Document | Document Title |
---|---|
US11812046B2 |
Reproduction device reproduction method, and recording medium
The present technology relates to a display device that enables content having a wide dynamic range of brightness to be displayed with an appropriate brightness from a reproduction device. The display comprises circuitry configured to store display information related to high dynamic range (HDR) video and to transmit to the reproduction device an extended display identification data that includes display information representing a performance of the display device. The display device includes a monitor configured to display an image of the HDR video in accordance with brightness designated by HDR information if the monitor is capable of displaying the designated brightness and to adjust a brightness of the image of the HDR video to a brightness capability of the monitor if the monitor is not capable of displaying the designated brightness. |
US11812045B2 |
Decoder and decoding method
According to one aspect of the present disclosure, a decoder includes memory and a processor coupled to the memory. The processor is configured to split a current picture into tiles, generate a slice having a rectangular shape and located at a lower-right corner of the current picture, the slice including at least a part of a tile among the tiles, generate first information on a region of the slice with header information, the header information not including information identical to the first information, and decode the slice with the first information. |
US11812042B2 |
Image decoding device and method for setting information for controlling decoding of coded data
The present disclosure relates to an image decoding device capable of recognizing performance necessary for decoding more accurately and a method. Coded data of image data and decoding load definition information for defining a magnitude of a load of a decoding process of a partial region of an image of the image data are acquired; decoding of the acquired coded data is controlled based on the acquired decoding load definition information; and the acquired coded data is decoded according to the controlling. The present disclosure can be applied to an information processing device such as an image coding device that scalably codes image data or an image decoding device that decodes encoded data obtained by scalably coding image data. |
US11812040B2 |
Signaling and syntax for in-loop reshaping information
A method for video processing is provided to include: performing a conversion between a current video block of a video and a coded representation of current video block, wherein the conversion uses a coding mode in which the current video block is constructed based on a first domain and a second domain and/or chroma residue is scaled in a luma-dependent manner, and wherein information used for the coding mode is signaled in a parameter set that is different from a sequence parameter set (SPS), a video parameter set (VPS), a picture parameter set (PPS), or an adaptation parameter set (APS) used for carrying adaptive loop filtering (ALF) parameters. |
US11812039B2 |
Electronic device and method for compressing video data
A computer-implemented method for compressing video data comprises receiving a sequence of video data values, each video data value being a digital value from a successive one of a plurality of pixels that form a video sensor, the sequence of video data values resulting from successive frames of video captured by the video sensor; extracting the video data values for each pixel in turn to create a plurality of pixel data streams, each pixel data stream including the video data value for each frame of captured video for the pixel; and applying data compression to each pixel data stream to create compressed data for each pixel data stream. |
US11812031B2 |
Image encoding/decoding method and device
The image encoding/decoding method and device according to the present invention can construct a merge candidate list of a current block, derive motion information of the current block on the basis of the merge candidate list and a merge index of the current block, derive a motion vector difference of the current block, correct a motion vector of the current block by means of the motion vector difference, and carry out motion compensation on the current block by means of the corrected motion vector. |
US11812030B2 |
Entropy coding for motion precision syntax
Systems, methods and apparatus for video processing are described. The video processing may include video encoding, video decoding, or video transcoding. One example method of video processing includes performing a conversion between a block of a video and a bitstream of the video according to a rule. The conversion is based on an adaptive motion vector difference resolution (AMVR) tool, and the rule specifies that selection of a context for a first bin within a bin string of a first syntax element that specifies the resolution of the motion vector difference associated with an AMVR shift is derived based on usage of a coding mode for the block. |
US11812029B2 |
Picture coding device, picture coding method, and picture coding program, picture decoding device, picture decoding method and picture decoding program
Technology for improving coding efficiency by performing a block split suitable for picture coding and decoding is provided. A device includes a coding information storage unit configured to store inter prediction information used in the inter prediction of a coded block in a history-based motion vector predictor candidate list, a spatial inter prediction information candidate derivation unit configured to derive a spatial inter prediction information candidate from inter prediction information of a block spatially neighboring a coding target block and set the spatial inter prediction information candidate as an inter prediction information candidate of the coding target block; and a history-based inter prediction information candidate derivation unit configured to derive a history-based inter prediction information candidate from the inter prediction information stored in the history-based motion vector predictor candidate list and set the history-based inter prediction information candidate as an inter prediction information candidate of the coding target block. The history-based inter prediction information candidate derivation unit compares a predetermined number of inter prediction information elements from latest inter prediction information within the inter prediction information stored in the history-based motion vector predictor candidate list with the spatial inter prediction information candidate and sets the inter prediction information as a history-based inter prediction information candidate when a value of the inter prediction information is different. |
US11812023B2 |
Encoding sequence encoding method and device thereof, and decoding method and device thereof
Provided is a video decoding method including obtaining encoding order information indicating whether an encoding order of a first block and a second block that are adjacent to each other is changed; determining the encoding order of the first block and the second block, based on the encoding order information; and decoding the first block and the second block, according to the determined encoding order. |
US11812020B2 |
Quantization control for variable bit depth
The quantization parameter QP is well-known in digital video compression as an indication of picture quality. Digital symbols representing a moving image are quantized with a quantizing step that is a function QSN of the quantization parameter QP, which function QSN has been normalized to the most significant bit of the bit depth of the digital symbols. As a result, the effect of a given QP is essentially independent of bit depth a particular QP value has a standard effect on image quality, regardless of bit depth. The invention is useful, for example, in encoding and decoding at different bit depths, to generate compatible, bitstreams having different bit depths, and to allow different bit depths for different components of a video signal by compressing each with the same fidelity (i.e., the same QP). |
US11812019B2 |
Image decoding method for residual coding in image coding system, and apparatus therefor
An image decoding method performed by a decoding apparatus, according to the present document, comprises the steps of: obtaining a dependent quantization available flag; obtaining a TSRC available flag, on the basis of the dependent quantization available flag; determining a residual coding syntax for a current block, on the basis of the TSRC available flag; obtaining residual information of the determined residual coding syntax for the current block; deriving a residual sample of the current block, on the basis of the residual information; and generating a reconstructed picture, on the basis of the residual sample, wherein the dependent quantization available flag is a flag regarding whether dependent quantization is available, the TSRC available flag is a flag regarding whether TSRC is available, and the TSRC available flag is obtained on the basis of the dependent quantization available flag having a value of 0. |
US11812018B2 |
Image signal encoding/decoding method and device therefor
An image decoding method, according to the present invention, may comprise the steps of: splitting a current picture into a plurality of tiles; decoding split information indicating slice type, wherein the split information indicates whether a square-shaped slice is applied; and determining a slice on the basis of tile index difference information if the split information indicates that the square-shaped slice is applied. |
US11812017B2 |
Method for encoding/decoding image signal, and apparatus therefor
A method for decoding an image, according to the present invention, comprises the steps of: determining whether a coding block is divided into a first prediction unit and a second prediction unit; determining a partition type of the coding block when determining that the coding block is divided; deriving first motion information about a first prediction unit and second motion information about a second prediction unit within the coding block; and acquiring a prediction sample within the coding block on the basis of the first motion information and the second motion information. |
US11812015B2 |
Image encoding device, image decoding device and program
An image encoding device that divides an image into blocks and encodes on each of the blocks, the image encoding device includes: a sub-area divider configured to divide a target block to be encoded into a plurality of sub-areas; a reference direction determiner configured to determine a reference direction that indicates in which direction an encoded block to be referenced is located among encoded blocks around the target block; a motion vector deriver configured to derive a motion vector for each of the sub-areas by referencing a motion vector applied in inter prediction of an encoded block located in the determined reference direction; and a prediction image generator configured to generate a prediction image on the target block by performing inter prediction on each of the sub-areas by using the derived motion vector. The image encoding device configured to encode reference direction information that indicates the determined reference direction, and output a stream. |
US11812014B2 |
Virtual boundary processing simplification for adaptive loop filtering (ALF) in video coding
Virtual boundary processing in adaptive loop filtering (ALF) requires that padded values be substituted for unavailable pixel rows outside the virtual boundaries. Methods and apparatus are provided for virtual boundary processing in ALF that allow the use of more actual pixel values for padding than in the prior art. |
US11812011B2 |
Method and system for evaluating viewpoint density, processing device, and computer storage medium
A method, a system, a processing device and a computer storage medium for evaluating a viewpoint density are provided. The method includes: acquiring a quantity of viewpoints of a display panel; comparing a size of an image spot radius of each viewpoint and image point spacing between the viewpoint and an adjacent viewpoint, and selecting one viewpoint as a reference viewpoint, calculating a crosstalk value between another viewpoint except the reference viewpoint and the reference viewpoint; and evaluating a viewpoint density for the auto-stereoscopic display according to the comparison of the size of the image spot radius of each viewpoint and the image point spacing between the viewpoint and the adjacent viewpoint and the calculated crosstalk value between the another viewpoint and the reference viewpoint. |
US11812009B2 |
Generating virtual reality content via light fields
An example system for generating light field content is described herein. The system includes a receiver to receive a plurality of images and a calibrator to intrinsically calibrate a camera. The system also includes a corrector and projector undistort the images and project the undistorted images to generate undistorted rectilinear images. An extrinsic calibrator may rectify and align the undistorted rectilinear images. Finally, the system includes a view interpolator to perform intermediate view interpolation on the rectified and aligned undistorted rectilinear images. |
US11812008B2 |
VR image processing method and device, VR glasses, and readable storage medium
Provided are VR image processing method and apparatus. The method includes: rendering left-eye and right-eye viewpoint regions based on left-eye and right-eye view angles respectively, to obtain left-eye and right-eye viewpoint images; determining a candidate region based on positions of the left-eye and right-eye view angles, and selecting a point in the candidate region as a peripheral image view angle; rendering left-eye and right-eye viewpoint peripheral regions based on the peripheral image view angle, to obtain a same viewpoint peripheral image; and splicing the viewpoint peripheral image with the left-eye viewpoint image and with the right-eye viewpoint image to obtain a left-eye complete image and a right-eye complete image. |
US11812005B2 |
User-preferred reproduction of out-of-gamut spot colors
A method for reproducing an out-of-gamut spot color includes determining a color gamut for a color printer, and specifying a spot color by color coordinates in a three-dimensional color space. A first target color is determined corresponding to a color having a minimum color difference to the specified spot color, and a second target color is determined corresponding to a color on the color gamut surface having a hue value equal to a hue value of the specified spot color. A path is defined on the color gamut surface connecting the first target color and the second target color, wherein a control parameter is used to specify a relative position along the defined path. A user interface is provided enabling a user to adjust the control parameter to specify an aim color. |
US11812004B2 |
Printing apparatus, method of controlling the same, and storage medium
A printing apparatus causes a printer engine to print first tone correction patches of a first color on a first sheet and to print second tone correction patches of a second color being different from the first color on a second sheet, generate correction information based on a color measurement result of the first tone correction patches and the second tone correction patches printed on the first sheet and the second sheet, respectively, as measured by a sensor, and correct image data using the correction information. In the generation of the correction information, in a case where there are more than a predetermined number of sheets of a size being different from a predetermined size between the first sheet and the second sheet, the correction information using the color measurement result of the first tone correction patches and the second tone correction patches is not generated. |
US11812000B2 |
Inspection apparatus that coverts a result of sheet inspection into an inspection result of each book including a plurality of sheets, method for controlling the same, and image forming system
An inspection apparatus is provided, which is operable to inspect a cut sheet that is supplied to a post-processing apparatus that post-processes sheets in units of hooks and on which an image has been formed by an image forming apparatus. The inspection apparatus inspects an image formed on a sheet for each sheet; manages results of sheet inspection by the inspection unit for respective books including a plurality of sheets; and notifies, the post-processing apparatus of a result of inspecting a book including the sheet that is based on the managed sheet inspection results. |
US11811999B2 |
Facsimile document management system using policies
A document management system includes a facsimile device or a multi-peripheral (MFP) device having facsimile and scanning components. A cloud based server stores a policy that is used to manage documents received at the facsimile device or scanning component. When a document is received at the facsimile device or scanning component, a parameter is used to determine an action to be taken according to the policy. Such actions include forwarding the received document to the cloud based server or sending it as an attachment in an email. When received at the cloud based server, the policy is used to categorize the document according to an attribute to make the document available within a document management service. |
US11811997B2 |
Reading apparatus switching between first optical path and second optical path
A reading apparatus includes an light emitter that performs irradiation with light, a light receiver that receives light reflected from an object to be imaged, a first optical path in which specularly reflected light is guided to the light receiver as a read image, a second optical path in which diffusely reflected light is guided to the light receiver as a read image, and a switching section that switches between the first optical path and the second optical path by rotating the light emitter. |
US11811993B2 |
Image processing apparatus, method of controlling image processing apparatus, and storage medium
Provided is a system configured to read an original document and submit the generated image data to the education management system, easily. A method of controlling an image processing apparatus includes reading an original document, specifying an assignment, receiving, from a first server, storage location information indicating a storage location in a second server corresponding to the specified assignment, transmitting image data generated by reading of the original document to the storage location indicated based on the received storage location information, and notifying the first server of identification information for identifying the image data. |
US11811989B2 |
Image forming apparatus including antenna in cover
An image forming apparatus that utilizes a communication device is disclosed. A communication unit of a housing which corresponds to an antenna portion is provided at a position at which the communication unit can be seen without obstruction from the upper side. A communication device such as a smartphone can be brought close to or into contact with the communication unit readily. Accordingly, wireless communication between the antenna portion and the communication device can be established. |
US11811984B2 |
Image processing system, image processing apparatus and method of controlling the same, and storage medium
An image processing apparatus obtains first image data as correct image data, and second image data generated by deteriorating image quality of the first image data as input image data, and generates learning data that links the correct image data with the input image data, and learns a neural network using the generated learning data, so that the image processing apparatus generates a learning model used to convert input image data. |
US11811979B2 |
Image processing apparatus, method for controlling the same, and storage medium
Images of the plurality of document pages are scanned to generate image data with one scanning instruction. A single folder named with a received character string is determined as a storage destination of image data corresponding to the plurality of document pages generated with the scanning instruction. |
US11811978B1 |
Image forming apparatus
An image forming apparatus according to an embodiment includes a forming unit, an adjusting unit, a detecting unit, a storage unit and a control unit. The forming unit forms an image with respect to a medium. The adjusting unit adjusts an operating condition of the forming unit when an image is formed. The detecting unit detects approach of an operator toward the image forming apparatus. The storage unit stores setting data that indicates validity or invalidity of the detecting unit. The control unit operates, while the setting data indicates the invalidity, the adjusting unit when a first execution condition determined in advance is satisfied, and operates, while the setting data indicates the validity, the adjusting unit when the approach of the operator is not detected by the detecting unit after a second execution condition is satisfied, the second execution condition being determined in advance so as to be satisfied earlier than the first execution condition. |
US11811977B2 |
Information processing apparatus, control method thereof, and storage medium
The present information processing apparatus externally receives print data and a print quality criterion as a print job, analyzes the received print data, and extracts an object for which a print quality criterion can be designated. The information processing apparatus also analyzes the received print quality criterion and, based on a result of the analysis, determines whether or not a print quality criterion corresponding to the extracted object is designated in the received print quality criterion. The information processing apparatus also performs a predetermined notification if a print quality criterion corresponding to at least one extracted object is not designated in the received print quality criterion as a result of the determination. |
US11811972B2 |
Group handling of calls for large call queues
Calls for large call queues are handled by a system that assigns agents of a call queue to one of a first group or a second group. A size of the first group or the second group is based on a number of agents in the call queue that are online. The system batch rings each agent of the first group when an incoming call is received. If the incoming call is unanswered by the first group, the system batch rings each agent of the second group. |
US11811967B1 |
Method and system for updating physical location information
A method and system for updating physical location data associated with a user data-communications endpoint device is implemented in a variety of embodiments. In one such embodiment, the endpoint device stores an identifier for a packet-communicating device which is subject to changing. The endpoint device has an interface for communication over the Internet via the packet-communicating device and uses a circuit-implemented method for prompting an update of physical location data associated with the endpoint device. In response to a communications connectivity-state transition and a change in the stored identifier, the endpoint device facilitates an update to the physical location data associated with the data-communications service. |
US11811962B2 |
Mobile secretary cloud application
The disclosure provides a method, system, and a software program product for assisting a user and/or managing tasks of the user, by a mobile secretary cloud application configured to operate in a mobile client device and cloud server network. The mobile secretary cloud application reads data from another software application and operates at least one of another application and a third application based on the read data. Further, Artificial intelligence is utilized by the mobile secretary cloud application for operating another application and the third application. |
US11811959B2 |
Mirror mount for electronic device
A mount for a handheld electronic device is adapted to be attached to a flat vertical glossy environmental surface, such as a mirror, with suction cups. A shelf with an upwardly concave center section holds electronic devices of various sizes and will hold an electronic device in a vertical orientation even if the mount is attached to the mirror at a small angle to the vertical. The shelf may hold the electronic device in either portrait or landscape orientation. The shelf permits a cable to be plugged into the bottom of the electronic device by being routed through a central notch in the shelf and an opening in a lip. |
US11811956B2 |
Blockchain-based supervision system of hazardous chemical production
A blockchain-based supervision system of hazardous chemical production includes: a collection layer, for collecting production data information, wherein a collection device in the collection layer sets a TEE to encrypt or hash the collected production data information; a data layer, for uplinking a hash certificate of the production data information through an alliance chain, wherein the collection layer communicates with the data layer; a blockchain, for deploying a file uplink contract and encrypting and storing a file on a privacy computing server after the file is connected to the trusted environment; and a privacy computing system, for forming a metadata market of the data from file description information, recording the metadata information of the collected data. A data user applies for the right of use to a production enterprise that produces the data, and after obtaining authorization, the data user performs various applications on the privacy computing system. |
US11811953B2 |
Method and apparatus for logic cell-based PUF generators
Disclosed is a physical unclonable function generator circuit and testing method. In one embodiment, a physical unclonable function (PUF) generator includes: a PUF cell array comprising a plurality of bit cells configured in a plurality of columns and at least one row, wherein each of the plurality of columns is coupled to at least two pre-discharge transistors, and each of the plurality of bit cells comprises at least one enable transistor, at least two access transistors, and at least two storage nodes, and a PUF control circuit coupled to the PUF cell array, wherein the PUF control circuit is configured to access the plurality of bit cells to pre-charge the at least two storage nodes with substantially the same voltages allowing each of the plurality of bit cell having a first metastable logical state; to determine a second logical state; and based on the determined second logical states of the plurality of bit cells, to generate a PUF signature. |
US11811952B2 |
Authentication system and working method thereof
A working method includes: a client receives and parses an authentication request to obtain an application identifier, an authentication policy and a challenge value; generates a signature key identifier list according to the authentication policy; sends an identity information verifying instruction generated according to the challenge value, the application identifier and the signature key identifier list; an authenticator obtains a signature private key and a signature key identifier according to the signature key identifier list and the application identifier; generates a final challenge hash value according to the application identifier and the challenge value; generates a signature value according to the final challenge hash value, the preset authenticator identifier and the signature key identifier; sends the signature value to a server; the server receives the signature value and verifies the signature value, determines whether the verifying is successful, if yes, the verifying is successful; otherwise, the verifying is failed. |
US11811949B2 |
File validation using a blockchain
Disclosed are various embodiments for validating documents using a blockchain data. Multiple documents can be included in the validation process using a merge and hash process and a summary terms document. Validation can be performed by hashing and merging operations, followed by comparing hash values. |
US11811947B2 |
Systems and methods for communicating data securely for an electric power delivery system
An intelligent electronic device (IED) of an electric power delivery system includes processing circuitry a memory that includes instructions. The instructions, when executed by the processing circuitry, are configured to cause the processing circuitry to receive first data via parallel redundancy protocol (PRP), generate a first integrity check value using a media access control security (MACsec) integrity check function based on the first data, receive second data via PRP, generate a second integrity check value using the MACsec integrity function based on the second data, compare the first integrity check value and the second integrity check value with one another, and output a notification in response to determining that the first integrity check value and the second integrity check value do not match one another. |
US11811946B2 |
Systems, apparatus and methods for backing up and auditing distributed ledger data within a network and securely without using private keys
In some embodiments, a method includes generating, based on distributed ledger data associated with a first distributed ledger-based network (DLN), distributed ledger data associated with a second DLN. The first DLN and the second DLN each is a fork and the distributed ledger data associated with the first DLN include account data associated with a set of accounts. The method includes generating a request to initiate a transaction between a first account and a second account. The method includes authenticating the transaction based on a protocol associated with the second DLN and without using a private cryptographic key of the first account. The method includes sending a signal indicating the transaction was authenticated and storing information associated with the transaction in the distributed ledger data associated with the second DLN. |
US11811945B2 |
Blockchain identities
The invention is directed to computer-based method and a computer system for generating a blockchain address. The method comprises receiving a request for a new blockchain address for a user, the request including a public key, which has an associated private key, and identification information for the user, and generating the address based on a combination of the public key and the identification information. |
US11811943B2 |
Verification of messages using hash chaining
According to some embodiments, in a Vehicular-to-Everything (V2X) communications environment where vehicles can exchange messages with other entities, including nearby vehicles and pedestrians, systems and methods are provided to implement a mechanism or technique based on hash chaining that allows a large sequence of messages from the same source to be validated by verifying a single digital signature. |
US11811941B2 |
Systems and methods of authenticating items
In some embodiments, systems and methods provide distributed item authentication. In some embodiments systems comprise: a housing; a set of sensor systems; a transceiver; and an authentication control circuit configured to: obtain first sensor data of an item being authenticated, obtain an initial identification of the item; access an item authentication block specific to the item; obtain a first set of authentication instructions; control one or more sensor systems in accordance with the first set of authentication instructions; compare multiple current authentication sensor data to the set of multiple historic authentication sensor data; confirm that each of a threshold number of the multiple current authentication sensor data is consistent within a threshold variation of a corresponding one of the set of multiple historic authentication sensor data; and cause the item authentication block to be updated to include the confirmation of authentication of the item. |
US11811940B2 |
False positive reduction in electronic token forgery detection
The disclosed embodiments generate a plurality of anomaly detector configurations and compare results generated by these anomaly detectors to a reference result set. The reference result set is generated by a trained model. A correlation between each result generated by the anomaly detectors and the result set is compared to select an anomaly detector configuration that provides results most similar to those of the trained model. In some embodiments, data defining the selected configuration is then communicated to a product installation. The product installation instantiates the defined anomaly detector and analyzes local events using the instantiated detector. In some other embodiments, the defined anomaly detector is instantiated by the same system that selects the anomaly detector, and thus in these embodiments, the anomaly detector configuration is not transmitted from one system to another. |
US11811938B2 |
Tokenization of arbitrary data types
A computing device includes a processor and a machine-readable storage storing instructions. The instructions are executable by the processor to: receive a bit vector representing input data to be tokenized; divide the bit vector into two vector portions; and perform a plurality of rounds of a Feistel network on the two vector portions, each round including converting one vector portion using a table-based hash function that combines multiple tokens retrieved from at least one token table. |
US11811931B2 |
System for real-time assessment of authenticity of a resource using non-fungible tokens
Systems, computer program products, and methods are described herein for real-time assessment of authenticity of a resource using non-fungible tokens (NFTs). The present invention is configured to receive, from a computing device of a user, an indication that a resource has been restored using a first resource portion, wherein the resource is associated with a first NFT; retrieve an NFT associated with the first resource portion; retrieve a value of the NFT associated with the first resource portion; generate, using the NFT generator, a second NFT for the resource; link the NFT associated with the first resource portion with the second NFT; determine, using an NFT valuation engine, a value for the second NFT based on at least a value of the NFT associated with the first resource portion; and record the second NFT on a distributed ledger. |
US11811928B2 |
System and method for secure access to legacy data via a single sign-on infrastructure
Systems and methods for securely accessing a legacy system are disclosed herein. In an embodiment, a method for securely accessing a legacy system via an enterprise system includes requesting issuance of a security token by an STS server of a security token service, causing, by an enterprise server of an enterprise system, association of a first user account with the security token upon reception of the security token, communicating the security token to an access server of a legacy access provider for authentication of the security token, enabling creation of a second user account after the legacy access provider authenticates the security token, accessing a legacy server of a legacy system via the first user account and the second user account, and causing at least the second user account to be deleted after a single use of the legacy system. |
US11811927B2 |
Confidential command, control, and communication center
A computer-implemented method for sharing information about a subject without disclosing identification information about the subject includes comparing, by a first computer system, a third set of data with a fourth set of data. The third set of data is converted by a transformation from a first set of identification data of a first subject provided by the first computer system. The fourth set of data is converted by the transformation from a second set of identification data of a second subject provided by a second computer system. The transformation renders the first subject unidentifiable from the third set of data and the second subject unidentifiable from the fourth set of data. The computer-implemented method also includes transmitting, from the first computer system to the second computer, a fifth set of data when the third set of data corresponds to the fourth set of data. |
US11811925B2 |
Techniques for the safe serialization of the prediction pipeline
The present disclosure relates to systems and methods for a machine-learning platform for the safe serialization of a machine-learning application. Individual library components (e.g., a pipeline, a microservice routine, a software module, and an infrastructure model) can be encrypted using one or more keys. The keys can be stored in a location different from the storage location of the machine-learning application. Prior to incorporation of the library component into a machine-learning model, one or more keys can be retrieved from the remote storage location to authenticate that the one or more encrypted library components are authentic. The process can reject any of the one or more component, when the encrypted library component fails authentication. If a component is rejected, the system can roll back to a previous, authenticated version of the library component. The authenticated library components can be compiled into machine-learning software. |
US11811924B1 |
System and method of securing a server using elliptic curve cryptography
A system for generating a symmetric key to allow the sharing of information between two entities, wherein the shared information is used to start a server and the symmetric key is established from the private key of a first client and the public key of a second client and for use in a symmetric encryption methodology to encrypt information for transport to the second entity, allowing the second entity to form the same symmetric key to decrypt information with no key transport required. |
US11811915B1 |
Stateless system to protect data
A method including authenticating, by a processor, received biometric information; selectively transmitting, by the processor based at least in part on a result of authenticating the received biometric information, a decryption request to decrypt an encrypted assigned private key; receiving, by the processor based at least in part on selectively transmitting the decryption request, a decrypted assigned private key; and decrypting, by the processor, encrypted content based at least in part on utilizing the decrypted assigned private key is disclosed. Various other aspects are contemplated. |
US11811914B2 |
Blockchain-based digital rights management
Generating a rights blockchain storing rights of a user, including: receiving an enrollment request and a public key from the user; verifying that the user has a private key corresponding to the public key; generating a user identifier using the public key; and generating and delivering the rights blockchain having a genesis block including the user identifier to the user. |
US11811913B2 |
Secure monitoring using block chain
The present disclosure includes apparatuses, methods, and systems for using a local ledger block chain for secure updates. An embodiment includes a memory, and circuitry configured to receive a global block to be added to a local ledger block chain for validating an update for data stored in the memory, where the global block to be added to the local ledger block chain includes a cryptographic hash of a current local block in the local ledger block chain, a cryptographic hash of the data stored in the memory to be updated, where the current local block in the local ledger block chain has a digital signature associated therewith that indicates the global block is from an authorized entity. |
US11811909B2 |
Information processing apparatus, method and secure protocol for secure storage and transfer of data
The invention provides an information processing apparatus, method, and security protocol for secure storage and transfer of data using two-level encryption by combining RSA and AES keys. The apparatus includes circuitry (100) configured to receive encryption request, encrypt the data to generate first encryption data. The encryption of the data is based on an AES user key (103) and the received encryption request. The circuitry is further configured to encrypt the first encryption data to generate second encryption data, decrypt the second encryption data to generate first decryption data. The decryption of the second encryption data is based on a company AES key (107). The circuitry (100) is further configured to decrypt the first decryption data to generate the original data. The decryption of the first decryption data is based on an AES user key (103), and the second decryption data corresponds to the transmitted data. |
US11811908B2 |
Outputting a key based on an authorized sequence of operations
Values and a sequence of operations associated with generating a key may be received. A determination may be made as to whether the sequence of operations associated with the key matches an authorized sequence of operations. The key may be outputted when the received sequence of operations matches the authorized sequence of operations and the key may not be outputted when the received sequence of operations does not match the authorized sequence of operations. |
US11811904B2 |
Adaptive control of bias settings in a digital microphone
Technologies are provided for adaptive control of bias settings in a digital microphone. In some embodiments, a device includes a first component that provides data indicative of a clock frequency of operation in a functional mode of a digital microphone. The clock frequency clocks one or more microphone components having switching activity. The device also can include a second component that determines, using the clock frequency, an amount of bias current to supply to at least a first microphone component of the one or more microphone components. The device can further include a memory device that retains control parameters that include at least one of a first subset of parameters defining a relationship between current and frequency and a second subset of parameters defining a quantization of the relationship. The quantization including multiple bias current levels for respective frequency intervals. |
US11811900B2 |
Packet processing method and first network device
Embodiments of this application disclose a packet processing method. The method in the embodiments of this application includes: receiving a first negotiation packet from a second network device based on a first interface of a first network device, where the first negotiation packet includes a first source media access control MAC address; determining whether the first source MAC address is the same as a first locked MAC address stored by the first network device, where the first locked MAC address is a MAC address of a network device that is determined by the first network device and that has established negotiation with the first network device; and when it is determined that the first source MAC address is different from the first locked MAC address stored by the first network device, skipping updating a link status of a first link based on the first negotiation packet. |
US11811898B2 |
Methods and apparatus for compressing data streams
Methods and apparatus for compressing data streams. In an embodiment, a method includes calculating a probability distribution function (PDF) for scaler data, matching the PDF to PDF templates to determine a closest matching PDF template, and selecting an encoder corresponding to the closest matching PDF template wherein a corresponding encoder identifier is determined. The method also includes encoding the scaler data with the encoder to generate an encoded stream, and transmitting the encoded stream and the encoder identifier. |
US11811896B1 |
Pre-fetch engine with security access controls for mesh data network
Arrangements for controlling data retrieval are provided. In some aspects, a data request may be received by a computing platform. A pre-fetch engine may be executed to analyze the data request and generate, using a machine learning model, a pre-fetch template identifying data sets responsive to the request. The pre-fetch template may be transmitted to one or more data repositories and response data sets may be received. The response data sets may be generated by a data controller associated with a respective data repository. The data controller may identify data sets and evaluate the date sets to determine whether they meet local requirements of the geographic location of the data repository. The received data sets may be analyzed to identify missing data sets. If missing data sets are identified, the data may be processed by ignoring the missing data sets or inserting a substitute value for the missing data sets. |
US11811895B2 |
Automatic data replica manager in distributed caching and data processing systems
A method of data storage includes determining a latency distance from a primary node to each of two or more replica nodes, choosing a preferred replica node of the two or more replica nodes based on the determined latency distances, and write-caching data into the preferred replica node. |
US11811891B2 |
Real-time detection of completion of sensor wrap completion in GNMI telemetry of a network device
A device may provide, to a network device, a subscribe request that includes a request for sensor data, and may receive sensor data packets that include the sensor data and header extensions identifying a group identifier for a group of sensor data and final packet information indicating whether the sensor data packet is a final one for the group. The device may store the sensor data packets until the final packet information of one of the sensor data packets indicates that the one of the sensor data packets is a final sensor data packet for the group, and may identify a complete set of the sensor data packets when the final packet information of the one of the sensor data packets indicates that the one of the sensor data packets is the final sensor data packet. The device may perform actions based on the complete set. |
US11811889B2 |
Systems and methods for resolving ambiguous terms based on media asset schedule
Systems and methods are disclosed herein to provide information to a user based on a communication from a user associated with multiple media assets. Based on the schedule of the media assets, one is selected and recommended to the user. |
US11811888B2 |
Ensuring data protection and control in distributed hybrid multi-cloud environment
In an approach for ensuring data protection and control in a distributed hybrid multi-cloud environment with Kubernetes clusters, a processor determines whether a respective quorum of the set of clusters are online. A processor, responsive to determining that a respective quorum of the set of clusters are online, determines whether one or more applications of the cluster are running on another cluster of the set of clusters. A processor, responsive to determining the one or more applications of the cluster are not running on another cluster of the set of clusters, determines whether the cluster is designated as a highest priority cluster. A processor, responsive to determining the cluster is designated as the highest priority cluster, determines whether a main cluster of the set of clusters is online. A processor, responsive to determining the main cluster is online, scales a new custom resource to one (1). |
US11811885B2 |
Apparatus and methods for dynamic scaling and orchestration
Apparatus and methods to dynamically scale and orchestrate services over a network are provided. The apparatus and methods may include two or more computers forming a network cluster. Each computer may have an agent and user service. One or more computers may include a gateway service, authorization service, a pool of network services, and a director service. A user may request access to a network service, and the gateway and director services may grant access to the network service or create a new instance of the network service on any computer in the cluster and then grant access to the network service to the user. |
US11811883B2 |
Cryptographic hash chain for vehicle configuration verification
In one aspect, a computer system for vehicle configuration verification, and/or detecting unauthorized vehicle modification may be provided. In some exemplary embodiments, the computer system may include a processor and a non-transitory, tangible, computer-readable storage medium having instructions stored thereon that, in response to execution by the processor, cause the processor to perform operations including: (1) receiving a vehicle image, including a vehicle identifier and at least one software module; (2) calculating a configuration hash value of the at least one software module; generating a first data block including the configuration hash value, a first index value, the vehicle identifier, and a digital signature; (3) storing the first data block in a memory; and/or (4) transmitting the first data block to any number of network participants using a distributed network to facilitate vehicle software configuration verification. |
US11811879B2 |
Networking connection management based on container identification
Described herein are systems, methods, and software to enhance packet processing. In one implementation, a host computing element identifies a packet from a process executing on the host computing element. In response to identifying the packet, the host computing element determines whether the packet originates from a container namespace corresponding to a container on the host computing element or a host namespace corresponding to the host computing element. If the packet originates from a container namespace, the host computing element may determine supplemental information for the container associated with the container namespace, and process the packet based on the supplemental information. |
US11811877B2 |
Universal transport framework for heterogeneous data streams
A transport framework for heterogeneous data streams includes session management module and a connection management module. The session management module is configured to receive a request to establish a first stream that is used for transmitting or receiving data, where the request includes an express indication as to whether the first stream is reliable or unreliable; construct a first data frame based on application data; handoff the first data frame to the connection management module; and maintain a record for the first data frame that includes whether the first data frame is successfully transmitted to the receiver. The connection management module is configured to receive the first data frame of the first stream from the session management module; receive a second frame from the session management module; encapsulate the first data frame and the second frame in a packet; and transmit the packet to the receiver using an unreliable protocol. |
US11811872B2 |
Reducing distributed storage operation latency using segment routing techniques
Systems, methods, and computer-readable media for reducing distributed storage operation latency using segment routing. In some examples, a method can involve receiving, from a client, a message identifying an intent to store or retrieve data on a distributed storage environment, and sending to the client a segment routing (SR) list identifying storage node candidates for storing or retrieving the data. The method can involve steering a data request from the client through a path defined by the SR list based on a segment routing header (SRH) associated with the request, the SRH being configured to steer the request through the path until a storage node from the storage node candidates accepts the request. The method can further involve sending, to the client device, a response indicating that the storage node has accepted the request and storing or retrieving the data at the storage node that accepted the request. |
US11811864B2 |
Network connection method and device for training participant end of common training model
A network connection method and device for a training participant of a joint training model are provided, the training participant operates in a master-worker mode. The method includes: acquiring communication state information of a worker, the communication state information indicating a communication connection phase that the worker is in; acquiring communication state information of a target worker as target communication state information, where the target worker includes a peer node corresponding to the worker, and the peer node belongs to a different training participant of the joint training model; and resetting, in response to determining that the target communication state information does not match the communication state information of the worker, a communication connection phase that the worker is in. |
US11811862B1 |
System and method for management of workload distribution
Methods and systems for managing workloads are disclosed. The workloads may be supported by operation of workload components that are hosted by infrastructure. The hosted locations of the workload components by the infrastructure may impact the performance of the workloads. To manage performance of the workloads, an optimization process may be performed to identify a migration plan for migrating some of the workload components to different infrastructure locations. Some of the different infrastructure locations may reduce computing resource cost for performance of the workloads. |
US11811859B2 |
High availability management for a hierarchy of resources in an SDDC
Some embodiments provide a hierarchical data service (HDS) that manages many resource clusters that are in a resource cluster hierarchy. In some embodiments, each resource cluster has its own cluster manager, and the cluster managers are in a cluster manager hierarchy that mimics the hierarchy of the resource clusters. In some embodiments, both the resource cluster hierarchy and the cluster manager hierarchy are tree structures, e.g., a directed acyclic graph (DAG) structure that has one root node with multiple other nodes in a hierarchy, with each other node having only one parent node and one or more possible child nodes. |
US11811857B1 |
SaaS application contract terms benchmarking in a SaaS management platform
A software as a service (SaaS) management platform, includes: an uploader process for receiving a plurality of contract files relating to purchases of a SaaS application; parsing logic that identifies terms in the plurality of contract files; normalization logic for assigning a normalization SKU to respective contract files based on the terms identified in the respective contract files; a background process that generates anonymized contract data by storing the terms of each contract file in association with the normalization SKU assigned to the contract file in an anonymous manner; a backend process that, responsive to a request from a client device, accesses the anonymized contract data to generate a distribution of terms of the anonymized contract data, generates benchmark data identifying an approximate location of terms of a given customer's contract file within the distribution, and returns the benchmark data to the client device for rendering through a user interface. |
US11811854B2 |
Delivery of digital video content based upon geographic location
Media streaming to a phone, tablet or other mobile device is improved by adapting requests for content in anticipation of the device's future location. If a device is expected to pass through an area with poor wireless signal quality, then requests for media content can be pre-emptively obtained beforehand at places and times where the available bandwidth is more favorable. Further, requests for content may be delayed during lower bandwidth conditions if the device is expected to soon encounter more bandwidth. Content requests can be therefore optimized (or at least improved) based upon the expected bandwidth that will be encountered during the anticipated upcoming movement of the device. |
US11811852B2 |
Highly-scalable data transmission
Methods and systems for transmitting and receiving data, such as, for example, entertainment data, are presented. In one example, a data file is segmented into a plurality of data modules. A header is generated for each of the data modules, with the header including a module identifier for the data module associated with the header. An indication of a number of the plurality of data modules associated with the data file, and at least one multicast address from which the plurality of modules may be received via a multicast transmission, are generated and transmitted. The data modules with their associated headers are transmitted over a communication network in the multicast transmission. |
US11811851B2 |
Method and system for enforcing governance across multiple content repositories using a content broker
A method and system for a content broker, including a unified object index, where the content broker is coupled to the unified object index and receives, from a requesting entity, a request to perform an action on an object and the object is stored in the content repository. The method further including obtaining the object associated with the request from a content repository, determining, using the unified object index, a normalized object type associated with the object, obtaining a governance rule based on the normalized object type, and servicing the request using the governance rule. |
US11811848B2 |
System providing faster and more efficient data communication
A system designed for increasing network communication speed for users, while lowering network congestion for content owners and ISPs. The system employs network elements including an acceleration server, clients, agents, and peers, where communication requests generated by applications are intercepted by the client on the same machine. The IP address of the server in the communication request is transmitted to the acceleration server, which provides a list of agents to use for this IP address. The communication request is sent to the agents. One or more of the agents respond with a list of peers that have previously seen some or all of the content which is the response to this request (after checking whether this data is still valid). The client then downloads the data from these peers in parts and in parallel, thereby speeding up the Web transfer, releasing congestion from the Web by fetching the information from multiple sources, and relieving traffic from Web servers by offloading the data transfers from them to nearby peers. |
US11811846B2 |
Thermal state inference based frequency scaling
The systems and methods monitor thermal states associated with a device. The systems and methods set thermal thresholds associated with the device. The systems and methods infer the thermal thresholds from information gathered by a client application running on the device. The systems and methods implement a stored policy associated with a violation of one of the thermal thresholds by one of the monitored thermal states. |
US11811843B2 |
Supporting quality of service for media communications
A client device (e.g., user equipment or “UE”) may be configured to engage in a media communication session, such as a WebRTC session, with another client device. The client devices may separate a quality of service (QoS) specification from a QoS flow definition, to allow for separate interactive connectivity establishment (ICE) negotiation. The QoS specification may cover all segments of a connection for the media communication session. For example, QoS may be requested for a case where a server (e.g., a Traversal Using Relay Network Address Translation (TURN) server) is hosted by a mobile network operator (MNO). The QoS specification and the QoS flow description may be linked. |
US11811842B2 |
Attention (AT) interface for radio access network bitrate recommendations
Various embodiments may provide streaming service downlink assistance and/or uplink assistance mechanisms for a wireless device using attention (AT) commands exchanged between a modem processor of the wireless device and another processor of the wireless device. Various embodiments may include an AT command that is a bitrate recommendation action command including an indication of a stream identifier, an indication of a requested bitrate, and an indication of a direction. Various embodiments may include an AT response that is a bitrate recommendation response, the bitrate recommendation response including an indication of a stream identifier, an indication of a bitrate recommendation, and an indication of a direction. |
US11811837B2 |
Redundant media packet streams
This invention concerns the transmitting and receiving of digital media packets, such as audio and video channels and lighting instructions. In particular, the invention concerns the transmitting and receiving of redundant media packet streams. Samples are extracted from a first and second media packet stream. The extracted samples are written to a buffer based on the output time of each sample. Extracted samples having the same output in time are written to the same location in the buffer. Both media packet streams are simply processed all the way to the bugger without any particular knowledge that one of the packet streams is actually redundant. This simplifies the management of the redundant packet streams, such as eliminating the need for a “fail-over” switch and the concept of an “active stream”, the location is the storage space allocated to store one sample. The extracted sample written to the location may be written over another extracted sample from a different packet stream previously written to the location. These extracted samples written to the same location may be identical. |
US11811836B2 |
Video communications system for rideshare service vehicle
A method for a video communication system for a rideshare system includes conducting at least a portion of a video communication session involving a passenger using at least one exterior audio/video component on an exterior surface of an AV dispatched to a designated location; and transferring the video communication session to at least one interior audio/video component on an interior of the AV. |
US11811835B1 |
Efficient SIP message modification
The instant application provides a method providing one or more of: receiving, by a control node coupled to a SIP node, a SIP message from the SIP node, parsing the SIP message to determine a message type and content, modifying the SIP message content to create a modified SIP message, transmitting the modified SIP message to the SIP node, receiving, by the SIP node, the modified SIP message within a predetermined time period, and forwarding, by the SIP node, the modified SIP message to a destination SIP node in the SIP call path. The control node is not in a SIP call path. |
US11811834B2 |
Lawfully intercepting traffic and providing the traffic to a content destination based on content destination availabilities and priorities
A network device ensures availability of content destination devices, and may receive a request to install a filter, and the request may include information identifying a set of content destination devices capable of receiving packets that match the filter, and priority values indicating priorities by which the set of content destination devices are to receive the packets. The network device may receive status indications indicating availabilities associated with the set of content destination devices, and may receive a packet destined for an endpoint device. The network device may generate a copy of the packet, and may determine that a packet feature matches the filter. The network device may select a particular content destination device, from the set of content destination devices, based on the priority values and the status indications, and may cause the copy of the packet to be forwarded to the particular content destination device. |
US11811831B2 |
Delegated domain name system responder for emails
A DNS server receives from a receiving email system, a DNS query for an email domain stored at the DNS server, the DNS query including identifying information of a sender of an email. The DNS server extracts the identifying information of the email sender from the DNS query and identifies one of a plurality of delivering organizations from the information. The DNS server determines whether the identified delivering organization is authorized to deliver email on behalf of the email domain. In response to determining that the identified delivering organization is authorized to deliver email on behalf of the email domain, the DNS server generates a target validation record based on the identity of the authorized delivering organization and the email domain, the target validation record including one or more rules indicating to the receiving email system whether the delivering organization is an authorized sender of email for the email domain. |
US11811830B2 |
Displaying a firewall policy interface
A device may generate a display of a firewall policy management GUI. The device may generate a display in the firewall policy management GUI of a list of existing firewall policies and a firewall policy interface that is adjacent to the list of existing firewall policies in a same view of the firewall policy management GUI. The device may generate a display in the firewall policy management GUI of at least one of a plurality of candidate sources for a new firewall policy, a plurality of candidate destinations for the new firewall policy, or a plurality of candidate security configurations for the new firewall policy. The device may display, in the firewall policy interface, at least one of a first column that includes two or more sources, a second column that includes two or more destinations, or a third column that includes two or more security configurations. |
US11811829B2 |
Header modification for endpoint-based security
Apparatuses, methods, systems, and program products are disclosed for endpoint-based security. An apparatus includes a network module that is configured to receive, at an end user device, a request for content from a network source. An apparatus includes a policy module that is configured to compare a network source of requested content against a policy that is stored on an end user device prior to the content being allowed on the end user device. An apparatus includes an action module that is configured to modify at least one header in a request for content based on a requirement for a network source. |
US11811828B2 |
Access control list cloning
A computer may receive editing instructions that specify one or more changes to filters in an existing access control list or a template for an access control list. Then, the computer may dynamically generate the clone access control list by applying the editing instructions to the existing access control list or the template for the access control list. For example, the computer may provide the editing instructions to a computer network device (such as a switch or a router) that are applied to the existing access control list or the template for the access control list while the computer network device is processing data packets. Alternatively, the computer may apply the editing instructions to the existing access control list or the template for the access control list that is not currently installed on the computer network device, and may provide the access control list to the computer network device. |
US11811827B2 |
Securing endpoints for virtual meetings
Techniques are disclosed for establishing a level of security for a virtual meeting similar to a level of security associated with in person meetings. A communication system may use an application programming interface (API) of an operating system to secure the device by terminating any applications or processes operating on the computing device that are not consistent with a security policy. The system may also use machine learning techniques to monitor audio and/or video streams for participant behaviors that are not consistent with a security policy. |
US11811825B2 |
Enhancing network security
A method including receiving, by a receiving device from a transmitting device, a combination of messages including encrypted decoy messages and one or more encrypted content messages, the encrypted decoy messages being determined based at least in part on encrypting decoy data and the one or more encrypted content messages being determined based at least in part on encrypting content data; and decrypting, by the receiving device, a received message included in the combination of messages based at least in part on utilizing a cryptographic key; and determining, by the receiving device, that the received message is a content message or that the received message is a decoy message based at least in part on a result of decrypting the received message. Various other aspects are contemplated. |
US11811824B2 |
Security system for detecting malicious actor's observation
A website vulnerability test is performed by automatically checking that a website has not been compromised by malicious third party scripts. A system can test a dynamic behavior of a website that indicates a functional user flow through the website. A set of rules are applied against a log of dynamic behavior of the website, as well as static code of the website, to identify potential compromise by malicious scripts. Some rules can be configured for detecting modification of a third party script, or modified behavior of a third party script, in an attempt to detect security monitoring activity against the script and hide its presence from the security monitoring activity. |
US11811821B2 |
Validation-based determination of computational models
Example techniques described herein determine a validation dataset, determine a computational model using the validation dataset, or determine a signature or classification of a data stream such as a file. The classification can indicate whether the data stream is associated with malware. A processing unit can determine signatures of individual training data streams. The processing unit can determine, based at least in part on the signatures and a predetermined difference criterion, a training set and a validation set of the training data streams. The processing unit can determine a computational model based at least in part on the training set. The processing unit can then operate the computational model based at least in part on a trial data stream to provide a trial model output. Some examples include determining the validation set based at least in part on the training set and the predetermined criterion for difference between data streams. |
US11811816B2 |
Generating attack graphs in agile security platforms
Implementations of the present disclosure include providing a graph that is representative of an enterprise network and includes nodes and edges, a set of nodes representing assets within the enterprise network, each edge representing a lateral movement path between assets, determining, for each asset, a contribution value indicating a contribution of an asset, determining lateral movements paths between a first asset and a second asset, providing a lateral movement path value representative of a difficulty in traversing a respective lateral movement path, identifying a set of remediations based on remediations defined for one or more vulnerabilities associated with issues identified for assets, each remediation mitigating a cyber-security risk within the enterprise network, and prioritizing the two or more remediations based on contribution values of assets, lateral movement path values of paths, and one of lateral movement complexity values of respective segments of paths and costs of respective remediations. |
US11811815B2 |
IP-based security control method and system thereof
The present disclosure relates to an IP-based security control method and a system thereof. According to the present disclosure, the method comprises: selecting a target IP address that is an IP address of a security control target; generating IP monitoring information by scanning a port of the target IP address; determining an IP risk level of the target IP address by using the IP monitoring information; and generating a security report including at least one of an IP list determined by a preset IP risk level and IP monitoring information of an IP included in the IP list, wherein the IP monitoring information includes at least one of an IP address of the target IP address, banner information, application information, security vulnerability information, a malicious code, and a similar domain. |
US11811814B2 |
Method and system for security assessment of IoT devices
A system (100) for security assessment of a plurality of IoT devices (210, 220, 230, 240) includes a programmed processing unit (110) adapted to carry out a vulnerability and/or “penetration test” method; according to this method, at least wireless communication medium and at least one communication protocol are determined to be used for the assessment, then at least one scan tool is selected based on the communication medium and communication protocol, then the scan tool is executed on the IoT devices (210, 220, 230, 240), and then data from the scan tool are collected, the data being obtained from reaction of the IoT devices to the scan tool; the computerized system performs a scan of a predetermined frequency bandwidth in order to identify the IoT devices to be assessed and the communication protocol to be used for the assessment. |
US11811812B1 |
Classification model to detect unauthorized network behavior
Methods and systems for classifying network users. The system may receive a classification of a user account on a network and network activity data associated with the user account. Upon detecting a discrepancy between the expected behavior of the user account based on its classification and the present behavior of the user account, the system may obtain a corroborating result from one or more directory sources. An alert may then be issued based on the detected discrepancy and the corroborating result. |
US11811806B2 |
System and apparatus for internet traffic inspection via localized DNS caching
An approach is proposed to support Internet traffic inspection to detect and prevent access to blocked websites or resources. First, access requests initiated by users to websites hosted on servers over a network are intercepted by an inspection agent, which identifies and caches a pair of the domain/host name of each website and its corresponding IP address on the Internet to a localized DNS cache. When a newly intercepted access request identifies the website by its IP address only without specifying its domain/host name, the inspection agent looks up the domain name by its IP address from the DNS cache. If no domain name is found, the inspection agent redirects the access request to a proxy server instead of forwarding it to the server hosting the website for further inspection. The proxy server then inspects the IP address to determine if it is a legitimate website or not. |
US11811805B1 |
Detecting fraud by correlating user behavior biometrics with other data sources
One embodiment of the present invention sets forth a technique for predicting fraud by correlating user behavior biometric data with one or more other types of data. The technique includes receiving cursor movement data generated via a client device and analyzing the cursor movement data based on a model to generate a result. The model may be generated based on cursor movement data associated with a first group of one or more users. The technique further includes receiving log data generated via the client device and determining, based on the result and the log data, that a user of the client device is not a member of the first group. |
US11811804B1 |
System and method for detecting process anomalies in a distributed computation system utilizing containers
A server has a processor and a memory connected to the processor. The memory stores instructions executed by the processor to collect operating signals from machines. The operating signals characterize container activities. The container activities are isolated processes in user space designated by an operating system kernel. The container activities are ascribed a container lifecycle phase characterized as one of container startup, container steady state and container shutdown. A process anomaly is identified when container lifecycle phase activity deviates from baseline container lifecycle phase activity. |
US11811801B2 |
Anomaly detection for microservices
System, method, and software for detecting anomalies in data generated by microservices. In one embodiment, an anomaly detector collects performance metrics for a microservice deployed in a data center for an application. The anomaly detector transforms the performance metrics into a time-series structured dataset for the microservice, and feeds the structured dataset to a machine learning system to determine whether an anomaly exists in the structured dataset based on an anomaly detection model. The anomaly detector performs an anomaly classification with the machine learning system based on an anomaly classification model and the structured dataset when an anomaly is detected in the structured dataset, and performs an action based on the anomaly classification. |
US11811800B2 |
Traffic feature information extraction device, traffic feature information extraction method, and traffic feature information extraction program
A traffic characteristic information extracting device includes a memory, and processing circuitry coupled to the memory and configured to acquire traffic information satisfying a predetermined condition from network traffic data, extract characteristic information from the acquired traffic information, classify the traffic information based on the extracted characteristic information, analyze a classification result obtained at the classifying and generate signatures, and output a signature satisfying a predetermined condition among the generated signatures. |
US11811797B2 |
Machine learning methods and systems for developing security governance recommendations
Machine learning methods and systems for developing security governance recommendations are disclosed. An example method includes: accessing threat assessment knowledge data representative of security threats and threat patterns; accessing security solution knowledge data representative of security solutions; obtaining first security state data representing a current security state of a current computing environment; obtaining second security state data representing a future security state for a future secured-by-design computing environment; analyzing, using one or more first trained machine learning (ml) models, one or more of (i) the threat assessment knowledge data, (ii) the security solution knowledge data, (iii) the first security state data, or (iv) the second security state data to develop one or more aspects of a security governance recommendation for the future secured-by-design computing environment; and causing the one or more aspects of the security governance to be displayed on a computing device. |
US11811792B1 |
Systems and methods for preventing social engineering attacks using distributed fact checking
The disclosed computer-implemented method for preventing social engineering attacks using distributed fact checking may include (i) capturing one or more words or tones received by a party to a communication, (ii) extracting speech features associated with the words or tones to identify one or more alleged facts in the communication, (iii) generating one or more queries to verify the alleged facts in the communication, (iv) determining, utilizing distributed fact checking, whether the alleged facts are true based on the queries, and (v) performing a security action that generates an alert to protect against a potential social engineering attack on the receiving party when at least one of the alleged facts are determined to be false. Various other methods, systems, and computer-readable media are also disclosed. |
US11811790B2 |
Anti-phishing system
Provided is a system for blocking a phishing attack including a phishing attack prevention storage device, and an agent program which is installed in a user terminal or a service server and performs an interworking operation with the phishing attack prevention storage device when the user terminal or the service server is connected with the phishing attack prevention storage device via a network. According to the embodiment of the present invention, when there is an open request for the file stored in the phishing attack prevention storage device from the user terminal or the service server, the phishing attack prevention storage device may check a storage operation mode and create a fake file other than the open-requested original file when the storage operation mode corresponds to a list-only mode to return the fake file to the user terminal or the service server. |
US11811788B2 |
Method of threat detection in a computer network security system
A method comprising: receiving raw data related to one or more network nodes, wherein dissimilar data types are aligned as input events; filtering one or more of the input events by using an adjustable threshold that is based on a filtering score, wherein the filtering score is an estimate of the likelihood that the input event is followed by a security related detection; processing only input events passed through the filtering by an enrichment process; and analysing the data received from the enrichment process for generating a security related decision. |
US11811785B2 |
Real-time scanning of IP addresses
Examples of the present disclosure describe systems and methods of providing real-time scanning of IP addresses. In aspects, input may be received by a real-time IP scanning system. The system may generate one or more work orders based on the input. A scanner associated with the system may access a work order and attempt to communicate with one or more devices identified by the work order. If the attempted communication with a device is successful, a protocol analyzer may be used to provide a predefined payload to the device. If the response from the device matches an expected string, the device may be determined to be a safe and/or legitimate device. If the response from the device does not match an expected string, the device may be determined to be a malicious device. |
US11811780B2 |
Behavior-based authentication
Methods and systems for authenticating users based on user application activities are described herein. One or more questions and one or more answers may be generated and stored based on a history of user application activities associated with a user. The one or more questions and one or more answers may be generated randomly, and may relate to one or more other users. A request for access to a service may be received. Based on the request, a question associated with the history of user application activity may be selected and presented to the user. A candidate answer may be received from the user, and the user may be authenticated based on comparing the candidate answer to an answer associated with the question presented. |
US11811778B2 |
System and method for security management of a plurality of invalid interactions
An apparatus for security management of a plurality of interactions comprises a processor operable to receive a plurality of interactions, where each interaction comprises interaction information associated with one of one or more users and a first entity. The processor is operable to determine a threshold value of the plurality of interactions and a threshold volume of the plurality of interactions, determine that a value of each of the plurality of interactions has not exceeded the threshold value of the plurality of interactions, and determine that the plurality of interactions has not exceeded the threshold volume of the plurality of interactions. The processor is operable to determine a number of instances of the plurality of interactions that were invalid, determine that the number of instances of the plurality of interactions that were invalid exceeds a threshold, and determine that the first entity is associated with suspicious indicators. |
US11811777B2 |
Multi-factor authentication using confidant verification of user identity
In some implementations, a server device may receive, from a client device, a login credential associated with a user and a request to access a resource. The server device may identify a confidant associated with the user and a confidant device associated with the confidant, wherein the confidant device is different from a user device associated with the user. The server device may transmit, to the confidant device, a request to verify an identity of the user. The server device may determine whether a verification of the identity of the user is received from the confidant device. The server device may grant or deny access to the resource based on determining whether the verification of the identity of the user is received from the confidant device. |
US11811776B2 |
Accessing shared pariiiions on a storage drive of a remote device
Systems and methods are disclosed that enable shared partitions to be created on devices owned and operated by trusted persons (e.g., family or friends). The disclosed devices and methods provide for partitioning of stored devices and designating one or more of the partitions for sharing with other devices. Access to the shared partitions is managed using coded images thereby requiring the devices to be physically close to one another. Consequently, people sharing the storage partitions are required to meet in person to grant access, increasing the chances that the persons know and trust one another. |
US11811773B2 |
Providing access to content within a computing environment
A technique provides access to content within a computing environment. The technique involves identifying a network address to a resource which is currently blocked from being accessed via the network address due to operation of a content filter. The technique further involves, based on previously accessed content, modifying the operation of the content filter to unblock access to the resource via the network address. The technique further involves, after the operation of the content filter is modified to unblock access to the resource via the network address, permitting access to the resource via the network address. |
US11811771B2 |
NGAC graph evaluations
In implementations of NGAC graph evaluations, a computing device implements a next generation access control (NGAC) graph that includes user elements representing users, object elements representing resources, and multiple policy classes. Policy binding nodes can be modeled as user attributes in the NGAC graph for each of the multiple policy classes, and each policy binding node is assigned to a corresponding one of the multiple policy classes. A user element is assigned as a member of a policy binding node, and the policy binding node delineates at least one policy permission on an object element and grants the policy permission on the object element to the user element. The computing device implements a policy decision module to evaluate the NGAC graph with a graph evaluation procedure to determine graph analysis information relative to at least one of the user element, the granted policy permission, or the object element. |
US11811767B2 |
Streamlined secure deployment of cloud services
Techniques for streamlined secure deployment of cloud services in cloud computing environments are disclosed herein. In one embodiment, a method can include in response to receiving an instruction to deploy a cloud service in the cloud computing system, creating a deployment subscription to resources in the cloud computing system, the deployment subscription being owned by the deployment service and instantiating one or more computing resources accessible by the deployment service in the cloud computing system in accordance with the created deployment subscription. The method also includes retrieving one or more components of an application corresponding to the cloud service based on a manifest with the instantiated one or more computing resources and installing the retrieved one or more components of the application in the cloud computing system in accordance with an installation sequence identified in the manifest. |
US11811765B1 |
Maximum device access restriction at authenticator level
A network device may receive a request to access a network from a client device. The network device may determine that the client device is authenticated based on a set of authentication credentials obtained for the client device. The network device may determine, based on the client device being authenticated, that a quantity of devices currently accessing the network using the set of authentication credentials is equal to a maximum quantity of devices permitted to access the network using the set of authentication credentials. The network device may deny the client device access to the network based on the quantity of devices being equal to the maximum quantity of device. |
US11811760B2 |
Sessionless validation of client connections while mitigating cookie hijack attacks
Described embodiments provide systems and methods for validating connections while mitigating cookie hijack attacks. A device intermediary between a client and a server can receive a request from the client to establish a connection. The device may send a cookie to the client, the cookie generated according to a connection identifier and a shared counter. The device may receive a response from the client that includes a client validation cookie for validating the request. The client validation cookie may be generated according to the cookie. The device may determine a candidate validation cookie according to a value of a counter range of the shared counter, that matches the client validation cookie. The device may validate the request responsive to the determination. |
US11811759B2 |
Information processing system
An information processing system includes an information processing apparatus having a first function, and a server apparatus being configured to communicate with the information processing apparatus via a communication network. The information processing apparatus includes an operation control apparatus being configured to control the first function. The server apparatus transmits operation permission information indicating operation permission for the first function to the information processing apparatus, in response to satisfaction of a predetermined condition related to the information processing apparatus. The operation control apparatus activates the first function, in response to the operation permission information received by the information processing apparatus. |
US11811757B1 |
Authentication as a service
In accordance with at least some aspects of the present disclosure, an illustrative method for authenticating a user is disclosed. A plurality of biometric modalities are displayed for authenticating the user. A selection of one or more of the biometric authentication modalities may be received. User authentication data may be received for each of the one or more selected authentication modalities. The user authentication data may be compared with previously-determined biometric data. An authentication score may be determined based on the comparison of the user authentication data with the previously-determined biometric data. A determination may be made whether to authenticate the user based on the authentication score. |
US11811755B2 |
Dynamic secure keyboard resource obtaining interface definitions for secure ad-hoc control of a target device in a secure peer-to-peer data network
A secure executable container executed by an endpoint device establishes a two-way trusted relationship in a secure peer-to-peer data network with a user entity, generates an endpoint identifier for the endpoint device in the secure peer-to-peer data network, and associates the endpoint device with a federation identifier identifying the user entity in the secure peer-to-peer data network. The secure executable container also: establishes a two-way trusted relationship between the endpoint device and a target network device; securely obtains, via the secure peer-to-peer data network, a user interface element definition describing a user interface element executable by the target network device; and supplies the user interface element definition to a secure keyboard resource executed in the endpoint device, causing the secure keyboard resource to generate a local representation of the user interface element for control of the target network device via the secure keyboard resource. |
US11811752B1 |
Systems, methods, and computing platforms for executing credential-less network-based communication exchanges
Various embodiments of the present disclosure provide techniques for facilitating a credential-less exchange over a network using a plurality of identifier mapping and member interfaces. The techniques may include initiating the presentation of an enrollment user interface via a client device of a user and receiving selection data indicative of a selection of a service provider instrument from the enrollment user interface. The techniques include generating a matching code for authenticating the user, providing the matching code to a service provider platform, and receiving the matching code from a partner platform. In response to an authentication of the user based on the matching code, the techniques may include generating an UUEK for the user that may be used to replace persistent credentials. |
US11811749B2 |
Authentication of plugins in a virtualized computing environment
Plugins are authenticated for purposes of accessing and using application program interfaces (APIs) of a management service of a virtualized computing environment. In an authentication process, each plugin is associated with a session ticket that is unique to the plugin. The session ticket may be in the form of a single-use token that has a finite duration, and which may be used by the plugin to establish a session with the APIs of the management service. Because of the single-use and finite duration constraints of the token, the plugin is unable to use the token for other sessions and other plugins are also unable to use the same token to conduct their own sessions with the management service. |
US11811747B2 |
Methods, systems, and computer readable media for delegated authorization at service communication proxy (SCP)
A method for delegated authorization at a service communications proxy (SCP) includes intercepting, from a consumer network function (NF) that does not support access token based authorization, a service based interface (SBI) request. The method further includes operating as an access token authorization client to obtain a first access token on behalf of the consumer NF. The method further includes using the first access token to enable the consumer NF to access the service provided by a first producer NF that requires access-token-based authorization. The SCP may also function as an access token authorization server on behalf of an NRF that does not support access-token-based authorization. |
US11811745B1 |
System and method for receiving information among computer systems without enabling log ins if the user identifiers are compromised
A system and method allows a matching system to mediate requests for information among different computer systems without storing information that can be used to log into those computer systems. |
US11811743B2 |
Online service store for endpoints
An online service store to configure services for endpoints in connection with validating authenticity of the endpoints. For example, a service can be ordered for an endpoint prior to the use of the endpoint. After receiving a request having identity data generated by a memory device configured in the endpoint, a server system can determine, based on a secret of the memory device and other data stored about the endpoint, the validity of the identity data and thus the authenticity of the endpoint. Based on the service ordered for the endpoint, the server system causes the endpoint to be connected to a client server to receive the service. The server system can cause the firmware of the endpoint to be updated to enable the endpoint to receive the service from the client server. |
US11811741B2 |
Information processing system and information processing method
A first terminal holds first encrypted data encrypted by using a first key by a first encryption scheme having deterministic and commutativity, a second terminal holds second encrypted data encrypted by using a second key by the first encryption scheme, the first terminal transmits the first encrypted data to the second terminal, the second terminal transmits the second encrypted data to the first terminal, the first terminal generates third encrypted data by encrypting the second encrypted data by using the first key by the first encryption scheme, the third encrypted data is transmitted to the second terminal, the second terminal decrypts the third encrypted data with the second key, and calculates a common part between the second encrypted data and the decrypted third encrypted data, and transmits the common part to the first terminal, and the first terminal decrypts the common part with the first key. |
US11811736B2 |
Generating network infastructure firewalls
Systems, methods, and storage media useful in a computing platform to automatically generate and deploy access control list (ACL) rules for one or more firewalls in a data center are provided. The computing platform is vendor-agnostic and generates ACL rules in multiple syntaxes depending on the firewall needing updating. The platform traverses a data center mapping structure to identify one or more firewalls to be updated for a destination IP address and source IP address and automatically generates the ACL rule in the syntax for the one or more firewalls identified. |
US11811735B2 |
Use of stateless marking to speed up stateful firewall rule processing
A novel method for stateful packet classification that uses hardware resources for performing stateless lookups and software resources for performing stateful connection flow handshaking is provided. To classify an incoming packet from a network, some embodiments perform stateless look up operations for the incoming packet in hardware and forward the result of the stateless look up to the software. The software in turn uses the result of the stateless look up to perform the stateful connection flow handshaking and to determine the result of the stateful packet classification. |
US11811734B2 |
Protocol switching for connections to zero-trust proxy
An HTTP connection between a client computing device and an application is established through a reverse proxy. A response to the client computing device includes a payload instructing initiation of a non-HTTP connection (e.g., TCP, UDP). The response is modified to replace references to an original port with a dynamic port allocated to the non-HTTP connection and a temporary ACL entry is created. A subsequent connection request addressed to the dynamic port is authorized per the ACL, modified to replace the dynamic port with the original port, and forwarded to the application. Subsequent packets for the non-HTTP connection have port numbers translated between the original and dynamic ports. |
US11811731B2 |
Packet classification for network routing
Techniques for packet classification for network routing are disclosed. In some embodiments, packet classification for network routing includes receiving packets associated with a new flow at a security controller from a network device, in which the network device performs packet forwarding; classifying the flow; and determining an action for the flow based on a policy (e.g., a security policy). In some embodiments, the network device is a Software Defined Network (SDN) network device (e.g., a packet forwarding device that supports the OpenFlow protocol or another protocol). |
US11811730B1 |
Determining domain name system forwarding rules in a multi-cloud environment
An example method for determining domain name system (DNS) forwarding rules is provided. The method includes training a machine learning model to generate recommended DNS forwarding rules and determine whether a DNS resolver is experiencing an DNS resolver issue. The method further includes receiving a DNS query at the DNS resolver which is one of a plurality of DNS resolvers forming a network of DNS resolvers. The method further includes identifying a chain of DNS resolvers of the network of DNS resolvers based at least in part on the DNS query and a DNS response to the DNS query. The method further includes analyzing the DNS query and the DNS response using the machine learning model to generate a DNS forwarding rule and to identify whether any of the DNS resolvers of the network of DNS resolvers is experiencing the DNS resolver issue. |
US11811724B2 |
Method and system for resolving UNI port information on an external SOC/switch based on a mac-table cache
The present invention provides a method of using a mac-table cache to resolve UNI port information on an external system of chip (SOC) is provide. The method comprises, receiving, by a packet processing chip, a packet with a source address (SA); locating, by the packet processing chip, the SA in a mac-table cache implemented on the packet processing chip; and looking up a SOC mac-table implemented on the external SOC if the SA cannot be found in the mac-table cache. |
US11811717B2 |
User preference based message filtering in group messaging
A group message in a messaging group is received. A topic of the group message is determined. One or more recipients of the group message based on the topic of the group message is determined. The recipient is a member of the messaging group. The group message to the determined one or more recipients is transferred. |
US11811716B1 |
Final message composition for sidebar communication threads
Disclosed in some examples are methods, systems, devices, and machine-readable mediums which provide for sidebar communication threads forked from, or related to, a principal thread. Messages in the sidebar communication thread may include a history of the principal thread, including one or more messages from the principal thread, and may include a proposed principal thread message that is the subject of the sidebar thread discussion. The sidebar thread may also include sidebar thread messages that carries the conversation of the sidebar thread participants. Once a termination condition is reached for the sidebar thread, the sidebar thread terminates and either the proposed principal thread message (as potentially modified by participants of the sidebar thread) becomes an accepted principal thread message and it is posted to the principal thread as if it was sent by the sidebar initiator or no message is posted (e.g., the proposed principal thread message is rejected). The message that is posted may not include any sidebar thread content. |
US11811715B2 |
Systems and methods for dynamically associating thread labels with messages in a mobile environment
Systems and methods are provided for associating thread labels with select messages in a mobile messaging conversation environment, either before or after the messages have been sent, and providing intelligent dynamic presentations of such select messages based on the thread label(s) associated therewith. |
US11811712B2 |
Conversational natural language interfaces for data analysis
A computer system receives from a messaging system a first input commencing an analytic conversation between the computer system and an electronic device. The messaging system is communicatively connected with the electronic device and executes a messaging application on the electronic device. The computer system identifies a data source corresponding to the analytic conversation. The computing system receives from the messaging system a second input specifying a natural language command related to the data source. The computer system generates an interpretation corresponding to the natural language command and queries the data source according to the interpretation. The computer system generates a first data visualization using a first subset of data fields from the data source and sends a first representation of the first data visualization to the messaging system, for display on the electronic device. |
US11811708B2 |
Systems and methods for generating dynamic conversational responses using cluster-level collaborative filtering matrices
Methods and systems disclosed herein collect user data in real-time and organize them (e.g., using a collaborative filtering matrix) into groups (e.g., cluster assignments). The system then determines statistical distributions of observed real-time intents (e.g., based on actual selections made by users) for each group. The system then merges this distribution with existing model predictions (e.g., a model trained on historical training data) to balance between historical and dynamically updated information. |
US11811706B2 |
Bandwidth part inactivity timer
A base station may transmit, to a wireless device, first downlink control information (DCI) via a physical downlink control channel (PDCCH) of an active bandwidth part (BWP), of the wireless device, during a discontinuous reception (DRX) active time. The base station may switch to a first downlink BWP as the active BWP during the DRX active time. The base station may start, in response to the switching, a BWP inactivity timer of the first downlink BWP. The base station may transmit a second DCI via a PDCCH of the first downlink BWP. The base station may receive a packet via a transmission interval of periodic resources indicated by a configured grant. The base station may restart the BWP inactivity timer at a time based on the transmission interval. The base station may switch, in response to an expiration of the BWP inactivity timer, to a second downlink BWP as the active BWP during the DRX active time. The base station may transmit a third DCI via a PDCCH of the second downlink BWP. |
US11811702B2 |
System and method for flexible channel state information-reference signal transmission
System and method for flexible channel state information-reference signal transmission A method by a wireless device is provided for restricting channel state information (CSI) measurement. The method includes receiving, from a network node, information identifying a first subset of channel state information-reference signal (CSI-RS) resources to be used in performing CSI measurements. The first subset of CSI-RS resources are associated with a first portion of a frequency band that is less than all of the frequency band. CSI measurements are performed in the first subset of CSI-RS resources that are associated with the first portion of the frequency band. |
US11811698B2 |
Method and apparatus for reducing uplink overhead in mobile communications
Various solutions for reducing uplink overhead with respect to user equipment and network apparatus in mobile communications are described. An apparatus may monitor a downlink channel. The apparatus may determining whether downlink control information (DCI) is received on the downlink channel. The apparatus may skip a hybrid automatic repeat request-acknowledgement (HARQ-ACK) feedback transmission on an uplink channel in an event that no DCI is received on the downlink channel. |
US11811697B2 |
Method and apparatus for sequence distributing and sequence processing in communication system
A sequence distributing and sequence processing method and apparatus in a communication system are provided. The sequence distributing method includes the following steps: generating sequence groups including a number of sequences, the sequences in the sequence groups are determined according to the sequence time frequency resource occupation manner which is supported by the system; distributing the sequence groups to cells. The method avoids the phenomenon that signaling transmission is needed to distribute the sequences to the cells for different time frequency resource occupation manner, and saves in so far as possible the wireless network transmission resource occupied during the process of distributing the sequences through distributing the sequence groups comprising a number of sequences to the cells. |
US11811693B2 |
Method and apparatus for configuring and signalling PTRS in a telecommunication system
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). Disclosed is a method of defining a resource block or resource element offset for mapping PTRS to a symbol, wherein the offset is determined based on an identifier of a particular user equipment, UE. |
US11811691B1 |
Selective transmission reception point (TRP)-based communications for multicast and broadcast services
A system, method and apparatus for wireless communications is provided. A user equipment (UE) receives control information including first configuration parameters and second configuration parameters. The first configuration parameters are associated with a plurality of sets of reference signals associated with one or more transmission reception points (TRP)s and a transmission configuration indication (TCI) state. The second configuration parameters for reference signal measurements and reports for identified sets of reference signals. The UE transmits a measurement report based on the second configuration parameters and one or more identified sets of reference signals of the plurality of sets of reference signals. The UE receives scheduling information indicating a first TCI state associated with one or more identified TRPs of the plurality of TRPs of the network node. The scheduling information is based, at least in part, on a plurality of received measurement reports transmitted by a plurality of UEs. |
US11811683B1 |
VLSI layouts of fully connected generalized and pyramid networks with locality exploitation
VLSI layouts of generalized multi-stage and pyramid networks for broadcast, unicast and multicast connections are presented using only horizontal and vertical links with spacial locality exploitation. The VLSI layouts employ shuffle exchange links where outlet links of cross links from switches in a stage in one sub-integrated circuit block are connected to inlet links of switches in the succeeding stage in another sub-integrated circuit block so that said cross links are either vertical links or horizontal and vice versa. Furthermore the shuffle exchange links are employed between different sub-integrated circuit blocks so that spatially nearer sub-integrated circuit blocks are connected with shorter links compared to the shuffle exchange links between spatially farther sub-integrated circuit blocks. In one embodiment the sub-integrated circuit blocks are arranged in a hypercube arrangement in a two-dimensional plane. The VLSI layouts exploit the benefits of significantly lower cross points, lower signal latency, lower power and full connectivity with significantly fast compilation.The VLSI layouts with spacial locality exploitation presented are applicable to generalized multi-stage and pyramid networks, generalized folded multi-stage and pyramid networks, generalized butterfly fat tree and pyramid networks, generalized multi-link multi-stage and pyramid networks, generalized folded multi-link multi-stage and pyramid networks, generalized multi-link butterfly fat tree and pyramid networks, generalized hypercube networks, and generalized cube connected cycles networks for speedup of s≥1. The embodiments of VLSI layouts are useful in wide target applications such as FPGAs, CPLDs, pSoCs, ASIC placement and route tools, networking applications, parallel & distributed computing, and reconfigurable computing. |
US11811680B2 |
Provisioning network services in a software defined data center
A novel method for dynamic network service allocation that maps generic services into specific configurations of service resources in a network is provided. An application that is assigned to be performed by computing resources in the network is associated with a set of generic services, and the method maps the set of generic services to the service resources based on the assignment of the application to the computing resources. The mapping of generic services is further based on a level of service that is chosen for the application, where the set of generic services are mapped to different sets of network resources according to different levels of services. |
US11811673B1 |
Network path selection for routing data
Apparatus and methods concerning routing of data in a network disclosed. In an example embodiment, an apparatus includes a network interface circuit connected to a network via a plurality of network paths. A circuit arrangement is connected to the network interface circuit and is configured to provide the one or more services for endpoints in the network by 1) communicating data with the endpoints via the network interface, 2) estimating respective qualities of service provided to the endpoints by each of the plurality of network paths, 3) selecting a subset of the plurality of network paths for routing data from the endpoints to the apparatus, and 4) prompting one or more nodes in the network to route data to the apparatus using the selected subset of the plurality of network paths. Paths may be selected for example, to address one or more quality metrics, security/compliance, and/or balance server load. |
US11811671B2 |
Techniques for reducing a feedback time for communications over multiple wireless connections
Methods, systems, and devices for wireless communication are described to support entering a fast-negative acknowledgement (NACK) mode. A user equipment (UE) may enter a fast-NACK mode and may decrease a value of a respective timer for one or more wireless connections (e.g., may override the timer independently for each connection). The timer may be referred to as a retransmission request time duration. If configured with two or more component carriers (CCs), the UE may determine a value of the timer based on a location of a data hole within the two or more CCs. Based on entering the fast-NACK mode, the UE may override a configured timer for the respective wireless connection with a new, shorter timer. Based on expiration of the new timer, the UE may transmit an RLC NACK to a base station via the corresponding wireless connection. |
US11811670B2 |
Packet delay parameter obtaining method, system, and apparatus
A packet delay parameter obtaining method, apparatus, and system are provided. The method provides a session management network element determines whether a first QoS flow satisfying a parameter condition exists, where the first parameter indicates information corresponding to a PSA UPF transmitting the first QoS flow, the first parameter indicating information corresponding to a PSA UPF transmitting the first service flow. If no first QoS flow satisfying the parameter condition exists, a second QoS flow for the first service flow is established, and the session management network element sends a first message to an access network element, the first message including identification information of the second QoS flow and a packet delay parameter corresponding to the second QoS flow. |
US11811669B2 |
Inspecting operations of a machine to detect elephant flows
Some embodiments provide a system that detects whether a data flow is an elephant flow; and if so, the system treats it differently than a mouse flow. The system of some embodiments detects an elephant flow by examining, among other items, the operations of a machine. In detecting, the system identifies an initiation of a new data flow associated with the machine. The new data flow can be an outbound data flow or an inbound data flow. The system then determines, based on the amount of data being sent or received, if the data flow is an elephant flow. The system of some embodiments identifies the initiation of a new data flow by intercepting a socket call or request to transfer a file. |
US11811667B2 |
Prediction apparatus, prediction method and program
A prediction apparatus includes, a first calculation unit configured to calculate, for traffic in a past time period between a plurality of users and a plurality of services, statistics of the traffic in units of combinations of the users, the services, and time zones, an extraction unit configured to extract, based on the statistics, a plurality of patterns from the traffic, a classification unit configured to classify, by pattern, at least one of each user or each service into groups, a second calculation unit configured to calculate, based on the classification result from the classification unit and the statistics, per-time-zone statistics for each group, and a third calculation unit configured to apply a prediction technique to the per-time-zone statistics for each group, to calculate, for each group, a prediction value of the statistics for a time period later than the past time period, resulting improved accuracy of traffic prediction. |
US11811664B2 |
Visualizing network traffic plans based on egress peer engineering
A traffic planning platform may receive information related to a traffic flow including a traffic bandwidth to transport through a network with various network devices interconnected by links. The traffic planning platform may generate a traffic plan by assigning the traffic flow to a set of the links that includes network resources connecting a source of the traffic flow to a destination of the traffic flow. The traffic planning platform may render a visualization of the traffic plan, wherein the visualization includes a user interface (e.g., a diagram, an animation, and/or the like) in which geometric shapes that represent the source, the peer link, and the destination are connected by bands that represent the tunnel and the external route and further in which the geometric shapes and the bands each have a first visual property and a second visual property based on the traffic bandwidth of the traffic flow. |
US11811663B2 |
Network traffic load balancing
In one embodiment, a load balancing method may comprise: assigning a plurality of packets of a flow to a plurality of segments according to a segmentation criterion, each segment including one or more packets of said plurality of packets, and at least one of the plurality of segments including more than one packet of the plurality of packets; tagging each packet of the plurality of packets with a segment sequence identifier to indicate to which segment the packet is assigned; and arranging the plurality of packets for transmission via an interconnect so that all packets belonging to a same segment will be transmitted via a same path. |
US11811661B2 |
Call admission control and preemption control over a secure tactical network
In a secure network where the network characteristics are not known, a call admission control algorithm and a preemption control algorithm based on a destination node informing the source node of the observed carried traffic are used to regulate the amount of traffic that needs to be preempted by the source. The amount of traffic that needs to be preempted is based on the carried traffic measured at the destination node. The traffic to be preempted is based on the priority of the traffic, where the lowest priority traffic is the first to be preempted until the amount of traffic preempted is sufficient to allow the remaining traffic to pass through the network without congestion. |
US11811655B2 |
Supporting overlay networks for multiple autonomous systems and underlays
A network management method includes a controller receiving an underlay network identifier and a network segment identifier. The underlay network identifier and network segment identifier can be associated with entries in a forwarding information base and border gateway protocol speakers may be deployed in association with the entries. A virtual network can be associated with the underlay network and network traffic can be forwarded to the virtual network according to the entries. |
US11811651B2 |
Apparatus, system, and method for steering traffic over network slices
A disclosed method may include (1) receiving, at a network node within a network, a packet from another network node within the network, (2) identifying, within the packet, a slice label that indicates a network slice that has been logically partitioned on the network, (3) determining a QoS policy that corresponds to the network slice indicated by the slice label, (4) applying the QoS policy to the packet, and then upon applying the QoS policy to the packet, (5) forwarding the packet to an additional network node within the network. Various other apparatuses, systems, and methods are also disclosed. |
US11811648B2 |
Distributed sub-controller permission for control of data-traffic flow within software-defined networking (SDN) mesh network
Techniques for distributed sub-controller permission for control of data-traffic flow within software-defined networking (SDN) mesh networks to limit control plane traffic of the network are described herein. A technique described herein includes a network node of a data-traffic path of an SDN mesh network obtaining SDN sub-controller permission from a border controller of the SDN mesh network. Further, the technique includes suppression of data traffic from sibling and children nodes of data-traffic path allied nodes to the data-traffic path allied nodes. The data-traffic path allied nodes include network nodes that are part of the data-traffic path of the SDN mesh network. Further still, the technique includes the transmission of data across the data-traffic path. |
US11811640B1 |
Method and system for modifying a communication network
A method for modifying a communication network includes: making a first determination, using monitored data, that scaling is required; in response to the first determination, executing an emulation using a modified network slice and the monitored data to generate an emulated response time, in which the monitored data comprises at least a request, a response to the request, and a corresponding response time for the request, in which the monitored data is analyzed to generate the modified network slice; making, based on the emulated response time, a second determination to implement the modified network slice; and initiating modification of the communication network using the modified network slice. |
US11811637B1 |
Packet timestamp format manipulation
To support different timestamp formats, for example, for different network protocols, an integrated circuit device is provided with a memory that is programmed with multiple instruction sets associated with multiple timestamp formats. Each of the instruction sets contains instructions to generate a timestamp according to a corresponding timestamp format. A compute circuit can generate a formatted timestamp by using a base timestamp input and executing an instruction set selected from the multiple instruction sets stored in the memory. |
US11811628B2 |
Systems and methods to collect and store network traffic statistics of IP destinations in time-series format
Disclosed embodiments include a system for displaying access market network device network traffic statistics for active Internet Protocol (IP) destinations. The system includes a network device having a connection tracker module that maintains connection-based traffic flows in a packet forwarding path, and a flowstats module that receives data for connection-based traffic flows from the connection tracker module and communicates with an analysis module to generate a table of network traffic statistics for active IP destinations. |
US11811624B2 |
Edge device linking system, edge device linking method, and recording medium
An adapter device includes a device information manager to manage device information with respect to an electrical device, and a service provider to manage service information and provide the service based on service information. The service information indicates content of the service and includes action information indicating an operation of an electrical device and event information indicating a condition for executing the operation indicated by the action information. An adapter device includes a controller to control the operation of the electrical device. Upon determining that the device information with respect to the electrical device satisfies the condition indicated by the event information, the service provider causes the controller to control the electrical device to perform the operation indicated by the action information. |
US11811623B2 |
Deep tracing of user experience
Techniques for deep tracing of one or more users via a cloud-based system include receiving a request from an administrator to actively troubleshoot a user; causing a user device associated with the user to create a deep tracing session based on the request; assisting the user device in performing one or more traces of a plurality of traces to a destination; receiving results from any of the plurality of traces and results from metrics collected at the user device; and displaying a network map between the user device and the destination. |
US11811622B2 |
Cross sub-domain management of service level objectives
Aggregation of cross domain service level indications provide an estimate of available end to end error budget within a service chain of a network system. In some embodiments, service level indications are obtained from a plurality of sub-domains, and aggregated to determine an end to end reliability score. The end to end reliability score is then distributed one or more of the sub-domains. The sub-domains then consider whether to implement a change based on local service level indications as well as the end to end reliability score. In other embodiments, a sub-domain requests approval to implement a change from an error manager. The error manager consults the end to end reliability score to determine whether adequate margin exists in the service chain to allow the change to occur, while still meeting service level objectives of the service chain. The error manager conditionally approves the request based on the determination. |
US11811621B2 |
System and method for quality of experience management through the allocation of bandwidth per service category
A system and method for Quality of Experience (QoE) management on a network. The method including: determining a set of service categories for an operator's traffic, wherein at least one of the service categories is video streaming; mapping a plurality of traffic flows to each of the service categories; determining a target and minimum intent for each of the service categories; measuring a score and bandwidth use for each of the service category; determining whether each of the service categories are reaching an associated minimum bandwidth intent; if the minimum bandwidth intent is not being reached for at least one service category, adjusting the minimum intent for at least one of the service categories; allocating a bandwidth per service category based on the adjusted minimum intent; and shaping the traffic flow to the allocated bandwidth; otherwise allowing the traffic flow to continue with a current bandwidth allocation. |
US11811620B2 |
Systems and methods for network analytics service automation
A method may include identifying service requirements associated with a network service, identifying at least one analytics component to monitor the network service and identifying network functions to implement the network service. The method may also include deploying the network functions to monitor the network service, deploying the at least one analytics component and obtaining data associated with monitoring the network service. The method may further include forwarding, by the network functions, the data to the at least one analytics component and determining, by the least one analytics component, whether to take a control action with respect to the network service. |
US11811617B2 |
Systems and methods for communication flow modeling
Disclosed communication flow modeling solution is significantly streamlined in a user friendly way to shield users from the technical complexities usually required. At design time, an orchestration flow modeling application receives user instruction to open or create a communication flow modeling project. Per configuration specific to an enterprise associated with the user, a custom drag-and-drop communication flow modeling environment with a canvas and modeling entities is provided. Responsive to the user dragging and dropping a set of modeling entities from the menu onto the communication flow modeling canvas and drawing connections between them, the orchestration flow modeling application logically connects the modeling entities to form a valid communication flow and stores it in a database. The communication flow undergoes an approval process. Once approved, it is activated for execution by an orchestration server. The orchestration server automatically orchestrates services needed by the communication flow at runtime without user programming. |
US11811614B2 |
Assigning routing paths based on interior gateway protocol metric optimization
Methods, systems, and apparatus, including computer-readable storage media, optimizing interior gateway protocol (IGP) metrics using reinforcement learning (RL) for a network domain. The system can receive a topology (G) of a network domain, a set of flows (F), and an objective function. The system can optimize, using reinforcement learning, the objective function based on the received topology and the one or more flows F. The system can determine updated IGP metrics based on the optimization of the objective function. The IGP metrics for the metric domain may be updated with the updated IGP metrics. |
US11811613B2 |
Method and apparatus for automated spanning-tree loop detection in networks
Systems, methods, and computer-readable media for identifying a spanning tree loop in a network environment. Spanning tree loop indicators occurring in a network environment that utilizes a spanning tree protocol are identified. The spanning tree loop indicators are correlated to identify correlated spanning tree loop indicators within the network environment. A potential spanning tree loop is recognized from a plurality of the correlated spanning tree loop indicators based on indicator types of the correlated spanning tree loop indicators. The potential spanning tree loop is remedied in the network environment in response to recognizing the potential spanning tree loop in the network environment. |
US11811607B2 |
Methods and systems for network device name management
Embodiments of a device and method are disclosed. In an embodiment, a method of network device name management involves at a cloud server, determining a device name of a network device to be deployed at a customer site based on site survey result information of the customer site, at the cloud server, receiving network device information of the network device after the network device is deployed at the customer site, and at the cloud server, associating the device name of the network device with the network device information of the network device. |
US11811605B2 |
Packet data unit (PDU) structure for supporting distributed relay control protocol (DRCP)
A method supporting distributed resilient network interconnect (DRNI) in a link aggregation group at a network device is disclosed. The method starts with encapsulating a distributed relay control protocol data unit (DRCPDU) in a frame, wherein the DRCPDU includes a protocol data unit (PDU) structure. The PDU structure includes a type field indicating that the DRCPDU is for DRCP, a version field indicating a version number of the DRCP, and a set of type/length/values (TLVs) including: a terminator TLV indicating an end of the PDU structure, a portal information TLV indicating characteristics of the first portal, a portal configuration information TLV indicating configuration information of the first portal, a DRCP state TLV indicating variables associated with an intra-portal link (IPP), a home ports information TLV and a neighbor ports information TLV. The method continues with transmitting the frame encapsulating the DRCPDU from the network device to a neighbor network device. |
US11811604B2 |
Cross-platform contract validation
A method and apparatus for performing cross-platform contract validation are described. In one embodiment, the method for validating compatibility between first and second endpoints, the method comprising: accessing a memory storing a machine-readable contract specifying a request-response pair in a file, the request-response pair consisting of an expected request that the second endpoint expects to receive from the first endpoint and an expected response that should be provided by the second endpoint according to the expected request from the first endpoint; and performing multi-platform contract validation by performing independent tests for the first and second endpoints, using the expected request and expected response specified in the machine-readable contract. |
US11811602B2 |
System, apparatus, and media for changing state of an Internet of Things (IoT) device
Systems, methods, and apparatus are disclosed that process requested changes to operating parameters of an Internet of Things (IoT) device. In some embodiments, a client computing device originates a requested change to the IoT device. An IoT services system may process the requested change and determine whether an early indication of success is appropriate. If an early indication of success is appropriate, the IoT services system, prior to the requested change being applied to the IoT device, transmits to the client computing device a first message that provides an indication of success for the requested change. |
US11811600B2 |
Server for controlling network element in communication system and operating method therefor
The present disclosure relates to: a communication technique for merging IoT technology with a 5G communication system for supporting a higher data rate than a beyond 4G system; and a system therefor. The present disclosure can be applied to intelligent services (for example, smart homes, smart buildings, smart cities, smart cars or connected cars, healthcare, digital education, small businesses, security- and safety-related services, and the like) on the basis of 5G communication technology and IoT-related technology. A controller node is disclosed. The controller node comprises: a processor for generating a network element (NE) list on the basis of time zone information and threshold information obtained from a database (DB) node; and a communication interface for receiving a configuration information request message from a network element corresponding to the network element list and transmitting a configuration information response message to the network element in response to the configuration information request message. |
US11811595B2 |
Signaling IP path tunnels for traffic engineering
In general, techniques are described for signaling IP path tunnels for traffic engineering using constraints in an IP network. For example, network devices, e.g., routers, of an IP network may compute an IP path using constraint information and establish the IP path using, for example, Resource Reservation Protocol, to signal the IP path without using MPLS. As one example, the egress router generates a path reservation signaling message that includes an egress IP address that is assigned for use by the routers on the IP path to send traffic of the data flow by encapsulating the traffic with the egress IP address and forwarding toward the egress router. As each router in the IP path receives the path reservation signaling message, the router configures a forwarding state to forward traffic encapsulated with the egress IP address to a next hop along the IP path toward the egress router. |
US11811594B1 |
Managing cloud native zero configuration features of on premises resources
A disclosed method includes obtaining, by a cluster manager, first zero configuration information, from one or more unconfigured nodes of an information handling system cluster. A service on the cluster manager may then generate custom zero configuration information for each of the unconfigured nodes and stored the custom zero configuration information in a zero configuration management store. Each unconfigured node may then retrieve its custom zero configuration information from the zero configuration management store and modify one or more zero configuration parameters of the unconfigured node in accordance with the custom zero configuration information. Disclosed methods may determine zero configuration criteria for configuring a node and identify, based on the custom zero configuration information in the zero configuration management store, unconfigured nodes of the cluster matching the zero configuration criteria. A zero touch configuration of the identified nodes may then be performed. |
US11811593B2 |
Secure bi-directional network connectivity system between private networks
A secure private network connectivity system (SNCS) within a cloud service provider infrastructure (CSPI) is described that provides secure private network connectivity between external resources residing in a customer's on-premise environment and the customer's resources residing in the cloud. The SNCS provides secure private bi-directional network connectivity between external resources residing in a customer's external site representation and resources and services residing in the customer's VCN in the cloud without a user (e.g., an administrator) of the enterprise having to explicitly configure the external resources, advertise routes or set up site-to-site network connectivity. The SNCS provides a high performant, scalable, and highly available site-to-site network connection for processing network traffic between a customer's on-premise environment and the CSPI by implementing a robust infrastructure of network elements and computing nodes that are used to provide the secure site to site network connectivity. |
US11811590B2 |
Intelligent network
Systems and methods for providing services are disclosed. One aspect comprises determining a plurality of services to be provided over a first communication path to a destination, determining a select service of the plurality of services to be provided over a failover path to the destination, detecting a failure of the first communication path, and routing the select service over the failover path in response to the failure of the first communication path. |
US11811588B2 |
Configuration management and analytics in cellular networks
Apparatuses and methods for identifying network anomalies. A method includes determining a cumulative anomaly score over a predefined time range based on a subset of historical PM samples and determining an anomaly ratio of a first time window and a second time window, based on the cumulative anomaly score. The method also includes determining one or more anomaly events coinciding with CM parameter changes based on the anomaly ratio; collating the PM, alarm, and CM data into a combined data set based on matching fields and timestamps; generating a set of rules linking one or more CM parameter changes and the collated data to anomaly events; and generating root cause explanations for CM parameter changes that are linked to anomaly events. |
US11811585B2 |
Measuring incident management process efficiency metrics utilizing real-time conversation analysis
A tool for automatically generating incident management process efficiency metrics utilizing real-time communication analysis. The tool retrieves real-time conversation data from one or more communication sources, wherein the real-time conversation data includes one or more messages having data related to an information technology (IT) incident. The tool performs conversation analysis on the one or more messages. The tool determines one or more timestamps of interest for the IT incident from the one or more messages. The tool generates one or more incident management process efficiency metrics for the IT incident utilizing the one or more timestamps of interest. The tool predicts based, at least in part, on historical conversation data, an outcome for the IT incident. The tool sends the one or more incident management process efficiency metrics and the outcome for the IT incident to a user in a notification. |
US11811584B2 |
System and method for automatically identifying failure in services deployed by mobile network operators
A network monitoring system is provided that includes a processor and a memory coupled to the processor. A plurality of services provided by a network operator is identified. A plurality of Key Performance Indicators (KPIs) associated with the identified plurality of services is calculated on a per service basis. Individual services provided by the network operator are characterized based on the calculated plurality of KPIs. A root cause of service level failures for one or more of the plurality of services is identified, in response to determining that at least one of the characterized service levels does not meet predefined service level objectives for the one or more of the plurality of services. |
US11811583B1 |
Systems and methods for a framework for algorithmically identifying critical software systems and applications within an organization
Methods and systems generating real-time notifications of software application importance based on current processing requirements. The method includes receiving a first dataset, wherein the first dataset comprises recovery time estimates for processing requirements. The method includes receiving a second dataset, wherein the second dataset comprises second recovery time estimates for applications. The method includes receiving a third dataset, wherein the third dataset comprises dependencies between processing requirements and applications. The method determines many-to-many relationships between the processing requirements and applications based on the dependencies. The method inputs the many-to-many relationships into a machine learning model to identify importance metrics for each application. The method generates, for display on a user interface, a ranking of the applications in order of importance metric. |
US11811580B2 |
Encoding method, decoding method, and apparatus
This application provides an encoding method. The encoding method includes: first, splitting obtained to-be-encoded data into phase data and amplitude data according to a preset rule; then, obtaining a constellation diagram corresponding to the to-be-encoded data, where the constellation diagram includes a plurality of constellation points, the plurality of constellation points include a constellation point with an amplitude value of 0, each constellation point has a corresponding probability value, and the probability value indicates an occurrence probability of the corresponding constellation point; then, performing probabilistic constellation shaping encoding on the amplitude data based on the constellation diagram and the probability value corresponding to each constellation point, to obtain at least one group of symbol sequences; and then combining the at least one group of symbol sequences and the phase data, and then performing encoding, to obtain output data. |
US11811579B2 |
Recovery of corrupted 5G/6G messages by modulation quality
Message faults are inevitable in the high-throughput environment of 5G and planned 6G. Retransmissions are costly in time and resources, while generating extra backgrounds and interference. Therefore, methods are disclosed for recovering a faulted message by identifying and correcting each mis-demodulated message element. The faulted message elements generally have substantially lower modulation quality than the correctly demodulated elements, and can be identified by determining the modulation quality of each received message element. If the number of faulted message elements is small, the receiver may correct them using a grid search tested by an associated error-detection code. If the number of faults exceeds a predetermined threshold, the receiver can request a retransmission, and then assemble a merged copy of the message by selecting the message element with the best modulation quality from each version. Substantial time and resources may be saved, and reliable communication may be restored despite poor reception. |
US11811578B1 |
Frame synchronization detection with frequency estimation
A wireless device includes a receiver to receive a packet via one or more antennas. A frame synchronization detection circuit coupled to the receiver identifies a frame synchronization pattern within a portion of the packet. A correlation circuit coupled to the frame synchronization detection circuit computes, in response to the identifying of the frame synchronization pattern within the portion of the packet, a frequency offset using a correlation method. A frequency estimation correction circuit coupled to the correlation circuit determines, based on the frame synchronization pattern, a bias value, wherein the bias value corresponds to a data pattern within the frame synchronization pattern indicative of a frequency bias, and applies a correction to the frequency offset, wherein applying the correction to the frequency offset comprises modifying the frequency offset using the bias value. |
US11811576B2 |
Methods and devices for narrowband communications
A communication device including one or more processors configured to perform a radio measurement to obtain a reception metric; identify a potential power reduction from a plurality of power reductions; scale the reception metric to compensate for the potential power reduction to obtain a reduced reception metric; and select a transmit power or a transmit repetition count for a radio frequency transceiver based on the reduced reception metric. |
US11811574B2 |
Detection of in-band interference
A method is provided. In some examples, the method includes performing, by processing circuitry, a first transform operation on a first time-domain data set to generate a frequency-domain data set. In addition, the method includes determining, by the processing circuitry, that at least one portion of the frequency-domain data set satisfies a first threshold magnitude. The method also includes performing, by the processing circuitry, an inverse transform operation on the at least one portion of the frequency-domain data set to generate a second time-domain data set. The method further includes identifying, by the processing circuitry and based on the second time-domain data set, a region of interference in the first time-domain data set. |
US11811573B2 |
P matrices for EHT
Methods and apparatus are provided. In an example aspect, a method of transmitting a multicarrier symbol comprising a plurality of subcarriers simultaneously from a plurality of antennas is provided. Each subcarrier is associated with a respective orthogonal matrix. The method comprises transmitting the symbol from the plurality of antennas such that, for each antenna, the symbol transmitted from each subcarrier is multiplied by an element of a respective row of the matrix associated with the subcarrier, wherein the row is associated with the antenna. The matrices are selected such that from each antenna, the symbol transmitted from at least one subcarrier is multiplied by a non-zero element, and the symbol transmitted from at least one other subcarrier is multiplied by a zero element. |
US11811568B2 |
Front-end circuitry for a data receiver and related systems, methods, and devices
Front-end circuitry for a data receiver and related systems, methods, and devices are disclosed. The front-end circuitry includes a passive equalizer, which includes a signal input, an equalizer output including a first equalizer output and a second equalizer output, a first signal path, and a second signal path. The first signal path is between the signal input and the first equalizer output. The first signal path has a first frequency response. The second signal path is between the signal input and the second equalizer output. The second signal path has a second frequency response. The second frequency response exhibits substantially inverse behavior to that of the first frequency response. An amplifier circuit is configured to combine a first equalizer output signal from the first equalizer output with a second equalizer output signal from the second equalizer output to obtain an equalized output signal. |
US11811558B2 |
Cross-subscription multi-VNet homing
A network interface controller (NIC) associated with a virtual machine (VM) in a cloud computing network is configured to be flexibly attached and detached from a parent NIC to thereby enable the virtual machine to simultaneously be attached to multiple different virtual networks (VNets) and/or subnets that are associated with the same or different subscriptions. The inventive NIC, referred to herein as a flexibly extensible NIC (eNIC), enables a service provider to inject compute instances into an existing VNet using a multi-homing configuration in which the data plane uses a dedicated network interface to connect the customer's VNet, while another dedicated network interface provides management plane connectivity to the service provider. Such multi-VNet homing advantageously provides data plane isolation for the customer's VNet to comply with applicable security policies without disrupting management traffic between the injected resources and the service provider. |
US11811556B2 |
Methods and systems for network traffic management
Embodiments of a device and method are disclosed. In an embodiment, a method for network traffic management of a network deployed at a customer site involves establishing a wired traffic overlay tunnel between an access switch (AS) of the network deployed at the customer site and a head end (HE) of the network deployed at the customer site, establishing a wireless traffic overlay tunnel between a wireless access point (AP) of the network deployed at the customer site and the HE of the network deployed at the customer site, and conveying network traffic associated with a network device through the wired traffic overlay tunnel or the wireless traffic overlay tunnel based on whether the network device connects to the network through a wired link or connects to the network wirelessly. |
US11811552B2 |
Method and device for processing data associated with a message received via a communications system
A computer-implemented method for processing data, which are associated with at least one message received via a communications system, such as a bus system. The method includes: determining a first variable, which characterizes a transmitting time of the at least one message; evaluating the first variable with regard to at least one time frame of possible transmitting times of the at least one message. |
US11811545B2 |
Distributed multicast logical router
Some embodiments provide a method for configuring a set of MFEs to implement a distributed multicast logical router and multiple logical switches to process the multicast data messages. The method sends, from a managed forwarding element (MFE) implementing the distributed multicast logical router, a multicast group query to a set of data compute nodes (DCNs) that are logically connected to one of several logical switches and that execute on the same host machine as the managed forwarding element. The method receives multicast group reports from a subset of the set of DCNs and at least one of the multicast group reports specifies a multicast group of interest. The method distributes, to a set of MFEs executing on other host machines, a summarized multicast group report specifying a set of multicast groups of interest to the first MFE (i.e., multicast groups that the first MFE participates in). |
US11811537B2 |
Per-link redundancy version assignment for uplink relays
Methods, systems, and devices for wireless communications are described for a relay UE and a source UE to provide transmissions of uplink communications in a decode and forward procedure in which redundancy version (RV) identifications of each instance of a transmission or retransmission are associated with a particular link of the source UE or relay UE. A set of RV sequences may be configured, with the source UE using a first subset of the RV sequences, and the relay UE using a second subset of RV sequences that is non-overlapping with the first subset. A base station or destination UE that receives the transmissions from the source UE and relay UE may thus receive RVs in accordance with the set of RV sequences. |
US11811535B2 |
Method for uplink transmission in wireless communication system, and device therefor
According to one embodiment of the present invention, a method by which a terminal configured to have two or more processing times transmits a hybrid automatic repeat request-acknowledgment (HARQ-ACK) in a wireless communication system comprises the steps of: receiving, from a base station, a downlink control channel for indicating a downlink data channel, and the downlink data channel in one or more downlink subframes; and transmitting, to the base station, HARQ-ACK information on the downlink data channel in an uplink subframe corresponding to the one or more downlink subframes, wherein the HARQ-ACK information transmitted in the uplink subframe includes HARQ-ACK information on a downlink data channel in accordance with only one processing time among the two or more processing times, and cannot include HARQ-ACK information on a downlink data channel in accordance with the rest processing times. |
US11811532B2 |
Dynamically processing data in a vast data ingestion system
A method begins with a first group of computing devices of a plurality of computing devices of a storage network receiving data objects having a first data type identifier of a plurality of data type identifiers, where the plurality of data type identifiers correspond to a plurality of data types associated with the data objects. The method continues with the first group of computing devices interpreting the data objects having the first data type identifier to sort, based on sorting criteria the data objects into a first processing category and a second processing category. The method continues with the first group of computing devices error encoding the data objects in the second processing category based on short term storage error encoding parameters to produce pluralities of sets of encoded data slices and sending the pluralities of sets of encoded data slices to storage and execution units for storage therein. |
US11811530B2 |
Puncturing unit for sounding reference signal (SRS) comb patterns with cyclic shifting
Disclosed are techniques for wireless communication. In an aspect, a user equipment (UE) receives a sounding reference signal (SRS) resource configuration, the SRS resource configuration indicating at least a comb pattern for at least one SRS resource allocated to the UE and a puncturing unit for the comb pattern, wherein the comb pattern is divided into one or more puncturing units, wherein each puncturing unit comprises one or more time units of the comb pattern, and wherein each of the one or more time units comprises two or more symbols, and refrains from transmitting all SRS transmissions of the at least one SRS resource within a first puncturing unit of the one or more puncturing units based on a determination that one or more SRS transmissions of the at least one SRS resource within the first puncturing unit are to be dropped. |
US11811529B2 |
Rate-matching, puncturing, and power scaling uplink communications in full duplex mode
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may adjust a transmission parameter, associated with an uplink transmission from the UE, such that a phase for the uplink transmission is continuous across symbols of the uplink transmission. Adjusting the transmission parameter includes at least one of: rate-matching, puncturing, or power scaling one or more of the symbols within the uplink transmission, modifying at least one of a modulation and coding scheme or a power associated with a downlink transmission to the UE, or a combination thereof. The UE may further transmit, to a base station, the uplink transmission based at least in part on adjusting the transmission parameter. Numerous other aspects are provided. |
US11811525B2 |
Techniques for rate adaptation under congestion and latency constraints
The present disclosure provides techniques for rate adaptation under congestion and latency constraints. The approaches described herein focus on aspects of latency, reliability, and power consumption instead of the traditional aspect of throughput. In an example, a method for rate adaptation is disclosed. The method may include determining whether to transmit a new packet or a retry packet. The method may also include reducing a maximum rate for a rate search in response to determining to transmit the retry packet. The method may further include transmitting the retry packet based on the reduced maximum rate. |
US11811511B2 |
Method, apparatus, and system for communication between controllers in TSN
A method for communication between controllers in TSN. A first controller receives a first packet that is sent by a second controller and that includes an identifier of a TSN domain to which the second controller belongs. The first controller determines, based on the TSN domain identifier, that the first controller and the second controller belong to a same TSN domain. The first controller sends, to the second controller, a second packet that carries user information. According to the foregoing method, communication and exchange between the controllers may be implemented, so that the controllers cooperatively configure a network device in the TSN. |
US11811510B2 |
Scalable security information and event management (SIEM) framework
A framework for security information and event management (SIEM), the framework includes a first data store; a data router; one or more parsing mechanisms; one or more correlation machines; and one or more workflow engines, wherein said framework performs SIEM on behalf of multiple subscribers to said framework. |
US11811508B2 |
Method and device for transmitting reference signals
A method and device for transmitting reference signals are provided in the present disclosure, where the method for transmitting reference signals is performed by a user terminal and time-frequency resources for the user terminal are divided into multiple groups of time-frequency resources. The method includes: selecting a reference signal port for each group of time-frequency resources from candidate reference signal ports; and transmitting reference signals by using the reference signal port corresponding to each group of time-frequency resources. |
US11811505B2 |
Digital time processing using rational number filters
The Digital Time Processing using Rational Number Filters (DTP RNF) disclosed herein is contributing methods, systems and circuits for using a Precision Time Protocol (PTP) such as IEEE 1588 for distributing a master time secured by a master unit to slave units by utilizing slave clocks, synchronous to referencing frames communicated with PTP messages or compatible with them data receiver clocks, for maintaining a local slave time which is increased to a local master time by adding to it an estimate of a transmission delay derived by processing PTP messages or by other means, wherein such distribution of the master time includes filtering out phase noise of the timing referencing signals with the Rational Number Filters in order to produce accurate and stable timing implementing signals such as the slave clock, local slave time and local master time. |
US11811502B2 |
Timing system and a method for receiving clock information from a satellite system
An outdoor device of a timing system includes a receiver for receiving clock information from a satellite system, a processing system for running master functionality of a clock synchronization protocol to transfer the clock information to an indoor device of the timing system, and a transceiver for transferring data between the outdoor device and the indoor device. A memory device stores a fixed delay value estimating a time delay from a reception moment of a request message related to the clock synchronization protocol to a transmission moment of a reply message. There is no need to compute a difference between clock times corresponding to the reception moment and the transmission moment because the fixed delay value is used in lieu of the difference in the clock synchronization protocol. Thus, quality requirements related to an oscillator of the outdoor device can be mitigated. |
US11811499B1 |
Polarization-multiplexed self-homodyne analog coherent (PM-SH-ACD) architecture for optical communication links
A polarization-multiplexed self-homodyne analog coherent (PM-SH-ACD) architecture for optical communication links has a receiver section that polarization un-rotates a signal from a fiber optic cable into first and second polarized optical signals; recovers a polarization of the first and second optical signals based on a received polarization recovery signal that is based on a pilot signal measurement signal; demodulates the first optical signal into optical QPSK data and pilot tone signals; demodulates the second optical signal into an optical modulating laser light; splits the first and second optical signals into optical QPSK quadrature signals; converts the optical QPSK quadrature signals into electrical QPSK quadrature signals; detects a polarization of the pilot tone signal and outputs the pilot signal measurement signal polarization recovery signal based on the detected polarization. |
US11811497B2 |
Transmitting apparatus and mapping method thereof
A transmitting apparatus is disclosed. The transmitting apparatus includes an encoder to perform channel encoding with respect to bits and generate a codeword, an interleaver to interleave the codeword, and a modulator to map the interleaved codeword onto a non-uniform constellation according to a modulation scheme, and the constellation may include constellation points defined based on various tables according to the modulation scheme. |
US11811494B2 |
Systems for mitigating service interrupts in satellite systems
Embodiments disclosed herein relate generally to techniques for mitigating blockages associated with satellite systems. More specifically, techniques disclosed herein, describe solutions for minimizing service interruption during satellite handover. One or more blockages associated with one or more user terminals that connect to a satellite system may be determined by various means. Utilizing those blockages, handover times for the one or more user terminals may be determined such that service interrupts may be minimized. |
US11811492B2 |
Multi spoke beamforming for low power wide area satellite and terrestrial networks
Wireless communication method and apparatus to enable communications between a plurality of endpoints and a satellite or terrestrial gateway integrated with a plurality of oblong shaped antenna arrays. The wireless communication method leverages data symbols that are orthogonally modulated. The method permits the use of a plurality of compact oblong shaped antenna arrays to increase network capacity and reduce endpoint power consumption. |
US11811487B2 |
Handover of a mobile terminal in a multi-beam satellite based on network conditions
Methods and systems are described for providing satellite beam handover based on predicted network conditions. In embodiments, a satellite communications system retrieves flight plan data for a plurality of aircraft being provided a network access service, identifies, for each aircraft respective candidate satellite beams of the plurality of satellite beams for providing the network access service, each candidate satellite beam having an associated service timeframe for providing the network access service, obtains, for each of the respective candidate satellite beams, a beam utilization score indicative of predicted beam utilization by the plurality of aircraft over the associated service timeframe, selects satellite beams for providing the network access service of each aircraft of the plurality of aircraft based at least in part on the beam utilization scores, and schedules handover of the network access service for the plurality of aircraft to the selected satellite beams. |
US11811485B2 |
Enhanced internet of things relay data re-transmission
A method, an apparatus, and a non-transitory computer readable medium for receiving data and one or more redundant equivalent versions of the data from a remote user equipment (UE), buffering the data and the one or more redundant equivalent versions of the data, transmitting the data to a base station, receiving at least one negative acknowledgement, relating to the data, from the base station indicating an unsuccessful reception of the data; and transmitting, in response to receiving the at least one negative acknowledgement, at least one of the one or more redundant equivalent versions of the data to the base station. |
US11811484B2 |
Apparatuses and methods for multi-user transmissions
A user equipment (UE) determines a receive (RX) spatial filter for receiving both a first measurement resource and a second measurement resource. The RX spatial filter is determined based on a first spatial quasi-co-located (QCL) reference associated with the first measurement resource and a second spatial QCL reference associated with the second, measurement resource. The UE measures the first and second measurement resources with the determined Rx filter configuration. |
US11811473B2 |
Methods and apparatus for selecting an antenna
A device including a plurality of antennas may sense or receive data related to a magnetic field. A strength of the magnetic field may be determined. Based on the strength of the magnetic field, a location or orientation of the device may be determined. The location of the device may be used to select an antenna from the plurality of antennas for transmitting data from the device or receiving data at the device. If the location of the device is associated with historical performance data, the historical performance data may be used to select an antenna from the plurality of antennas. |
US11811471B2 |
Channel measurement method and communications apparatus
Example channel measurement methods and communications apparatus are described. One example method includes receiving a precoded reference signal by a terminal device, where the precoded reference signal is obtained by precoding a reference signal based on K angle vectors and L delay vectors. First indication information is generated and sent, where the first indication information indicates P weighting coefficients corresponding to P angle-delay pairs. The P weighting coefficients are determined by using the precoded reference signal. The P angle-delay pairs and the P weighting coefficients corresponding to the P angle-delay pairs are used to determine a precoding matrix. Each angle-delay pair includes one of the K angle vectors and one of the L delay vectors. The K angle vectors and the L delay vectors are determined based on uplink channel measurement. |
US11811468B2 |
Optimized multi-beam antenna array network with an extended radio frequency range
A system, in a radio frequency (RF) transmitter device, selects one or more reflector devices that comprises an active reflector device, along an optimized non-line-of-sight (NLOS) radio path based on a defined criteria. Further, the selected one or more reflector devices are controlled based on one or more conditions. The optimized NLOS radio path is determined from a plurality of NLOS radio paths. In an RF receiver device that communicates with the selected one or more reflector devices using the determined optimized NLOS path. The active reflector device comprises at least a first antenna array and a second antenna array. The first antenna array transmits a first set of beams of RF signals to at least the RF transmitter device and the RF receiver device. The second antenna array receives a second set of beams of RF signals from at least the RF transmitter device and the RF receiver device. |
US11811467B2 |
Method for activating pSCell and SCell in mobile communication system supporting dual connectivity
The present disclosure relates to communication methods and systems for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system utilizing technology for Internet of Things (IoT). The present disclosure is applicable to intelligent services utilizing 5G communication technology and IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A Secondary Cell (SCell) method and apparatus for activating an SCell are provided for use in a mobile communication system supporting dual connectivity. The method includes receiving a control message instructing activation of at least one SCell, determining whether the SCell is a primary SCell (pSCell) based on the control message, monitoring, when the SCell is the pSCell, a Physical Downlink Control Channel (PDCCH) of the pSCell, and reporting, after starting PDCCH monitoring, Channel Status Information (CSI) for the SCell. |
US11811466B2 |
Cable modem transceiver, cable modem, cable modem communication system, processor for a cable modem transceiver, method for calibrating a cable modem transceiver, and computer program
A cable modem transceiver includes a processor configured to derive an instant of time for an upstream calibration signal on basis of upstream scheduling information. Further, the cable modem transceiver includes a transmitter configured to generate the upstream calibration signal at the derived instant of time. The cable modem transceiver additionally includes a detector configured to determine a property of the generated upstream calibration signal. The processor is further configured to derive at least one calibration parameter for the transmitter on basis of the detected property. |
US11811465B1 |
Detection of passive intermodulation distortion in open radio access network
A test device can be used with an Open Radio Access Network (O-RAN) fronthaul and to test an uplink communication channel. The test device determines an uplink communication channel for passive intermodulation distortion (PIM) testing. The test device generates and transmits control plane (C-plane) messages to request the future RBs from an O-RAN radio unit (O-RU) installed at a cell site according to a delay time period. The test device receives user plane (U-Plane) messages from the O-RU containing data for the future RBs, and determines whether PIM is detected. |
US11811460B2 |
Analog coherent signal processing systems and methods
Real-time systems and methods prevent duplication of independent signal streams in a coherent receiver subject to source separation controlled by multiplicative coefficients under adaptive feedback control. In various embodiments, this is achieved by first obtaining a first set of coefficients associated with a first signal stream and a second set of coefficients associated with a second signal stream. In response to the sets of coefficients satisfying a condition, the first set modified into a set of coefficients that is mutually orthogonal with respect to and replaces the second set of coefficients. The resulting series of coefficient values may then be used to perform source separation of independent signal streams without duplicating independent signal streams. |
US11811457B2 |
System and method for generating millimeter wave noise with flat radio frequency spectrum
A method for generating millimeter wave noise with a flat RF (radio frequency) spectrum includes the following steps. A noise optical signal with an optical spectrum in Gaussian shape is output by a first optical emission module. The noise optical signal is transmitted to an optical coupler. n beams of noise optical signals with optical spectra in Gaussian shape is output by a second optical emission module. The noise optical signals is transmitted to the optical coupler. The noise light generated by the first optical emission module and the second optical emission module is coupled to the optical coupler. The coupled optical signals is transmitted to a photodetector. The beat frequency is performed by the photodetector to realize mapping transformation from the optical spectra to the RF spectra. The flat millimeter wave noise is output. |
US11811456B2 |
Multi-pixel waveguide optical receiver
Systems and embodiments for a multi-pixel waveguide optical receiver are described herein. In certain embodiments, a system includes an emitter that emits laser light towards a surface. The system also includes a receiver that passively receives reflected laser light that is a portion of the laser light reflected from the surface, wherein the receiver has multiple pixels having a size that is smaller than an expected optical speckle size, wherein the expected optical speckle size corresponds to a region on the receiver where the reflected laser light has a substantially uniform spatial phase. Additionally, the system includes a combiner configured to combine optical fields from each pixel in the multiple pixels into an output that supports a number of modes that is equal to a number of pixels in the multiple pixels. Moreover, the system includes a photodetector configured to receive light from the output. |
US11811454B2 |
Local wavelength defrag apparatus, local wavelength defrag method and program
A local wavelength defragmentation apparatus performs wavelength defragmentation for at least one wavelength path passing through a target link in an optical transmission network. The local wavelength defragmentation apparatus includes a reallocation rank determination unit configured to calculate a remaining time from a present time to an abolition timing for each of the at least one wavelength path and determine rank for wavelength reallocation of the at least one wavelength path based on the remaining time; and a reallocation number determination unit configured to calculate utilization of at least one reallocatable wavelength number for each of the at least one wavelength path according to the rank, and determine a wavelength so that a wavelength of the wavelength number having the highest utilization is reallocated. |
US11811453B2 |
Upward collapse process and apparatus for making glass preforms
An apparatus for producing large glass preforms with minimal clad to-core waveguide distortion from a glass body having a weight, an outer surface, core rods, and a cladding surrounding and separated from the core rods by a gap. The apparatus includes collars affixed to the top and bottom of the cladding; a spacer upon which the core rods rest; a first unit holding and supporting both the bottom collar and the spacer; a second unit holding and supporting the top collar; and a frame defining a heating zone having a heating element to heat the glass body. The weight of the glass body above and below the molten glass in the heating zone is supported by the first and second units without contacting the outer surface of the glass body. |
US11811443B2 |
Communications system
The disclosure relates to a communications system having a transmitter and receiver connected via a transmission line. An example communications receiver (202) comprises: a pair of input connections (211, 212) for connecting to a transmission line (203); a termination resistance (213) equal to a characteristic impedance (Zc) of the transmission line (203); an air core transformer (205) having an input coil (206) connected to the pair of input connections (211, 212) via the termination resistance (213); and a comparator circuit (208) connected to an output coil (207) of the air core transformer (205), the comparator circuit (208) configured to provide an output signal (504) responsive to detection of voltage pulses across the output coil (207). |
US11811436B2 |
Radio frequency system arranged to pass coupled power
Aspects of this disclosure relate to a radio frequency system with a plurality of radio frequency modules. At least one of these radio frequency modules includes a coupler switching circuit that can pass an indication of radio frequency power received at a first input/output port to a second input/output port, and pass an indication of radio frequency power received at the second input/output port to the first input/output port. |
US11811434B2 |
Device and method for transmitting and receiving emulated Wi-Fi packets
A wireless device driving method includes hiding a header emulated with a second protocol in a payload of a packet defined with a first protocol and transmitting the emulated header at a transmission side, receiving the emulated header and an ambient signal at a reception side, and decoding the ambient signal according to the second protocol to obtain a bit sequence. |
US11811432B2 |
Satellite acquisition assistance for supporting satellite wireless access by a mobile device
Methods and techniques are described for supporting satellite wireless by a user equipment (UE) using satellite acquisition information. A UE may obtain (e.g., from an AMF or gNB) acquisition information for satellite cells supporting access to a PLMN. The UE may enter an inactive state with no radio access, may later leave the inactive state, find a preferred satellite cell based on the acquisition information and access the satellite cell (e.g., camp on the cell or connect to the PLMN using the cell). The acquisition information may indicate satellite cells available at one or more predefined times for a known location of the UE or may enable a satellite cell to be found for any UE location at any time. The acquisition information may also provide timing, frequency and other information to enable a UE to access a satellite cell with reduced latency and reduced power consumption. |
US11811431B2 |
Enhanced frequency compression for overhead reduction for CSI reporting and usage
In accordance with an example embodiment of the present invention, a method comprising: selecting, by a user equipment, a subset of linear combination coefficients from a linearized two-dimensional matrix having columns of frequency domain components and rows of spatial beams components for channel state information determination, wherein the number of linear combination coefficients in the subset is less than all of the linear combination coefficients; determining indication comprising information associated with column indices of the selected subset of linear combination coefficients from the linearized two-dimensional matrix, wherein the indication excludes the index of the column with lowest index of the linearized two-dimensional matrix; determining compressed channel state information comprising locations in the linearized two-dimensional matrix of the subset of linear combination coefficients and corresponding values of the linear combination coefficients at those locations; and reporting, from the user equipment toward the base station, the compressed channel state information. |
US11811429B2 |
Variational dropout with smoothness regularization for neural network model compression
A method, computer program, and computer system is provided for compressing a deep neural network model. Weight coefficients associated with a deep neural network are quantize and entropy-coded. The quantized and entropy-coded weight coefficients are locally smoothed. The smoothed weight coefficients are compressed based on applying a variational dropout to the weight coefficients. |
US11811427B2 |
Information processing apparatus, method of processing information, and non-transitory computer-readable storage medium for storing information processing program
An information processing apparatus includes: a memory configured to store program instructions to perform quantization on quantization target data; and a processor configured to execute the program instructions stored in the memory, the program instructions including: obtaining a distribution of appearance frequencies of a plurality of variable elements included in the quantization target data; and aligning a most significant bit position of a quantization position to a variable element smaller than a variable element of a maximum value among the plurality of variable elements based on the distribution of the appearance frequencies of the plurality of variable elements. |
US11811425B2 |
Neural network soft information detector in a read channel
Example systems, read channels, and methods provide bit value detection from an encoded data signal using a neural network soft information detector. The neural network detector determines a set of probabilities for possible states of a data symbol from the encoded data signal. A soft output detector uses the set of probabilities for possible states of the data symbol to determine a set of bit probabilities that are iteratively exchanged as extrinsic information with an iterative decoder for making decoding decisions. The iterative decoder outputs decoded bit values for a data unit that includes the data symbol. |
US11811419B2 |
Method and system for an asynchronous successive approximation register analog-to-digital converter with word completion algorithm
Systems and methods for an asynchronous successive approximation register analog-to-digital converter (SAR ADC) with word completion algorithm may include a SAR ADC comprising a plurality of switched capacitors, a comparator, a metastability detector including a timer having a tunable time interval, and a successive approximation register. The SAR ADC may sample input signals at inputs of the switched capacitors and compare signals at outputs of the switched capacitors. The SAR ADC may also determine, based on a value of a tunable time interval, whether to set a metastability flag for a first bit to be evaluated and update the value of the tunable time interval based on whether the metastability flag was set. |
US11811418B2 |
Analog-to-digital converter circuit with a nested look up table
Disclosed herein is an analog-to-digital converter circuit configured for digitizing an analog input signal. The analog-to-digital converter comprises an analog input configured for receiving the analog input signal. The analog-to-digital converter circuit further comprises at least one sub-ADC connected to the analog input signal, wherein the at least one sub-ADC is configured to output at least one encoded output vector in response to receiving the analog input signal. The analog-to-digital converter circuit further comprises a lookup circuit comprising a nested lookup table. The lookup circuit is configured to select an output value from the nested lookup table using the at least one encoded output vector, wherein the lookup circuit is configured to provide the output value as the digitization of the analog input signal. |
US11811416B2 |
Energy-efficient analog-to-digital conversion in mixed signal circuitry
An apparatus comprises at least one processor and at least one memory including instruction code configured to, with the at least one processor, cause the apparatus at least to perform a successive approximation analog-to-digital conversion of an analog input, representing a result of multiplication of first and second vectors, to a digital output by determining an upper bound on the result of multiplication of the first and second vectors, identifying, based at least in part on the determined upper bound, at least a portion of the successive approximation analog-to-digital conversion to be skipped, and skipping the identified portion of the successive approximation analog-to-digital conversion. |
US11811411B2 |
Glitch filter system
A glitch filter system includes an input stage to receive an input signal, a first output to provide a first digital signal, and a second output to provide a second digital signal. A C-element of such system receives the first digital signal and the second digital signal and provides a third digital signal at a first logic state in response to each of the first and second digital signals having a second logic state opposite the first logic state. An output latch of such system provides an output signal at the second logic state in response to the first logic state of the third digital. The output latch also receives the first and second digital signals to maintain the first logic state of the third digital signal in response to one of the first and second digital signals changing from the second logic state to the first logic state. |
US11811402B1 |
Asynchronous validity tree circuit using multi-function threshold gate with input based adaptive threshold
Asynchronous circuit elements are described. Asynchronous circuit elements include a consensus element (c-element), completion tree, and validity tree. The c-element is implemented using adjustable threshold based multi-input capacitive circuitries. The completion tree comprises a plurality of c-elements organized in a tree formation. The validity tree comprises OR gates followed by c-elements. The multi-input capacitive circuitries include capacitive structures that may comprise linear dielectric, paraelectric dielectric, or ferroelectric dielectric. The capacitors can be planar or non-planar. The capacitors may be stacked vertically to reduce footprint of the various asynchronous circuitries. |
US11811400B1 |
Circuit for improving linearity and channel compensation of PAM4 receiver analog front end
The present invention discloses a circuit for improving linearity and channel compensation of PAM4 receiver analog front end, comprising a first stage and a second stage, the first stage comprising first to twentieth transistors, a first resistor, a pair of second resistors, a pair of first capacitors, and a pair of second capacitors. In the first stage circuit, the ninth and tenth transistors are directly coupled to the ground, eliminating the electrical connection to the bias current source. The Input terminals of the ninth and tenth transistors are coupled to the output signals of the preceding nineteenth and twentieth transistors, so that the ninth and tenth transistors serve as both input pairs and current source transistors. The overall current is limited by the thirteenth and fourteenth transistors, which results in a lower power supply voltage for the first stage consisting of the ninth through fourteenth transistors. |
US11811393B2 |
Multiplexer, radio frequency front-end circuit, and communication device
A multiplexer includes a filter on a first path connecting a common terminal and an input/output terminal, and a second filter on a second path connecting the common terminal and a second terminal, the second filter having a passband that overlaps a generation frequency of Rayleigh wave ripples in the filter. The filter includes series arm resonators on the first path and a parallel arm resonator, the series arm resonators and the parallel arm resonator utilize an SH wave as a main mode, and a number of electrode finger pairs of the series arm resonator is fewest among numbers of electrode finger pairs of the series arm resonators. |
US11811385B2 |
Bulk acoustic wave component with conductor extending laterally from via
Aspects of this disclosure relate to methods of manufacturing bulk acoustic wave components. Such methods include plasma dicing to singulate individual bulk acoustic wave components. A buffer layer can be formed over a substrate of bulk acoustic wave components such that streets are exposed. The bulk acoustic wave components can be plasma diced along the exposed streets to thereby singulate the bulk acoustic wave components. |
US11811384B2 |
Impedance adjustment device and impedance adjustment method
A high frequency power supply alternately outputs a first AC voltage and a second AC voltage to a plasma generator. The amplitudes of the first AC voltage and the second AC voltage are different from each other. An impedance adjustment device is disposed in midway of the transmission line of the first AC voltage and the second AC voltage. When the AC voltage output from the high frequency power supply is switched to a first AC voltage, a microcomputer changes the capacitance of a variable capacitor circuit to a first target value. When the AC voltage output from the high frequency power supply is switched to a second AC voltage, the microcomputer changes the capacitance of the variable capacitor circuit to a second target value. |
US11811380B2 |
Micro-resonator design implementing internal resonance for MEMS applications
Frequency stabilization is provided in a microelectromechanical systems (MEMS) oscillator via tunable internal resonance (IR). A device comprises a MEMS resonator comprising a stepped-beam structure that is a thin-layer structure. The resonator may be configured to implement IR. The stepped-beam structure may be configured to provide flexibility to adjust modal frequencies into a n:m ratio, wherein n and m are integers. The thin-layer structure provides frequency tunability by controlling the mid-plane stretching effect with an applied DC bias. The thin-layer structure compensates for a frequency mismatch from a n:m ratio due to a fabrication error. The MEMS resonator may be an oscillator. |
US11811376B2 |
Preamplifier circuit
Disclosed preamplifier circuit comprises amplifier arranged in first current path between input node and output node of the preamplifier circuit. Feedback capacitor is arranged in second current path between said input and output nodes. Feedback circuit having adjustable transfer function is arranged in third current path between said input and output nodes. Reset switch arranged in said third current path enables selectively coupling output of the feedback circuit to input of the amplifier and decoupling output of the feedback circuit from input of the amplifier. Loop controller is arranged selectively, in dependence of voltage in the preamplifier circuit, one of open reset switch to set preamplifier circuit in normal operating mode and close reset switch to set preamplifier circuit in reset mode. Loop controller is arranged to adjust the transfer function of the feedback circuit at least in part in dependence of the current operating mode of the preamplifier circuit. |
US11811369B2 |
Calibration and synchronization of ground current sensing amplifier with wireless power transmitter controller
Systems and methods for calibrating a wireless power transmitter is described. A wireless power transmitter can include a controller and an amplifier module. The amplifier module can include an amplifier configured to amplify a voltage converted from a current proportional to power consumed by a wireless power transmitter, and a circuit connected to the amplifier. The circuit can be configured to receive a control signal from the controller. The circuit can be further configured to perform time division multiplexing on an output of the amplifier according to the control signal. A time division multiplexed output of the amplifier can include calibration data of the amplifier. The amplifier can be configured to output the time division multiplexed output to the controller. |
US11811366B2 |
Symmetrical Doherty power amplifier having improved efficiency
Apparatus and methods for an improved-efficiency Doherty amplifier are described. The Doherty amplifier may include a two-stage peaking amplifier that transitions from an “off” state to an “on” state later and more rapidly than a single-stage peaking amplifier used in a conventional Doherty amplifier. The improved Doherty amplifier may operate at higher gain values than a conventional Doherty amplifier, with no appreciable reduction in signal bandwidth. |
US11811363B2 |
Electronic component packages, electronic component, and oscillator
An electronic component package includes a lid, a first layer, a second layer disposed between the first layer and the lid and configuring a first frame, a third layer disposed between the second layer and the lid and configuring a second frame, a bonding member bonding the third layer to the lid, and a via wire electrically coupled to the lid and penetrating the second frame, in which, when an inner diameter of a first corner portion of the first frame is denoted by R1 and an inner diameter of a second corner portion of the second frame overlapping the first corner portion in a plan view is denoted by R2, R1 |
US11811359B2 |
Solar module mounting system
Systems and methods for mounting one or more framed solar modules are disclosed. A solar module mounting system can include a plurality of support members configured to support one or more framed solar modules above a mounting surface, such as the ground or the roof of a building. The support members can include rails formed from a rigid material, such as steel. The solar module mounting system can also include a plurality of attachment mechanisms each configured to secure a portion of a framed solar module to a portion of a respective one of the support members. |
US11811353B2 |
Load driving device, refrigeration cycle applicable apparatus, and air conditioner
A load driving device includes a smoothing capacitor, an inverter, and a control unit. The inverter includes two legs, each including upper and lower arm switching elements connected in series and converts direct-current power stored in the smoothing capacitor into alternating-current power. The control unit performs voltage drop prevention control for preventing the voltage across the smoothing capacitor from becoming a negative voltage. The control unit stops power running control on the load when the capacitor voltage is higher than the sum of a first voltage and a second voltage. The first voltage is a potential difference between a second terminal and a first terminal in the upper-arm. The second voltage is a potential difference between a second terminal and a first terminal in the lower-arm in the same leg as the leg of the upper-arm. |
US11811349B2 |
Method and system for regulating electric drive system according to predicted temperature of inverter current sensor to prevent overheating
An electric drive system includes a controller and an inverter having a switch and a current sensor. The controller reduces power output of the inverter while a sensed temperature of the switch, a sensed current from the inverter, and parameter values of the current sensor are indicative of a predicted temperature of the current sensor being greater than a threshold to maintain inverter temperature lower than the threshold. The parameter values are obtainable from a thermal model of the current sensor. The thermal model is derived from testing a test version of the inverter under different drive cycles in which for each drive cycle a set of information is recorded including a sensed temperature of a switch of the inverter test version, a sensed current output from the inverter test version, and a sensed temperature of a current sensor of the inverter test version. |
US11811348B2 |
Inverter controller and vehicle on-board fluid machine
An inverter controller is used to control an inverter circuit, which drives a vehicle on-board electric motor using a vehicle on-board electricity storage device. A rotation controlling unit of the inverter controller executes a process that derives two-phase voltage command values based on an external command value delivered from an external device and an actual rotation speed, and a process that derives three-phase voltage command values based on the two-phase voltage command values. In a case in which a voltage utilization factor is less than or equal to a utilization factor threshold, the rotation controlling unit derives, by switching at a switching period, sets of three-phase voltage command values of which the line voltages of the vehicle on-board electric motor are the same and the variation ranges are different. |
US11811347B2 |
Selectable current limiting for power tool
Selectable current limiting for a power tool. One embodiment provides a method for selectable current limiting for a power tool including determining, using a current sensor, an average current and determining whether the average current exceeds a predetermined current threshold. The method also includes determining a deviation of the average current from the predetermined current threshold and reducing a PWM duty ratio proportional to the deviation of the average current from the predetermined current threshold. The PWM duty ratio corresponds to a PWM signal provided to an inverter bridge. |
US11811343B2 |
Magnetic flux estimate
Examples include a method for controlling a synchronous motor using a variable speed drive. The motor includes a permanent magnet rotor generating a magnetic flux. The method includes applying a predefined electrical command signal to the motor and estimating a motor speed in response to the applying of the predefined electrical command signal. The method also includes reaching a desired estimated motor speed and, in response to reaching the desired estimated motor speed, estimating a parameter related to the magnetic flux of the permanent magnet rotor. The method further includes recording the estimated parameter. |
US11811339B2 |
Predictive control method of current increment for permanent magnet synchronous motor under high-speed operation
The present disclosure provides a predictive control method of current increment for a permanent magnet synchronous motor includes: substituting a mathematical expression of a stator voltage during one control period into a continuous time domain current model to obtain a discrete current prediction model and a predicted current at the next time point; obtaining a predicted current increment from a current increment prediction model by subtracting a predictive current at a present time point from a predictive current at a next time point; establishing a cost function according to a preset reference current increment and the predicted current increment; obtaining an optimal voltage increment by minimizing the cost function; superposing the optimal voltage increment on a stator voltage of a present control period to obtain an optimal stator voltage of a next control period for controlling control the permanent magnet synchronous motor. |
US11811333B2 |
Power conversion device
A power converter includes a converter circuit, an inverter circuit, a clamp circuit, a scrubber circuit, and an element including a resistive component. The converter circuit generates from an AC voltage source a DC voltage with AC components superimposed. The inverter circuit has an input connected with an output of the converter circuit. The inverter circuit is configured to convert the DC voltage into an AC voltage by switching, and output the AC voltage to an inductive load. The clamp circuit includes a first capacitor and a first diode connected in series. The clamp circuit is connected between a positive output and a negative output of the converter circuit. The snubber circuit includes a second capacitor and a second diode connected in series. The snubber circuit is connected between the positive output and the negative output of the converter circuit. |
US11811331B2 |
Insulated-gate bipolar transistor (IGBT) rectifier for charging ultra-capacitors
Provided is a system for an insulated-gate bipolar transistor (IGBT) rectifier for charging ultra-capacitors. The system may include a power converter, which may receive power from a power source. A direct current (DC) bus may be connected to the power converter and may receive power from the power converter. At least one IGBT may be connected to the DC bus and may receive power from the DC bus. An array of ultra-capacitors may be connected to the at least one IGBT. At least one controller may control the at least one IGBT to charge the array of ultra-capacitors. A method and computer program product are also disclosed. |
US11811330B2 |
Converter device, motor drive device and air conditioner
A converter device includes: a power conversion circuit including a reactor and a switching element, rectifying a voltage of alternating-current power supplied from an alternating-current power supply to a direct-current voltage, and boosting and outputting the direct-current voltage; a current detector detecting a current flowing in the reactor; a filter circuit filtering a first signal detected by the current detector; and a control unit generating a control signal on the basis of a carrier and a second signal generated by the filter circuit and controlling, on the basis of the control signal and with a first period, the switching element, the first period being a period of the carrier. The filter circuit cuts off a repetition frequency component in the first period and passes a repetition frequency component in a second period, the second period being longer than the first period. |
US11811327B2 |
Power apparatus applied in solid state transformer structure and three-phase power system having the same
A power apparatus applied in a solid state transformer structure includes an AC-to-DC conversion unit, a first DC bus, and a plurality of bi-directional DC conversion units. First sides of the bi-directional DC conversion units are coupled to the first DC bus. Second sides of the bi-directional DC conversion units are configured to form at least one second DC bus, and the number of the at least one second DC bus is a bus number. The bi-directional DC conversion units receive a bus voltage of the first DC bus and convert the bus voltage into at least one DC voltage, or the bi-directional DC conversion units receive at least one external DC voltage and convert the at least one external DC voltage into the bus voltage. |
US11811325B2 |
Multiphase switching converter with total current limitation
A controller for a multiphase switching converter has a voltage control circuit, a total current control circuit, a frequency divider and a plurality of sub control circuits. The voltage control circuit provides an on-time control signal based on an output voltage. The total current control circuit provides a current control signal based on a total current flowing through the plurality of switching circuits. The frequency divider receives the on-time control signal, and provides a plurality of frequency division signals based on the on-time control signal. The plurality of sub control circuits provides a plurality of switching control signals to control the plurality of switching circuits respectively. Each of the plurality of sub control circuits receives one of the plurality of frequency division signals and the current control signal, and provides one of the plurality of switching control signals. |
US11811317B2 |
Controller for a power supply and a power supply
A controller for controlling a DC-DC converter in a discontinuous conduction mode (DCM) includes an output module configured to provide a switch control signal to the DC-DC converter having an on-time and a switching frequency. The controller includes an on-time-control-module configured to receive a first compensation signal based on the output voltage of the DC-DC converter; and set the on-time of the switch control signal based on the first compensation signal. The controller also includes a frequency-control-module configured to receive a second compensation signal, wherein the second compensation signal is based on the output voltage of the DC-DC converter, and regulate the second compensation signal to a target range by setting the switching frequency of the switch control signal to one of a plurality of pre-defined discrete switching frequencies. |
US11811315B2 |
DC/DC conversion circuit
A direct current (DC)/DC conversion circuit includes an input end, a power circuit, and an output end, a bypass circuit that is a unidirectional conduction circuit, and a switch disposed between the input end and the power circuit, where the input end is configured to be coupled to an external power supply to receive power to the DC/DC conversion circuit. The bypass circuit is coupled between the input end and the power circuit, the bypass circuit is disposed between the switch and the power circuit, and the bypass circuit is coupled to the power circuit in parallel. The switch is configured to be closed when the input end is reversely coupled to the external power supply to enable a current from a positive electrode of the external power supply to flow back to a negative electrode of the external power supply through the bypass circuit and the switch. |
US11811306B1 |
Start-up control in power systems using fixed-ratio conversion
A power converter system converts power from an input source for delivery to an active load. An input current surge at startup may be reduced by combining power converter switch resistance modulation with active load control. In another aspect, an input current surge at startup in an array of power converters may be reduced by periodically reconfiguring the array during the startup phase to accumulatively increase the output voltage up to a predetermined output voltage. A power converter may include a controller that provides an over-current signal to the load to reduce the load or advise of potential voltage perturbations. |
US11811301B1 |
AC solid-state transformer with DC-DC converters
A three-phase AC solid-state transformer is provided which comprises three DC-DC converters. Each of the DC-DC converters has an internal transformer for galvanic isolation between its input and output sides. Each of the DC-DC converters has unipolar voltage across its input terminals and unipolar voltage across its output terminals. In one embodiment, the positive input terminals of the three DC-DC converters serve respectively as the three AC input terminals of the solid-state transformer and their positive output terminals provide the three phase AC output of the solid-state transformer. The negative input terminals of the three DC-DC converters are connected together to form a first common node, while the negative output terminals are connected together to form a second common node. The first common node has a voltage offset from the neutral of the input AC phases; and the second common node has a voltage offset from the neutral of the output AC phases. |
US11811300B2 |
Isolated converter
The present disclosure provides a method and apparatus for providing electrical isolation using a converter comprising a first converter working in a rectifier mode receiving AC current and providing DC current, a second converter working in an inverter mode receiving said DC current from said first converter and providing AC current, a transformer receiving said AC current from said second converter having an input and output, said transformer providing electric isolation between said input and output, a third converter working in a rectifier mode receiving AC current from said transformer and providing DC current, wherein at least one of said first, second and third converters is a multilevel converter. |
US11811290B2 |
Electric-machine housing
The present disclosure discloses an electric-machine housing, which effectively solves the technical problem in the prior art that electric machines have high NVH level. The electric-machine housing is circumferentially provided with a plurality of axial tunnels, and the tunnels are empty or are filled with a damping medium. The structure in which the tunnels are empty or the tunnels are filled with the damping medium can weaken the excitation to the electric-machine housing by the stator vibration, increase the damping coefficient of the electric-machine housing, weaken the transfer paths of vibration and noise, and reduce the amplitude of electromagnetic force waves, thereby inhibiting vibration and noise, to effectively reduce the overall NVH level. |
US11811289B2 |
Ocean current and tidal power electric generator
Embodiments of an apparatus for generating electric power from flowing seawater are disclosed. Embodiments form fluid channels having magnetic fields through which seawater will flow. Electrodes are arranged with respect to the fluid channels and connected together such that electric power is generated as seawater flows through the channels. |
US11811286B2 |
Electric compressor
An electric compressor includes a housing, an electric motor, and an inverter. The housing includes a motor chamber. The electric motor includes a stator that includes a stator core, a plurality of first coils, a plurality of second coils, and a plurality of third coils. The first coils are connected in series, the second coils are connected in series, and the third coils are connected in series. One of the first coils that is located electrically closest to the first phase is referred to as a first specific coil, one of the second coils that is located electrically closest to the second phase is referred to as a second specific coil, and one of the third coils that is located electrically closest to the third phase is referred to as a third specific coil. The first to third specific coils are disposed above the shaft center of the drive shaft. |
US11811285B2 |
Stator, rotary electric machine, and work machine
A stator includes a stator core and a coil wound around the stator core. The coil includes a basic coil segment including a pair of first legs and a first transition portion disposed on a first end surface side of the stator core, and a transition coil segment including a pair of second legs and a second transition portion. The second transition portion includes a pair of shoulders and a pair of second rising portions. An inclination angle of the second rising portion is larger than an angle of the shoulder with respect to a first end surface, so that the second transition portion is in contact with the first transition portion. |
US11811283B2 |
Electric machines
A stator for a radial-flux rotary electric machine includes a yoke with a plurality of teeth, each tooth extending from a root at the yoke to a tip. The stator further includes a plurality of coils, each one of which being located on a respective one of the plurality of teeth, the coils being sized such that a slot fill factor is between zero and unity to define axial voids in the slots. The stator further includes a plurality of magnetic sealing members, each one of which being engaged with the tips of adjacent teeth to circumferentially and axially seal the axial voids in the slots for retaining an axial flow of coolant therein, the magnetic sealing members being composed of a magnetic material to provide a flux path between adjacent tooth tips to increase an amount of leakage flux. |
US11811282B2 |
Coil device having a core with plate shaped coil bodies
A coil device includes a first coil including a plate-shaped first coil body having a first and second end. The first coil body is spirally wound on a columnar portion along the extending direction of the columnar portion such that the second end is positioned on one side in the extending direction relative to the first end. The coil device further includes a second coil including a plate-shaped second coil body having a third end and a fourth end. The second coil body is spirally wound on the columnar portion along the extending direction such that the third end is positioned on the one side in the extending direction relative to the second end of the first coil, and the fourth end is positioned on the one side in the extending direction relative to the third end. The second coil is in electrically parallel connection with the first coil. |
US11811276B1 |
Thermal interface materials
A power electronics converter includes a multi-layer planar carrier substrate, and a converter commutation cell including a power circuit. The power circuit includes at least one power semiconductor switching element, each of which is comprised in a power semiconductor prepackage. Each power semiconductor prepackage includes one or more power semiconductor switching elements embedded in a solid insulating material. A heat sink is arranged to remove heat from the respective power semiconductor prepackage. A thermal interface layer is arranged between a heat removal side of the respective power semiconductor prepackage and the heat sink. The thermal interface layer has a thermal conductivity and a mechanical compressibility. A converter parameter, which is defined as the mechanical compressibility of the thermal interface layer divided by the thermal conductivity of the thermal interface layer, satisfies 0.1 MNK/Wm<Ω<1 GNK/Wm. |
US11811275B2 |
Motor control for gas engine replacement device based on battery pack configuration data
A gas engine replacement device includes a housing, a battery receptacle coupled to the housing and configured to removably connect to a battery pack having a memory storing battery pack configuration data, a motor located within the housing, a power take-off shaft receiving torque from the motor and protruding from a side of the housing, a power switching network configured to selectively provide power from the battery pack to the motor, and a first electronic processor coupled to the power switching network and configured to control the power switching network to rotate the motor. The first electronic processor is configured to receive the battery pack configuration data responsive to a connection of the battery pack to the battery receptacle and control the power switching network based on the battery pack configuration data. |
US11811265B2 |
Motor, fan, air conditioner, and manufacturing method of motor
A motor includes an annular stator core having a plurality of core segments connected via connecting portions in a circumferential direction about an axis, a cover portion covering the stator core and having a core-surrounding portion surrounding the stator core from an outer side in a radial direction about the axis, and a rotor having a rotor core provided on an inner side of the stator core in the radial direction and a magnet attached to the rotor core. The magnet forms a first magnetic pole, and a part of the rotor core forms a second magnetic pole. A minimum distance R1 in the radial direction from the axis to an outer circumference of the core-surrounding portion and a minimum distance R2 in the radial direction from the axis to an outer circumference of the stator core satisfy R1≥1.15×R2. |
US11811263B2 |
Power conversion method, apparatus, and device, and medium
The present invention provides a power conversion method, apparatus, and device, and a medium. The power conversion apparatus comprises: a configurable input interface, a power conversion circuit, and a configurable output interface. The configurable input interface is provided to configure a first electrical connection mode between an input power supply and the power conversion circuit, and to electrically connect the input power supply to the power conversion circuit. The configurable output interface is provided to configure a second electrical connection mode between a load and the power conversion circuit, and to electrically connect the load to the power conversion circuit. The power conversion circuit is provided to perform corresponding power conversion according to a parameter of the input power supply and a parameter of the load. Embodiments of the present invention resolve the problem in the related art of poor general applicability of a power conversion apparatus, thereby improving the general applicability of the power conversion apparatus. |
US11811262B2 |
Uninterruptible power supply component analysis system and method
According to certain aspects of the disclosure, an uninterruptible power supply is provided comprising an input, a backup power supply, an output configured to provide output power from the input and/or the backup power supply, a sensor, a relay, and a controller coupled to the sensor and the relay and being configured to determine, based on stored relay specifications, a manufacturer total estimated relay lifetime, receive operational information indicative of operational parameters of operation of the relay from the sensor, the operational information including a current conducted by the relay, determine, based on the operational information, an effective number of relay cycles consumed by the operation of the relay, determine a modified number of remaining relay cycles based on a difference between the manufacturer total estimated lifetime and the effective number of relay cycles consumed, and output remaining relay lifetime information indicative of the modified number of remaining relay cycles. |
US11811261B2 |
Backup load energy control system
The present disclosure provides a method for controlling an energy control system. The energy control system includes a grid interconnection, a backup load interconnection, a non-backup load interconnection, and a backup power interconnection. The method includes receiving electronic data from a plurality of backup loads. The method includes detecting a power outage at the grid interconnection electrically coupled to a utility grid. The method includes disconnecting the grid interconnection from the backup power interconnection, in which the backup power interconnection is electrically coupled to a backup power source. The method includes connecting a first set of the plurality of backup loads to the backup load interconnection, in which the backup load interconnection is electrically coupled to the backup power interconnection such that power is supplied from the backup power source to the first set of backup loads. |
US11811258B1 |
Systems and methods for offsetting no load energy losses of a battery energy storage system
The present disclosure provides systems and methods for offsetting parasitic energy losses of a battery energy storage system (BESS). A method may include determining, by one or more processors of a renewable energy power plant coupled to an energy grid, a condition is satisfied; and responsive to the determination, adjusting, by the one or more processors, a state of a switch from a first state configured to couple a second BESS with a renewable energy source (RES) to a second state configured to couple the second BESS with the BESS. The RES configured to charge the T-BESS when the switch is in the first state and the T-BESS configured to send energy to the devices to satisfy energy requirements of the devices when the switch is in the second state. |
US11811253B2 |
Surgical robotic system with fault state detection configurations based on motor current draw
A surgical robotic system includes a housing, wherein the housing includes a rotary drive; a motor that applies a rotary motion to the rotary drive; a surgical tool that releasably attaches to the housing, the surgical tool including: an end effector; a rotary interface that releasably couples to the rotary drive; a firing assembly; a lockout member movable from a locked state to an unlocked state by a sled; and a control circuit communicably coupled to the motor, wherein the control circuit is configured to: activate the motor to effect the motion of the firing assembly; monitor a current draw of the motor during the motion of the firing assembly; detect a fault state in the motion of the firing assembly based on the current draw of the motor; stop the motor based on the detection of the fault state; and alert a user regarding the fault state. |
US11811251B2 |
On-board distributed power supply system and onboard power supply control method and apparatus
An on-board distributed power supply system is coupled to an on-board distributed drive system. The on-board distributed drive system includes at least two power trains, and the on-board distributed power supply system includes at least two low-voltage battery pack groups. Each low-voltage battery pack group of the at least two low-voltage battery pack groups includes at least one low-voltage battery pack. Each low-voltage battery pack of the at least one low-voltage battery pack includes a plurality of battery cells. Each low-voltage battery pack group of the at least two low-voltage battery pack groups is correspondingly electrically connected to at least one of the power trains in the on-board distributed drive system, and is configured to provide electric energy for each power train of the at least two power trains in the on-board distributed drive system. |
US11811250B2 |
Removable battery pack and/or electrical consumer with an electromechanical interface for supplying energy
An electrical consumer system includes an electrical consumer with a first mating interface and a first plurality of electrical contacts, and a removable battery pack including a second mating interface and a second plurality of electrical contacts, the second mating interface configured to removably mate with the first mating interface such that the second plurality of contacts contact the first plurality of contacts. At least one of the first and second mating interfaces includes a temperature sensor configured to detect at least one of a temperature of the at least one of the first and second mating interfaces, and a temperature of the first or second electrical contacts of the at least one of the first and second mating interfaces. |
US11811245B2 |
Wireless charging method, device and system
A method of compensating for temperature dependent Q factor variations in a wireless charger includes receiving, by the wireless charger, a reference Q factor value from a device to be charged. The method also includes the wireless charger determining a Q factor threshold value from the reference Q factor. The method further includes the wireless charger measuring a Q factor associated with a transmit coil of the wireless charger. The method also includes determining a temperature value. The method further includes applying a temperature compensation calculation to the measured Q factor using the temperature value to produce a temperature compensated Q factor. The method also includes comparing the temperature compensated Q factor with the Q factor threshold value. The method may also include compensation for temperature dependent internal power loss values. |
US11811243B2 |
Modular, mobile power system for equipment operations, and methods for operating same
A system to power pressure pumps and auxiliary equipment for oil and gas operations. The system includes a mobile system controller and energy storage unit electrically connected to pressure pumping and auxiliary loads. The system can also include a power generation source. One application of the technology is to pump fluids to an oil and gas end user which can be an oil or gas well, pipeline or plant. The system can be modularized and can be fully mobile and transportable by a variety of means. |
US11811241B2 |
Rectifier in low gain wireless power transfer system
An apparatus includes a controller configured to control switches of a rectifier circuit, wherein the rectifier circuit is coupled to two terminals of a receiver coil configured to be magnetically coupled to a transmitter coil of a wireless power transfer system, and wherein in response to a high system gain of the wireless power transfer system, the controller configures the rectifier circuit as a half-bridge rectifier, and in response to a low system gain of the wireless power transfer system, the controller configures the rectifier circuit as a full-bridge rectifier. |
US11811233B1 |
Systems and methods for optimized loading of battery inverters
The present disclosure provides systems and methods for optimizing loading of battery inverters. A system may include a plurality of inverters configured to output power to a load; a switching system connected to the plurality of inverters; a plurality of energy storage units selectively coupled to the plurality of energy storage units by the switching system; and a controller. The controller can be configured to determine a required power for the load; determine a number of the plurality of inverters to provide the required power; determine a switching position for the switching system based on the determined number of the plurality of inverters, the switching position corresponding to power delivery by a set of the plurality of inverters; and send a control signal to the switching system to connect one or more of the plurality of energy storage units with the set of the plurality of inverters. |
US11811230B2 |
Control method, load and power grid system
The present disclosure relates to a control method, a load and a power grid system. The method includes: detecting (S102) a voltage change parameter on a power supply side; analyzing (S104) a load control strategy corresponding to the voltage change parameter; controlling (S106) an operation of the load according to the load control strategy. The solution solves the problem of inadequate communication facilities in the DC micro-grid, the DC home communication can be completed without or with less dedicated communication circuits, accordingly the system cost is reduced. |
US11811228B2 |
Solar power generation control device
A solar power generation control device, controlling a solar power generation system configured to charge a power storage device of a vehicle with electric power generated by a solar cell provided in the vehicle, includes: an acquisition unit that acquires environmental information on weather or a planimetric feature around the vehicle; a prediction unit that predicts a change in solar radiation state of the vehicle based on the environmental information acquired by the acquisition unit and a moving state of the vehicle; and a control unit that controls an operation mode of the solar power generation system, including a first mode, in which the power storage device is charged with electric power generated by the solar cell, and a second mode, in which power consumption of the solar power generation system is lower than in the first mode, based on a prediction result of the prediction unit. |
US11811226B1 |
Digital voltage distributor for dielectric actuators
A four-stage digital voltage distribution system is provided with a multi-bridge relay assembly to deliver pulsed direct current to a dielectric actuator. A first stage of operation opens a forward voltage flow from a high voltage source through a passive signal conditioner before activating the actuator and passing through a forward diode to ground. A second stage cuts off the forward voltage flow to the dielectric actuator; thereby, shorting the dielectric actuator and causing a reverse discharge flow through a reverse diode. A third stage opens a reverse voltage flow through the signal conditioner before activating the dielectric actuator and passing through the reverse diode to ground. A fourth stage cuts off the reverse voltage flow to the charged dielectric actuator; thereby, shorting the dielectric actuator and causing a forward discharge flow through the forward diode. The four stages continuously loop to deliver pulsed DC to the actuator. |
US11811223B2 |
Wireless power transfer system for simultaneous transfer to multiple devices
The present application relates to an apparatus which comprises a wireless power transmission system. This system comprises features which allow it to transfer more power wirelessly to multiple devices simultaneously, each at extended distances than other systems operating in the same frequency range. The system including heat dissipation features, allowing the system to operate effectively in elevated-temperature environments and to transfer power at higher levels and/or greater distances than a typical power-transfer system. The system also may include design features to withstand mechanical shocks, stresses, and impacts for use in a rugged environment. The system may include features to reduce electromagnetic interference (EMI) and/or specially shaped components with magnetic/ferrimagnetic properties that enhance performance. Other potential features include power conditioning by combining, within one circuit or one board, multiple elements that protect against excessive current, over-voltage, and/or reverse voltage. |
US11811222B2 |
Electrostatic discharge protection circuit
An electrostatic discharge (ESD) protection circuit including a detection circuit, a voltage-divider element, and a discharge element is provided. The detection circuit is coupled between a first power line and a second power line. In response to an ESD event, the detection circuit enables a turn-on signal. The voltage-divider element is coupled between the first power line and a third power line and receives the turn-on signal. The discharge element is coupled between the second and third power lines. In response to the turn-on signal being enabled, the first discharge element discharges an ESD current. |
US11811220B2 |
Soft starter for high-current electric devices
An inrush current limiting circuit in aspects of the present disclosure may have one or more of the following features: a printed circuit board, an electrical input disposed on the circuit board, one or more electrical outputs disposed on the circuit board, a current limiting circuit connected between the electrical input and the one or more electrical outputs, at least one microcontroller connected within the current limiting circuit, at least one current sensor connected within the current limiting circuit, one or more current limiting components within the current limiting circuit for increasing voltage and current over time from the electrical input to the one or more electrical outputs by operation of the current sensor and the microcontroller. |
US11811218B2 |
Circuit breaker control module
The circuit breaker control module of the present disclosure comprises: a plurality of semiconductor switching units for blocking current flows of transmission distribution lines or performing switching operations so as to switch the current flow directions; a control unit for controlling the turn-on/turn-off operation of each semiconductor switching unit by transmitting a trip signal to each of the plurality of semiconductor switching units; and a plurality of insulation type signal transmission element units which are provided between the plurality of semiconductor switching units and the control unit such that the semiconductor switching units and the control unit are insulated, and which transmit the trip signal from the control unit to each of the plurality of semiconductor switching units, and thus the presently disclosed circuit breaker control module can reduce the risk of accidents due to an electrical arc and increase the stability and reliability of the control unit. |
US11811216B2 |
Electronic apparatus and control method
An electronic device includes: a housing; an actuator installed inside the housing and configured to generate vibration in response to an application of a driving voltage; a temperature sensor configured to detect an operating temperature caused by the actuator; and a control circuit configured to apply the driving voltage to the actuator to drive the actuator, thereby generating a traction illusion, where the control circuit restricts an operation of the actuator, based on the operating temperature detected by the temperature sensor. |
US11811211B2 |
Cable mounting clamps
A cable assembly includes a cable and a cable mounting clamp. The cable mounting clamp includes a base removably connectable to a surface. The base includes an outer body which defines an inner channel and a support ramp disposed within the inner channel, the inner channel extending along a longitudinal axis. The cable mounting clamp further includes a roller tube disposed within the inner channel and moveably mounted on the support ramp, the roller tube translatable along the longitudinal axis relative to the support ramp. The cable is inserted through the roller tube and extends through the inner channel, such that the cable is translatable with the roller tube along the longitudinal axis. |
US11811209B2 |
Circuit structure
A circuit structure includes: an upper case having positioning holes; bus bars that are provided in an inductor disposed in the upper case and that have through holes; terminals that are connected to electric wires and that have bolts disposed thereon that penetrate the through holes; nuts that sandwich the bus bars between the nuts and the terminals by being screwed onto the bolts; and a lower case that is attached to the upper case. The lower case includes: front walls, left walls, and right walls that project upward from the lower case and position the terminals relative to the lower case by coming into contact with the terminals; and case positioning portions that project upward from the lower case and that are inserted into the positioning holes. |
US11811203B2 |
Wireless push camera
A push camera apparatus comprising: (a) at least one reel configured to rotate on a base to pay out or reel in a cable, the reel having a cable input; (b) the cable having a proximate end and a distal end, the proximate end being connected to the cable input; (c) a camera connected to the distal end and configured to transmit image data through the cable to the cable input; and (d) a communication module operatively connected to the cable input and configured to rotate with the reel, and to transmit wirelessly the image data from the cable input to a wireless controller. |
US11811200B2 |
Installation tool and method
An apparatus and method for installing an aircraft bulkhead connector with a bulkhead is disclosed where access to only one side of the bulkhead is required. The disclosure is also applicable to installation of bulkhead connectors in aircraft fuel tanks. An aircraft bulkhead connector and installation tool is also disclosed. The bulkhead connector includes a female end portion and the installation tool includes a male end portion. The male end portion of the installation tool is removably engaged with the female end portion of the bulkhead connector, such that the installation tool protrudes beyond the female end portion of the bulkhead connector. The installation tool may be inserted through an aperture in a bulkhead and used to both position and hold the bulkhead connector during the installation process. |
US11811196B2 |
Applications, methods and systems for a laser deliver addressable array
There is provided assemblies for combining a group of laser sources into a combined laser beam. There is further provided a blue diode laser array that combines the laser beams from an assembly of blue laser diodes. There are provided laser processing operations and applications using the combined blue laser beams from the laser diode arrays and modules. |
US11811195B2 |
Method for wavelength control of silicon photonic external cavity tunable laser
A tunable solid state laser device are described comprising a semiconductor based gain chip and a silicon photonic filter chip with tuning capability. The silicon photonic filter chip can comprises an input-output silicon waveguide, at least two ring resonators formed with silicon waveguides, one or more connecting silicon waveguides interfacing with the ring resonators, a separate heater associated with each ring resonator, a temperature sensor configured to measure the chip temperature, and a controller connected to the temperature sensor and the separate heaters and programmed with a feedback loop to maintain the filter temperature to provide the tuned frequency. The one or more connecting silicon waveguides are configured to redirect light resonant with each of the at least two ring resonators back through the input-output silicon waveguide. Corresponding methods are described for the control of the laser frequency. Improved structures of the SiPho multiple filter chip involve a Zagnac interferometer. |
US11811193B2 |
CTE-tuned pyrolytic graphite (PG) substrate to minimize joining stress between laser diode and the substrate
A pyrolytic graphite (PG) substrate and laser diode package includes a substrate body having a PG crystalline structure with a basal plane oriented at a pre-determined orientation angle as measured from a longitudinal axis of a heat generating material, such as a laser diode, mounted on a surface of the PG substrate, so that a coefficient of thermal expansion (CTE) of the PG substrate is substantially matched with a CTE of the material. |
US11811186B2 |
Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss
An apparatus includes an optical gain fiber having a core, a cladding surrounding the core, the core and cladding defining an optical gain fiber numerical aperture, and a multimode fiber having a core with a larger radius than a radius of the optical gain fiber core, a cladding surrounding the core, the core and cladding of the multimode fiber defining a multimode fiber stable numerical aperture that is larger than the optical gain fiber numerical aperture, the multimode fiber being optically coupled to the optical gain fiber so as to receive an optical beam propagating in the optical gain fiber and to stably propagate the received optical beam in the multimode fiber core with low optical loss associated with the optical coupling. |
US11811181B2 |
Field terminable single pair ethernet connector with angled contacts
A communications connector has a main plug assembly and a wire cap that is configured to terminate a pair of conductors to the pair of contacts by being secured to a side of the main plug assembly in a direction perpendicular to a plane defined by a deflection direction of a latch of the connector. In another embodiment, a communications connector has a main plug assembly and two electrical contacts within the main plug assembly wherein each electrical contact has a first end having a forked receptacle and a second end having an IDC that is configured to have a conductor terminated in a direction perpendicular to a direction of mating insertion and parallel to a plane defined by the contact. |
US11811180B2 |
Electrical contact for semiconductor package
Provided herein are semiconductor packages with improved electrical contacts (e.g. pins). In some embodiments, an assembly may include a substrate and an electrical contact coupled to the substrate, the electrical contact consisting of a first component defined by a complex 3D designed receiving pin. The electrical contact may further include a second component defined by another complex 3D designed penetrating pin, wherein the first component engages the second component to deform mechanically and to weld when the first component and the second component are coupled together. |
US11811177B2 |
Modular low profile raceway to provide power and/or data connectivity
In various implementations, a raceway may be provided that is capable of providing power and/or data connectivity to items (e.g., devices, articles of furniture, etc.) coupled to the raceway. The raceway may be low profile. The raceway may be disposed on floor and/or under floor. The raceway may include an integrated power housing. The raceway may include segments that are selected, as desired for an application configuration, and that are coupleable to each other or other components of the raceway (e.g., nodes, joints, etc.). The housing of component(s) of the raceway may include a base and wall(s) with at least curved section and at least one straight section. |
US11811168B2 |
Connector assembly
The described connector assemblies are useful in wire-to-board systems. Some assemblies include a free-end connector that is attached to a twin-ax cable, and a fixed-end connector that is attached to a board. Embodiments include a free-end terminal set including a first signal terminal, a second signal terminal and a ground plate. The ground plate has a horseshoe shape and provides a ground terminal on opposing sides of the first and second signal terminals. Additionally, embodiments include a locking system between the free-end connector and fixed-end connector, and lead designs for the fixed-end connector utilizing a similar horseshoe shape as that used for the ground plate of the free-end connector. |
US11811167B2 |
Lever-type connector
A first housing is formed with an escaping groove into which a cam pin is insertable. A lever to be assembled with the first housing is provided with a locking protrusion capable of holding the lever in a rotation restricted state by locking an edge part of the escaping groove. A second housing is provided with a first pressing portion for deforming the lever in a direction separating from the first housing by coming into contact with the lever, and a second pressing portion for releasing the rotation restricted state of the lever by coming into contact with the locking protrusion. The first pressing portion first comes into contact with the lever, and the second pressing portion is set to come into contact with the locking protrusion with the lever deformed in the direction separating from the first housing. |
US11811166B2 |
Electrical connector with vibration dampener
An electrical connector assembly includes an electrical terminal attached to a wire cable, a connector housing defining a cavity in which the electrical terminal is disposed, and a resilient damping element disposed intermediate the electrical terminal and an inner wall of the cavity. The damping element is configured to reduce the amplitude and/or change the frequency of vibratory mechanical energy transmitted to the electrical terminal in the electrical connector through the wire electrical cable attached to the terminal. |
US11811165B2 |
Sealing cover and molding method thereof
Provided is a molding method of a sealing cover, realized by setting up a sealing cover mold, the mold includes a cavity and a core group arranged in the cavity, including setting up a first core and a second core, the mold opening direction of the first core and the second core are not parallel. The present application does not need a process hole to perform the injection molding of the sealing cover with a fastening structure, whose sealing is also better. |
US11811163B2 |
Mutoa and quad floating connector
A floating quad connector assembly is designed to hold two pairs of simplex connecters in a quad formation and to permit the two pairs of connectors to float within the assembly, thereby rendering the quad connector assembly compatible with different quad adapters having different spacings between the two middle simplex ports. Also, a segmental switch module is configured to aggregate multiple category-rated connectors in an array formation while permitting the spacings between the connectors to float, thereby rendering the switch module compatible with port arrays of different port-to-port spacings. |
US11811154B2 |
Compact protective cable conduit for clean room applications and encasing unit and arrangement with support chain for same
A protective cable conduit for lines in a clean room application, with a flexible encasement which is movable back and forth for routing a line. Each receptacle extends in channel-like fashion from a first end to a second end. The encasement comprises at least one encasing unit, which forms the at least one receptacle for a line. The encasing unit has a first fastening strip on one longitudinal side and a second fastening strip on the other longitudinal side. The first and the second fastening strip are designed for releasable connection by interlocking engagement and/or frictional engagement, for example with a cooperating hook profile and claw profile, and are connectable to one another in a connection direction transverse to the longitudinal direction. A plurality of encasing units can thus be fastened to one another releasably using mating fastening strips by connecting the fastening strips in a connection direction transverse to the longitudinal direction. An arrangement of a protective cable conduit with support chains, wherein each support chain is routed in an associated encasing unit which accommodates only the associated support chain(s), such that this is replaceable separately from lines routed in the encasement. |
US11811150B2 |
Playback device with multi-band antenna
Aspects of the disclosure relate to a playback device for media playback that incorporates a multi-band antenna. The multi-band antenna may include a substrate and a primary radiator disposed on the substrate and connected to a transmission line for driving the primary radiator. The multi-band antenna may also include a secondary radiator disposed on the substrate and unconnected to the primary radiator. |
US11811142B2 |
Skewed MIMO antenna array for use in automotive imaging radar
A novel and useful system and method of constructing a skewed or staggered multiple input multiple output (MIMO) antenna array system for automotive radar having high azimuth and elevation angular resolution and accuracy that provides increased effective aperture while using a low number of TX and RX elements. Improved element separation is achieved by distancing (i.e. staggering or skewing) RX rows and TX columns by using row and column circular shifts along their major axis. Due to the physical size of antenna elements, it is not physically possible to place the rows and columns in the full array symmetric RX-TX pattern without creating a gap in the center of the virtual array. This array reduces the overall size of the antenna achieving a compact size and low side lobe level (SLL). In addition, to minimize the resulting RX saturation of elements physically close to TX elements, the system blanks (i.e. zeros) the data for those elements. The rows of the transmit columns may also be staggered, either symmetrically or asymmetrically depending on the skewing factor. |
US11811138B2 |
Antenna hardware and control
The communication system as described herein includes an input feed, a source, and a tuner device. The input feed receives an input signal. The source emits a wireless signal based on the received input signal. The tuner device is disposed adjacent to the source emitting the wireless signal. The tuner device receives the wireless signal emitted from the source and produces a wireless output. In one embodiment, the tunable device includes multiple individually controlled window regions to control a radiation pattern of the wireless output transmitted from the tuner device. |
US11811137B2 |
Additively manufactured antenna
An additively manufactured antenna device is disclosed, including a base portion and a body portion. The body portion is attached to the base portion and includes a lattice stiffening structure configured to eliminate secondary printing support. |
US11811135B2 |
Multi-band MIMO panel antennas
Described are multi-band panel antennas which are configurable to have heavy-duty construction and which are fully IP67 waterproof. Suitable applications for the disclosed antennas include internet of things (IoT) gateway and IoT routers, HD video streaming, transportation, and remote monitoring applications. Additionally, the antennas can deliver MIMO coverage technology for worldwide 4G LTE bands at 698 to 960 MHz/1710 to 2170 MHz/2490 to 2690 MHz/3300 to 3600 MHz, Satellite Band, dual-band 2.4/5.8 GHz WiFi, and GNSS (GPS-GLONASS-BeiDou). |
US11811133B2 |
Electronic device antenna arrays mounted against a dielectric layer
An electronic device may be provided with a dielectric cover layer, a dielectric substrate, and a phased antenna array on the dielectric substrate for conveying millimeter wave signals through the dielectric cover layer. The array may include conductive traces mounted against the dielectric layer. The conductive traces may form patch elements or parasitic elements for the phased antenna array. The dielectric layer may have a dielectric constant and a thickness selected to form a quarter wave impedance transformer for the array at a wavelength of operation of the array. The substrate may include fences of conductive vias that laterally surround each of the antennas within the array. When configured in this way, signal attenuation, destructive interference, and surface wave generation associated with the presence of the dielectric layer over the phased antenna array may be minimized. |
US11811127B2 |
Wireless network controller and method of controlling a wireless network
An antenna apparatus for use in a wireless network and method of operating such an antenna apparatus are provided. A wireless network controller provides a configuration of such an antenna apparatus, a method of operating such a wireless network controller, and a resulting wireless network. The antenna apparatus comprises a directional antenna and a uniform circular antenna array. The directional antenna can be rotatably positioned about an axis with respect to a fixed mounting portion of the apparatus in dependence on wireless signals received by the antenna array. The antenna array allows the antenna apparatus to receive wireless signals isotropically and thus to accurately monitor the wireless signal environment in which it finds itself. The antenna apparatus can thus monitor and characterise incoming signals, both from external interference sources and from other network nodes, and the directional antenna can then be positioned in rotation to improve the network throughput. |
US11811126B2 |
Antenna apparatus and radio base station
An antenna apparatus is disclosed including an antenna element; an installation base being a base where the antenna element is installed; a container including an upper surface that opens and housing the antenna element and the installation base, the upper surface being a surface closest to a ground surface when the container is installed in a ground; and a cover being formed of FRP (Fiber-Reinforced Plastics) and covering an opening of the container, wherein the installation base includes a height adjustment mechanism that adjusts a distance from the antenna element to the cover. In other aspects, a radio base station is also disclosed. |
US11811122B2 |
Radio frequency device with non-uniform width cavities
A microwave or radio frequency (RF) device includes a substrate and a cover. The substrate has a first surface and an opposing second surface, the first surface including a first RF component and a second RF component electrically coupled to the first RF component in series. The cover is disposed over the first surface of the substrate, where the cover includes a first portion with a first width covering the first RF component, where the first portion and the first surface define a first waveguide cavity having the first width, and a second portion with a second width, less than the first width, covering the second RF component, where the second portion and the first surface define a second waveguide cavity having the second width. |
US11811111B2 |
Control method for fuel cell system
A control method for a fuel cell system includes: acquiring a poisoning rate of an electrode catalyst of a fuel cell; performing a potential maintaining operation of maintaining a potential of the fuel cell in a first potential range when the poisoning rate of the electrode catalyst is greater than a prescribed value α; and performing a potential changing operation of repeating a cycle in which the potential of the fuel cell is changed between an upper-limit potential and a lower-limit potential of a second potential range which is higher than the first potential range after the potential maintaining operation has been performed. |
US11811109B2 |
Method of operating water electrolysis and electricity generating system
A method of operating a water electrolysis and electricity generating system includes, at a time of switching from the water electrolysis mode to the electricity generating mode, a water electrolysis stopping step, a purging step and an electricity generation starting step. In the purging step after the water electrolysis stopping step, an oxygen-containing gas is caused to flow from an oxygen-containing gas flow path to a first gas-liquid separator via an oxygen-containing gas introduction flow path, a first supply flow path, a first inlet port member, a first fluid flow path, a first outlet port member, and a first lead-out flow path. In the electricity generation starting step after the purging step, the cell member is caused to generate electricity based on a predetermined required load value. |
US11811107B2 |
Use of a heat source for generation of electricity and aircraft comprising a cooling system
A cooling system containing a two-phase refrigerant that comprises a condenser, an evaporator and a conveying device. The evaporator is integrated in a heat source or thermally coupled thereto. Gaseous refrigerant from the evaporator is expanded in an expander, converted into mechanical energy and used to drive a generator for generation of electricity. Furthermore, an aircraft comprising a cooling system, wherein an electrical drive is supplied with electricity from a fuel cell, cooled using the cooling system, and the generator of the cooling system. |
US11811100B2 |
Cell module
A cell module includes a plurality of battery cells each having a safety valve at a first end in a height direction, a first current collector plate including a main body having a through hole that at least partly overlaps the safety valve when viewed along the height direction and a lead extending into the through hole from the main body and being electrically connected to a first terminal of each of the battery cells, an exhaust duct disposed over a surface of the first current collector plate remote from the battery cells, and an insulating film being made of an insulating material and covering an area of the first current collector plate facing the exhaust duct. The safety valve opens when an internal pressure of any of the battery cells reaches or exceeds a predetermined level. |
US11811098B2 |
Three-dimensional folded battery unit and methods for manufacturing the same
One variation of a battery unit includes: a series of anode collectors; a set of anode electrodes including anode material arranged on both side of the anode collectors; a set of anode interconnects interposed between and electrically coupling adjacent anode collectors and folded to locate the anode collectors in a boustrophedonic anode stack; a series of cathode collectors; a set of cathode electrodes including cathode material arranged on both side of the cathode collectors; a set of cathode interconnects interposed between and electrically coupling adjacent cathode collectors and folded to locate the cathode collectors in a boustrophedonic cathode stack with cathode collectors interdigitated between anode collectors in the boustrophedonic anode stack; and a set of separators arranged between the anode and cathode electrodes and transporting solvated ions between the anode and cathode electrodes. |
US11811097B2 |
Battery tab design, method of manufacture thereof and batteries comprising the same
A tab for use in a battery comprises a metal piece that comprises a cross-sectional area geometry that is a rhombus, a parallelogram or a trapezoid when viewed in a lateral direction. The metal piece further comprises a cross-sectional area geometry having a variable thickness when viewed in a longitudinal direction that is perpendicular to the lateral direction. When viewed in the longitudinal direction, a tab thickness t1 at a point where the tab is in contact with an electrode is less than the tab thickness t2 at a point where the tab contacts a pouch. |
US11811095B2 |
Battery pack including busbar assembly having flexible substrate and insulating film
A battery pack includes battery cells arranged in a first direction, and a busbar assembly coupled to upper portions of the battery cells, the busbar assembly having a busbar electrically connected to the battery cells, a flexible substrate configured to measure a state information of the battery cells, and an insulating film surrounding the busbar and the flexible substrate. |
US11811093B2 |
Separator for lithium secondary battery with improved adhesiveness towards electrode and resistance characteristics and lithium secondary battery comprising the separator
The present disclosure relates to a separator for a lithium secondary battery comprising a porous substrate, and a porous coating layer disposed on at least one surface of the porous substrate and comprising inorganic particles and binder polymer, wherein the binder polymer is terpolymer including 65 to 90 weight % of a repeat unit derived from vinylidenefluoride (VDF), 1 to 28 weight % of a repeat unit derived from hexafluoropropylene (HFP) and 5 to 28 weight % of a repeat unit derived from chlorotrifluoroethylene (CTFE), and the separator has adhesiveness towards electrode ranging from 30 gf/25 mm to 150 gf/25 mm and machine direction (MD) thermal shrinkage of 1 to 18% and transverse direction (TD) thermal shrinkage of 1 to 17%, and a lithium secondary battery comprising the same, wherein the separator has uniform micropores on the surface, and thus has the increased adhesive surface area with electrode and consequential improved adhesiveness towards electrode. |
US11811091B2 |
Electrode assembly and secondary battery
The present disclosure provides an electrode assembly and a secondary battery. The electrode assembly includes a first electrode plate, a second electrode plate and a separator. The first electrode plate, the second electrode plate and the separator are wound to a flat structure, and the flat structure comprises a main region and corner regions, the corner regions are provided at two ends of the main region along a width direction of the main region. The first electrode plate and the second electrode plate each are wound to turns. A gap is provided between two adjacent turns of the first electrode plate, the gap includes a first gap and a second gap. The first gap corresponds to the corner region in position, the second gap corresponds to the main region in position, and a dimension of the first gap is larger than a dimension of the second gap. |
US11811090B1 |
Separator, method of manufacturing separator, and electrochemical device including separator
The present invention relates to a separator, a method of manufacturing the separator, and an electrochemical device including the separator. An embodiment of the present invention may provide a separator including: a porous substrate; an inorganic particle layer provided on at least one surface of the porous substrate; and a heat fusion layer provided on at least one surface of the inorganic particle layer, wherein a surface gloss value at 60° C. of a surface of the heat fusion layer is 10 GU or more. |
US11811088B2 |
Separator, electrode group, secondary battery, battery pack, vehicle, and stationary power supply
A separator includes an inorganic particle layer including an inorganic particle, a polymeric binder and a fiber substance. A mass ratio of the fiber substance with respect to a total mass of the inorganic particle, the polymeric binder and the fiber substance is 0.1 mass % or more and 40 mass % or less. |
US11811086B2 |
Alkaline battery separators having controlled pore size
An alkaline battery separator is made from a blend of polyvinyl alcohol and a cellulose derivative, and has a controlled pore size. |
US11811085B2 |
Degassing unit and electronics housing, in particular battery housing
A degassing unit for an electronics housing has a base body with gas passage opening and is connectable fluid-tightly to a rim of a pressure compensation opening of the electronics housing. A semipermeable membrane for covering the pressure compensation opening enables passage of gaseous media from an environment into the electronics housing interior and vice versa but prevents passage of liquids and solids. A membrane support device, arranged at an interior side of the base body facing the electronics housing interior, engages across the gas passage opening and is positioned at a first distance to the semipermeable membrane. A separation lattice with lattice openings is arranged at the interior side of the base body at a second larger distance to the semipermeable membrane and completely engages across the gas passage opening. A surface area spanned by the separation lattice is larger than a cross section of the gas passage opening. |
US11811082B1 |
Energy storage power supply
The present disclosure provides an energy storage power supply, including a power supply main body and a strap, wherein the power supply main body is provided with a handle; a hanging part is arranged at the handle; the strap is detachably connected to the hanging part, so that a user can carry the energy storage power supply with the handle, and can also easily carry the energy storage power supply with the strap. |
US11811081B2 |
Ventilation unit
A ventilation unit with: a ventilation body that allows gas to circulate between the outside and inside of a housing; a support member that supports the body attached to an opening portion formed in the housing; and a sealing member between the support member and the outer surface around the housing opening portion and seals a gap between the support member and the housing, wherein the unit performs ventilation between the outside and inside of the housing through the body while attached to the opening portion of the housing. The support member includes: an attachment portion to which the sealing member is attached; and a wall portion around the attachment portion, wherein, in a state where the support member is attached between the support member and the housing, a distance between the support member and an external surface in the support member wall portion is 5.0 mm or more. |
US11811077B2 |
Pouch packaged lithium-ion battery with tooth-shaped sealing edge
A pouch packaged lithium-ion battery with a tooth-shaped sealing edge, including a main body, which includes an aluminum-plastic film arranged with a jelly roll disposed therein. The jelly roll includes a cathode, an anode and a film separating the two. The cathode, the film and the anode are winded and overlaid. A cathode tab and an anode tab are respectively arranged on both sides of the jelly roll. A middle part of the aluminum-plastic film extends toward an outside of the lithium-ion battery to form a sealing edge. The cathode tab and the anode tab extend horizontally and penetrate the sealing edge. A joint between the cathode/anode and the sealing edge is covered with a tab sealant. The sealing edge, the cathode tab and the anode tab are bent to attach to a surface of the main body. The surface of the sealing edge is arranged with tooth-shaped grooves. |
US11811074B2 |
Fuel cell
The invention relates to a fuel cell (110) comprising two gas diffusion layers (70), two electrode elements (10, 10′) and a membrane element (30). The membrane element (30) is arranged between the two gas diffusion layers (70), each electrode element (10, 10′) being embedded between a gas diffusion layer (70) and the membrane element (30). The membrane element (30) is in the form of an amorphous carbon layer. |
US11811068B2 |
Cellulose-based self-standing films for use in Li-ion batteries
The present technology relates to self-standing electrodes, their use in electrochemical cells, and their production processes using a water-based filtration process. For example, the self-standing electrodes may be used in lithium-ion batteries (LIBs). Particularly, the self-standing electrodes comprise a first electronically conductive material serving as a current collector, the surface of the first electronically conductive material being grafted with a hydrophilic group, a binder comprising cellulose fibres, an electrochemically active material, and optionally a second electronically conductive material. A process for the preparation of the self-standing electrodes is also described. |
US11811066B2 |
Compositions and methods for dry electrode films including microparticulate non-fibrillizable binders
Provided herein are dry process electrode films, and energy storage devices incorporating the same, including a microparticulate non-fibrillizable binder having certain particle sizes. The electrode films exhibit improved mechanical and processing characteristics. Also provided are methods for processing such microparticulate non-fibrillizable electrode film binders, and for incorporating the microparticulate non-fibrillizable binders in electrode films. |
US11811062B2 |
Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same
A positive electrode (1) for non-aqueous electrolyte secondary batteries, including collector (11) and active material layer (12), wherein: integrated value (a) is 3 to 15% (for frequency of diameters of 1 μm or less), and frequency (b) is 8 to 20% (for diameter with a maximum frequency). A positive electrode (1) for non-aqueous electrolyte secondary batteries, including collector (11) and active material layer (12), wherein assuming two directions perpendicular to thickness direction of collector (11) and mutually orthogonal as first and second directions, average thickness a1, maximum thickness b1, minimum thickness cl in thickness distribution in the first direction, and thickness d1 (largest absolute value of difference from a1) satisfy 0.990≤(d1/a1)≤1.010 and (b1−c1)≤5.0 μm, and average thickness a2, maximum thickness b2, minimum thickness c2 in thickness distribution in the second direction, and thickness d2 (largest absolute value of difference from a2) satisfy 0.990≤(d2/a2)≤1.010 and (b2−c2)≤5.0 μm. |
US11811061B2 |
Positive electrode materials having a superior hardness strength
A powderous positive electrode material for a lithium secondary battery has the general formula Li1+x[Ni1−a−b−cMaM′bM″c]1−xO2−z. M is one or more elements of the group Mn, Zr and Ti. M′ is one or more elements of the group Al, B and Co. M″ is a dopant different from M and M′, and x, a, b and c are expressed in mol with −0.02≤x≤0.02, 0≤c≤0.05, 0.10≤(a+b)≤0.65 and 0≤z≤0.05. The material has an unconstrained cumulative volume particle size distribution value (Γ0(D10P=0)), a cumulative volume particle size distribution value after having been pressed at a pressure of 200 MPa (ΓP(D10P=200)) and a cumulative volume particle size distribution value after having been pressed at a pressure of 300 MPa (ΓP(D10P=300)). When ΓP(D10P=200) is compared to Γ0(D10P=0), the relative increase in value is less than 100%. When ΓP(D10P=300) is compared to Γ0(D10P=0), the relative increase in value is less than 120%. |
US11811058B2 |
Primary alkaline battery
A primary battery includes a cathode having a non-stoichiometric metal oxide including transition metals Ni, Mn, Co, or a combination of metal atoms, an alkali metal, and hydrogen; an anode; a separator between the cathode and the anode; and an alkaline electrolyte. |
US11811057B2 |
Positive electrode sheet, secondary battery, battery module, battery pack, and electrical apparatus
A positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer coated on at least one surface of the positive electrode current collector. The positive electrode active material layer includes an inner active material layer and an outer active material layer successively stacked. The inner active material layer has a three-level pore size distribution: an inner primary pore size distribution from 3 nm to 10 nm, an inner secondary pore size distribution from 10 nm to 100 nm, and an inner tertiary pore size distribution from 0.1 μm to 2 μm. The outer active material layer has a three-level pore size distribution: an outer primary pore size distribution from 0.5 nm to 3 nm, an outer secondary pore size distribution from 10 nm to 100 nm, and an outer tertiary pore size distribution from 0.1 μm to 2 μm. |
US11811054B2 |
Battery pack and power consuming device
A battery pack may include a battery pack case and battery cells accommodated in the battery pack case, where an inner space of the battery pack case may include a first area and a second area, a first battery cell may be provided in the first area, second battery cells may be provided in the second area, and the second battery cells may be arranged around the first battery cell; the first battery cell and the second battery cells each may have a first discharge voltage plateau and a second discharge voltage plateau, and an average discharge voltage in the first discharge voltage plateau may be higher than an average discharge voltage in the second discharge voltage plateau. |
US11811052B2 |
Positive electrode active material for non-aqueous electrolyte secondary battery
The present invention provides a positive electrode active material for a non-aqueous electrolyte secondary battery including a lithium metal composite oxide powder represented by a general formula: LizNi1−x−yCoxMyO2+α, wherein 0 |
US11811050B2 |
Nonaqueous-electrolyte secondary battery and secondary battery module
A secondary battery module includes a nonaqueous-electrolyte secondary battery and an elastic body, wherein a negative electrode constituting the nonaqueous-electrolyte secondary battery includes a negative-electrode active material layer, the negative-electrode active material layer includes a first layer, and a second layer that is formed on the first layer and has a higher compression modulus than the first layer, a separator constituting the nonaqueous-electrolyte secondary battery has a lower compression modulus than the first layer, the elastic body has a lower compression modulus than the separator, the graphite particles contained in the first layer have a BET specific surface area of 1 to 2.5 m2/g, and the content of Si particles in the first layer is 6 mass % to 13 mass % relative to the total amount of the negative-electrode active material layer. |
US11811049B2 |
Carbon-based fiber sheet and lithium-sulfur battery including same
Disclosed is a carbon-based fiber sheet and a lithium-sulfur battery including the same. The carbon-based fiber sheet for the lithium-sulfur battery is doped with a high concentration of nitrogen and thus plays a role of preventing diffusion by adsorbing lithium polysulfide eluted from a positive electrode during charging and discharging, thereby suppressing a shuttle reaction and thus improving capacity and lifecycle properties of the lithium-sulfur battery. |
US11811047B2 |
Apparatus, systems and methods for the production of electrodes for use in batteries
A process for delineating a population of electrode structures in a web includes laser ablating the web to form ablations in the web, each ablation being formed by removing a portion of an electrochemically active layer to thereby expose a portion of an electrically conductive layer. The process includes forming alignment features in the web that are formed at predetermined locations on the web. The process also includes laser machining the web to form weakened tear patterns in the web that delineate members of the electrode structure population, each of the delineated members being individually bounded, at least in part, by a member of the weakened tear patterns that is adapted to facilitate separation of delineated members, individually, from the web by an application of a force, the alignment features being used to aid in the formation of the weakened tear patterns. |
US11811043B2 |
Electrode for all-solid-state battery and method for manufacturing electrode assembly comprising the same
The present disclosure may obtain an electrode for an all-solid-state battery with low porosity by adjusting the concentration of an electrode active material layer-forming slurry and a solid electrolyte layer-forming slurry. The all-solid-state battery uses a solid electrolyte material, not a liquid electrolyte material, and thus it needs to have a close contact between the constituent materials of the battery such as an electrode active material and a solid electrolyte material, and when the manufacturing method according to the present disclosure is applied, the electrode active material layer is filled with the solid electrolyte material, bringing the components into close contact, thereby improving the interfacial resistance characteristics. |
US11811041B2 |
Power supply system
A power supply system includes a plurality of batteries, a cooling portion through which a refrigerant for cooling the plurality of the batteries flows, a housing that has a bottom plate, a top plate, and side walls, the housing accommodating the plurality of the batteries and the cooling portion, and a compressor configured to pump the refrigerant to the cooling portion. In the housing, a strength member that extends in a direction in which the side walls face each other and reinforces the housing is mounted on the bottom plate or the top plate. The compressor is disposed in a position in which the compressor and the strength member are overlapped in the upright direction of the side walls. |
US11811035B2 |
Recovery of critical elements from end-of-life lithium ion batteries with supported membrane solvent extraction
Single-stage and multi-stage systems and methods for the recovery of critical elements in substantially pure form from lithium ion batteries are provided. The systems and methods include supported membrane solvent extraction using an immobilized organic phase within the pores of permeable hollow fibers. The permeable hollow fibers are contacted by a feed solution on one side, and a strip solution on another side, to provide the simultaneous extraction and stripping of elements from dissolved lithium ion cathode materials, while rejecting other elements from the feed solution. The single- and multi-stage systems and methods can selectively recover cobalt, manganese, nickel, lithium, aluminum and other elements from spent battery cathodes and are not limited by equilibrium constraints as compared to traditional solvent extraction processes. |
US11811033B2 |
Battery arrangement for electric vehicle
A battery arrangement for a motor vehicle, with a battery which has a battery housing and a plurality of battery cells. The battery cells are arranged in the battery housing. A protective plate is arranged at least on one side of the battery. A damage detection apparatus has a damage indicator. The damage indicator is arranged on the protective plate. The damage indicator is embedded into the protective plate. |
US11811031B2 |
Battery module
A battery module including a temperature sensor according to an exemplary embodiment of the present invention includes: a flexible printed circuit board where the temperature sensor is provided; a battery cell that overlaps a portion of the flexible printed circuit board, in which the temperature sensor is provided; and an upper plate that is disposed above the flexible printed circuit board, wherein the upper plate is partially cut so as to define an elastic member, and the elastic member presses the portion of the flexible printed circuit board in which the temperature sensor is provided so as to cause the flexible printed circuit board to contact the battery cell. |
US11811030B2 |
Diagnostic device for secondary battery and recovery method for secondary battery
A recovery method for a secondary battery having a structure in which positive electrodes and negative electrodes are laminated. The recovery method includes a first compression for compressing at least a part of the secondary battery; a second compression for compressing the secondary battery by applying a load from an outside of the secondary battery when an amount of decrease in electrical resistance of the secondary battery by the first compression is greater than a predetermined value; and a recovery for charging the secondary battery, while the load that compresses the secondary battery is applied to the secondary battery, upon determining that the increase in electrical resistance due to the distortion of at least one of the positive electrodes and the negative electrodes occurs in the secondary battery. |
US11811029B2 |
Charging method and battery pack
A charging method and a battery pack are provided. The charging method for charging multiple cells of the battery pack include steps of: charging the cells of the battery pack using a charging voltage, and detecting a voltage difference ΔVTDV between the cells, wherein a value of the charging voltage is a rated charging voltage value; and obtaining a new charging voltage value smaller than the rated charging voltage value according to the voltage difference ΔVTDV between the cells, and decreasing the charging voltage to the new charging voltage value for charging the cells. |
US11811028B2 |
On-vehicle system, secondary battery management system, charge rate output method, and program
An on-vehicle system according to an aspect of the present invention includes: an acquisition part that acquires a signal indicating a voltage of a secondary battery which is mounted on a vehicle; an electric power supply part that uses electric power which is supplied from an external electric power supply device and that supplies the electric power to the secondary battery or an auxiliary machine mounted on the vehicle; and an output part that outputs a charge rate of the secondary battery based on the signal indicating the voltage of the secondary battery which is acquired by the acquisition part, wherein the electric power supply part controls output electric power such that stored electric power of the secondary battery is constant in a case where the vehicle stops and the charge rate of the secondary battery is output. |
US11811027B2 |
E-cigarette and re-charging pack
A rechargeable pack is provided for containing and recharging an e-cigarette. The pack includes a pack battery; a first connector which is electrically connectable to an external power source; a first recharging mechanism for re-charging the pack battery using the external power source when the first connector is electrically connected to the external power source; a second connector which is electrically connectable to the e-cigarette when the e-cigarette is received within the pack; and a second recharging mechanism for re-charging the e-cigarette using the pack battery when the e-cigarette is electrically connected to the second connector. The second recharging mechanism can be configured to provide protection against the pack battery providing excessive current through the second connector. |
US11811024B2 |
BMS and battery system
Provided are a battery management system (BMS) and a battery system capable of accurately measuring a voltage without using a precise resistance element and reducing an error even when operating in a wide temperature range. Since a correction amount for the resistor included in the voltage measurement module is generated using a diagnostic power source configured independently of the battery system, and a voltage of the circuit included in the battery system is measured by applying the generated correction amount, the voltage may be precisely measured without using a high-precision resistance element. Since a changeover switch operates periodically to generate and apply an updated correction amount according to a changing environment, the voltage may be precisely measured even if it is applied to a system in which the environment continuously changes, such as a driving electric vehicle. |
US11811021B2 |
Precursor structure, lamination film of the same, and manufacturing method of ion-conducting layer using the same
A precursor structure is provided. The precursor structure has the following chemical formula: ( La 2 Zr 2 - x M x O 7 ) · 1 2 ( La 2 - y M y ′ O 3 ) , wherein M is a trivalent ion or a pentavalent ion, M′ is a bivalent ion, x=0-1, y=0-1.5, and the precursor structure includes a pyrochlore phase. Since the pyrochlore phase may be transformed into the garnet phase through a lithiation process and the phase transition temperature is lower (e.g., 500-1000° C.), the precursor structure may be co-fired with the cathode material (e.g., lithium cobalt oxide (LiCoO2)) to form a thin lamination structure. That is, the thickness of the solid electrolyte may be effectively reduced, thereby improving the ionic conductivity of the solid electrolyte ion battery. |
US11811019B2 |
Lithium secondary battery
Provided is a lithium secondary battery, and the lithium secondary battery of the present invention includes: a positive electrode including a first lithium-metal oxide including secondary particles formed by aggregating primary particles having a particle diameter of 2 μm or less and a second lithium-metal oxide including nickel and at least one or more metals selected from the group consisting of manganese (Mn) and cobalt (Co) and including particles having a primary particle diameter of 2 μm or more; a negative electrode; a separator interposed between the positive electrode and the negative electrode; and an electrolyte, wherein the electrolyte includes a lithium salt, a nonaqueous organic solvent, and a difluorophosphite compound containing at least one or more difluorophosphite groups. |
US11811018B2 |
Cathode for lithium-sulfur battery, and lithium-sulfur battery comprising same
A positive electrode for a lithium-sulfur battery and a lithium-sulfur battery including the same, and in particular, a positive electrode for a lithium-sulfur battery including an active material, a conductive material, a binder and an additive, wherein the additive includes an organic acid lithium salt, the organic acid lithium salt including a dicarboxyl group. By including a dicarboxyl group-including organic acid lithium salt as the additive, the positive electrode for the lithium-sulfur battery is capable of enhancing capacity and lifetime properties of the lithium-sulfur battery through enhancing lithium ion migration properties. |
US11811016B2 |
Series formation system
A series formation system is provided. The series formation system includes at least two formation modules and a power module. The power module is connected in series with the at least two formation modules. The at least two formation modules are connected in series. The power module is configured to supply power to the at least two formation modules. Each of the formation modules includes a battery cell and a formation control circuit. The formation control circuit is electrically connected to the battery cell. The formation control circuit is configured to control a voltage or a current provided by the power module to the battery cell, so that the battery cell is switched between a constant current charging mode and a constant voltage charging mode. |
US11811013B2 |
Display panel
A display panel includes a drive element, a first heat dissipation layer, a light-emitting element, and a second heat dissipation layer. The drive element is disposed on a substrate. The first heat dissipation layer is disposed on the drive element. The light-emitting element is disposed on the first heat dissipation layer and electrically connected to the drive element. The second heat dissipation layer covers the light-emitting element. A refractive index of the first heat dissipation layer is greater than a refractive index of the second heat dissipation layer when a light-emitting surface of the light-emitting element faces the first heat dissipation layer, and the refractive index of the second heat dissipation layer is greater than the refractive index of the first heat dissipation layer when the light-emitting surface of the light-emitting element faces the second heat dissipation layer. |
US11811012B2 |
Light-emitting device, display device having same, and method for manufacturing same
A light emitting device may include: a substrate including a plurality of unit light emitting regions; and first to fourth insulating layers sequentially on the substrate. Each of the unit light emitting regions may include: at least one light emitting element on the first insulating layer, the at least one light emitting element having a first end portion and a second end portion in a length direction thereof; first and second partition walls on the substrate, and the first and second partition walls being spaced apart from each other; a first reflective electrode on the first partition wall and a second reflective electrode on the second partition wall; a first contact electrode on the first reflective electrode, the first contact electrode connecting the first reflective electrode and the first end portion of the light emitting element; a second contact electrode on the second reflective electrode, the second contact electrode connecting the second reflective electrode and the second end portion of the light emitting element; and a conductive pattern provided between the first insulating layer and the first contact electrode, the conductive pattern surrounding the first and second reflective electrodes when viewed on a plane. |
US11811011B2 |
Low profile interconnect for light emitter
In some embodiments, an interconnect electrical connects a light emitter to wiring on a substrate. The interconnect may be deposited by 3D printing and lays flat on the light emitter and substrate. In some embodiments, the interconnect has a generally rectangular or oval cross-sectional profile and extends above the light emitter to a height of about 50 μm or less, or about 35 μm or less. This small height allows close spacing between an overlying optical structure and the light emitter, thereby providing high efficiency in the injection of light from the light emitter into the optical structure, such as a light pipe. |
US11811005B2 |
Light-emitting diode chip structures with reflective elements
A light-emitting diode (LED) chip structure with a cup-like reflective element is provided. The LED chip structure comprises a substrate, an isolation element and a mesa including an LED surrounded by the isolation element. The isolation element comprises an upper isolation part and a lower isolation part. The lower isolation part is positioned in the substrate and the upper isolation part protrudes from a surface of the substrate. A reflective layer is disposed on a sidewall of the upper isolation part, and a bottom of the reflective layer does not contact the mesa. The cup-like reflective element at least includes the isolation element with the reflective layer. |
US11811003B2 |
Transparent electrode-equipped substrate and production method therefor
A transparent electrode-equipped substrate includes, on a film base material having a transparent film substrate, a non-crystalline transparent foundation oxide layer and a non-crystalline transparent conductive oxide layer. The transparent electrode-equipped substrate is capable of achieving low resistivity by having the transparent oxide layers being formed sequentially from the film base material side through sputtering such that the absolute value of a discharge voltage (VU) of a direct-current (DC) power supply when forming the transparent foundation oxide layer is 255-280 V, the ratio (VU/VC) between the discharge voltage (VU) of the DC power supply when forming the transparent foundation oxide layer and the discharge voltage VC of the DC power supply when forming the transparent conductive oxide layer is 0.86-0.98. |
US11810999B2 |
Resonant optical cavity light emitting device
Resonant optical cavity light emitting devices are disclosed, where the device includes a substrate, a first spacer region, a light emitting region, a second spacer region, and a reflector. The light emitting region is configured to emit a target emission deep ultraviolet wavelength and is positioned at a separation distance from the reflector. The reflector may be a distributed Bragg reflector. The device has an optical cavity comprising the first spacer region, the second spacer region and the light emitting region, where the optical cavity has a total thickness less than or equal to K·λ/n. K is a constant ranging from 0.25 to 10, λ is the target wavelength, and n is an effective refractive index of the optical cavity at the target wavelength. |
US11810994B2 |
Infrared-transmitting high-sensitivity visible light detector and preparation method thereof
The invention relates to an infrared-transmitting high-sensitivity visible light detector and its preparation method. The detector is composed of passivation layer (14), upper electrode (13), heterojunction (15), lower electrode (3), and intrinsic monocrystalline silicon substrate (2). The upper electrode (13) is the material that is electrically conductive and transparent to visible light and infrared light. The heterojunction (15) is divided into heterojunction upper layer (5) and heterojunction lower layer (4), wherein the upper heterojunction layer (5) is a nano film sensitive to visible light and capable of transmitting infrared ray, and the lower heterojunction layer (4) is intrinsic monocrystalline silicon. When visible light and infrared light pass through the upper electrode (13) and the heterojunction upper layer (5), the visible light excites electron-hole pairs in the heterojunction (15), which are collected by the upper and lower electrodes and flow out through longitudinally arranged metal columns, while infrared light passes through the whole detection structure, so that visible light can be detected without affecting infrared transmission. The distance between the electrode and the junction zone is very small, which can reduce the recombination rate of electron-hole pairs before reaching the electrode and improve the collection efficiency of photo-generated carriers. The structural design of longitudinal metal reduces light shielding and improves sensitivity. |
US11810993B2 |
Solar cell, multi-junction solar cell, solar cell module, and photovoltaic power generation system
A solar cell of an embodiment includes a p-electrode, a p-type light-absorbing layer directly in contact with the p-electrode, an n-type layer, and an n-electrode. The n-type layer is disposed between the p-type light-absorbing layer and the n-electrode. A region from an interface between the p-type light-absorbing layer and the p-electrode to 10 nm to 100 nm from the interface in a direction of the n-type layer is a p+ type region including a p-type dopant. |
US11810990B2 |
Electro-optical systems, methods and computer program products for image generation
Electro-optical (EO) systems comprising a photodetector array (PDA) comprising a plurality of photosites (PSs), each PS operative to output detection signals for different frames, the detection signal output for a frame by the respective PS being indicative of an amount of light impinging on the respective PS during a respective frame exposure time (FET); a usability filtering module operative to first determine for each PS that the PS is unusable based on a first FET, and to later determine that the PS is usable based on a second FET that is shorter than the first FET; and a processor operative to generate images based on frame detection levels of the plurality of PSs. |
US11810989B2 |
Fin-based photodetector structure
A photodetector disclosed herein includes an N-doped waveguide structure defined in a semiconductor material, wherein the N-doped waveguide structure comprises a plurality of first fins. Each adjacent pair of the plurality of first fins is separated by a trench formed in the semiconductor material. The photodetector also includes a detector structure positioned on the N-doped waveguide structure, wherein a portion of the detector structure is positioned laterally between the plurality of first fins. The detector structure comprises a single crystal semiconductor material. The photodetector also includes a first diffusion region that extends from the bottom surface of the trench into the semiconductor material, wherein the first diffusion region comprises atoms of the single crystal semiconductor material of the detector structure. |
US11810982B2 |
Nonvolatile memory device with a doped region between a source and a drain and integration schemes
A nonvolatile memory device is provided. The nonvolatile memory device comprises an n-doped source, an n-doped drain, and a doped region in a first p-well in a substrate. A floating gate may be arranged over the first p-well, whereby the doped region may be arranged at least partially under the floating gate. |
US11810981B2 |
Semiconductor structure having both gate-all-around devices and planar devices
An integrated circuit includes a substrate, first and second n-type wells and a p-type well over the substrate, a first row of cells over the p-type well and the first n-type well, and a second row of cells over the p-type well and the second n-type well. The first and the second n-type wells sandwich the p-type well from a top view. The first row of cells include gate-all-around (GAA) nanosheet (NS) cells and GAA nanowire (NW) cells. The second row of cells include GAA NS cells and GAA NW cells. Each GAA NS cell includes an NMOS GAA NS transistor and a PMOS GAA NS transistor, each GAA NW cell includes an NMOS GAA NW transistor and a PMOS GAA NW transistor. Each transistor includes vertically stacked multiple first channels. The first channels of the GAA NS transistors are wider than the first channels of the GAA NW transistors. |
US11810980B2 |
Channel formation for three dimensional transistors
Embodiments herein describe techniques for a transistor above a substrate. The transistor includes a channel layer above the substrate. The channel layer includes a first channel material of a first conductivity. In addition, the channel layer further includes elements of one or more additional materials distributed within the channel layer. The channel layer including the elements of the one or more additional materials has a second conductivity different from the first conductivity. Other embodiments may be described and/or claimed. |
US11810974B2 |
Semiconductor structure with trench junction barrier schottky (TJBS) diode
A semiconductor structure includes: a U-metal-oxide-semiconductor field-effect transistor (UMOS) structure; and a trench junction barrier Schottky (TJBS) diode, wherein an insulating layer of a sidewall of the TJBS diode does not have a side gate. |
US11810971B2 |
Integrated design for III-Nitride devices
A semiconductor device comprises a III-N device and a Field Effect Transistor (FET). The III-N device comprises a substrate on a first side of a III-N material structure, a first gate, a first source, and a first drain on a side of the III-N material structure opposite the substrate. The FET comprises a second semiconductor material structure, a second gate, a second source, and a second drain, and the second source being on an opposite side of the second semiconductor material structure from the second drain. The second drain of the FET is directly contacting and electrically connected to the first source of the III-N devices, and a via-hole is formed through a portion of the III-N material structure exposing a portion of the top surface of the substrate and the first gate is electrically connected to the substrate through the via-hole. |
US11810968B1 |
Method for induced quantum dots for material characterization, qubits, and quantum computers
A method is disclosed, including positioning a lead wire of a gate chip at a distance of less than 10 nm from a semiconductor heterostructure. The heterostructure includes a surface layer and a subsurface layer. The method also includes inducing an electrostatic potential in the subsurface layer by applying a voltage to the lead wire. The method also includes loading a charge carrier into the subsurface layer. The method also includes detecting the charge carrier in the subsurface layer of the semiconductor heterostructure by emitting a radio-frequency pulse using a resonator coupled to the at least one lead wire of the gate chip, detecting a reflected pulse of the emitted radio-frequency pulse, and determining a phase shift of the reflected pulse relative to the emitted radio-frequency pulse. The method also includes characterizing the quantum dot by measuring valley splitting of the quantum dot. |
US11810963B2 |
Gate spacer structure of FinFET device
A method includes forming a fin extending above an isolation region. A sacrificial gate stack having a first sidewall and a second sidewall opposite the first sidewall is formed over the fin. A first spacer is formed on the first sidewall of the sacrificial gate stack. A second spacer is formed on the second sidewall of the sacrificial gate stack. A patterned mask having an opening therein is formed over the sacrificial gate stack, the first spacer and the second spacer. The patterned mask extends along a top surface and a sidewall of the first spacer. The second spacer is exposed through the opening in the patterned mask. The fin is patterned using the patterned mask, the sacrificial gate stack, the first spacer and the second spacer as a combined mask to form a recess in the fin. A source/drain region is epitaxially grown in the recess. |
US11810962B2 |
High electron mobility transistor and method for forming the same
A method for forming a high electron mobility transistor (HEMT) includes forming a buffer layer on a transparent substrate. The method further includes forming a barrier layer on the buffer layer. A channel region is formed in the buffer layer adjacent to the interface between the buffer layer and the barrier layer. The method further includes forming a dielectric layer on the barrier layer. The method further includes forming source/drain electrodes through the dielectric layer and the barrier layer and disposed on the buffer layer. The method further includes forming a shielding layer conformally covering the dielectric layer and the source/drain electrodes. The method further includes performing a thermal process on the source/drain electrodes. |
US11810961B2 |
Transistor gate structures and methods of forming the same
In an embodiment, a device includes: a p-type transistor including: a first channel region; a first gate dielectric layer on the first channel region; a tungsten-containing work function tuning layer on the first gate dielectric layer; and a first fill layer on the tungsten-containing work function tuning layer; and an n-type transistor including: a second channel region; a second gate dielectric layer on the second channel region; a tungsten-free work function tuning layer on the second gate dielectric layer; and a second fill layer on the tungsten-free work function tuning layer. |
US11810957B2 |
Semiconductor device
Disclosed is a semiconductor device including a substrate including first and second active regions, a device isolation layer on the substrate and defining first and second active patterns, first and second gate electrodes running across the first and second active regions and aligned with each other, first and second source/drain patterns on the first and second active patterns, a first active contact connecting the first and second source/drain patterns to each other, and a gate cutting pattern between the first and second gate electrodes. An upper portion of the first active contact includes first and second upper dielectric patterns. The first active contact has a minimum width at a portion between the first and second upper dielectric patterns. A minimum width of the gate cutting pattern is a second width. A ratio of the first width to the second width is in a range of 0.8 to 1.2. |
US11810953B2 |
Sensor having graphene transistors
A sensor for performing measurements is disclosed. It comprises: a substrate; a plurality of graphene field-effect transistors (GFET) deposited on a central area of the substrate; at least one source electrode connected to the GFETs through at least one first metal track, wherein the at least one source electrode is disposed at the periphery of the substrate; at least one drain electrode connected to the GFETs through at least one second metal track, wherein the at least one drain electrode is disposed at the periphery of the substrate; and at least one gate electrode, disposed at least in part at the center of the substrate, wherein, in use of the sensor, when a sample is deposited in contact with the gate electrode and the GFETs, the sample allows gating between the gate electrode and the GFETs. |
US11810950B2 |
Semiconductor structure
A semiconductor structure is provided. The semiconductor structure includes a semiconductor substrate having a first region and a second region; first nanowires formed over the first region of the semiconductor substrate; second nanowires with a diameter smaller than a diameter of the first nanowires formed over the second region of the semiconductor substrate; a first gate layer formed around the first nanowires; and a second gate layer formed around the second nanowires. |
US11810947B2 |
Semiconductor device
A semiconductor device includes a substrate, a bottom electrode on the substrate, a first support layer on the substrate next to a sidewall of the bottom electrode, a dielectric layer covering the sidewall and a top surface of the bottom electrode, and a top electrode on the dielectric layer. The bottom electrode includes a first part having a plurality of protrusions that protrude from a sidewall of the first part. The first part of the bottom electrode may be on the first support layer. |
US11810944B2 |
LED display apparatus
A display apparatus including a display substrate, a plurality of light emitting devices disposed on the display substrate, at least one of the light emitting devices including a first LED sub-unit, a second LED sub-unit disposed on the first LED sub-unit, and a third LED sub-unit disposed on the second LED sub-unit, and a molding layer covering side surfaces of the light emitting devices and exposing upper surfaces thereof, in which the third LED sub-unit is disposed closer to an upper surface of the light emitting device than the first LED sub-unit. |
US11810941B2 |
3D image sensor
A three-dimensional (3D) image sensor includes a first substrate having an upper pixel. The upper pixel includes a photoelectric element and first and second photogates connected to the photoelectric element. A second substrate includes a lower pixel, which corresponds to the upper pixel, that is spaced apart from the first substrate in a vertical direction. The lower pixel includes a first transfer transistor that transmits a first signal provided by the first photogate. A first source follower generates a first output signal in accordance with the first signal. A second transfer transistor transmits a second signal provided by the second photogate. A second source follower generates a second output signal in accordance with the second signal. First and second bonding conductors are disposed between the first and second substrates and electrically connect the upper and lower pixels. |
US11810938B2 |
Back-lit image sensor based on heterojunction and preparation thereof
A back-lit image sensor and a method for manufacturing the back-lit image sensor; the back-lit image sensor comprises a photoreceptor portion and a circuit portion, wherein the photoreceptor portion comprises: a microlens and a light filter incident photons entering the back-lit image sensor first by means of the microlens and then passing through the light filter; a transparent conductive film, which is located below the microlens and the light filter, the incident photons continuing to enter by means of the transparent conductive film; and a first substrate, which is located below the transparent conductive film and which is used for capturing and detecting received photons; a heterojunction is formed between the transparent conductive film and the first substrate. |
US11810934B2 |
Image sensors including insulating layers in different pixel regions having different thicknesses and methods for forming the same
An image sensor is provided. The image sensor includes a substrate having a first pixel region and a second pixel region. The image sensor also includes a resonator structure disposed over the substrate. The resonator structure includes a first metal layer over the first pixel region and the second pixel region. The resonator structure also includes a first insulating layer over the first metal layer and the first pixel region. The first insulating layer has a first thickness. The resonator structure further includes a second insulating layer over the first metal layer and the second pixel region. The second insulating layer has a second thickness that is greater than the first thickness. In addition, the resonator structure includes a second metal layer over the first insulating layer and the second insulating layer. |
US11810933B2 |
Image sensor device and fabrication method thereof
A method for fabricating an image sensor device is provided. The method includes forming a plurality of photosensitive pixels in a substrate; depositing a dielectric layer over the substrate; etching the dielectric layer, resulting in a first trench in the dielectric layer and laterally surrounding the photosensitive pixels; and forming a light blocking structure in the first trench, such that the light blocking structure laterally surrounds the photosensitive pixels. |
US11810928B2 |
CMOS image sensor with LED flickering reduction and low color cross-talk
CMOS image sensor with LED flickering reduction and low color cross-talk are disclosed. In one embodiment, an image sensor includes a plurality of pixels arranged in rows and columns of a pixel array that is disposed in a semiconductor substrate. Each pixel includes a plurality of large subpixels (LPDs) and at least one small subpixel (SPD). A plurality of color filters are disposed over individual subpixels. Each individual SPD is laterally adjacent to at least one other SPD. |
US11810917B2 |
Self-aligned etch in semiconductor devices
Methods of performing backside etching processes on source/drain regions and gate structures of semiconductor devices and semiconductor devices formed by the same are disclosed. In an embodiment, a semiconductor device includes a first transistor structure; a first interconnect structure on a front-side of the first transistor structure; and a second interconnect structure on a backside of the first transistor structure, the second interconnect structure including a first dielectric layer on the backside of the first transistor structure; a contact extending through the first dielectric layer to a source/drain region of the first transistor structure; and first spacers along sidewalls of the contact between the contact and the first dielectric layer, sidewalls of the first spacers facing the first dielectric layer being aligned with sidewalls of the source/drain region of the first transistor structure. |
US11810916B2 |
Semiconductor capacitor array layout capable of generating parasitic capacitance toward edge of layout
A semiconductor capacitor array layout generates parasitic capacitance toward an edge of the layout so as to reduce a capacitance difference between an outer capacitor unit and an inner capacitor unit. The semiconductor capacitor array layout includes a first conductive structure and a second conductive structure. The first conductive structure includes: longitudinal first conductive strips disposed in a first integrated circuit (IC) layer; and lateral first conductive strips disposed in a second IC layer. The longitudinal and lateral first conductive strips jointly form well-type structures including outer wells and inner wells that are electrically connected. The second conductive structure includes second conductors disposed in the first IC layer. The second conductors include outer conductors and inner conductors that are electrically disconnected and respectively disposed in the outer wells and the inner wells. The outer wells and the closest inner conductors jointly generate parasitic capacitance. |
US11810915B2 |
Semiconductor package with redistribution substrate having embedded passive device
Disclosed is a semiconductor package including: a redistribution substrate; at least one passive device in the redistribution substrate, the passive device including a first terminal and a second terminal; and a semiconductor chip on a top surface of the redistribution substrate, the semiconductor chip vertically overlapping at least a portion of the passive device, wherein the redistribution substrate includes: a dielectric layer in contact with a first lateral surface, a second lateral surface opposite to the first lateral surface, and a bottom surface of the passive device; a lower conductive pattern on the first terminal; a lower seed pattern provided between the first terminal and the conductive pattern, and directly connected to the first terminal; a first upper conductive pattern on the second terminal and a first upper seed pattern provided between the second terminal and the first upper conductive pattern, and directly connected to the second terminal. |
US11810912B2 |
Semiconductor devices having asymmetric integrated gate resistors for balanced turn-on/turn-off behavior
Power semiconductor devices comprise a gate pad, a plurality of gate fingers, and a first gate resistor and a first switch that are coupled between the gate pad and the gate fingers. |
US11810909B2 |
Metal gate structure cutting process
Methods for cutting (e.g., dividing) metal gate structures in semiconductor device structures are provided. A dual layer structure can form sub-metal gate structures in a replacement gate manufacturing processes, in some examples. In an example, a semiconductor device includes a plurality of metal gate structures disposed in an interlayer dielectric (ILD) layer disposed on a substrate, an isolation structure disposed between the metal gate structures, wherein the ILD layer circumscribes a perimeter of the isolation structure, and a dielectric structure disposed between the ILD layer and the isolation structure. |
US11810908B2 |
Wafer-level 3D integration of high voltage optical transformer
A method of forming a high voltage optical transformer includes forming a via through a transparent carrier wafer, forming a conductive layer within the via, bonding a solid state lighting (SSL) package to a first side of the carrier wafer, and bonding a photovoltaic (PV) wafer to a second side of the carrier wafer opposite to the first side. The photovoltaic wafer may include an active area and a conductive area located outside of the active area that is in electrical contact with the conductive layer. The method further includes forming both an SSL contact with the solid state lighting package and a PV contact with the conductive layer on the same side of the carrier wafer. |
US11810905B2 |
Light emitting element, manufacturing method thereof, and display device including the light emitting element
Provided are a light emitting device, a method for manufacturing same, and a display device including the light emitting device. The method for manufacturing the light emitting device comprises the steps of: preparing a lower substrate including a substrate and a buffer semiconductor layer formed on the substrate, forming an element rod by forming a separating layer disposed on the lower substrate, forming a first conductivity type semiconductor layer, an active material layer, and a second conductivity type semiconductor layer on the separating layer, and etching the first conductivity type semiconductor layer, the active material layer, the second conductivity type semiconductor layer, and the separating layer in a direction perpendicular to the lower substrate, forming a first insulating layer surrounding an outer circumferential surface of the element rod, forming a second insulating layer surrounding an outer circumferential surface of the first insulating layer and separating the element rod from the lower substrate to form a light emitting element. |
US11810901B2 |
Microelectronic devices, related memory devices and electronic systems, and methods of forming microelectronic devices
A microelectronic device comprises a first control logic region comprising first control logic devices and a memory array region vertically overlying the first control logic region. The memory array region comprises capacitors, access devices laterally neighboring and in electrical communication with the capacitors, conductive lines operatively associated with the access devices and extending in a lateral direction, and first conductive pillars operatively associated with the access devices and vertically extending through the memory array region. The microelectronic device further comprises a second control logic region comprising second control logic devices vertically overlying the memory array region. Related microelectronic devices, memory devices, electronic systems, and methods are also described. |
US11810899B2 |
3DIC formation with dies bonded to formed RDLs
A method includes forming a dielectric layer over a carrier, forming a plurality of bond pads in the dielectric layer, and performing a planarization to level top surfaces of the dielectric layer and the plurality of bond pads with each other. A device die is bonded to the dielectric layer and portions of the plurality of bond pads through hybrid bonding. The device die is encapsulated in an encapsulating material. The carrier is then demounted from the device die and the dielectric layer. |
US11810898B2 |
Semiconductor package and method of manufacturing semiconductor package
A semiconductor package includes a package substrate, an interposer provided on the package substrate, a plurality of semiconductor devices on the interposer and spaced apart from each other, and electrically connected to each other through the interposer, at least one dummy member on the interposer to cover at least one corner portion of the interposer and arranged spaced apart from a first semiconductor device among the plurality of semiconductor devices, and a sealing member contacting the interposer and filling a space between the first semiconductor device and the at least one dummy member so as to cover a first side surface of the first semiconductor device, a first side surface of the at least one dummy member, and an upper surface of the dummy member. A second side surface, opposite to the first side surface, of the at least one dummy member is uncovered by the sealing member. |
US11810896B2 |
Substrate component layout and bonding method for increased package capacity
A method and apparatus for substrate component layout and bonding for increased package capacity. According to certain embodiments, a wire-bonding finger strip is disposed between a flip-chip die and a NAND die stack to reduce a keep out zone (KOZ) required for an underfill material dispensed beneath the flip-chip die. To further inhibit the flow of the underfill material and further reduce the KOZ, a solder mask may be placed adjacent to the flip-chip. According to certain embodiments, there may be at least three sides of the flip-chip that may have such an adjacent solder mask placement. The three sides of the flip-chip according to such embodiments may be those non-adjacent to the wire-bonding finger strip. |
US11810892B2 |
Method of direct bonding semiconductor components
A method of bonding semiconductor components is described. In one aspect a first component, for example a semiconductor die, is bonded to a second component, for example a semiconductor wafer or another die, by direct metal-metal bonds between metal bumps on one component and corresponding bumps or contact pads on the other component. In addition, a number of solder bumps are provided on one of the components, and corresponding contact areas on the other component, and fast solidified solder connections are established between the solder bumps and the corresponding contact areas, without realizing the metal-metal bonds. The latter metal-metal bonds are established in a heating step performed after the soldering step. This enables a fast bonding process applied to multiple dies bonded on different areas of the wafer and/or stacked one on top of the other, followed by a single heating step for realizing metal-metal bonds between the respective dies and the wafer or between multiple stacked dies. The method allows to improve the throughput of the bonding process, as the heating step takes place only once for a plurality of dies and/or wafers. |
US11810884B2 |
High density substrate routing in package
Discussed generally herein are devices that include high density interconnects between dice and techniques for making and using those devices. In one or more embodiments a device can include a bumpless buildup layer (BBUL) substrate including a first die at least partially embedded in the BBUL substrate, the first die including a first plurality of high density interconnect pads. A second die can be at least partially embedded in the BBUL substrate, the second die including a second plurality of high density interconnect pads. A high density interconnect element can be embedded in the BBUL substrate, the high density interconnect element including a third plurality of high density interconnect pads electrically coupled to the first and second plurality of high density interconnect pads. |
US11810881B2 |
Semiconductor device
A semiconductor device includes an insulating layer, a barrier electrode layer formed on the insulating layer, a Cu electrode layer that includes a metal composed mainly of copper and that is formed on a principal surface of the barrier electrode layer, and an outer-surface insulating film that includes copper oxide, that coats an outer surface of the Cu electrode layer, and that is in contact with the principal surface of the barrier electrode layer. |
US11810875B2 |
Packaged integrated circuit device with built-in baluns
A packaged integrated circuit (IC) includes an IC die having first and second external contacts and a package substrate. The IC die is attached to the package substrate which includes a balun in a first metal layer. The balun is connected to the first and second external contacts of the IC die and to a first external contact of the package substrate. The first and second external contacts of the IC die communicate a differential signal with the package substrate, and the first external contact of the package substrate communicates a single-ended signal corresponding to the differential signal. Alternatively, the balun is connected to an external contact of the IC die and to first and second external contacts of the package substrate, in which the external contact of the IC die communicates a single-ended signal and the first and second external contacts of the package substrate communicate a differential signal. |
US11810874B2 |
Devices and methods related to voltage compensated switch stack
A radio frequency (RF) switch arrangement that improves the voltage handling capacity of a stack of switching elements (e.g., field-effect transistors (FETs)). The RF switch arrangement can include a ground plane and a stack arranged in relation to the ground plane, the stack including a plurality of switching elements coupled in series with one another. The RF switch arrangement can also include a plurality of capacitive elements, each of the plurality of capacitive elements providing a capacitive path across respective terminals of a corresponding one of the plurality of switching elements. |
US11810871B2 |
Pre-conditioned self-destructing substrate
A self-destructing device includes a frangible substrate having at least one pre-weakened area. A heater is thermally coupled to the frangible substrate proximate to or at the pre-weakened area. When activated, the heater generates heat sufficient to initiate self-destruction of the frangible substrate by fractures that propagate from the pre-weakened area and cause the frangible substrate to break into many pieces. |
US11810868B2 |
Semiconductor package
A packaged integrated circuit device includes a substrate having a surface thereon. A spacer and a first semiconductor chip are provided at spaced-apart locations on a first portion of the surface of the substrate. This first portion of the surface of the substrate has a lateral area equivalent to a sum of: (i) a lateral footprint of the spacer, (ii) a lateral footprint of the first semiconductor chip, and (iii) an area of an entire lateral space between the spacer and the first semiconductor chip. A stack of second semiconductor chips is provided, which extends on the spacer and on the first semiconductor chip. The stack of second semiconductor chips has a lateral footprint greater than the lateral area of the first portion of the surface of the substrate so that at least a portion of the stack of second semiconductor chips overhangs at least one sidewall of at least one of the spacer and the first semiconductor chip, which extend between the stack of second semiconductor chips and the surface of the substrate. |
US11810867B2 |
Wire bond wires for interference shielding
Apparatuses relating generally to a microelectronic package having protection from interference are disclosed. In an apparatus thereof, a substrate has an upper surface and a lower surface opposite the upper surface and has a ground plane. A first microelectronic device is coupled to the upper surface of the substrate. Wire bond wires are coupled to the ground plane for conducting the interference thereto and extending away from the upper surface of the substrate. A first portion of the wire bond wires is positioned to provide a shielding region for the first microelectronic device with respect to the interference. A second portion of the wire bond wires is not positioned to provide the shielding region. A second microelectronic device is coupled to the substrate and located outside of the shielding region. A conductive surface is over the first portion of the wire bond wires for covering the shielding region. |
US11810865B2 |
Semiconductor package with marking pattern
A semiconductor package includes; a chip structure including vertically stacked semiconductor chips disposed on a package substrate, a spacer disposed on an uppermost semiconductor chip among the semiconductor chips, an encapsulant covering at least part of the chip structure, and including an upper portion of the encapsulant covering at least part of the spacer, and a marking pattern visually identifiable through an opening in the upper portion of the encapsulant selectively exposing portions of the spacer. |
US11810863B2 |
Sensor
A sensor is provided, including a substrate, a chip and a sensing element. The substrate has a plate-like shape and includes a surface and an interconnect structure disposed in the substrate. The chip is embedded in the substrate and is electrically connected to the interconnect structure. The sensing element is disposed on the surface of the substrate, and is electrically connected to the chip through the interconnect structure. |
US11810860B2 |
Semiconductor device with conductive structure and insulation layer of different width
A semiconductor device is provided. The semiconductor device includes a base substrate; and a first gate structure and doped source/drain layers on the base substrate. The doped source/drain layers are on both sides of the first gate structure. The semiconductor device further includes a dielectric layer on a surface of the base substrate. The dielectric layer covers the doped source/drain layers, and the dielectric layer contains a first trench on the doped source/drain layer. The first trench includes a first region filled by an insulation layer and a second region filled by first conductive structure under the insulation layer. A top size of the insulation layer in the first region is larger than a bottom size of the insulation layer in the first region. A maximum size of the first conductive structure in the second region is smaller than the bottom size of the insulation layer in the first region. |
US11810857B2 |
Via for semiconductor device and method
A structure includes a first conductive feature in a first dielectric layer; a second dielectric layer over the first dielectric layer; and a second conductive feature extending through the second dielectric layer to physically contact the first conductive feature, wherein the second conductive feature includes a metal adhesion layer over and physically contacting the first conductive feature; a barrier layer extending along sidewalls of the second dielectric layer; and a conductive filling material extending over the metal adhesion layer and the barrier layer, wherein a portion of the conductive filling material extends between the barrier layer and the metal adhesion layer. |
US11810855B2 |
Electronic component
An electronic component includes a lower insulating layer, an upper insulating layer formed on the lower insulating layer, a first via electrode embedded in the lower insulating layer, a second via electrode embedded in the lower insulating layer at an interval from the first via electrode, and a resistance layer that is made of a metal thin film, is interposed in a region between the lower insulating layer and the upper insulating layer, and is electrically connected to the first via electrode and the second via electrode. |
US11810851B2 |
Semiconductor device and method for manufacturing the same
The present technology relates to a semiconductor device in which a MIM capacitive element can be formed without any process damage, and a method for manufacturing the semiconductor device. In a semiconductor device, wiring layers of a first multilayer wiring layer formed on a first semiconductor substrate and a second multilayer wiring layer formed on a second semiconductor substrate are bonded to each other by wafer bonding. The semiconductor device includes a capacitive element including an upper electrode, a lower electrode, and a capacitive insulating film between the upper electrode and the lower electrode. One electrode of the upper electrode and the lower electrode is formed with a first conductive layer of the first multilayer wiring layer and a second conductive layer of the second multilayer wiring layer. The present technology can be applied to a semiconductor device or the like formed by joining two semiconductor substrates, for example. |
US11810850B2 |
Signal routing in integrated circuit packaging
In some implementations, a substrate for coupling to an integrated circuit includes multiple layers. Each of the multiple layers has, in a particular region of the substrate, a repeating pattern of regions corresponding to power and ground. The multiple layers include (i) a top layer having, in the particular region, power contacts and ground contacts for coupling to an integrated circuit and (ii) a bottom layer having, in the particular region, power contacts and ground contacts for coupling to another device. At least one layer of the multiple layers has a repeating pattern of signal traces that extend along and are located between the regions corresponding to ground in the at least one layer. |
US11810849B2 |
Connection structure and method of forming the same
Provided is a connection structure for a semiconductor package which includes: a first passivation layer having an opening; a first conductive pattern that penetrates the first passivation layer and protrudes upwardly from the first passivation layer; a second passivation layer on the first passivation layer and covering the first conductive pattern; a second conductive pattern on the second passivation layer and electrically connected to the first conductive pattern; a third passivation layer on the second passivation layer and covering the second conductive pattern; and an external terminal in the opening and electrically connected to the first conductive pattern, wherein the first conductive pattern is thicker than the second conductive pattern. |
US11810848B2 |
Fan-out semiconductor package
A fan-out semiconductor package includes connection pads of a semiconductor chip that are redistributed and electrically connected to connection terminals by an interconnection member. In the fan-out semiconductor package, disposition forms of vias and pads in the interconnection member are designed so that stress may be reduced, such that reliability is improved. |
US11810846B2 |
Semiconductor device and method of manufacture
A dielectric layer is formed over a substrate, an anti-reflective layer is formed over the dielectric layer, and a first hardmask is formed over the anti-reflective layer. A via opening and a trench opening are formed within the dielectric layer using the anti-reflective layer and the first hardmask as masking materials. After the formation of the trench opening and the via opening, the first hardmask is removed. An interconnect is formed within the openings, and the interconnect has a via with a profile angle of between about 70° and about 80° and a depth ratio of between about 65% and about 70%. |
US11810845B2 |
Carrier, assembly comprising a substrate and a carrier, and method for producing a carrier
Carrier with an electrically insulating base material, electrically conductive through-connections and a thermal connection element. The through-connections and the thermal connection element are each completely surrounded by the base material in the lateral direction, the thermal connection element and the through-connections completely penetrating the base material perpendicularly to the main extension plane of the carrier, and the thermal connection element being formed with a material which has a thermal conductivity of at least 200 W/(m K). |
US11810840B2 |
Semiconductor device
A semiconductor device includes a lead frame having a first principal surface which includes a recess, and a second principal surface opposite to the first principal surface, a relay board, disposed in the recess, and having a third principal surface, and a fourth principal surface opposite to the third principal surface, wherein the fourth principal surface opposes a bottom surface of the recess, a first semiconductor chip disposed on the third principal surface, a first conductive material connecting the lead frame and the relay board, and a second conductive material connecting the relay board and the first semiconductor chip. A distance between the second principal surface and the third principal surface is less than or equal to a distance between the second principal surface and the first principal surface. |
US11810839B2 |
Semiconductor package with die stacked on surface mounted devices
One or more embodiments are directed to semiconductor packages and methods in which one or more electrical components are positioned between a semiconductor die and a surface of a substrate. In one embodiment, a semiconductor package includes a substrate having a first surface. One or more electrical components are electrically coupled to electrical contacts on the first surface of the substrate. A semiconductor die is positioned on the one or more electrical components, and the semiconductor die has an active surface that faces away from the substrate. An adhesive layer is on the first surface of the substrate and on the one or more electrical components, and the semiconductor die is spaced apart from the one or more electrical components by the adhesive layer. Wire bonds are provided that electrically couples the active surface of the semiconductor die to the substrate. |
US11810835B2 |
Intelligent power module packaging structure
An intelligent power module packaging structure includes an insulated heat dissipation substrate, a plurality of power devices, a control chip, a lead frame, and an encapsulant. The insulated heat dissipation substrate has a first surface and a second surface opposite to the first surface. The power devices are disposed on the first surface. The control chip is disposed on the first surface. The control chip provides a gate driver function for driving the power devices and a pulse width modulation function. The lead frame is bonded onto the first surface. The power devices are electrically connected to the control chip and the lead frame. The encapsulant at least encapsulates the power devices, the control chip, and a portion of the lead frame, and the second surface is entirely or partially exposed outside the encapsulant. |
US11810830B2 |
Chip package structure with cavity in interposer
A package structure and a method of forming the same are provided. The package structure includes a package substrate, an interposer substrate, a first semiconductor device, and a second semiconductor device. The interposer substrate is disposed over the package substrate and includes a silicon substrate. The interposer substrate has a bottom surface facing and adjacent to the package substrate, a top surface opposite the bottom surface, and a cavity formed on the top surface. The first semiconductor device is disposed on the top surface of the interposer substrate. The second semiconductor device is received in the cavity and electrically connected to the first semiconductor device and/or the interposer substrate. |
US11810823B2 |
Semiconductor arrangements and methods for manufacturing the same
Semiconductor arrangements and methods of manufacturing the same. The semiconductor arrangement may include: a substrate including a base substrate, a first semiconductor layer on the substrate, and a second semiconductor layer on the first semiconductor layer; first and second fin structures formed on the substrate and extending in the same straight line, each of the first and second fin structures including at least portions of the second semiconductor layer; a first isolation part formed around the first and second fin structures on opposite sides of the straight line; first and second FinFETs formed on the substrate based on the first and second fin structures respectively; and a second isolation part between the first and second fin structures and intersecting the first and second fin structures to isolate the first and second fin structures from each other. |
US11810821B2 |
Semiconductor chip and method for manufacturing the same
A semiconductor chip includes: an epitaxial film made of gallium nitride; a semiconductor element disposed in the epitaxial film; a chip formation substrate including the epitaxial film and having a first surface, a second surface opposite to the first surface, and a side surface connecting the first surface and the second surface; and a convex and a concavity on the side surface. |
US11810817B2 |
In-situ CMP self-assembled monolayer for enhancing metal-dielectric adhesion and preventing metal diffusion
A semiconductor structure including a self-assembled monolayer for enhancing metal-dielectric adhesion and preventing metal diffusion is provided. The semiconductor structure includes a substrate and a first dielectric layer on the substrate. A contact structure is embedded in the first dielectric layer and includes a conductive line. The semiconductor structure further includes a self-assembled monolayer on the conductive line, and a second dielectric layer on the first dielectric layer and the conductive line. The self-assembled monolayer is chemically bonded to the conductive line and the second dielectric layer. |
US11810815B2 |
Dielectric capping structure overlying a conductive structure to increase stability
Some embodiments relate to a semiconductor structure including a conductive wire disposed within a first dielectric structure. An etch stop layer overlies the first dielectric structure. A dielectric capping layer is disposed between an upper surface of the conductive wire and the etch stop layer. An upper dielectric layer is disposed along sidewalls of the conductive wire and an upper surface of the etch stop layer. The upper dielectric layer contacts an upper surface of the dielectric capping layer and has a top surface vertically above the etch stop layer. |
US11810811B2 |
Buried metal for FinFET device and method
A semiconductor device includes a buried metal line disposed in a semiconductor substrate, a first dielectric material on a first sidewall of the buried metal line and a second dielectric material on a second sidewall of the buried metal line, a first multiple fins disposed proximate the first sidewall of the buried metal line, a second multiple fins disposed proximate the second sidewall of the buried metal line, a first metal gate structure over the first multiple fins and over the buried metal line, wherein the first metal gate structure extends through the first dielectric material to contact the buried metal line, and a second metal gate structure over the second multiple fins and over the buried metal line. |
US11810810B2 |
Contour pocket and hybrid susceptor for wafer uniformity
Susceptor assemblies comprising a susceptor base and a plurality of pie-shaped skins thereon are described. A pie anchor can be positioned in the center of the susceptor base to hold the pie-shaped skins in place during processing. |
US11810805B2 |
Prevention of contamination of substrates during gas purging
Disclosed are implementations for efficient purging of substrate carriers (and content held therein) and preventing external contaminants from entering a gas purge apparatus by coupling the gas purge apparatus to a substrate carrier, performing a first gas purging session of an environment of the substrate carrier, receiving a first signal of a first signal type, responsive to receiving the first signal, keeping the gas purge apparatus coupled to the substrate carrier, performing a second gas purging session of the environment of the substrate carrier, receiving a second signal of a second signal type, and, responsive to receiving the second signal, decoupling the purge apparatus from the substrate carrier. |
US11810804B2 |
Method of forming dice and structure of die
A method of forming dice includes the following steps. First, a wafer structure is provides, which includes a substrate and a stack of semiconductor layers disposed in die regions and a scribe line region. Then, the substrate and the stack of the semiconductor layers in the scribe line region are removed to form a groove in the substrate. After the formation of the groove, the substrate is further thinned to obtain the substrate with a reduced thickness. Finally, a separation process is performed on the substrate with the reduced thickness. |
US11810802B2 |
Substrate support in a millisecond anneal system
Systems and methods for substrate support in a millisecond anneal system are provided. In one example implementation, a millisecond anneal system includes a processing chamber having a wafer support plate. A plurality of support pins can extend from the wafer support plate. The support pins can be configured to support a substrate. At least one of the support pins can have a spherical surface profile to accommodate a varying angle of a substrate surface normal at the point of contact with the substrate. Other example aspects of the present disclosure are directed to methods for estimating, for instance, local contact stress at the point of contact with the support pin. |
US11810801B2 |
Robot embedded vision apparatus
A substrate transport apparatus includes a transport chamber, a drive section, a robot arm, an imaging system with a camera mounted through a mounting interface of the drive section in a predetermined location with respect to the transport chamber and disposed to image part of the arm, and a controller connected to the imaging system and configured to image, with the camera, the arm moving to or in the predetermined location, the controller effecting capture of a first image of the arm on registry of the arm proximate to or in the predetermined location, the controller is configured to calculate a positional variance of the arm from comparison of the first image with a calibration image of the arm, and determine a motion compensation factor changing an extended position of the arm. Each camera effecting capture of the first image is disposed inside the perimeter of the mounting interface. |
US11810800B2 |
Substrate support, test device, and method of adjusting temperature of substrate support
A substrate support includes a top plate portion having a surface on which a substrate is placed; a light irradiation mechanism including light-emitting elements, disposed to face the substrate and heating the substrate using light from the light-emitting elements; a channel-forming member transmitting the light from the light-emitting elements and is bonded to a rear surface of the top plate portion so as to be interposed between the top plate portion and the light irradiation mechanism, and a temperature adjustment part for adjusting a temperature of the channel-forming member by using light having a wavelength absorbed by a light-transmitting material or the channel-forming member. Refrigerant channels are formed between the channel-forming member and the top plate portion, a refrigerant transmitting the light from the light-emitting elements flows through the refrigerant channels, and the top plate portion and the channel-forming member are made of materials having different thermal expansion coefficients. |
US11810797B2 |
Wetting processing apparatus and operation method thereof
A wet processing apparatus and an operation method thereof are provided. The wet processing apparatus includes: a tank body including at least one side wall, the at least one side wall being provided with an opening extending from the inside to the outside of the tank body, and the tank body being configured to accommodate a wet processing solution; and a fixing device configured to fix the substrate at the opening of the side wall. The operation method of the wet processing apparatus includes: placing the substrate on an outer side of the side wall and at the position of the opening, and operating the fixing device to fix the substrate; and performing wet processing treatment on the substrate. |
US11810794B2 |
Setting method of protective component and manufacturing method of protective component
A setting method of a protective component includes a resin supply step of supplying a thermoplastic resin to a flat support surface of a support table, and a protective component forming step of shaping the thermoplastic resin into a sheet shape through pressing and spreading the thermoplastic resin along the support surface while heating and softening the thermoplastic resin to form a protective component of the thermoplastic resin in the sheet shape on the support surface. The setting method includes also a protective component bonding step of bringing a front surface that is one surface of the workpiece into tight contact with one surface of the protective component in the sheet shape and heating the protective component in tight contact to bond the protective component to the workpiece, and a post-bonding cooling step of cooling the protective component heated in the protective component bonding step. |
US11810787B2 |
Semiconductor structure formation method and mask
A semiconductor structure formation method and a mask are provided. One form of the formation method includes: providing a base, including a target layer; forming a mandrel material layer on the base, the mandrel material layer including a first region and a second region encircling the first region; performing ion doping on the mandrel material layer in the second region, the ion doping being suitable for increasing the etching resistance of the mandrel material layer, where the mandrel material layer in the second region serves as an anti-etching layer, and the mandrel material layer in the first region serves as a mandrel layer; forming a first trench that runs through, along a first direction, at least part of the mandrel material layer in the first region, where part of the mandrel material layer in the first region remains at two sides of the first trench along a second direction; forming spacers on side walls of the first trench, so that the spacers form a first groove by encircling; removing the mandrel layer to form second grooves; and etching, using the anti-etching layer and the spacers as masks, the target layer below the first groove and the second grooves, to form the target pattern. In embodiments and implementations of the present disclosure, a pitch between target patterns is further compressed. |
US11810786B2 |
Method for fabricating semiconductor device
A method for fabricating a semiconductor device includes following steps: A patterned mask layer including a plurality of standing walls and a covering part is formed on a surface of a semiconductor substrate, wherein two adjacent standing walls define a first opening exposing a part of the surface, and the covering part blankets the surface. A first patterned photoresist layer is formed to partially cover the covering part. A first etching process is performed to form a first trench in the substrate, passing through the surface and aligning with the first opening. A portion of the patterned mask layer is removed to form a second opening exposing another portion of the surface. A second etching process is performed to form a second trench in the substrate and define an active area on the surface. The depth of the first trench is greater than that of the second trench. |
US11810783B2 |
Gallium nitride semiconductor device and method for manufacturing the same
A gallium nitride semiconductor device includes: a chip formation substrate made of gallium nitride and having one surface and an other surface opposite to the one surface; a one surface side element component disposed on the one surface and providing a component of an one surface side of a semiconductor element; and a metal film constituting a back surface electrode in contact with the other surface. The other surface has an irregularity provided by a plurality of convex portions with a trapezoidal cross section and a plurality of concave portions located between the convex portions; and an upper base surface of the trapezoidal cross section in each of the plurality of convex portions is opposed to the one surface. |
US11810782B2 |
Conductive C-plane GaN substrate
A conductive C-plane GaN substrate has a resistivity of 2×10−2 Ω·cm or less or an n-type carrier concentration of 1×1018 cm−3 or more at room temperature. At least one virtual line segment with a length of 40 mm can be drawn at least on one main surface of the substrate. The line segment satisfies at least one of the following conditions (A1) and (B1): (A1) when an XRC of (004) reflection is measured at 1 mm intervals on the line segment, a maximum value of XRC-FWHMs across all measurement points is less than 30 arcsec; and (B1) when an XRC of the (004) reflection is measured at 1 mm intervals on the line segment, a difference between maximum and minimum values of XRC peak angles across all the measurement points is less than 0.2°. |
US11810781B2 |
Method of processing substrate, substrate processing apparatus, recording medium, method of manufacturing semiconductor device
There is provided a technique that includes: forming a first film to have a first predetermined film thickness over a substrate by performing a first cycle a first predetermined number of times, the first cycle including non-simultaneously performing: (a1) forming an oxynitride film by supplying a first film-forming gas to the substrate; and (a2) changing the oxynitride film into a first oxide film by supplying a first oxidizing gas to the substrate to oxidize the oxynitride film. |
US11810780B2 |
Silicon doping for laser splash blockage
Semiconductor devices having silicon doping for laser splash protection, along with associated methods and systems, are disclosed herein. In one embodiment, a semiconductor device includes a silicon layer and a circuitry layer with a plurality of semiconductor devices. A doped silicon region is formed on a front side of the silicon layer upon which the circuitry layer is deposited. The doped silicon region is positioned under the circuitry layer. The doped silicon region has a dopant concentration of at least 1015 cm−3. |
US11810779B2 |
Method of porosifying part of a semiconductor wafer
A method includes: in a semiconductor wafer having a first semiconductor layer and a second semiconductor layer adjoining the first semiconductor layer, forming a porous region extending from a front surface into the first semiconductor layer; and removing the porous region by an etching process, wherein a doping concentration of the second semiconductor layer is less than 10−2 times a doping concentration of the first semiconductor layer and/or a doping type of the second semiconductor layer is complementary to a doping type of the first semiconductor layer, wherein forming the porous region comprises bringing in contact a porosifying agent with the front surface of the first semiconductor layer and applying a voltage between the first semiconductor layer and a first electrode that is in contact with the porosifying agent, wherein applying the voltage comprises applying the voltage between the first electrode and an edge region of the first semiconductor layer. |
US11810778B2 |
Optical semiconductor element mounting package and optical semiconductor device using the same
An optical semiconductor element mounting package as well as an optical semiconductor device using the package are provided. The optical semiconductor element mounting package has a recessed part that serves as an optical semiconductor element mounting region. The package includes a resin molding and at least a pair of positive and negative lead electrodes. The resin molding is composed of a thermosetting light-reflecting resin composition, which forms at least the side faces of the recessed part. The lead electrodes are disposed opposite to each other so as to form part of the bottom face of the recessed part, and there is no gap at a joint face between the resin molding and the lead electrodes. |
US11810776B2 |
Semiconductor device including stack structure with flat region
A semiconductor device includes a lower structure, a stack structure on the lower structure and extending from a memory cell region into a connection region, gate contact plugs on the stack structure in the connection region, and a memory vertical structure through the stack structure in the memory cell region, wherein the stack structure includes interlayer insulating layers and horizontal layers alternately stacked, wherein, in the connection region, the stack structure includes a staircase region and a flat region, wherein the staircase region includes lowered pads, wherein the flat region includes a flat pad region, a flat edge region, and a flat dummy region between the flat pad region and the flat edge region, and wherein the gate contact plugs include first gate contact plugs on the pads, flat contact plugs on the flat pad region, and a flat edge contact plug on the flat edge region. |
US11810775B2 |
High power module package structures
A method includes disposing a semiconductor die between a first high voltage isolation carrier and a second high voltage isolation carrier, disposing a first molding material in a space between the semiconductor die and the first high voltage isolation carrier, and disposing a conductive spacer between the semiconductor die and the second high voltage isolation carrier. The method further includes encapsulating the first molding material and the conductive spacer with a second molding material. |
US11810768B2 |
Temperature and bias control of edge ring
Embodiments described herein provide methods and apparatus used to control a processing result profile proximate to a circumferential edge of a substrate during the plasma-assisted processing thereof. In one embodiment, a substrate support assembly features a first base plate and a second base plate circumscribing the first base plate. The first and second base plates each have one or more respective first and second cooling disposed therein. The substrate support assembly further features a substrate support disposed on and thermally coupled to the first base plate, and a biasing ring disposed on and thermally coupled to the second base plate. Here, the substrate support and the biasing ring are each formed of a dielectric material. The substrate support assembly further includes an edge ring biasing electrode embedded in the dielectric material of the biasing ring and an edge ring disposed on the biasing ring. |
US11810767B2 |
Wafer placement device
A wafer placement device includes a wafer placement stage including a wafer electrostatic chuck and a wafer cooling plate, a focus-ring placement stage including a focus-ring electrostatic chuck and a focus-ring cooling plate, and a clamping member arranged around the focus-ring placement stage. The wafer placement stage, the focus-ring placement stage, and the clamping member are separate from one another. A pressing portion of the focus-ring cooling plate presses a wafer cooling plate flange against a mounting plate. The clamping member is fastened to the mounting plate with bolts in a state of pressing a flange against the mounting plate at its flange, thus fixing the wafer placement stage and the focus-ring placement stage to the mounting plate without directly fastening them to the mounting plate. |
US11810765B2 |
Reactive particles supply system
A reactive particles supply system that may include an adjustable gas supply unit that is arranged to supply gas and to set a gas condition, a reactive particles supply unit that may be arranged to receive the gas, and an adjustable reactive particles output unit that may include a reactive particles input, a second reactive particles output, and a reactive particles path. The second reactive particles output is configured to output reactive particles towards an opening of a vacuumed chamber. The adjustable reactive particles output unit is arranged to mechanically configure at least one element of the reactive particles path according to the reactive particles condition. |
US11810742B2 |
Projectile assembly and electric circuit breaker device
[Problem]Provided is a method for manufacturing an assembly including an igniter, a projectile, and a cylinder that is easy to assemble.[Solution]A method for manufacturing an assembly included in an electric circuit breaker device, the assembly including an igniter, a projectile, and a cylinder, is a method for disposing a projectile and an igniter in a cylinder of an electric circuit breaker device, the method including: a first step of preparing a cylinder having a first opening, a plurality of through holes formed at intervals in a circumferential direction in a peripheral wall portion on a first opening side, and a second opening, and disposing a projectile in the cylinder; a second step of disposing an igniter main body portion in the cylinder and then disposing the cylinder in a mold; a third step of injection-molding a resin from the first opening side of the cylinder to form a resin portion; a fourth step of removing the cylinder including the projectile and the igniter from the mold; and a fifth step of crimping a peripheral wall portion on the first opening side of the cylinder to fix the resin portion of the igniter. |
US11810735B1 |
Control device
A control device includes a display panel and plural key structures. Each key structure includes a keycap, an optical film layer, an elastic element, plural raised structures and a membrane switch. The optical film layer includes a light-transmissible region and a supporting region. The plural raised structures are formed on the supporting region and arranged around the light-transmissible region. The membrane switch includes an upper film layer and a lower film layer. Moreover, a light beam emitted by the display panel is transmitted upwardly through a second opening of the lower film layer, a first opening of the upper film layer, the light-transmissible region, a hollow part of the elastic element and the keycap. When the keycap is pressed down, the first circuit contact point of the upper film layer and the corresponding second circuit contact point of the lower film layer are contacted with each other. |
US11810731B2 |
Photovoltaic cells
Described herein is a liquid electrophotographic photovoltaic ink composition comprising: a dispersion of a material with a perovskite structure, a thermoplastic resin and conductive particles in a carrier liquid; wherein the material with a perovskite structure has a chemical formula selected from ABX3 and A2BX6; wherein A is a cation, B is a cation and X is an anion; and wherein the thermoplastic resin comprises: a copolymer of an alkylene monomer and a monomer having acidic side groups; and/or a copolymer of an alkylene monomer and an ethylenically unsaturated monomer comprising an epoxide; and/or a copolymer of an alkylene monomer, an ethylenically unsaturated monomer comprising an epoxide, and a monomer selected from a monomer having acidic side groups, a monomer having ester side groups and a mixture thereof. Also described is a method of producing a photovoltaic cell using the LEP ink and the printed cell produced by the method. |
US11810729B2 |
Photovoltaic cells
Described herein is a printed photovoltaic cell comprising an anode; an LEP printed cathode; and an LEP printed photovoltaic layer disposed between the anode and the cathode. The photovoltaic layer comprises a material with a perovskite structure having a chemical formula selected from ABX3 and A2BX6 and a thermoplastic resin comprising a copolymer of an alkylene monomer and a monomer having acidic side groups; and/or a copolymer of an alkylene monomer and an ethylenically unsaturated monomer comprising an epoxide; and/or a copolymer of an alkylene monomer, an ethylenically unsaturated monomer comprising an epoxide, and a monomer selected from a monomer having acidic side groups, a monomer having ester side groups and a mixture thereof. The printed cathode comprises: a thermoplastic resin; and electrically conductive metal particles. Also described herein is a method of producing the printed photovoltaic cell and an ink set for use in the method. |
US11810727B2 |
Lateral tunable dielectric voltage variable capacitor
In this present invention lateral voltage variable capacitor designs are disclosed. The lateral voltage variable capacitor utilizes a dielectric material with an electric field dependent dielectric permittivity (dielectric constant). Variable capacitor structures are defined laterally in the plane of the substrate as opposed to vertical device structures defined out of the plane of the substrate. |
US11810726B2 |
Multilayer ceramic capacitor
A multilayer ceramic capacitor includes first and second external electrodes, each including a Ni-plated layer and a Sn-plated layer on the Ni-plated layer. The Sn-plated layer includes an intermetallic compound that penetrates the Sn-plated layer in a thickness direction, and allows hydrogen to pass therethrough more easily than Sn. |
US11810724B2 |
Multilayer ceramic capacitor
A multilayer ceramic capacitor includes a base body including first and second main surfaces, first and second side surfaces, first and second end surfaces, and dielectric layers and internal electrode layers, and external electrodes at the first and second end surfaces, and electrically connected to the internal electrode layers. The base body includes an inner layer, first and second outer layers, first and second side margin portions. The dielectric layers in the inner layer and the first and second outer layers include main crystal grains including barium and titanium, and with respect to 100 parts by mol of titanium, nickel in an amount of about 0.2 to about 3.0 parts by mol, and at least one rare earth element selected from yttrium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium in an amount of about 0.6 parts to about 2.0 parts by mol. |
US11810723B2 |
Ceramic electronic component
A ceramic electronic component including: a ceramic element body including an end surface extending along a first axis, and a side surface extending along a second axis and intersecting the end surface; an end-face electrode formed on the end surface of the ceramic element body; and a lead terminal connected to the end-face electrode by soldering. The lead terminal includes: an adjacent part overlapping the end-face electrode in a side view from the second axis; and an extension part extending from an end of the adjacent part in a direction away from a plane including the side surface. A first recess is formed at the extension part and is recessed in a direction away from a plane including the end surface, and the first recess exists at a position close to the end of the adjacent part. |
US11810721B2 |
Multilayer ceramic electronic component
A multilayer ceramic electronic component includes a ceramic body including a dielectric layer and first and second internal electrodes alternately laminated with the dielectric layer interposed therebetween; a first external electrode connected to a first internal electrode; and a second external electrode connected to a second internal electrode, wherein the first external electrode includes a first base electrode layer disposed on the ceramic body and a first resin electrode layer disposed on the first base electrode layer, wherein the second external electrode includes a second base electrode layer disposed on the ceramic body and a second resin electrode layer disposed on the second base electrode layer, and wherein the first resin electrode layer and the second resin electrode layer include a shape memory polymer (e.g., a thermosetting shape memory polymer) or a polymer having properties including a property that exhibits shape memory effect. |
US11810720B2 |
Method for fabricating terminal electrode of multilayer ceramic capacitor having inner electrodes printed on full area together with protective layers
A method is provided for fabricating a terminal electrode. The terminal electrode is applied on a multilayer ceramic capacitor (MLCC). The method prints inner electrodes on full area together with protective layers. The MLCC uses the thickness of thinned dielectric ceramic layers and the stacking of nickel inner-electrode layers. High capacitance is achieved at ends and sides with high electrode-to-ceramic ratios. Thus, the present invention uses a coating technology of ultra-low-temperature electrochemical deposition to fabricate low internal-stress MLCC terminal electrodes together with insulating protective layers for improving MLCC yield while cost reduced. |
US11810719B2 |
Film capacitor and dielectric resin film for film capacitor
A film capacitor that includes: a dielectric resin film; and a metal layer on at least one surface of the dielectric resin film. The dielectric resin film contains at least one skeleton selected from the group consisting of a biphenyl skeleton, a bisphenol acetophenone skeleton, a bisphenol fluorene skeleton, a bisphenol S skeleton, a bisphenol cyclohexanone skeleton, and an epoxy-modified bisphenol A skeleton. |
US11810717B2 |
Method for charging polymer-reinforced capacitor
A poly(vinylphosphonic acid) (PVPA)-(NH4)2MoO4), gel polymer electrolyte can be prepared by incorporating redox-mediated Mo, or similar metal, into a PVPA, or similar polymer, matrix. Gel polymer electrolytes including PVPA/MoX, x representing the percent fraction Mo in PVPA, can be used to make supercapacitors including active carbon electrodes. The electrolytes can be in gel form, bendable and stretchable in a device. Devices including this gel electrolyte can have a specific capacitance (Cs) of 1276 F/g, i.e., a more than 50-fold increase relative to a PVPA system without Mo. A PVPA/Mo10 supercapacitor can have an energy density of 180.2 Wh/kg at power density of 500 W/kg, and devices with this hydrogel structure may maintain 85+% of their initial capacitance performance after 2300 charge-discharge cycles. |
US11810716B2 |
Porous interconnected corrugated carbon-based network (ICCN) composite
A porous interconnected corrugated carbon-based network (ICCN) composite and methods for making the same are disclosed. The porous ICCN composite is made up of a plurality of carbon layers that are interconnected and expanded apart from one another to form a plurality of pores. Metallic nanoparticles are disposed within the plurality of pores. In one embodiment, a light exposure only based method for producing the porous ICCN composite is disclosed. In another embodiment a light exposure plus an electrodeposition method for producing the porous ICCN composite is disclosed. In yet another exemplary embodiment, a capacitor having a first electrode and a second electrode separated from the first electrode by a dielectric wherein at least one of the first electrode and the second electrode is formed from the porous ICCN composite is disclosed. |
US11810699B2 |
Ferrite sintered magnet, ferrite particles, bonded magnet, motor, and generator
Provided is a ferrite sintered magnet including a ferrite phase having a magnetoplumbite-type crystal structure. x, y, and m satisfy the following Equations (1), (2), and (3) when composition of the ferrite sintered magnet is represented by R1-xAxFem-yCoy, where R denotes at least one kind of element selected from rare earth elements including Y and A denotes Ca or Ca and elements including at least one kind selected from Sr or Ba. The content of B in the ferrite sintered magnet is from 0.1% to 0.6% by mass in terms of B2O3. 0.2≤x≤0.8 (1) 0.1≤y≤0.65 (2) 3≤m<14 (3) |
US11810695B2 |
Cable comprising a fire-resistant ceramic layer
A cable, in particular a power and/or telecommunication cable, has at least one elongated electrically conductive element, and at least one fire-resistant layer surrounding said elongated electrically conductive element. The fire-resistant layer is a ceramic layer in direct physical contact with the elongated electrically conductive element. |
US11810691B2 |
Aluminum base wire
An aluminum base wire includes a core wire made of pure aluminum or an aluminum alloy and a coating layer provided on an outer periphery of the core wire. The coating layer includes a first layer provided on the outer periphery of the core wire, a second layer provided on an outer periphery of the first layer, and a third layer provided on an outer periphery of the second layer. The first layer is composed of at least one metal selected from the group consisting of nickel, a nickel alloy, copper, and a copper alloy, the second layer is composed of metals that include zinc and tin, the third layer is composed of at least one metal selected from the group consisting of tin and tin alloys that contain substantially no zinc, and a zinc content in the second layer is 15 atomic % or more and 60 atomic % or less. |
US11810689B2 |
AC-coupling structure in electrical cabled interconnect
A signal cable for an AC-coupled link, may include: a signal conductor; a dielectric surrounding the signal conductor; and a ground sheath having a conductive layer disposed at least partially around the conductor such that the dielectric is positioned between the ground sheath and the signal conductor, wherein the conductive layer comprises a first portion extending in a first direction along the cable and a second portion extending in a second direction, opposite the first direction, along the cable and further wherein the first and second portions of the conductive layer are separated from each other by a gap, the gap being dimensioned to provide a determined amount of capacitance in series in the ground sheath. The gap may form a complete separation between the first and second portions of the conductive layer. |
US11810683B2 |
Radiation shield
Disclosed is radiation-retarding radiation shield which is more flexible than non-toxic lead and lead alloy structures and does not disturb the user. |
US11810681B2 |
Micro-reactor core mechanical support
A nuclear reactor core mechanical support bracket is disclosed. The support bracket includes a housing, a spring disposed internally within the housing, a shaft slidingly disposed within the housing, a shaft travel pin, and a flange. The shaft is configured to engage the spring to compress and decompress the spring as the shaft travels in and out of the housing. The shaft travel pin controls the travel of the shaft. The flange is configured to mount the nuclear reactor core mechanical support bracket to a canister of a nuclear reactor. The shaft includes an inset configured to interface with a nuclear reactor core component. |
US11810680B2 |
Modular integrated gas high temperature nuclear reactor
The present disclosure is directed to systems and methods useful for the construction and operation of a Modular Integrated Gas High-Temperature Reactor (MIGHTR). The MIGHTR includes a reactor core assembly disposed at least partially within a core baffle within a first high-pressure shell portion, a thermal transfer assembly disposed at least partially within a flow separation barrel within a second high-pressure shell portion. The longitudinal axes of the first high-pressure shell portion and the second high-pressure shell portion may be collinear. The reactor core assembly may be accessed horizontally for service, maintenance, and refueling. The core baffle may be flexibly displaceably coupled to the flow separation barrel. Coolant gas flows through the reactor core assembly and into the thermal transfer assembly where the temperature of the coolant gas is reduced. A plurality of coolant gas circulators circulate the cooled coolant gas from the thermal transfer assembly to the reactor core assembly. |
US11810676B2 |
Verified permissioned blockchains
An example operation may include one or more of receiving an example in a blockchain network, distributing the example to a plurality of endorsing peers of the blockchain network, performing, by one or more of the endorsing peers, automated analysis of the example to determine an inference for the example, determining if there is a consensus of inference amongst the plurality of endorsing peers, and committing the example to a blockchain of the blockchain network when there is a consensus of inference. |
US11810672B2 |
Cancer score for assessment and response prediction from biological fluids
Methods for analyzing omics data and using the omics data to determine prognosis of a cancer, to predict an outcome of a treatment, and/or to determine an effectiveness of a treatment are presented. In preferred methods, blood from a patient having a cancer or suspected to have a cancer is obtained and blood omics data for a plurality of cancer-related, inflammation-related, or DNA repair-related genes are obtained. A cancer score can be calculated based on the omics data, which then can be used to provide a cancer prognosis, a therapeutic recommendation, an effectiveness of a treatment. |
US11810669B2 |
Methods and systems for generating a descriptor trail using artificial intelligence
A system for generating a descriptor trail using artificial intelligence. The system includes at least a server configured to receive at least a biological extraction. At least a server is configured to generate a prognostic output as a function of at least a biological extraction. At least a server is configured to generate an ameliorative output as a function of a prognostic output. The system includes a descriptor generator module operating on at least a server. A descriptor generator module is configured to generate at least a descriptor trail from a descriptor trail data structure wherein the descriptor trail further comprises at least an element of diagnostic data. |
US11810667B2 |
Patient support systems and methods for assisting caregivers with patient care
A patient support system for providing improved guidance and/or troubleshooting with respect to a patient support apparatus. A user interface is configured to receive inputs from a user, and an information output device is configured to provide instructions to the user. A controller determines a guidance protocol for the user based on the inputs. The guidance protocol comprises user-performed actions to be performed by the user in response to the instructions provided to the user with the information output device. The guidance protocol may be initiated and/or determined based on a troubleshooting request and/or an uncorrelated sequence of user inputs. At least one of the user-performed actions may be configured to control operational functions of a patient support apparatus. Methods for improving patient care by providing the guidance and/or troubleshooting are also disclosed. |
US11810666B2 |
Systems and methods for intelligent radiology work allocation
An example system includes a processor to assign a first medical exam to a first examiner based on a workload availability threshold for the first examiner and an examiner availability indicator for the first examiner. The processor can deliver the first medical exam to one of a reading tool displayed via a first graphical user interface or an examiner work queue displayed via a second graphical user interface. The processor can automatically adjust a workload availability threshold for a second examiner and the first examiner based on a first adjustment, assign a second medical exam to the first examiner or the second examiner based on the respective adjusted work availability thresholds for the first examiner and the second examiner, and auto-serve additional medical exams to the first examiner or the second examiner based on a priority level of the additional medical exams. |
US11810664B2 |
Patient treatment status notification system
A patient treatment status notification system in a healthcare facility with multiple examination rooms includes a first electronic visual status indicator and a second electronic visual status indicator to be installed outside a first examination room, an indicator control circuit configured to communicate with and control the first and second electronic visual status indicators of the first examination room, a manual input device for the first examination room configured to receive user input representing change of a treatment status of a patient assigned to the first examination room, a switch multiplexer configured to communicate with and receive the user input from the manual input device for the first examination room, and a central control processor coupled to the indicator control circuit and the switch multiplexer to update the treatment status of the first examination room. |
US11810658B2 |
System and method for tracking wellness activity using a fitness tracking device
A method for tracking and incentivizing wellness activity using a fitness tracking device includes: receiving user wellness data collected over a time period from at least one fitness tracking device of a user, the user wellness data including at least one wellness metric corresponding to the user; analyzing user transaction data including transactions initiated by the user with a portable financial device over the time period; automatically determining a wellness award for the user based at least partially on the user wellness data and the user transaction data for the time period; and automatically initiating the wellness award for the user. A system for tracking and incentivizing a wellness activity using a fitness tracking device is also disclosed. |
US11810656B2 |
System for providing a coach with live training data of an athlete as the athlete is training
An athlete tracking system and method for tracking an athlete during training sessions. The system includes a mobile tracking device wearable around a portion of the athlete's head, and a training log server for maintaining an athlete profile that includes a training record updatable by the athlete and a training plan supplied by a coach. |
US11810655B2 |
Defibrillator charging
Systems and methods related to the field of cardiac resuscitation, and in particular to devices for assisting rescuers in performing cardio-pulmonary resuscitation (CPR). |
US11810649B2 |
Methods for identifying novel gene editing elements
Embodiments disclosed herein provide methods for identifying new CRISPR loci and effectors, as well as different CRISPR loci combinations found in various organisms. Class-II CRISPR systems contain single-gene effectors that have been engineered for transformative biological discovery and biomedical applications. Discovery of additional single-gene or multi-component CRISPR effectors may enhance existing CRISPR applications, such as precision genome engineering. Comprehensive characterization of CRISPR-loci may identify novel functional roles of CRISPR loci enabling new tools for biomedicine and biological discovery. CRISPR loci have enormous feature complexity, but classification of CRISPR loci has been focused on a small fraction of highly abundant features. Increased genome sequencing has enhanced the sampling of this feature complexity. |
US11810648B2 |
Systems and methods for adaptive local alignment for graph genomes
Systems and methods for analyzing genomic information can include obtaining a sequence read including genetic information; identifying, within a graph representing a reference genome, a plurality of candidate mapping positions that relate to the genetic information, the graph comprising nodes representing genetic sequences and edges connecting pairs of nodes; determining, by means of a computer system, whether an alignment with the graph surrounding each of the plurality of candidate mapping positions is advanced or basic; and performing for each candidate mapping position, by means of the computer system, a local alignment based on whether the local alignment is advanced or basic. The advanced local alignment can include a first-local-alignment algorithm, and the basic local alignment includes a second-local-alignment algorithm. Based on the local alignments, the mapped position of the sequence read can be identified within the genome. |
US11810646B2 |
Synthetic biology tools
Methods for design of genetic circuits are provided. |
US11810644B2 |
System and method for genomic association
In variants, a method for genomic association can include: determining observed variable values and observed phenotype values for each organism in a population, removing information from variables of interest, determining a phenotype-variable association model, identifying causal variables associated with a phenotype, and/or any other suitable steps. |
US11810638B2 |
Memory device including multiple memory chips and data signal lines and a method of operating the memory device
An operating method of a memory device includes selecting a receiver from a plurality of receivers of each memory chip of a plurality of memory chips included in the memory device as a first receiver. The plurality of memory chips share a plurality of data signal lines, each memory chip includes a plurality of on-die termination (ODT) resistors, and the plurality of ODT resistors are respectively connected to the plurality of receivers of each memory chip. The method further includes setting each ODT resistor which is connected to a first receiver to a first resistance value, setting ODT resistors which are connected to receivers which are not first receivers to a second resistance value, and setting an amplification strength of an equalizer circuit of each first receiver by performing training operations. Each data signal line of the plurality of data signal lines is respectively connected to a first receiver. |
US11810631B2 |
Data integrity checks based on voltage distribution metrics
Systems and methods are disclosed including a memory device and a processing device operatively coupled to the memory device. The processing device can perform operations including determining a value of a data state metric of a memory page; responsive to the data state metric satisfying a first threshold criterion, determining a value of a voltage distribution metric associated with the page; and responsive to the voltage distribution metric value satisfying a second threshold criterion, performing a media management operation with respect to a block associated with the page. |
US11810629B2 |
Semiconductor memory device
A semiconductor memory device includes a memory cell array including a plurality of memory cells, a word line connected to the plurality of memory cells, a plurality of bit lines connected respectively to the plurality of memory cells, a sense amplifier connected to the plurality of bit lines, and a controller configured to execute a write operation in a plurality of program loops each including a program operation and a verify operation. The sense amplifier is configured to apply a first voltage, a second voltage higher than the first voltage, a third voltage higher than the second voltage, and a fourth voltage higher than the third voltage to first, second, third, and fourth bit lines of the plurality of bit lines, respectively, while a program voltage is applied to the word line in the program operation. |
US11810627B2 |
Selective read disturb sampling
A processing device in a memory system maintains a counter to track a number of read operations performed on a data block of a memory device and determines that the number of read operations performed on the data block satisfies a first threshold criterion. The processing device further determines whether a number of scan operations performed on the data block satisfies a scan threshold criterion. Responsive to the number of scan operations performed on the data block satisfying the scan threshold criterion, the processing device performs a first data integrity scan to determine one or more first error rates for the data block, each of the one or more first error rates corresponding to a first set of wordlines of the data block, the first set comprising first alternating pairs of adjacent wordlines. |
US11810626B2 |
Generating boosted voltages with a hybrid charge pump
A hybrid charge pump is disclosed that employs novel arrangements of depletion-mode n-channel semiconductor devices and enhancement-mode p-channel semiconductor devices that eliminate or otherwise substantially reduce voltage drops that would otherwise occur across semiconductor device arrangements in existing charge pumps. As a result, the hybrid charge pump disclosed herein achieves the same output voltages as conventional charge pumps while requiring a reduced physical die area. Additionally, a hybrid charge pump arrangement disclosed herein employs a novel clocking scheme that reduces or eliminates reverse currents in the hybrid charge pump arrangement. |
US11810625B2 |
Solid-state memory with intelligent cell calibration
A solid-state memory may have many non-individually erasable memory cells arranged into calibration groups with each memory cell in each respective calibration group using a common set of read voltages to sense programmed states. An evaluation circuit of the solid-state memory may be configured to measure at least one read parameter for each calibration group responsive to read operations carried out upon the memory cells in the associated calibration group. An adjustment circuit of the solid-state memory may redistribute the memory cells of an existing calibration group into at least one new calibration group in response to the at least one measured read parameter. |
US11810624B2 |
Semiconductor memory device
A semiconductor memory device comprises: a substrate; a first conductive layer separated from the substrate in a first direction and extending in a second direction; a second and a third conductive layers separated from the substrate and the first conductive layer in the first direction and aligned in the second direction; a first semiconductor layer facing the first and the second conductive layers; a second semiconductor layer facing the first and the third conductive layers; a first and a second bit lines electrically connected to the first and the second semiconductor layers. At least some of operation parameters in the case of a certain operation being executed on a memory cell corresponding to the first conductive layer differ from at least some of operation parameters in the case of the certain operation being executed on a memory cell corresponding to the second conductive layer or the third conductive layer. |
US11810622B2 |
Detecting failure of a thermal sensor in a memory device
Respective values of a subset of the plurality of memory cells of a memory device are compared to a pattern of pre-programmed memory cells. The pattern pre-programmed memory cells comprise representations of values of the pattern of pre-programmed memory cells when a temperature criterion is satisfied. Responsive to determining that at least a threshold number of the respective values of the subset matches the pattern of pre-programmed memory cells, a temperature reading from a thermal sensor coupled to the memory device is identified. Responsive to determining that the temperature reading does not correspond to a temperature criterion, determining that the thermal sensor has failed. |
US11810621B2 |
Memory sub-system sanitization
A method includes receiving signaling indicative of performance of a sanitization operation to a processing device coupled to a memory device and applying a sanitization voltage to a plurality of memory blocks of the memory device. The sanitization voltage can be greater than an erase voltage of the plurality of memory blocks. |
US11810620B2 |
Semiconductor storage device
A semiconductor storage device includes a first semiconductor substrate, a second semiconductor substrate, a first memory cell and a second memory cell provided between the first semiconductor substrate and the second semiconductor substrate, a first word line electrically connected to the first memory cell, a second word line electrically connected to the second memory cell, a first transistor that is provided on the first semiconductor substrate and electrically connected between the first word line and a first wiring through which a voltage is applied to the first word line, and a second transistor that is provided on the semiconductor substrate and electrically connected between the second word line and a second wiring through which a voltage is applied to the second word line. |
US11810618B2 |
Extended memory communication
Systems, apparatuses, and methods related to extended memory communication subsystems for performing extended memory operations are described. An example method can include receiving, at a processing unit that is coupled between a host device and a non-volatile memory device, signaling indicative of a plurality of operations to be performed on data written to or read from the non-volatile memory device. The method can further include performing, at the processing unit, at least one operation of the plurality of operations in response to the signaling. The method can further include accessing a portion of a memory array in the non-volatile memory device. The method can further include transmitting additional signaling indicative of a command to perform one or more additional operations of the plurality of operations on the data written to or read from the non-volatile memory device. |
US11810617B2 |
Techniques for a multi-step current profile for a phase change memory
Examples may include techniques to implement a SET write operation to a selected memory cell include in a memory array. Examples include selecting the memory cell that includes phase change material and applying various currents over various periods of time during a nucleation stage and a crystal growth stage to cause the memory cell to be in a SET logical state. |
US11810615B2 |
Area-efficient dual-port and multi-port SRAM. area-efficient memory cell for SRAM
A memory cell has first, second, third and fourth transistors forming first and second cross-coupled inverters. The inverters define first and inverted first storage nodes; the first connected to first reference and first supply voltages, second connected to second reference and second supply voltages. A fifth transistor connected between first storage node and first bit line; sixth transistor connected between inverted first node and second bit line; first word line connected to fifth transistor, controlling access of first bit line to first node; second word line connected to sixth transistor, controlling access of second bit line to inverted first node. Relative voltage levels of first word line and first reference voltages, or first supply and first reference voltages, or second word line and second reference voltages, or second supply and second reference voltages, or first and second reference voltages are configured so first/inverted node are read/written independently. |
US11810604B2 |
Read/write device for a hard-disk memory system, and corresponding manufacturing process
Various embodiments of the present disclosure provide a read/write device for a hard-disk memory system. The read/write device includes a fixed structure; a membrane region including a first and a second membrane, which are constrained to the fixed structure, and a central portion, interposed between the first and second membranes; a first and a second piezoelectric actuator, mechanically coupled, respectively, to the first and second membranes; and a read/write head, which is fixed to the central portion of the membrane region. The first and second piezoelectric actuators can be controlled so as to cause corresponding deformations of the first and second membranes, said deformations of the first and second membranes causing corresponding movements of the read/write head with respect to the fixed structure. |
US11810601B2 |
Magnetic head including multiple magnetic layers and magnetic recording device
According to one embodiment, a magnetic head includes a first magnetic pole, a second magnetic pole, and a stacked body provided between the first and second magnetic poles. The stacked body includes a first magnetic layer, a second magnetic layer provided between the first magnetic layer and the second magnetic pole, a third magnetic layer provided between the second magnetic layer and the second magnetic pole, a first non-magnetic layer provided between the first and second magnetic layers, a second non-magnetic layer provided between the second and third magnetic layers, a third non-magnetic layer provided between the first magnetic pole and the first magnetic layer, and a fourth non-magnetic layer provided between the third magnetic layer and the second magnetic pole. A first magnetic pole length is shorter than a second magnetic pole length. A first magnetic layer length is longer than a second magnetic layer length. |
US11810597B2 |
Video ingestion and clip creation
Devices, systems and methods are disclosed for improving story assembly and video summarization. For example, video clips may be received and a theme may be determined from the received video clips based on annotation data or other characteristics of the received video data. Individual moments may be extracted from the video clips, based on the selected theme and the annotation data. The moments may be ranked based on a priority metric corresponding to content determined to be desirable for purposes of video summarization. Select moments may be chosen based on the priority metric and a structure may be determined based on the selected theme. Finally, a video summarization may be generated using the selected theme and the structure, the video summarization including the select moments. |
US11810594B2 |
Method and system for a headset with profanity filter
A gaming headset receives a plurality of audio channels comprising game audio channels and a chat audio channel during play of a particular game. The gaming headset monitors the received audio channels for predefined words that are associated with particular sounds in a data structure, and in response to detecting predefined words, filters out at least a portion of the detected predefined words from the received plurality of audio channels. The monitoring compares sounds on the received audio channels with the particular sounds in the data structure and also performs signal analysis on the audio channels during game play to detect the occurrence of the predefined words. The filtering mutes one or more of the plurality of audio channels so that the detected occurrence of the one of the predefined words is not output via speakers of the gaming headset. |
US11810590B2 |
Integration of high frequency audio reconstruction techniques
A method for decoding an encoded audio bitstream is disclosed. The method includes receiving the encoded audio bitstream and decoding the audio data to generate a decoded lowband audio signal. The method further includes extracting high frequency reconstruction metadata and filtering the decoded lowband audio signal with an analysis filterbank to generate a filtered lowband audio signal. The method also includes extracting a flag indicating whether either spectral translation or harmonic transposition is to be performed on the audio data and regenerating a highband portion of the audio signal using the filtered lowband audio signal and the high frequency reconstruction metadata in accordance with the flag. The high frequency regeneration is performed as a post-processing operation with a delay of 3010 samples per audio channel. |
US11810588B2 |
Audio source separation for audio devices
Implementations of the subject technology provide systems and methods for providing audio source separation for audio input, such as for audio devices having limited power and/or computing resources. The subject technology may allow an audio device to leverage processing and/or power resources of a companion device that is communicatively coupled to the audio device. The companion device may identify a noise condition of the audio device, select a source separation model based on the noise condition, and provide the source separation model to the audio device. In this way, the audio device can provide audio source separation functionality using a relatively small footprint source separation model that is specific to the noise condition in which the audio device is operated. |
US11810587B2 |
Noise filtrations based on radar
In example implementations, an apparatus is provided. The apparatus includes a microphone, a radar, a memory, and a processor in communication with the microphone, the radar, and the memory. The microphone is to receive audio signals. The radar is to collect data on users in a location. The memory is to store known body positions associated with having a side-conversation. The processor is to determine that a user is having a side-conversation based on the data collected by the radar compared to the known body positions associated with having a side-conversation and filter noise associated with the side-conversation received by the microphone from a direction associated with the user. |
US11810586B2 |
Methods and apparatuses for noise reduction based on time and frequency analysis using deep learning
A noise cancellation method including generating a first voice signal by canceling a first portion of noise included in an input voice signal using a first network, the first network being a trained u-net structure, and the first portion of the noise being in a time domain, applying a first window to the first voice signal, performing a fast Fourier transform on the first windowed voice signal to acquire a magnitude signal and a phase signal, acquiring a mask using a second network based on the magnitude signal, the second network being another trained u-net structure, applying the mask to the magnitude signal, generating a second voice signal by canceling a second portion of the noise by performing an inverse fast Fourier transform on the first windowed voice signal based on the masked magnitude signal and the phase signal, and applying a second window to the second voice signal. |
US11810585B2 |
Systems and methods for filtering unwanted sounds from a conference call using voice synthesis
To filter unwanted sounds from a conference call, a first voice signal is captured by a first device during a conference call and converted into corresponding text, which is then analyzed to determine that a first portion of the text was spoken by a first user and a second portion of the text was spoken by a second user. If the first user is relevant to the conference call while the second user is not, the first voice signal is prevented from being transmitted into the conference call, the first portion of text is converted into a second voice signal using a voice profile of the first user to synthesize the voice of the first user, and the second voice signal is then transmitted into the conference call. The second portion of text is not converted into a voice signal, as the second user is determined not to be relevant. |
US11810584B2 |
Resampling output signals of QMF based audio codecs
An apparatus for processing an audio signal includes a configurable first audio signal processor for processing the audio signal in accordance with different configuration settings to obtain a processed audio signal, wherein the apparatus is adapted so that different configuration settings result in different sampling rates of the processed audio signal. The apparatus furthermore includes n analysis filter bank having a first number of analysis filter bank channels, a synthesis filter bank having a second number of synthesis filter bank channels, a second audio processor being adapted to receive and process an audio signal having a predetermined sampling rate, and a controller for controlling the first number of analysis filter bank channels or the second number of synthesis filter bank channels in accordance with a configuration setting. |
US11810581B2 |
Multipoint control method, apparatus and program
A technique is provided that can reduce degradation of the sound quality due to a tandem connection of paired coding and decoding, and can reduce the operation processing amount and the required memory amount of a multipoint control unit. In multipoint connection between terminals of a plurality of communication networks (for example, a fixed phone line and a mobile phone line) having different communication capacities, when a multichannel coding including a monaural coding scheme of a communication network having a smaller communication capacity is used in a communication network having a larger communication capacity to transmit sounds of a plurality points to the communication network terminal having the larger communication capacity, control is exercised such that monaural codes of the plurality points are output. |
US11810579B2 |
Systems and methods for tracking biomarkers in subjects
A system for tracking biomarkers in subjects. In one embodiment, the biomarker tracking system has a sensory array including an RGB-D camera or RGB camera, a memory, and an electronic processor. The microphone captures voice data, including but not limited to tremor detection data, speech volume and pronunciation data, speech strength data, changes in tonality, hesitance in voice, and changes in speed or verbiage. A stored baseline biomarker model may comprise a voice data profile which may be pre-stored in the memory of a server and include a plurality of benchmarks. This electronic processor is configured to use this pre-stored voice data and compare it to the voice data captured with the microphone. The electronic processor is further configured to determine a set of attributes for the voice data, and generates a speech data deviation model based, at least in part, on the comparison of the speech data to the stored baseline biomarker model. |
US11810563B2 |
Voice orchestrated infrastructure system
There is provided a voice orchestrated infrastructure system which includes a hub in communication with at least one endpoint device located in a room or area, and the at least one endpoint device is in communication with the hub and at least one endpoint device in a second room or area through the hub. The hub includes a set of non-transitory commands which when executed with a central processor the at least one endpoint device is activated and controlled by voice commands which are independent of service provider type. The hub includes a non-transitory computer-readable storage medium which stores computer-executable instructions that, when executed by a processor, cause the processor to perform operations for determining the voice command which is communicated to and from the at least one end point device. |
US11810562B2 |
Reducing the need for manual start/end-pointing and trigger phrases
Systems and processes for selectively processing and responding to a spoken user input are provided. In one example, audio input containing a spoken user input can be received at a user device. The spoken user input can be identified from the audio input by identifying start and end-points of the spoken user input. It can be determined whether or not the spoken user input was intended for a virtual assistant based on contextual information. The determination can be made using a rule-based system or a probabilistic system. If it is determined that the spoken user input was intended for the virtual assistant, the spoken user input can be processed and an appropriate response can be generated. If it is instead determined that the spoken user input was not intended for the virtual assistant, the spoken user input can be ignored and/or no response can be generated. |