序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
181 Underbalanced drilling applications hydraulically operated formation isolation valve US11180140 2005-07-13 US20070012457A1 2007-01-18 Fredrick Curtis; Ronald Hyden; Michael Harvey; Jimmie Williamson; James Vick
A formation isolation valve for underbalanced drilling applications. A system for operating a formation isolation valve includes the valve interconnected in a casing string. An assembly displaces through the casing string, thereby causing the valve to open prior to the assembly reaching the valve. An operating system includes a well tool with an actuator positioned downhole. A device for causing the actuator to operate the well tool is also positioned downhole remote from the actuator. A method of operating a well tool includes the steps of: positioning the well tool in a well, the well tool including an actuator; positioning a power source for the actuator in the well; and at a downhole position remote from the actuator, causing the actuator to operate the well tool.
182 Method and system for extraction of resources from a subterranean well bore US10723322 2003-11-26 US07163063B2 2007-01-16 Douglas P. Seams
A method for stimulating production of resources from a coal seam includes forming a drainage well bore in the coal bed that has a first end coupled to a ground surface and a second end in the coal seam. The method further includes inserting a liner into the well bore. The liner has a wall including a number of apertures and a second diameter that is smaller than the first diameter of the drainage well bore such that a gap is formed between the wall of the liner and the well bore. The method also includes collapsing the drainage well bore around the liner to relieve stress in the coal seam proximate to the liner.
183 Active controlled bottomhole pressure system & method US10783471 2004-02-20 US07114581B2 2006-10-03 Peter Aronstam; Volker Krueger; Sven Krueger; Harald Grimmer; Roger Fincher; Larry Watkins; Peter Fontana
A wellbore drilling system has an umbilical that carries a drill bit in a wellbore. Drilling fluid pumped into the umbilical discharges at the drill bit bottom and returns through an annulus between the umbilical and the wellbore carrying entrained drill cuttings. An active differential pressure device (APD device), such as a jet pump, turbine or centrifugal pump, in fluid communication with the returning fluid creates a differential pressure across the device, which alters the pressure below or downhole of the device. The APD device can be driven by a positive displacement motor, a turbine, an electric motor, or a hydraulic motor. A controller controls the operation of the APD device in response to programmed instructions and/or one or more parameters of interest detected by one or more sensors. A preferred system is a closed loop system that maintains the wellbore at under-balance condition, at-balance condition or over-balance condition.
184 Apparatus and method to reduce fluid pressure in a wellbore US10958734 2004-10-05 US07111692B2 2006-09-26 David Hosie; R. K. Bansal; Peter B. Moyes
The present invention generally provides apparatus and methods for reducing the pressure of a circulating fluid in a wellbore. In one aspect of the invention an ECD (equivalent circulation density) reduction tool provides a means for drilling extended reach deep (ERD) wells with heavyweight drilling fluids by minimizing the effect of friction head on bottomhole pressure so that circulating density of the fluid is close to its actual density. With an ECD reduction tool located in the upper section of the well, the friction head is substantially reduced, which substantially reduces chances of fracturing a formation.
185 Drilling normally to sub-normally pressured formations US11141459 2005-05-31 US20060201715A1 2006-09-14 Douglas Seams; Christopher Pratt
A system and method for drilling a substantially horizontal well bore in a normally to sub-normally pressured formation. The normally to sub-normally pressured formation is an unconventional reservoir. The well bore is drilled over-balanced with a drilling fluid including a fluid loss agent. The fluid loss agent is operable to form a filter cake on the well bore during drilling.
186 Expandable tubulars for use in a wellbore US11359083 2006-02-22 US20060185857A1 2006-08-24 Patrick York; Robert Cuthbertson; Lev Ring
The present invention generally relates to methods and systems for mitigating trouble zones in a wellbore in a preferred pressure condition and completing the wellbore in the preferred pressure condition. In one aspect, a method of reinforcing a wellbore is provided. The method includes locating a valve member within the wellbore for opening and closing the wellbore. The method further includes establishing a preferred pressure condition within the wellbore and closing the valve member. The method also includes locating a tubular string having an expandable portion in the wellbore and opening the valve member. Additionally, the method includes moving the expandable portion through the opened valve member and expanding the expandable portion in the wellbore at a location below the valve member. In another aspect, a method of forming a wellbore is provided. In yet another aspect, a system for drilling a wellbore is provided.
187 System for drilling oil and gas wells by varying the density of drilling fluids to achieve near-balanced, underbalanced, or overbalanced drilling conditions US10622025 2003-07-17 US07090036B2 2006-08-15 Luc deBoer
A system for controlling drilling mud density at a location either at the seabed (or just above the seabed) or alternatively below the seabed of wells in offshore and land-based drilling applications is disclosed. The present invention combines a base fluid of lesser/greater density than the drilling fluid required at the drill bit to drill the well to produce a combination return mud in the riser. By combining the appropriate quantities of drilling mud with a light base fluid, a riser mud density at or near the density of seawater may be achieved to facilitate transporting the return mud to the surface. Alternatively, by injecting the appropriate quantities of heavy base fluid into a light return mud, the column of return mud may be sufficiently weighted to protect the wellhead. At the surface, the combination return mud is passed through a treatment system to cleanse the mud of drill cuttings and to separate the drilling fluid from the base fluid. The present invention further includes a control unit for manipulating drilling fluid systems and displaying drilling and drilling fluid data.
188 Apparatus and methods for drilling with casing US11124755 2005-05-09 US07090023B2 2006-08-15 David M. Haugen; Frederick T. Tilton
The present invention provides an apparatus and methods to reduce ECD and pressure associated therewith while drilling with casing. In one aspect, the invention provides an energy transfer assembly locatable at a predetermined location in a casing string. The assembly includes an impeller portion in the interior of the casing to be acted upon by the downward moving fluid in the casing and a pump portion disposed outwardly of the impeller portion and arranged in fluid communication with the upward moving fluid in the annulus between the casing and the borehole, adding energy thereto and reducing pressure in the annulus therebelow. In another aspect, the energy transfer assembly is retrievable to the surface of the wellbore prior to cementing. In a further aspect, fluid ports between the interior and exterior of the casing are remotely sealable prior to cementing.
189 Fracturing tool having tubing isolation system and method US10781202 2004-02-18 US07051812B2 2006-05-30 L. Michael McKee; David M. Eslinger; Keith A. Ryder
A formation treatment tool assembly is conveyed within a well casing by a tubing string and has a housing defining treatment fluid supply and discharge passages and a fluid injection port through which treatment fluid is directed from the supply passage into a packer isolated casing interval and a fluid inlet port permitting flow from the isolated casing interval to the fluid discharge passage. Spaced straddle packer elements of the tool are energized to establish sealing engagement with the well casing and define an isolated casing interval and are de-energized to retract from sealing engagement with the well casing and permit tubing conveyance. A dump valve connected with the tool housing is opened to permit flow of treatment fluid from the isolated casing interval through the treatment fluid discharge passage and is closed to confine treatment fluid to the isolated casing interval. A hydraulic or mechanically actuated tubing isolation valve is selectively closed to isolate the tubing string from casing or formation pressure and permit tool conveyance while maximizing the service life of the tubing string and to accommodate overpressured and underbalanced reservoir conditions.
190 Internal riser rotating control head US11284308 2005-11-21 US20060102387A1 2006-05-18 Darryl Bourgoyne; Don Hannegan; Thomas Bailey; James Chambers; Timothy Wilson
A holding member provides for releasably positioning a rotating control head assembly in a subsea housing. The holding member engages an internal formation in the subsea housing to resist movement of the rotating control head assembly relative to the subsea housing. The rotating control head assembly is sealed with the subsea housing when the holding member engages the internal formation. An extendible portion of the holding member assembly extrudes an elastomer between an upper portion and a lower portion of the internal housing to seal the rotating control head assembly with the subsea housing. Pressure relief mechanisms release excess pressure in the subsea housing and a pressure compensation mechanism pressurize bearings in the bearing assembly at a predetermined pressure.
191 Method for varying the density of drilling fluids in deep water oil and gas drilling applications US11284334 2005-11-21 US20060070772A1 2006-04-06 Luc deBoer
A method and system for controlling drilling mud density in drilling operations. The mud required at the wellhead is combined with a base fluid of a different density to produce diluted mud in the riser. By combining the appropriate quantities of drilling mud with base fluid, riser mud density at or near the density of seawater may be achieved, thereby permitting greater control over the pressure in the wellbore and various risers. Blowout preventers may also be used in combination with the process to control these pressures. Concentric risers are disclosed, wherein an annulus defined within one riser is utilized to carry the different density base fluid to the injection point for injection into the drilling mud, while an annulus defined within another riser is utilized to carry the combination fluid and cuttings back to the drilling rig. Cuttings are separated in the usual manner at the surface. The diluted mud is passed through a centrifuge system to separate drilling mud from the different density base fluid. The centrifuge system may also be utilized to separate the recovered drilling fluid into a substantially barite portion and a substantially drilling fluid portion, wherein the two portions are stored locally at the rig and recirculated during drilling operations.
192 Casing with isolated annular space US10539676 2003-12-15 US20060048935A1 2006-03-09 Einar Kristiansen
The invention is comprised of (see FIG. 1) an inner pipe (2), and an outer pipe (3), and two end subs (1). An isolated circular hollowed space is contained in between these components. The isolated space can be used for transport of different medias down into the well, this can be vacuum, air, gas, acids, solids, tracers, or other well stimulating medias. The end subs (1) can be connected to the casing in the well and become an integrated part of the casing. The invention can be cemented on the outside like the casing can. The invention can be perforated after installed in the well.
193 Process for the separation of hollow glass microspheres from muds containing them US10433471 2001-11-13 US07004333B2 2006-02-28 Armando Marcotullio; Raffaella Monga; Giuseppe Belmonte; Angelo Calderoni; Giovanni Ferrari
Process for recovering at least 70% of hollow glass microspheres having an average diameter, according to the ASTM D1214-1989, ranging from 5 to 200 μm contained in a mixture of drilling mud and cuttings which comprises: a) screening, if necessary, the mixture through one or more 5 to 20 mesh sieves; b) feeding the screened mixture to one or more cyclones and/or hydrocyclones arranged in series, each of which is fed with a volume flow-rate from 1.5 to 10 times higher than the maximum nominal operating value.
194 Underbalanced marine drilling riser US10900598 2004-07-28 US20060021755A1 2006-02-02 Amin Radi; Thomas Fraser
A riser assembly for offshore drilling has an inner conduit suspended within an outer riser. A seal assembly seals an annular space between the inner conduit and the riser at the lower end of the inner conduit. The seal assembly has a pressure area that is independent of the inner conduit, so that any forces acting on the assembly due to pressure in the annulus below the seal assembly pass through the assembly to the riser and not to the inner conduit.
195 Methods and apparatus for drilling with a multiphase pump US11225466 2005-09-13 US20060005999A1 2006-01-12 Bryan Butler; Gregory Chitty; Darcy Nott; Jeffrey Saponja; Peter Moyes
The present invention generally relates to an apparatus and method for removing hydrocarbons and other material from a wellbore. In one aspect, a method of drilling a sub-sea wellbore is provided. The method includes circulating a drilling fluid through a drill string from a surface of the sea to a drill bit in the wellbore. The method further includes pumping the fluid and drill cuttings from the sea floor to the surface with a multiphase pump having at least two plungers operating in a predetermined phase relationship. In another aspect, a fluid separator system having a first and a second plunger assembly is provided. The fluid separator system includes at least one fluid line for removing a fluid portion from the at least one plunger assembly and at least one gas line for removing gas from the first and a second plunger assembly.
196 Providing a low pressure condition in a wellbore region US10776997 2004-02-11 US06966377B2 2005-11-22 Ashley B. Johnson; Lawrence A. Behrmann; Wenbo Yang; Fokko Harm Cornelis Doornbosch; Ian C. Walton
An apparatus and method includes positioning a string in a wellbore, the string having a surge chamber. A closure member is provided below the well surface, with the surge chamber defined at least in part by the closure member. At least one port to the chamber is opened to create a fluid surge into the surge chamber and a local low pressure condition in a wellbore region.
197 Multi seam coal bed/methane dewatering and depressurizing production system US11190166 2005-07-27 US20050252689A1 2005-11-17 Robert Gardes
A process for underbalanced drilling into multiple coal and shale formations, and dewatering the drilled formations, which includes drilling a first borehole through several coal seams to a certain depth, defined as a cased borehole; lowering an upstock on the end of a carrier string to the depth of the upper coal seam; lowering a drill string in the carrier string, and angling off of the upstock, to drill a lateral or horizontal borehole within the coal seam; repeating the process for the second coal seam; setting a packer in place above the first coal seam in the annulus between the cased borehole and the carrier string; forming perforations in the wall of the carrier string below the packer; retrieving the upstock from the carrier string; lowering an electrical submersible pump to the bottom of the principal borehole, defined as a sump portion of the borehole; collecting methane gas from the two coal seams through the annulus between the second drill string and the carrier string to the surface; pumping water from the sump portion to the surface within the annulus of the second drill string, while gas within the annulus between the carrier string and the outer casing enters the plurality of perforations in the carrier string to be carried up to the surface. Under a first option, water from the two coal seams is pumped by the ESP through perforations in the wall of the casing, to a first lower water injection zone below the coal seams. In a second option, the water can be first delivered to the surface, and then returned down the annulus between the outer casing and carrier string to be injected into a water injection zone above the coal seams. It is foreseen that multiple wells can be drilled, and when the water is returned to the surface, the water would be routed to one of the wells which would return the water to the water injection zone. The objective of underbalanced drilling of coal and shale is to have the hydrostatic pressure of the drilling process to be lower than the formation pressure, as to not invade the formation with fines that may plug the fractures or fluid that may interact with the formation causing the swelling of clay particles or phase trapping commonly referred to as formation damage.
198 Method for making a well for removing fluid from a desired subterranean formation US10438720 2003-05-15 US06932168B2 2005-08-23 Claude Morgan; Geoff W. Fanning; Joseph P. Aman; Brian Varcoe; Robert Kolkmeier; Robert Stayton; Richard L. Toothman
An improved method for making a well for removing fluid from a desired subterranean formation. This invention provides for a method for making a well for removing fluid from a desired subterranean formation having an interface zone. The interface zone is coupled to a main directional well bore that extends from a top surface at ground level into the desired subterranean formation. A lateral well bore is also coupled to the interface zone. A directional sump bore is also coupled to the interface zone and the directional sump bore extends from the interface zone to a point below the interface zone. There is also a means for moving fluid from the directional sump bore through the main directional well bore to the top surface.
199 Openhole Perforating US10907148 2005-03-22 US20050167108A1 2005-08-04 Frank Chang; Lawrence Behrmann; Ian Walton; Keng Chan
An underbalanced perforating system is disclosed for use in openhole completions to maximize the wellbore and matrix cleanup efficiency, to connect natural fracture patterns, and/or to enable application of new drilling fluid technology in difficult subsurface environments. The perforating system can be used for any hydrocarbon bearing formations with any lithology.
200 Multi seam coal bed/methane dewatering and depressurizing production system US10372522 2003-02-21 US06923275B2 2005-08-02 Robert Gardes
A process for underbalanced drilling into multiple coal and shale formations, and dewatering the drilled formations, which includes drilling a first borehole through several coal seams to a certain depth, defined as a cased borehole; lowering an upstock on the end of a carrier string to the depth of the upper coal seam; lowering a drill string in the carrier string, and angling off of the upstock, to drill a lateral or horizontal borehole within the coal seam; repeating the process for the second coal seam; setting a packer in place above the first coal seam in the annulus between the cased borehole and the carrier string; forming perforations in the wall of the carrier string below the packer; retrieving the upstock from the carrier string; lowering an electrical submersible pump to the bottom of the principal borehole, defined as a sump portion of the borehole; collecting methane gas from the two coal seams through the annulus between the second drill string and the carrier string to the surface; pumping water from the sump portion to the surface within the annulus of the second drill string, while gas within the annulus between the carrier string and the outer casing enters the plurality of perforations in the carrier string to be carried up to the surface.
QQ群二维码
意见反馈