序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
41 JPS5028881B1 - JP6025970 1970-07-09 JPS5028881B1 1975-09-19
1321271 Acoustic inspection devices SCHLUMBERGER INLAND SERVICES Inc 9 July 1970 [9 July 1969] 33438/70 Heading H4D The integrity of the cement packing between a well casing and surrounding earth formations is investigated by transmitting acoustic energy so that a component propagates from the well bore into the casing and earth formations, receiving a reflected portion of the energy and separating it into acoustic frequency spectrum bands, and generating signals respectively representing the acoustic reflection coefficient in at least three selected spectrum bands. It is shown mathematically that, for a given well casing and borehole size, three frequency bands can be selected such that the reflection coefficients for two of the bands would be relatively low if there were good cementing, while at most one reflection coefficient would be relatively low for poor cementing. In the embodiment of Figs. 6 and 7 a conventional logging tool (Fig. 6) has several acoustic pulse transmitters and receivers T, R which can be selected in pairs by means of programmer 36, control signal generator 34, selector control 54 and selector unit 56. The tool is constructed substantially to prevent direct passage of acoustic energy between the transmitters and receivers. Receiver output signals are passed via channel 60 (which is blanked during the acoustic pulse transmission) and detector 42 (which is gated on when acoustic signals are expected to reach a receiver via the earth formations, cement and well easing) to acoustic travel time computer 44 and to cement evaluation computer 70, the computer outputs being logged at 52 and 71 as a function of tool depth in the well. In the cement evaluation computer (Fig. 7) the time-gated receiver signals are split into the three selected frequency bands (e.g. 10-15 kHz, 15-25 kHz and 25-40 kHz) by filters 81, 82, 83 whose amplified outputs are integrated (with respect to frequency) respectively at 87, 88, 89 to provide three signals of amplitude representing the reflection coefficients in those bands. Selectable gain amplifiers 84, 85, 86 compensate for the frequency response of the logging tool transducers. Circuit 90 (detailed in Fig. 9, not shown) selects the lowest two of the three reflection coefficient signals and averages them, this average being logged. The reflection coefficient signals are recorded individually at 91. The cement evaluation computer may be operated off-line, by recording on magnetic tape the logging tool acoustic waveforms or the outputs of integrators 87, 88, 89, and may be a digital filtering and processing system instead of the system shown (details given). The cement integrity log may be displayed on an oscilloscope or recorded by a digital printer.
42 ウェル完全性測定のための拡張帯域幅トランスジューサ JP2014547435 2012-12-13 JP6122441B2 2017-04-26 マタム,マヘシュ; ロッツェンヘイザー,フラン; グウィン,パット
43 音響検出器 JP2015528633 2013-08-21 JP2015531074A 2015-10-29 カック ヴー,カング; シンハ,ディペン,エヌ.; パンテア,クリスティアン
音響検出器は、円筒形状の支持部材と、当該円筒形状の支持部材の表面に設けられた複数の受信機要素とを備える。前記複数の受信機要素は、複数の方位方向において、音響波を検出するように構成される。
44 低周波広帯域超音波トランスデューサ JP2015510422 2013-05-01 JP2015518700A 2015-07-02 ローツェンハイザー,フランス; マタム,マヘシュ; モルツ,エリック
ダウンホールセメントボンド評価で使用するのに特に適しており、しかしさまざまな用途で使用可能な、低周波数パルスエコー超音波トランスデューサが提供される。1つの周波数パルスエコー超音波トランスデューサは、ピエゾセラミック要素と、好ましくは、トランスデューサスタックのQを減少させるため、ピエゾセラミック要素に整合した音響インピーダンスである、超音波抑制または減衰要素の交互の層を有するトランスデューサスタックを備える。別の低周波数パルスエコー超音波トランスデューサは、音響減衰裏当て上に配設される本トランスデューサスタックおよび前面を有するアセンブリを備える。さらに別の低周波数パルスエコー超音波トランスデューサは、メタニオブ酸鉛から作られたトランスデューサ合成物を含む。さらに別の周波数パルスエコー超音波トランスデューサは、合成物のスタックを含む。さらなる低周波数パルスエコー超音波トランスデューサは、合成物スタックを備え、複数の駆動要素が、異なる時間に個別の要素を駆動することを可能にする。トランスデューサは、複数パルス時間遅延のやり方で駆動されうる。
45 ウェル完全性測定のための拡張帯域幅トランスジューサ JP2014547435 2012-12-13 JP2015509301A 2015-03-26 マタム,マヘシュ; ロッツェンヘイザー,フラン; グウィン,パット
単一の臨界減衰された音響スタックが、ウェル完全性判定における特定の使用を有する音響送信機としてまたは音響トランスジューサとして、広い周波数範囲をもたらす。その臨界減衰された本音響スタックは、100%帯域幅のそれぞれの中央周波数を各々が作り出して1つの音響要素の帯域幅または複数の音響要素の帯域幅を超える全帯域幅を有する音響スタックをもたらす、異なる中央周波数を提供し、2つの方式で励起される圧電セラミックなどの複数の積み重ねられた音響要素を使用する。励起の1つの方式は、音響要素のうちの1つのみにパルスを発することである。もう一方の方式は、第1の音響要素にパルスを発し、次いで、第1のパルスが第2の音響要素の面に到達するのに要する時間量と同等の遅延の後に第2の音響要素にパルスを発することである。その音響要素は、タングステンの臨界減衰されたバッキングにともに接合され、そのアセンブリは、好ましくはPEEKで作られた筐体内に保持される。その音響スタックは、主として、金属ケーシング壁厚のパルスエコー分析およびウェルのセメントボンド品質検出で使用される。
46 Method of evaluating bonding state between tube and bonding agent, and mine equipment installed in tube JP2006332847 2006-12-11 JP2007218897A 2007-08-30 BOLSHAKOV ALEXEI; DUBINSKY VLADIMIR; TANG XIAO-MING; PATTERSON DOUGLAS; DONSKOY DIMITRI; BAROLAK JOSEPH G
PROBLEM TO BE SOLVED: To provide a method and a device for analyzing a bonding state of fixing a casing inside a drilling well. SOLUTION: The figure herein shows a mine equipment 40 useful for evaluating the bonding state between a tube and a bonding agent. The tube is the mine casing 36 installed in the drilling well 32 penetrated through an underground layer 38, in Fig.8. The cement bonding agent comprises cement 44, and is used for separating a layer inside the underground layer 38 and for fixing the casing 36 to the drilling well 32. The mine equipment 40 is suspended inside the drilling well 32 by a cable 34, and the cable 34 is supported optionally by a ground surface pulley 35. The cable 34 not only serves as a means for making the mine equipment 40 go downwards in the drilling well 32, for supporting it, and for making it go up to a ground surface, but also serves as a communication line between the equipment 40 and the ground surface 45. An information processing system (IHS) 47 is connected to the mine equipment 40 via the cable 34. COPYRIGHT: (C)2007,JPO&INPIT
47 Assembly of borehole, its method, and composition JP15499593 1993-06-25 JPH0642282A 1994-02-15 GABURIERU MARII JIYOZEFU JIYAN
PURPOSE: To pump water without containing an aquifer that is spread under an impervious stratum by winding a transport tube with a radial perforation around a protection tube at the position of protection mortar. CONSTITUTION: A first bore hole 6 that does not penetrate an impervious stratum is bored. Then, a second bore hole 7 with a smaller diameter than the first bore hole 6 is bored. Then, a protection tube 10 with a diameter in the middle of the bore holes 6 and 7 is inserted. Then, protection mortar 14 is added to the annular space between the protection tube 10 and the bore hole 6. Further, a transport pipe 13 with a radial perforation is wound around the protection tube 10 at the position of the protection mortar 14. Also, a tube 16 is connected to the transport tube 13.
48 地下層で使用するためのトレース可能なポリマー添加剤 JP2016519849 2013-11-22 JP2016539200A 2016-12-15 クリストファー リン ゴードン; クレイグ ウェイン ロディー; ジテン チャタージ
タグ付け材料を含むトレース可能なポリマー添加剤及びセメンチングなどの地下用途におけるトレース可能なポリマー添加剤の使用方法が開示される。実施形態は、ポリマー及びタグ付け材料を含むトレース可能なポリマー添加剤を含む流体を坑井孔に導入する坑井処理方法を開示する。【選択図】図3
49 ダウンホール環境の高周波検査 JP2015216324 2015-11-04 JP2016090583A 2016-05-23 グレゴリー・ダブリュー・プーリ
【課題】高分解能を提供し、それでも依然高密度流体で作動する、ケーシングとセメントボンドを音響的に検査する手段を提供すること。
【解決手段】とりわけ、ダウンホール環境の特徴を周波数が3〜5MHzの範囲の超音波信号を用いて検査する検層ツールの実施形態が開示される。超音波信号は符号化され、それらの飛行時間と振幅が、およそ1mmのケーシングの内面の特徴に関する、およびケーシング背後のセメントボンドの品質に関する情報を提供する。
【選択図】図1
50 音響ビームを生成するための音響源 JP2015528632 2013-08-21 JP2015531073A 2015-10-29 カック ヴー,カング; シンハ,ディペン,エヌ.; パンテア,クリスティアン
音響ビームを生成する音響源は、筐体、当該筐体内に間隔を空けて配置された複数の圧電層、及び、前記複数の圧電層の間に充填された非線形媒体を備える。前記複数の圧電層のそれぞれが、音響波を生成するように構成される。非線形媒体及び複数の圧電層は、整合インピーダンスを有し、前記複数の圧電層のそれぞれによって生成される音響波の、残りの当該複数の層における伝送が改善される。
51 音響ビーム源を使用した音波測定のシステム及び方法 JP2015528631 2013-08-21 JP2015529822A 2015-10-08 カック ヴー,カング; シンハ,ディペン,エヌ.; パンテア,クリスティアン
ボアホール付近の構造を調査する方法及びシステムについて記載する。方法は、音響源により音響ビームを生成する段階と、ボアホール付近の選択した位置に向けて、一の又は複数の方位方向に前記音響ビームを向ける段階と、前記選択した位置における物質によって反射された前記音響波、回折された前記音響波、若しくは、表面波伝播又はこれらの組み合わせ、から発生した音響信号を、一の又は複数の受信機で受信する段階と、前記ボアホール周辺の前記物質の特徴を把握するべく、受信した前記音響信号を分析する段階とを備える。
52 Use of ram wave in cement bond logging JP2006054389 2006-03-01 JP2006242955A 2006-09-14 BOLSHAKOV ALEXEI; DUBINSKY VLADIMIR; PATTERSON DOUGLAS; TANG XIAO-MING; JOSEPH BAROLAK; ALERS GEORGE A; ALERS RONALD B
PROBLEM TO BE SOLVED: To provide method and device useful for measuring status of cement bond allocated in between a annular space between casing and well. SOLUTION: These are method and system useful for measuring status of cement bond allocated in the annular space between casing and well. In this method and device a transmit transducer is used to induce ram waves in casing and well. Ram waves is attenuated, if passing through the cement bond. The attenuated ram waves are monitored by a receive transducer. Then the result of the attenuation state in the received ram waves is analyzed and evaluated to enable the cement bonding state to be measured. the cement bond status includes the presence of cement, the conditions of cement, density, compressive strength, etc. COPYRIGHT: (C)2006,JPO&NCIPI
53 Hydraulic power separation determining method and device JP33608592 1992-12-16 JPH06281631A 1994-10-07 FURETSUDO II SUTANKU; RARUFU EMU DANJIERO
PURPOSE: To provide a method and a device for determining hydraulic separation of various layers in a stratum. CONSTITUTION: Characteristics of various critical surfaces between the substances in a bore hole 111 is evaluated. In the radial segment of the bore hole 111, acoustic inspection is performed by directing an acoustic signal. This signal passes through a casing 115 and a charging material 119, and a signal transmitted along a path encountering various critical surfaces 121, 125, and 127 in the bore hole 111 is generated. This signal is processed, and hydraulic separation determination is performed. COPYRIGHT: (C)1994,JPO
54 Method and device for measuring structure forming motion in binder JP5395082 1982-04-02 JPS57190257A 1982-11-22 IGOORU RUBOUITSUCHI EBERURINGU; PITARII IWANOUITSUCHI KOWARENK; NIKORAI KONSUTANCHINOUITSUCHI; RUBEN ARUMENOUITSUCHI TATEBOSH; MIHAIRU YAKOUREUITSUCHI TEITOF; REFU AREKUSANDOROUITSUCHI TERE; NIKORAI IWANOUITSUCHI NIKORAEF; ARIAN MIHAIROUITSUCHI YAKOUREF
55 PROCÉDÉ ET SYSTÈME D'EXPLOITATION ET DE SURVEILLANCE D'UN PUITS D'EXTRACTION OÙ DE STOCKAGE DE FLUIDE EP15733792.4 2015-06-03 EP3152396B1 2018-11-14 DROUET, Emeline; GORINTIN, Louis
56 PEAK ANALYSIS OF ULTRASONIC WAVEFORMS FOR CEMENT BOND LOGGING EP15814382 2015-05-19 EP3137738A4 2018-04-25 FRISCH GARY J
A cement bond log from recorded ultrasonic waveforms, a method for evaluating bonding of cement in a wellbore between a casing and a wellbore wall, and a method for creating a cement bond log from recorded ultrasonic waveforms are disclosed, in which series of points corresponding to maxima and minima of the waveforms are identified. Absolute value amplitudes of the series of points are thereafter identified and a correlation thereof is analyzed to divide each series of points into four or more zones, corresponding to casing arrival data, inner and outer annular data, wellbore wall arrival data, respectively. Mean values of the absolute value amplitudes of the waveforms for points of each series falling within each of the four zones are calculated, which relate to cement bonding at the depths of the recorded ultrasonic waveforms.
57 REFLECTION-ONLY SENSOR AT MULTIPLE ANGLES FOR NEAR REAL-TIME DETERMINATION OF ACOUSTIC PROPERTIES OF A FLUID DOWNHOLE EP15824909 2015-07-20 EP3172399A4 2018-02-28 DIFOGGIO ROCCO
Methods, systems, and devices for determining a parameter of interest of downhole fluid using an acoustic assembly comprising a single solid acoustic transmission medium having a face immersed in the downhole fluid. Methods include using characteristics of a plurality of acoustic pulse reflections from a solid-liquid interface at the face of the solid acoustic transmission medium to estimate the parameter of interest in near real-time. The characteristics may comprise a corresponding reflection amplitude and the corresponding unique angle of reflection for each acoustic pulse reflection. Methods may include generating a two dimensional data set from measured characteristics, generating a curve by performing data fitting on the two dimensional data set, and using the reciprocal slope of the curve to estimate the parameter of interest. Methods may include estimating time-dependent values for the parameter of interest substantially continuously while the acoustic assembly is on a single logging run in the borehole.
58 SYSTEMS AND METHODS FOR SIMULATING CEMENT PLACEMENT EP16306066.8 2016-08-18 EP3284903A1 2018-02-21 FLAMANT, Nicolas C.G.L.; TARDY, Philippe M J; PARRY, Andrew J.

A method may include receiving data related to a wellbore fluid, a wellbore, and a geological formation. The method may then determine properties associated with the wellbore fluid over a period of time based on the data; determine temperature values associated with the wellbore fluid based on the data and the properties associated with the wellbore fluid; determine an expected shape of the annulus space based on the data, the properties associated with the wellbore fluid, and the temperature values; and determine bottom-hole fluid properties associated with the wellbore fluid based on the properties of the wellbore fluid and the temperature values. The method may then generate a wellbore fluid placement map based on the bottom-hole fluid properties, the shape of the annulus space, and the temperature values, such that the wellbore fluid placement map includes expected concentration levels of the wellbore fluid.

59 DETERMINING LOCATIONS OF ACOUSTIC SOURCES AROUND A BOREHOLE EP14897743 2014-07-18 EP3132118A4 2018-02-21 MANDAL BATAKRISHNA
Systems, methods, and computer-readable storage devices for determining a location of an acoustic source outside of a borehole. The method relates to indicating a radial distance to the borehole, an offset along the borehole, and an azimuthal position around the borehole, of the acoustic source. The method includes receiving acoustic signals from respective acoustic sensors spaced along a tool lowered within the borehole. Using the acoustic signals and a borehole model, stacked energies are calculated for different radial distances from the borehole. At least one of the stacked energies is translated to an indication of a radial distance of the acoustic source from the borehole. The stacked energy for a radial distance is computed by offsetting the acoustic data signals in time in accordance the borehole model, summing the offset acoustic data signals to produce a stacked signal, and evaluating energy of the stacked signal over a time window.
60 APPARATUS AND METHOD OF CONCENTRIC CEMENT BONDING OPERATIONS BEFORE AND AFTER CEMENTATION EP12834486.8 2012-09-17 EP2748422B1 2018-01-03 Tunget, Bruce A.
QQ群二维码
意见反馈