序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
81 천공기, 언로드 제어용 프로그램 KR1020167014341 2014-12-26 KR1020160113581A 2016-09-30 혼마마사토시; 이시카와히로키
연비를향상시키고, 환경면에대한영향등을개선한천공기를제공한다. 구체적으로는, 천공기(1)에있어서, 엔진(21)의기동시에콤프레서(16a)의언로드제어를행하여, 공기탱크(16c) 내의공기압을제1공기압으로한다. 또한, 엔진(21)의구동중으로서플러싱기구(17)의비구동중에는공기탱크(16c) 내의공기압을제1공기압으로유지한다. 그리고플러싱기구(17)의기동시에콤프레서(16a)의언로드제어를행하고, 공기탱크(16c) 내의공기압을제1공기압보다도높은제2공기압으로상승시킨다. 예를들어, 제1공기압은저압(0.5 MPa), 제2공기압은고압(1.03 MPa)이다.
82 셰일가스 유전의 다양한 인공 균열에서 프로판트의 침전을 확인하기 위한 시뮬레이션 장치 및 방법 KR1020130048853 2013-04-30 KR1020140130348A 2014-11-10 배위섭; 류원선; 김인원; 트리안토아디푸트로구다니; 이재훈; 권용훈; 홍한솔; 홍정재; 아크마랄넷자노바
본 발명은 셰일가스 유전의 다양한 인공 균열에서 프로판트의 침전을 확인하기 위한 시뮬레이션 장치 및 방법에 관한 것으로, 간단하며 빠르고 정확한 방식으로 다양한 종류의 프로판트 슬러리의 침전 특성을 확인하여 수압파쇄에 의한 인공균열에 최대의 투수공간을 확보하도록 함으로써 생산성을 향상함을 목적으로 한다.
본 발명에 의한 셰일가스 유전의 다양한 인공 균열에서 프로판트의 침전을 확인하기 위한 시뮬레이션 장치는, 내부에 공간이 형성되며 외부의 빛이 내부에 입사되지 않도록 구성된 컨테이너(10)와; 내부에 유전지대의 균열을 표현하기 위한 유로(21a)가 형성되는 투명의 홀더 본체(21), 상기 홀더 본체의 유로를 개폐하는 마개(22)로 구성되어 상기 유로에 프로판트와 유체가 혼합된 프로판트 슬러리가 수용된 상태에서 상기 컨테이너에 교체 가능하게 장착되는 샘플 홀더(20)와; 상기 샘플 홀더를 중심으로 하여 양측에 각각 상기 샘플 홀더에 수용된 프로판트 슬러리의 이동 방향을 따라 상호 간에 일정 간격을 두고 배치되어 상기 샘플 홀더에 빛을 조사하는 다수의 발광부(40) 및 상기 샘플 홀더를 투과한 빛을 측정하는 다수의 수광부(50-1,50-2,50-3,50-4)로 이루어져, 상기 샘플 홀더에 수용된 프로판트 슬러리의 프로판트의 침전을 측정하도록 하는 프로판트 침전 센서와; 상기 프로판트 침전 센서의 수광부에서 수신한 값을 근거로 하여 상기 프로판트 슬러리의 프로판트의 침전 시간, 침전 속도, 부유 시간을 포함하는 침전 데이터를 산출하는 컨트롤러(30)로 구성된다.
본 발명에 의한 셰일가스 유전의 다양한 인공 균열에서 프로판트의 침전을 확인하기 위한 시뮬레이션 방법은, 내부에 유전지대의 균열을 표현하기 위한 유로가 형성되는 투명의 홀더 본체, 상기 홀더 본체의 유로를 개폐하는 마개로 구성된 샘플 홀더의 유로에 프로판트와 유체가 혼합된 프로판트 슬러리를 수용한 후, 이 샘플 홀더를 외부의 빛이 입사되지 않으며 발광부와 다수의 수광부로 이루어진 프로판트 침전 센서가 갖추어진 컨테이너 내부의 상기 발광부와 수광부 사이에 장착하는 제1단계와; 상기 프로판트 침전 센서의 발광부에 전원을 인가하여 빛이 조사되도록 하고, 상기 발광부에서 조사되어 상기 샘플 홀더를 투과한 후 상기 수광부에서 수신한 빛의 세기를 근거로 하는 수신 데이터를 검출하는 제2단계와; 상기 제2단계를 통해 검출한 수신 데이터를 근거로 하여 상기 프로판트 슬러리의 프로판트의 침전 데이터를 산출하는 제3단계를 포함하는 것을 특징으로 한다.
83 해양구조물의 히브컴펜세이터 제어시스템 KR1020130002471 2013-01-09 KR1020140090431A 2014-07-17 현장환
Disclosed in the present invention is a system for controlling a heave compensator of an offshore structure. The system for controlling the heave compensator of the offshore structure comprises: a heave motion active compensating unit which is placed in a derrick in order to actively compensate for the vertical motion of a crown block; a heave motion passive compensating unit which is placed in the derrick in order to passively compensate for the vertical motion of the crown block; and an isolation valve unit which is placed in a fluid supply line of the heave motion passive compensating unit in order to isolate the fluid supply line during emergencies, and isolates the fluid supply line using fluid supplied by at least two isolation operating units.
84 DP 모듈과 연계된 시추 시뮬레이션 시스템 및 그의 시뮬레이션 방법 KR1020120077805 2012-07-17 KR1020140011576A 2014-01-29 함승호; 박광필; 이재범; 조아라
The present invention relates to a drilling simulation system connected to a DP module and a simulation method thereof capable of simulating drilling equipment by controlling the movement of a drilling ship which responses to marine environments. According to an aspect of the present invention, provided is a drilling simulation system comprising: a DP module for generating control power in each thruster for maintaining the horizontal position of the drilling ship during a drilling process based on marine environments and for providing the control power to the thrusters installed under the drilling ship; a movement interpretation module for calculating the horizontal movement value of the corresponding drilling ship using the control power generated by the DP module and external fluid power applied to the drilling ship with the marine environments; and a simulator for simulating the drilling equipment with the movement of the drilling ship based on the horizontal movement value calculated by the movement analysis module. [Reference numerals] (11) Controller; (13) DP module; (15) Motion analysis module; (16) Interface; (17) Simulator; (19) Viewer
85 지열정 시추장치의 의무적인 교체위치의 분석장치 및 분석방법 KR1020130111645 2013-09-17 KR101344768B1 2013-12-24 김광염; 이승수; 윤운상
The present invention relates to a mandatory replacing location analyzing system and method for a geothermal well drilling tool, which are capable of allowing a geothermal well related party to economically and effectively perform a drilling of a geothermal well by providing the geothermal well related party with automatically generated information about a replacing location of an additional geothermal well drilling tool by considering a status of a real ground, a drilling speed of the geothermal well, and a status of a geothermal well drilling tool as well as the replacing location of the geothermal well drilling tool which is designed from the planning while downward-excavating the geothermal well from the top of the ground by using the geothermal well drilling tool. The present invention is a well drilling tool (WDT) replacing location analyzing system which analyzes the replacing location of the geothermal well drilling tool (WDT) comprising a drilling bit (12) and a drilling bit supporting pipe, based on the process based information by communicating with an information processing device (1) for a geothermal well related party and a process based information providing server (2) by the medium of wire/wireless online network. The present invention provides a WDT replacing location analyzing system and a WDT replacing location analyzing method using the same, comprising a drilling expected section of geothermal (DES) setting module (104), a replacing decision variable processing module by DES (105), a drilling bit drilling speed calculating module by DES (106), a drilling bit available target rotation time calculating module by DES (109), a geothermal well drilling available length calculating module by DES (110), a WDT additional mandatory replacing location calculating module by DES (111), and a WDT replacing location reporting module by DES. [Reference numerals] (1) Information processing device for a geothermal well related party;(101) WDT replacing location analyzing control module;(102) Interface module;(103) Process based information processing module;(104) DES setting module;(105) Replacing decision variable processing module by DES;(106) Drilling bit drilling speed calculating module by DES;(107) WDT replacing location reporting module by DES;(108) Drilling bit wearing limit standard storage module by DES;(109) Drilling bit available target rotation time calculating module by DES;(110) Geothermal well drilling available length calculating module by DES;(111) WDT additional mandatory replacing location calculating module by DES;(2) Process based information providing server;(3) Wire/wireless online network;(AA) Drilling solution
86 진폭 보존을 갖는 FWI 모델 도메인 각도 스택들 KR20187013662 2016-08-30 KR20180067650A 2018-06-20 YANG DI; BANSAL REESHIDEV; LAZARATOS SPYRIDON K; YAN JIA; BAUMSTEIN ANATOLY I
방법은: 미리결정된기판반사각범위들에따라서브세트들로분리되는지진데이터세트를획득하는단계; 밀도에대해반전시키거나각각의밀도모델들을생성하기위해서브세트들의각각에각각음향전 파동장반전프로세스를컴퓨터에의해수행하는단계; 각각의밀도모델들을사용하여, 서브세트들의각각에대해음향임피던스들을반사각의함수로서생성하는단계; 및서브세트들의각각에대한음향임피던스들을반사율섹션들로컴퓨터를사용하여변환하는단계로서, 그들의각각의대역폭에의해반사율섹션들을표준화하는단계를포함하는, 상기변환단계를포함한다.
87 생산성 잠재력 분포 영역도를 이용한 유정 위치 탐색 방법 KR1020170004952 2017-01-12 KR101838518B1 2018-03-14 권순일; 정지헌; 서형준
본발명은생산성잠재력분포영역도(Productivity Potential Area Map, PPAM)에관한것으로, 더욱상세하게는저류층에서유정의위치를최적화하고, 상기유정에서의생산성을판단하기위한기존방법중 하나인생산성잠재력분포도(Productivity Potential Map, PPM)에상기유정에위치에따라격자블록에영향을미치는정도인영향반경을고려하여저류층의최적유정위치및 실질적인생산성을파악할수 있는방법에관한것이다. 본발명에따른생산성잠재력분포영역도를이용한유정위치탐색방법은, 저류층의격자블록을기준으로생산성잠재력분포도(PPM)를산출하는제 1 단계, 유정위치에따른상기저류층격자블록의생산성영향을고려한영향반경식을산출하는제 2 단계, 상기생산성잠재력분포도(PPM)에상기영향반경식을고려하여생산성잠재력분포영역도(PPAM)을산출하는제 3 단계를포함하여구성된다. 본발명에따른생산성잠재력분포영역도를이용한유정위치탐색방법은, 유정위치에영향을받는격자블록을파악할수 있고, 이에따른유정의생산성을나타낼수 있는효과가있다.
88 셰일 장애층 크기의 통계적 추정방법 KR1020160156687 2016-11-23 KR101838255B1 2018-03-14 신현돈; 김민
본발명은하는셰일장애층크기의통계적추정방법에관한것으로서, (a) 셰일층협재에따른일일오일생산량그래프로부터생산변곡점을추출하는단계; (b) 추출된상기생산변곡점으로부터변수를설정하는단계; (c) 설정된상기변수를분석하는단계; 그리고 (d) 통계학적방법을이용하여셰일층의크기를추정하는단계;를포함하여이루어진다. 이처럼, 일련의단계들을수행하여셰일층의크기예측을위한변수를설정하고, 설정된변수를검증하여셰일층의크기와관련된폭(WD), 길이(LN)를예측할수 있으므로, 예측된셰일층의크기를이용하여오일생산량을증대할수 있는위치에생산정및 주입정을시추하도록디자인할수 있다. 이에따라, 오일샌드에협재된셰일층의크기를파악하여추후삽입할생산정및 주입정의위치를디자인하여오일생산량을효율적으로증대할수 있는효과가있다.
89 셰일 장애층의 크기 추정방법 KR1020160156686 2016-11-23 KR101838249B1 2018-03-14 신현돈; 김민
본발명은하는셰일장애층의위치추정방법에관한것으로서, (a) 셰일층협재에따른일일오일생산량그래프로부터생산변곡점을추출하는단계; 그리고 (b) 상기생산변곡점으로부터상기셰일층의크기를추정하는단계;를포함하는것을특징으로하고, 상기 (a) 단계및 상기 (b) 단계는상기셰일층협재에따른일일오일생산량그래프를모니터링하는프로세서에서수행되며, 상기 (a) 단계는상기셰일층협재에따른일일오일생산량그래프에서기울기형태가급격하게변하는네 개의생산변곡점을추출하여수행되는것을특징으로한다. 이로인해, 오일샌드로부터생산되는오일생산량을저하시키는셰일층의크기를효율적으로파악할수 있어, 이미시추된생산정및 주입정주변에새롭게생산정및 주입정을시추하고자하는경우, 셰일층이형성된위치로부터떨어진부분에생산정및 주입정을시추하도록디자인하여오일생산량을증대시킬수 있는효과가있다.
90 DPS 교육용 시뮬레이션 시스템 및 그의 시뮬레이션 방법 KR1020130021279 2013-02-27 KR1020140106945A 2014-09-04 장연욱; 이근보; 김세원; 최진우
The present invention relates to a simulation system for DPS education which can directly simulate manufacturing of a DP system for a DP level and control of a dynamic position for a DP level to increase understanding of an operation for a DP level, and a simulation method thereof. According to an embodiment of the present invention, a simulation system for DPS education includes: a manufacturing module for receiving a requirement including a dynamic positioning (DP) level, and manufacturing a DP system for performing a dynamic position control in response to the input requirement; and a simulation module for simulating a dynamic position control for a DP level of the manufactured DP system.
91 시추공정의 최적화 시스템 및 시추공정의 최적화 방법 KR1020120123258 2012-11-01 KR1020140055871A 2014-05-09 김광염; 이승수; 김호근; 윤운상
The present invention relates to a system and a method for optimizing a drilling process. The system comprises: a database which memorizes drilling field data in the past; a well design 3D modeler which visualizes geothermal well design details into 3D according to an input value; a process simulation module which calculates optimal drilling efficiency according to various environmental conditions, and predicts the construct period through simulation; a cost estimation module which estimates the costs; a project performance checker module which identifies the performance of a project by comparing and analyzing the predicted performance with the process in the field; and a 4D progress visualization module which synchronizes the predicted construction period by process elements and the sequential information through the 3D modeling geothermal well details and the process simulation in order to visualize in a 4D graphical simulation method, and which provides requirement information needed by a user at the same time.
92 가스 하이드레이트 생산모사시스템 및 이를 이용한 생산모사방법 KR1020120048734 2012-05-08 KR1020130125186A 2013-11-18 이재형; 이주용; 김세준; 이원석
A gas hydrate production simulation system according to the present invention includes a main body in which a receiving space receiving a deposit simulation layer for simulating a sedimentary layer on a sea bed is formed inside; a pressure cell including upper and lower caps which are mounted on the upper and lower parts of the main body respectively and which cover the receiving space of the main body on the upper and lower parts respectively and include a fluid passage for make the fluid flow to the receiving space; a methane gas cylinder for generating gas hydrate by supplying methane gas inside a charging space of the pressure cell; a temperature control device for controlling the temperature of the pressure cell; a rear pressure control unit for controlling the inner pressure of the pressure cell; a data acquisition unit for acquiring data from a plurality of sensors installed on the pressure cell; and an exhaust gas measuring unit which includes a wet type gas meter for measuring the amount of gas discharged through the fluid passage of the lower cap from the receiving space of the pressure cell.
93 ENSEMBLE-BASED MULTI-SCALE HISTORY-MATCHING DEVICE AND METHOD FOR RESERVOIR CHARACTERIZATION PCT/IB2015001309 2015-06-25 WO2016001752A3 2016-03-03 GENTILHOMME THEOPHILE
Device, medium and method for generating a multidimensional image of a subsurface of the earth. The method includes receiving (702) data related to the subsurface of the earth; generating (704) an ensemble of realizations associated with the subsurface based on the received data; applying (706) wavelet re- parametrization to spatial properties of the members of the ensemble to calculate a set of wavelet coefficients; reconstructing (708) the spatial properties of the ensemble based on a subset of the wavelet coefficients; applying (710) a forward simulator to the reconstructed spatial properties of the ensemble for estimating one or more physical parameters of the subsurface; applying (712) an ensemble-based optimization method to update the subset of the wavelet coefficients; and generating (712) multidimensional image of the subsurface based on the updated subset of the wavelet coefficients.
94 MULTI DATA RESERVIOR HISTORY MATCHING AND UNCERTAINTY QUANTIFICATION FRAMEWORK PCT/IB2015001594 2015-04-29 WO2015177653A3 2016-01-21 KATTERBAUER KLEMENS; HOTEIT IBRAHIM; SUN SHUYU
A multi-data reservoir history matching and uncertainty quantification framework is provided. The framework can utilize multiple data sets such as production, seismic, electromagnetic, gravimetric and surface deformation data for improving the history matching process. The framework can consist of a geological model that is interfaced with a reservoir simulator. The reservoir simulator can interface with seismic, electromagnetic, gravimetric and surface deformation modules to predict the corresponding observations. The observations can then be incorporated into a recursive filter that subsequently updates the model state and parameters distributions, providing a general framework to quantify and eventually reduce with the data, uncertainty in the estimated reservoir state and parameters.
95 DETERMINING WELL PARAMETERS FOR OPTIMIZATION OF WELL PERFORMANCE PCT/US2014038617 2014-05-19 WO2014200669A3 2015-08-27 BURCH DAMIAN N; PAIVA ANTONIO R C; VAN DEN BOSCH RAINER
Systems and methods for determining well parameters for optimization of well performance. The method includes training, via a computing system, a well performance predictor based on field data corresponding to a hydrocarbon field in which a well is to be drilled. The method also includes generating, via the computing system, a number of candidate well parameter combinations for the well and predicting, via the computing system, a performance of the well for each candidate well parameter combination using the trained well performance predictor. The method further includes determining, via the computing system, an optimized well parameter combination for the well such that the predicted performance of the well is maximized.
96 A METHOD OF GENERATING A DRILL HOLE SEQUENCE PLAN AND DRILL HOLE SEQUENCE PLANNING EQUIPMENT PCT/AU2014000176 2014-02-25 WO2014131080A8 2015-03-26 OPPOLZER FLORIAN
Drill hole sequence planning equipment (14) includes a position determining module (18) for determining an initial location of a mobile drill rig (12). A selection module (24) selects a destination location for the drill rig (12). A corridor establishment module (26) establishes a corridor between the initial location of the drill rig (12) and its destination location, the corridor having a selected width. A processing unit (28) is responsive to the modules (18, 24 and 26) for selecting a hole location of each hole within the corridor to be drilled by the drill rig (12) sequentially as it moves from its initial location to its destination location.
97 METHODS AND APPARATUS FOR WELL PRODUCTIVITY PCT/GB2014052442 2014-08-08 WO2015019112A2 2015-02-12 DE BAKKER JOOST; BYRNE MICHAEL; GHOLIPOUR ALI; PAVY PETER; FIELDER TOM
M&C PG444738WO 38 1933380-1-GMCGLASHAN Abstract A system and method for drilling a formation and a method for computing expected production from a wellbore in a formationand/or hydrocarbon reserves associated with the formation, the formationhaving a plurality of naturally-occurring fractures, the method including computationally modelling the formation; computing one or more wellbore positions intersecting some or all of the fractures; and computing anexpected production from the wellbore at least partially based on an expected wellbore damage associated with a particular type of drilling technique.
98 SUBTERRANEAN FORMATION METHODS AND APPARATUS PCT/GB2013051558 2013-06-14 WO2013186569A3 2014-09-18 NOBLETT DAVID ALLAN; BRUCE STEPHEN EDMUND; MCCANN DOMINIC PATRICK JOSEPH; KENT STEPHEN
There is described a method for use with subterranean formations, such as oil and/or gas reservoirs. In some examples (e.g. production examples), the method improves the production from that formation. Some of the examples of the method describe selecting both an exertive force (e.g. a pressure) to apply at a wellbore, but together with a drawdown pressure at the wellbore in order to modify operations (e.g. improve production) at that subterranean formation. The selection of one or both of the exertive force and drawdown pressure may be based on the downhole environment at that wellbore, which can include the porosity and/or permeability of a near-wellbore formation radially surrounding a wellbore. The exertive force and drawdown pressure may be specifically selected in order to modify the porosity and/or permeability of the near-wellbore formation.
99 FLUORESCENT NANO-SENSORS FOR OIL AND GAS RESERVOIR CHARACTERIZATION PCT/IB2013001161 2013-04-15 WO2013156866A3 2014-03-13 CHIN PATRICK T K; TURKENBURG DANIEL H; FISCHER RUDOLF H
Enhanced oil recovery becomes increasingly important in satisfying the growing demand for fossil fuel. The efficiency of secondary recovery processes like water flooding is however largely influenced by the rock characteristics, fluid characteristics, chemistry and physics. For development of the full potential of secondary oil recovery, it remains a challenge to obtain sufficient knowledge about the reservoir conditions. The present invention provides a novel water-dispersed, nano-sensor composition based on. InP/ZnS quantum dots ("QDs") and atomic silver clusters, which exhibit a bright visible fluorescence combined with dedicated sensor functionalities. The QD and silver nano- sensors were tested in simulated reservoir conditions to determine their selected functionality to these reservoir conditions. The developed nano-sensors showed improved sensor functionalities towards pH, temperature, and subterranean reservoir rock, such, as clay or limestone.
100 MULTI-WELL ANISOTROPY INVERSION PCT/US2012048213 2012-07-26 WO2013016470A3 2013-04-04 HORNE STEVE ALLAN; WALSH JOHN
A method can include providing compressional and shear-wave slowness data for a homogeneous, anisotropic formation at deviated borehole angles greater than 40 degrees and less than 90 degrees as defined by a vertical transverse isotropy (VTI) symmetry axis; providing a relationship for normal and tangential compliances (e.g., BN and BT); and, based on the data and the relationship, outputting a model for calculating anisotropy parameter values (e.g., alpha0, epsilon,.delta) that characterize the homogeneous, anisotropic formation (e.g., along a borehole angle of 90 degrees). Various other apparatuses, systems, methods, etc., are also disclosed.
QQ群二维码
意见反馈