序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 GAS TURBINE ENGINE AND METHOD OF OPERATION US12742031 2007-11-29 US20100242488A1 2010-09-30 Albert Veninger; Jeffrey Melman; Christine Blanchard; Barry Schlein
Provided are gas turbine engines 10, combustion chambers 46 and methods of operation for reducing NOx and CO emissions in aerospace and industrial applications. An upstream compressor 18 provides pressurized air 32 to a combustion chamber having an inner liner 58 and an outer shroud 62 circumscribing a portion of the inner liner 58. The inner liner 58 having a wall 74 with an inwardly facing hot side 76 and an outwardly facing cold side 78. The shroud 62 is spaced from the inner liner 58, forming an annulus 100 for accepting a pressurized air stream 32B therein. Heat transfer features 82, disposed on the cold side 78, exchange heat from the liner wall 74 to the air stream 32B. Methods of operation include introducing fuel and air inside a liner wall 74 without premixing, and producing combustion products without introducing any additional pressurized air adjacent the hot side 76.
2 Systems and Methods of Predicting Physical Parameters for a Combustion Fuel System US15012376 2016-02-01 US20170218790A1 2017-08-03 Hua Zhang
This disclosure relates to systems and methods of predicting physical parameters for a combustion fuel system. In one embodiment of the disclosure, a method of predicting physical parameters of a combustion fuel system includes causing water injection in at least one combustor. The water injection is associated with at least one time and performed during gaseous fuel operations or after liquid fuel operations. The method includes measuring exhaust spread data associated with the water injection and allows correlating the exhaust spread data to at least one physical parameter associated with a nozzle or a valve of the fuel system. The method further includes storing the exhaust spread data, the at least one physical parameter, and the at least one time to a database. The method further provides stored historical data from the database to an analytical model. The analytical model is operable to predict, based at least partially on the stored historical data, at least one future physical parameter associated with a future time.
3 加熱炉の冷却装置 JP2016164438 2016-08-25 JP2018031528A 2018-03-01 横井 範之; 岩本 匡弘
【課題】 燃焼バーナーにより、燃料供給管から供給された燃料と燃焼用空気供給管から供給された燃焼用空気とを混合させて、炉内において燃料を燃焼させる加熱炉において、炉内を簡単な設備によって短時間で冷却できるようにする。
【解決手段】 燃焼バーナー20により、燃料供給管21を通して供給された燃料と燃焼用空気供給管22を通して供給された燃焼用空気とを混合させて、炉内11において燃料を燃焼させる加熱炉10において、燃料供給管の外周側に、燃料供給管を冷却させる冷却用空気を炉内に案内する冷却用媒体案内管23を設けると共に、この冷却用媒体案内管に冷却調整バルブ24aを介して冷却水を供給する冷却水供給管24を接続させた。
【選択図】 図3
4 COOLING APPARATUS OF HEATING FURNACE EP17843110.2 2017-04-24 EP3385620A1 2018-10-10 YOKOI Noriyuki; IWAMOTO Tadahiro

According to the present invention, in a heating furnace in which a fuel is burned by mixing the fuel supplied through a fuel supply pipe with combustion air supplied through a combustion air supply pipe by a combustion burner, a cooling medium guiding pipe through which cooling air for cooling the fuel supply pipe is guided into the furnace is provided to the outer peripheral side of the fuel supply pipe, and a cooling water supply pipe through which cooling water is supplied via a cooling water adjusting valve is connected to the cooling medium guiding pipe.

5 A gas turbine engine and method of operation EP10008127.2 2007-11-29 EP2241808A1 2010-10-20 Veninger, Albert; Melman, Jeffrey; Blanchard, Christine; Schlein, Barry

Described herein is a method of combusting fuel with reduced emissions comprising the steps of: a. introducing a fuel inside of a liner wall without premixing in a pressurized air stream prior to ignition; b. producing a flowing stream of combustion products by igniting the fuel and air; and c. introducing no additional pressurized air inside and adjacent said liner wall for film cooling said liner wall, for reducing CO.

6 燃料燃焼システムのための物理パラメータを予測するためのシステムおよび方法 JP2017011745 2017-01-26 JP2017187018A 2017-10-12 フア・チャン
【課題】燃料燃焼システムのための物理パラメータを予測するシステムおよび方法を提供する。
【解決手段】燃料燃焼システムの物理パラメータを予測するための方法300が、少なくとも1つの燃焼器の中に噴射を生じさせるステップを含み、水噴射は少なくとも1回伴われ、気体燃料作動中または液体燃料作動後に実施される。また、水噴射に付随する排気拡散データを測定するステップを含み、燃料システムのノズルまたは弁に付随する少なくとも1つの物理パラメータに排気拡散データを相互に関連させるステップを可能にする。排気拡散データ、少なくとも1つの物理パラメータ、および少なくとも1回をデータベースに記録するステップを含み、記憶された経過データをデータベースから分析モデルへ提供し、分析モデルは少なくとも部分的に記憶された経過データに基づいて、将来時に付随する少なくとも1つの将来の物理パラメータを予測するように作動可能である。
【選択図】図3
7 SYSTEMS AND METHODS OF PREDICTING PHYSICAL PARAMETERS FOR A COMBUSTION FUEL SYSTEM EP17153469.6 2017-01-27 EP3239614A1 2017-11-01 ZHANG, Hua

In one embodiment of the disclosure, a method (300) for predicting physical parameters of a combustion fuel system (100) includes causing water injection in at least one combustor. The water injection is associated with at least one time and performed during gaseous fuel operations or after liquid fuel operations. The method (300) includes measuring exhaust spread data associated with the water injection and allows correlating the exhaust spread data to at least one physical parameter associated with a nozzle (12) or a valve of the fuel system (100). The method (300) further includes storing the exhaust spread data, the at least one physical parameter, and the at least one time to a database. The method (300) further provides stored historical data from the database to an analytical model. The analytical model is operable to predict, based at least partially on the stored historical data, at least one future physical parameter associated with a future time.

8 Method of operation a gas turbine engine EP10008127.2 2007-11-29 EP2241808B1 2016-02-17 Veninger, Albert; Melman, Jeffrey; Blanchard, Christine; Schlein, Barry
9 가열로의 냉각 장치 KR1020187016357 2017-04-24 KR101906126B1 2018-10-08 요코이노리유키; 이와모토다다히로
연소버너에의해, 연료공급관을통해공급된연료와연소용공기공급관을통해공급된연소용공기를혼합해, 노내에있어서연료를연소하게하는가열로에있어서, 연료공급관의외주측에, 연료공급관을냉각하게하는냉각용공기를노 내로안내하는냉각용매체안내관을설치하는동시에, 이냉각용매체안내관에냉각수조정밸브를통해냉각수를공급하는냉각수공급관을접속하게했다.
10 연소 연료 시스템에 대한 물리적 파라미터를 예측하는 시스템 및 방법 KR1020170012520 2017-01-26 KR1020170091520A 2017-08-09 장후아
본원은연소연료시스템에대한물리적파라미터를예측하는시스템및 방법에관한것이다. 본원의일 실시형태에서는, 연소연료시스템의물리적파라미터를예측하는방법이, 적어도하나의연소기에서물 주입을야기하는것을포함한다. 상기물 주입은적어도하나의시간과연관되고, 기체연료작동중에그리고액체연료작동이후에수행된다. 상기방법은, 상기물 주입과연관된배기확산데이터를측정하는것을포함하고, 상기배기확산데이터를연료시스템의노즐또는밸브와연관된적어도하나의물리적파라미터에상관시키는것을허용한다. 상기방법은, 상기배기확산데이터, 적어도하나의물리적파라미터및 적어도하나의시간을, 데이터베이스에저장하는것을더 포함한다. 상기방법은또한, 저장된이력데이터를데이터베이스에서부터해석모델에제공한다. 상기해석모델은, 저장된이력데이터에적어도부분적으로기초하여, 미래의시간과연관된적어도하나의미래의물리적파라미터를예측하기위해운용가능한것이다.
QQ群二维码
意见反馈