序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
161 Apparatus, method and system for stochastic workflow in oilfield operations US12175429 2008-07-17 US08046314B2 2011-10-25 Thomas Graf; Georg Zangl
The invention relates to a method for performing an oilfield operation. The method steps include obtaining oilfield data sets associated with oilfield entities, generating a stochastic database from the oilfield data sets based on an artificial neural network of the oilfield data sets, screening the oilfield data sets to identify candidates from the oilfield entities, wherein the screening is based on the stochastic database, performing a detail evaluation of each candidates, selecting an oilfield entity from the candidates based on the detail evaluation, and performing the oilfield operation for the selected oilfield entity.
162 Estimating gas-oil ratio from other physical properties US12154391 2008-05-22 US08032311B2 2011-10-04 Rocco DiFoggio
A method for characterizing a desired property of a fluid downhole is described. In some non-limiting examples, the method comprises receiving an input signal representing sound speed of a fluid downhole, processing the input signal using a correlation equation expressing the desired property in terms of at least sound speed to produce an output signal representing the desired property, and outputting the output signal. In some examples, the correlation equation is derived through a chemometric analysis of a training data set, the training data set comprises a plurality of input values and a plurality of output values derived from said input values, between the desired fluid property and the first measured property, and the output values are calculated from the input values using a series of correlation equations. In at least one example, the desired property is gas oil ratio. In another example, the desired property is gas brine ratio. In a further example, the series of correlation equations comprises the Batzle and Wang relations. In another example, the receiving comprises receiving a plurality of input signals representing a plurality of measured properties of a fluid downhole and the processing comprises processing the plurality of input signals using the correlation equation expressing the desired property in terms of the plurality of measured properties.
163 Borehole Drilling Optimization With Multiple Cutting Structures US12732301 2010-03-26 US20110232968A1 2011-09-29 Arifin Purwanto; David P. Moran; Lei Yan
A method of optimizing a drilling operating parameter or a drilling system parameter for a drilling assembly employing at least first and second distinct cutting structures includes entering at least one design parameter for each of the cutting structures into a trained artificial neural network. At least one of the design parameters of the first cutting structure may be optionally combined with at least one of the design parameters of the second cutting structure. The combined design parameter may also be entered into the artificial neural network.
164 COMBINING BELIEF NETWORKS TO GENERATE EXPECTED OUTCOME US12940253 2010-11-05 US20110073367A1 2011-03-31 Clinton D. Chapman; Charles Chen
A computer usable medium including computer usable program code for determining an oilfield parameter for a drilling operation. The computer usable program code when executed causing a processor to identify first decision factors and second decision factors about the drilling operation, where each of the first decision factors is contained within first nodes, and where each of the second decision factors is contained within second nodes, where the first and second nodes contain common nodes. The computer usable program code further causing the processor to associate the first nodes to create a first belief network and associate the second nodes to create a second belief network, associate the common nodes of the first belief network with the common nodes of the second belief network to form a multinet belief network, and generate at least one oilfield parameter from the multinet belief network.
165 Combining belief networks to generate expected outcomes US12247352 2008-10-08 US07861800B2 2011-01-04 Clinton D. Chapman; Charles Chen
A method is described for determining an oilfield parameter for a drilling operation in an oilfield, the oilfield having a well site with a drilling tool advanced into a subterranean formation with geological structures and reservoirs therein. A first set of decision factors and a second set of decision factors about the drilling operation are identified. Each of the first set of decision factors is contained within a first set of nodes, and each of the second set of decision factors is contained within a second set of nodes. Both the first set of nodes and the second set of nodes contain a set of common nodes, which are common to both the first and second sets. The first set of nodes is associated to create a first belief network and the second set of nodes is associated to create a second belief network. Then, the set of common nodes of the first belief network is associated with the set of common nodes of the second belief network to form a multinet belief network. Oilfield parameter can be generated from the multinet belief network.
166 Estimating gas-oil ratio from other physical properties US12154391 2008-05-22 US20090292474A1 2009-11-26 Rocco DiFoggio
A method for characterizing a desired property of a fluid downhole is described. In some non-limiting examples, the method comprises receiving an input signal representing sound speed of a fluid downhole, processing the input signal using a correlation equation expressing the desired property in terms of at least sound speed to produce an output signal representing the desired property, and outputting the output signal. In some examples, the correlation equation is derived through a chemometric analysis of a training data set, the training data set comprises a plurality of input values and a plurality of output values derived from said input values, between the desired fluid property and the first measured property, and the output values are calculated from the input values using a series of correlation equations. In at least one example, the desired property is gas oil ratio. In another example, the desired property is gas brine ratio. In a further example, the series of correlation equations comprises the Batzle and Wang relations. In another example, the receiving comprises receiving a plurality of input signals representing a plurality of measured properties of a fluid downhole and the processing comprises processing the plurality of input signals using the correlation equation expressing the desired property in terms of the plurality of measured properties.
167 Well control systems and associated methods US11333768 2006-01-17 US07610251B2 2009-10-27 Sara Shayegi; Craig W. Godfrey; Dingding Chen; Roger L. Schultz
Well control systems and associated methods. A well control method includes the steps of drilling a wellbore and predicting a change in flow between the wellbore and a reservoir prior to the change occurring, the predicting step being performed, and the change in flow occurring while drilling. Another well control method includes the steps of: sensing at least one first drilling operation variable while drilling a wellbore, thereby generating first sensed variables; sensing at least one second drilling operation variable while drilling the wellbore, thereby generating second sensed variables; and training a predictive device, using the first and second sensed variables, to predict the second drilling operation variable at a selected time.
168 Method for quantifying uncertainties related to continuous and discrete parameters descriptive of a medium by construction of experiment designs and statistical analysis US10404049 2003-04-02 US07590516B2 2009-09-15 Astrid Jourdan; Isabelle Zabalza-Mezghani; Emmanuel Manceau
A method for quantifying uncertainties related to continuous and discrete (qualitative) parameters descriptive of a medium such as an underground zone and/or for managing the selection of a scenario from a series of possible scenarios relative to this medium, by construction of experiment designs and results analysis suited to the experiment designs constructed.
169 APPARATUS, METHOD AND SYSTEM FOR STOCHASTIC WORKFLOW IN OILFIELD OPERATIONS US12175429 2008-07-17 US20090020284A1 2009-01-22 Thomas Graf; Georg Zangl
The invention relates to a method for performing an oilfield operation. The method steps include obtaining oilfield data sets associated with oilfield entities, generating a stochastic database from the oilfield data sets based on an artificial neural network of the oilfield data sets, screening the oilfield data sets to identify candidates from the oilfield entities, wherein the screening is based on the stochastic database, performing a detail evaluation of each candidates, selecting an oilfield entity from the candidates based on the detail evaluation, and performing the oilfield operation for the selected oilfield entity.
170 Imbibition gas well stimulation via neural network design US11893042 2007-08-13 US20080208782A1 2008-08-28 William Weiss
A method for stimulation of gas hydrocarbon production via imbibition by utilization of surfactants. The method includes use of fuzzy logic and neural network architecture constructs to determine surfactant use.
171 Method and system for predicting performance of a drilling system for a given formation US11215673 2005-08-30 US07357196B2 2008-04-15 William A. Goldman; Oliver Matthews, III; William W. King; Gary E. Weaver; Gerald L. Pruitt
A method and apparatus for predicting the performance of a drilling system for the drilling of a well bore in a given formation includes generating a geology characteristic of the formation per unit depth according to a prescribed geology model, obtaining specifications of proposed drilling equipment for use in the drilling of the well bore, and predicting a drilling mechanics in response to the specifications as a function of the geology characteristic per unit depth according to a prescribed drilling mechanics model. Responsive to a predicted drilling mechanics, a controller controls a parameter in the drilling of the well bore. The geology characteristic includes at least rock strength. The specifications include at least a bit specification of a recommended drill bit. Lastly, the predicted drilling mechanics include at least one of bit wear, mechanical efficiency, power, and operating parameters. A display is provided for generating a display of the geology characteristic and predicted drilling mechanics per unit depth, including either a display monitor or a printer.
172 METHOD OF REAL-TIME DRILLING SIMULATION US11670696 2007-02-02 US20070185696A1 2007-08-09 David P. Moran; Stuart R. Oliver; Sujian J. Huang; Luis C. Paez; Lei Yan
A method of optimizing drilling including identifying design parameters for a drilling tool assembly, preserving the design parameters as experience data, and training at least one artificial neural network using the experience data. The method also includes collecting real-time data from the drilling operation, analyzing the real-time data with a real-time drilling optimization system, and determining optimal drilling parameters based on the analyzing the real-time date with the real-time drilling optimization system. Also, a method for optimizing drilling in real-time including collecting real-time data from a drilling operation and comparing the real-time data against predicted data in a real-time optimization system, wherein the real-time optimization includes at least one artificial neural network. The method further includes determining optimal drilling parameters based on the comparing the real-time data with the predicted data in the real-time drilling optimization system.
173 METHODS, SYSTEMS, AND COMPUTER-READABLE MEDIA FOR FAST UPDATING OF OIL AND GAS FIELD PRODUCTION MODELS WITH PHYSICAL AND PROXY SIMULATORS US11669911 2007-01-31 US20070179767A1 2007-08-02 Alvin Stanley Cullick; William Douglas Johnson
Methods, systems, and computer readable media are provided for fast updating of oil and gas field production optimization using physical and proxy simulators. A base model of a reservoir, well, or a pipeline network is established in one or more physical simulators. A decision management system is used to define uncertain parameters for matching with observed data. A proxy model is used to fit the uncertain parameters to outputs of the physical simulators, determine sensitivities of the uncertain parameters, and compute correlations between the uncertain parameters and output data from the physical simulators. Parameters for which the sensitivities are below a threshold are eliminated. The decision management system validates parameters which are output from the proxy model in the simulators. The validated parameters are used to make production decisions.
174 METHODS, SYSTEMS, AND COMPUTER-READABLE MEDIA FOR REAL-TIME OIL AND GAS FIELD PRODUCTION OPTIMIZATION USING A PROXY SIMULATOR US11669903 2007-01-31 US20070179766A1 2007-08-02 Alvin Stanley Cullick; William Douglas Johnson
Methods, systems, and computer readable media are provided for real-time oil and gas field production optimization using a proxy simulator. A base model of a reservoir, well, pipeline network, or processing system is established in one or more physical simulators. A decision management system is used to define control parameters, such as valve settings, for matching with observed data. A proxy model is used to fit the control parameters to outputs of the physical simulators, determine sensitivities of the control parameters, and compute correlations between the control parameters and output data from the simulators. Control parameters for which the sensitivities are below a threshold are eliminated. The decision management system validates control parameters which are output from the proxy model in the simulators. The proxy model may be used for predicting future control settings for the control parameters.
175 Online thermal and watercut management US10831480 2004-04-23 US07108069B2 2006-09-19 Rune Killie; John Allen
A system, method, and software for optimizing the commingling of well fluids from a plurality of producing subsea wells. The mixing temperature and water content in each header of a collection manifold are calculated for each subsea well and header combinations, responsive to data from sensors at the collection manifold. Combinations with conditions outside operational limits are then discarded. Remaining combinations are ranked based on predetermined optimization criteria. The ranked combinations are provided for the operator for optimizing flow properties and well fluid production. The calculations can restart with new, real-time sensed values from the subsea collection manifold.
176 Electrically sequenced tractor US11415798 2006-05-01 US20060196696A1 2006-09-07 Duane Bloom; Norman Moore; Ranald Beaufort
A downhole drilling tractor for moving within a borehole comprises a tractor body, two packerfeet, two aft propulsion cylinders, and two forward propulsion cylinders. The body comprises aft and forward shafts and a central control assembly. The packerfeet and propulsion cylinders are slidably engaged with the tractor body. Drilling fluid can be delivered to the packerfeet to cause the packerfeet to grip onto the borehole wall. Drilling fluid can be delivered to the propulsion cylinders to selectively provide downhole or uphole hydraulic thrust to the tractor body. The tractor receives drilling fluid from a drill string extending to the surface. A system of spool valves in the control assembly controls the distribution of drilling fluid to the packerfeet and cylinders. The valve positions are controlled by motors. A programmable electronic logic component on the tractor receives control signals from the surface and feedback signals from various sensors on the tool. The feedback signals may include pressure, position, and load signals. The logic component also generates and transmits command signals to the motors, to electronically sequence the valves. Advantageously, the logic component operates according to a control algorithm for intelligently sequencing the valves to control the speed, thrust, and direction of the tractor.
177 Electrically sequenced tractor US11184309 2005-07-18 US07080701B2 2006-07-25 Duane Bloom; Norman Bruce Moore; Ronald E. Beaufort
A downhole drilling tractor for moving within a borehole comprises a tractor body, two packerfeet, two aft propulsion cylinders, and two forward propulsion cylinders. The body comprises aft and forward shafts and a central control assembly. The packerfeet and propulsion cylinders are slidably engaged with the tractor body. Drilling fluid can be delivered to the packerfeet to cause the packerfeet to grip onto the borehole wall. Drilling fluid can be delivered to the propulsion cylinders to selectively provide downhole or uphole hydraulic thrust to the tractor body. The tractor receives drilling fluid from a drill string extending to the surface. A system of spool valves in the control assembly controls the distribution of drilling fluid to the packerfeet and cylinders. The valve positions are controlled by motors. A programmable electronic logic component on the tractor receives control signals from the surface and feedback signals from various sensors on the tool. The feedback signals may include pressure, position, and load signals. The logic component also generates and transmits command signals to the motors, to electronically sequence the valves. Advantageously, the logic component operates according to a control algorithm for intelligently sequencing the valves to control the speed, thrust, and direction of the tractor.
178 Apparatus and methods for establishing secondary hydraulics in a downhole tool US10460546 2003-06-12 US06973970B2 2005-12-13 Russell A. Johnston; Michael A. Dowling
A tool for making a cut inside a downhole tool, including a housing adapted to move in the downhole tool, a plurality of openings in a wall of the housing that provides a passage from inside the housing to an exterior of the housing, a plurality of cutters disposed in the housing that are adapted to protrude from the plurality of openings to the exterior of the housing, wherein the plurality of cutters provides 360 degree cutting regardless of the orientation of the tool, and an actuation mechanism adapted to force the plurality of cutters to protrude through the plurality of openings.
179 Online thermal and watercut management US10831480 2004-04-23 US20050236155A1 2005-10-27 Rune Killie; John Allen
A system, method, and software for optimizing the commingling of well fluids from a plurality of producing subsea wells. The mixing temperature and water content in each header of a collection manifold are calculated for each subsea well and header combinations, responsive to data from sensors at the collection manifold. Combinations with conditions outside operational limits are then discarded. Remaining combinations are ranked based on predetermined optimization criteria. The ranked combinations are provided for the operator for optimizing flow properties and well fluid production. The calculations can restart with new, real-time sensed values from the subsea collection manifold.
180 Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters US10645276 2003-08-21 US06958704B2 2005-10-25 Harold J. Vinegar; Robert Rex Burnett; William Mountjoy Savage; Frederick Gordon Carl, Jr.; James William Hall; John Michele Hirsch
A system and method of communicating among devices via a piping structure using at least one induction choke about the piping structure to route a time-varying current carrying communication signals between the devices. A communications system comprises a piping structure, a first communication device, a second communication device, and an induction choke. The piping structure comprises a first location, a second location, and an electrically conductive portion extending between the first and second locations. The first and second locations are distally spaced along the piping structure. The first and second communication devices are each electrically connected to the electrically conductive portion of the piping structure along the first location and second location, respectively, and each is adapted to send and receive communication signals via time-varying current. The induction choke is located about an electrically choked portion of the electrically conductive portion of the piping structure, such that the induction choke is adapted to route time-varying current within the piping structure between the electrical connection location for the first communication device and the electrical connection location for the second communication device, and such that the first communication device can communicate with the second communication device via the piping structure. A preferred application of the present invention is a well for producing petroleum products (e.g., oil, natural gas), comprising a communication system as described above.
QQ群二维码
意见反馈