can be formulated can be handled, the economic efficiency is improved, and the method for practically operating the heat source equipment can be decided at high speed.
166 JPH0608701B2 - JP50024783 1982-11-22 JPH0608701B2 1994-02-02 HAIZU RARUFU II; SUENSON HOORU EFU
A cogeneration plant for a site having an expected daily thermal load. In one embodiment, the plant includes a heat engine/electrical power generator set and a heat storage unit. The engine/generator set is sized to normally operate only during the peak rate period of the central electric service utility while rejecting a quantity of heat equal to the daily thermal load at the site. The storage unit is sized to contain a quantity of heat equal to the daily thermal load reduced by that portion of the daily load incurred during the peak rate period. In another embodiment, the cogeneration plant includes a fuel cell electrical power generator serving a local energy-integrated community. The fuel cell is sized to reject a quantity of heat to satisfy the collective average daily thermal load at the community site. Separate thermal storage sections are provided for high and low grade rejected heat.
167 JPS58501965A - JP50024783 1982-11-22 JPS58501965A 1983-11-17
A cogeneration plant for a site having an expected daily thermal load. In one embodiment, the plant includes a heat engine/electrical power generator set and a heat storage unit. The engine/generator set is sized to normally operate only during the peak rate period of the central electric service utility while rejecting a quantity of heat equal to the daily thermal load at the site. The storage unit is sized to contain a quantity of heat equal to the daily thermal load reduced by that portion of the daily load incurred during the peak rate period. In another embodiment, the cogeneration plant includes a fuel cell electrical power generator serving a local energy-integrated community. The fuel cell is sized to reject a quantity of heat to satisfy the collective average daily thermal load at the community site. Separate thermal storage sections are provided for high and low grade rejected heat.
168 燃料電池とボイラの複合システム JP2015515932 2013-03-28 JP5964502B2 2016-08-03 ヤン、ドンジン
169 加熱設備および加熱設備の動作方法 JP2015561988 2014-01-22 JP2016515190A 2016-05-26 シュトゥンプ ヘアマン; マークヴァート オリヴァー; フリーデ ヴォルフガング; リンベック ウーヴェ; ツォアツィ ヨハネス; ヘアベアト クリスティアン
本発明は、少なくとも1つの‐熱結合システムと、少なくとも1つの追加ヒータ(14)と、少なくとも1つの蓄熱器とを備えた加熱設備(10)と、当該加熱設備(10)の動作方法とに関する。前記蓄熱器を熱バッファ(16)として構成することを提案する。
170 発電システム JP2012548278 2012-03-15 JP5914799B2 2016-05-11 大石 仁; 藤井 正史; 宮内 伸二; 張 鋭
171 熱交換器、及び、燃料電池システム JP2014060464 2014-03-24 JP2015183928A 2015-10-22 小林 和実; 玉男木 伸一
【課題】熱交換器にて排ガス等の熱を等の熱回収媒体によって効率良く回収する。また、電気ヒータ設置箇所での熱回収媒体の過加熱を抑制する。
【解決手段】熱交換器2は、オフガス燃焼部15からの排ガスの入口51a及び出口51bを備えて内部を排ガスが流れる高温流体通路51と、熱回収媒体の入口52a及び出口52bを備えて内部を熱回収媒体が流れる低温流体通路52と、高温流体通路51内を流れる排ガスの熱を、低温流体通路52内を流れる熱回収媒体に伝える仕切壁57と、を含んで構成される。電気ヒータ70は、低温流体通路52のうち高温流体通路51の出口51b側に隣接する部分を避けるように、低温流体通路52に設けられる。
【選択図】図4
172 燃料電池とボイラの複合システム JP2015515932 2013-03-28 JP2015525448A 2015-09-03 ヤン、ドンジン
本発明は燃料電池とボイラの複合システムに関するものであり、外部空気及び原料ガスを供給されて触媒反応を介して電気を発生する燃料電池部と、前記燃料電池部の排気管に連結されて前記燃料電池部の排気ガスの潜熱と自体排気ガスの潜熱を共に回収する潜熱熱交換器を具備するボイラ部と、を含む。本発明は燃料電池の排気ガスをボイラの潜熱熱交換器に供給してボイラの排気ガスと共に潜熱熱交換器で熱交換されて排出されるようにすることで、ボイラの効率を上げると共に排気管を単一化して構成を単純化する効果がある。【選択図】図1
173 燃料電池システム JP2012551059 2011-12-28 JPWO2012091131A1 2014-06-09 崇史 堀内; 修平 咲間; 秀章 中島; 水野 康; 康 水野
燃料電池システムは、素含有ガスを用いて発電を行うセルスタックと、セルスタックから排出される熱を利用して水を加熱する熱交換器と、熱交換器で加熱された水を貯留する貯湯槽と、を備え、熱交換器には、水を所定の温度に加熱するための高温熱回収流路と、水を所定の温度よりも低い温度に加熱するための低温熱回収流路と、が形成されており、貯湯槽には、高温熱回収流路を通って加熱された水が流入する高温水流入部と、低温熱回収流路を通って加熱された水が流入する低温水流入部と、が設けられていることを特徴とする。
174 Power generation system and a method for operation JP2013507090 2012-02-15 JP5474260B2 2014-04-16 洋 龍井; 純司 森田; 繁樹 保田; 章典 行正; 篤敬 井上
A power generation system according to the present invention includes: a fuel cell unit (101) including a fuel cell (11), a hydrogen generator (14) having a first combustor (14b), and a case (12); a controller (102); a combustion unit (103) including a second combustor (17); and a discharge passage (70) formed to cause the case (12) and the combustion unit (103) to communicate with each other. In a case where the controller (102) causes one of the first combustor (14b) and the second combustor (17) to perform the ignition operation, the controller (102) maintains an operating state of the other combustor during the period of the ignition operation of the one combustor.
175 Control method of the fuel cell system and fuel cell system JP2012542785 2011-06-10 JP5412586B2 2014-02-12 仁 大石; 玄道 加藤; 一郎 奈須
176 Cogeneration system JP2009516187 2008-05-28 JP5300717B2 2013-09-25 良和 田中; 清 田口; 英夫 小原
A cogeneration system of the present invention includes: a fuel cell (1) configured to generate electricity and heat; a hot water tank (2) configured to store hot water having recovered the heat generated by the fuel cell (1); a heat exchanger (7) configured to transfer the heat generated by the fuel cell (1) to the hot water; a hot water passage (8) that is a first heat medium passage configured such that the heat is transferred to the hot water by the heat exchanger (7) and the hot water flows into the hot water tank (2); a heat medium supplier (9) configured to cause the heat medium to flow through the first heat medium passage (8); a hot water supplying passage (11) through which the hot water stored in the hot water tank (2) is supplied to the heat load; an electric power consuming heater (12) configured to heat the hot water flowing through the hot water supplying passage (11) toward the heat load by consuming surplus electric power of the fuel cell (1) and commercial electric power; and a second heat medium passage (A) configured such that the hot water is heated by the electric power consuming heater (12) and flows into the hot water tank (2).
177 Method of operating a combined heat and power equipment JP2012549316 2011-01-17 JP2013527555A 2013-06-27 フリーデ ヴォルフガング; リンベック ウーヴェ
本発明は、熱電併給設備(10)を運転する方法であって、第1の燃料の第1の割合を、熱電併給設備(10)に設けられた燃料電池設備(20)の少なくとも1つの燃料電池(21)内で電気化学的に変換し、これによって電気的な出および熱を生成し、第1の燃料の、変換されることなしに燃料電池(21)を出る第2の割合を、燃料電池(21)からの進出後に、燃料電池設備(20)に設けられたアフタバーナ(24)内で燃焼し、熱を生成し、熱電併給設備(10)の付加加熱器(30)内で、第2の燃料が燃焼可能であり、熱を生成可能であり、燃料電池(21)の最適な運転点において、第1の燃料の最適な第1の割合が変換可能である、熱電併給設備(10)を運転する方法に関する。 燃料電池(21)の最適な運転点において燃料電池設備(20)内で生成可能である熱よりも、熱需要が高い場合に、第1の燃料の第1の割合を、最適な運転点に比べて低下させ、これにより最適な運転点におけるよりも多くの熱をアフタバーナ(24)内で生成する。
178 Fuel cell system JP2008537461 2007-09-21 JP4584337B2 2010-11-17 彰成 中村; 英夫 小原; 正高 尾関; 章典 行政
179 Fuel cell power generation system JP2000268134 2000-09-05 JP4501259B2 2010-07-14 稔彦 吉田; 健夫 小島; 陽一郎 柏木; 壮一 津田; 輝士 福田
180 Hair drying hot air delivery device not according to the power supply JP2004542252 2003-05-22 JP4450381B2 2010-04-14 アンテス,ペーター; リーベック,マルティーン
QQ群二维码
意见反馈