序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 胶原蛋白为基质的生物相容的光学透明的聚合材料及其制备方法 CN96194593.1 1996-06-07 CN1187213A 1998-07-08 弗拉基米尔·范戈尔德; 阿列克谢·V·奥西波夫
发明是一种生物相容的聚合物,含有疏的和亲水的丙烯酸型和/或烯丙基型单体的混合物与调聚的胶原蛋白接枝聚合的共聚产物。本发明的材料可用于生产可变形透镜例如眼球内透镜,折光的眼球内接触透镜和标准的接触透镜,这些透镜可用于例如矫正无晶状体,近视和远视。
2 超声增强的连续流燃料喷射设备及方法 CN01821199.2 2001-12-20 CN1483122A 2004-03-17 L·K·詹森; B·科亨; L·H·吉普森
公开了一种用于将液体燃料喷入连续燃料燃烧器的超声增强的连续流设备以及一种通过将超声能施加于从孔中排出的加压液体燃料而改进连续流燃料燃烧器的方法。这种设备包括一个喷射器或者模壳体和一个用于将超声能施加于加压液体的一部分的装置,喷射器或者模壳体部分地限定了一个适用于接收加压液体燃料的腔室。出口孔适用于通过前腔接收来自腔室的加压液体并将液体传送出模壳体。当用于施加超声能的装置受到激励时,它将超声能施加于加压液体而不会使模顶端受到机械振动。
3 增大通过小孔的液体流速的设备和方法 CN95194593.9 1995-06-23 CN1155301A 1997-07-23 L·K·杰姆森; L·H·吉普森; B·科恩
通过对一部分增压液体施加超声能量来增大通过小孔的增压液体流速的设备和方法。该设备(100)包括一个形成适于接受增压液体的腔室(104)的压模壳体(102)和一个将超声能量施加在一部分增压液体上的装置(116)。压模壳体(102)还包括一个适于向腔室供给增压液体的入口(110)和一个由压模顶端(136)的壁形成的出口小孔(112)。出口小孔(112)适于从腔室(104)接受增压液体并使液体流出压模壳体(102)。当施加超声能量的装置(116)受激发时,它向增压液体施加超声能量而不将超声能量施加到压模顶端(136)上。该方法包括将增压液体供给到上述设备(100),将超声能量施加到增压液体但不加到压模顶端(136)上,同时出口小孔(112)从腔室(104)接受增压液体并使增压液体流出压模顶端(136)中的出口小孔(112)。
4 可燃性流动介质所用燃烧装置 CN86100280 1986-01-18 CN1005359B 1989-10-04 弗里德里克·卡麦里特; 约瑟夫·兰达夫; 阿达伯特·马科; 海尔马特·伯曼; 约辰·伯斯; 沃纳·基施宁格; 戴特·利施特茨基; 戴特利夫·茨维特茨
一种燃烧流动性介质、特别是悬浮在流体中的粉末状或颗粒状固体燃料,例如悬浮在中的的燃烧装置,带有喷嘴(20)和燃烧室(1),喷嘴(20)在这里是安装在预燃室(4)上的,而预燃室(4)是合并在燃烧室(1)上的;处在喷嘴(20)的喷口区域内的小部分供燃空气能被送入预燃室(4),而大部分供燃空气在从预燃室(4)到燃烧室(1)过渡区内被送入。
5 一种多机理复合雾化燃油喷嘴结构 CN201410717740.7 2014-12-01 CN104566363A 2015-04-29 刘维; 曾铁平; 陈莲瑛; 杨吉林; 楚红伟
发明公开了一种多机理复合雾化燃油喷嘴结构。所述雾化燃油喷嘴包括内管,该内管与燃油入口连通而作为燃油通道;外管,该外管装在内管上且在外管与内管之间形成雾化介质通道,该外管的管壁上开有与雾化介质通道连通的雾化介质入口;混合器,该混合器位于雾化介质通道的出料口一端,且与所述燃油通道和雾化介质通道连通;以及喷嘴,装在外管一端的该喷嘴位于混合器的出料口端,且喷嘴的前端开有多个喷孔;所述混合器与内管之间装有对燃油进行雾化的雾化结构。本发明具有结构简单、燃料油雾化粒径小、雾化粒径均匀度好、调节比大、雾化剂耗量低、噪音小、节能效果好等优点。
6 燃烧器喷嘴 CN201080055971.6 2010-10-28 CN102667339A 2012-09-12 H·哈博费尔纳
发明涉及一种燃烧器喷嘴,其包含用于可燃烧的流体的第一通道(14)、用于可燃烧的流体的流出孔(14')、用于雾化介质的第二通道(15)和用于雾化介质的流出孔(17),在该流出孔的区域中设置哈特曼振荡器。使用纯气作为雾化介质。这样确定哈特曼振荡器的盘(19)的外直径(D2)的尺寸,使得纯氧气从喷嘴(3)中的流出速度如此之大,使得在喷嘴(3)的壳体(11)区域中喷嘴的材料的最大使用温度和/或哈特曼振荡器的材料的最大使用温度不被超过。其效果在于:氧气和可燃烧的流体的混合和燃烧与燃烧器喷嘴3隔开这样的距离进行,使得燃烧器喷嘴3不受到高的火焰温度的损坏。
7 增大通过小孔的增压液体流速的设备、方法、用途及产品 CN95194593.9 1995-06-23 CN1165640C 2004-09-08 L·K·杰姆森; L·H·吉普森; B·科恩
通过对一部分增压液体施加超声能量来增大通过小孔的增压液体流速的设备和方法。该设备(100)包括一个形成适于接受增压液体的腔室(104)的压模壳体(102)和一个将超声能量施加在一部分增压液体上的装置(116)。压模壳体(102)还包括一个适于向腔室供给增压液体的入口(110)和一个由压模顶端(136)的壁形成的出口小孔(112)。出口小孔(112)适于从腔室(104)接受增压液体并使液体流出压模壳体(102)。当施加超声能量的装置(116)受激发时,它向增压液体施加超声能量而不将超声能量施加到压模顶端(136)上。该方法包括将增压液体供给到上述设备(100),将超声能量施加到增压液体但不加到压模顶端(136)上,同时出口小孔(112)从腔室(104)接受增压液体并使增压液体流出压模顶端(136)中的出口小孔(112)。
8 可燃性流动介质用的燃烧装置及所使用的喷嘴 CN86100280 1986-01-18 CN86100280A 1986-07-30 弗里德里克·卡麦里特; 约瑟夫·兰达夫; 阿达伯特·马科; 海尔马特·伯曼; 约晨·伯斯; 沃纳·基施宁格; 戴特·利施特茨基; 戴特利夫·茨维特茨
一种燃烧流动性介质、特别是悬浮在流体中的粉末状或颗粒状固体燃料,例如悬浮在中的的燃烧装置,带有喷嘴(20)和燃烧室(1)。喷嘴(20)在这里是安装在预燃室(4)上的,而预燃室(4)是合并在燃烧室(1)上的;处在喷嘴(20)的喷口区域内的小部分供燃空气能被送入预燃室(4),而大部分供燃空气在从预燃室(4)到燃烧室(1)的过渡区内被送入。
9 초음파 연속 유동 연료 분사 장치 및 방법 KR1020037008462 2001-12-20 KR1020030068564A 2003-08-21 제임슨리케이.; 코헨버나드; 깁슨라마히쓰
연속 연료 연소기 내로의 액체 연료의 분사를 위한 초음파 연속 유동 장치와, 오리피스로부터 출발하는 가압된 액체 연료로의 초음파 에너지의 인가에 의해 연속 유동 연료 연소기를 개선시키는 방법이 개시되어 있다. 이 장치는 가압된 액체를 수용하도록 된 챔버를 부분적으로 한정하는 분사기 또는 다이 하우징과, 가압된 액체의 일부에 초음파 에너지를 인가하는 수단을 포함한다. 출구 오리피스는 입구 공동을 통해 챔버로부터 가압된 액체를 수용하여 하우징의 외부로 액체를 통과시키도록 되어 있다. 초음파 에너지를 인가하는 수단이 여기될 때, 이는 다이 팁을 기계적으로 진동시키지 않고 가압된 액체에 초음파 에너지를 인가한다.
10 Apparatus and method for emulsifying a pressurized multi-component liquid US08576543 1995-12-21 US06380264B1 2002-04-30 Lee Kirby Jameson; Lamar Heath Gipson; Bernard Cohen
A method employing a ultrasonicator apparatus to emulsify a pressurized multi-component liquid. The apparatus includes a die housing comprising a chamber adapted to receive a pressurized multi-component liquid, an inlet adapted to supply the chamber with the pressurized multi-component liquid, an exit orifice defined by the walls of a die tip, and a means for applying ultrasonic energy to a portion of the pressurized liquid. The method for emulsifying a pressurized multi-component liquid comprising supplying a pressurized multi-component liquid to the apparatus, applying ultrasonic energy to the pressurized liquid but not the die tip while the exit orifice receives pressurized liquid from the chamber, and passing the pressurized liquid out of the exit orifice in the die tip so that the multi-component liquid is emulsified, wherein the means for applying ultrasonic energy is excited, it applies ultrasonic energy to the pressurized liquid without applying ultrasonic energy to the die tip.
11 Method and apparatus for increasing the flow rate of a liquid through an orifice US477689 1995-06-07 US6010592A 2000-01-04 Lee Kirby Jameson; Lamar Heath Gipson; Bernard Cohen
An apparatus and a method for increasing the flow rate of a pressurized liquid through an orifice by applying ultrasonic energy to a portion of the pressurized liquid. The apparatus includes a die housing which defines a chamber adapted to receive a pressurized liquid and a means for applying ultrasonic energy to a portion of the pressurized liquid. The die housing further includes an inlet adapted to supply the chamber with the pressurized liquid, and an exit orifice defined by the walls of a die tip. The exit orifice is adapted to receive the pressurized liquid from the chamber and pass the liquid out of the die housing. When the means for applying ultrasonic energy is excited, it applies ultrasonic energy to the pressurized liquid without applying ultrasonic energy to the die tip. The method involves supplying a pressurized liquid to the foregoing apparatus, applying ultrasonic energy to the pressurized liquid but not the die tip while the exit orifice receives pressurized liquid from the chamber, and passing the pressurized liquid out of the exit orifice in the die tip.
12 Fuel nozzle generating acoustic vibrations US941035 1992-09-30 US5314117A 1994-05-24 Vitaly G. Pavljuk; Krarm P. Tsvetaev; Jury Y. Dolgopolov; Alexandr I. Zhukov
A fuel nozzle comprises a body (1) with a cylindrical sleeve (2) accommodating a tubular element (3) having an axially extending channel (16). At the end of the element (3) there is arranged an acoustic head (5) having a conically shaped surface (6) adapted to generate acoustic vibrations. An annular recess (12) is formed on the surface (6). The nozzle body (1) carries a reflecting surface (9) formed as a plurality of pyramids. The fuel nozzle is provided with a device (18) adapted to swirl the gas flow and a regulating element (17) accommodated in the axial channel (16).
13 Fuel supply system US103278 1979-12-13 US4344402A 1982-08-17 Francis W. Child; Richard O. Bartz
An apparatus for supplying aerosol fuel particles uniformly mixed with air to utilizer, as an internal combustion engine or burner. The apparatus has several fuel mixing and atomizing nozzles operable to mix one or more liquid hydrocarbon fuels and discharge the fuels through orifices in small fuel particles of uniform size. The fuel particles are mixed with air and flow through a pair of venturi throats with converging inlet walls and diverging outlet walls. The velocity of the air and fuel particles flowing through the venturi throats is at or above the speed of sound. The fuel particles are finely divided into particles between 0.5 and 1.5 micron in diameter as they move through the turbulent inlet and outlet interfaces of the air flowing through the nozzle throats at sonic and supersonic velocities and are evenly distributed into the air. The length or major dimension of one of the venturi throats is regulated with a baffle in accordance with the speed requirements of the engine.
14 Rotary burner US771665 1977-02-24 US4113416A 1978-09-12 Rikio Kataoka; Shigeru Yano; Yoshito Kumamoto; Haruo Watanabe; Hisao Kaya; Kiyoshi Aoki; Masanao Kitamura
Disclosed is a rotary burner of the type wherein the liquid fuel (to be referred to as "the oil" hereinafter in the specification) is atomized by uniform and stable ultrasonic waves and the oil particles are prevented from being sprayed outwardly so that the non-uniform distribution of concentrations of oil particles results, whereby the uniform combustion may be ensured.
15 Ultrasonic atomizer for waste sulfuric acid and use thereof in acid cracking furnaces US719973 1976-09-02 US4102651A 1978-07-25 Walter Kerner; Friedrich Mahler; Heinrich Peters
A furnace chamber of substantially circular cross section having a ceiling and a side wall, a burner positioned adjacent said ceiling and substantially evenly spaced from said side wall, a plurality of ultrasonic atomizer assemblies positioned around said burner in a concentric pattern adjacent said ceiling, each of said ultrasonic atomizer assemblies including: (a) means for converting a feed stream of the waste sulfuric acid into a coarse spray, and (b) means for further atomizing the coarse spray by passing it through a field of ultrasonic sound, and a gas flow constricting means transversing said chamber and spaced from said ceiling in a distance of about 1 to 4 times the length of the diameter of said chamber.
16 Fuel atomizers US660929 1976-02-24 US4000852A 1977-01-04 Barrie James Martin
A vibratory fuel atomizer in which a small housing is located within the atomizer near the atomizer tip, the housing containing a ball valve for shutting off the flow of fuel and a spring for biasing the ball valve to the closed position.
17 Ultrasonic atomizer for waste sulfuric acid and use thereof in acid cracking furnaces US40590873 1973-10-12 US3908904A 1975-09-30 KERNER WALTER; MAHLER FRIEDRICH; PETERS HEINRICH
Ultrasonic atomizer nozzle assembly for atomizing waste sulfuric acid in a cracking furnace in which the acid feed stream is mechanically broken up by a stationary or rotating type atomizer into a coarse spray and an annullarly arranged ultrasonic generator further atomizes the coarse spray into microscopic particles. The ultrasonic generating gas is deflected into the ultrasonic resonance chamber and the coarse spray is either centrally or annularly positioned relative to the ultrasonic field. An annular gas buffer may be provided around the atomizer. The nozzle assembly is mounted in the ceiling of a furnace having a gas flow constricting member spaced from the ceiling 1-4 times the diameter of the furnace.
18 Acoustic nozzle US26539972 1972-06-22 US3829015A 1974-08-13 MONRO R
A nozzle for finely dispersing a liquid in a gas stream, usually air or steam, has therein a reverberation chamber for producing acoustic energy in the gas stream. The gas then flows through a plurality of tubular passages which are intersected by tubular passages carrying therethrough a liquid to be nebulized, said liquid usually being oil. The nozzle is particularly useful for nebulizing oil in preparation for combustion thereof.
19 Atomisers US3741484D 1971-09-24 US3741484A 1973-06-26 CRESSWELL A
Method and apparatus for atomising liquids in which a liquid is fed from an outer, annular, convergent nozzle into a stream of gas fed at sonic velocity from a coaxial inner convergent nozzle. A difergent deflector is positioned coaxially within the outlet openings of the two nozzles.
20 Compressible fluid sonic pressure wave atomizing apparatus US51101065 1965-10-19 US3371869A 1968-03-05 NATHANIEL HUGHES
QQ群二维码
意见反馈