Document | Document Title |
---|---|
US11751493B2 |
Scalable designs for topological quantum computation
Apparatus, methods, and systems are disclosed for robust scalable topological quantum computing. Quantum dots are fabricated as van der Waals heterostructures, supporting localized topological phases and non-Abelian anyons (quasiparticles). Large bandgaps provide noise immunity. Three-dot structures include an intermediate quantum dot between two computational quantum dots. With the intermediate quantum dot in an OFF state, quasiparticles at the computational quantum dots can be isolated, with long lifetimes. Alternatively, the intermediate quantum dot can be controlled to decrease the quasiparticle tunneling barrier, enabling fast computing operations. A computationally universal suite of operations includes quasiparticle initialization, braiding, fusion, and readout of fused quasiparticle states, with, optionally, transport or tunable interactions—all topologically protected. Robust qubits can be operated without error correction. Quasilinear arrays of quantum dots or qubits can be scaled arbitrarily, up to resource limits, and large-scale topological quantum computers can be realized. Extensive two-dimensional arrays can also be used. |
US11751492B2 |
Embedded memory pillar
A memory device is provided. The memory device includes a memory stack on a first dielectric layer, and a sidewall spacer on the memory stack. The memory device further includes a conductive cap on the sidewall spacer and the memory stack and an upper metal line on the conductive cap and the sidewall spacer, wherein the upper metal line wraps around the conductive cap, sidewall spacer, and memory stack. |
US11751488B2 |
Spin element and reservoir element
A spin element according to the present embodiment includes a wiring, a laminate including a first ferromagnetic layer laminated on the wiring, a first conductive part and a second conductive part with the first ferromagnetic layer therebetween in a plan view in a lamination direction, and an intermediate layer which is in contact with the wiring and is between the first conductive part and the wiring, wherein a diffusion coefficient of a second element including the intermediate layer with respect to a first element including the wiring is smaller than a diffusion coefficient of a third element constituting the first conductive part with respect to the first element or a diffusion coefficient of the third element including the first conductive part with respect to the second element constituting the wiring is smaller than a diffusion coefficient of the third element with respect to the first element constituting the intermediate layer. |
US11751486B2 |
Templating layers for perpendicularly magnetized Heusler films/compounds
A device including a templating structure and a magnetic layer is described. The templating structure includes D and E. A ratio of D to E is represented by D1-xEx, with x being at least 0.4 and not more than 0.6. E includes a main constituent. The main constituent includes at least one of Al, Ga, and Ge. E includes at least fifty atomic percent of the main constituent. D includes at least one constituent that includes Ir. D includes at least 50 atomic percent of the at least one constituent. The magnetic layer is on the templating structure and includes at least one of a Heusler compound and an L10 compound. The magnetic layer is in contact with the templating structure and being magnetic at room temperature. |
US11751485B2 |
Flat bottom electrode via (BEVA) top surface for memory
Various embodiments of the present application are directed towards a method for forming a flat via top surface for memory, as well as an integrated circuit (IC) resulting from the method. In some embodiments, an etch is performed into a dielectric layer to form an opening. A liner layer is formed covering the dielectric layer and lining the opening. A lower body layer is formed covering the dielectric layer and filling a remainder of the opening over the liner layer. A top surface of the lower body layer and a top surface of the liner layer are recessed to below a top surface of the dielectric layer to partially clear the opening. A homogeneous upper body layer is formed covering the dielectric layer and partially filling the opening. A planarization is performed into the homogeneous upper body layer until the dielectric layer is reached. |
US11751481B2 |
Methods of manufacturing three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
A Magnetic Tunnel Junction (MTJ) device can include a reference magnetic layer having one or more trenches disposed therein. One or more sections of a tunnel barrier layer can be disposed on the walls of the one or more trenches. One or more sections of a free magnetic layer can be disposed on the one or more sections of the tunnel barrier layer in the one or more trenches. One or more sections of a conductive layer can be disposed on the one or more sections of the free magnetic layer in the one or more trenches. One or more insulator blocks can be disposed between corresponding sections of the tunnel barrier layer, corresponding sections of the free magnetic layer and corresponding sections of the conductive layer in the one or more trenches. |
US11751480B2 |
Electronic device
An electronic device includes a support substrate, a piezoelectric layer that is provided on the support substrate, a functional element including an electrode provided on a surface of the piezoelectric layer, a metallic frame body that is provided on the support substrate so as to surround the piezoelectric layer and the functional element in a plan view, a metallic lid that is provided on the frame body so as to form a space between the lid and the support substrate, and seals the functional element into the space, and a columnar body that is provided between the support substrate and the lid in the space. |
US11751477B2 |
Piezoelectric film, preparation method thereof and piezoelectric film sensor
A method for preparing a piezoelectric film includes: coating a solution containing a piezoelectric polymer and a solvent on a substrate to obtain a film, wherein the piezoelectric polymer is a copolymer of vinylidene fluoride and trifluoroethylene; and annealing the film at a temperature ranging from 122° C. to 133° C., to obtain the piezoelectric film. |
US11751473B2 |
Organic light emitting element
The present specification relates to an organic light emitting device including: an anode; a cathode disposed to face the anode; and a light emitting layer disposed between the anode and the cathode, in which the light emitting layer includes: a host including a P-type host and an N-type host, which produce an exciplex; and a phosphorescent dopant, and the host including the P-type host and the N-type host, which produce an exciplex, emits a photoluminescence light with a longer wavelength than a wavelength of each of the P-type host and the N-type host. |
US11751468B2 |
Controlled deposition of materials using a differential pressure regime
Methods and devices for controlling pressures in microenvironments between a deposition apparatus and a substrate are provided. Each microenvironment is associated with an aperture of the deposition apparatus which can allow for control of the microenvironment. |
US11751463B2 |
Organic light emitting display apparatus having a camera
An organic light emitting display apparatus and an electronic device including the same are provided. The organic light emitting display apparatus comprises an organic light emitting display panel including a display area and a non-display area, the display area including a transparent area, a buffer area provided outside the transparent area, and an opaque area provided outside the buffer area, a camera provided in the transparent area in a rear surface of the organic light emitting display panel to photograph a region in a forward direction with respect to the organic light emitting display panel, and a transparent area pixel driving circuit provided in the buffer area to drive a transparent area organic light emitting diode provided in the transparent area. The transparent area organic light emitting diode is connected to the transparent area pixel driving circuit through a transparent area electrode line. |
US11751462B1 |
Devices with displays having transparent openings and touch sensor metal
A display may have both a full pixel density region and a pixel removal region with a plurality of high-transmittance areas that overlap an optical sensor. Each high-transmittance area may be devoid of thin-film transistors and other display components. To improve transmission while maintaining satisfactory touch sensing performance, one or more segments of the touch sensor metal in the pixel removal region may have a reduced width relative to the touch sensor metal in the full pixel density region and/or one or more segments of the touch sensor metal in the pixel removal region may be omitted relative to the touch sensor metal in the full pixel density region. To mitigate a different appearance between the pixel removal region and the full pixel density region at off-axis viewing angles, the position of the touch sensor metal in the pixel removal region may be tuned. |
US11751460B2 |
Display panel, method of manufacturing the same and display device
A display panel, a method of manufacturing the same, and a display device are provided. In the display panel, sub-pixel areas in a same row along a first direction are divided into a plurality of sub-pixel area groups independent from each other, and each sub-pixel area group includes at least two adjacent sub-pixel areas, a connection layer includes a connection pattern arranged in each sub-pixel area, and the connection pattern is coupled to the initialization signal line pattern in the sub-pixel area wherein the connection pattern is located, connection patterns located in a same sub-pixel area group are sequentially coupled along the first direction to form the connection portion; at least part of a first auxiliary signal line layer is located in an anode spacing area, and is insulated from an anode pattern, the connection pattern in each sub-pixel area group is coupled to the first auxiliary signal line layer. |
US11751455B2 |
Non-common capping layer on an organic device
An apparatus that includes a plurality of OLEDs provided on a first substrate is disclosed. Each OLED includes a first electrode, a second electrode disposed over the first electrode, and an organic electroluminescent material disposed between the first and the second electrodes. The apparatus also includes a first capping layer that is disposed over the second electrode of at least a first portion of the plurality of OLEDs such that the first capping layer is optically coupled to at least the first portion of the plurality of OLEDs, and a second capping layer. The second capping layer is disposed over the second electrode of at least a second portion of the plurality of OLEDs such that the second capping layer is optically coupled to the second portion of the plurality of OLEDs but not the first portion of the plurality of OLEDs, and the second portion of the plurality of OLEDs is different from the first portion of the plurality of OLEDs. |
US11751454B2 |
Display device and method of manufacturing the same
A display device includes: first pixels which include a first pixel branch line extending in a first direction at one side portion and a first common branch line extending in the first direction at the other side portion which is opposite to the one side portion; second pixels which include a second common branch line extending in the first direction at the one side portion and a second pixel branch line extending in the first direction at the other side portion which is opposite to the one side portion; a first luminous element between the first pixel branch line and the first common branch line; and a second luminous element between the second common branch line and the second pixel branch line, wherein the first pixel and the second pixel are disposed in a second direction which intersects the first direction. |
US11751453B2 |
Display device
A display panel includes pixels and a driver IC pad area; a driver IC on the driver IC pad area of the display panel; first input pads and first output pads that overlap the driver IC pad area; a flexible printed circuit adjacent to the driver IC pad area on the display panel; first output test pads that overlap the flexible printed circuit, and are respectively extended to the first output pads; and first input extending wires that overlap the flexible printed circuit, are respectively extended to the first input pads, and are between the first output test pads. |
US11751449B2 |
Array substrate, display panel, and display device
An array substrate, a display panel and a display device are provided. The array substrate includes: a base substrate; a plurality of pixel units in an array on the base substrate; and a first power line and a second power line arranged on the base substrate and configured to respectively provide a first power signal and a second power signal to the pixel units. At least one of the pixel units includes: a first-color light emitting device; a second-color light emitting device; a first pixel driving circuit configured to drive the first-color light emitting device; and a second pixel driving circuit configured to drive the second-color light emitting device. The first pixel driving circuit is electrically connected to the first power line, the second pixel driving circuit is electrically connected to the second power line, the first power line and the second power line are insulated from each other. |
US11751448B2 |
Display device
A display device includes a substrate including a main display area, main display elements being in the main display area; a component area, auxiliary display elements and a transmission area being in the component area; and a peripheral area outside the main display area; an initialization voltage line in the main display area and extending in a first direction; a bottom metal layer in the component area between the substrate and the auxiliary display elements; and a bias line in the main display area and extending in the first direction, the bias line being connected to the bottom metal layer and being at a same layer as the initialization voltage line, wherein the bias line and the initialization voltage line are alternately arranged along a second direction crossing the first direction, in a first region of the main display area around the component area. |
US11751443B2 |
Organic light emitting diode display
An exemplary embodiment provides an organic light emitting diode display including a substrate, a bridge electrode disposed on the substrate, a buffer layer which covers the bridge electrode, a semiconductor layer disposed on the buffer layer, a first gate insulating layer which covers the semiconductor layer in a plan view, a first gate conductor disposed on the first gate insulating layer and which includes a first gate electrode, a second gate insulating layer which covers the first gate conductor, a second gate conductor disposed on the second gate insulating layer, an interlayer-insulating layer which covers the second gate conductor, and a data line disposed on the interlayer-insulating layer. The first gate electrode is directly connected to the bridge electrode, the semiconductor layer is electrically connected to the bridge electrode, and a capacitance exists between the data line and the bridge electrode. |
US11751437B2 |
Organic light emitting display panel and organic light emitting display device including the same
A display device, such an organic light emitting display device is disclosed. The display device includes an insulating film including a concave portion in an area of at least one subpixel, a first electrode on a side portion of the concave portion and on the concave portion in an area of the subpixel, an organic layer overlapping the concave portion and on the first electrode. An organic layer disposed in the at least one blue subpixel may include at least one of a first light emitting dopant with a maximum emission wavelength of 457 nm or less, a second light emitting dopant with a full width at half maximum (FWHM) of 30 nm or less, and/or a third light emitting dopant with the maximum emission wavelength of 457 nm or less and the full width at half maximum of 30 nm or less. Thus, a display device with enhanced light extraction efficiency is provided. |
US11751434B2 |
Semiconductor device including an oxide thin film transistor
A semiconductor device includes a base substrate, a first transistor disposed on the base substrate, the first transistor including a first input electrode, a first output electrode, a first control electrode, and a first semiconductor pattern including a crystalline semiconductor, a second transistor disposed on the base substrate, the second transistor including a second input electrode, a second output electrode, a second control electrode, and a second semiconductor pattern including an oxide semiconductor, a plurality of insulating layers disposed on the base substrate, and an upper electrode disposed on the first control electrode with at least one insulating layer of the plurality of insulating layers interposed between the upper electrode and the first control electrode. The upper electrode overlaps the first control electrode and forms a capacitor with the first control electrode. |
US11751429B2 |
Display device
A display device includes: a substrate; a transistor disposed on the substrate; a pixel electrode connected to the transistor; a bank layer disposed on the pixel electrode having a pixel opening overlapping the pixel electrode; an emission layer disposed in the pixel opening; a common electrode disposed on the emission layer and the bank layer; an encapsulation layer disposed on the common electrode; a sensing electrode disposed on the encapsulation layer; a first insulator disposed on the encapsulation layer to overlap the pixel opening; a second insulator disposed outside the first insulator; and a third insulator disposed outside the second insulator. The first insulator has a first refractive index, the second insulator has a second refractive index, and the third insulator has a third refractive index, and the first refractive index, and wherein the second refractive index, and the third refractive index are different from each other. |
US11751428B2 |
OLED panel and method of manufacturing the same
An OLED panel and a method of manufacturing the same are disclosed. The OLED panel is provided to be disposed above a camera, and the OLED panel comprises sequentially from top to bottom: a substrate; a light-emitting layer disposed on the substrate; a cathode disposed on the light-emitting layer; a high n value inorganic salt layer disposed on surfaces of the cathode and the light-emitting layer; and a CPL layer disposed on the high n value inorganic salt layer. An entire thickness of the high n value inorganic salt layer and a part of a thickness of the cathode of the OLED panel corresponding to a position above the camera are removed to form a hollow portion, so that the thickness of the cathode above the camera is reduced, so as to increase the light transmittance, thereby improving the quality of photos. |
US11751424B2 |
Display device
A display device includes a substrate; a display area and a non-display area on the substrate, where a plurality of pixels is disposed in the display area, and where the non-display area is in a peripheral area of the display area; an insulating layer disposed on the substrate; a metal wiring disposed on the substrate; and a plurality of dummy patterns disposed in the non-display area. The plurality of dummy patterns includes a plurality of first patterns including an insulating material and a plurality of second patterns including a metal material. |
US11751422B2 |
Display device and method for manufacturing display device
A display device includes a metal pattern formed, in a frame region between a variant edge portion of the display device forming a cutout portion, and a display region. The metal pattern is formed from a metal layer conforming to at least a portion of the shape of the cutout portion. |
US11751421B2 |
OLED display substrate and method for preparing the same, and display device
The present disclosure provides an OLED display substrate, a method for preparing the same, and a display device. The OLED display substrate includes an OLED device located on a base substrate and a packaging unit covering the OLED device. The packaging unit includes an inorganic material layer, an organic material layer, and a fluorine-doped diamond-like carbon layer located between the inorganic material layer and the organic material layer. |
US11751413B2 |
Display device and method for manufacturing the same
A display device includes: a circuit element layer comprising a transistor; a display element layer comprising a first electrode connected to the transistor, a second electrode facing the first electrode, an organic pattern between the first electrode and the second electrode, a pixel defining layer having an opening exposing the first electrode, an auxiliary electrode spaced apart from the opening to cover a portion of the pixel defining layer and connected to the second electrode, a first protection pattern covering the second electrode, and a second protection pattern covering the first protection pattern; and an encapsulation layer covering the display element layer, wherein the first protection pattern and the second protection pattern have stress in directions different from each other. |
US11751411B2 |
Solar cell, manufacturing method thereof, and photovoltaic module
Provided are a solar cell, a manufacturing method thereof and a photovoltaic module. The solar cell includes a semiconductor substrate, the semiconductor substrate having a first surface and a second surface opposite to each other; a first passivation layer and a first electrode layer that are located on the first surface of the semiconductor substrate; and a second passivation layer and a second electrode layer that are located on the second surface of the semiconductor substrate. A donor material film layer is provided between the first passivation layer and the first surface of the semiconductor substrate, and/or an acceptor material film layer is provided between the second passivation layer and the second surface of the semiconductor substrate. |
US11751410B2 |
Organic pigment coating for electronic devices, perovskite solar cells, and methods
Methods of passivating a surface. The methods may include providing a mixture including a liquid and a derivative of quinacridone, applying the mixture to a first surface of a film that includes a metal halide perovskite, and annealing the film for a time and a temperature effective to convert the derivative of quinacridone to quinacridone. Composite materials and electronic devices also are provided. |
US11751409B2 |
Semiconductor device
To provide a semiconductor device suitable for miniaturization. To provide a highly reliable semiconductor device. To provide a semiconductor device with improved operating speed.A semiconductor device including a memory cell including first to cth (c is a natural number of 2 or more) sub memory cells, wherein: the jth sub memory cell includes a first transistor, a second transistor, and a capacitor; a first semiconductor layer included in the first transistor and a second semiconductor layer included in the second transistor include an oxide semiconductor; one of terminals of the capacitor is electrically connected to a gate electrode included in the second transistor; the gate electrode included in the second transistor is electrically connected to one of a source electrode and a drain electrode which are included in the first transistor; and when j≥2, the jth sub memory cell is arranged over the j-lth sub memory cell. |
US11751407B2 |
3D memory with confined cell
A plurality of memory cells in a cross-point array in which the memory cell stacks in the cross-points include a switch element, a conductive barrier layer, and a confined cell structure in series, and having sides aligned within the cross-point area of the corresponding cross-point, the confined cell structure including surfactant spacers within the cross-point area having outside surfaces on a pair of opposing sides of the stack, and a body of programmable resistance memory material confined between inside surfaces of the surfactant spacers. The memory cells can be operated as multi-level cells in a 3D array. |
US11751406B2 |
3D RRAM cell structure for reducing forming and set voltages
An RRAM cell stack is formed over an opening in a dielectric layer. The dielectric layer is sufficiently thick and the opening is sufficiently deep that an RRAM cell can be formed by a planarization process. The resulting RRAM cells may have a U-shaped profile. The RRAM cell area includes contributions from a bottom portion in which the RRAM cell layers are stacked parallel to the substrate and a side portion in which RRAM cell layers are stacked roughly perpendicular to the substrate. The combined side and bottom portions of the curved RRAM cell provide an increased area in comparison to a planar cell stack. The increased area lowers forming and set voltages for the RRAM cell. |
US11751400B2 |
Embedded ferroelectric memory in high-k first technology
In some embodiments, the present disclosure relates to an integrated circuit. The integrated circuit has a first doped region and a second doped region within a substrate. A ferroelectric material is arranged over the substrate and laterally between the first doped region and the second doped region. A conductive electrode is over the ferroelectric material and between sidewalls of the ferroelectric material. One or more sidewall spacers are arranged along opposing sides of the ferroelectric material. A dielectric layer continuously and laterally extends from directly below the one or more sidewall spacers to directly below the ferroelectric material. |
US11751399B2 |
Semiconductor memory device and method for manufacturing the same
A semiconductor memory device according to an embodiment includes a first stacked body, a second stacked body, an intermediate conductive layer, an intermediate insulating layer, a semiconductor pillar, a charge storage film, and an insulating film. The semiconductor pillar includes a first part, a second part, and a third part. The charge storage film includes a first charge storage portion and a second charge storage portion. The charge storage film includes at least one first element selected from the group consisting of nitrogen, hafnium, and aluminum. The insulating film provides in at least a portion between the intermediate conductive layer and the first part. The insulating film not includes the first element, or the insulating film has a concentration of the first element lower than a concentration of the first element of the charge storage film. |
US11751397B2 |
Semiconductor storage device and method of manufacturing the same
In one embodiment, a semiconductor storage device includes a stacked body in which a plurality of conducting layers are stacked through a plurality of insulating layers in a first direction, a semiconductor layer penetrating the stacked body, extending in the first direction and including metal atoms, and a memory film including a first insulator, a charge storage layer and a second insulator that are provided between the stacked body and the semiconductor layer. The semiconductor layer surrounds a third insulator penetrating the stacked body and extending in the first direction, and at least one crystal grain in the semiconductor layer has a shape surrounding the third insulator. |
US11751396B2 |
Microelectronic devices including varying tier pitch, and related electronic systems
A microelectronic device comprises a first set of tiers, each tier of the first set of tiers comprising alternating levels of a conductive material and an insulative material and having a first tier pitch, a second set of tiers adjacent to the first set of tiers, each tier of the second set of tiers comprising alternating levels of the conductive material and the insulative material and having a second tier pitch less than the first tier pitch, a third set of tiers adjacent to the second set of tiers, each tier of the third set of tiers comprising alternating levels of the conductive material and the insulative material and having a third tier pitch less than the second tier pitch, and a string of memory cells extending through the first set of tiers, the second set of tiers, and the third set of tiers. Related microelectronic devices, electronic systems, and methods are also described. |
US11751394B2 |
Three-dimensional memory device and method for forming the same
Embodiments of 3D memory devices and methods for forming the same are disclosed. In an example, a 3D memory device includes a doped region of a substrate. The doped region includes dopants of a first type. The 3D memory device also includes a semiconductor layer on the doped region. The semiconductor layer includes dopants of a second type. The first type and the second type are different from each other. The 3D memory device also includes a memory stack having interleaved conductive layers and dielectric layers on the semiconductor layer. The 3D memory device further includes a channel structure extending vertically through the memory stack and the semiconductor layer into the doped region, a semiconductor plug extending vertically into the doped region, the semiconductor plug comprising dopants of the second type, and a source contact structure extending vertically through the memory stack to be in contact with the semiconductor plug. |
US11751392B2 |
Fabrication method for a 3-dimensional NOR memory array
A process for manufacturing a 3-dimensional memory structure includes: (a) providing one or more active layers over a planar surface of a semiconductor substrate, each active layer comprising (i) first and second semiconductor layers of a first conductivity; (ii) a dielectric layer separating the first and second semiconductor layer; and (ii) one or more sacrificial layers, at least one of sacrificial layers being adjacent the first semiconductor layer; (b) etching the active layers to create a plurality of active stacks and a first set of trenches each separating and exposing sidewalls of adjacent active stacks; (c) filling the first set of trenches by a silicon oxide; (d) patterning and etching the silicon oxide to create silicon oxide columns each abutting adjacent active stacks and to expose portions of one or more sidewalls of the active stacks; (e) removing the sacrificial layers from exposed portions of the sidewalls by isotropic etching through the exposed portions of the sidewalls of the active stacks to create corresponding cavities in the active layers; (f) filling the cavities in the active stacks by a metallic or conductor material; (g) recessing the dielectric layer from the exposed sidewalls of the active stacks; and (h) filling recesses in the dielectric layer by a third semiconductor layer of a second conductivity opposite the first conductivity. |
US11751387B2 |
Semiconductor device
A semiconductor device having a three-dimensional (3D) structure is disclosed. The semiconductor device includes a first chip configured to include a peripheral circuit, and a second chip stacked on the first chip that is configured to include a first memory cell array and a second memory cell array. A plurality of transfer circuits are configured to connect a plurality of row lines of the first memory cell array and a plurality of row lines of the second memory cell array to respective global row lines is divided between the first chip and the second chip. |
US11751384B2 |
Semiconductor memory device and manufacturing method of the semiconductor memory device
A semiconductor memory device includes a first stack including lower conductive patterns separated from each other and stacked on a substrate to form a lower stepped structure, a support pillar passing through the first stack and including an insulating layer, a second stack including upper conductive patterns separated from each other and stacked on the first stack, the upper conductive patterns including an upper stepped structure that does not overlap with the lower stepped structure and the support pillar, a channel structure passing through the second stack and the first stack, and a memory layer surrounding a sidewall of the channel structure. |
US11751381B2 |
Semiconductor device and fabrication method of the same
A semiconductor device includes: a bit line structure formed over a substrate; a storage node contact plug spaced apart from the bit line structure; and a nitride spacer positioned between the bit line structure and the storage node contact plug, wherein the nitride spacer has a higher silicon content in a portion adjacent to the storage node contact plug than in a portion adjacent to the bit line structure. |
US11751377B2 |
Semiconductor device and method fabricating the same
A method for fabricating a semiconductor device, including the steps of: providing a substrate having an etch stop layer formed thereon; forming a preliminary stacked structure on the etch stop layer, the preliminary stacked structure including a lower sacrifice layer contacting the etch stop layer, a support layer, and an upper sacrifice layer; forming a hole penetrating the preliminary stacked structure and the etch stop layer; forming a conductive pattern in the hole; removing the upper sacrifice layer and a portion of the support layer; removing the lower sacrifice layer; forming a first conductive layer covering the conductive pattern; and forming a dielectric layer covering the first conductive layer, a remaining portion of the support layer, and the etch stop layer. |
US11751376B2 |
Semiconductor memory device and manufacturing method thereof
There are provided a semiconductor memory device and a manufacturing method thereof. The semiconductor memory device includes: a first etch stop layer; a source layer on the first etch stop layer; a second etch stop layer on the source layer; a stack structure on the second etch stop layer; and a channel structure penetrating the first and second etch stop layers, the source layer, and the stack structure, the channel structure being electrically connected to the source layer. A material of each of the first and second etch stop layers has an etch selectivity with respect to a material of the source layer. |
US11751375B2 |
Static random access memory with magnetic tunnel junction cells
Disclosed herein are related to a memory cell including magnetic tunneling junction (MTJ) devices. In one aspect, the memory cell includes a first layer including a first transistor and a second transistor. In one aspect, the first transistor and the second transistor are connected to each other in a cross-coupled configuration. A first drain structure of the first transistor may be electrically coupled to a first gate structure of the second transistor, and a second drain structure of the second transistor may be electrically coupled to a second gate structure of the first transistor. In one aspect, the memory cell includes a second layer including a first MTJ device electrically coupled to the first drain structure of the first transistor and a second MTJ device electrically coupled to the second drain structure of the second transistor. In one aspect, the second layer is above the first layer. |
US11751370B2 |
Correction amount calculation device, component mounting machine, and correction amount calculation method
A correction amount calculation device includes a first acquisition section and a correction amount calculation section. The first acquisition section is configured to acquire a first positional deviation amount, which is a positional deviation amount of a printing position detected by a printing inspection machine with respect to a pad position, and a second positional deviation amount, which is a positional deviation amount of a mounting position detected by a appearance inspection machine with respect to the pad position. The correction amount calculation section is configured to, based on the first positional deviation amount and the second positional deviation amount, calculate a correction amount, which is used in the mounting process of a board product to be produced later, regarding a third positional deviation amount, which is a positional deviation amount of the mounting position with respect to the printing position. |
US11751368B2 |
Electrically conductive resin composition and electromagnetic shielding material therewith
The electrically conductive resin composition may contain matrix resin, coke powder, and carbon fiber. The volume mean particle diameter of the coke powder may be not less than 1 μm and not more than 500 μm. The content percentage of the coke powder in the electrically conductive resin composition may be not less than 1 wt % and not more than 60 wt %. The aspect ratio of the carbon fiber may be not less than 3 and not more than 1700. The content percentage of the carbon fiber in the electrically conductive resin composition may be not less than 0.5 wt % and not more than 10 wt %. |
US11751366B1 |
Heat dissipation for head-mountable device
A head-mountable device can provide passive cooling that utilizes surfaces of an optical assembly to allow heat to be managed in a manner that does not detrimentally impact the visual information displayed to the user. Lenses can be coated with a transparent and thermally conductive material, such as silver nanowire. Such a thermal layer can provide superior thermal conductivity, transmittance, flexibility, flat transmission, low cost, and angular color stability. The thermal layer can passively manage heat by increasing the surface area across which heat can be efficiently dissipated. |
US11751365B2 |
Jet impingement manifolds for cooling power electronics modules
The present disclosure describes techniques for cooling power electronics in automotive applications. The present disclosure utilizes a jet impingement of a dielectric fluid on electrical interconnections to cool power electronics. |
US11751364B2 |
Electronic equipment
Electronic equipment (10) has multiple cooling fans (15) for sending air to a heat sink (30). The multiple cooling fans (15) generate airflow (Fh) passing through the heat sink (30) from a first side (H1) to a second side (H2) thereof. The heat sink (30) is arranged obliquely to a crosswise direction and a longitudinal direction of the electronic equipment (10). A sheathing member (40) has an air inlet opening (41i) formed obliquely to the crosswise and longitudinal directions along the first side (H1) of the heat sink (30). |
US11751361B2 |
Systems and methods for datacenter thermal management
A thermal management system for cooling a computing device includes a cold aisle, a hot aisle, a radiator, and a plurality of source heat sinks thermally conductively connected to the radiator. The radiator connects the cold aisle to the hot aisle and flows a cooling fluid through an interior volume of the radiator. Each source heat sink is configured to connect to a heat-generating electronic component to thermally conductively connect the heat-generating component to a surface of the radiator. |
US11751358B2 |
Electrical connector cage assembly and electrical connector therewith
An electrical connector cage assembly includes a connector casing, a heat sink, and an attaching part. The heat sink includes a base and a plurality of fins extending from a top surface of the base. The fins extend above a marginal area of the top surface to form an open slot with the marginal area. The open slot has two end openings and a side opening extending to the end openings. The attaching part passes through the open slot and protrudes from the end openings to be detachably engaged with the connector casing to detachably fix the base onto the connector casing. Therein, the attaching part is separable from the heat sink from the side opening. An electrical connector includes a circuit board, an electrical connector base, and the electrical connector cage assembly. The electrical connector base is electrically connected onto the circuit board and exposed from the connector casing. |
US11751356B2 |
Rack backup energy unit with advanced thermal management system
A coolant management unit for providing liquid cooling for backup battery unit (BBU) modules of an electronic rack includes a BBU return manifold, a BBU supply manifold, a balance loop, and a power bus. For example, a BBU supply manifold having a rack supply connector to receive cooling fluid from a rack supply manifold and a BBU supply connector to be connected to one of the BBU modules to distribute the cooling fluid. A BBU return manifold to be coupled to a rack return manifold, wherein the BBU return manifold is to receive vapor from the BBU modules. A balance loop connected to each of the BBU modules to establish a fluid connection amongst the BBU modules, such that a level of the cooling fluid in each of the BBU modules remains similar. |
US11751354B1 |
Anti-sag modular server chassis assembly
A computing equipment box assembly can include a chassis base and a tray. The chassis base can include a bottom panel, an opening through the bottom panel, and a rim defined around the opening. The tray can include a body configured for supporting computing components, a frame section of the body sized to be supported atop the rim of the chassis base; and a downwardly embossed portion of the body extending downwardly from the rim and sized to fit within the opening of the chassis base when the frame section is supported atop the rim of the chassis base. |
US11751353B2 |
Power conversion module and method of forming the same
A power conversion module and method of forming the same includes a motherboard having a first surface and a second surface that opposes the first surface. The motherboard includes a first trace that electrically couples a decoupling capacitor mounted on the motherboard to a first pad on the first surface of the motherboard and an output node of a power conversion module. The motherboard includes a via extending through the motherboard that electrically couples a second pad on the first surface of the motherboard and a third pad on the second surface of the motherboard to the output node and a second trace that electrically couples a fourth pad on the second surface of the motherboard and the decoupling capacitor. The power module includes a first daughterboard mounted on the first surface of the motherboard and a second daughterboard mounted on the second surface of the motherboard. |
US11751335B2 |
Printed circuit board
A printed circuit board includes: a first substrate including a first cavity and first circuit units; and a second substrate disposed in the first cavity of the first substrate with an electronic component disposed therein, and including second circuit units having a higher density than the first circuit units, wherein the second substrate includes a first region and a second region, the first region of the second substrate includes an outermost circuit layer among the second circuit units, and circuit layers in the first region of the second substrate have a higher density than circuit layers in the second region of the second substrate. |
US11751334B2 |
Semiconductor device with interface structure and method for fabricating the same
The present application discloses a semiconductor device with an interface structure and a method for fabricating the interface structure. The interface structure includes an interface board configured to be fixed onto and electrically coupled to a chuck of a testing equipment, and a first object positioned on a first surface of the interface board and electrically coupled to the interface board. The first object is configured to be analyzed by the testing equipment. |
US11751333B2 |
Overlap joint flex circuit board mating
An interconnection for flex circuit boards used, for instance, in a quantum computing system are provided. In one example, the interconnection can include a first flex circuit board having a first side and a second side opposite the first side. The interconnection can include a second flex circuit board having a third side and a fourth side opposite the third side. The first flex circuit board and the second flex circuit board are physically coupled together in an overlap joint in which a portion of the second side for the first flex circuit board overlaps a portion of the third side of the flex circuit board. The interconnection can include a signal pad structure positioned in the overlap joint that electrically couples a first via in the first flex circuit board and a second via in the second flex circuit board. |
US11751332B2 |
Cableless interconnect
A baseboard includes a first connection configured to electrically interface with a motherboard, a second connection configured to electrically interface with a module, and a switch circuit configured to route data channels and power channels between the motherboard and the module. The first connection is configured to interface with more than one connection protocol or standard. The second connection is configured to interface with the more than one connection protocol or standard. The baseboard allows for cableless connections to allow unobstructed airflow over the components. |
US11751330B2 |
Magnetic material filled printed circuit boards and printed circuit board stators
A dielectric substrate may support conductive traces that form windings for a least one pole of a planar armature of an axial flux machine. At least a portion of the dielectric substrate, which is adapted to be positioned within an annular active area of the axial flux machine, may include a soft magnetic material. Such a planar armature may be produced, for example, by forming the conductive traces on the dielectric substrate, and filling interstitial gaps between the conductive traces with at least one epoxy material in which the soft magnetic material is embedded. |
US11751318B2 |
Soft X-ray light source
A soft X-ray light source, including a vacuum target chamber, a refrigeration cavity, and a nozzle. The refrigeration cavity and the nozzle are contained in the vacuum target chamber. The nozzle (36) is arranged in the refrigeration cavity. The vacuum target chamber has a t-branch tube and a multi-channel tube. The t-branch tube has a first outlet and a second outlet opposed to each other and a third outlet, wherein the first outlet is connected to a mounting plate through which a refrigerant inlet pipe, a refrigerant outlet pipe, and a working gas pipe respectively pass and are connected to the refrigeration cavity, and wherein the third outlet is connected to a vacuum extraction device. The multi-channel tube has a top opening and a bottom opening opposed to each other, wherein the top opening is connected to the second outlet, wherein a vacuum outlet is provided at the bottom opening. |
US11751317B2 |
X-ray generating device, and diagnostic device and diagnostic method therefor
An X-ray tube is provided with: a cathode and an anode sealed inside a vacuum envelope; and an ion-collecting conductor attached to the vacuum envelop so as to be in contact with an internal space of the vacuum envelope. A first current sensor measures a value of a first current flowing between the ion-collecting conductor and a node for supplying potential for attracting positive ions in the vacuum envelope. A second current sensor measures a value of a second current flowing between the anode and the cathode. A control circuit generates diagnostic information on the degree of vacuum of the X-ray tube based on a current ratio file of the first current value (Ii) measured by the first current sensor to the second current value (Ie) measured by the second current sensor. |
US11751314B2 |
Visualized light adjustment method and system
Disclosed is a visualized light adjustment method and system. The method includes the steps of: S1. acquiring a light spot projection scenario of lights using an imaging device, and displaying the light spot projection scenario in real time by a display device; S2. selecting coordinates of a light spot on the display device using an input device, and inputting a desired light effect; and S3. controlling, by a console, the light corresponding to a physical address to generate a corresponding light effect, based on the selection by the input device and an association relationship between the coordinates of the light spot and a physical address of the light. |
US11751313B2 |
Systems and methods for a perceived linear dimming of lights
A light dimming system includes one or more lights and includes a local light controller that includes a dimming controller and a processing circuit, the dimming controller configured to provide an output to the one or more light drivers. One or more electronic processors are configured to receive a dimming input value indicating a desired dimming level for the one or more lights. The processors are further configured to determine a configuration of the one or more light drivers, wherein the configuration defines whether the one or more light drivers utilize a non-linear dimming curve or a linear dimming curve, and provides the dimming controller a dimming level to output a dimming control signal to the one or more light drivers equivalent to the received dimming input value based on a non-linear or linear calculation. |
US11751308B2 |
Isolated driver for lighting means
The invention relates to an isolated driver (100) for lighting means (109), comprising: a primary circuit (100a), a secondary circuit (100b), an isolation barrier (106) separating the primary circuit (100a) and the secondary circuit (100b), wherein a ground potential of the primary circuit (100a) and a ground potential of the secondary circuit (100b) are connected via a capacitor (107), and a control circuit (111) on the secondary side (100b), monitoring a current to/from the capacitor (107) to the ground potential of the secondary circuit (100b) and issuing a mains (101) failure signal in case the current does not meet predefined conditions, preferably in case no such current is detected. |
US11751307B2 |
Method and apparatuses for controlling the output voltage of a voltage regulator
A device comprises a voltage regulator, circuits, a voltage-to-current converter, a control bus, a resistor and a resistor network. Each of the circuits has at least one LED connector and one LED driver. Each of the circuits has a measuring circuit for detecting voltage differences between the potentials of LED terminals and a reference potential. Further, each of the circuits includes a local controller. The local controller withdraws a current from the control bus in dependence on the detected voltage differences. Bias current sources inject bias currents into the control bus in form of a sum current of the injected bias currents. The resistor performs a current-to-voltage conversion of the sum current to a control voltage. The voltage-to-current converter converts the control voltage into a current. The resistor network converts the current into a voltage value. An output voltage of the voltage regulator depends on the voltage value. |
US11751300B2 |
Systems and methods for regulating LED currents
System and method for regulating one or more currents. The system includes a system controller, an inductor, a first resistor, a switch and a first diode. The system controller includes a first controller terminal and a ground terminal, the system controller being configured to output a drive signal at the first controller terminal. The inductor includes a first inductor terminal and a second inductor terminal, the first inductor terminal being coupled to the ground terminal, the second inductor terminal being coupled to one or more light emitting diodes. The first resistor includes a first resistor terminal and a second resistor terminal, the first resistor terminal being coupled to the ground terminal. The switch is configured to receive the drive signal and coupled to the second resistor terminal. The first diode includes a first diode terminal and a second diode terminal and coupled to the first resistor. |
US11751299B2 |
Multi-location load control system
A multiple location load control system may comprise a main load control device and an accessory load control device. The main load control device may control an amount of power delivered to an electrical load from an AC power source using a control circuit and a controllably conductive device. The accessory load control device may be coupled to the main load control device via an accessory terminal. The accessory load control device may detect a user input for changing a characteristic of the electrical load and may send a signal to the main load control device indicating the user input. The main load control device may detect a pattern of the signal based on a threshold and further determine the user input in response to the detected pattern. The main load control device may adjust the threshold based on line/load conditions of the multiple location load control system. |
US11751295B2 |
Convection system for an oven
An oven includes a plurality of walls, a fan, and a heating element. The plurality of walls defines an internal cavity in which food may be placed for cooking. A first of the plurality of walls defines a plurality of orifices that establishes fluid communication between the internal cavity and a fluid path. The fan is configured to direct air from the fluid path, through the plurality of orifices, and into the internal cavity. The heating element is disposed on the first of the plurality of walls and adjacent to the plurality of orifices. The heating element is configured to heat the air being directed from the fluid path, through the plurality of orifices, and into the internal cavity. |
US11751292B2 |
Electromagnetically heated cooking utensil, and heating control circuit and method therefor
An electromagnetically heated cooking utensil, and a heating control circuit and method therefor. The heating control circuit includes a first resonance device; a second resonance device; a first power switch; a second power switch; a first synchronization device that detects voltages of both ends of the first resonance device to output a first synchronization signal; a second synchronization device that detects voltages of both ends of the second resonance device to output a second synchronization signal; and a control device that selects, according to the heating mode of the electromagnetically heated cooking utensil, the first synchronization signal to generate a driving signal for driving the first power switch, a second synchronization signal to generate a driving signal for driving the second power switch. |
US11751291B2 |
Induction heating apparatus
An induction heating apparatus is provided. The induction heating apparatus includes a heating coil, an inverter, a current sensor configured to measure a driving current supplied from the inverter to the heating coil, and a controller configured to provide a drive signal to the inverter to allow the driving current to follow a target current based on a user input. The controller reduces a driving duty of the drive signal based on the driving current exceeding a predetermined reference current, and the controller provides a drive signal to the inverter to allow the driving current to follow a current less than the target current, based on the driving current being less than or equal to the predetermined reference current after reducing the driving duty of the drive signal. |
US11751290B2 |
Autonomous winter solar panel
Disclosed herein is an autonomous solar panel for use in winter conditions. The panel includes at least one energy transfer member associated with the solar panel. A sensor is in communication with the energy transfer member. A power supply is connected to the energy transfer member. A network interconnects the energy transfer member, the sensor, and the power supply, and is configured so that when the sensor senses an accumulation of winter precipitation on the solar panel, a portion of stored power in the power supply activates the energy transfer member and the winter precipitation is removed from the solar panel. |
US11751288B2 |
Heat-emitting transparent plate, method of manufacturing the heat-emitting transparent plate, heat-emitting device including the heat-emitting transparent plate and objects including the heat-emitting device
A heat-emitting transparent plate includes a heat-emitting region that is transparent to visible light and is a region that emits heat by absorbing infrared rays. The heat-emitting region includes a meta-surface, and the meta-surface includes a plurality of meta-patterns to absorb infrared rays. A method of manufacturing a heat-emitting transparent plate includes forming a material layer on a transparent substrate and forming a plurality of patterns on the transparent substrate by patterning the material layer. The plurality of patterns include a material that is transparent to visible light and that emits heat by absorbing infrared rays, and a pitch of the plurality of patterns is less than a wavelength of the infrared rays. A heat-emitting device includes the heat-emitting transparent plate and a light source. |
US11751287B2 |
Substrate heating device
A substrate heating device is provided. The substrate heating device includes a vacuum chamber and a heater. The vacuum chamber receives a substrate. The heater includes a body, a heating wire, and a terminal part. The body penetrates through a wall of the vacuum chamber such that a portion of the body is in a vacuum atmosphere of the vacuum chamber. The heating wire is provided inside the body and partly disposed inside the vacuum chamber. The terminal part is connected to the heating wire and is disposed outside the vacuum chamber. |
US11751281B2 |
Method for supporting service continuity when disaster situation ends, and device supporting same
Provided are a method for supporting service continuity when a disaster situation ends, and a device supporting same. A user equipment (UE) receives, from a disaster roaming PLMN, a configuration update command message including information indicating that a disaster condition of a home PLMN (HPLMN) has ended. The UE waits until a service that is being received from the disaster roaming PLMN ends, and performs, after the service that is being received from the disaster roaming PLMN ends, a procedure of deregistration from the disaster roaming PLMN on the basis of information indicating that the disaster condition of the HPLMN has ended. |
US11751280B2 |
Spectrum usage protection in a shared wireless network
According to one configuration, multiple users in a tiered hierarchy share use of a wireless spectrum. For example, a spectrum access system receives a notification indicating that a first-priority tier 1 user in the hierarchy temporarily needs access to a first wireless spectrum assigned to a second-priority tier 2 user in the hierarchy. In response to the notification, the spectrum access system temporarily allocates the second-priority tier 2 user use of a second wireless spectrum. The spectrum access system protects use of the second wireless spectrum by the second-priority tier 2 user from a third-priority tier 3 user in the hierarchy. In certain instances, the one or more spectrum access systems receive the same notification of use of the first wireless spectrum by the first-priority tier 1 user. The multiple spectrum access systems not serving the second-priority tier 2 user protect the Tier 2 User from any Tier 3 Users in the hierarchy. |
US11751276B2 |
Methods for protocol enhancements in 5G NAS
Methods, systems, and apparatuses for protocol data unit (PDU) session management over different access technologies (ATS) are disclosed. A wireless transmit/receive unit (WTRU) may receive a first message from a network over a first access technology. The first message may include an indication for the WTRU to reestablish resources for one or more protocol data unit (PDU) sessions over a second access technology. The WTRU may determine that a PDU session of the one or more PDU sessions is locally deactivated by the WTRU. The WTRU may send a second message via the first access technology. The second message may include a PDU session status information element (IE) indicating the PDU session is locally deactivated such that the network releases the PDU session. |
US11751261B2 |
Smart link management (link pooling)
A method of wireless communications forms a group with multiple UEs within a vicinity of a UE. The method establishes a tunnel between the UE and each of the UEs. The method also aggregates network resources obtained from a network interface of the UE and network resources shared by the UEs via each tunnel. The method provides the aggregated network resources to an application of the UE. |
US11751260B2 |
Apparatus and method of identifying for pairing one or more devices with a master device
An apparatus and method for establishing a pairing between a mobile device and a smart wearable device is provided. The method includes generating and assigning a unique code for each of the detected plurality of smart wearable devices respectively. The unique code is shared with all the connected smart devices/devices in the communicative range of the mobile device. The smart devices (having a display) receive the corresponding unique codes and display the code on their respective displays. A request to establish a pairing connection is generated in response to an activity of a user in respect of the at least one smart wearable device and a communication is established between the at least one smart wearable device and the mobile device displaying the same unique code. |
US11751257B2 |
Technology neutral coexistence and high priority traffic in unlicensed frequency bands
Technology neutral coexistence and high priority traffic is disclosed for use in unlicensed frequency bands. Synchronization boundaries are defined in which synchronous contention windows across all radio access technologies attempting access to a shared communication channel occur periodically. Between the synchronous contention windows, the nodes may return to asynchronous access procedures. Such synchronous access procedures may be applicable to certain power classes or deployment type nodes. Additionally, various priority schemes for the synchronous contention window may be used to ensure protection of higher priority nodes or traffic, such as ultra-reliable low latency communication (URLLC) traffic. According to certain aspects, the deployment of such synchronous access methodology may be triggered via signaling from initiating devices. Additional aspects may provide for a technology neutral receiver protection mechanism by defining resources for protection signaling during receiver protection intervals between successive synchronous contention windows. |
US11751254B2 |
System information requesting method, corresponding user equipment, and computer-readable medium
A method for providing System Information (SI), the method including transmitting information about first associations between a plurality of preamble sequences and a plurality of pieces of SI, and about second associations between the pieces of SI and a plurality of system information blocks (SIBs); receiving a preamble from a user equipment (UE), the preamble including one of the preamble sequences; identifying one of the SIBs based on the one of the preamble sequences, the first associations, and the second associations, the one of the SIBs including one of the pieces of SI associated with the one of the preamble sequences; and transmitting the one of the SIBs to the UE. |
US11751253B2 |
Random access for broadband 4G and 5G over satellite
Systems and methods for communication in 4G and 5G broadband satellite networks are provided. The disclosed methods include Global Navigation Satellite System (GNSS)-independent methods, and GNSS assisted methods that do not require transmission of satellite ephemeris information from a base station to user equipment. |
US11751243B1 |
Method for selecting operation channels in a communication network and communication network implementing said method
A method for selecting operational channels in a communication network including a plurality of gathering nodes connected together by cable links and wireless links. The method includes: for each branch, selecting and using at least one operational channel, and informing the other branches of the selection thereof, and determining whether there exists at least one selected operational channel in common between the branch and another; identifying at least one group of branches wherein each branch has at least one selected channel in common with another in the group and wherein each branch sees from a radio-propagation point of view at least one other branch in the set; for each group of branches identified, selecting at least one operational channel by realigning within the group the selections of at least one operational channel made by branch; for each group of branches, applying the channel selected by the group. |
US11751241B2 |
Method for transmitting and receiving signal in wireless communication system and apparatus for supporting same
Disclosed in various embodiments of the present disclosure are a method for transmitting and receiving a signal in a wireless communication system and an apparatus for supporting same. |
US11751236B2 |
BWP allocation method and apparatus
Embodiments of this application provide a bandwidth part (BWP) allocation method and an apparatus, and relate to the communications field. The method includes: A base station may implement dynamic BWP allocation based on information such as terminal status information and/or a BWP usage status, so that a flexible and reliable BWP allocation manner is provided, to improve resource utilization. |
US11751233B2 |
Techniques for in-device coexistence interference
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may be configured to estimate, during a first time interval, at least one of a first interference level for a first radio access technology (RAT) caused at least in part by a second RAT, a second interference level for the second RAT caused at least in part by the first RAT, or a combination thereof. The UE may transmit a control message to a base station using the first RAT based on at least one of the first estimated interference level, the second estimated interference level, or a combination thereof. The UE may then communicate, based on the control message and during a second time interval, with the base station using the first RAT and with a wireless device using the second RAT, the second time interval being after the first time interval. |
US11751231B2 |
Switching configuration for periodic resources
A UE may receive, from a base station, a first and second configurations of first and second periodic resources, receive, from the base station, a metric for switching between the first and second configurations, and switching from the first configuration to the second configuration based on the metric received from the base station. The first and second configurations may be CG of uplink resources for uplink channels. The first and second configurations may indicate SPS resources for downlink channels. The base station may determine the metric based on at least one measurement of signal at the base station or scheduling requirements. |
US11751229B2 |
Method of transmitting and receiving data in wireless communication system supporting full-duplex radio and apparatus therefor
A method of transmitting and receiving a signal by a user equipment (UE) in a wireless communication system is disclosed. The method includes receiving downlink control information (DCI) including frequency allocation information from a base station (BS), identifying frequency bands allocated as an uplink (UL) band and a downlink (DL) band based on the frequency allocation information, and transmitting a UL signal through a transmitter of the UE based on the DCI. The transmitter of the UE includes an out-of-band emission reduction (OOBER) device, and the OOBER device is enabled based on whether the allocated frequency bands correspond to edges of a bandwidth part (BWP). |
US11751227B2 |
Method of determining uplink and downlink transmission configuration, method of configuring uplink and downlink transmission and devices thereof
A method of determining uplink and downlink transmission configuration, a method of configuring uplink and downlink transmission and devices thereof are provided. The method of determining uplink and downlink transmission configuration applied to a UE includes: determining a correspondence relationship between a start position of uplink and downlink transmission period and a start position of radio frame, based on uplink and downlink transmission configuration parameters configured by a base station, where the uplink and downlink transmission configuration parameters include one set of uplink and downlink transmission configuration parameters or two sets of uplink and downlink transmission configuration parameters, and each set of uplink and downlink transmission configuration parameters includes an uplink and downlink transmission period. |
US11751225B2 |
Dynamic switching of search space configurations under user equipment capability
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a base station may determine a result associated with an initial set of transmissions of a periodic transmission cycle, and switch a search space configuration set to be used for one or more slots of the periodic transmission cycle based at least in part on the result, the search space configuration set being switched to a candidate search space configuration set. In some aspects, a user equipment may determine that a search space configuration set to be used for a slot of a periodic transmission cycle is to be switched based at least in part on a result associated with an initial set of transmissions of the periodic transmission cycle; and switch the search space configuration, the search space configuration set being switched to a candidate search space configuration set. Numerous other aspects are provided. |
US11751223B2 |
RF channel analysis and improved usage of wireless channels in a wireless network
According to one configuration, an analyzer resource determines an ability of a wireless access point to wirelessly communicate over each of multiple available wireless communication channels in a wireless frequency band. The analyzer resource produces performance information (performance metrics or calibration information) based on the measured ability. The analyzer resource assigns the performance metrics to the wireless access point. When operating in the field (such as in a wireless network environment), to provide mobile communication devices access to a remote network, the wireless access point uses the assigned performance metrics as a basis to select amongst multiple available wireless communication channels to communicate with one or more mobile communication devices in the wireless network environment. These and other techniques are disclosed herein. |
US11751213B2 |
Resource allocation indication method, base station, and terminal
A resource allocation indication method, a base station and a terminal are provided. The method includes allocating corresponding target transmission resources to a terminal when a target service occurs, where the target transmission resources include uplink or downlink transmission resources; transmitting resource indication information to the terminal according to the target transmission resources, where the resource indication information includes first and second indication information, the first indication information is used to indicate one or more bandwidth parts of the target transmission resources, the one or more bandwidth parts are a portion or all of a total bandwidth, the second indication information is used to indicate location information of Physical Resource Blocks (PRBs) allocated to the terminal in PRBs corresponding to the one or more bandwidth parts. |
US11751212B2 |
Method and apparatus for logical channel selection
A user equipment (UE) and a method for packet data convergence protocol (PDCP) duplication are provided. The method includes receiving, from a base station (BS), a radio resource control (RRC) message configuring a logical channel with a logical channel prioritization (LCP) restriction and configuring the logical channel to be associated with a data radio bearer (DRB) configured with a PDCP duplication function, wherein the PDCP duplication function is associated with a first cell group; receiving, from the BS, an uplink (UL) grant indicating a UL resource on a serving cell; initiating an LCP procedure for generating a protocol data unit (PDU) to be transmitted on the UL resource; and determining whether to apply the LCP restriction during the LCP procedure upon determining that the PDCP duplication function is deactivated. |
US11751207B2 |
Scheduling of transmission time intervals
Apparatuses, methods, and systems are disclosed for scheduling of transmission time intervals. One apparatus includes a processor that determines a first semi-persistent scheduling resource assignment indicating a first set of resources including a first multiple time domain resources. Each time domain resource of the first multiple time domain resources has a first transmission time interval length. The processor also determines a second semi-persistent scheduling resource assignment indicating a second set of resources including a second multiple time domain resources. Each time domain resource of the second multiple time domain resources has a second transmission time interval length, and the first transmission time interval length is different from the second transmission time interval length. The apparatus includes a transmitter that transmits the first semi-persistent scheduling resource assignment using a first semi-persistent scheduling radio network identifier, and transmits the second semi-persistent scheduling resource assignment using a second semi-persistent scheduling radio network identifier. |
US11751206B2 |
Method and apparatus for sending and receiving downlink control information
A user equipment, UE, is configured to receive downlink control information, DCI, transmitted to the UE by a primary cell in a wireless communication system. The UE comprises one or more processing circuits that shall assume that a DCI message which has a common payload size and the same first control channel element index, but different bit fields, in a common search space and a UE-specific search space is transmitted by the primary cell in the common search space or the UE-specific search space, based on radio resource control, RRC, configuration of the UE. |
US11751202B2 |
Terminal device, base station device, and uplink response signal transmission method
When downlink data allocation is indicated in an ePDCCH, this terminal device can determine PUCCH resources to be used in notification of response signals indicating results of error detection of downlink data without imposing scheduling restrictions on future DL subframes. In this device, an extraction unit receives downlink data on multiple unit bands. A CRC unit detects errors in the downlink data. A response signal generation unit generates a response signal by using the results of error detection of the downlink data obtained by the CRC unit. The control unit arranges the response signal in the PUCCH resources corresponding to the current DL subframe. |
US11751201B2 |
Aggregation methods, gNodeBs, user equipments and storage medium
The present disclosure relates to slot/physical resource block (PRB) aggregation methods, gNodeBs (gNB), user equipments and storage medium. A method is carried out in a gNB and includes: signaling, by a gNodeB (gNB), information on at least part of aggregation configuration of one of a set of slots, a set of physical resource blocks (PRBs) in a single slot, and a set of PRBs across at least two slots to a user equipment (UE); and receiving, by the gNB, a long format physical uplink control channel (PUCCH) carried in the one of the set of slots, the set of PRBs in a single slot, and the set of PRBs across at least two slots, which is aggregated according to the aggregation configuration, from the UE. |
US11751197B2 |
Activation of semi-persistent resources
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a base station, a medium access control control channel (MAC-CE) that indicates one or more of a slot offset or a slot periodicity for a semi-persistent resource set. The UE may perform, with the base station, a communication at a slot associated with a semi-persistent resource of the semi-persistent resource set based at least in part on one or more of the slot offset or the slot periodicity, wherein the semi-persistent resource associated with the slot is activated based at least in part on the MAC-CE. Numerous other aspects are described. |
US11751191B2 |
Apparatus and methods of transmit power allocation in wireless communication systems
Various embodiments relate to a method performed by a station to identify the maximum allowed transmit power spectral density (PSD) of a basic service set (BSS), including: receiving, by the station, a first field from an access point (AP) of the BSS, wherein the first field indicates that the BSS bandwidth is set to M times a unit channel bandwidth; receiving, by the station, a set of second fields from the AP, wherein the set of second fields includes K fields corresponding to K channels and wherein each of the K second fields indicates the maximum allowed transmit PSD for the K channels and the bandwidth of the channel is the unit channel bandwidth; and identifying, by the station, the maximum allowed transmit PSD of the M channels of the BSS bandwidth from the first M consecutive second fields. |
US11751185B2 |
Method for transmitting/receiving signals by using beams in wireless communication system, and device for same
The present specification provides a method for transmitting/receiving signals through beams in a wireless communication system. The signal transmission/reception method performed by a terminal, in the present specification, may comprise the steps of: receiving a beam reference signal used in beam management from an eNB via a first Rx beam; if beam reporting is triggered, reporting to the eNB a measurement result based on the beam reference signal; receiving, from the eNB, control information related to the determination of a second Rx beam for receiving a particular signal; and receiving the particular signal via the second Rx beam on the basis of the received control information. |
US11751178B2 |
Mechanism for environmental sensing capability protection
A system for ESC protection includes a spectrum access system (SAS) configured to allocate a frequency band in the system and at least one Citizens Broadband Radio Service device (CBSD) communicatively coupled to the SAS and configured to provide wireless service to UEs. The system also includes at least one ESC communicatively coupled to the SAS and configured to detect RADAR signals from offshore RADAR devices. The SAS is configured to assign grants to the at least one CBSD such that the aggregate signal energy received at the ESC does not cross an overload threshold, as calculated by the SAS. The ESC is configured to detect an aggregate signal energy received at the ESC, and trigger, in response to the aggregate signal energy exceeding the overload threshold, an operation that suspends transmission of at least one CBSD or moves at least one CBSD to a different frequency channel. |
US11751174B2 |
Signaling for configuring downlink transmissions
Methods, systems, and devices for signaling for configuring downlink transmissions are described. A user equipment (UE) may receive a configuration message from a base station indicating that a control resource set (CORESET) for a downlink control channel is associated with a set of transmission configuration indicator (TCI) states. The UE may subsequently receive a control message from the base station activating one or more of the TCI states. The UE may decode the downlink control channel based on the configuration message and the one or more activated TCI states. The UE may identify one or more TCI states (e.g., associated with the CORESET) to apply to a reception of a physical downlink shared channel (PDSCH) transmission. The UE may determine to apply one or more of the TCI states activated by the control message. The UE may determine to apply one or more different TCI states. |
US11751170B2 |
Dynamically reassigning a high-noise frequency segment from a first access node to a second access node
A method and system to dynamically reassign RF spectrum from a first access node to a second access node, where the first access node provides service on a first carrier having a carrier bandwidth. An example method includes (i) selecting a frequency portion of the carrier bandwidth to reassign, the selecting being based on the frequency portion having higher determined noise than one or more other frequency portions of the carrier bandwidth, and (ii) based on the selecting, reassigning the selected frequency portion from the first access node to the second access node to be used by the second access node as at least part of a second carrier on which to provide service. Upon reassigning of the selected frequency portion, the second access node could then provide service on the reassigned portion and the first access node could continue to provide service on a remainder of the first carrier. |
US11751168B2 |
Methods for handling anomaly notification messages
In systems and methods for processing an anomaly notification message, a communication network device may receive from a wireless device an anomaly notification message, and in response to determining that the anomaly notification message was received via the anomaly-specific network communication link may associate the anomaly notification message with an anomaly priority that is higher than a normal traffic priority. |
US11751166B2 |
Quasi co-location of antenna ports used to transmit paging message and synchronization signals
Methods, systems, and devices for wireless communication are described. A base station may use quasi co-located antenna ports for transmission of synchronization signal(s)/reference signal(s) and paging signals. For example, the base station may use a first antenna port configuration for transmission of the synchronization/reference signal(s) and a second antenna port configuration for transmission of the paging signal (e.g., paging indicator, paging message, etc.). The base station may transmit an indication of the quasi co-located antenna ports. A user equipment (UE) may receive the synchronization signal and, based on the antenna ports being quasi co-located, receive the paging signal. In some examples, the UE may determine which receive beam to use to receive the paging signal based on the antenna ports being quasi co-located. In some aspects, the UE may use a reference signal transmitted on antenna ports that are quasi co-located with the paging signal antenna ports. |
US11751164B2 |
Method and device for determining paging location or camping location
The embodiments of the present disclosure provide a method and a device for determining paging location or camping location. The method includes: determining information of a first location on which the UE camps or receives a paging message, wherein the information of the first location indicates a location of a bandwidth part (BWP) or a beam; and camping on or receiving the paging message on a corresponding BWP or beam according to the information of the first location. |
US11751163B2 |
Sending notifications to mobile devices over paging networks
A method for confirming receipt of a redundant notification by a wireless device includes transmitting redundant notifications to the wireless device via different types of networks (e.g., a paging network). A notification is configured to cause the mobile device to wake-up a mobile application that opens a real-time communications session between the mobile device and the server and generates an indication that the mobile device received at least one of the redundant notifications. |
US11751157B2 |
Methods for timing advance indication and timing relationships indication for non-terrestrial networks
A method of enabling communication between a user equipment (UE) and a non-terrestrial network (NTN), is described. The UE may be able to calculate a timing advance compensation. The timing advance compensation may be a differential or full timing advance compensation. An offset value, Koffset, may be indicated to the UE. The Koffset value may be used for timing relationships. |
US11751156B2 |
Distributed time sync in a directed acyclic graph of a time-synchronized network based on correlating timing information from higher network devices
In one embodiment, a method comprises: receiving, by a constrained wireless network device comprising a local clock, a plurality of messages from respective neighboring wireless network devices advertising as available parent devices in a directed acyclic graph of a time-synchronized network that is synchronized to a master clock device; determining, by the constrained wireless network device, a corresponding timing error of the local clock relative to each message output by the corresponding available parent device; and executing, by the constrained wireless network device, a distributed time synchronization of the local clock with the master clock device based on correlating the respective timing errors relative to the local clock. |
US11751153B2 |
Multi-member bluetooth device capable of synchronizing audio playback between different bluetooth circuits
A multi-member Bluetooth device for communicating data with a source Bluetooth device, wherein the source Bluetooth device acts as a master in a first piconet. The multi-member Bluetooth device includes a main Bluetooth circuit and an auxiliary Bluetooth circuit. The main Bluetooth circuit acts as a slave in the first piconet, and acts as a master in a second piconet. The auxiliary Bluetooth circuit acts as a slave in the second piconet. The main Bluetooth circuit generates a first slave clock and a second main clock synchronized with a first main clock generated by the source Bluetooth device, and samples a first audio data to be playback. The auxiliary Bluetooth circuit generates a second slave clock and a third slave clock synchronized with the second main clock, and samples a second audio data to be playback. |
US11751151B2 |
Physical broadcast channel enhancement for new radio light communications
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may distinguish between synchronization signal blocks (SSBs) intended for different classes of UEs. For example, a base station may transmit different SSBs in a physical broadcast channel with different configurations or parameters to indicate different UE classes, where UEs may monitor for and receive SSBs for their UE class. A UE may operate according to a UE class (e.g., New Radio (NR) Light) associated with lower bandwidths and may identify SSBs associated with this UE class to connect with a base station. The UE may identify the SSBs associated with the UE class based on a subcarrier-level offset value either implicitly or explicitly indicated to the UE. Additionally, the base station may transmit fields to indicate different parameters for subsequent communications transmitted according to the UE class. |
US11751147B2 |
Techniques and apparatuses for synchronization signal scanning based at least in part on a synchronization raster
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may identify that a band is associated with a first numerology and a second numerology for synchronization, and/or perform a synchronization scan to identify a synchronization signal block using stored data, wherein the stored data includes data regarding a plurality of frequency locations of the band, and wherein the synchronization scan is performed with regard to a first set of frequency locations, of the plurality of frequency locations, associated with the first numerology, and wherein the synchronization scan is performed with regard to a second set of frequency locations, of the plurality of frequency locations, associated with the second numerology, wherein the second set of frequency locations includes a proper subset of frequency locations of the plurality of frequency locations. Numerous other aspects are provided. |
US11751146B2 |
Localized optimization of isolated sub-DAG based on edge node parenting and distributed density-based optimization
In one embodiment, a method comprises: determining, by a constrained network device in a low power and lossy network (LLN), a self-estimated density value of neighboring LLN devices based on wirelessly receiving an identified number of beacon message transmissions within an identified time interval from neighboring transmitting LLN devices in the LLN; setting, by the constrained network device, a first wireless transmit power value based on the self-estimated density value; and transmitting a beacon message at the first wireless transmit power value, the beacon message specifying the self-estimated density value, a corresponding trust metric for the self-estimated density value, and the first wireless transmit power value used by the constrained network device for transmitting the beacon message. |
US11751143B2 |
Wireless communication device and method for controlling transmission power
Disclosed is a wireless communication device that can suppress an increase in power consumption of a terminal while preventing the degradation of SINR measurement precision resulting from TPC errors in a base station. A terminal controls the transmission power of a second signal by adding an offset to the transmission power of a first signal; an offset-setting unit sets an offset correction value in response to a transmission time gap between a third signal transmitted the previous time and the second signal transmitted this time; and a transmission power control unit controls the transmission power of the second signal using the correction value. |
US11751140B2 |
Channel monitoring methods and apparatuses
A channel monitoring method includes: configuring a specified occurrence of a power-saving signal and a specified effective time range of the specified occurrence for a terminal, the specified occurrence representing a specified effective range of the power-saving signal for subsequent discontinuous reception (DRX); generating first notification information, the first notification information comprising the specified occurrence and the specified effective time range; and sending the first notification information to the terminal, so that the terminal acquires the specified occurrence and the specified effective time range from the first notification information, and performs channel monitoring according to the specified occurrence and the specified effective time range. |
US11751136B2 |
Power optimization method and device, system, and user equipment
Disclosed is a method for power optimization of a terminal. The method includes that a user equipment (UE) detects an activation signal indicating a control signal to be sent after the activation signal and receives the control signal according to the activation signal. The UE is configured to enter a sleep state in response to determining that the activation signal is not detected or determining that no required control signal exists. |
US11751134B2 |
Power save and group-addressed frames in WLAN using multiple communication links
A first communication device determines whether a second communication device is in a power save mode with respect to a first communication link among a plurality of communication links that correspond to respective frequency segments, and determines whether the second communication device is in a power save mode with respect to a second communication link among the plurality of communication links. The second communication device is permitted to be in the power save mode with respect to the second communication link when the second communication device is not in the power save mode with respect to the first communication link, and vice versa. The first communication device communicates with the second communication device in accordance with the power save modes of the second communication device with respect to the first and second communication links. |
US11751132B2 |
Wake-up signal candidate indicator
A wake-up signal being for providing an indication to one or more flood of the communications devices that they should receive a paging message in one or more of a plurality of temporally spaced paging occasions, and transmitting a candidate indicator message to the one or more communications devices in advance of the wake-up signal search space, the candidate indicator message indicating one or more characteristics of the wake-up signal by which the wake-up signal may be transmitted as one or more candidates, wherein the one or more candidates are to be searched for detection of the wake-up signal by the one or more communication devices. |
US11751120B2 |
Network devices
The present disclosure is related to systems, methods, and processor readable media for distributing digital data over networks. Certain embodiments relate to systems, methods, and devices used within such networks where at least a substantial portion of the interconnected devices are capable of interacting with one or more neighbouring devices, and then to form such a time synchronous network using local network information. |
US11751119B2 |
Methods and systems for routing data through IAB nodes in 5G communication networks
Methods and systems for routing data through IAB nodes 201, 202 in 5G communication networks. Embodiments herein allow routing data between a UE 206 and an IAB donor 200 though IAB nodes 201, 202 using adaptation layers of the IAB donor 200 and the IAB nodes 201, 202. The adaptation layers of the IAB donor 200 and the IAB nodes 201, 202 are configured by defining adaptation layer header and functionality. Mapping is performed between bearers/RLC channels of the UE 206 and the IAB node 202 and between bearers/RLC channels of the IAB nodes 201, 202 and the IAB donor 200. The means to perform the mapping is specified by the adaptation layers of either the IAB donor 200 or the IAB nodes 201, 202. The data is routed through the bearers/RLC channels. The embodiments include managing RLC layer functionality using either hop-by-hop ARQ or end-to-end ARQ. |
US11751117B2 |
Switching wireless network sites based on vehicle velocity
The disclosed technology proposes a new methodology to include the effect of speed and direction of a UE into the threshold used for determining when to switch between a 4G UL connection and a 5G UL connection. The system can use a lookup table with various speeds mapping to varying thresholds. The system can use an accelerometer sensor or digital compass to determine the direction of the vehicle, such as heading away from or toward the 5G site, so the vehicle can switch sooner from 5G-NR to LTE and from LTE to NR, respectively. For C-V2X applications, latency is an important factor because 5G technology provides shorter latency than 4G; thus keeping the link on 5G is preferred when under good coverage. Further, the idea is not limited to UL, 5G and/or vehicle technologies, but can also be applied to DL direction, Wi-Fi and/or drone technologies as well. |
US11751114B2 |
Resolving frequency conflicts among multiple network operators
Apparatuses, systems, and methods for a wireless device avoiding reselection or handover to cells of different operators. The wireless device may attach to a first base station of a first network operator. The wireless device may determine that a neighboring base station is associated with a second network operator. Based on determining the neighboring base station is associated with the second network operator, the wireless device may exclude the third base station from handover or reselection. |
US11751113B2 |
User equipment autonomous serving cell selection in new radio
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may autonomously initiate a handover procedure and select a target base station for the handover procedure. The UE may measure a signal from the source base station or the target base station, or both, and the UE may determine whether specific criteria at both base stations are within a pre-configured range. If the criteria at both base stations are within the pre-configured range, the UE may identify the target base station as a potential candidate for a handover. Accordingly, when the UE determines that radio conditions with the source base station are deteriorating (or fall below a threshold), the UE may initiate a handover to the target base station autonomously and without specific direction from the source base station. |
US11751112B2 |
Handover method and device
A method includes: sending, by a first network device, a first configuration message to a terminal device, where the first configuration message is used to instruct the terminal device to configure a second ciphering/deciphering function associated with a second network device and share a first data packet numbering/reordering function, and the terminal device is configured with the first data packet numbering/reordering function and a first ciphering/deciphering function associated with the first network device; and receiving, by the first network device, a first configuration complete message sent by the terminal device. In this embodiment, the first configuration message is used so that the terminal device may configure the function associated with the second network device. Therefore, during handover, the terminal device may simultaneously perform data transmission with the second network device and the first network device, to reduce or avoid a service interruption time caused by handover. |
US11751110B2 |
Mobile communications network, communications device, infrastructure equipment and methods
Methods are provided for communicating in a mobile network, the mobile network comprising a plurality of infrastructure equipment, each providing wireless connectivity within at least one cell, and a device configured to communicate wirelessly with at least a first of the infrastructure equipment in control of a first cell. In some embodiments, the method comprises determining, at the device, whether a second cell under control of a second of the infrastructure equipment is connected to a first core network operating in accordance with a first protocol or both of the first core network and a second core network operating in accordance with a second protocol, and transmitting, by the device, an automatic neighbour relation report to the first infrastructure equipment, a report comprising an indication of whether the second cell is connected to the first core network or both of the first core network and the second core network. |
US11751109B2 |
System information block acquisition for wireless networks
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive a set of system information blocks (SIBs) common to a set of cells of a non-terrestrial network (NTN), the set of SIBs indicating one or more parameters common to the set of cells for communications with the set of cells. The UE may receive a first SIB associated with a first cell of the set of cells of the NTN, where the first SIB includes cell-specific information indicating a first set of cell-specific parameters for communications with the first cell. The UE may then communicate with the first cell using the first set of cell-specific parameters associated with the cell-specific information of the first cell and at least a first sub-set of parameters of the one or more parameters that are common to the set of cells. |
US11751106B2 |
Preemptive handover preparation and tracking/paging area handling and intelligent route selection in a cellular network
A concept for handovers in cellular networks, a concept for improved handling of tracking/paging areas for, for instance, user entities in inactive modes and a concept for enabling intelligent route selection in cellular networks are presented. |
US11751101B2 |
UE and devices for CODEC rate adaptation
Devices, methods, user equipment (UE), network core devices, gateway devices, evolved node B (eNB), and storage media for UE provisioning are described. In one embodiment, a UE is configured for codec bitrate adaptation via an interface configured to receive a bandwidth indication and a codec awareness indication from an eNB. The UE process the bandwidth indication and identifies, based on the codec awareness indication, a first codec from a plurality of codecs supported by the UE. The UE then configures with the eNB using data encoded with the first codec. This data may, for example, be Voice over Long-Term Evolution (VoLTE) data or other such media data. Selection of the codec or associated codec information may be further based on the codec awareness indication. |
US11751098B2 |
Method and device for transmitting data
A method and a device for receiving transmitting data in in a wireless local area network are provided. The device receives a physical layer protocol data unit (PPDU) from a station over a transmission bandwidth and determines whether the station is a member of a basic service set (BSS) managed by the device based on the PPDU. When the PPDU is a multi-user (MU)-PPDU, the AP determines that the station is not a member of the BSS managed by the AP. Such MU-PPDU includes a first signal field and a second signal field, the first signal field having bandwidth information indicating the transmission bandwidth, the second signal field having user-specific information with allocation for orthogonal frequency division multiple access (OFDMA) transmission. |
US11751095B2 |
Transmission of buffer status reports on multiple component carriers
The present disclosure generally relates to a methods, apparatus, and computer readable medium for implementing the methods for transmitting multi-bit SR (SRs) from a user equipment (UE). The UE receive from a base station a radio resource control (RRC) message from the base station. The RRC message may indicate that uplink component carriers (CCs) of the UE are to be assigned to a plurality of uplink CC groups. Upon receipt of the RRC, the UE may assign the uplink CCs to the plurality of uplink CC groups. A multi-bit SR may be generated for each group of the plurality of uplink CC groups. The UE may transmit the multi-bit SR generated for each group of the plurality of uplink CC groups to the base station. multi-bit SR transmission across different CCs may reduce latency in uplink grant and improve data transmission time. |
US11751094B2 |
Method and apparatus for managing network congestion
Embodiments relate to the management of data traffic congestion in a network communication node, the network communication node comprising a queue buffer configured to respectively enqueue packets at an input and dequeue packets at an output, and an Active Queue Management (AQM) module configured to determine a drop or a mark decision for a packet based on control parameters, wherein values for the control parameters are derived based on values of queue parameters weighted with respective weight factors and their associated target values, values of queue parameters and their associated target values weighted with respective weight factors, or a combination thereof. |
US11751091B2 |
Ultra-low latency operating mode effectuation in wireless network controllers
Implementations disclosed describe techniques to effectuate operating mode changes of a wireless connection between a first communication device (CD) and a second CD. In an example embodiment, the disclosed techniques may include detecting, by a wireless network controller of the second CD, an indication that the first CD has requested the operating mode change from a first operating mode to a second operating mode. The disclosed techniques may further include modifying a transmission information (TI) associated with one or more frames in a transmission queue of the second CD, the TI including a representation used by a physical layer of the second CD to configure transmission of a respective frame to the first CD, wherein the one or more frames in the transmission queue have been previously programmed with a first-mode TI, and wherein modification of the TI is to a second-mode TI. |
US11751090B2 |
Reporting mechanisms for wireless communications
This disclosure provides systems, methods, and apparatuses, including computer programs encoded on computer-readable media, for reporting Quality of Service (QoS) feedback information. A method of wireless communication at an apparatus may include selecting, from a variable number of control fields, one or more control fields for inclusion in a frame, each control field comprising a control identifier field and a control information field. The control identifier field may include an indicator indicating a type of information for communication is QoS feedback information. The control information field may include one or more subfields containing the QoS feedback information. The method may further include generating the frame comprising the selected number of control fields, and outputting the frame for transmission. |
US11751084B2 |
Network node, user equipment and base station used in a communication system and method for location resource coordination
A location resource coordinating method, a location resource coordinating device, a network node, a UE, and a base station are provided. The location resource coordinating method includes: sending location resource coordination information to a base station before performing location measurement for a serving UE; the location resource coordination information includes identity information of a target cell of the base station, and carries dedicated location resource information configured for the target cell, or the location resource coordination information includes the identity information of a target cell for which the base station activates a location resource, and instructs the base station to activate pre-configured dedicated location resource information; the base station is a base station related to the serving UE. |
US11751073B2 |
Listen-before-talk schemes for directional communications
Methods, systems, and devices for wireless communications are described. In some systems, wireless devices operating in an unlicensed radio frequency spectrum band may perform directional listen-before-talk (LBT) procedures to gain access to a channel. In a beam-shrinking scheme for directional LBT, a wireless device may start an LBT procedure using a first beam (e.g., a wide beam). If the clear channel assessment (CCA) fails for the first beam (e.g., due to directional interference), the device may switch the LBT procedure to a second beam (e.g., a narrower beam). Depending on the direction of the interference source, the second beam may result in a successful LBT procedure. In a beam sweeping scheme for directional LBT, a wireless device may perform concurrent LBT over multiple narrow beams. If any beam of the set of beams detects frequent or continuous interference, the device may drop that beam from the concurrent LBT procedure. |
US11751070B2 |
Anomalous access point detection
Disclosed in some examples are methods, systems, devices, and machine-readable mediums that detect evil twin and other anomalous access points in an IT infrastructure by detecting access points that are not in their expected locations based upon an analysis of access point reports from one or more computing devices. |
US11751069B2 |
System and method for identification, selection and validation of best network access for IoT devices
The invention relates cloud based IoT network monitoring and validation to enable optimal network selection and connectivity for IoT sensors. The present invention relates to a system to measure the signal quality directly from the network module of IoT sensors. It comprises of an application programming interface (API) 105, a Network detection dongle 103, communication network 110, server 115, network modules of network operators and IoT sensors 120, to be deployed or installed. The invention also relates to a method for determination of signal strength from network module of IoT sensors, wherein the API 105 is configured to run network detection software to determine and validate an optimal location for IoT sensor/device installation or deployment based on the highest signal strength. |
US11751066B2 |
Managing access to a shared spectrum using a domain proxy
A domain proxy receives a request from a base station for allocation of a first portion of a frequency band to support cellular communication in a geographic area that is indicated in the request. The frequency band is available for exclusive allocation to an incumbent device. The base station is required to vacate the first portion of the frequency band in response to the incumbent device arriving in the geographic area and being allocated a second portion of the frequency band that overlaps with the first portion. The domain proxy accesses a policy for the base station from a database and, based on the policy, selectively provides the request to a spectrum access server (SAS) that is responsible for allocating portions of the frequency band. |
US11751065B2 |
First grant request optimization based on geographic location
During operation, a radio node may receive location information relating to a location of the radio node. Then, the radio node may provide a grant request to a computer, where the grant request includes a request to reserve a portion of a shared-license-access band of frequencies for use by the radio node based at least in part on the location information. Note that the location information may indicate whether the radio node is included in a geographic region. For example, the geographic region may include locations within a predefined distance from a boundary, such as a coastline. When the location information indicates the radio node is included in the geographic region, the portion of the shared-license-access band of frequencies may be outside of a second portion of the shared-license-access band of frequencies that is selectively used by a government user or a satellite service. |
US11751064B1 |
System, method, and apparatus for providing optimized network resources
Systems, methods, and apparatuses for providing optimization of network resources. The system is operable to monitor the electromagnetic environment, analyze the electromagnetic environment, and extract environmental awareness of the electromagnetic environment. The system extracts the environmental awareness of the electromagnetic environment by including customer goals. The system is operable to use the environmental awareness with the customer goals and/or user defined policies and rules to extract actionable information to help the customer optimize the network resources. |
US11751054B2 |
Network slice access control method and apparatus
The present disclosure relates to network slice access control methods. One example method includes receiving, by an access and mobility management function network element, first information from a session management function network element, where the first information is associated with an authentication failure of a network slice, and sending, by the access and mobility management function network element, second information to a terminal device based on the first information, where the second information is used to reject access of the terminal device to the network slice. |
US11751051B2 |
Authentication method based on GBA, and device thereof
proviced is an authentication method based on a GBA, and the method includes: a BSF receives an initialization request message sent by a UE, wherein the initialization request message carries a first identifier of the UE, and the first identifier comprises at least one of the following: a SUCI, an identifier converted from the SUCI, and a TMPI associated with the subscriber identity; the BSF acquires an AV of the UE according to the first ID; the BSF completes GBA authentication with the UE according to the acquired AV. In this way, the privacy of the SUPI is protected for the UE, and the SUCI or the identifier converted from the SUCI is used to perform the bootstrapping process of the GBA, thereby improving the security of the GBA authentication process. |
US11751049B2 |
Distributed EAP-TLS authentication for wireless networks with concealed user identities
A device, mobile operator, network, and a device controller can exchange messages for EAP-TLS authentication. The network can include an authentication server function (AUSF). A device and device controller can record both a device certificate and a device controller certificate. The device controller can receive a subscriber concealed identity (SUCI) for the device from the AUSF. The device controller can decrypt the SUCI and send the network the certificates with a device SUPI. The network can send at least a TLS ephemeral public key to the device controller. The device controller can generate a digital signature for at least the ephemeral public key with a private key for the device controller certificate. The AUSF can complete an EAP-TLS authentication with the device using at least (i) the device certificate for the device, (ii) the device controller certificate for the server, (iii) the digital signature, and (iv) the ephemeral public key. |
US11751048B2 |
Communication apparatus and method for secure low power transmission
The present disclosure provides a communication apparatus comprising a cryptographic circuitry which, in operation, uses a shared cryptographic secret Key and a cryptographic salt to generate a cryptographically encoded Message Integrity Code (MIC) that is computed over the address field of a Wake Up Radio (WUR) frame; and a transmission signal generator which, in operation, generates a secure WUR signal by replacing the address field of the WUR frame with the MIC; and a transmitter which, in operation, transmits the secure WUR signal. |
US11751047B2 |
Hop by hop security in IAB networks
A method and apparatus for a first IAB node for securely communicating with at least one second IAB node is provided. A secure connection with a node of a network is established. A message is received, from the node, indicating a secure messaging protocol to use to communicate with the at least one second IAB node, the message including one of at least one nonce or a key. A control message to be sent to the at least one second IAB node is transformed into a secure control message using the secure messaging protocol. The secure control message is transmitted to the at least one second IAB node. |
US11751046B1 |
Method and system for optimizing device retry behavior
Systems and methods are provided for controlling device retry behavior. The method is performed by receiving an error code generated in response to a resource request from the wireless device, associating the error code with a timeframe for reseeding the resource request from the wireless device, and sending the error code and the timeframe to the wireless device in response to the resource request. |
US11751041B2 |
Synchronization of auxiliary activity
According to an aspect, there is provided a first radio device comprising means for performing the following. The first radio device transmits, using a connectionless mode, an advertising message. Subsequently, the first radio device receives, from a second radio device at a second reception time instance measured by the first radio device using the connectionless mode, a scan request. The first radio device transmits, to the second radio device, the scan response using the connectionless mode. Finally, the first radio device performs an auxiliary activity involving wireless communication between the first and second radio devices. The performing of the auxiliary activity is initiated at a first starting time defined to occur at a pre-defined time interval following an anchor point corresponding to the second reception time instance or to a subsequent timestamp generated in response to the receiving of the scan request at the second reception time instance. |
US11751039B2 |
V2X communication method, apparatus, and storage medium
In a V2X communication method, a first communication device obtains an identification set including one or more identifications, where a risk of collision between a moving subject corresponding to each identification and a first moving subject corresponding to the first communication device meets a preset condition. When a channel busy ratio is greater than a first threshold, the first communication device sends configuration information including the identification set to a second communication device. When the channel busy ratio is greater than a second threshold, the first communication device transmits a V2X message to the second communication device through the standby communication connection channel, where the second threshold is greater than the first threshold. |
US11751034B2 |
Electronic device for transmitting response message in bluetooth network environment and method thereof
An electronic device is provided. The electronic device includes a wireless communication circuit that supports a Bluetooth network, at least one processor operatively connected to the wireless communication circuit, and a memory operatively connected to the at least one processor. The memory stores instructions that, when executed, cause the at least one processor, through the wireless communication circuit, to generate a first link with a first external electronic device based on the Bluetooth network, generate a second link with a second external electronic device based on the Bluetooth network, transmit information to the second external electronic device through the second link, wherein the information is used by the second external electronic device to monitor the first link, negotiate timing for transmitting a response message with the second external electronic device, receive a data packet from the first external electronic device, and transmit a response message to the first external electronic device in response to the data packet based on the negotiated timing. |
US11751029B2 |
Vehicle, apparatus, method, and computer program for a vehicle in a mobile communication system
A transportation vehicle, an apparatus, a method, and a computer program for a transportation vehicle in a mobile communication system a system. A method for a first transportation vehicle in a mobile communication system for setting up data communication with a second transportation vehicle includes receiving a message from the second transportation vehicle on a first radio frequency, the message having information related to an antenna of the second transportation vehicle; configuring an antenna of the first transportation vehicle based on the information related to the antenna of the second transportation vehicle; and transmitting a data packet to the second transportation vehicle on a second radio frequency using the antenna of the first transportation vehicle. |
US11751022B2 |
Communication device, method for controlling the same, and non-transitory computer-readable storage medium
The present invention, when it is estimated that a device that can receive a large-sized advertisement is present within a communication area, transmits advertisement packets of that size. A communication device of this invention comprises a first transmission unit that transmits a first advertisement packet, using a first frequency band, a determination unit that, upon receiving a request packet in response to the first advertisement packet, determines whether or not an external device that can receive the second advertisement packet whose size is larger than that of the first advertisement packet is present within a communication area, based on the request packet, and a second transmission unit that, if the determination result indicates the presence, transmits a second advertisement packet, using a second frequency band different from the first frequency band. |
US11751021B2 |
Method and apparatus for performing direct communication with at least one other user equipment
A method and an apparatus for performing direct communication with at least one other user equipment are provided. A method performed by a UE includes transmitting, to at least one other UE included in a group call with the UE, a first message requesting permission for transmission; starting a timer upon transmitting the first message; restarting the timer in response to the timer expiring before a second message in response to the first message has been received; stopping the timer in response to receiving the second message before the timer expires; retransmitting the first message each time the timer expires before receiving the second message until a total number of transmissions of the first message reaches a predetermined number of times; transmitting, to the at least one other UE, a third message indicating that the permission for transmission is granted to the UE after the first message is transmitted the predetermined number of times and the timer expires before receiving the second message; and transmitting media data to the at least one other UE after transmitting the third message. |
US11751019B2 |
Communication apparatus, communication method, and program for communicating with directional beams
A communication apparatus and corresponding method for performing wireless communication to include controlling deliver of content for plural programs using a directional beam, and notifying a terminal apparatus of first information regarding a timing of transmitting the directional beam in each of a plurality of directions in association with second information notified commonly to one or more of the terminal apparatuses within a communication range. |
US11751017B2 |
Method and apparatus for supporting communication of user equipment by using unmanned aerial vehicle in mobile communication system
A method of a base station in a mobile communication system is provided, which includes receiving position information of at least one UE; determining an initial position of a UAV based on the position information; transmitting, to the UAV, control information related to the initial position and association information between the at least one UE and the UAV; receiving, from the UAV, first feature information related to a communication state between the at least one UE and the UAV; and transmitting control information related to a movement position of the UAV based on an output of a reinforced learning network to which the first feature information is input. |
US11751012B2 |
Intelligent tracking system and methods and systems therefor
An intelligent tracking system generally includes one or more tracking devices, some of which may be passive tracking devices. Each passive tracking device includes one or more transceivers and is energized by an energizing signal. Some of these passive tracking devices may operate in a first communication mode or a second communication mode based on the energizing signal. Some tracking devices may include encryption modules or authentication modules. Some of these devices may incorporate a bulk acoustic wave oscillator. |
US11751010B2 |
Creating a communication channel between user devices and local stores
A user-to-entity communication channel is established for providing increased information regarding entities to the general population. Ambassadors for a entity are identified and selected based on location history of devices for which location reporting is authorized. The ambassadors may provide information regarding the entity to the public through the communication channel. Communications between the users and ambassadors may be reported to the entity owner for analysis by the entity owner. |
US11751004B2 |
Methods and systems for communication management
Methods and systems for communication management are disclosed. A computing device may receive a computing request. The computing device may determine a timeout parameter associated with the computing request. A notification may be sent if the timeout parameter is predicted to be exceeded or if the timeout parameter is exceeded. |
US11751000B2 |
Method of modeling the acoustic effects of the human head
A method of modeling the human head is provided. The human head model has a width and an aspect ratio. The aspect ratio defines different head shapes independent of the size of the human head model. The method includes the steps of forming a high-frequency head model based on ray-tracing and a plurality of half plane sections, coupling the high-frequency head model with a far-field shadowing filter, coupling the far-field shadowing filter with a near-field compensation filter to compensate for acoustic changes between the far-field and near-field regions and modifying the aspect ratio of the human head model to configure variable geometric models of the human head ranging from a nearly spherical to a very narrow embodiment. |
US11750998B2 |
Controlling rendering of audio data
Example devices, systems and methods for processing audio data are disclosed. An example device includes a memory configured to store one or more speaker feeds and one or more processors implemented in circuitry and communicatively coupled to the memory. The one or more processors are configured to determine whether a boundary separating an interior area from an exterior area exists, and based on the boundary existing, determine a transition distance value, the transition distance value being indicative of a size of a transition zone. The one or more processors are configured to obtain a listener location indicative of a virtual location of the device relative to the interior area and obtain, based at least in part on the boundary and the listener location, a current renderer. The one or more processors are configured to apply, to the audio data, the current renderer to obtain the one or more speaker feeds. |
US11750992B2 |
Integrated circuit with switching amplifier output fault detection
A switching amplifier includes: a driver circuit with differential inputs and differential outputs; and a fault detection circuit coupled to the differential outputs. The fault detection circuit includes: a power supply input; and a sense circuit coupled to the differential outputs. The sense circuit includes: a first resistor between the power supply input and a positive output of the differential outputs; a second resistor between the positive output and ground; a third resistor between the power supply input and a negative output of the differential outputs; and a fourth resistor between the negative output and ground. The fault detection circuit also includes an analyzer circuit coupled to the sense circuit and configured to determine a fault location relative to the differential outputs based on an output of the sense circuit. |
US11750991B2 |
Information providing method, information provision system, and information processing method
An information providing method receives, from a terminal apparatus, terminal position information representative of a position of the terminal apparatus; identifies, from among a plurality of pieces of distribution information stored in a reference table in which correspondences between the plurality pieces of distribution information and a plurality of pieces of sound output position information are registered, a piece of distribution information corresponding to a piece of sound output position information identified based on the position of the terminal apparatus represented by the received terminal position information; and transmitting the identified piece of distribution information to the terminal apparatus. Each of the plurality of pieces of distribution information relates to a position at which a corresponding one of sound output devices outputs sound, and each of the plurality of pieces of sound output position information is representative of a position at which the corresponding sound output device outputs the sound. |
US11750988B2 |
Tympanic lens for hearing device with reduced fluid ingress
Embodiments of the invention are directed to a microactuator including using (i) an ingress membrane mounting ring adhesive positioned on an ingress membrane mounting surface to mount an ingress membrane and (ii) a flexible encapsulation shield mounted on a support band and extending over the ingress membrane mounting ring and (iii) a first reed adhesive connecting the ingress membrane to a microactuator reed at an ingress membrane reed opening and (iv) a second reed adhesive positioned on and covering the first reed adhesive, the second reed adhesive extending from the ingress membrane to the microactuator reed. |
US11750986B2 |
RF antenna and hearing device with RF antenna
The present disclosure relates to a hearing aid with an RF antenna arranged within the hearing aid's housing, and a loudspeaker positioned in the ear canal of the user. The RF antenna is configured to receive and/or transmit electromagnetic RF signals within a first frequency range enclosing a first frequency of resonance of the RF antenna corresponding to a first wavelength. The hearing aid further comprises one or more electric leads electrically connected to lead one or more electric signals within a second frequency range not overlapping the first frequency range between the loudspeaker in the ear canal of the user and an electronic circuit in the housing, with the one or more electrical leads being decoupled, at a connector end of the one or more electrical leads, by means of one or more decoupling components. |
US11750985B2 |
Spatial pre-filtering in hearing prostheses
Presented herein are techniques for increasing sensitivity of a hearing prosthesis to sound signals received from the “side” of a recipient. The sensitivity of the hearing prosthesis to sound signals received from the side of a recipient is provided by a spatial pre-filter that is configured to use a primary reference signal (i.e., a first directional signal) and a side reference signal (i.e., a second directional signal having at least one null directed to the side of the recipient) to calculate a side gain mask. The side gain mask includes gains for each of a plurality of frequency channels associated with the received sound signals. |
US11750977B2 |
Basket assembly, audio unit and electronic device
A basket assembly, an audio unit and an electronic device. The basket assembly is applied to an audio unit with a voice coil and includes a basket body. The basket body includes: a metal portion, a plastic portion coupled to the metal portion; and a conductive member embedded in the plastic portion and forming a first contact and a second contact exposed out of the plastic portion, the first contact is configured to be electrically coupled to the voice coil of the audio unit, the second contact is configured to be electrically coupled to a target circuit, and the target circuit includes an audio signal input circuit or an audio signal output circuit. |
US11750973B2 |
Microelectromechanical system
A microelectromechanical system includes an enclosure defining a cavity and an opening communicating with the cavity; a membrane mounted at the opening; a cantilever located within the cavity, the at least one cantilever comprising a first end, a second end and a fulcrum located between the first end and the second end; a plunger positioned between the membrane and the cantilever and configured to transfer displacement of the membrane to the first end of the cantilever; and a sensing member connected to the second end of the cantilever. The distance between the first end and the fulcrum is less than that between the second end and the fulcrum. The microelectromechanical system has the advantages of high SNR, small package size and high sensitivity. The membrane has a stiffness order of magnitude higher than a conventional membrane, which avoids mechanical collapse and large DC deformation under 1 atm. |
US11750966B2 |
Earphone having a controlled acoustic leak port
An earphone comprising: an earphone housing having a cap portion and a body portion that interlock with one another to enclose a driver, the driver having a front face that outputs sound waves and a back face opposite the front face, the cap portion defines a first chamber coupled to the front face of the driver and the body portion defines a second chamber coupled to the back face of the driver, a first opening formed through the cap portion; a first port and a second port formed through the body portion and open to a surrounding environment; and a mesh coupled to the first opening, the first port or the second port. |
US11750965B2 |
Acoustic dampening compensation system
At least one exemplary embodiment is directed to a communication device that includes a microphone configured to detect an acoustic signal from an acoustic environment, and a processor, configured to detect an acoustical dampening between the acoustic environment and the microphone, based on a change in a characteristic of the acoustic signal and, responsive to the acoustical dampening, apply a compensation filter to the acoustic signal to form a compensated acoustic signal that is reproduced. Other embodiments are disclosed. |
US11750963B2 |
Communication control method, device and system, charging box and wireless earpiece
Disclosed by the present invention are a communication control method, device and system, a charging box and a wireless earpiece, the method comprising: when charging a first wireless earpiece by means of two power pins, the charging box obtains first data to be sent if communication with the first wireless earpiece is needed; and according to the first data to be sent, the charging box controls the output voltages of the two power pins to be correspondingly exchanged, so that the first wireless earpiece switches according to the output voltage of a corresponding power pin so as to obtain the first data to be sent during the charging process. In the present method, the charging box controls the output voltages of the two power pins to be correspondingly exchanged according to the first data to be sent, so that the wireless earpiece may obtain the first data to be sent according to the switching of the charging voltages when using the switchable charging voltages of the two power pins to perform charging. Therefore, the wireless earpiece uses the two pins used for charging to communicate with the charging box during the charging process, thereby reducing the setup cost and taking both a small size and aesthetic appearance into account. |
US11750961B2 |
Moldable earpiece system
An earpiece including an external surface having a first fixed configuration disposable within the outer ear and having a passage adapted for retention of an in ear device, the earpiece heatable to achieve a moldable condition which allows reconfiguration of the external surface by engagement with the outer ear to dispose the external surface in a second fixed configuration in greater conformity to the outer ear. |
US11750959B2 |
Speaker device
A speaker device is used while being attached to a helmet, and includes a speaker unit that outputs a sound, a speaker housing that includes a back wall portion covering the speaker unit from a back side, and in which a space between a back surface of the speaker unit and the back wall portion is formed as an output space for the sound output from the back surface of the speaker unit, and a duct whose internal space is communicated with the output space and that guides, to an outside of the helmet, the sound output to the output space, in which a distance between the back surface of the speaker unit and the back wall portion is smaller than a distance of the internal space of the duct in a direction in which the duct guides the sound. |
US11750958B2 |
Portable terminal having speaker and acoustic output path for speaker
An electronic device is provided. The electronic device includes a housing including a first surface facing in a first direction, a second surface facing in a second direction opposite to the first direction, and a side surface member enclosing the first surface and the second surface, a display visible through at least a portion of the first surface, an opening formed on a portion of the first surface, a speaker positioned within the housing, a sensor positioned within the housing, and a first path configured to guide a sound of the speaker to the opening, and a second path configured to guide the sound of the speaker to the opening and to avoid overlapping the first path, and at least a portion of the sensor is positioned between the first path and the second path. |
US11750957B2 |
Quick connect speaker assemblies and related systems and methods
A quick connect speaker assembly includes: a speaker; a coupler configured to be coupled to the speaker; and a stake including a body having first and second end portions and defining a channel, with the first end portion including an attachment feature. The stake is configured to slidably receive the coupler in the channel at the first end portion and the attachment feature is configured to attach the coupler and the speaker to the stake in an installed position. |
US11750954B2 |
Remote monitoring for fluid applicator system
In one embodiment, a remote monitoring system for a fluid applicator system is disclosed. The fluid applicator system is disposed to heat and pump spray fluid, and to transmit reports including sensed temperatures, pressures, and other operational parameters of the fluid applicator system via a wireless network. The remote monitoring system comprises a data storage server, and an end user interface. The data storage server is configured to receive and archive the reports. The end user interface is configured to provide a graphical user interface based on the reports. The graphical user interface illustrates a status of the fluid handling system, sensed and commanded temperatures of the fluid handling system, sensed and commanded pressures of the fluid handling system, and usage statistics of the fluid handling system. |
US11750950B1 |
Voltage domain global shutter readout circuit timing
A global shutter readout circuit includes a pixel enable signal and a first sample and hold (SH) signal that are configured to turn ON a pixel enable transistor and a first storage transistor at a first time during a global transfer period. The pixel enable signal is configured to begin a transition to an OFF level at a second time and complete the transition to the OFF level at a third time to turn OFF the pixel enable transistor. The first SH signal is configured to begin a transition to the OFF level at a fourth time, which occurs after the second and third times, and complete the transition to the OFF level at a fifth time to turn OFF the first storage transistor. An OFF transition duration between the fourth and fifth times is greater than an ON transition duration of the first SH signal at the first time. |
US11750942B2 |
Image sensor, an imaging device and a method of operating the same
An image sensor including: first and second capacitors; a first transistor between a photodiode and a floating diffusion node, and receiving a transfer signal; a second transistor between a first power terminal and the floating diffusion node and receiving a reset signal; a third transistor between a second power terminal and a first node and having a gate connected to the floating diffusion node; a fourth transistor between the first node and a column line and receiving a precharge signal; a fifth transistor between the first capacitor and a feedback node and receiving a first sampling signal; a sixth transistor between the second capacitor and feedback node and receiving a second sampling signal; a seventh transistor between the first node and feedback node and receiving a first switch signal; and an eighth transistor between the floating diffusion and feedback nodes and receiving a second switch signal. |
US11750941B1 |
Imaging circuit capable of sensing flickering light
An imaging circuit includes plural pixel circuits which are arranged in a pixel array. Each of the plural pixel circuits includes an image sensing device which is configured to sense a normal imaging light shedding on the imaging circuit with a predetermined frame rate. At least a portion of the plural pixel circuits are first type pixel circuits. Each of the first type pixel circuit further includes a flicker sensing device. Plural flicker sensing devices in the pixel array are coupled in parallel to sense a flickering light shedding on the imaging circuit to generate a flicker indicating signal. |
US11750937B2 |
Image capturing apparatus and image capturing method
In a high speed image capturing state, a camera signal processing circuit is not needed to perform a signal process at a high screen rate, but at a regular screen rate. In the high speed image capturing mode, raw data of 240 fps received from an image sensor 101 are recorded on a recording device 111 through a conversion processing section 201 and a recording device controlling circuit 210. Raw data that have been decimated and size-converted are supplied to a camera signal processing circuit 203 through a pre-processing circuit 202 and an image being captured is displayed on a display section 112 with a signal for which a camera process has been performed. In a reproducing state, raw data are read from the recording device 111 at a low screen rate according to a display performance of the display section 112 and the raw data that have been read are processed are processed by the pre-processing circuit 202 and the camera signal processing circuit 203 and a reproduced image is displayed by the display section 112. |
US11750932B2 |
Image processing apparatus, image processing method, and electronic apparatus
An image processing apparatus includes a first acquisition unit that acquires a first pixel signal output from a first pixel, a second acquisition unit that acquires a second pixel signal output from a second pixel having a size smaller than that of the first pixel, a temperature detection unit that detects temperature; a composition gain determination unit that determines a composition gain corresponding to the detected temperature, and a composition unit that composes the first pixel signal and the second pixel signal multiplied by the composition gain. |
US11750924B2 |
Camera with sensor-shifting autofocus mechanism
Various embodiments include a camera having a sensor-shifting mechanism. For example, the camera may include a voice coil motor (VCM) actuator to move an image sensor, relative to a lens group, to provide autofocus (AF) functionality. According to some embodiments, the VCM actuator may include one or more coils attached to a coil carrier, and one or more magnets attached to a stationary structure of the camera. The coil carrier may be attached to an image sensor package such that the image sensor is movable together with the coil carrier, in at least one direction parallel to an optical axis defined by the lens group. In some embodiments, the camera may include one or more suspension arrangements to suspend the coil carrier and/or the image sensor package from one or more stationary structures of the camera. |
US11750921B2 |
Image pickup apparatus capable of performing function change, and control method for image pickup apparatus
An image pickup apparatus whose function can be easily changed is provided. The image pickup apparatus, to which a mounting component part having a wireless IC tag can be attached, comprising at least one processor and/or circuit configured to function as following units, a reading unit configured to read information recorded in the wireless IC tag, an attitude determination unit configured to determine an attitude of the mounting component part, which is attached, with respect to the image pickup apparatus, and a function changing unit configured to change a function of the image pickup apparatus. In a case that the reading unit can read the information recorded in the wireless IC tag, the function changing unit changes the function of the image pickup apparatus according to the attitude of the mounting component part, which is determined. |
US11750920B1 |
Stereoscopic camera resynchronization in an autonomous vehicle
Stereoscopic camera resynchronization in an autonomous vehicle may include: sending, to a first camera out of synchronization with a second camera, a first command to modify a frame rate of the first camera by modifying a padding data setting of the first camera; determining, independent of any determination that the first camera and second camera are resynchronized, an interval for sending, to the first camera, a second command to restore the padding data setting of the first camera; and sending, responsive to the interval occurring, the second command to the first camera. |
US11750919B2 |
Automatic picture and text alerting camera, with inbuilt smoke and motion detectors
The present invention is a security camera that is fully equipped with an inbuilt smoke and motion detectors and with a special remote control to program the security camera. Furthermore, the security camera is specially designed to be set by a user to automatically capture and send a still picture or motion picture with audio or video message to a mobile phone when the smoke detector or motion detector is activated. |
US11750916B2 |
Image processing apparatus, image processing method, and non-transitory computer readable medium
An image processing apparatus according to the present invention includes at least one memory and at least one processor which function as: an acquisition unit configured to acquire an image captured by an image capturing apparatus, wherein a part of the image corresponding to a viewing direction is to be displayed on a screen; and a generation unit configured to generate a superimposed image by superimposing a graphic image on a specific part of the image corresponding to a specific viewing direction. |
US11750912B2 |
Main subject tracking and prioritization using depth and successive temporal location proximity
An apparatus comprises a detection unit detecting an object from an image acquired by a capturing unit; and a determination unit that determines whether or not the object is the same as a main object, wherein the determination unit includes a first determination unit that determines whether or not coordinates of the object candidate and coordinates of the main object satisfy a distance condition; a second determination unit that determines whether or not a difference between the object candidate and the main object is within a predetermined range; and a third determination unit that determines whether or not the first and second determination units have determined in the affirmative a predetermined number of times in a row, and the determination unit determines whether transfer of the main object has occurred based on determination results of the first to third determination units. |
US11750911B2 |
Systems, methods, and devices for unmanned vehicle detection
Systems, methods, and apparatus for detecting UAVs in an RF environment are disclosed. An apparatus is constructed and configured for network communication with at least one camera. The at least one camera captures images of the RF environment and transmits video data to the apparatus. The apparatus receives RF data and generates FFT data based on the RF data, identifies at least one signal based on a first derivative and a second derivative of the FFT data, measures a direction from which the at least one signal is transmitted, analyzes the video data. The apparatus then identifies at least one UAV to which the at least one signal is related based on the analyzed video data, the RF data, and the direction from which the at least one signal is transmitted, and controls the at least one camera based on the analyzed video data. |
US11750909B2 |
Refrigerators having internal content cameras, and methods of operating the same
Example refrigerators having internal content cameras, and methods of operating the same are disclosed. A disclosed example refrigerator includes a cabinet, an internal compartment disposed within the cabinet, a closing member operatively coupled to the cabinet providing selective access to the internal compartment, two cameras disposed in the compartment and positioned to capture images of different portions of the compartment, two light sources disposed in the compartment, and a controller communicatively coupled with the cameras and light sources and configured to control the light sources to provide two different illuminations for respective ones of the two cameras. |
US11750908B2 |
Image capturing apparatus, control method thereof, and non-transitory computer-readable storage medium
An image capturing apparatus which a lens unit is interchangeable, comprises an image capturing unit which captures images using an image sensor, an synthesizing unit which synthesizes a plurality of images, and a controlling unit which controls predetermined synthesis processing for creating a synthetic image by causing the synthesizing unit to synthesize a plurality of images that have been obtained by the image capturing unit performing image capturing a plurality of times, wherein, if it is judged that a lens unit that has been replaced after a first image for the synthesis processing was acquired is a lens unit having an image circle that is different from that of a lens unit that was mounted before the replacement, the controlling unit controls the image capturing unit to not capture a new image for creating the synthetic image. |
US11750901B2 |
Image capturing apparatus
An image capturing apparatus having a touch panel mounted on a display unit on the rear side of its housing is provided with a posture detection unit; a first gripping unit positioned on side of the housing when the posture is a normal position; a second gripping unit positioned on side of the housing when the posture is a vertical position; a first operating member operable by a finger of a hand that is gripping the first gripping unit; a second operating member operable by a finger of a hand that is gripping the second gripping unit; and a control unit that displays a first button for deactivating operations from the second operating member on the display screen, and receives input to the first button via the touch panel. The display position of the first button on the display unit is set based on a first virtual circle for which the center point has been set in the range of the first gripping unit or the second gripping unit, and the radius of the first virtual circle is a tangential line that reaches from the center point to the outer edge of the display unit, cutting across the display unit. |
US11750897B2 |
Generating sequential visual narratives
A system for generating a sequential visual narrative is provided. The system includes a media analyzer to obtain media and descriptive data pertaining to a subject and to categorize the media into narrative categories. The system includes a description generator to process the descriptive data and the narrative categories to generate text descriptions describing the subject in relation to the media. The system includes a visual display generator to sequence the media in a narrative sequence, map the narrative sequence to a display layout, and to generate and output a visual display including the text descriptions in visual association with the media. |
US11750896B1 |
Rendering a dynamic endemic banner on streaming platforms using content recommendation systems
Disclosed herein are system, apparatus, article of manufacture, method and/or computer program product embodiments, and/or combinations and sub-combinations thereof, for utilizing a content recommendation system powering a streaming media publisher channel to enhance an ad creative being shown to the user via awareness or performance campaigns. This method allows the platform to present the most relevant Machine Language (ML) personalized in-channel content to the publisher platform users in endemic banners that run on the platform which then correspondingly helps drive user reach. An example embodiment operates by implementing personalized content banners that may act as a hook for channel users opening their streaming device, both active and lapsed, to enter back into the channel. |
US11750892B2 |
Systems and methods of alternative networked application services
A server computing device hosts one or more virtual machines. A first virtual machine corresponding to a first client device receives a first media stream that includes first content corresponding to a plurality of frames of video data and generates a first digest segment that corresponds to the first media stream. The first digest segment includes a representation of the plurality of frames but does not include the video data. The first virtual machine stores the first digest segment in a cache at the server system. A second virtual machine corresponding to a second client device receives a playback position of the first media stream playing at the second client device and uses the playback position from the second client device and the first digest segment stored in the cache to perform processing to recreate a representation of the playback of the first media stream on the second client device. |
US11750891B1 |
Machine learning based selective pre-caching of content fragments on wireless communication devices
A method of selective pre-caching content fragments is disclosed. The method comprises receiving and analyzing, by an analytics engine, environment data pertaining to a wireless communication device and, based on the analyzing and based on a media presentation response, determining, by a pre-cache manager, an amount of fragments to provide to the wireless communication device for pre-caching to enable playback of the content at a certain quality. The method also comprises selecting, by the pre-cache manager, a subset of fragments of the content based on the determined amount of fragments and sending, by the computer system, the subset of fragments to the wireless communication device. The wireless communication device pre-caches the subset of fragments and presents the content using the cached subset of fragments and remaining fragments received from a content delivery network. The method further comprises receiving, by the analytics engine, playback data from the content delivery network. |
US11750890B2 |
Content delivery system, content delivery apparatus, and method
According to the present embodiment, there is provided a content delivery apparatus applied to a content delivery system which delivers content, which is sent from a transmission apparatus, to a reception apparatus by a multicast method via an IP network. The content delivery apparatus includes an analyzer configured to detect a start point or an end point of the content by analyzing control information of the content, and a manager configured to control a reception start or a reception end of the content, based on the start point or the end point. |
US11750883B2 |
System and method for using personal computing devices to determine user engagement while viewing an audio/video program
According to principles of the disclosure, the level of engagement by a user in watching a program is determined based on data received from a personal computing device that is coupled to the user while they are viewing the audio/video program as it is displayed. The personal computing device contains a number of user biological function sensors which are able to measure and receive one or more biological functions that are personal to the user while they view the audio/video program. The changes in a particular biological function, such as heart rate, breathing, movement and other activities are compared to the type of content in the program being viewed and a correlation carried out in order to determine the level of engagement of the user has with the program. |
US11750881B2 |
Server-side matching of supplemental content audio to perceived audio by end-user
In one aspect, an example method includes (i) determining, by a content-presentation device, a media-device loudness of content that is provided to the content-presentation device by a media device; (ii) sending, by the content-presentation device to a computing system, a request for supplemental content for use in connection with performing a content-modification operation during a content-modification opportunity, with the request including an indication of the media-device loudness; (iii) based on sending the request, receiving, by the content-presentation device from the computing system, a version of a supplemental content segment having a loudness corresponding to the media-device loudness, with the version of the supplemental content segment selected from among multiple versions of the supplemental content segment having different respective loudnesses; (iv) and performing, by the content-presentation device, the content-modification operation using the version of the supplemental content segment. |
US11750871B2 |
Edge optimized transrating system
A system and method for bandwidth management by controlling the bit rate of a signal stream in real time according to available link bandwidth. Applications include multiple-channel video data streams over a limited-bandwidth link such as a Digital Subscriber Line. A video signal is transrated at the head end to multiple streams having different bit rates, by a multirating device which sends the multiple streams over a network, along with metadata containing information about the data structure and parameters of the streams. At the network access edge, a demultirating device uses the metadata to select the stream with the highest video quality whose bit rate does not exceed the available bandwidth of the end-user's access link. This scheme provides multiple unicast signals to different end-users in place of a single multicast signal, supports multiple high-definition channels over a limited bandwidth link, and is compatible with standard encryption methods. |
US11750864B2 |
Methods and apparatuses for ingesting one or more media assets across a video platform
The disclosure relates to creating and consuming video-centric experiences with additional interactivity and immersion capabilities. The process involves receiving multiple video and media signals, ensuring their synchronization, uploading them to processing engines, enabling manual and autopilot-driven camera changes, and presenting them in immersive and non-immersive devices. |
US11750863B2 |
Systems and methods for bandwidth-limited video transport
Systems and methods for bandwidth-limited video transport are configured to receive (or otherwise discern) a selection of video parameter limits that correspond to a bandwidth limit and apply the video parameter limits to an input video stream to enforce the bandwidth limit while preserving video quality. Methods may include adjusting the video stream one parameter at a time until the adjusted video stream meets the bandwidth limit. Parameters to be adjusted may include image resolution, frame rate, image compression, color depth, bits per pixel, and/or color encoding. In some embodiments, the image resolution is reduced first, the frame rate is reduced next, and the image compression is increased last. The extent and/or order of the adjustments of the parameters may be selected by the user, based on the content of the video stream, and/or based on the bandwidth limit. |
US11750862B2 |
Video quality monitoring in a network environment
According to one configuration, a monitor resource monitors conveyance of content streaming over a shared communication link between a server resource and a communication device, the communication device requesting segments of the content from a manifest file. Monitoring as described herein can include intercepting and inspecting data packets associated with conveyance of the content over the shared communication link. An analyzer resource analyzes bandwidth attributes of streaming the content over the shared communication link. Based on the attributes of streaming the content (such as bandwidth, adaptive bit rate, etc.) over the shared communication link, the monitor resource generates a report indicating a link quality provided to the communication device via the shared communication link conveying the stream of content. |
US11750861B2 |
Compensating for interruptions in a wireless connection
A method of compensating for potential interruptions in a wireless connection (110) over which data is transmitted from a host device (11) to a client device (12) involves determining an expectation of an interruption to the wireless connection (110), setting a second compression level for compressing the data when an interruption is due, the second compression level being set at a higher level than a first compression level normally used for the data, compressing the data at the second compression level, and forwarding the data compressed at the second compression level to a transmitting component (16) for transmittal to the client device (12). The expectation of a potential interruption may be determined by analysing a historical record of previous interruptions to determine a periodicity of the previous interruptions and using the determined periodicity to calculate when a next potential interruption may be expected, or by determining that a buffer used for storing the data prior to transmittal is full, indicative that an interruption has commenced, or by receipt of information from the transmitting component that a potential interruption is expected to occur or has commenced. |
US11750860B2 |
Methods and systems for separate delivery of segments of content items
Systems and methods are described herein for transmitting a content item to a user device using multiple delivery protocols. The system receives, at a content source, a request for the content item from the user device. The system splits a digital stream of the content item into a first video signal and a second video signal. The system then transmits, via a unicast server, the first video signal for the content item to the user device, and transmits, via a multicast server, the second video signal for the content item to the user device. The system then causes for presentation on the user device the first video signal followed by the second video signal. In other embodiments, the system is optimized between the unicast delivery of a content item and a peer-to-peer delivery. |
US11750859B2 |
Methods and systems for separate delivery of segments of content items
Systems and methods are described herein for transmitting a content item to a user device using multiple delivery protocols. The system receives, at a content source, a request for the content item from the user device. The system splits a digital stream of the content item into a first video signal and a second video signal. The system then transmits, via a unicast server, the first video signal for the content item to the user device, and transmits, via a multicast server, the second video signal for the content item to the user device. The system then causes for presentation on the user device the first video signal followed by the second video signal. In other embodiments, the system is optimized between the unicast delivery of a content item and a peer-to-peer delivery. |
US11750856B2 |
Addressable advertising insertion for playout delay
A computer implemented method for inserting advertisement content into a program content stream includes receiving, by a headend content server, the program content stream. The program content stream includes an advertisement insertion cue. The method further includes detecting the advertisement insertion cue in the program content stream, and the advertisement insertion cue indicates an insertion point in the program content stream for inserting an advertisement. The method further includes modifying the advertisement insertion cue to indicate an expiration date and time for playout of a first advertisement content to be inserted into the program content stream, and inserting the first advertisement content into the program content stream. |
US11750854B2 |
Satellite switching for addressable asset delivery
Specific transmission mechanisms and processes are provided to support real-time addressable asset delivery in satellite broadcast networks including satellite television networks. A satellite network (100) includes a satellite (102) that transmits a satellite transmission (106) to a terrestrial receiver (104), such as a satellite dish. The satellite dish (104) is associated with a UED (108) such as a television with a set top box. The satellite transmission (106) includes a number of MUXs (107). One or more of the MUXs (107) includes a programming channel and associated asset channels. Addressable asset options can be delivered at UEDs by hopping from a programming channel to an asset channel at an asset delivery opportunity. |
US11750852B2 |
System, method, and computer-readable medium including program for providing live video distribution service
A video distribution server according to one embodiment of the present disclosure promotes entry of a new viewer into a live video distribution (live streaming) service. The server provides a user with the live video distribution service for distributing and viewing a video in real time via a user terminal. The server generates a message based on input information by a viewer of the video being distributed, and posts the message on an SNS by a distributor of the video, and thus allows a user of the SNS to know a situation and an atmosphere of live distribution in the video distribution service. |
US11750835B2 |
Coding method, device, system with merge mode
An apparatus and method for marking availability of a candidate coding block for merge estimation of a current coding block within a coding tree unit, CTU, which includes multiple coding blocks. Initially, the candidate coding block is marked as available. The candidate coding block is marked as unavailable when a predefined location of the candidate coding block is included within an extended merge estimation region, MER. The extended MER includes a current MER in which the current coding block is located and at least a portion of another MER, adjacent to the current MER. |
US11750832B2 |
Method and apparatus for video coding
Aspects of the disclosure provide a method and an apparatus for video coding. A processing circuitry determines a process unit size for a decoder-side motion vector refinement (DMVR). Then, the processing circuitry enables an application of the DMVR on a current block when a size of the current block is smaller than or equal to the process unit size; and disables the application of the DMVR on the current block when the size of the current block is larger than the process unit size. In an example, the application of the DMVR refines the motion vectors with or without a template block. |
US11750831B2 |
Method and apparatus for video coding
Aspects of the disclosure provide methods and apparatuses for video encoding and/or decoding. In some examples, an apparatus for video decoding includes processing circuitry that can decode coded information of a transform block (TB) from a coded video bitstream. The coded information indicates a region of the TB on which a secondary transform is applied. The region includes a first sub-region having transform coefficients calculated by the secondary transform and a second sub-region that is a zero-out region. In response to a determination that a neighboring transform coefficient is in the second sub-region and a current transform coefficient in the TB is not in the second sub-region, the processing circuitry determines the current transform coefficient according to a default value for the neighboring transform coefficient. The processing circuitry reconstructs a sample in the TB based on the transform coefficient for the sample. |
US11750829B2 |
Moving picture decoding device, moving picture decoding method, and program obtaining chrominance values from corresponding luminance values
A decoding device includes a transformer sets a decoded luminance component of a prediction target block to the same number of samples as that of the chrominance component corresponding to the decoded luminance component of the prediction target block and generates a luminance reference signal. A specificator specifies luminance pixels having minimum and maximum pixel values of the decoded luminance component adjacent to the decoded luminance component of the prediction target block, respectively, outputs luminance pixel values obtained from specified luminance pixels, and outputs chrominance pixel values from pigment pixels corresponding to the luminance pixels. A derivator derives a linear prediction parameter from the two pixel values and a linear prediction model. A chrominance linear predictor obtains chrominance prediction signal by applying linear prediction model based on the linear prediction parameter to the luminance reference signal. The chrominance prediction and residual signals are summed to generate a reconstructed chrominance signal. |
US11750828B2 |
Inter prediction coding within a merge sharing region
A method of video encoding includes receiving a merge sharing region including a plurality of coding blocks, constructing a shared merge candidate list for the merge sharing region, and encoding a current inter coded coding block in the merge sharing region based on the shared merge candidate list. The method also includes determining whether to update a history-based motion vector prediction (HMVP) table with motion information of the current inter coded coding block based on whether the current inter coded coding block is inter coded with a merge/skip mode. The method further includes updating the HMVP table with the motion information of the current inter coded coding block when the HMVP table is determined to be updated with the motion information of the current inter coded coding block. |
US11750822B2 |
Encoding device, decoding device, and program
It is possible to reduce an increase in entropy even if a reference pixel of a lower side or a right side is used in intra prediction. An encoding device 1 according to the present invention includes: an intra predictor 14a configured to generate a predicted image by using an intra prediction mode; a residual signal generator 14b configured to generate a residual signal from a difference between the predicted image and an original image; and an orthogonal transformer 14c configured to, when the intra predictor 14a generates the predicted image by using a reference pixel positioned on at least one of a right side and a lower side, perform orthogonal transformation processing on the residual signal after inverting a basis of at least one of a horizontal direction and a vertical direction. |
US11750803B2 |
Intra prediction mode mapping method and device using the method
The present invention relates to an intra prediction mode mapping method and a device using the method. The intra prediction mode includes: decoding flag information providing information regarding whether an intra prediction mode of a plurality of candidate intra prediction modes for the current block is the same as the intra prediction mode for the current block, and decoding a syntax component including information regarding the intra prediction mode for the current block in order to induce the intra prediction mode for the current block if the intra prediction mode from among the plurality of candidate intra prediction modes for the current block is not the same as the intra prediction mode for the current block. Thus, it is possible to increase the efficiency with which are images are decoded. |
US11750801B2 |
Method for coding intra-prediction mode, and device for same
A picture decoding method which is performed by a decoding apparatus according to an example of the present disclosure includes constructing a Most Probable Modes (MPM) list including intra prediction mode candidates for a current block based on neighboring blocks of the current block, decoding remaining mode information indicating one of remaining intra prediction modes other than the intra prediction mode candidates included in the MPM list from a bitstream, determining an intra prediction mode of the current block based on the decoded remaining mode information, generating prediction samples for the current block based on the determined intra prediction mode, and generating reconstructed samples for the current block based on the prediction samples for the current block, wherein the remaining mode information is decoded based on a truncated binary code. |
US11750798B2 |
Image processing device and a method for encoding images captured by a camera
The present invention relates to the field of video encoding. In particular, it relates to a method 300 of encoding images captured by a camera and to an image processing device. An image sequence captured with an image sensor of the camera is obtained S310, and an oscillation frequency of a periodic movement of the camera during capturing of the image sequence is determined S320. A base subset of images of the image sequence corresponding to the oscillation frequency is identified S330 and the base subset of images are encoded S340 into an encoded video stream comprising intra frames and inter frames. |
US11750797B2 |
Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device
A three-dimensional data encoding method is a three-dimensional data encoding method of encoding a plurality of three-dimensional points, and includes: selecting one prediction mode for calculating, using attribute information of a second three-dimensional point in a vicinity of a first three-dimensional point, a predicted value of attribute information of the first three-dimensional point; calculating a predicted value according to the one prediction mode; calculating a prediction residual that is a difference between the attribute information of the first three-dimensional point and the predicted value; and generating a bitstream that includes the one prediction mode and the prediction residual, and in the calculating of the predicted value, a predetermined fixed value is calculated as a predicted value calculated according to the one prediction mode in a case in which a predicted value based on the attribute information of the second three-dimensional point is not assigned to the one prediction mode. |
US11750794B2 |
Combining video-based and optic-based augmented reality in a near eye display
Apparatus, including a retaining structure (54), positioned near a subject's eye that has a pupil with a diameter, an optical combiner (52A) mounted on the structure before the eye, and a pixelated screen (60A) having an array of variably transparent pixels coating the combiner. There is an image capturing device (68A) mounted on the structure to capture an image of a scene viewed by the eye, and a projector (64A) is mounted on the structure to project at least one of a portion of the captured image and a stored image onto a section of the screen at a selected location thereof. A processor (26) renders the screen section at least partially opaque, selects the section location in response to a region of interest in the scene identified by analysis of the captured image, and determines a dimension of the section in response to the pupil diameter. |
US11750793B2 |
Display module and display device including the same
A display panel includes a plurality of pixels including a first type pixel, a second type pixel, and a third type pixel, and a lens array disposed on a first surface of the display panel and having an inclination angle. The first type pixel and the second type pixel are disposed adjacent to each other in a second direction. The third type pixel is disposed adjacent to the first type pixel and the second type pixel in a first direction. A pitch of the third type pixel in the second direction is less than or equal to a sum of a pitch of the first type pixel in the second direction and a pitch of the second type pixel in the second direction. |
US11750791B2 |
Automatically determining extrinsic parameters of modular edge computing devices
Implementations are disclosed for automatic commissioning, configuring, calibrating, and/or coordinating sensor-equipped modular edge computing devices that are mountable on agricultural vehicles. In various implementations, neighbor modular edge computing device(s) that are mounted on a vehicle nearest a given modular edge computing device may be detected based on sensor signal(s) generated by contactless sensor(s) of the given modular edge computing device. Based on the detected neighbor modular edge computing device(s), an ordinal position of the given modular edge computing device may be determined relative to a plurality of modular edge computing devices mounted on the agricultural vehicle. Based on the sensor signal(s), distance(s) to the neighbor modular edge computing device(s) may be determined. Extrinsic parameters of the given modular edge computing device may be determined based on the ordinal position of the given modular edge computing device and the distance(s). |
US11750790B2 |
Systems and methods for stabilizing views of videos
A viewing direction may define an angle/visual portion of a spherical video at which a viewing window is directed. A trajectory of viewing direction may include changes in viewing directions for playback of spherical video. Abrupt changes in the viewing directions may result in jerky or shaky views of the spherical video. Changes in the viewing directions may be stabilized to provide stabilized views of the spherical video. Amount of stabilization may be limited by a margin constraint. |
US11750788B1 |
Augmented reality guidance for spinal surgery with stereoscopic display of images and tracked instruments
Embodiments disclose a real-time surgery method and apparatus for displaying a stereoscopic augmented view of a patient from a static or dynamic viewpoint of the surgeon, which employs real-time three-dimensional surface reconstruction for preoperative and intraoperative image registration. Stereoscopic cameras provide real-time images of the scene including the patient. A stereoscopic video display is used by the surgeon, who sees a graphical representation of the preoperative or intraoperative images blended with the video images in a stereoscopic manner through a see-through display. |
US11750786B2 |
Providing apparatus, providing method and computer readable storage medium for performing processing relating to a virtual viewpoint image
A providing apparatus configured to provide three-dimensional geometric data to be used to generate a virtual viewpoint image receives a data request from a communication apparatus, decides which of a plurality of pieces of three-dimensional geometric data including first three-dimensional geometric data and second three-dimensional geometric data with a different quality than the first three-dimensional geometric data is to be provided to the communication apparatus from which the received data request was transmitted, and provides the three-dimensional geometric data decided on from among the plurality of pieces of three-dimensional geometric data, to the communication apparatus as a response to the received data request. |
US11750775B2 |
Occupant state detection system
An occupant state detection system includes an occupant monitoring apparatus, a determination apparatus, and an occupant state detection apparatus. The occupant state detection apparatus includes one or more processors and one or more memories. The one or more memories store data including traveling-state comparative data and stopped-state comparative data. The one or more processors cooperate with one or more programs included in the one or more memories to receive occupant monitoring data from the occupant monitoring apparatus and determination data from the determination apparatus. On the basis of the determination data, the one or more processors compare the occupant monitoring data with the traveling-state comparative data on the condition that the vehicle is in the traveling state, and compare the occupant monitoring data with the stopped-state comparative data on the condition that the vehicle is in the stopped state, to detect a state of the occupant in the vehicle. |
US11750774B2 |
Systems and methods for triggering livestream communications between users based on proximity-based criteria for avatars within virtual environments that correspond to the users
Methods and systems described herein facilitate virtual interactions between users that more closely resemble their in-person counterparts. In particular, the methods and systems simulate in-person interactions in virtual environments through the use of complex spatial algorithms. For example, in some embodiments, the methods and systems provide avatar-based video conferencing systems in which avatars are connected by video/voice chat to any avatar based on one or more criteria. |
US11750771B2 |
Recording control apparatus, recording control method, and recording control program
An image acquisition unit acquires a video of a scene around a vehicle while the video is being captured. A recording control unit sets a moving image file for recording the video being captured, segmenting the video into predetermined units and records the video being captured in the moving image file until the predetermined unit is met. When an operation reception unit receives a request to play back a just-before portion while the video is being recorded, the recording control unit sets a subsequent moving image file that will be a new recording destination and closes a preceding moving image file that has been a recording destination, and a display control unit plays back the video, starting at a point of time reached by going back from an end of the preceding moving image file by a predetermined period of time. |
US11750770B2 |
Real time painting of a video stream
Systems, devices, media, and methods are presented for generating graphical representations within frames of a video stream in real time. The systems and methods receive a frame depicting a portion of a face, identify user input, identify positions on the portion of the face corresponding to the user input. The systems and methods generate a graphical representation of the user input linked to positions on the portion of the face and render the graphical representation within frames of the video stream in real time. |
US11750767B2 |
Selective identification and order of image modifiers
Systems, devices, media and methods are presented for presentation of modified objects within a video stream. The systems and methods select an object of interest depicted within a user interface based on an associated image modifier, determine a modifier context based at least in part on one or more characteristics of the selected object, identify a set of image modifiers based on the modifier context, rank a first portion of the identified set of image modifiers based on a primary ordering characteristic, rank a second portion of the identified set of image modifiers based on a secondary ordering characteristic and cause presentation of the modifier icons for the ranked set of image modifiers. |
US11750764B2 |
Chart, image forming apparatus, image processing apparatus, and storage medium
A chart includes a plurality of area images. Each area image of the plurality of area images includes a figure. The figure indicates positional information of each area image of the plurality of area images in the chart. An image forming apparatus includes an image forming device configured to form an image on a sheet to create the chart, and an image reading device configured to read the image in the chart. |
US11750763B2 |
Non-transitory computer-readable medium storing computer-readable instructions, color chart creation method, and color chart creation device
A non-transitory computer-readable medium stores computer-readable instructions. The instructions instruct a computer to perform processes including an acquisition step and a color chart creation step. The acquisition step includes acquiring a specified color. The color chart creation step includes creating a color chart in which a plurality of color patches are arranged. The color patches are based on the specified color acquired by the acquisition step and have a color within a color gamut that is based on print settings of a printer. The color chart creation step includes creating a first color chart and a second color chart. The first color chart is the color chart based on first print settings of the printer. The second color chart is the color chart based on second print settings of the printer different from the first print settings. |
US11750762B2 |
Information processing apparatus, information processing system, and non-transitory computer readable medium
An information processing apparatus includes a transmitter, a receiver, an acquiring unit, and a registering unit. The transmitter transmits network identification information of a newly-connected network to a management apparatus via a wireless communication line when a network to which the information processing apparatus is connected is changed. The receiver receives address information registered in correspondence with the transmitted network identification information from the management apparatus via the wireless communication line. The acquiring unit acquires setting information from an apparatus accessed by using the address information received by the receiver. The registering unit registers the setting information acquired by the acquiring unit as setting information of the information processing apparatus. |
US11750761B2 |
Image reading apparatus with correction for streak images outside of areas having printed content
An image reading apparatus includes: a conveyance unit configured to convey the original; an image reading unit configured to read an image of the original conveyed by the conveyance unit by using a reading sensor to generate image data which represents a reading result; at least one processor configured to: detect a streak image in an image represented by the image data based on the image data; determine a content area in the image represented by the image data, the content area being an area where content is printed, and perform correction processing for removing the streak image by correcting the image data; wherein the at least one processor is configured to be operable in a first reading mode in which the correction processing is performed to image data corresponding to the streak image in an area outside the content area. |
US11750757B2 |
Information processing apparatus, information processing system, and non-transitory computer readable medium for notifying contacts of receipt of a facsimile document
An information processing apparatus includes a processor configured to: extract, if a facsimile document is received, information indicating a contact associated in advance with a telephone number of a person who has transmitted the facsimile document; and perform control for posting an electronic document, which is obtained by digitizing the facsimile document, to a message exchange service including the contact as a member while determining the contact as a notification target of the electronic document. |
US11750756B1 |
Contactless document processing system using document management profile
A cloud based server includes user profiles having user policies and an organization policy for printing and scanning operations. These policies enable contact-free printing and scanning to occur on connected devices. A user logs onto a device using a contactless input device. The user policies are reviewed to determine if contact-free printing or scanning is enabled. If so, then the device performs these operations without the need for input or any interaction at the device. The policies also log off the user from the device when operations are complete. |
US11750753B2 |
Image reading device, image forming apparatus, and image reading method
An image reading device includes a reading unit, a background member, and processing circuitry. The reading unit includes alight source to emit light to a passage area through which an object passes and an imaging device to capture reflected light of the light emitted to generate a visible image and an invisible image. The background member is disposed opposite the light source across the passage area. The processing circuitry is configured to: detect a change in an image characteristic due to a change in an optical characteristic of the reading unit, in invisible images obtained by capturing of invisible marks on the background member; determine a correction amount of an image characteristic to be used for correcting an image of the object generated by the imaging device, based on the change in the image characteristic detected; and correct the image characteristic based on the correction amount determined. |
US11750748B2 |
Image processing apparatus, method, and storage medium to evaluate printed material with decreased influence of specific characteristic of print medium determined from margin area of printed chart
An image processing apparatus extracts an image area corresponding to a margin area of a chart for evaluation from a scanned image obtained by scanning a printed material on which the chart is printed. The image processing apparatus evaluates the printed material based on, in a case when a printing medium used for the printing is determined to be a printing medium having a specific characteristic based on the image area corresponding to the margin area, the scanned image from which influence based on the specific characteristic is decreased. |
US11750746B2 |
Call processing system for modifying inmate communication limits
A system for customizing time limits for inmate communications in a correctional facility is disclosed. The system includes a profile subsystem that stores an inmate profile of the inmate and a communication processing subsystem comprising one or more processors configured to receive data of an inmate communication of an inmate, identify a type of communication device of the inmate and a call recipient of the inmate communication based on the data of the inmate communication, retrieve the inmate profile of the inmate form the profile subsystem, identify a plurality of behaviors of the inmate based on the inmate profile, determine a time limit based on at least one of the type of communication device, the call recipient of the inmate communication, and the plurality of behaviors of the inmate, and assign the time limit to the inmate communication of the inmate. |
US11750744B1 |
Predictive mapping for routing telephone calls
Predictive mapping technology is used to route a telephone call from a user to a customer service representative. The disclosed technology can use any one or more of the following factors to map a telephone call from a user to a customer service representative: (1) a sentiment score based on a topic of conversation; (2) an experience score of the customer service representative with a topic of conversation; and (3) a performance score of the customer service representative in managing a topic of conversation. |
US11750740B2 |
Intelligent speech-enabled scripting
A system comprises an applications server configured to communicatively couple to a softswitch, a resource server, and a database. The applications server is configured to receive, from the softswitch, an indication that a call from a calling party directed to a called number was received and determine, in response to the indication that the call was received, whether to route the call to an available agent or to a speech-enabled intelligent script associated with one of the called number or the calling party. The applications server is configured to instruct the softswitch to route the call to the speech-enabled intelligent script in response to a determination to route the call to the speech-enabled intelligent script. The applications server is configured to instruct the softswitch to route the call to the available agent in response to a determination to route the call to the available agent. |
US11750739B2 |
Visual indication of communication suspension at an endpoint system
The technology disclosed herein enables an endpoint system to present a visual indicator that user communications have been suspended. In a particular embodiment, a method includes exchanging audio user communications for the communication between the first endpoint system and a second endpoint system. At the first endpoint system, the method includes determining that the second endpoint system caused a suspension of the audio user communications and providing a first visual indicator of the suspension. |
US11750738B2 |
Telecommunications data management interface
A system for visualizing call routing data associated with a telecommunications identifier is provided. The system includes a client interface and a parsing tool. The client interface is structured to communicate with a telecommunications management platform having a database that stores call routing data. The parsing tool is associated with the client interface. The parsing tool receives call routing data associated with the telecommunications identifier in response to a query of the database, and the parsing tool generates parsed data by parsing the call routing data. The parsed data is structured to display the call routing data in a tree format on the client interface. |
US11750736B1 |
Detecting and preventing exploitative calls
Computer-implemented methods, computer program products, and computer systems for detecting and preventing exploitative calls. The computer-implemented methods include one or more processors configured for receiving voice call data corresponding to an active voice call with a user device, wherein the voice call data comprises caller voice data and user voice data; determining that the caller voice data includes a solicitation of information from a user associated with the user device; retrieving user profile data comprising user health data associated with the user; determining user call stress levels based on the voice call data and the user profile data; and responsive to determining that the user call stress levels exceed a predetermined threshold and that the solicitation of information includes a material information request, generating an alert. |
US11750735B2 |
Changing a user interface based on aggregated device capabilities
A computer-implemented method, a computer system and a computer program product dynamically change the user interface on a mobile device. The method includes displaying a user interface on a first device. The user interface includes a set of graphical controls corresponding to a plurality of functions of the first device. The method also includes connecting to the second device in response to a determination that the device includes a capability not included in the plurality of functions of the first device. The method further includes determining an aggregate function set for the first and second devices that includes the plurality of functions of the first device and is updated to include the capability of the second device. Finally, the method includes modifying the user interface of the first device based on the aggregate function set by adding a graphical control corresponding to the capability of the second device. |
US11750734B2 |
Methods for initiating output of at least a component of a signal representative of media currently being played back by another device
The present disclosure generally relates to interfaces and techniques for media playback on one or more devices. In accordance with some embodiments, an electronic device includes a display, one or more processors, and memory. The electronic device receives user input and, in response to receiving the user input, displays, on the display, a multi-device interface that includes: one or more indicators associated with a plurality of available playback devices that are connected to the device and available to initiate playback of media from the device, and a media playback status of the plurality of available playback devices. |
US11750733B2 |
Automatically switching between video and other calling modes based on sensor data from a wrist-wearable device, and methods of use thereof
Systems and methods are provided for video calling at a wrist-wearable device. The method includes receiving, at a wrist-wearable device that is coupled with one or more sensors, video data and audio data associated with a video call between a user of the wrist-wearable device and at least one other user distinct from the user. The method further includes while causing presentation of the video data via a display of the wrist-wearable device and the audio data via a speaker that is in communication with the wrist-wearable device, determining whether sensed data from the one or more sensors indicates that a video-viewing precondition is present at the wrist-wearable device. If the video-viewing precondition is not present at the wrist-wearable device, the method includes continuing to cause presentation of the audio data and ceasing to cause presentation of the video data at the wrist-wearable device. |
US11750724B2 |
Technologies for dynamic telematics message parsing
Technologies for dynamic telematics message parsing include a telematics cloud server that receives a message definition and generates a dynamic message parser based on the message definition. The message definition may be a binary structure definition. A telematics device receives a message data payload from a peripheral device of a vehicle and then transmits a device message including the message data payload to the cloud server. The peripheral device may include a sensor or a controller coupled to the vehicle. The cloud server executes the dynamic message parser with the message data payload and generates a standardized data structure. The standardized data structure may be processed using a telematics cloud platform. Other embodiments are described and claimed. |
US11750720B1 |
Cache optimization and interaction control based on location and historical interactions
A system can receive a predetermined entity preference from an entity device. The entity device can be associated with the entity. The system can receive a first location indicating that the entity is proximate to an interaction location from the entity device. The system can access historical interaction data of the entity related to an interaction location during a predetermined period. The system can cache the historical interaction data in a processor device dynamically selected based on computing capacity. The system can generate an interaction recommendation by executing the interaction instructions and by using the historical interaction data. The system can receive a second location indicating that the entity is not proximate to the interaction location. The system can clear the cached historical interaction data from the processor device, in response to determining that the entity is not proximate to the interaction location. |
US11750719B2 |
Method of performing communication load balancing with multi-teacher reinforcement learning, and an apparatus for the same
A server may be provided to obtain a load balancing artificial intelligence (AI) model for a plurality of base stations in a communication system. The server may obtain teacher models based on traffic data sets collected from the base stations, respectively; perform a policy rehearsal process including obtaining student models based on knowledge distillation from the teacher models, obtaining an ensemble student model by ensembling the student models, and obtaining a policy model by interacting with the ensemble student mode; provide the policy model to each of the base stations for a policy evaluation of the policy model; and based on a training continue signal being received from at least one of the base stations as a result of the policy evaluation, update the ensemble student model and the policy model by performing the policy rehearsal process on the student models. |
US11750718B2 |
Accelerating dynamic content delivery in a content delivery network
A technique for accelerating dynamic content delivery in a content delivery network. In some embodiments of the invention, responsive to a request that is sent by a client and that is for dynamic content, a client-proxy hosted in a datacenter of a CDN sends the request to a “forwarder-proxy” hosted in another datacenter of the same CDN. The forwarder-proxy, responsive to the request for dynamic content, forwards the request to an origin server and does not cache the dynamic content. The datacenter selected for the forwarder-proxy is one that is “close” to the origin server in terms of round-trip time (RTT) to improve network performance for requests for dynamic content. |
US11750706B1 |
Data transmission time management
A system for scheduling transmission times to avoid connection timeouts includes a memory configured to store data in a buffer for upload to a storage system. The system also includes one or more computing devices configured to implement a connection manager. The connection manager is configured to establish a connection to a storage system. The connection manager is configured to iteratively repeat, until the data transfer operation is completed, begin transmitting the data from the buffer via the connection to the storage system, stop transmitting the data from the buffer via the connection to the storage system, where at least a portion of the data is retained in the buffer, determine a time to resume transmitting the data from the buffer via the connection to the storage system to avoid a connection timeout for the connection to the storage system, and wait until the time to resume. |
US11750705B2 |
Method and system for enhanced IoT device communications
A computer-implemented method and system for reducing time lag in data transfer are disclosed. The computer implemented method for reducing time lag in data transfer, the method includes sending a small packet of data at predetermined time from at least one device to a destination address to keep the network connection alive and network resources assigned, wherein the at least one device includes one or more of: a transmitting device, a receiving device or a combination thereof. The system for reducing time lag in data transfer, the system comprising at least one base station; at least one device, wherein the at least one device includes one or more of a transmitting device, a receiving device or a combination thereof; wherein the at least device sends a small packet of data at predetermined time to a destination address to keep the network connection alive and network resources assigned. |
US11750704B2 |
Systems and methods to retain existing connections so that there is no connection loss when nodes are added to a cluster for capacity or when a node is taken out from the cluster for maintenance
Described embodiments provide systems and methods for pushing session information to a newly joined node in a cluster of nodes. In the cluster, each node may maintain a session table of existing sessions. One or more nodes may detect a new node has joined the cluster. Each node, responsive to the detection, may apply a hash function on a tuple of each session of the existing sessions in the session table of the node to determine whether one or more existing sessions are identified to be owned by the new node as a result of the hash function. Each node, responsive to identifying that one or more sessions are to be owned by the new node, may push corresponding session information to the new node. The new node may become configured to receive a packet corresponding to the one or more sessions and to process the packet. |
US11750698B2 |
Network device synchronization method and network device
A network device synchronization method is provided. In various embodiments, a first SSM and a second SSM are received. The first SSM carries a first SSM code indicating a quality level of a first clock source and a first eSSM code indicating the quality level of the first clock source, the second SSM carries a second SSM code indicating a quality level of a second clock source. The second SSM lacks an eSSM code indicating the quality level of the second clock source, and a value of the first SSM code is equal to a value of the second SSM code. When a value of the first eSSM code is less than 0xFF, calibrating a frequency of the network device based on a timing signal of the first clock source. |
US11750697B2 |
Message transmission method and related devices
A message transmission method and related devices are provided in the disclosure. The method includes the following. A first long range (LoRa) device creates a LoRa mesh group. Based on a peer-to-peer (P2P) communication requirement with a second LoRa device belonging to the LoRa mesh group, the first LoRa device switches to a P2P communication mode, transmits a mode switching instruction to the second LoRa device, and increases a transmission priority associated with a target message type to a predetermined transmission priority. The mode switching instruction is used to instruct the second LoRa device to switch to the P2P communication mode. The target message type is the type of a message that needs to be transmitted in P2P communication between the first LoRa device and the second LoRa device. The first LoRa device transmits a message of the target message type to the second LoRa device. |
US11750696B2 |
Commissioning distributed control nodes
Implementations are described herein for commissioning a distributed control node (DCN) to a process automation network. In various implementations, one or more messages transmitted on the process automation network by the DCN announcing that the DCN has joined the process automation network may be detected. Based on the one or more messages, one or more operational technology (OT) capabilities of the DCN may be determined. Based on the one or more OT capabilities, the DCN may be commissioned to the process automation network, e.g., by configuring the DCN to cooperate with one or more other process automation nodes on the process automation network to implement an at least partially automated process. |
US11750695B1 |
Dynamic quarantine of impaired servers
Techniques for dynamic quarantine of impaired servers are described. A host monitor can obtain first monitoring data associated with a host computing device to at least one fingerprint. A host score associated with the host computing device can be updated based at least on the at least one fingerprint, the score determining a probability of the host computing device being used for a new job. Second monitoring data associated with the host computing device can be obtained following a reduction of load on the host computing device Following reduction in the load on the host, the score can be increased based on the at least one remediation action. |
US11750692B2 |
Connection pool anomaly detection mechanism
Techniques and structures to prevent exhaustion of a database connection pool, including retrieving data from the database connection pool, monitoring the data to determine whether the connection pool is at risk of an exhaustion condition, analyzing the data to determine whether one or more clients accessing the database connection pool are offenders upon determining that the connection pool is at risk and throttling access to the one or more clients accessing the database connection pool upon determining the one or more clients to be offenders. |
US11750685B2 |
Media content distribution platform
A system can select media content instances for users, based on media preferences associated with the users and priority ratings of the media content instances. When the system selects a media content instance for a user, the system can send a text message or other notification to a user device of the user. The notification can include a media link to the selected media content instance. The system can also receive user feedback on the relevance and/or usefulness of the media content instances, which the system can use to adjust the priority ratings of the media content instances over time. The system can additionally determine whether consumption of media content instances by users leads to changes in behavior of the users over time. |
US11750681B2 |
Mapping between user interface fields and protocol information
A gateway device for implementing data security is described herein. The gateway device is coupled between a client device and a server device, and generates a mapping between portions of data received from a client device and interface fields or data elements of the client device. Upon receiving subsequent data from the client device, the gateway device can access the generated mapping to identify portions of the subsequent data corresponding to particular interface fields or data elements of the client device using the mapping, and can encode the identified portions of the subsequent data, for instance based on data protection techniques defined by a security policy. The encoded data can then be outputted by the gateway device to the server device. |
US11750677B2 |
Data transmission framing
Techniques for framing data in various data transmission contexts are described. A data framing technique may include a transmitter sending a data stream including repeating bits in alternating forward and reverse order. A receiver of the data stream may fold the data stream, and correlate portions of the folded data stream for purposes of validating the data stream and/or identifying an ID in the data stream. In at least some instances, once the receiver validates the data stream, the receiver may accept payload accompanying the data stream. |
US11750675B2 |
Low latency media streaming
Examples of the present invention provide a method of reducing the latency in streaming live media by a client from a server. The client uses manifest information to determine the “live edge” of the live media stream, where the live edge is represented by the segment from the media stream corresponding to the current time. The client then uses this to identify the next segment, which is the segment in time that will next become available. The client then starts making repeated polling requests for that next segment until the segment becomes available. As a result, the newest possible segment is obtained by the client as soon as it becomes available, and latency is reduced. Further, when adopted by all clients, the latency variation between clients is also reduced. |
US11750673B2 |
User interface content state synchronization across devices
Methods for synchronizing a client application user interface (UI) state of content of a client application on a client device corresponding with a host application on a host device are presented, the method including: receiving an update on the host application; transmitting a request for remote notification to the client device to synchronize the UI state of content of the client application responsive to receiving the event; displaying a notification corresponding with the request for remote notification on the client device indicating content is available to the client device; selecting the notification; launching the client application on the client device; transmitting a synchronizing request by the client device to the host device; enabling a synchronization mode of the host application; determining a host application UI state; transmitting content data associated with the UI state of the host application to the client device; and displaying the client application UI state based on the content data from the host device. |
US11750672B2 |
Digital workspace sharing over one or more display clients in proximity of a main client
Systems and techniques are provided for a digital collaborative workspace system. The system includes a server network node having a processor and a database accessible thereto. The server network node can include logic to register a first display identification code (DIC) with a first network node, a second DIC with a second network node and a third DIC with a third network node. The server network node can detect an input from a second user identifying the shared workspace and the registered phone number or other identifier of the first user. The server network node can transmit this data to the third network node and in dependence upon receiving a selection of one or more of the first DIC, the second DIC, and the third DIC from the third network node, start a collaboration by sending the shared digital workspace to the network nodes registered with the selected DICs. |
US11750668B1 |
Combined asynchronous and synchronous communication system and service with transcription support
The present disclosure is generally related to integrating asynchronous text based and voice based communication between users on desktop and mobile devices with synchronous modes of communication, such as video or audio conferencing. More particularly, additional notifications, commands, and services may be provided to aid users to smoothly transition between different modes of operation, to adapt to varying conditions, and to reduce distraction caused by notifications. |
US11750663B2 |
Threat identification-based collection of forensic data from endpoint devices
Techniques and mechanisms are disclosed enabling efficient collection of forensic data from client devices, also referred to herein as endpoint devices, of a networked computer system. Embodiments described herein further enable correlating forensic data with other types of non-forensic data from other data sources. A network security application described herein further enables generating various dashboards, visualizations, and other interfaces for managing forensic data collection, and displaying information related to collected forensic data and information related to identified correlations between items of forensic data and other items of non-forensic data. |
US11750658B2 |
Domain name-based conservation of inspection bandwidth of a data inspection and loss prevention appliance
The technology disclosed relates to a network security system (NSS) that reduces latency in security enforcement. The NSS comprises a deployer. The deployer periodically updates performance bypass lists deployed to endpoint routing clients running on devices. The performance bypass lists identify exempt connection identifiers that are not subject to routing through a traffic inspection proxy (abbreviated TIP) and being used by the endpoint routing clients to classify incoming connection access requests as non-exempt or exempt. The TIP, in dependence upon the performance bypass list-based classification by the endpoint routing clients, inspects non-exempt incoming connection access requests and applies a policy, and remains agnostic to exempt incoming connection access requests. |
US11750653B2 |
Network intrusion counter-intelligence
Systems, methods, and computer-readable media for gathering network intrusion counter-intelligence. A system can maintain a decoy network environment at one or more machines. The system can identify a malicious user accessing network services through the network environment. Further, the system can receive network service access requests from the user at one or more machines in the network environment and subsequently direct the network service access requests from the malicious user to the decoy network environment based on an identification of the malicious user. The network services access requests can be satisfied with network service access responses generated in the decoy network environment. Subsequently, the system can maintain malicious user analytics based on the network service access requests of the malicious user that are directed to the decoy network environment. |
US11750652B2 |
Generating false data for suspicious users
A method, computer program product and system for generating false data for suspicious users. A suspicious user is identified. Actions of the user are then tracked. The user attempting to access sensitive information is detected. Relevant false sensitive information corresponding to the sensitive information is then detected. The relevant false sensitive information is then mapped to the sensitive information. The relevant false sensitive information is provided to the suspicious user. In response to user input, at least one command is executed, where the at least one command includes the relevant false sensitive information and not the sensitive information. |
US11750650B1 |
Malicious message classificaton using machine learning models
Knowledge about a user is used to determine whether one or more messages received by the user are malicious. The knowledge about the user may be based on the user's financial history such as transaction records. Particularly, a classifier model is trained on a supervised approach using a dataset containing, for example, a categorization of incoming messages (e.g., password change message), the user's aggregated transaction records, message attributes, user attributes, and corresponding classification labels. After the training, the classifier model is deployed to determine whether an incoming message is malicious. |
US11750642B1 |
Automated threat modeling using machine-readable threat models
This disclosure describes techniques for automating a system-level security review of a network-based service. The techniques may include generating and utilizing a machine-readable threat model to identify system-level security threats to the network-based service. The network-based service may be scanned upon being provisioned in a service-provider network, and the machine-readable threat model may be generated based on results of the scan. The machine-readable threat model may represent components of the network-based service, system-level security constraints configured to identify system-level security threats to the service, and mitigations to remedy violations to the system-level security constraints. The network-based service may be continuously, or periodically, scanned to identify changes in the network-based service. The techniques further include updating the machine-readable threat model to account for the detected changes to the network-based service, and analyzing the updated machine-readable threat model to determine whether the changes to the network-based service violate a system-level security constraint. |
US11750641B2 |
Systems and methods for identifying and mapping sensitive data on an enterprise
Embodiments of the present invention provide techniques, systems, and methods for remote, agent-less enterprise computer threat data collection, malicious threat analysis, and identification and reporting of potential and real threats present on an enterprise computer system. Specifically, embodiments are directed to a system that securely identifies and maps sensitive information from computers across the enterprise. Secure and sensitive information may be internally encrypted and analyzed for indicators of compromise, threatening behavior, and known vulnerabilities. The remote, agent-less collection, analysis, and identification process can be repeated periodically to detect and map additional sensitive information over time, and may delete itself after completion to avoid detection. |
US11750640B2 |
Systems, methods, and computer-readable media for executing a web application scan service
Systems, methods, and computer-readable media for performing web app scans of an application are provided. Telemetry events derived from the web app scan are intercepted by a runtime that has been instrumented in conjunction with the application. The telemetry events are collected and transmitted to a platform that analyzes the collected events and presents information based on the analysis. |
US11750638B2 |
Server-based anomaly and security threat detection in multiple ATMs
A system for detecting security threats in automated teller machines (ATMs) extracts baseline features from a first set of signals received from a first ATM, when the first ATM is initiated to operate. The baseline features represent a unique electrical signature of the first ATM. The system extracts test features from a second set of signals received from the first ATM, when the first ATM is in operation. The system determines whether there is a deviation between the test features and baseline features. If the system detects the deviation, the system determines that the first ATM is associated with a particular anomaly that makes the first ATM vulnerable to unauthorized access. The system determines that a second ATM is associated with the particular anomaly if the system detects the deviation between baseline features and test features associated with the second ATM. |
US11750637B2 |
Entity IP mapping
Systems and methods for mapping IP addresses to an entity include receiving at least one domain name associated with the entity. Embodiments may further include determining one or more variations of the at least one domain name based on analysis of domain name data collected from a plurality of domain name data sources that mention a variation of the at least one domain name. Some embodiments may also include identifying one or more IP addresses pointed to by the one or more variations of the entity's domain name based on analysis of IP address data collected from a plurality of IP address data sources. Additional embodiments include assigning weights to each of the identified one or more IP addresses and creating a mapping of IP addresses to associate with the entity based on analysis of the weighted one or more IP addresses. |
US11750636B1 |
Expression analysis for preventing cyberattacks
A method for assessing a regular expression for vulnerability to ReDoS attacks includes receiving a regular expression for evaluating a string defined by ordered set of characters from an alphanumeric input device, and evaluating the regular expression for determining if a parsing operation of the string according to the regular expression results in a disproportionate resource consumption. The evaluation determines if the resource consumption constitutes a Regular expression Denial of Service (ReDoS) attack by providing a vulnerability indication of a single valid attack string, rather than attempting to find all possible attack strings. The valid attack string is defined by an input string for which evaluation based on the regular expression would result in disproportionate resource consumption. |
US11750634B1 |
Threat detection model development for network-based systems
This disclosure describes threat detection monitoring of systems executing in environments (consisting of hosts, networks, and/or applications, etc.), e.g., service provider networks, using trained deep learning/machine learning (ML) models. The models may be trained in one or more stages in simulators within a service provider network, e.g., the cloud, and/or in a simulator located in an on-premises environment, as well as on systems executing within the network. The models may be trained without relying on any security device/feature being configured or enabled, or with such security device/features being configured or enabled. |
US11750632B2 |
Method and system for detecting and mitigating HTTPS flood attacks
A method for detecting DoS attacks using an encrypted communication protocol includes estimating traffic telemetries of packets of at least ingress traffic passing over an insecure network that is directed to a protected entity by analyzing TCP headers of the packets, the packets using an encrypted version of a non-encrypted communication protocol, the packets being intended for the protected entity; providing at least one rate-based feature and at least one rate-invariant feature based on the estimated traffic telemetries, wherein the rate-based feature and the rate-invariant feature demonstrate a normal behavior of the traffic; and executing a mitigation action when a potential flood DoS attack using the encrypted communication protocol is detected by an evaluation of each of the at least one rate-based feature and the at least one rate-invariant feature with respect to respective baselines to determine whether the behavior of the ingress traffic indicates a potential flood DoS attack. |
US11750628B2 |
Profiling network entities and behavior
Methods and systems for monitoring activity on a network. The system may first classify network activity data as being generated by a human actor or an automated process. Then, the system may assign a first behavioral profile to the entity based on the network activity data and detect anomalous activity associated with the entity. |
US11750619B2 |
Modify assigned privilege levels and limit access to resources
According to examples, an apparatus may include a memory on which is stored machine-readable instructions that may cause a processor to identify a privilege level assigned to a principal over a resource and determine whether the assigned privilege level is to be maintained or modified for the principal over the resource. Based on a determination that the assigned privilege level is to be maintained for the principal, the processor may determine whether access by the principal over the resource is to be limited and based on a determination that access to the resource is to be limited, apply a limited access by the principal over the resource. |
US11750618B1 |
System and method for retrieval and analysis of operational data from customer, cloud-hosted virtual resources
A system for protecting public cloud-hosted virtual resources features cloud visibility logic. According to one embodiment, the cloud visibility logic includes credential evaluation logic, data collection logic, correlation logic, and reporting logic. The credential evaluation logic is configured to gain authorized access to a cloud account within a first public cloud network. The data collection logic is configured to retrieve account data from the cloud account, while the correlation logic is configured to conduct analytics on the account data to determine whether the cloud account is subject to a cybersecurity threat or misconfiguration. The reporting logic is configured to generate an alert when the cloud account is determined by the correlation logic to be subject to the cybersecurity threat or misconfiguration. |
US11750617B2 |
Identity authentication and information exchange system and method
An apparatus for use in an identity management system includes a storage device; a network interface; and a processor, the storage device storing software instructions for controlling the processor to: process a request, received via a network interface, for an exclusive claim to a unique identifier associated with an individual; verify the individual's claim to the unique identifier is proper; if the individual's claim is verified, create a user account, wherein the user account is associated with the respective individual's claimed unique identifier; provide a look up service for responding to external queries regarding whether individual unique identifiers of the type claimed by the individual have been claimed; and provide proof of the identity of the individual based on the individual's exclusive claim to the claimed unique identifier in response to a request to provide said proof if authorized by the individual through the user account. |
US11750616B2 |
Method for authorizing approval processes and approval nodes thereof for user
A method for authorizing an approval process and approval node thereof for a user is provided. The method for authorizing an approval process a user comprises: selecting a user in a system; displaying all approval processes in the system, and displaying current usage permission states of the selected user with respect to the approval processes; and authorizing usage permissions of the approval processes to the selected user. All of the approval processes or all approval nodes in the system are displayed after the user is selected, without omitting any approval process or any approval node, thereby facilitating quick authorization of related permissions to the user. |
US11750615B1 |
Securing development and operations pipelines
Disclosed embodiments relate to systems and methods for securely handling secrets by securing development and operations pipelines. Techniques include identifying a network access request for a process within the development and operations pipeline; accessing a result of at least one investigation of the process and the network access request, wherein the at least one investigation includes one of monitoring the process behavior, performing a process attestation, or performing an inspection of the network access request; determining whether to authorize the network access request; and conditional on whether the network access request is authorized, dynamically injecting a secret into the network access request, wherein the secret is not made available to the process itself. |
US11750612B2 |
Client-server security enhancement using information accessed from access tokens
A service computing system receives an API call in which an authorization token, that contains an identifier in the content of the authorization token, is included in a header of the API call. The identifier is also included as a parameter passed in with the API call. The service computing system parses the API call to obtain the authorization token, and the identifier included in the authorization token. It also obtains the identifier passed in as a parameter of the API call. The service computing system compares the identifier obtained from the authorization token to the identifier passed in as a parameter of the API call to determine whether they match. If they do not match, the API call is processed as an unauthorized API call. A security system in the service computing system authorizes the API call based on the comparison. |
US11750611B2 |
Secure captive portal remediation
Methods to securely remediate a captive portal are provided. In these methods, a processor of a user device detects a connection, via a network, to a captive portal. Based on the detected connection to the captive portal, the processor launches a dedicated secure web browser, and selectively restricts access of the user device to the network in order to only allow, via the dedicated secure web browser, communications related to remediation with the captive portal. |
US11750610B2 |
Controlling access to networks in a heterogeneous network environment
Various implementations disclosed herein enable controlling access to networks. In various implementations, a method of controlling access to a network is performed by a computing device including one or more processors, and a non-transitory memory. In various implementations, the method includes obtaining an indication that a mobile device having access to a first network utilizing a first radio access technology (RAT) has requested access to a second network utilizing a second RAT. In some implementations, the method includes determining whether the access to the first network satisfies an authentication criterion associated with the second network. In some implementations, the method includes granting the mobile device access to the second network in response to determining that the access to the first network satisfies the authentication criterion associated with the second network. In some implementations, accessing the second network via the authentication criterion satisfies an operating threshold associated with the mobile device. |
US11750609B2 |
Dynamic computing resource access authorization
Techniques include receiving an access notification identifying a request by an identity for access to an access-protected network resource; identifying a configurable and multi-dimensional policy defining rights of the identity to access the access-protected network resource with respect to the operation of the access-protected network resource; automatically determining, based on the configurable and multi-dimensional policy, whether to perform at least one of: permitting the identity to access the access-protected network resource; denying the identity to access the access-protected network resource; or rotating a secret associated with the identity. |
US11750597B2 |
Unattended authentication in HTTP using time-based one-time passwords
In an approach to unattended authentication in HTTP using time-based one-time passwords, a request is received from a client for a Hypertext Transfer Protocol (HTTP) authentication on a server. A challenge is sent to the client, where the challenge includes a header that indicates that a Time-based One-time Password (TOTP) is to be used for the HTTP authentication. A first response is received from the client based on a first TOTP value and a shared secret, wherein the first response is encoded based on an encoding mechanism included in the header. Responsive to validating the first TOTP value and the shared secret from the client, the client is authenticated. |
US11750593B2 |
Call authorization and verification via a service provider code
One example method of operation may include receiving a call message associated with a call, determining a service provider network identifier based on a telephone number of a call origination device, identifying, from the call message, an identity header with a link to a public certificate repository storing a public certificate assigned to a service provider network hosting the call origination device, retrieving a service provider code assigned to the service provider network from the public certificate, and determining whether the service provider code matches the service provider network identifier as identified from a verification table. |
US11750588B2 |
Enterprise workspaces
Concepts for defining and processing an expression of an enterprise workspace application are presents. Such concepts may associate an expression of an enterprise workspace application with a modified version of the expression and a state flag which is configured to define whether processing of at least part of the expression is to be based on (i.e. employ) the modified version of the expression. In this way, there may be provided concepts for protecting against malicious users setting triggers or overriding function definitions that cause other users to perform unexpected activities. |
US11750587B1 |
Systems and methods for communications channel authentication
A user may access an institution system via more than one communications channel, either by the same device (e.g., a mobile device accessing the institution system via a voice channel and a data channel) or by different devices (e.g., a personal computer via a web channel and a phone via a voice channel). If a user is not currently authenticated to a communications channel and attempts to access the institution system via a communications channel, the user may be authenticated using strong authentication. If the user is currently authenticated to the institution system via a communications channel and would like to engage a second communications channel to access the institution system, the user may authenticate to the second communications channel using both communications channels and weak authentication, such as single factor authentication or a challenge question. |
US11750586B2 |
Techniques to pre-authenticate a user identity for an electronic account
Techniques to pre-authenticate an identity for an electronic account are described and claimed by the present disclosure. The electronic account may enforce a multi-factor authentication procedure that involves a number of steps. In addition to the electronic account, a user may have other accounts requiring authentications. Successful authentications with respect to those other accounts may provide evidence of the user's identity. If sufficient evidence is present, one or more steps of the multi-factor authentication procedure may be bypassed. Other embodiments are described and claimed. |
US11750585B2 |
Secure ephemeral access to insecure devices
Embodiments are described for establishing a connection between a premise device and a remote user. A security message may be received from an authentication server. The security message may include an origination address of a request from an authenticated remote user. Connections may be allowed from the origination address of the authenticated remote user with the premise device. A timer may be started which counts an amount of time that the connections are allowed. Forwarding may be enabled of connection data between the premise device and the remote user. An acknowledgement message may be sent to the authentication server indicating completion of preparation of the remote access. |
US11750580B2 |
Systems and methods for encryption in network communication
A system, computer-readable storage medium, and method for secure network communication. A first device employs a first secret to establish a stream between the first and a second device. A third key, first ciphertext based on a first key, and hash of the first key are received from the second device by the first. A second key is applied to recover a second secret from the first ciphertext. The third key is encrypted to generate a second ciphertext including a third secret. Fourth and fifth keys are derived based on the first, second, and third secrets. A message authentication code is generated based on the fourth and third keys, first ciphertext, hash of the first key, and second ciphertext. The second ciphertext and message authentication code are transmitted by the first to the second device, and the fifth key is employed by the first device to modify the stream. |
US11750579B2 |
Seamless connectivity utilizing multi-domain security
Seamless connectivity utilizing multi-domain security by storing a global key on each participant computing devices. When a participant computing device tries to connect to a network, the network sends encryption keys for that network in response to that participant computing device providing the global key and not being blacklisted. The participant computing device can then connect to the network using that network's encryption key. A meta-message container is generated for the message based on a next participant in a route from the transmitting participant to the destination participant. One or more series of one or more line items are generated for the message, with each line item being tagged tag with network information. The line items are encrypted based on the network information. The meta-message container and the encrypted series of line items are then transmitted to the next participant. |
US11750574B1 |
End-to-end encrypted interactive messaging using message templates
Exemplary embodiments relate to techniques for end-to-end encrypted interactive messaging between users of a communication system. For example, the interactive messaging may be based on a message template. An end-to-end encrypted message may be sent to a recipient. The encrypted message may contain at least a template identifier associated with the message template and one or more dynamic parameters. The receiving device may decrypt the message and hydrate the message template with the one or more dynamic parameters. |
US11750573B2 |
System for transmitting and receiving data based on vehicle network and method therefor
A system for transmitting and receiving data based on a vehicle network and a method therefor are provided. The method includes generating, by a first hardware security module (HSM), a first session key using a first random number and a first fixed key and, encrypting, by a first electric control unit (ECU), a message using the first session. The method also includes generating, by a second HSM, a second session key using a second random number and a second fixed key, and decrypting, by a second ECU, the message using the second session key. |
US11750572B2 |
System, method, and computer-accessible medium for hiding messages sent to third parties
A system can include, for example, a secure data module(s) configured to store sensitive data regarding the user(s), a synthetic dataset generating module(s) configured to generate the synthetic dataset based on the sensitive data, and a control module configured to receive a request from an application for a dataset related to the user(s), provide the request to the synthetic dataset generating module(s), receive the synthetic dataset from the synthetic dataset generating module(s), and provide the synthetic dataset to the application. The synthetic dataset generating module(s) can be configured to generate the synthetic dataset based on the dataset. |
US11750571B2 |
Multi-independent level secure (MILS) storage encryption
In one embodiment, a method includes: receiving, by a first computing device on a first port of a plurality of ports, a data packet, wherein each of the ports corresponds to one of a plurality of security classes, and the first computing device comprises a plurality of cryptographic modules, each module configured to encrypt data for a respective one of the security classes; tagging the data packet, wherein tagging data identifies one of the security classes and the first port; routing, based on at least one header, the data packet to a first cryptographic module of the plurality of cryptographic modules; encrypting the data packet using the first cryptographic module; and storing the encrypted data packet in a first data storage device. |
US11750567B2 |
Header-based authentication in a virtual private network
A method in a virtual private network (VPN) environment, the method including transmitting, by a processor, a connection request to a VPN service provider for obtaining VPN services; receiving, by the processor, a response including custom headers and a payload indicating a VPN server for receiving the VPN services, the custom headers including a timing header, an authorization header, a digest header, and a signature header; authenticating, by the processor, the custom headers to determine whether the response was transmitted by the VPN service provider; and transmitting, by the processor to the VPN server, a request for obtaining the VPN services based at least in part on determining that the response was transmitted by the VPN service provider. Various other aspects are contemplated. |
US11750566B1 |
Configuring virtual computer systems with a web service interface to perform operations in cryptographic devices
A customer of a computing resource provider configures a virtual computer system in a virtual private network with a web service application. The web service application comprises a web service interface that executes instructions provided by the customer to cause one or more hardware security modules (HSMs) to perform cryptographic operations on data on behalf of the customer without the need to generate programmatic code. |
US11750563B2 |
Flow metadata exchanges between network and security functions for a security service
Techniques for providing flow meta data exchanges between network and security functions for a security service are disclosed. In some embodiments, a system/process/computer program product for providing flow meta data exchanges between network and security functions for a security service includes receiving a flow at a network gateway of a security service from a software-defined wide area network (SD-WAN) device; inspecting the flow to determine meta information associated with the flow; and communicating the meta information associated with the flow to the SD-WAN device. |
US11750561B2 |
Method and apparatus for providing secure internal directory service for hosted services
A system and method for providing secure access to an organization's internal directory service from external hosted services. The system includes a remote directory service configured to accept directory service queries from an application running on hosted services. The remote directory service passes the queries to a directory service proxy server inside a firewall of the organization via a secure connection service. The directory service proxy server passes the queries to the internal directory service inside said firewall. Request responses from the internal directory service pass through the directory service proxy server to the remote directory service through said firewall via the secure connection service. The remote directory service returns the response to the requesting application. |
US11750558B2 |
System and method for managing network connected devices
A system for managing network connected devices, comprising at least one hardware processor adapted to produce a plurality of unique device descriptors, each describing one of a plurality of network connected devices, by: for each of a plurality of device descriptors, each having a plurality of supported actions, and one or more domain device identifiers, each identifier associating the device descriptor with one of a plurality of management domains: for each of the plurality of management domains not associated with the device descriptor: and instructing execution on a network connected device described by the device descriptor a domain identification query according to the descriptor's plurality of supported actions, to determine a new domain device identifier. |
US11750551B2 |
Methods and systems for delaying message notifications
Methods and systems are provided for delayed message notification associated with a content item. The system can receive a notification from a first user and intended for a second user, and can comprise a message, a content identifier, and a timestamp indicating a relative time within a content item associated with the content identifier. The system can transmit, to a device associated with the second user, a portion of the notification. In one implementation, the system can receive an indication that the second user's device is presenting the content item, and cause the message to be presented to the second. |
US11750543B2 |
Method, device and system for providing input suggestion
A computer-implemented method for providing an input suggestion for a user is disclosed. The computer-implemented method may include identifying an intended recipient of an electronic message input by the user; identifying a location associated with the user and a time associated with the electronic message input by the user; determining the input suggestion for the user based on an input profile of the intended recipient, the location, and the time; and outputting the input suggestion via a user device associated with the user. |
US11750542B2 |
Invitation media overlays for shared collections of media content items
Method starts with a processor receiving first media content item from first client device and selection of invitation media overlay to be applied to first media content item. Processor generates modified first media content item by overlaying invitation media overlay on first media content item. Processor generates shared collection of media content items comprising modified first media content item. Processor receives selection of second and third user and causes modified first media content item to be displayed by second and third client devices. Processor receives selection of invitation media overlay from second and third client devices and causes shared collection to be displayed second and the third client devices. Processor receives second media content item from second client device, updates shared collection to comprise second media content item and causes updated shared collection to be displayed by first and third client devices. Other embodiments are also disclosed herein. |
US11750540B2 |
Systems and methods for managing electronic communications
Systems and methods are disclosed for managing electronic communications. According to certain embodiments, an enterprise directory is provided for listing a plurality of enterprises. In one embodiment, the enterprise directory may include an enterprise profile for each enterprise identifying, among other things, a mode of communication for the enterprise. Enterprises that wish to communicate with one another may form partnerships with one another. In one embodiment, a partnership may be formed between two enterprises when one enterprise accepts a partnership request submitted by the other enterprise. Information regarding partnerships between enterprises may be stored in a database. Further, an enterprise user may request to electronically communicate (e.g., via IM, voice, or email) with a user associated with a different enterprise. Users associated with different enterprises may be allowed to communicate electronically with one another if their respective enterprises are in a partnership with one another. |
US11750538B2 |
System and method for chatbot generation and implementation
The flexibility of a communication with a chatbot can be increased using a chatbot platform that can be integrated with a plurality of chat channels as well as facilitate communication between users of different chat channels. The platform can host chatbots that can leverage a plurality of resources, including internal and external natural language processors, machine learning, analytics services, and third party services to generate a response to user communications and take actions on behalf of the user. The use of the natural language processing and other additional information allows to generate an appropriate response to user queries, and to thus increase the speed with which user concerns are address. Further, the platform includes a chatbot creation program that allows a quick way to create a large number of customized chatbots without requiring advanced programming skills from the chatbot creator. |
US11750536B2 |
Store and forward logging in a content delivery network
A computer-implemented method on a device. The device has hardware including storage. The method includes obtaining log event data from at least one component or service on the device that is to be delivered to a component or service on a distinct device. Each log event data item has a priority. If a connection to an external location is lost, at least some of the log event data items are selectively stored in the storage, wherein the storing is based on priority of the log event data items. Otherwise, if the connection is not lost, at least some of the log event data items are sent to the at least one external location. |
US11750533B2 |
Hardware assisted virtual switch
There is disclosed an example of a computing apparatus for providing a hardware-assisted virtual switch on a host, including: a hardware virtual switch (vSwitch) circuit; and a hardware virtual host (vHost) circuit, the vHost circuit having an interface driver specific to the hardware vSwitch and configured to provide a vHost data plane to: provide a plurality of hardware queues to communicatively couple the hardware vSwitch to a guest virtual function (VF); and present to a virtual network driver of the guest VF an interface that is backward compatible with a software network interface. |
US11750527B2 |
Method and system for sharing user configuration data between different computing sessions
A method includes receiving a request from a client device to establish a first computing session for a first resource hosted on a virtual machine (VM). The method includes generating a session transfer key for accessing a second resource provided by a second resource provider. The method includes issuing instructions, to the VM that hosts the first resource, for establishing a second computing session to host the second resource, wherein the instructions include a mapping of the session transfer key to a session identifier. The method includes providing the instructions to the client device to establish the second computing session for the second resource without input for the second resource from the user of the client device. The establishment of the second computing session being between the VM and the second resource provider and based on the mapping of the session transfer key to the session identifier. |
US11750525B2 |
Congestion control for low latency datacenter networks
Systems and methods for controlling congestion in a data network are provided. A base target round-trip time (RTT) for packets of a network flow including packets transmitted from a source network device to destination network device is obtained. A number of hops packets associated with the network flow traverse between the source network device and the destination network device is determined. A topology scaled target RTT for the network flow is determined based on the base target RTT and the determined number of hops. A congestion window size for the network flow is managed based on the topology scaled target RTT. |
US11750524B2 |
Wireless communication system and transmission rate control method
A wireless communication system includes a transceiver circuit, a memory circuit, and a processor circuit. The transceiver circuit transmits data through subchannels that includes a first subchannel and a second subchannel. The memory circuit stores a lookup table that indicates corresponding relations between transmission rates and channel indicators. The processor circuit selects a first channel indicator from the lookup table according to a first transmission rate of the first subchannel during a statistics interval, determines a difference between the first channel estimated value of the first subchannel and a second channel estimated value of the second subchannel, determines a reference channel indicator according to the difference and the first channel indicator, and selects a corresponding transmission rate from the lookup table according to the reference channel indicator, in order to set a transmission rate of the transceiver circuit over the second subchannel to be the corresponding transmission rate. |
US11750521B2 |
System and method for determining capacity of a telecommunications network
Aspects of the present disclosure involve systems, methods, computer program products, and the like, for determining an estimated capacity for providing data from a telecommunications network to a plurality of end users. In one implementation, the estimated capacity for delivering the data to the end users is per transmission path or per access network connected to the telecommunications network. This information may be aggregated into a traffic flow table that illustrates the traffic flow and available capacity to one or more end user networks. Through analysis of the traffic flow table, the system determines an estimated available capacity to provide the data to the end users. The traffic flow table thus provides a more accurate estimate of the capacity of the telecommunications network to provide the data to the end users over previous capacity estimates. |
US11750520B2 |
Hash tag load balancing
A netflow generator appliance is provided. The netflow generator appliance is configured to perform operations, including receiving a plurality of netflow records at a netflow generator appliance, each netflow record including at least a hash tag; converting a first hash tag of the first netflow record into a first percentage based on a load balancing function; based on the first percentage, storing the first netflow record in a first queue of data that are scheduled to be sent to a first netflow collector; converting a second hash tag of a second netflow record into a second percentage based on the load balancing function, wherein the second percentage differs from the first percentage; and based on the second percentage, storing the second netflow record in a second queue of data that are scheduled to be sent to a second netflow collector. |
US11750517B2 |
Service function chaining congestion feedback
A method of reporting congestion in an upstream direction in a service chain function architecture. The method includes receiving, by the downstream device, a packet indicating congestion within a service function chaining architecture; generating, by the downstream device, a congestion report message in response to receiving the packet, wherein the congestion report message comprises a field indicating an existence of congestion within the service function chaining architecture and a service path identifier indicating a location of the congestion within the service function chaining architecture; and transmitting, by the downstream device, the congestion report message to an upstream device to permit the upstream device to address the congestion. |
US11750514B1 |
Connectivity candidate filtering
In accordance with one disclosed method, a first application may receive a first connectivity candidate from a second application, the first connectivity candidate identifying at least a first internet protocol (IP) address that a remote application can potentially use to send data over a network to the second application for use by the first application. The first application may determine that the first connectivity candidate satisfies at least one criterion and, based at least in part on the first connectivity candidate satisfying the at least one criterion, may cause the first connectivity candidate to be sent to the remote application via a signaling channel to cause the remote application to attempt to use the first connectivity candidate to send data to the second application via the network. |
US11750512B2 |
Identifying a dynamic network parameter probe interval in an SD-WAN
Some examples relate to identifying a dynamic network parameter probe interval in an SD-WAN. In an example, a controller may define a probe profile of an uplink in the SD-WAN. The probe profile of the uplink may include a static probe interval and a probe retry value. The controller may determine the value of the network parameter for the uplink, prior to expiration of a static probe timer interval. If the value of the network parameter is in negative deviation with a baseline value of the network parameter, the controller may identify a dynamic probe interval for each successive determination of the value of the network parameter. The identification of the dynamic probe interval for a given successive determination may depend on at least one previously determined value of the network parameter. The controller may initiate duplicate network traffic on a secondary uplink in the SD-WAN. |
US11750504B2 |
Method and system for providing network egress fairness between applications
Methods and systems are provided to facilitate network egress fairness between applications. At an egress port of a network, an arbitrator can provide fairness-based traffic shaping to data associated with applications. The desired fairness-based traffic shaping can be provided based on bandwidth, traffic classes, or other parameters. Consequently, the egress link's bandwidth can be allocated with fairness among the applications. |
US11750499B1 |
Resilient path(s) of non-obligatory nodes of a network
A computer-implemented method according to one embodiment includes defining a micro-operative of a first network. The first network has non-obligatory nodes, and the micro-operative includes rankings assigned to each of the nodes of the first network. Activated core covalences (ACCs) are established for the nodes. Each ACC defines a minimum number of neighboring nodes of the node associated with the ACC that, upon the minimum number of neighboring nodes being disconnected from the first network, cause the ranking of the associated node to decrease. An aggregated activated core covalence (A-ACC) is established, and the A-ACC corresponds to a sum of at least some of the ACCs of the nodes. The method further includes determining, based on the A-ACC, whether to perform a communication operation using a path that includes the nodes in the first network. |
US11750495B2 |
Congruent bidirectional segment routing tunnels
Systems and methods provide congruent bidirectional Segment Routing (SR) tunnels, namely congruent and fate-shared traffic forwarding for bidirectional SR tunnels. A bidirectional SR tunnel, as described herein, includes two unidirectional SR tunnels where the forward and reverse traffic directions follow the same path through the network when forwarded based on prefix and adjacency Segment Identifiers (SIDs). The term “congruent” is used herein to refer to the fact that the two unidirectional SR tunnels, i.e., the forward and reverse traffic directions, follow the same path through the network but in opposite directions. The guarantee of congruency is based on modification of the Segment Identifier (SID) configuration at the source nodes of each tunnel. Accordingly, the present disclosure maintains compatibility with existing Segment Routing configurations with the modifications solely at the source nodes. |
US11750489B1 |
Modifying health monitoring through user interface
Some embodiments provide a novel method for monitoring health of an SMN that includes multiple networking components. A health analytics manager identifies a set of one or more metrics associated with the network components of the SMN. The health analytics manager uses the set of metrics to compute a first health score for the SMN. Then, the health analytics manager presents the first health score in a UI along with (1) data regarding how the first health score was computed, and (2) a set of one or more parameters for a user to modify how the health for the SMN is computed. After receiving from the user one or more modifications to at least one of the parameters, the health analytics manager computes a second health score for the SMN based on the modified set of parameters. |
US11750485B2 |
Estimation device, estimation method, and estimation program
An extraction unit 141 extracts predetermined pieces of information from each of a plurality of packets and sent from equipment 20. Then, an inference unit 142 infers a piece of equipment information that is information on the equipment 20, for each of the plurality of packets on the basis of the pieces of information extracted by the extraction unit 141. Then, the first selection unit 143 selects a predetermined piece of equipment information for each packet type from among pieces of equipment information on the basis of a level of detail of each piece of equipment information. Then, the second selection unit 144 selects, on the basis of a level of reliability predefined according to each packet type, a predetermined piece of equipment information corresponding to the equipment 20 from among pieces of equipment information inferred by the first selection unit 143. |
US11750484B2 |
Compressed message tracing and parsing
A monitoring system monitors processing of incoming messages and logs data related to performance of an application that processes the messages. The monitoring system temporarily associates reusable identifiers with the messages and logs data upon each message traversing different points in the application. Each of the identifiers is sized such that the storage space necessary to store the identifier is less than the storage space necessary to store an identifier sized to uniquely identify all of the plurality of messages, and the identifiers and the logged data are configured to minimize a performance penalty of monitoring the application. The monitoring system parses the data, e.g., during post-processing, to determine, from a plurality of data entries that refers to the same identifier, a subset of the data entries where the same identifier was associated with the same message. |
US11750483B2 |
In-line performance monitoring
One function of a communications network, or of nodes in such a network, is to gather data that is useful in assessing network performance, and quantifying metrics of node and/or network performance. Various embodiments disclosed herein improve the ability of nodes and networks to gather such data, and quantify metrics of node and/or network performance by selectively marking existing network traffic, and in preferred embodiments without having to dilute network traffic by generating and transmitting dummy data packets. |
US11750480B2 |
Agent for aggregation of telemetry flow data
A method includes subscribing, by an agent, to telemetry flow data from each network device of a plurality of network devices and receiving, by the agent, a plurality of streams of telemetry flow data from the plurality of the network devices. Each of the plurality of streams corresponds to a different one of the plurality of network devices. The method further includes aggregating, by the agent, data from at least one stream of the plurality of streams of the telemetry flow data received over a period of time and, at the end of the period of time and/or when the data from the at least one stream exceeds a data threshold, sending, by the agent, the aggregated telemetry flow data to a network analyzer device. |
US11750478B1 |
Routing for remote electronic devices
Methods and systems described herein describe a central server that continuously monitors network connectivity of remote computers operated by remote employees. When a customer establishes an electronic communication session with the server (e.g., call or chat session), the server identifies one or more applications to be executed to satisfy the customer's requests. The server then calculates a network traffic value threshold corresponding to a minimum network connectivity attributes needed to execute the identified applications. The server then route the customer's electronic communication session to an agent whose remote computer satisfies the network traffic value threshold. |
US11750472B2 |
Telemetry targeted query injection for enhanced debugging in microservices architectures
An apparatus to facilitate telemetry targeted query injection for enhanced debugging in microservices architectures is disclosed. The apparatus includes one or more processors to: identify contextual trace of a previous query recorded in collected data of a service, where microservices of the service responded to the previous query; access an interdependency flow graph representing an architecture and interaction of microservices deployed for a service; retrieve, based on the interdependency flow graph, telemetry data of the microservices corresponding to the contextual trace; identify, based on the telemetry data, an activation profile corresponding to the previous query, the activation profile detailing a response of the microservices to the previous query; compare the activation profile to a correlation profile for the previous query to detect whether an anomaly occurred in the service in response to the previous query; and recommend a modified query based on detection of the anomaly. |
US11750470B2 |
Update compliance information while in provisional state
Disclosed are systems, methods, and computer-readable media for ensuring that one or more compliance information bundles associated with one or more end-point identifiers maintain compliance with one or more regulations. It is detected that a rules engine has been updated with a new regulation. Based on an identification that one or more compliance information bundles associated with the one or more end-point identifiers will not be compliant with the new regulation after an expiration of a grace period associated with the new regulation, a status associated with each one or more compliance information bundles is changed to a provisionally-approved status. The changing of the status associated with each of the one or more compliance information bundles to the provisionally-approved status causes each of the one or more compliance information bundles to be treated, temporarily like the status of each the one or more compliance information bundles is an approved status. |
US11750467B1 |
Customized call routing and processing based on analytics and a high-level language programming
Exemplary aspects are directed to customized communications using a high-level programming interface. In a specific example, a data communications system serves endpoint devices respectively associated with different client entities. The system has a single unified server, including at least one data analytics server and at least one data communications server, to integrate communication routing control and data analytics for providing a combined contact-center and unified-communication set of data communication services, and to: interface with different client entities using a first programming language that relates to communications protocol between a data communications server and data sources; and receive, from each of the client entities and via the communications protocol, programming instructions that correspond to a related second programming language and used by the client entities to adjust parameters of the analytics server or at least one data communications server for specifying how the data is to be routed and/or processed. |
US11750463B2 |
Automatically determining an optimal amount of time for analyzing a distributed network environment
Aspects of the technology provide solutions for determining a time period (“epoch”) required to monitor or analyze a tenant network. Some implementations of the technology include a process for making automatic epoch determinations, which includes steps for identifying one or more network parameters for a tenant network, analyzing the tenant network using the network parameters to discover one or more configuration settings of the tenant network, and determining a first epoch for the tenant network, the first epoch corresponding with a period of time to complete analysis of the tenant network using the network parameters. In some aspects, the process can further include steps for generating a tenant profile for the tenant network, the tenant profile based on the network parameters, the first epoch, and the one or more configuration settings of the tenant network. Systems and machine-readable media are also provided. |
US11750460B1 |
Identifying duplicate entries in views of same and other network management interfaces
Techniques are provided for identifying duplicate usages of configuration values in Network Management Interfaces (NMIs). Network administrators may inadvertently enter duplicate values such as Internet Protocol addresses in one or more NMIs. A browser extension captures a configuration value and determines whether it has been used already, such as by accessing a database with the value and a field type. If it has been used, summary and/or detailed information can displayed on the NMI describing the duplicate usages. The summary display can be a hyperlink which indicate a number of duplicate usages in other views and NMIs. When the hyperlink is selected, a pop-up display can provide detailed information by rendering the other views in a read-only mode, of a same NMI or other NMIs. To render the views, a Document Object Model and Cascading Style Sheet Object Model of the views can be accessed. |
US11750459B1 |
Compliance checking for a multi-cloud platform
Computer technology for helping to ensure various types of compliance for a first user on a multi-cloud platform, the technology including the following operations: (i) receiving an initial version of a compliance template for use with a multi-cloud computer system; (ii) applying corrective ensemble modelling under a recommender and reinforcement framework to dynamically update the compliance template to obtain an updated version of the compliance template; (iii) applying corrective ensemble modelling under a recommender and reinforcement framework to dynamically select a recommended set of compliance tools for the first user; and (iv) validating multi-cloud compliance using the template and tools. |
US11750456B2 |
Secure configuration of cloud computing nodes
Methods and systems for configuring nodes in a cloud computing network are described. One example method includes receiving, over a network, a configuration request from a particular node in the cloud computing network, the configuration request including node information for the particular node; verifying that the particular node is authorized for configuration based at least in part on the node information; in response to verifying that the particular node is authorized for configuration, identifying configuration actions to perform on the particular node based at least in part on the node information; and sending, over the network, a configuration command corresponding to one or more of the identified configuration actions to the particular node, wherein the particular node executes the configuration command upon receipt to perform the corresponding configuration actions. |
US11750451B2 |
Batch manager for complex workflows
A workflow may include function calls to functions executed with respect to instances of elements. Health checks of elements of the workflow may be performed with reference to topology such that health checks of elements are omitted where a health check is performed by a parent in the topology. Batch processing of stages of a workflow may be performed with commencement of a stage being initiated based on completion percentage and execution time of a previous stage. Tasks of each stage may be performed by a pool of workers that are reused with pool size being selected based on expected completion time of each stage. |
US11750449B2 |
Ubiquitous collaboration in managed applications
Methods and systems for an ubiquitous collaboration feature in a managed application environment are described herein. The collaboration service and/or server may store session information and one or more configuration files for use in rendering the collaboration features in combination with managed applications executing on a user's computing device. |
US11750447B2 |
Configuring a network slice
In one example aspect, a method performed by a network node for configuring a network slice is provided, the method comprising, in response to a request to configure a network slice, configuring network resources for providing the network slice, and configuring a state of the network slice to a first state, wherein in the first state the network slice is disabled. |
US11750443B2 |
System configuration derivation device, method, and computer-readable recording medium
Provided is a system configuration derivation device which, when given an abstract configuration, and quantitative requirements in which some numerical values are undetermined, is capable of outputting a concrete system configuration concretizing the abstract configuration, the concrete system configuration meets quantitative requirements representing conditions and the like necessary for the operation of a desired system and including given quantitative requirements. The configuration information concretizing unit 301 obtains as input an abstract configuration, which is information indicating a system configuration in which an undetermined part exists, and quantitative requirements, which are numerical requirements required for a system, and in which some numerical values are undetermined. The configuration information concretizing unit 301 outputs a concrete configuration, which is information indicating the system configuration in which an undetermined part does not exist, and which meets the quantitative requirements. |
US11750441B1 |
Propagating node failure errors to TCP sockets
A method and network device for detecting a TCP socket failure is described. A network device may be configured to detect a failure of a link between a first node and a second node, determine one or more transmission control protocol (TCP) sockets of a plurality of TCP sockets on the first node that are communicating over the link between the first node and the second node, write information to a TCP stack for the determined one or more TCP sockets, the information indicating that the determined one or more TCP sockets have an error, and remediate the determined one or more TCP sockets in response to the information. |
US11750437B2 |
Cluster node fault processing method and apparatus, and device and readable medium
A method and apparatus for processing cluster node failure, a computer device and a readable storage medium. The method includes: circularly acquiring state information of multiple nodes in a cluster, and on the basis of the state information, determining whether a corresponding node fails; in response to failure of the node, sending failure information to multiple OSDs under the node; in response to the multiple OSDs receiving the failure information, according to the failure information, selecting a Monitor to send down information, and setting states of the multiple OSDs to be down; and in response to the Monitor receiving the down information, updating an OSDMap on the basis of the down information, and sending the updated OSDMap to OSDs under other nodes. |
US11750435B2 |
Data processing method and apparatus
Embodiments of the present invention disclose a data processing method and apparatus, and belong to the field of communications technologies. The method includes: generating a physical layer protocol data unit PPDU, where the PPDU includes a preamble field, a data field, and a middle preamble field, and the preamble in the PPDU includes information used to indicate an insertion frequency of the middle preamble in the data field in the PPDU; and sending the PPDU. The insertion frequency of the middle preamble in the data field is indicated by using a specified field in the preamble. In this way, in different scenarios, the middle preamble may be inserted into the data field at different frequency, thereby reducing overheads of an inserted pilot and improving data transmission performance. |
US11750434B2 |
Multidrop network system and network device
A multidrop network system includes N network devices including a master device and a plurality of slave devices. The N network devices synchronize their respective time zones in a synchronization phase, then jointly perform equalizer coefficient training in a training phase, and then obtain their respective transmission opportunities in turn in a data transmission phase. Each network device includes a channel equalizer trained in the training phase and used for processing data in the data transmission phase. In the training phase, the master device sends out a training notification to request the slave devices to enter the training phase; the master device performs the equalizer coefficient training after it transmits the training notification, and the slave devices perform the equalizer coefficient training after they receive the training notification. After the completion of the equalizer coefficient training, the master device sends out a beacon to start the data transmission phase. |
US11750430B2 |
Link specific guard interval
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive first configuration information indicating a first guard interval associated with sidelink communications. The UE may transmit, to a base station and another UE, a first sidelink communication using the first guard interval. The UE may transmit, to the base station and using a second guard interval having a second length that is different from a first length of the first guard interval, an uplink communication. Numerous other aspects are described. |
US11750428B2 |
Signaling structure for wireless communication network
There is disclosed a method of operating a radio node in a wireless communication network, the method including communicating based on a signaling structure, the signaling structure including a number R of long symbols and/or a number Nsym of regular symbols, wherein R and/or Nsym is based on the subcarrier spacing associated to the signaling structure and/or a cyclic prefix length of a long symbol and/or a cyclic prefix length of a regular symbol. The disclosure also pertains to related devices and methods. |
US11750426B2 |
Edge enhancement for signal transmitter
A signal transmitter circuit includes an output driver circuit configured to transmit a signal using a multi-level pulse amplitude modulation (PAM) scheme comprising a plurality of discreet signal levels. During operation, the output driver initiates a first transition of the signal to a first level of the multi-level PAM scheme from a second level of the multi-level PAM scheme, and initiates a second transition of the signal to the first level from a third level of the multi-level PAM scheme. The signal transmitter further includes a control circuit configured to control a slew rate of the signal transmitter circuit to cause the signal to reach a threshold voltage level at a first time, the first time occurring a first duration of time after the first transition is initiated, and to cause the signal to reach the threshold voltage level at a second time, the second time occurring the first duration of time after the second transition is initiated. |
US11750421B2 |
Transmission device, transmission method, and communication system
A transmission device according to the disclosure includes a driver section that is able to transmit a data signal by using three or more predetermined number of voltage states and set voltages in each of the voltage states; and a control section that sets an emphasis voltage that is based on a transition among the predetermined number of the voltage states, and thereby causes the driver section to perform emphasis. |
US11750419B2 |
Systems and methods for providing a global virtual network (GVN)
Systems and methods for managing a global virtual network connection between an endpoint device and an access point server are disclosed. In one embodiment the network system may include an endpoint device, an access point server, and a control server. The endpoint device and the access point server may be connected with a first tunnel. The access point server and the control server may be connected with a second tunnel. |
US11750416B2 |
Subscriber station for a serial bus system and method for communicating in a serial bus system
A subscriber station for a serial bus system. The subscriber station has a communication control device for controlling a communication of the subscriber station with at least one other subscriber station, a transmitting/receiving device for transmitting a transmission signal generated by the communication control device, and a scheduling unit for scheduling a temporal access of the subscriber station to the bus in at least one time slot of a cycle of temporally consecutive time slots. At least one time slot is provided in a cycle for each subscriber station of the bus for transmitting its transmission signal and the cycle repeats cyclically. The scheduling unit determines, together with the other subscriber stations of the bus in the operation of the bus system using a priority of the transmission signal, which time slot of the cycle the transmitting/receiving device may use for transmitting the transmission signal on the bus. |
US11750410B2 |
Broadcast VPN system
The present invention relates generally to the field of virtual private networks. More specifically, the present invention relates to a broadcast system for a virtual private network that broadcasts via a mesh network. Further, the system makes use of a broadcast source server which allocates data from data packets to specific nodes within a location-based regiment database. The database then uses an AI optimization system which further minimizes latency versus standard IP UDP broadcast systems. |
US11750409B2 |
Computer-implemented method of performing a WebRTC-based communication and collaboration session and WebRTC-based communication and collaboration platform
A computer-implemented method of performing a Web Real-Time Communication-based (WebRTC-based) communication and collaboration session with a plurality of predefined participants can include detecting that a participant from a plurality of predefined participants is addressed by another participant for answering a question or for submitting a comment during the communication and collaboration session; and verifying whether a presence status of the participant to answer the question or to submit a comment is required to be presented to the predefined participants. If it is verified that the presence status of the participant to answer the question or to submit a comment needs to be presented, a feature activation step of activating a feature for presenting presence information to the predefined participants can be utilized. A communication and collaboration platform can be configured for carrying out an embodiment of computer-implemented method of performing a WebRTC-based communication and collaboration session. |
US11750405B2 |
Encrypted traffic inspection in a cloud-based security system
A node configured as any of a proxy, a Secure Web Gateway, and a Secure Internet Gateway is configured to perform steps of establishing a connection with a user device having a user associated with a tenant; obtaining policy for the user; monitoring traffic between the user device and the Internet including snooping session keys for any encrypted traffic; analyzing the traffic based on the policy including utilizing the session keys on the encrypted traffic; and one of allowing, blocking, or limiting the traffic based on the analyzing. |
US11750401B2 |
Proving top level domain name control on a blockchain
Systems, methods, and computer products for associating a top level network identifier with a blockchain address on a blockchain enable operations that may include: obtaining, from a root network segment file, an identification of a server that stores network infrastructure records associating network identifiers under the top level network identifier with network addresses and a signature on the identification of the server; obtaining, based on a first network infrastructure record, an association of the top level network identifier with the blockchain address; obtaining information sufficient to validate a trust chain, wherein the trust chain extends from a trusted authority to the association; and sending the association and the information sufficient to validate the trust chain to an executable program on the blockchain. The trust chain may be validatable by the executable program, and the association may be storable on the blockchain by the executable program. |
US11750398B2 |
MAC tag list generation apparatus, MAC tag list verification apparatus, aggregate MAC verification system and method
A MAC tag list generation apparatus, on reception of a nonce N unique value to each MAC generation process and a message M, generates a t×m group test matrix H serving as combinatorial group testing parameters for s (a positive integer) which is the number of the MACs to be generated, generates a MAC tag list T=(T[1], . . . , T[t]) by generating a MAC value T[i] corresponding to the i-th test (i=1, . . . , t) using the group test matrix H, the nonce N, and pseudorandom functions F and G with variable length input and fixed length output for the message M, and outputs the MAC tag list. |
US11750394B2 |
Secure decentralized P2P filesystem
In a method for decrypting persistent user cryptographic keys in a distributed cryptographically secured peer-to-peer filesystem, a primary input value is received from a first user on a first peer device. A symmetric user encryption key UK1 is generated for the first user from the primary input value on the first peer device. An encrypted private key ePrK1 is requested and received from a non-volatile memory of a data persistence server using the first peer device. The encrypted private key ePrK1 is decrypted using the symmetric user encryption key UK1 using a symmetric decryption algorithm on the first peer device, producing a private key PrK1=ESUK1−1(ePrK1). The private key PrK1 is used to reconstruct a distributed file. |
US11750392B1 |
Authenticated index data structure with back-pointers
Various systems and methods use a Merklized Adaptive Radix Forest (MARF), which is an authenticated index data structure that can be used by peers, clients, miners, and/or other participants in a blockchain network for efficiently encoding a cryptographic commitment to a blockchain state. For example, the MARF data structure can be used to represent a blockchain state as key-value pairs within an authenticated directory. The MARF data structure may include various merklized adaptive radix tries (ARTs) associated with different blocks in the blockchain, some of which may be linked together via one or more back-pointers. |
US11750388B2 |
Linking digital and physical non-fungible items
The technology relates to a technique for representing a unique physical asset such as a smartphone with a unique (singular) digital asset such as a non-fungible token (NFT). The NFT and related metadata can be stored on a blockchain to verify ownership of the digital asset. In one example, the NFT is produced based on a unique identifier (IMEI) for the smartphone. Other examples of physical assets with unique identifiers include automobiles, real property, etc. |
US11750385B2 |
System and method for authenticating a user
A system and a method for an electronic method of authenticating a user to establish a service session the method comprising the steps of receiving an access request at a service provider device from a user device, authenticating a user based on a unique user credential associated with the user, by the service provider, establishing a service session between the user device and the service device. |
US11750384B2 |
Binding with cryptographic key attestation
Generally discussed herein are devices, systems, and methods for binding with cryptographic key attestation. A method can include generating, by hardware of a device, a device public key and a device private key, based on the device private key, signing a first attestation resulting in a signed first attestation, the first attestation claiming the device private key originated from the hardware, based on the device public key and the signed first attestation, registering the device with a trusted authority, generating, by the hardware, a first application private key and a first application public key, and based on the device private key, signing a second attestation resulting in a signed second attestation, the second attestation claiming the first application private key originated from the hardware, and based on the first application public key and the signed second attestation, registering a first application of the device to a first server. |
US11750381B2 |
Minimizing traffic drop when rekeying in a distributed security group
Exemplary methods, apparatuses, and systems include a central controller receiving a request to generate a new encryption key for a security group to replace a current encryption key for the security group. The security group includes a plurality of hosts that each encrypt and decrypt communications using the current encryption key. In response to receiving the request, the central controller determines that a threshold period following generation of the current encryption key has not expired. In response to determining that the threshold period has not expired, the central controller delays execution of the request until the expiration of the threshold period. In response to the expiration of the threshold period, the central controller executes the request by generating the new encryption key, storing a time of creation of the new encryption key, and transmitting the new encryption key to the plurality of hosts. |
US11750379B2 |
Secure optical communication link
This disclosure relates to secure optical communication links. In particular, this disclosure relates to data storage devices, random access memories, host interfaces, and network layers that comprise a secure optical communication link. A data storage device comprises an optical data port to connect to an optical communication link external to the data storage device and a non-volatile storage medium to store user content data received over the optical communication link. A controller controls access to the user content data stored on the non-volatile storage medium. A cryptography engine uses a cryptographic key to perform cryptographic operations on data sent and received through the optical data port. An optical key distribution device coupled to the optical data port performs quantum key distribution over the optical communication link to provide the cryptographic key to the cryptography engine. |
US11750378B1 |
Systems and methods for post-quantum cryptography optimization
Systems, apparatuses, methods, and computer program products are disclosed for post-quantum cryptography (PQC). An example method includes receiving data, a set of data attributes about the data, and a risk profile data structure indicative of a vulnerability of the data in a PQC data environment. The example method further includes retrieving PQC cryptographic performance information associated with a set of PQC cryptographic techniques. The PQC cryptographic performance information may comprise a set of PQC cryptographic performance attributes for each PQC cryptographic technique in the set of PQC cryptographic techniques. The example method further includes generating a set of PQC encryption attributes for encrypting the data based on the set of data attributes, the risk profile data structure, and the PQC cryptographic performance information. Subsequently, the example method includes encrypting the data based on the set of PQC encryption attributes. |
US11750375B2 |
Encryption and decryption method and device based on bit permutation and bit transformation
Disclosed are an encryption and decryption method and device based on bit permutation and bit transformation. The method includes: configuring a memory space, and preparing corresponding storage spaces for a plaintext file, a ciphertext file and a key file; changing a bit value of an initial key stream according to a bit operation rule, so as to obtain a bit-transformed key stream, changing a bit value of a plaintext according to the bit operation rule depending on the key stream; on the basis of a bit-transformed plaintext stream, according to a bit permutation rule depending on the key stream, performing a bit permutation operation on the bit-transformed plaintext stream, and randomly distributing the plaintext stream in a ciphertext stream, so as to obtain a target ciphertext and store the same as a file. |
US11750374B2 |
System and method for forensic access control
Described herein are methods and devices for forensic access control of an electronic device, including encryption and decryption of access keys of an electronic device. Two pairs of asymmetric key pairs (AKP) are created, e.g., created by more than one organization. An encrypted access key is configured to be decrypted by another organization possessing the private key of the first AKP and the private key of the second AKP. In some embodiments, the private key of the second AKP is encrypted. The encrypted private key of the second AKP is configured to be decrypted using the private key of the first AKP. The encrypted access key may be decrypted using the decrypted private key of the second AKP. |
US11750371B1 |
Web domain correlation hashing method
A method for generating fingerprints of web domains and reacting to artifacts electronically received from those web domains is disclosed. When artifacts from a first web domain and artifacts from a second web domain have been transmitted over a network, a system generates, via a hashing function that consults registry information, a first hash for the first web domain and a second hash for the second web domain and identifies a correlation between the first web domain and the second web domain based on shared subsets of the first hash and second hash. Upon receiving a notification that artifacts from the first web domain had been determined to negatively impact the functioning of a secondary computing system; and based on the identified correlation between the first web domain and the second web domain, the system automatically quarantines artifacts from the second web domain from interacting with the secondary computing system. |
US11750366B2 |
Reduced complexity modular polynomial multiplication for R-LWE cryptosystems
A method includes receiving a first polynomial and a second polynomial, both of order n−1 and forming d polynomial segments from both the first polynomial and the second polynomial such that each polynomial segment is of order (n/d)−1. The polynomial segments of the first polynomial and the d polynomial segments of the second polynomial are used to form segment products. Each segment product is divided into a first polynomial substructure of order n/d and a second polynomial substructure of order (n/d)−1. A first polynomial substructure containing the first n/d coefficients of a product of the first polynomial and the second polynomial is summed with a second polynomial substructure to form a sum substructure. The sum substructure is used multiple times to determine coefficients of a polynomial representing the modulo xn+1 of the product of the first polynomial and the second polynomial. |
US11750363B2 |
Privacy-preserving domain name service (DNS)
Described systems and methods allow carrying out privacy-preserving DNS exchanges. In some embodiments, a client machine engages in a private information retrieval (PIR) exchange with a nameserver. In response to receiving an encrypted query from the client, the query formulated according to a domain name, the nameserver may extract a record (e.g., an IP address) from a domain name database without decrypting the respective query. Some embodiments achieve such information retrieval by the use of homomorphic encryption. |
US11750362B2 |
Private decision tree evaluation using an arithmetic circuit
A non-interactive protocol is provided for evaluating machine learning models such as decision trees. A client can delegate the evaluation of a machine learning model such as a decision tree to a server by sending an encrypted input and receiving only the encryption of the result. The inputs can be encoded as vector of integers using their binary representation. The server can then evaluate the machine learning model using a homomorphic arithmetic circuit. The homomorphic arithmetic circuit provides an implementation that requires fewer multiplications than a Boolean comparison circuit. Efficient data representations are then combined with different algorithmic optimizations to keep the computational overhead and the communication cost low. Related apparatus, systems, techniques and articles are also described. |
US11750357B1 |
Optical frequency comb based coherent phase recovery simplification
Coherent phase recovery method includes producing, with a transmit-side frequency-comb source, a first frequency-comb signal that includes a pilot tone and a first optical tone having a first center wavelength that differs from a pilot center wavelength of the pilot tone. The method also includes coherently modulating the first optical tone to yield a first modulated signal; and generating a second frequency-comb signal with a receive-side frequency-comb source driven by the pilot tone. The method also includes extracting, from the second frequency-comb signal, a first local-oscillator tone having the first center wavelength; and demodulating the first modulated signal by homodyning the first modulated signal with the first local-oscillator tone. |
US11750356B2 |
System and methods for mapping and demapping digitized signals for optical transmission
An optical network includes a transmitter portion configured to transmit a digitized stream of symbols over a digital optical link, a mapping unit disposed within the transmitter portion and configured to code the transmitted digitized stream of symbols with a mapping code prior to transmission over the digital optical link, a receiver portion configured to recover the coded stream of symbols from the digital optical link, and a demapping unit disposed within the receiver portion and configured to map the recovered coded stream of symbols into an uncoded digitized signal corresponding to the digitized stream of symbols at the transmitter portion prior to coding by the mapping unit. |
US11750353B2 |
Controlling UE behavior for CSI/SRS reporting during DRX
The invention relates to a method for transmitting a periodic channel quality report (CSI) and/or a sounding reference symbol (SRS) from a UE to an eNodeB. To avoid double decoding at the eNodeB in transient phases, a deterministic behavior of the UE is defined by the invention, according to which the eNodeB can unambiguously determine whether the UE will transmit the CSI/SRS or not. According to one embodiment, the UL grants and/or DL assignments received until and including subframe N−4 only are considered; UL grants and/or DL assignments received by the UE after subframe N−4 are discarded for the determination. Additionally, DRX-related timers at subframe N−4 are considered for the determination. In a second embodiment, DRX MAC control elements from the eNodeB, instructing the UE to enter DRX, i.e., become Non-Active, are only considered for the determination if they are received before subframe N−4, i.e., until and including subframe N−(4+k). |
US11750352B2 |
Feedback information processing method, device and system, and base station and terminal
Provided are a feedback information processing method, device and system, a base station and a terminal. The method includes: multiplexing, by a first node, feedback information for a plurality of second nodes in a media access control protocol data unit (MAC PDU), where the feedback information is information generated after the first node correctly receives transmission blocks from the second nodes, and the feedback includes a plurality of pieces of bit information. After the first node multiplexes the feedback information for the plurality of second nodes in the MAC PDU, a radio network temporary identifier (RNTI) is used in a process that the first node delivers the feedback information to the plurality of second nodes. |
US11750347B2 |
Method and apparatus for transmitting SRS in wireless cellular mobile communication system
The present invention relates to a method for transmitting, by a terminal, a sounding reference signal (SRS) or a physical uplink shared channel (PUSCH) in a mobile communication system. A communication method for a terminal in a communication system which supports the combination of configuration carrier using FDD scheme and configuration carrier using TDD scheme, in accordance with an embodiment of the present invention, comprises the steps of: receiving SRS transmission setting information from a base station; receiving uplink data scheduling information from the base station; determining whether or not the simultaneous transmission of the SRS transmission and the uplink data occurs; and setting the transmission of the uplink data or the SRS so that when the simultaneous transmission of the SRS transmission and the uplink data occurs, the sum of the respective transmission powers of the first and second symbols in an FDD cell and the first and second symbols of a TDD cell is not greater than the maximum transmission power of the terminal, wherein the timing of the first symbol in the FDD cell corresponds to the timing of the first symbol in the TDD cell, and the timing of the second symbol in the FDD cell corresponds to the timing of the second symbol in the TDD cell. In accordance with an embodiment of the present invention, defining the SRS transmission method of the terminal in a wireless communication system causes the terminal to effectively transmit the uplink data. |
US11750346B2 |
Signal structure for navigation and positioning signals
Methods, apparatuses, and computer-readable media are described. In one example, a method, on a base station, for providing position measurements signals in a wireless communication network, comprises: determining a plurality of subcarriers for downlink transmission, wherein the plurality of subcarriers for downlink transmission comprise all subcarriers indicated in a resource block of a scheduled time of transmission within a scheduled transmission occasion, wherein the resource block comprises a plurality of symbol periods, wherein each symbol period of the plurality of symbol periods is for transmission of a symbol using one or more subcarriers of the plurality of subcarriers; and transmitting at the scheduled time of transmission, and using each subcarrier of the plurality of subcarriers, a wireless position measurement signal at the scheduled transmission occasion, the wireless position measurement signal being part of a sequence of wireless signals representing a position measurement signal bitstream. |
US11750345B2 |
Electronic device, wireless communication method and computer readable medium
The present disclosure relates to an electronic device, a wireless communication method, and a computer readable medium. The electronic device includes a processing circuitry. The processing circuitry is configured to generate a discovery reference signal for an unlicensed band. The discovery reference signal contains a primary synchronization signal, a secondary synchronization signal and a channel state information reference signal. |
US11750343B2 |
Techniques for transmitting and receiving synchronization signals over an unlicensed radio frequency spectrum band
Techniques are described for wireless communication. A first method may include receiving at a user equipment (UE) over an unlicensed radio frequency spectrum band an indication of a time window associated with a transmission of a synchronization signal, and monitoring the unlicensed radio frequency spectrum band during the time window to receive a synchronization signal from a base station. A second method may include transmitting an indication of a time window associated with a transmission of a synchronization signal; performing a plurality of clear channel assessments (CCAs) on an unlicensed radio frequency spectrum band during the time window; and transmitting the synchronization signal over the unlicensed radio frequency spectrum band at a transmission time during the time window. The transmission time may be based at least in part on a result of at least one of the CCAs. |
US11750337B2 |
Retransmission protocol feedback handling with multiple feedback times
In a mobile network, the transmission of downlink data blocks to one or more terminal devices is accomplished on the basis of a retransmission protocol with a first feedback time defining a time interval between transmission of a first data block and transmission of a first feedback message being different from a second feedback time defining a time interval between transmission of a second data block and transmission of a second feedback message. The first feedback message indicates whether the first data block was successfully received, and the second feedback message indicates whether the second data block was successfully received. A base station of the mobile network controls the terminal device to send the second feedback message on other resources than used for transmission of the first feedback message. |
US11750336B2 |
Type 3 HARQ-ACK codebook enhancements for URLLC
This disclosure provides systems, devices, apparatus, and methods, including computer programs encoded on storage media, for Type 3 HARQ-ACK codebook enhancements for URLLC. A UE may receive a configuration for reporting HARQ-ACK feedback for a subset of HARQ process IDs included in a set of HARQ process IDs. The set of HARQ process IDs may be associated with a Type 3 HARQ-ACK codebook. The subset of HARQ process IDs may be associated with a modified Type 3 HARQ-ACK codebook that is smaller than the Type 3 HARQ-ACK codebook. The UE may receive, based on the configuration, a trigger for the modified Type 3 HARQ-ACK codebook and report, based on the trigger, the modified Type 3 HARQ-ACK codebook including the HARQ-ACK feedback for the subset of HARQ process IDs. |
US11750329B2 |
Apparatus and method for block acknowledgement management in multi-link communication systems
Embodiments of an apparatus and method are disclosed. In an embodiment, a method of executing block acknowledgement operations in a multi-link communications system comprises transmitting a request for block acknowledgement response from a first multi-link device to a second multi-link device, wherein the request is either in quality of service (QoS) data frames of aggregated-media access control (MAC) protocol data unit (A-MPDU) or a block acknowledgement request, and receiving a block acknowledgment from the second multi-link device by the first multi-link device. |
US11750328B2 |
Power control parameter determination in uplink channel repetition
A wireless device receives downlink control information (DCI) scheduling a physical uplink shared channel (PUSCH) transmission. The wireless device transmits, in response to the DCI not comprising a sounding reference signal (SRS) resource indicator (SRI) field, a first repetition and a second repetition of the PUSCH transmission. The wireless device transmits the first repetition with a first transmission power determined based on a first power control parameter set comprising a first target received power. The wireless device transmits the second repetition with a second transmission power determined based on a second power control parameter set comprising a second target received power. |
US11750327B2 |
Communication apparatus and method
Provided is a communication apparatus and a method that allow for synthesis of information using an original signal and a retransmission signal for retransmitting information of the original signal whose demodulation has failed, in wireless communication with independent physical layer and MAC layer. Information is transmitted regarding a configuration of a retransmission signal for retransmitting information of an original signal whose demodulation has failed to a sender of the retransmission signal, and the retransmission signal transmitted from the sender is received on the basis of the information regarding the configuration of the retransmission signal transmitted. |
US11750326B2 |
Data receiving method, data sending method, and communications apparatus
A terminal device receives a DMRS and data from a network device. The DMRS and the data undergo Alamouti coding in space domain and frequency domain, or the DMRS and the data undergo Alamouti coding in space domain and time domain, and a DMRS obtained through the Alamouti coding is mapped to a first DMRS port and a second DMRS port. A modulation symbol of the first DMRS port is related to a modulation symbol of the second DMRS port. The terminal device demodulates the data based on the DMRS. Therefore, the DMRS corresponds to a transmission scheme of the data, to help the terminal device demodulate the data. This can reduce interference estimation complexity of the terminal device. |
US11750324B2 |
Methods for adaptive error avoidance to increase re-transmission reliability in time-slotted communication links
A network node device of a communication network comprises physical (PHY) layer circuity configured to transmit and receive data packets via a communication network; and processing circuitry connected to the PRY layer circuitry. The processing circuitry is configured to encode a data packet for sending according to a first communication protocol for sending to a second network node during a specified communication time slot, initiate resending of the data packet when the second network node does not respond during a specified acknowledge time slot, and encode the data packet according to a second communication protocol for sending to the second network node for a last retry attempt of a finite number of retry attempts, wherein the time to send the data packet formatted in the second communication protocol extends into the specified acknowledge time slot. |
US11750323B2 |
Method and system for wireless local area network (WLAN) long symbol duration migration
A method performed by a STA may comprise receiving data of a MU-HE-PPDU, from an AP. The MU-HE-PPDU may comprise a HE-SIG-A field, a first HE-SIG-B portion and a second HE-SIG-B portion. The first HE-SIG-B portion may be received on a first channel and the second HE-SIG-B portion may be received on a second channel which is different than the first channel. The first HE-SIG-B portion may include one or more STA identifiers. |
US11750322B2 |
Apparatus and method for channel encoding/decoding in communication or broadcasting system
A method for channel encoding in a communication or broadcasting system is provided. The method includes determining a block size Z, and performing encoding based on the block size and a first matrix corresponding to the block size, wherein the first matrix is determined based on information and a plurality of second matrices, and wherein a part of a column index indicating a position of a non-zero element in each row of the information includes an index according to mathematical expression 22 above. |
US11750320B2 |
Communication apparatus and decoding method
A communication apparatus is disclosed including a processor that performs a first encoding procedure to generate a first sequence of encoded bits from a first sequence of bits, and performs a second encoding procedure to generate a second sequence of encoded bits from a sequence of known bits; and a second sequence of bits comprising the first sequence of bits and the first sequence of encoded bits; and a transmitter that transmits a signal generated from the second sequence of encoded bits, wherein the second sequence of encoded bits is determined based on a length of the second sequence of bits. |
US11750319B1 |
Covert communication technique for intelligent reflecting surface assisted wireless networks
We disclose a novel methodology for wireless networks that optimizes the transmission probability, transmit power at an agent, and the reflection matrix of an IRS for covert RF communications. Key features include: (1) An exact closed-form expression for the expected detection error probability (DEP) at an adversary is provided considering the transmission probability at the agent; and (2) a novel method to optimize the transmission probability, transmit power at the agent and the reflection matrix of the IRS with the goal of maximizing the achievable rate at a client while ensuring a covertness constraint is developed. More specifically, the method may require only one-dimensional line search schemes, achieves near-optimal performance, and exhibits enhanced achievable data rate when compared to the conventional technique without the transmission probability optimization. |
US11750317B2 |
Wavelength cross connect device and cross connect connection method
The present invention is to provide a wavelength cross-connect device that reduces device costs.A wavelength cross-connect device 10B performs relaying for changing, using WSSs, routes of optical signals transmitted from M routes 1h to Mh, in which K optical fibers 1f to Kf are grouped for each of the routes, on an input side to output the optical signals to respective optical fibers 1f to Kf of M routes 1h to Mh on an output side. Input ports of each of the optical couplers 25a to 26d are connected to output ports of each of first WSSs 21a to 22k. Further, the input ports of each of the optical couplers 25a to 26d are connected to the output ports of the first WSSs 21a to 22k and output ports of each of the optical couplers 25a to 26d are connected to input ports of second WSSs 23a to 24k such that the optical signals input from the optical fibers 1f to Kf in each of the routes 1h to Mh on the input side are capable of being output to the optical fibers 1f to Kf in each of the routes 1h to Mh on the output side, respectively. |
US11750313B2 |
Client signal transmission method, device and system and computer-readable storage medium
Provided are a client signal transmission method, apparatus and system and a computer-readable storage medium. The method includes mapping a client signal into a predetermined container corresponding to the client signal; mapping the predetermined container into the corresponding number of first code blocks in a payload area of an optical transport network frame and inserting special idle code blocks during the mapping for rate compensation, where the first code blocks are obtained by dividing the payload area of the optical transport network frame; and sending the optical transport network frame carrying the predetermined container and configuration information of the predetermined container. |
US11750312B2 |
Transmission rate adjustment method and network device
A transmission rate adjustment method and a network device, the method including obtaining, by a network device, a target data stream, where the target data stream includes a first data packet, and where the first data packet includes at least two non-idle units, and inserting or deleting a padding unit between two non-idle units of the at least two non-idle units, in response to bandwidth adjustment needing to be performed, and according to a value of the bandwidth adjustment that needs to be performed, where the padding unit provides adaption to a difference between a bandwidth of an upstream transmission channel of the network device and a bandwidth of a downstream transmission channel of the network device. |
US11750311B1 |
Stacked network device as precision time protocol boundary clock
Systems, methods, and devices are described which implement an internal Precision Time Protocol (PTP) instance on a stacked network device within a larger external PTP instance in the network to which the stacked network device. The internal instance of PTP is local to the stacked network device synchronizes the N devices (“members”) in the stack. Each of the members of the stacked network device may act as a BC in this local virtual instance of PTP. One member, which may be referred to as the commander node or primary member node, may synchronize its clock based on an external GSC or external BC, and then that member may act as a BC for a downstream member, and so on in an iterative manner until all of the members within the stacked network device have synchronized clocks. The individual members may also act as BCs to the external endpoints coupled thereto, providing PTP timestamp messages to those endpoints. |
US11750307B2 |
Spurious signal detection
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a wireless device may obtain, in a frequency range, device-specific data for use in determining at least one of a frequency or a power of a spurious signal. The wireless device may generate, based at least in part on the device-specific data, information that indicates the at least one of the frequency or the power of the spurious signal. Numerous other aspects are described. |
US11750304B2 |
Method for calibrating a Ka band Satcom antenna
Method and device for calibrating an antenna includes the following steps: define a number n of positions of angles for the aircraft situated in a calibration zone: measure the value of the orientation of the antenna for each position n, [#a(n), #a(n)]; define the theoretical orientation of the antenna [#a(n)*, #a(n)*] by taking account of the pitch value, of the roll value, of the yaw value (heading) for the aircraft for each position n, and of the orientation values of the satellite [#r(n), #r(n)]: [Aa(n)*, Ea(n)*]=F(H(n), P(n), R(n), ##, ##, #R, ##, Ar(n), Er(n)), where F is a chosen geometric function; define a criterion C: C=#(#a(n)−#a(n)*)2+(#a(n)−#a(n)*)2; minimize the value of the criterion C so as to determine the bias values (##, ##, #R, ##) from the values [Aa*(n), Ea*(n)] and use the said bias values to minimize the disparities between the measured angles and the theoretical angles. |
US11750301B1 |
Ceramic piezoelectric underwater detection and 5th generation mobile phone antenna
Disclosed is a ceramic piezoelectric underwater detection and 5th generation (5G) mobile phone antenna, including: a ceramic cavity, a thin film, electrode feed holes and a coating, where the thin film is embedded inside the ceramic cavity; the electrode feed holes are drilled on both sides of the thin film at one end of a bottom of the ceramic cavity; the coating is coated outside the ceramic cavity for realizing omnidirectional radiation; the thin film drives the ceramic cavity to make the coating on an outer surface of the ceramic cavity generate radiation vibrations and generate electromagnetic wave radiation for communication and underwater detection. |
US11750299B2 |
Communication apparatus and communication method
A communication device includes a channel estimation unit configured to estimate an impulse response based on signals of sound waves received by each of a plurality of hydrophones, a long delay removal unit configured to remove a long-delay impulse response from the impulse response to generate a post-removal impulse response, a weighting factor calculation unit configured to calculate a weighting factor based on the post-removal impulse response, and a synthesizing unit configured to synthesize the signals received by each of the plurality of hydrophones based on the weighting factor. |
US11750298B2 |
Frequency deviation compensation scheme and frequency deviation compensation method
When a frequency deviation compensation amount is compensated for by use of frequency shift, a phase offset occurs between adjacent input blocks included in a plurality of input blocks as divided, with the result that an error occurs in a reconstructed bit sequence. A frequency deviation compensation system of the invention is characterized by comprising: a frequency deviation compensation means for compensating for a frequency deviation occurring in a signal by use of frequency shift; and a phase offset compensation means for compensating for a phase offset occurring, in the signal, due to the frequency shift. |
US11750295B2 |
Communication device and communication method
Disclosed in a communication device including a light source over a substrate and a liquid crystal element over the light source. The light source includes first to third light-emitting elements and first to third light-guide plates. The first light-emitting element is configured to emit first light. The second light-emitting element is configured to emit second light different in wavelength from the first light. The third light-emitting element is configured to emit third light different in wavelength from the first light and the second light. The first to third light-guide plates are arranged in a stripe shape and is configured so that the first light to the third light are respectively incident thereon. The liquid crystal element overlaps the first to third light-guide plates. The liquid crystal element is configured to independently control irradiation regions of the first to third lights incident through the first to third light-guide plates. |
US11750292B2 |
Method for determining optical signal power change and power calculation apparatus
A method for determining an optical signal power change, wherein the method includes: A first optical signal that includes a plurality of wavelength signals is obtained, where the plurality of wavelength signals are distributed in a plurality of bands. Then, an optical power of each band and a center wavelength signal of each band are detected, and a preset single-wavelength transmit power and a preset coefficient are obtained. Next, an equivalent quantity N of equivalent wavelength signals is determined, and an equivalent wavelength signal corresponding to the first optical signal is determined. Further, a target power that is used to compensate for a first power change value of the first optical signal in transmission over an optical fiber is determined based on the preset coefficient, the equivalent wavelength signal, the equivalent quantity, and the preset single-wavelength transmit power. |
US11750290B2 |
Receiver synchronization for higher speed passive optical networks
An optical network receiver (ONU) circuit associated with a passive optical network (PON) is disclosed. The ONU circuit comprises one or more processors is configured to operate in a hunt state, wherein the one or more processors is configured to detect frame boundaries associated with an incoming data signal based on a detecting a predefined synchronization (psync) pattern associated with the incoming data signal and transition to a pre-sync state, when the predefined psync pattern is detected correctly. The one or more processors is further configured to operate in the pre-sync state, wherein the one or more processors is configured to perform forward error correction (FEC) decoding for the incoming data signal, in order to determine signal statistics associated with the incoming data signal. |
US11750287B2 |
Optical DSP operating at half-baud rate with full data rate converters
An optical Digital Signal Processor (DSP) circuit includes a digital core configured to implement digital signal processing functionality and configured to operate at a plurality of baud rates including a full baud rate and a half-baud rate; and an analog interface including a Digital-to-Analog Converter (DAC) section and an Analog-to-Digital Converter (ADC) section, wherein the analog interface is connected to the digital core and is configured to operate at the full baud rate when the digital core is configured to operate at any of the plurality of baud rates. |
US11750285B2 |
Display apparatus
A display apparatus comprises an at least partially transparent display, the display configured to generate light to form an image for display to a user positioned in front of the display, and at least one light-transmitting and/or light-receiving device positioned behind the display, wherein the at least one light-transmitting and/or light-receiving device is configured to transmit and/or receive light through at least part of the display, wherein the at least one light-transmitting and/or light-receiving device comprises or forms part of an optical wireless communications (OWC) apparatus configured to transmit and/or receive the light through the at least part of the display. |
US11750279B2 |
Software-based orchestration of communication payloads in satellites
Software-based orchestration of communication payloads in satellites. In an embodiment, a payload model of a satellite payload, defined in a data modeling language (e.g., YANG) and representing a configuration for the satellite payload, is received. The configuration specifies a setting for at least one component of the satellite payload. The payload model is translated into one or more satellite commands for configuring the satellite payload according to the configuration represented in the payload model, and the satellite payload is reconfigured using the satellite command(s). |
US11750275B2 |
Geolocation of radio frequency devices using spaceborne phased arrays
A communication system has a phased antenna array configured to communicate via a plurality of beams with a wireless device, such as user equipment (e.g., a smart phone). The plurality of beams define a field of view of the phased antenna array, the field of view having a plurality of cells and each of the plurality of beams is associated with one of the plurality of cells within the field of view. A processing device detects the wireless device within the field of view and determines a coarse geographic location of the wireless device within the field of view of the wireless device when the wireless device is within the field of view, or within a cell. The system further determines a fine geographic location for the wireless device based on frequency offset (due to Doppler) and signal flight time. |
US11750272B2 |
Time division duplex (TDD) network protection repeater
A technology is described for a time division duplex (TDD) repeater with network protection. The TDD repeater can comprise a first port, a second port, and one or more amplification paths coupled between the first port and the second port. The TDD repeater can comprise a signal detector configured to measure a received signal power for a downlink (DL) signal in a first set of one or more TDD DL subframes. The TDD repeater can be further configured to adjust an uplink (UL) noise power or gain of the one or more amplification paths based on the received signal power for the DL signal in the first set of the one or more TDD DL subframes. |
US11750271B2 |
Repeater configuration via multicast control
Methods, systems, and devices for wireless communications are described. A base station may concurrently configure repeaters in a wireless communications system via multicast control messaging. The base station may identify a quantity of repeaters in communication with the base station. Some repeaters may be in communication with the base station via other repeaters, for example in a chain configuration. The base station may prepare a multicast message including control information for the quantity of repeaters. In some examples, the base station may transmit the multicast message directly to each repeater in the quantity of repeaters, which may be referred to as a single hop control transmission. In some examples, the base station may transmit the multicast message via one or more chains of repeaters, which may be referred to as a multi-hop control transmission. The described techniques may include improved repeater operations and promote efficient repeater communications, among other benefits. |
US11750267B1 |
Channel statistics based adaptive beam weight estimation
Methods, systems, and devices for wireless communications are described. In some examples, a user equipment (UE) may receive a control message indicating a set of sampling beams defined for the UE. The UE may measure a set of received signal strengths for communications from a wireless node associated with a set of linear combinations of sampling beams from the set of sampling beams defined at the UE. The UE may calculate a set of entries of a channel covariance matrix based on the set of received signal strengths of the set of linear combinations of the sampling beams from the set of sampling beams defined for the UE. As such, the UE may communicate with the wireless node based on applying a set of beam weights to an antenna array of the UE. In some examples, the set of beam weights may be based on the channel covariance matrix. |
US11750266B2 |
Method for recovering beam in wireless communication system and device therefor
Provided is a beam recovery method in a wireless communication system. A beam recovery method performed by a user terminal (UE) may include receiving a beam reference signal (BRS) used for beam management from an enhanced Node B (eNB), when a beam failure event is detected, transmitting a control signal for a beam failure recovery request to the eNB; and, when beam reporting is triggered, reporting a beam measurement result to the eNB in a specific resource. |
US11750262B2 |
Systems and methods for surrounding beam information indication
In one aspect, a method of wireless communication includes obtaining, by a user equipment (UE), measurement information for a current beam and one or more surrounding beams. The method also includes generating, by the UE, surrounding beam information based on the measurement information. The method further includes outputting, by the UE, an indication of the surrounding beam information. Other aspects and features are also claimed and described. |
US11750259B2 |
Apparatus and method
[Object] To provide a mechanism capable of more appropriately ascertaining an interference condition of a data signal.[Solution] An apparatus includes: a processing unit that feeds back a channel quality indicator (CQI) of a serving base station, which is calculated on a basis of results of measuring reference signals received from the serving base station and a neighbor base station and information related to a power difference between the reference signal and a data signal of the neighbor base station, to the serving base station. |
US11750251B2 |
Methods and apparatus for enhanced dynamic allocation for directional transmission
Methods and apparatus are described herein for dynamic allocation of multiple channels and data streams for multi-channel transmission and multiple-input and multiple-output (MIMO). For example, a station (STA) may receive an enhanced poll (EPoll) frame that includes a time offset, a channel offset and antenna/sector settings from an access point (AP). The STA may transmit, based on the received EPoll frame, an enhanced service period request (ESPR) frame that includes a MIMO control field and a multi-channel control field. The MIMO control field may indicate whether the STA supports MIMO transmission. The multi-channel control field may indicate whether the STA supports multi-channel transmission. Upon transmitting the ESPR frame, the STA may receive an enhanced grant frame from the AP. The enhanced grant frame may include an antenna configuration and a multi-channel allocation to enable the STA to perform the MIMO transmission and the multi-channel transmission. |
US11750249B2 |
Method and apparatus for beam selection in mobile communication system
The present disclosure relates to a communication technique for converging an IoT technology with a 5G communication system for supporting a higher data transmission rate beyond a 4G system, and a system therefor. The present disclosure may be applied to an intelligent service (e.g., a smart home, a smart building, a smart city, a smart car or connected car, healthcare, digital education, retail business, a security and safety related service, or the like) on the basis of a 5G communication technology and an IoT related technology. A method and an apparatus for reselecting a beam and selecting a suitable beam to be camped on, by a terminal, in order to be provided with a service in a next generation mobile communication system operating on the basis of a beam. |
US11750245B2 |
Power transmission apparatus, power reception apparatus, method, and recording medium
A power transmission apparatus has a first communication function for communicating with a power reception apparatus and a second communication function for communicating with the power reception apparatus at a radio frequency different from a radio frequency used in the first communication function, and makes a decision as to whether to use the first communication function or the second communication function in communication for controlling wireless transmission of power, the decision being made on the basis of device information obtained from the power reception apparatus through communication using the first communication function. |
US11750244B2 |
Powerline interface communication
A subsea system, a communication system for determining operation of at least one subsea actuator member, and apparatus for controlling one or more valves are disclosed. The subsea system comprises at least one auxiliary equipment and/or valve actuator module; and at least one modem unit that receives power signals; wherein the auxiliary equipment is responsive to an output provided by the modem unit. |
US11750243B2 |
Low cost power line modem
A system for transmitting power and data through a two pin connection interface may have a first device having a power source, a first microcontroller with a first communication peripheral coupled with a first pin and a first control port coupled with a gate of a first MOSFET whose switch path couples the power source with the first pin; and a second device having a battery, a second microcontroller with a second communication peripheral coupled with a first pin and a second control port coupled with a gate of a second MOSFET whose switch path couples the battery with the first pin of the second device. When the devices are coupled, the MOSFETs are synchronously turned on and off, wherein during an off-cycle a data transfer between the first and second device takes place through the first and second communication peripherals of the first and second device, respectively. |
US11750242B2 |
Surface wave based wireless connection to an electronic device
Apparatuses, methods, and systems for a surface wave based wireless connection to an electronic device are disclosed. One apparatus includes a surface wave guide that supports propagation of electro-magnetic waves over a two-dimensional conductive surface of the surface waveguide, wherein the two-dimensional conductive surface is treated to increase a surface reactance of the two-dimensional conductive surface over a frequency range of the electro-magnetic waves, while maintaining an insertion loss of the surface waveguide below a threshold. A first mode converter operates to couple electro-magnetic waves of a first mode to the two-dimensional conductive surface having a second mode, wherein the electro-magnetic waves of the second mode propagate across the two-dimensional conductive surface of the surface waveguide. At least a portion of the electro-magnetic waves of the two-dimensional conductive surface is coupled to an electronic device through a second mode converter of the electronic device. |
US11750239B2 |
Front-end module providing enhanced switching speed
A front end module includes a first radio frequency (RF) terminal, a second RF terminal, a third RF terminal, a transmission path and a reception path. The transmission path is formed between the first RF terminal and the third RF terminal. The reception path is formed between the first RF terminal and the second RF terminal. The reception path includes a first set of switches, a second set of switches, a third set of switches and an amplifier. An amplifier is coupled to the second set of switches and the second RF terminal. The third set of switches is coupled to the first set of switches and the second RF terminal. When a transmission signal is transmitted to the first RF terminal via the transmission path, the first set of switches, the second set of switches and the third set of switches are turned off. |
US11750238B1 |
Sound redirecting case
A mobile device case having a case body having a cavity configured to receive a mobile device, a plurality of sound channels nested within the case body and a cavity wall associated with the case body, wherein the cavity wall is configured to form a sound chamber within the cavity, wherein the sound chamber is in sound communication with a speaker of the mobile device and the plurality of sound channels, thus allowing sound emitted from the speaker of the mobile device to be guided to the plurality of sound channels. An advantage of the mobile device case is that the plurality of sound channels nested within the case may redirect sound from speakers on the device to allow sound to escape out of the front and back of the mobile device case, thus redirecting sound to a device user and preventing the mobile device case from muffling the sound. |
US11750230B1 |
Differential millimeter wave communication architecture and electronic device
The present invention discloses a differential millimeter wave communication architecture and an electronic device, comprising a transmission apparatus, wherein the transmission apparatus comprises an oscillator, a frequency multiplier, a first differential transformer, at least one driving amplification circuit and a power amplification circuit which are connected in sequence; the driving amplification circuit comprises a driving amplifier and a second differential transformer connected in sequence; the power amplification circuit comprises a power amplifier and a third differential transformer connected in sequence; and the power amplifier comprises a signal switch connected to an on-off keying signal input end. The present invention can achieve a millimeter wave front-end circuit with low power consumption and small area. |
US11750228B2 |
Radio-frequency module
There is provided a radio-frequency module that can reduce communication signal loss in both the case of employing one communication band of multiple communication bands and the case of employing two or more communication bands together. A radio-frequency module includes a first switching circuit and matching circuits. The matching circuits are provided individually for a first transmission path, a second transmission path, and a third transmission path. When communications are performed by using only a first communication band, the first switching circuit selects the first transmission path. When communications are performed by using together the first communication band and the second communication band, the first switching circuit selects the second transmission path and the third transmission path. |
US11750227B2 |
Method and device for transmitting a data stream with selectable ratio of error correction packets to data packets
A method of transmitting data determines a measure of consecutive packet loss in a network; a ratio of a number of data packets and a number of error correction packets is selected in dependence on the measure. A stream of data packets is generated, and a stream of error correction packets is generated in dependence on the stream of data packets such that the proportion of error correction packets generated to the data packets generated is commensurate with the selected ratio. |
US11750222B1 |
Throughput efficient Reed-Solomon forward error correction decoding
A Reed-Solomon decoder circuit includes: a syndrome calculator circuit to compute syndrome values for a first codeword and a second codeword sequentially supplied to the syndrome calculator circuit, where last symbols of the first codeword overlap with first symbols of the second codeword during an overlap clock cycle between: a first plurality of non-overlap clock cycles during which the first codeword is supplied to the syndrome calculator circuit; and a second plurality of non-overlap clock cycles during which the second codeword is supplied to the syndrome calculator circuit; an error locator and error evaluator polynomial calculator circuit; an error location and error value calculator circuit; an error counter; and an error corrector circuit to correct the errors in the first codeword and the second codeword based on error counts and the error magnitudes computed by an error evaluator circuit. |
US11750221B1 |
Encoding and decoding of data using generalized LDPC codes
A method of correcting data stored in a memory device includes: applying an iterative decoder to the data; determining a total number of rows in first data the decoder attempted to correct; estimating first visible error rows among the total number that continue to have an error after the attempt; estimating residual error rows among the total number that no longer have an error after the attempt; determining second visible error rows in second data of the decoder that continue to have an error by permuting indices of the residual error rows according to a permutation; and correcting the first data using the first visible error rows. |
US11750219B2 |
Decoding method, decoder, and decoding apparatus
This application discloses example decoding methods, example decoders, and example decoding apparatuses. One example decoding method includes performing soft decision decoding on a first sub-codeword in a plurality of sub-codewords to obtain a hard decision result. It is determined whether to skip a decoding iteration. In response to determining not to skip the decoding iteration, a first turn-off identifier corresponding to the first sub-codeword is set to a first value based on the hard decision result. The first turn-off identifier indicates whether to perform soft decision decoding on the first sub-codeword in a next decoding iteration. The soft decision decoding is not performed on the first sub-codeword in the next decoding iteration when a value indicated by the first turn-off identifier is the first value. The hard decision result is stored. |
US11750218B2 |
Iterative error correction with adjustable parameters after a threshold number of iterations
A processing device in a memory system reads a sense word from a memory device and executes a plurality of parity check equations on corresponding subsets of the sense word to determine a plurality of parity check equation results. The processing device determines a syndrome for the sense word using the plurality of parity check equation results, determines whether the syndrome for the sense word satisfies a codeword criterion, and responsive to the syndrome for the sense word not satisfying the codeword criterion, performs an iterative low density parity check (LDPC) correction process, wherein at least one criterion of the iterative LDPC correction process is adjusted after a threshold number of iterations is performed. |
US11750212B2 |
Flexible hardware for high throughput vector dequantization with dynamic vector length and codebook size
The performance of a neural network (NN) and/or deep neural network (DNN) can limited by the number of operations being performed as well as memory data management of a NN/DNN. Using vector quantization of neuron weight values, the processing of data by neurons can be optimize the number of operations as well as memory utilization to enhance the overall performance of a NN/DNN. Operatively, one or more contiguous segments of weight values can be converted into one or more vectors of arbitrary length and each of the one or more vectors can be assigned an index. The generated indexes can be stored in an exemplary vector quantization lookup table and retrieved by exemplary fast weight lookup hardware at run time on the fly as part of an exemplary data processing function of the NN as part of an inline de-quantization operation to obtain needed one or more neuron weight values. |
US11750210B2 |
Semiconductor device and decoding methods
The present invention is to reduce detection of an erroneous edge caused by variation in a case of a sampling frequency that is not larger than a data transmission frequency. A semiconductor device includes: a data reception circuit configured to receive first data at first time and receive second data at second time; and an edge recognition circuit configured to set a range and detect an edge contained in the range. The edge recognition circuit includes a measurement circuit configured to measure a first period taken from the reception of the first data to the reception of the second data, and is configured to determine the range in which the edge contained in the data that is received by the data reception circuit is detected, on the basis of the first period. |
US11750209B2 |
Digital-to-analog converter, transmitter and mobile device
A digital-to-analog converter is provided. The digital-to-analog converter includes a plurality of digital-to-analog converter cells coupled to an output node of the digital-to-analog converter. At least one of the plurality of digital-to-analog converter cells includes a capacitive element configured to provide an analog output signal of the digital-to-analog converter cell to the output node. Further, the at least one of the plurality of digital-to-analog converter cells includes an inverter circuit coupled to the capacitive element. The inverter circuit is configured to generate an inverter signal for the capacitive element based on an oscillation signal. The at least one of the plurality of digital-to-analog converter cells additionally includes a resistive element coupled to the inverter circuit and the capacitive element. A resistance of the resistive element is at least 50Ω. |
US11750208B2 |
Analogue-to-digital converter (ADC)
There is provided a dual-slope analog-to-digital converter (ADC), comprising an input signal terminal, configured to provide an analog signal, and a reference signal terminal, configured to provide a predetermined reference signal. The ADC further comprises an integrator, that is operatively coupled to said input signal terminal and said reference signal terminal via a first switch unit, said first switch unit being configured to selectively connect and disconnect said integrator to and from any one of said input signal terminal and said reference signal terminal. In addition, a voltage supply is operatively coupled to said integrator and configured to selectively provide at least one first supply voltage to said integrator via a second switch unit, a comparator is operatively coupled to an output of said integrator at a first comparator input and a predetermined threshold voltage at a second comparator input, configured to provide an actuation signal at a comparator output in accordance with a predetermined comparator logic, and a controller is adapted to control any one of said first switch unit and said second switch unit. The ADC is further adapted to provide a first voltage to said integrator from said voltage supply, so as to integrate over a first time period a first current corresponding to one of said reference signal and said analog signal, and, following said first time period, to provide a second voltage to said integrator from said voltage supply, so as to integrate over a second time period a second current corresponding to the other one of said reference signal and said analog signal, in order to generate a digital output signal corresponding to said analog signal, and wherein said first current and said second current flow in the same direction during respective said first time period and said second time period. |
US11750207B2 |
Phase detector devices and corresponding time-interleaving systems
A multi-instance time-interleaving (TI) system and method of operation therefor. The system includes a plurality of TI devices, each with a plurality of clock generation units (CGUs) coupled to an interleaver network. Within each TI device, the plurality of CGUs provides a plurality of clock signals needed by the interleaver network. A phase detector device is coupled to the plurality of TI devices and configured to determine any phase differences between the clock signals of a designated reference TI device and the corresponding clock signals of each other TI device. To determine the phase differences, the phase detector can use a logic comparator configuration, a time-to-digital converter (TDC) configuration, or an auto-correlation configuration. The phases of the clock signals of each other TI device can be aligned to the reference TI device using internal phase control, retimers, delay cells, finite state machines, or the like. |
US11750201B2 |
Delay line, a delay locked loop circuit and a semiconductor apparatus using the delay line and the delay locked loop circuit
A delay locked loop circuit includes a delay line, a phase detector, a selection controller, and a charge pump. The delay line delays, based on a delay control voltage, a reference clock signal to generate an internal clock signal and a feedback clock signal. The phase detector compares phases of the internal clock signal and the feedback clock signal to generate a first detection signal and a second detection signal. The selection controller provides the reference clock signal as an up-signal and a down-signal. The charge pump generates the delay control voltage based on the up-signal and the down-signal. |
US11750200B2 |
Phase-locked loop circuit, configuration method therefor, and communication apparatus
Provided is a phase-locked loop circuit, a method for configuring the same, and a communication device. The phase-locked loop circuit includes a phase-locked loop main circuit and a phase temperature compensation circuit. The phase temperature compensation circuit includes at least one phase delay unit connected to the phase-locked loop main circuit and configured to generate a phase shift as a result of a temperature change for cancelling out a phase shift generated by the phase-locked loop main circuit as a result of a temperature change. |
US11750198B2 |
RC oscillator
Embodiments of this application disclose an RC oscillator that amplifies a difference between a first voltage and a second voltage by using a first amplifier and a second amplifier. The first amplifier may include a first amplification circuit and a second amplification circuit. The first amplification circuit and the second amplification circuit may share a same voltage-current conversion circuit. The RC oscillator disclosed in the embodiments of this application not only avoids noise introduced by the first amplifier, but also reduces internal noise of the RC oscillator and a jitter of a clock signal. |
US11750196B1 |
DDR PHY floorplan
An IC includes a first set of core logic configured to convert data between a single stream and a double stream, and a first data I/O block on a first side of the first set of core logic. The first data I/O block interfaces with the first set of core logic and a DRAM. The IC further includes a second set of core logic configured to process CA information, and a first CA I/O subblock on a second side of the first set of core logic. The first CA I/O subblock interfaces with the second set of core logic and the DRAM. The IC further includes a first set of power switches adjacent at least one side of the first CA I/O subblock. The first set of power switches is coupled to the first set of core logic and the second set of core logic. |
US11750195B2 |
Compute dataflow architecture
An example integrated circuit includes an array of circuit tiles; interconnect coupling the circuit tiles in the array, the interconnect including interconnect tiles each having a plurality of connections that include at least a connection to a respective one of the circuit tiles and a connection to at least one other interconnect tile; and a plurality of local crossbars in each of the interconnect tiles, the plurality of local crossbars coupled to form a non-blocking crossbar, each of the plurality of local crossbars including handshaking circuitry for asynchronous communication. |
US11750192B2 |
Stability of bit generating cells through aging
Bit generating cells are subjected to processes that accelerate aging-related characteristics before they are configured for use in the field (enrolled). Aging improves the reliability of the cells by shifting device characteristic in a direction that improves the cell behavior with respect not only to aging but also environment variations. Outputs of the cells are read, and the cells are reconfigured with a bias to output an opposite value, and then aged for enrollment. |
US11750187B2 |
Power supply output device
A power supply output device converts an input from a DC-DC converter into a bipolar voltage output that is supplied to a gate driver circuit driving a power switch. The power output supply device includes a clamping circuit that sets the voltage values of the bipolar voltage output at a predetermined voltage through switching of one or more switching elements. The power supply output device allows shunting of a high current on the negative side so that the required bipolar voltage output is reached very rapidly. |
US11750186B2 |
Over-temperature protection circuit
An over-temperature protection circuit is described. The circuit comprises an input for sensing a voltage across a transistor, a voltage-to-current converter configured to generate a current in dependence upon the voltage, an accumulator storing a value indicative of power dissipated by the transistor and which depends on the current; and a comparator configured to determine whether the value exceeds a threshold value and, in dependence on the value exceeding the threshold value, to generate a signal to cause the transistor to be switched off. |
US11750184B1 |
Glitch removal circuit
The disclosure provides a glitch removal circuit with low latency. The glitch removal circuit includes a first signal edge detector, a second signal edge detector, a latch, and a control signal generator. The first signal edge detector is activated according to the first control signal to detect the rising edge of the input signal to generate the first detection result. The second signal edge detector is activated according to the second control signal to detect the falling edge of the input signal to generate the second detection result. The latch sets the generated output signal according to the first detection result, and clears the generated output signal according to the second detection result. The control signal generator shields the glitch on the input signal to generate a processed signal, and generates a first control signal and a second control signal according to the processed signal. |
US11750176B2 |
Reflection attenuation device for a bus of a bus system, and method for attenuating reflections during a data transfer in a bus system
A reflection attenuation device for a bus of a bus system and a method for attenuating reflections during a data transfer in a bus system. The reflection attenuation device may close off a free end of bus lines of the bus in a transceiver device of a user station of the bus system. Alternatively, the reflection attenuation device may be connected to a branch point of the bus which is a star point or is used to connect a user station to the bus. Thus, bus users in a vehicle trailer are also connectable to the bus system of the vehicle, as needed. The reflection attenuation device includes at least one pair of electrical semiconductor components connected in parallel, and at least one capacitor that is connected in series to the pair of electrical semiconductor components connected in parallel, for attenuating reflections on a bus line of the bus. |
US11750174B2 |
Filter assembly with two types of acoustic wave resonators
Multiplexers are disclosed. A multiplexer can include a first filter and a second filter that are coupled to a common node. The second filter can include a first type of acoustic wave resonators (e.g., bulk acoustic wave resonators) and a series acoustic wave resonator of a second type (e.g., a surface acoustic wave resonator) that is coupled between the acoustic wave resonators of the first type and the common node. The first filter can provide a single-ended radio frequency signal. In certain embodiments, the first filter can be a receive filter and the second filter can be a transmit filter. |
US11750173B2 |
Resonator and resonance device
A resonance device includes a resonator, an upper lid, and a lower lid. The resonator includes a vibration portion, a frame, and holding arms. The vibration portion includes a base and a plurality of vibration arms. The lower lid has a protruding portion protruding between two adjacent vibration arms, the protruding portion has an insulating film, the vibration arms have a weight portion that has a conductive film formed on the insulating film, and in a direction in which the plurality of vibration arms extend, a first distance between the weight portion of any one of the two adjacent vibration arms and the holding portion is less than a second distance between the weight portion and the protruding portion. |
US11750170B2 |
Guided SAW device
A guided surface acoustic wave (SAW) device includes a substrate, a piezoelectric layer on the substrate, and a transducer on the piezoelectric layer. The substrate is silicon, and has a crystalline orientation defined by a first Euler angle (ϕ), a second Euler angle (θ), and a third Euler angle (ψ). The first Euler angle (ϕ), the second Euler angle (θ), and the third Euler angle (ψ) are chosen such that a velocity of wave propagation within the substrate is less than 6,000 m/s. |
US11750168B2 |
Transversely-excited film bulk acoustic resonator with tether-supported diaphragm
An acoustic resonator device includes a substrate and a piezoelectric plate. A first portion of the piezoelectric plate is on the substrate. A second portion of the piezoelectric forms a diaphragm suspended over a cavity in the substrate. An interdigital transducer (IDT) is on a surface of the piezoelectric plate, the IDT including first and second busbars on the first portion and interleaved IDT fingers on the diaphragm. A plurality of tethers support the diaphragm over the cavity, each tether providing an electrical connection between a corresponding one of the interleaved IDT fingers and one of the first and second busbars. |
US11750164B2 |
Controlled rail-voltage decay for boost power supply output protection
Methods and systems are provided for controlling rail-voltages for amplifier output stages. In some examples, a method may include receiving sets of data values (e.g., at a power-supply control circuitry) for control of a rail voltage of an amplifier output stage. The method may also include determining that the receipt of a pending set of data values has been interrupted. Then, upon the determination that the receipt of the pending plurality of data values has been interrupted, the method may include decreasing the rail voltage to a non-boosted rail-voltage level. |
US11750162B1 |
Variable gain amplifier system including separate bandwidth control based on inductance contribution
A variable gain amplifier system includes a variable gain amplifier circuit configured to receive an input signal, apply a gain to the input signal, and generate an output signal in accordance with the gain applied to the input signal. The variable gain amplifier circuit is further configured to receive a gain control signal and a bandwidth control signal. A control module is configured to generate the gain control signal to adjust the gain of the variable gain amplifier circuit and generate, separately from the gain control signal, the bandwidth control signal to adjust a bandwidth of the variable gain amplifier circuit by selectively varying an amount of inductance contributed by an inductor circuit of the variable gain amplifier circuit. |
US11750151B2 |
Apparatus and methods for biasing of power amplifiers
Apparatus and methods for biasing power amplifiers are provided herein. In certain embodiments, a power amplifier includes a bipolar transistor having a base biased by a bias network having a reactance that controls an impedance at the transistor base to achieve substantially flat phase response over large dynamic power levels. For example, the bias network can have a frequency response, such as a high-pass or band-pass response, that reduces the impact of power level on phase distortion (AM/PM). |
US11750150B2 |
Method and apparatus for increased solar energy conversion
There is provided an apparatus for solar energy power conversion comprising: a planar array of light concentrators distributed in a pattern; a planar array of PV cells distributed in alignment with the light concentrators; and a spectral converter that extends between the planar array of light concentrators and the planar array of PV cells, wherein the spectral converter is configured to convert incident light of a first spectral distribution from the array of light concentrators to outgoing light of a second spectral distribution for the array of PV cells. |
US11750144B2 |
Indoor structure
The present invention provides an indoor structure in which a wire to a solar cell module is hardly visible and design is improved. In an indoor structure, a solar cell module is attached to a window disposed between a ceiling and a floor. The ceiling has a first ceiling part, and a second ceiling part continuous with the first ceiling part via a vertical wall part on a lower side than the first ceiling part, the window has a window glass including a window main surface, the solar cell module has a main body panel and an extraction wire, the main body panel is obtained by arranging solar cells between two translucent substrates, and is capable of transmitting light in a thickness direction, the main body panel includes a panel main surface, and the panel main surface faces the window main surface of the window, the extraction wire extends inside and outside the main body panel, and includes a first end part, the first end part of the extraction wire is electrically connected to the solar cells within the main body panel, the extraction wire has a wire part exposed from the main body panel, and the wire part is laid between the vertical wall and the window. |
US11750143B1 |
Bracket and devices for mounting solar panels to roofs
A bracket for attaching solar panels to a roof, in the form of an L-foot, as well as devices and assemblies that utilize the L-foot. The L-foot includes a base and a riser extending upward from the base. The base includes a pair of raised stiffeners each extending obliquely upward toward each other from opposites sides of the base and each extending lengthwise along the base. The base can receive threaded roof fasteners that extend perpendicularly through the raised stiffeners and obliquely through the base. Threaded roof fasteners positioned on opposite raised stiffeners can extend through the roof deck toward each other. The L-foot is compatible with rail-based and rail-less solar panel racking systems. |
US11750141B2 |
Rotating machine control device
A rotating machine control device for controlling a rotating machine having a stator winding and a field winding includes a current command generation unit which generates a current command value on the basis of the temperature of the rotating machine. The current command generation unit includes a constraint condition setting unit which calculates a constraint condition on the basis of a torque command, stator winding voltage, stator winding current, and field winding current, an optimization calculation unit which calculates and outputs the current command value, using the constraint condition and an evaluation function, and a constraint condition update unit which updates the constraint condition on the basis of the temperature of the rotating machine. The current command generation unit calculates and outputs the current command value, using the updated constraint condition. |
US11750139B2 |
Method and system for operating a system including an energy storage device and resistor
In a method and system for operating a system having an energy storage device and a resistor, and in order to discharge the energy storage device, an electric power that is constant over time is continuously supplied to the resistor, e.g., during a time period, e.g., until the resistor has practically been fully discharged, the time period, e.g., being greater than the time constant of the temperature rise of the resistor induced by a continuous electric power that is constant over time and supplied to the resistor. |
US11750138B2 |
System and method for power line communication to control fans
Disclosed is a system and method for power line control of electrical fans. The system generates a sinusoidal wave using a crystal oscillator. Control information is added to the sinusoidal wave by routing the wave through a phase inversion circuit a predetermined intervals according to a protocol. The resulting control signal is sent on a power line. The control signal is received using a crystal filter, decoded and converted to executable instructions for controlling a fan motor. |
US11750137B2 |
Laundry treating machine and method for operating a laundry treating machine
A laundry machine having a casing, a drum a motor to rotate the drum, and an inverter-based apparatus to control the motor. The inverter-based apparatus comprises: an input stage configured to convert alternating mains voltage to rectified DC voltage, an electrolytic capacitor-less inverter configured to generate output currents to feed to the electric moto based on duty cycles of switching signals, a DC-link connecting the electrolytic capacitor-less inverter to the input stage and crossed by DC-link currents from/towards the electrolytic capacitor-less inverter, a DC-link capacitor connected to the DC-link, a regulator system configured to control duty cycles of switching signals based on determined/estimated motor values indicating a controlled parameter of said motor, and a motor reference value associated to the controlled parameter of the motor, and an active voltage limiter unit configured to regulate the motor reference value to limit the DC-link capacitor voltage within a predetermined voltage range. |
US11750135B2 |
Motor control device and electric pump device
One aspect of a motor control device according to the present invention is a motor control device that controls a motor of an electric pump. The motor control device includes a drive unit that supplies a drive current to the motor; a control unit that controls a rotation speed of the motor by controlling the drive unit based on a rotation speed command value; and a current detection unit that detects the drive current supplied to the motor, and supplies a current detection value indicating a detection result of the drive current to the control unit. The control unit determines whether or not a foreign fluid suction abnormality occurs in the electric pump, based on a first current detection value acquired at a first timing when the rotation speed command value changes from a first command value to a second command value and a second current detection value acquired after the first timing. |
US11750134B2 |
AC rotary machine apparatus
To provide an AC rotary machine apparatus which can determine the operation stop of the control circuit of the other system with good accuracy. An AC rotary machine apparatus, including: a resolver is provided with a first system excitation winding, first system two output windings, a second system excitation winding, and second system two output windings, in which a magnetic interference occurs between a first system and a second system; a first system control circuit that applies AC voltage with a first period to the first system excitation winding; and a second system control circuit that applies AC voltage with a second period to the second system excitation winding, wherein the first system control circuit determines whether the operation of the second system control circuit stops, based on the components of the second period extracted from the first system output signals. |
US11750133B2 |
External force estimation during motor control
A control system may include: a motor configured to power a driven object; and circuitry configured to: generate a first driving force command to drive the motor during a first control; estimate a first force acting on the motor during the first control based, at least in part, on the first driving force command; generate a second driving force command to drive the motor during a second control after the first control; estimate a second force acting on the motor during the second control based, at least in part, on the second driving force command; and estimate an external force acting on the driven object during the second control based, at least in part, on a comparison between the first force and the second force. |
US11750129B2 |
Servo DC power supply system and motor control device
A servo direct-current feeder system can reduce an oscillating voltage across a power feeding path. The servo direct-current feeder system includes a direct-current power supply, a plurality of motor controllers that each control a servomotor, and a power feeding path that distributes power from the direct-current power supply to the plurality of motor controllers. Each of the plurality of motor controllers includes a current control loop unit that controls a current flowing through the servomotor. The current loop unit includes a current control loop including a notch filter having a center frequency corresponding to a frequency to occur from an oscillating voltage across the power feeding path. |
US11750123B1 |
Control circuit of brushless direct current motor and method for detecting initial rotor position of brushless direct current motor
A control circuit arranged to detect an initial rotor position of a brushless DC motor includes: a voltage integrator circuit, arranged to perform integration upon an input voltage, to generate a plurality of integrated voltages; a PWM generating circuit, arranged to generate and output a plurality of PWM signals to the brushless DC motor through a drive circuit, and stop outputting a PWM signal that is any of the plurality of PWM signals to the brushless DC motor according to an integrated voltage corresponding to the PWM signal; a current receiving circuit, arranged to receive a plurality of feedback currents from the brushless DC motor; a comparison circuit, arranged to perform comparison upon the plurality of feedback currents, to generate a comparison result; and a decision circuit, arranged to detect the initial rotor position according to the comparison result. |
US11750120B2 |
Rotating machine control device
One or more multiphase power converters are connected to a power supply via a high potential line and a low potential line, convert DC power of the power supply into multiphase alternate current power by operations of inverter switching elements, and apply a voltage to each of phase windings of the multiphase winding set. A DC rotating machine switch are made up of two or more legs, each of which is made up of switches on a high potential side and a low potential side connected in series via a DC motor terminal connected to a second terminal that is an end of the DC rotating machine. The DC rotating machine switch makes a voltage of the DC motor terminal variable by switching. A control unit controls operations of the inverter switching elements and the DC rotating machine switch. |
US11750119B2 |
Using regenerative braking to increase power supply hold-up time
Power supply hold-up time is increased using regenerative braking. A power line disturbance (“PLD”) event is detected in a power supply unit. One or more fan motors associated with the power supply unit may be signaled to provide regenerative braking based on identifying the PLD event, where the one or more fan motors transition from a motor operating mode to a regenerative braking mode. The regenerative braking may be applied to the one or more fan motors associated with the power supply unit, where a hold-up time is extended to prevent shut down of the power supply unit. |
US11750118B2 |
Energy harvesting roller assembly
An energy harvesting roller for a cargo handling system may comprise a shaft and a sleeve located on the shaft. A piezoelectric member may be coupled to the sleeve. A shell may be located radially outward of the piezoelectric member and configured to rotate relative to the sleeve. A radially inward surface of the shell may define at least one of a plurality of grooves or a plurality of protrusions. |
US11750114B2 |
Reduction of common mode emission of an electrical power converter
A power system including a power converter system and an electric machine is provided. In one aspect, the power converter system has first and second switching elements. The electric machine includes a first multiphase winding electrically coupled with the first switching elements and a second multiphase winding electrically coupled with the second switching elements. The first and second multiphase windings are arranged and configured to operate electrically opposite in phase with respect to one another. One or more processors control the first switching elements to generate first pulse width modulated (PWM) signals based on received voltage commands to render a first common mode signal and also control the second switching elements to generate second PWM signals based on received voltage commands to render a second common mode signal. The rendered first and second common mode signals have the same or similar waveform with opposite polarity with respect to one another. |
US11750113B2 |
Inverter device
An inverter device is provided which is capable of more quickly raising an internal temperature of an electrolytic capacitor within a permissible range of a ripple voltage to shorten a non-operating time. The inverter device includes an electrolytic capacitor, an inverter circuit, a temperature sensor, and a control device. When the ambient temperature of the electrolytic capacitor detected by the temperature sensor is lower than a predetermined temperature, the control device on-drives specific switching elements of the inverter circuit before the start of a normal operation of a motor, and executes a warming up operation of allowing a current capable of controlling a ripple voltage of a DC voltage within a permissible range to flow through the motor at a predetermined rate of increase while keeping the motor stopped. |
US11750110B2 |
Low voltage, low frequency, multi level power converter
A low voltage, low frequency multi-level power converter capable of power conversion is disclosed. The power converter may include a low voltage, low frequency circuit that includes a plurality of phase-shifting inverters in series; a plurality of low voltage source inputs, and a plurality of phase-shifting inverters in series. Each of the plurality of phase-shifting inverters may be configured to receive at least one of the plurality of low voltage source inputs; and generate at least one square wave output. A semi-sine wave output may be derived from the generated at least one square wave output. |
US11750105B1 |
Full-bridge phase-shift converter with voltage clamping
A full-bridge phase-shift converter with voltage clamping includes a transformer, a primary-side circuit, and a secondary-side circuit. The secondary-side circuit includes a first synchronous rectifying switch, a second synchronous rectifying switch, an output inductor, a plurality of diodes, a capacitor, an energy-releasing unit, and an output capacitor. The capacitor provides a clamping voltage. The energy-releasing unit is coupled to the capacitor in parallel, and converts the clamping voltage into an output voltage. The output capacitor is coupled to the energy-releasing unit in parallel, and provides the output voltage. |
US11750104B2 |
Determining an input voltage to a galvanic isolation point
An electronics (100) configured to determine an input voltage to a galvanic isolation point of the electronics (100) is provided. The electronics (100) comprises an isolation transformer (120) configured to conduct a primary current (Ip) provided by an input voltage source (110), and provide a secondary voltage (Vs), the secondary voltage (Vs) being proportional to a primary voltage (Vp) induced by the primary current (Ip). The electronics (100) also comprises a peak detection circuit (130) coupled to the isolation transformer (120), the peak detection circuit (130) being configured to receive the secondary voltage (Vs) and, based on the secondary voltage (Vs), provide a signal that is proportional to the primary voltage (Vp). |
US11750100B2 |
Multiphase switching converter with current mode constant on-time control
A controller for a multiphase switching converter has a set generation circuit, a frequency divider, and a plurality of sub control circuits. The set generation circuit provides a set signal based on an output voltage and a total current flowing through the plurality of switching circuits. The frequency divider provides a plurality of frequency division signals based on the set signal. The plurality of sub control circuits provides a plurality of switching control signals to control the plurality of switching circuits respectively. Such that when the total current is larger than a current reference, one of the plurality of switching circuits maintains off temporarily, until the total current is less than the current reference, then the one of the plurality of switching circuits are turned on based on the output voltage and a voltage reference. |
US11750098B2 |
Voltage conversion circuit having self-adaptive mechanism
The present invention discloses a voltage conversion circuit having self-adaptive mechanism. A control branch includes a first resistor coupled between a second power supply and a control terminal, and a switch circuit that is coupled between the control terminal and a ground terminal and receives an input voltage from an input terminal to generate a control voltage at the control terminal. A voltage-withstanding P-type transistor circuit of an output branch is coupled between the second power supply and the output terminal that generates an output voltage and is controlled by the control voltage. A voltage-withstanding N-type transistor circuit of the output branch is coupled between the output terminal and the ground terminal and is controlled by an inverted input voltage. When the input voltage is at a first power domain high/low state, the output voltage is at a second power domain high/low state. |
US11750091B2 |
Resonant converter
This disclosure describes systems, methods, and apparatus for controlling a voltage provided to a plurality of configurable output modules using a resonant converter, the resonant converter comprising: an inverter circuit; a resonant capacitor bridge coupled across the inverter circuit; N groups of output modules, each of the N groups comprising terminals configured for coupling to up to M output modules, the output modules each comprising: a transformer having a primary and a secondary; and a rectified output coupled to the secondary and configured for coupling to a load; and a resonant inductor network configured to be coupled between the resonant capacitor bridge and the primaries of the transformers, the resonant inductor network comprising: at least one parallel inductor; and N parallel branches arranged in parallel and each branch comprising a series inductor, each of the series inductors configured for transformer-coupling to up to M output modules. |
US11750089B2 |
Power converter for high power density
A power semiconductor package comprises a lead frame, a semiconductor chip, and a molding encapsulation. The lead frame comprises an elevated section comprising a source section; a drain section; and a plurality of leads. The semiconductor chip includes a metal-oxide-semiconductor field-effect transistor (MOSFET) disposed over the lead frame. The semiconductor chip comprises a source electrode, a drain electrode, and a gate electrode. The source electrode of the semiconductor chip is electrically and mechanically connected to the source section of the elevated section of the lead frame. The semiconductor chip is served as a low side field-effect transistor as a flipped-chip connected to a heat sink by a first thermal interface material. A high side field-effect transistor is connected to the heat sink by a second thermal interface material. The low side field-effect transistor and the high side field-effect transistor are mounted on a printed circuit board. |
US11750086B2 |
Drive circuit for power converter
In a drive circuit, a differential circuit unit is configured such that resetting of an output voltage of the differential circuit unit is carried out, and the resetting of the output voltage of the differential circuit unit is cancelled. A value of the difference between first and second divided terminal voltages at a timing of cancelling the resetting is defined as a reference voltage. The differential circuit unit generates, as the output voltage, a product of a voltage change from a reference voltage and a predetermined amplification factor after cancelling of the resetting of the differential circuit unit. A signal generator generates a gate signal for the upper- and lower-arm switches in accordance with a value of the output voltage of the differential circuit unit while the upper- and lower-arm switches are in an off state. |
US11750083B2 |
Overvoltage protection circuit, integrated circuit and switching converter with the same
An overvoltage protection circuit configured to prevent an overvoltage of an output voltage of a switching converter, can include: an output voltage simulation circuit configured to generate an output voltage simulation signal according to circuit parameters of the switching converter, where the output voltage simulation signal changes along with the output voltage; and an overvoltage signal generator configured to activate an overvoltage signal when a feedback voltage is less than a first threshold value and the output voltage simulation signal is greater than a second threshold value. |
US11750081B2 |
Control apparatus for adjusting thermal stress
A method for balancing thermal stresses in semiconductor switching devices may include (a) monitoring temperatures of the semiconductor switching devices to provide a temperature difference between two of the switching devices; and (b) based on the temperature difference, providing a zero-sequence component to be used for adjusting conduction times of each of the semiconductor devices. |
US11750080B2 |
Power conversion device
A power converter includes an arm in which a plurality of converter cells are connected in series, each of the converter cells including at least two switching elements, a power storage element, and a pair of output terminals. A control device controls the power converter. The converter cell includes a switch to have the converter cell bypassed. When the control device senses failure of the converter cell, it has the failed converter cell within the arm bypassed and controls a normal converter cell within the arm to suppress a ratio of a harmonic component in an arm current that increases due to the failure. |
US11750078B2 |
Adaptive off-time or on-time DC-DC converter
A converter system includes a first switch and a controller configured to switch the first switch between first and second states based on input and output voltages of the converter system, wherein the controller includes: a timer unit including a first timer configured to determine a first duration based on a target switching frequency of the converter system, and a second timer configured to determine a second duration based on a predetermined duration equal to or greater than a minimum duration of the first state of the first switch and the input and output voltages; and a control logic unit, configured to switch the first switch from the second state to the first state upon expiration of both the first and second durations. |
US11750076B2 |
Apparatus, systems, and methods for generating force in electromagnetic systems
Apparatus, systems, and methods used to produce linear and rotational motion, acceleration, and actuation by the use of mobile ferromagnetic or permanent magnets subjected to asymmetric electromagnetic field distributions are disclosed herein. A variety of exemplary embodiments and applications are described, involving different coil and actuator geometries to include and allow for both stationary and moving magnets, electric fields, and magnetic fields. |
US11750075B2 |
Voice coil motor
A voice coil motor includes a base, a lens housing, a voice coil, a magnet, a first elastic sheet, and a yoke member. The lens housing has a first margin wall, and a first protrusion and a second protrusion extend from the first margin wall. The height of the second protrusion is lower than the height of the first protrusion. The yoke member has a first wall, a connection wall, a second wall, and a side wall. The first wall, the connection wall, and the second wall together form a stepped structure. The first wall is disposed on the first protrusion, and the second wall is disposed on the second protrusion. The lens housing has a deflectable angle relative to a horizontal reference line. When the lens housing deflects to a maximum value of the deflectable angle, the second protrusion abuts against the second wall. |
US11750072B2 |
Motor unit
A motor assembly includes a motor including a rotor including a shaft rotatable about a rotation axis and a stator surrounding the rotor from radially outside, a housing that accommodates the motor, a bearing that is fixed to the housing and rotatably supports the shaft, a resolver including a resolver rotor fixed to the shaft and a resolver stator fixed to the housing, and a contact that has conductivity, is fixed to the housing, and is in contact with a contacted portion at an end portion on one axial side of the shaft. The housing includes an accommodation space in which the contacted portion of the shaft is accommodated. The contact and the resolver are side by side in a direction along a rotation axis in the accommodation space. |
US11750071B1 |
Printed circuit board stator winding enhancements for axial field rotary energy device
An axial field rotary energy device are disclosed. For example, the device can include a printed circuit board (PCB) stator having PCB panels. Each PCB panel can include conductive layers. Selected ones of the conductive layers are coupled to plated vias that extend from one major surface of the PCB stator to an opposite major surface of the PCB stator. In addition, each major surface of the PCB stator can have a layer of a dielectric material that completely covers ends of the plated vias. |
US11750069B2 |
Line conditioning accessory and protective circuit for power tool
A power adaptor is provided including a housing receiving a first power cord couplable to a power source through a and a second power cord couplable to a load through a second axial end, a protective capacitor mounted on a circuit board within the housing, a first set of terminals mounted on a first side of the circuit board adjacent the protective capacitor and configured to electrically couple line and neutral wires of the first power cord to the protective capacitor, and a second set of terminals mounted on a second side of the circuit board adjacent the protective capacitor and configured to electrically couple line and neutral wires of the second power cord to the protective capacitor. The protective capacitor is configured to discharge when current draw by the load exceeds a current threshold. |
US11750068B2 |
Electric work machine
An electric work machine includes a smaller motor. An electric work machine includes a motor including a stator and a rotor rotatable about a rotation axis, and a sensor board including a rotation sensor that detects rotation of the rotor and a plate supporting the rotation sensor. The plate includes a first surface facing an end face of the rotor in an axial direction parallel to the rotation axis and a support area receiving the rotation sensor that faces the end face, and a second surface facing at least a part of the stator. In the axial direction, a distance between the support area and the end face is shorter than a distance between at least a part of the second surface and the end face. |
US11750063B2 |
Electric drive module configured as a beam axle
An electrically-operated electric drive module for use in a vehicle framework that is configured for a powertrain that includes an internal combustion engine. The electrically-operated electric drive module permits the vehicle to be converted to an electrically propelled vehicle in a manner that is cost-effective and which is relatively low in weight. |
US11750061B2 |
Compact gear motor
The present disclosure relates to a gear motor formed of a housing. An electric motor includes a stator assembly and a rotor driving a reduction gear train having a plurality of intermediate stages each formed by a shaft coupled to a toothed wheel and to a toothed gear. Also, an output stage is formed by a shaft coupled to a wheel and a coupling component, the shafts of the rotor, of the intermediate stages and of the output wheel being parallel. The gear motor further includes a printed circuit transversely positioned above the stator assembly, wherein the wheel of the output stage is positioned above part of the stator assembly, the shafts of the intermediate stages are located in the zone of the housing located on the opposite side, relative to a transverse vertical plane, of the zone including the shaft of the rotor and the shaft of the output wheel. |
US11750059B2 |
End shield with spray feature
An end shield for an electric machine is provided. The end shield includes a collar extending between a housing of the electric machine and an end coil. The collar includes one or more spray apertures for directing a fluid onto the end coil. |
US11750057B2 |
Voltage optimization technique for a permanent magnet motor used in an electric submersible pump
A method for controlling a permanent magnet (PM) synchronous motor in an ESP application is provided. A load angle of the PM motor is estimated. A voltage adjustment value is determined for the PM motor based at least on the estimated load angle of the PM motor. A voltage to be applied to the PM motor is determined based on the voltage adjustment value. |
US11750055B2 |
Terminal assembly of a driving motor
A terminal assembly of a driving motor includes: a support ring surrounding a stator core to which bobbins are coupled, the bobbins being configured to allow stator coils to be wound thereon; a first sub-assembly disposed on the support ring to surround the bobbins; and a second sub-assembly connected to the first sub-assembly, the second sub-assembly including fixing portions inserted into coupling recesses formed in the bobbins. Three-phase bus bars connected to three-phase lead wires of the stator coils are inserted into the first sub-assembly and an N-phase bus bar connected to N-phase lead wires of the stator coils is inserted into the second sub-assembly. |
US11750053B2 |
Stator, motor, compressor, and air conditioner
A first coil including a first metal, and a second coil including a second metal having a lower electrical resistivity than the first metal are disposed in a slot of a stator core. The slot includes a slot opening, a curved slot bottom portion connecting to a yoke, and first and second side portions disposed between the slot opening and the slot bottom portion. A first straight line connects borders between the slot bottom portion and either of the side portions. A first region is surrounded by the first straight line and the slot bottom portion. A second region is located between the slot opening and the first straight line in the radial direction. Areas S1 and S2 of the first and second regions, and total cross-sectional areas A1 and A2 of the first coil in the first and second regions satisfy (A1/S1)>(A2/S2). |
US11750050B2 |
Motor and washing machine having the same
A washing machine includes a motor. The washing machine includes a cabinet, a tub arranged inside the cabinet, a drum rotatively arranged inside the tub, and the motor. The motor includes a stator arranged on the rear wall of the tub, and a rotor. The stator is arranged to rotate by electromagnetically interacting with the stator. The rotor includes a plurality of rotor cores alternatingly arranged with a plurality of magnets in a radial form. Each of the rotor cores includes a body, a tooth formed in the front end part of the body, a first groove formed in the upper part of the body, and a second groove formed in the lower part of the body. A partition between the first and second grooves constitutes a part of the body providing an interval between the first and second grooves. |
US11750042B2 |
Wireless charging device and wireless charging switching method
The present disclosure provides a wireless charging switching method, which includes steps as follows. After a proximity sensor disposed in the central area of a coil senses an object, it is determined whether a power bus voltage of a wireless power transceiver electrically connected to the coil has reached a predetermined voltage value during a predetermined period, so as to determine a receiver mode or a transmitter mode for the wireless power transceiver. |
US11750036B2 |
Systems and methods for providing inductive power transfer power control
Power controllers (e.g., inductive power transfer (IPT) power controllers) and methods of making and using the same are provided. An IPT power controller can be implemented on direct alternating current (AC)-AC converters and can use only current and voltage measurements to produce multi-power level IPT controller and design switching logic. Using Boolean operators (e.g., AND, OR, Not) applied on a resonant current signal, varying positive energy injections (e.g., 1 to 16 pulses), and varying negative energy injections (e.g., 1 to 16 pulses), up to 32 different active states can be designed. |
US11750034B2 |
Inductive power transfer with reduced electromagnetic interactions within a conductor arrangement
A conductor arrangement for an inductive power transfer, the conductor arrangement comprising at least three coils arranged along a longitudinal axis and formed of at least one conductor; and at least two winding heads arranged opposite one another and in which conductor sections of each coil extend along one another and along the longitudinal axis; wherein, within at least one of the winding heads, the conductor sections of the first and second coils that extend along the longitudinal axis are arranged at a first distance to one another, the first distance ≥zero, and the conductor section of the third coil that extends along the longitudinal axis is arranged at second distances to said conductor sections of the first and second coils, the second distances being larger than the first distance. Also disclosed are an inductive power transfer arrangement and methods for providing conductor arrangements for an inductive power transfer. |
US11750033B2 |
Wireless power transfer control apparatus and method
A method comprises detecting a signal representing a current level at a power switch of a resonant converter with a sense switch coupled to the power switch and formed on a same semiconductor die, wherein the resonant converter comprises a primary side and a secondary side magnetically coupled to the primary side, and adjusting a capacitance of a variable capacitance network of the resonant converter based upon the current level of the power switch. |
US11750031B2 |
Inductive charger with rotatable magnetic mount
A magnetic mount for an electronic device with an inductive charging receiver and one or more engagement points. The mount has a static inductive charging head with an inductive coil delivering a charging current to the electronic device with the inductive charging receiver being in axial alignment with the inductive coil. A back plate with a circular frame is in rotating engagement with the static inductive charging head. The back plate also include one or more magnet support arms on which permanent magnets are mounted to magnetically couple with the one or more engagement points on the electronic device. |
US11750030B2 |
Coil driving in wireless charging system
A wireless charging system is configured to charge one or more receiver devices simultaneously. The wireless charging system includes multiple coils that may be driven independently based on a feedback system with one or more feedback channels. Each coil is driven by a coil driving signal selected based on a set of target characteristics. A coil drive circuit receives an input of a pulse width modulation (PWM) signal and outputs the coil driving signal to a corresponding coil. |
US11750028B2 |
Wireless charging device having an inclined surface to receive a charging rack
A wireless charging device includes a plug module, a rack and a wireless charger. The plug module has a top wall, and two opposite side walls connected with two opposite sides of the top wall. A front end of a top surface of the top wall of the plug module is defined as an inclined plane. The rack is mounted on the inclined plane of the plug module. A front end of a bottom surface of the rack is recessed inward to form a lower accommodating groove. The inclined plane is mounted in the lower accommodating groove. A top surface of the rack is recessed downward to form an upper accommodating groove. The wireless charger is mounted in the upper accommodating groove. |
US11750027B2 |
Omnidirectional data and energy harvesting system and method in underwater wireless optical communication
A free node to be deployed underwater for omnidirectional energy and data harvesting includes a housing that forms a sealed chamber; a wavelength-changing layer attached to an outside of the housing and configured to receive a first optical signal having a first wavelength range and to emit a second optical signal having a second wavelength range, different from the first wavelength range, wherein the first optical signal includes encoded data; a flexible solar cell wrapped around the housing, the flexible solar cell being configured to receive the second optical signal and generate an electrical signal; an energy storage module located in the chamber and configured to store electrical energy associated with the electrical signal; and a decoder located in the chamber and configured to receive the electrical signal and decode the encoded data. The first wavelength range is ultraviolet light and the second wavelength range is visible or infrared light. |
US11750024B2 |
Modularized ESS and power distribution system
A system employing a modular containerized energy-storage systems (ESS) and power cabinet control system allows for long duration uninterruptible power supply (UPS) capabilities for battery and electrochemical storage devices. modular containerized ESS and power cabinet control system. Long duration uninterruptible power supply (UPS) capabilities for battery and electrochemical storage devices may be realized. Embodiments of a modularized energy storage system can comprise a first power cabinet configured to function as a primary power and load balancing appliance. The first power cabinet can comprises power electronics including a DC-AC inverter, transformer, and frequency regulator; a set of one or more energy storage systems, which may be battery-based. |
US11750019B2 |
Power management apparatus, power distribution control method and program
Provided is a power management apparatus for controlling power distribution from a location that includes a storage battery and a current control type converter to another location that includes a storage battery, the power management apparatus including: a monitor unit that acquires a status of the storage battery at each location; a judgment unit that determines, based on the status of the storage battery at each location that has been acquired by the monitor unit, a duration of power distribution to a certain location, and one or more locations from which power is to be distributed to the certain location; and a control unit that controls each location serving as a distribution source such that power distribution is performed for the duration determined by the judgment unit. |
US11750018B2 |
Device to-be-charged and charging control method
Provided are a device to-be-charged and a charging control method. The device to-be-charged can include a wireless receiving circuit, a charging management circuit, and a step-down circuit. The wireless receiving circuit can be configured to receive a wireless charging signal to charge a battery. The charging management circuit can be configured to perform constant voltage control and/or constant current control on charging of the battery. The step-down circuit is configured to decrease an output voltage of the wireless receiving circuit or an output voltage of the charging management circuit. |
US11750013B2 |
Charging method for a battery, and an electronic device using the charging method
A method for charging a battery, and electronic device using the method, includes charging the battery with a first charge current Im at constant current in a mth charge-discharge cycle of the battery, wherein the battery has a first cut-off voltage V1 when the constant current charging stage of the battery is cut off in the mth charge-discharge cycle. The first charge current Im is calculated according to a formula Im=In+k×In, where, 0 |
US11750012B2 |
Electronic device and method for charging a battery
A charging method for charging a battery, including the following steps: obtaining a lithium deposition potential of the anode; obtaining a first charging current In at different states of charge (SOC) during an nth charge and discharge cycle based on the lithium deposition potential of the anode, the n is an integer greater than or equal to 0; and during an mth charge and discharge cycle, charging the battery with a second charging current Im, m is an integer greater than n, and Im=k1×In, 0.5≤k1≤1. The present application also provides an electronic device and a storage medium. The above-mentioned charging method, electronic device and storage medium can quickly charge the battery. |
US11750010B2 |
Detection circuit for an active discharge circuit of an X-capacitor, related active discharge circuit, integrated circuit and method
A method and apparatus for an active discharge of an X-capacitor are provided. A sensor signal, indicative of a voltage at the capacitor, is compared with a lower and upper threshold values. A first value of a smaller one of the lower and upper threshold values is increased to a first new value that is greater than a second value of a larger one of the lower and upper threshold values in response to a first control signal indicating the sensor signal is greater than the upper and lower threshold values. A third value of the greater one of the lower and upper threshold values is decreased to a second new value that is less than the value of the larger one of the lower and upper threshold values in response to a second control signal indicating the sensor signal is less than the upper and lower threshold values. |