Document | Document Title |
---|---|
US11601929B2 |
Dynamically updating transmission configuration indicator (TCI) and spatial relation information
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for dynamically updating transmission configuration information (TCI) state and spatial relation information. For example, downlink control information (DCI) or media access control control element (MAC-CE) is used to update a large number of TCI states. As such, high efficiency, such as in terms of low overhead or usage of memory, is achieved with an increase of the upper limit of configured trigger state numbers. The DCI or MAC-CE is used to dynamically update the content in the large number of TCI states. |
US11601927B2 |
Method and device for determining priority of UL transmission in NR V2X
A method for performing wireless communication by a first device, and a device for supporting same are provided. The method may comprise: transmitting, to a second device, at least one physical sidelink control channel (PSCCH) and at least one physical sidelink shared channel (PSSCH) related to the at least one PSCCH; receiving, from the second device, at least one sidelink (SL) hybrid automatic repeat request (HARQ) feedback information through at least one physical sidelink feedback channel (PSFCH) related to the at least one PSSCH; and determining a priority value of physical uplink control channel (PUCCH) transmission for reporting the at least one SL HARQ feedback information to a base station, based on at least one priority value of the at least one SL HARQ feedback information. |
US11601920B2 |
Methods and apparatuses for multiple transmission and reception point (multi-TRP) physical uplink control channel (PUCCH) scheme determination
Systems, methods, apparatuses, and computer program products for multiple transmission-reception point (multi-TRP) physical uplink control channel (PUCCH) scheme determination are provided. One method may include receiving, at a user equipment, at least one of an indication or configuration comprising information relating to one or more multi-TRP PUCCH schemes. The method may also include determining a multi-TRP scheme to apply for an uplink control information (UCI) transmission using at least one of the indication or the configuration, and transmitting the UCI on PUCCH according to the determined multi-TRP PUCCH scheme. |
US11601915B2 |
V2X communication apparatus and multi-channel transmission method thereof
A multi-channel transmission method of a V2X communication apparatus is disclosed. A multi-channel transmission method of a V2X communication apparatus according to an embodiment of the present disclosure includes acquiring CBR values for each of a plurality of channels; setting a CBR threshold on the basis of the CBR values; selecting a channel candidate group on the basis of the CBR threshold; and transmitting data through a channel included in the channel candidate group. |
US11601913B2 |
Method and apparatus for positioning
Provided is a positioning method performed by a user equipment (UE). The positioning method includes receiving reference signals from a plurality of base stations; acquiring phase difference information depending on a wavelength of at least one subcarrier among subcarriers included in the reference signals; calculating first estimated coordinates of the UE based on first phase difference information depending on a wavelength of a first subcarrier among the subcarriers; and calculating a first travel distance difference between the reference signals from the first estimated coordinates and estimating integer ambiguity of a second phase difference depending on a wavelength of a second subcarrier from the first travel distance difference. |
US11601910B2 |
Sidelink control information (SCI)-triggered sidelink positioning
Aspects relate to sidelink positioning using second stage sidelink control information (SCI-2). A first wireless communication device (e.g., first UE) may transmit SCI-2 including a sidelink positioning establishment message to establish a sidelink positioning session with at least a second wireless communication device (e.g., a second UE). Each of the first UE and second UE may then transmit positioning reference signals (PRSs) and generate and transmit sidelink positioning information based on the PRSs during the sidelink positioning session. The sidelink positioning information may further be transmitted via SCI-2. |
US11601908B2 |
Method and apparatus for managing dual registration with multiple networks in one or more radio communication systems
A method and apparatus provides for establishing a communication connection between the network entity and the user equipment, while the user equipment has established and is maintaining an alternative communication connection with another network entity associated with a second one of the multiple networks. Flow management information is received from a shared common control element of the user equipment, which manages parallel user equipment activity including a flow of information between the user equipment and each of the multiple networks via the respective communication connections. The user equipment is communicated with in a manner which is consistent with the flow management information received from the shared common control element. The shared common control element includes one or more away patterns, that are each shared with a respective one of the first one and the second one of the multiple networks, where each of the one or more away patterns define periods of time during which the corresponding one of the first one and the second one of the multiple networks should avoid scheduling communications with the user equipment. |
US11601906B2 |
Downlink synchronization for non-terrestrial wireless communications
Methods, systems, and devices for wireless communications are described. A narrowband internet of things (NB-IoT) user equipment (UE) associated with a non-terrestrial wireless network may identify a first synchronization procedure that is specific to the non-terrestrial network and different from synchronization procedures specific to terrestrial networks. In some cases, the UE may identify a different channel raster or may receive an indication of a true frequency of operation of a narrowband cell in the non-terrestrial network. The UE may identify the narrowband cell associated with the non-terrestrial network and may synchronize with the network using the identified synchronization procedure. |
US11601903B2 |
User terminal and radio communication method
In order to appropriately control receiving operation in a UE even when a synchronization signal block and a given reference signal overlap with each other in a time resource, a user terminal according to an aspect of the present disclosure includes: a receiving section that receives a synchronization signal block and a given reference signal; and a control section that, when the synchronization signal block and the given reference signal are configured in the same time resource, controls reception of the synchronization signal block and the given reference signal based on a quasi-colocation (QCL) relationship and a subcarrier spacing of the synchronization signal block and the given reference signal. |
US11601897B2 |
Dynamic adjustment of transmission parameters
Manners of complying with SAR limits at a user equipment (UE) configured to establish a first communication connection using a first radio and a second communication connection using a second radio. The UE determines that a first application associated with the first communication connection is to be prioritized over a second application associated with the second communication connection, determines a specific absorption rate (SAR) value associated with the UE and modifies, responsive to the SAR value associated with the UE, a parameter associated with the first radio or the second radio based on at least the priority of the first application relative to the second application. |
US11601896B2 |
Determining a power headroom report
Apparatuses, methods, and systems are disclosed for determining a power headroom report. One method includes determining a power headroom report for transmission on a physical uplink shared channel resource corresponding to a configured grant. The method includes transmitting the power headroom report on the physical uplink shared channel resource, wherein: determining the power headroom report comprises determining whether the power headroom report is based on a real transmission or a reference format based on signaling for configured grants and downlink control information received up until a predetermined time before a first uplink symbol of the physical uplink shared channel resource; and the predetermined time is computed based on: a first parameter set to zero; and a subcarrier spacing of an active downlink bandwidth part of a scheduling cell for the configured grant. |
US11601891B2 |
Uplink transmission techniques for exposure limited transmissions
Methods, systems, and devices for wireless communications are described for handling uplink grants that have associated uplink transmission that may exceed exposure limits. Exposure limits may be based on maximum permissible exposure (MPE) limits of millimeter wave transmissions and may be determined at a user equipment (UE) and provided to a base station. If the UE receives an uplink grant for a transmission in which an associated uplink transmission would exceed the exposure limits, the UE may drop the uplink transmission prior to forming a transport block, transmit control signaling to the base station to indicate the exposure limits at the UE, or combinations thereof. |
US11601890B2 |
Flexible uplink power control for aerial user equipments
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for managing uplink power control. For example, the techniques may be used for uplink power control for physical uplink shared channel (PUSCH) transmissions from unmanned aerial vehicles (UAVs). |
US11601885B2 |
Channel access for multi-user (MU) wake-up signal transmission by using FDMA scheme
Systems and methods of transmitting a multi-user (MU) wake-up packet in FDMA. In the wake-up setup stage, an STA informs the AP that it can resolve an MU wake-up packet transmitted in FDMA. Accordingly, AP allocates a frequency channel to the STA in a WUR setup response frame which indicates a channel offset relative to the primary channel. Moreover, if a WUR channel allocated to an STA is inaccessible or there is on pending wake-up signal for the STA, no wake-up signal is included in the MU wake-up packet while any other accessible allocated channels may still be utilized for transmitting the scheduled wake-up signals. During such a transmission, an inaccessible channel may be punctured; and an accessible channel having no pending wake-up signal may be used to carry an invalid wake-up signal or a legacy preamble followed with no wake-up signal. |
US11601884B2 |
Electronic device for providing mobile hotspot and method of operating electronic device to provide mobile hotspot
According to an embodiment, an electronic device comprises a communication module and at least one processor. The at least one processor is configured to establish a first network connection with a first external electronic device via a first communication module of the communication module, identify a first distance between the electronic device and the first external electronic device, identify first state information about the first external electronic device, and control a reception module of the first communication module to remain in a sleep state during a sleep time identified based on the first state information and the first distance. Other various embodiments are possible as well. |
US11601880B2 |
Power management for a user equipment in a multi-radio connectivity mode or carrier aggregation mode
A UE may, responsive to detecting a power-related condition, send a message to induce the master node to release the secondary node. Such a message can include a message reporting a radio link failure of the secondary node, or, if a channel quality indicator is configured for at least some of the secondary cells of the secondary node, reporting a low CQI value so that the network can cease scheduling on such cells. Alternatively, in a carrier aggregation (CA) mode, with the UE connected to a single node comprising a primary cell and one or more secondary cells, the UE may not control which and how many secondary cells with which it communicates. In such a scenario, if such secondary cells are configured for channel quality indicator reporting, the UE may report a low CQI value so that the node will cease scheduling data on such cells. |
US11601878B2 |
Methods and systems for intelligent AMF assignment to minimize re-direction
A method, a system, and a non-transitory storage medium are described in which an access and mobility management function (AMF) assignment service is provided. A network device receives an assignment policy for selecting an AMF from a group of available AMFs, wherein the assignment policy includes network slice priorities for available network slices in the RAN; stores the assignment policy; receives, during a registration procedure initiated by an end device, Network Slice Selection Assistance Information (NSSAI); identifies, from the NSSAI, multiple single-NSSAIs (S-NSSAIs); and selects, based on the assignment policy, an AMF for a highest priority S-NSSAI, of the multiple S-NSSAIs. |
US11601877B2 |
Systems and methods for exposing network slices for third party applications
A system includes one or more devices. The devices are configured to: receive a message indicating that a network slice has been deployed in a network, wherein the message includes information related to the network slice; send the information to an application that provides services to User Equipment (UE) devices subscribed to the network; and initiate updates to UE route selection policies (URSPs) in the network based on the information, allowing communications from UE devices to reach the network slice. |
US11601875B2 |
Multiple radio access technology application management
An application management apparatus for controlling tasks, including a task split and response merge circuit configured to divide an application into a plurality of tasks and associate respective Key Performance Indicator (KPI) attributes to the plurality of tasks; and a task management circuit configured to allocate each of the plurality of tasks to a first or second Radio Access Technology (RAT) based on the KPI attributes, and to derive a plurality of task responses from the first or second RATs to which the respective plurality of tasks are allocated, wherein the task split and response merge circuit is further configured to merge the task responses to select the first or second RAT to run the application. |
US11601874B2 |
Uplink carrier access
One or more devices, systems, and/or methods for facilitating access to an uplink carrier are provided. For example, information corresponding to a plurality of uplink carriers may be received from a wireless node. An uplink carrier may be selected from the plurality of uplink carriers based upon the information. A request to access the uplink carrier may be transmitted to the wireless node. |
US11601871B2 |
Data connection establishment method and terminal device
A data connection establishment method and a terminal device, where the method includes receiving, by an application processor (AP), a switch-on instruction, sending, by the AP, a network searching instruction to a communications processor (CP), where the network searching instruction instructs the CP to search for a network, receiving, by the AP, subscriber identity module (SIM) card status change information and network status change information from the CP, and sending, by the AP, a data connection establishment instruction to the CP based on the SIM card status change information and the network status change information, where the data connection establishment instruction instructs the CP to establish a data connection to the found network. |
US11601870B2 |
Terminal, radio communication method and base station to monitor search spaces
The present invention is designed so that communication is performed appropriately in radio communication systems that support different numerologies than existing LTE systems. A receiving section that receives a downlink control channel, and a control section that controls the detection of search spaces that serve as candidates for allocating the downlink control channel are provided, and the control section controls the detection of a common search space and a user-specific search space, in which different subcarrier spacings and/or different transmission cycles are configured. |
US11601869B2 |
Non-public network discovery, selection, and access control in vertical domain
In one embodiment, an apparatus of a User Equipment (UE) device includes memory storing non-public network (NPN) configuration information, a radio frequency (RF) interface, and processing circuitry coupled to the memory and the RF interface. The RF interface receives information broadcast by a radio access network (RAN) node of the particular NPN, where the information includes a NPN indicator indicating that the RAN node supports a NPN and NPN service information indicating services supported by the particular NPN. The processing circuitry establishes, in response to detecting the NPN indicator in the information received from the RAN node, a connection to the particular NPN based on the NPN configuration information and the NPN service information received from the RAN node. |
US11601864B2 |
Wireless communication apparatus and method for selecting one or more relay communication devices based on historical and current energy information
An apparatus and method for wireless communication. The apparatus includes processing circuitry: configured to receive a relay establishment request from a source communication device; configured to acquire historical energy information and current energy information about a candidate communication device as a relay candidate, and to determine one or more relay communication devices to be used as a relay based on the acquired information; and configured to send information about the relay establishment to the one or more relay communication devices, the source communication device, and a destination communication device. |
US11601863B2 |
System and method for implementing combined broadband and wireless self-organizing network (SON)
Novel tools and techniques might provide for implementing combined broadband and wireless self-organizing network (“SON”) for provisioning of services. In some embodiments, a computing system might receive, from one or more first sensors and one or more second sensors, first operational states of fixed broadband network nodes and second operational states of wireless network nodes, respectively. The computing system might analyze the received first and second operational states, might determine an optimal network pathway and/or an optimal network backhaul pathway, and might establish the optimal network pathway and/or the optimal network backhaul pathway, through a determined combination of fixed and wireless network nodes, thereby implementing the combined broadband and wireless self-organizing network (“SON”) for provisioning of services. |
US11601861B2 |
Unmanned aerial vehicle control method and apparatus
A method and apparatus for controlling a UAV are provided. The method is applied to a base station, and includes: receiving flight path information transmitted by a UAV controller, wherein the flight path information represents a flight path set by the UAV controller for a UAV controlled by the UAV controller; determining the flight path based on the flight path information; and determining a next base station to which the UAV is to move based on the flight path, and performing a handover preparation for the next base station. Therefore, the present disclosure improves the mobility of the UAV and can also reduce the latency of handover between base stations. |
US11601857B2 |
Method for providing steering in a Wi-Fi network
Various implementations described herein are directed to technologies for providing steering for devices of a Wi-Fi network. A steering operation to hand off a client from a first device of the Wi-Fi network to a qualified second device of the Wi-Fi network is initiated based on a performance factor. The steering operation from the first device to the second device is performed in a manner that avoids packet loss. |
US11601856B2 |
Radio terminal, processor, and method for performing cell reselection
A user equipment, apparatus provided in a user equipment, and method are for receiving a Multicast Broadcast Service, and include receiving a system information block (SIB) from a current serving cell of the user equipment, and performing a cell reselection operation where a cell having a highest ranking determined based on a radio quality and an offset is selected as a serving cell of the user equipment from among a plurality of cells. In the cell reselection operation, a determination is made, based on the SIB, whether to use an infinite offset as the offset to be applied to a cell providing the Multicast Broadcast Service. |
US11601852B2 |
PDU sessions with various types of session continuity
Apparatuses, methods, and systems are disclosed for providing data connectivity with various types of continuity. One apparatus includes a transceiver and a processor that provisions a UE with a continuity selection policy comprising at least one prioritized rule for selecting a data session continuity type from a plurality of data session continuity types supported by a mobile communication network based on at least one characteristic of a request to establish a data session. The transceiver receives a request to establish a data session from the UE device, wherein the request specifies a particular data session continuity type. The processor establishes a first data connection with the UE device in response to the request, the first data connection having the particular data session continuity type. Here, the first data connection includes a PDU session between the UE device and the mobile communication network. |
US11601851B2 |
Early resource reservation
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine whether sufficient resources are available to perform a transmission in a current slot. The UE may transmit the transmission in the current slot, transmit an early reservation signal for a future resource, or determine whether sufficient resources are available to perform the transmission in a subsequent slot based at least in part on a probability-based determination and based at least in part on whether sufficient resources are available to perform the transmission in the current slot. Numerous other aspects are provided. |
US11601848B2 |
Method and apparatus for offloading data in wireless communication system
A method and an apparatus for offloading data in a wireless communication system are provided. The method performed by a user equipment (UE) of offloading data includes determining a server for processing at least some of the data, receiving, from the server, a list regarding splitting points at which the data is splittable, determining, based on the list, at least one of the splitting points as an offloading point, transmitting, to the server, information about the offloading point and information about requirements for offloading data corresponding to the offloading point, receiving, from the server, a response as to whether the offloading data is capable of being processed, and determining whether the offloading data is to be processed, based on the response. |
US11601847B2 |
Agent, server, core network node and methods therein for handling an event of a network service deployed in a cloud environment
A method performed by an agent for handling an event of a network service deployed in a cloud environment is provided. The agent is capable to access to a server in the cloud environment. The agent obtains information from the server. The information is about an event of the network service. When the network service relates to a Third Generation Partnership Project (3GPP) network, the agent decides whether to register network service with or without an associated address of a load balancer of the network service. The agent then registers in a core network node operating in the 3GPP network, the network service with or without an associated address of a load balancer of the network service according to the event and according to the outcome of the deciding. |
US11601846B2 |
Method and device for transmitting data
A method and a device for receiving and transmitting data in in a wireless local area network are provided. The device receives a physical layer protocol data unit (PPDU) from a station over a transmission bandwidth and determines whether the station is a member of a basic service set (BSS) managed by the device based on the PPDU. When the PPDU is a multi-user (MU)-PPDU, the AP determines that the station is not a member of the BSS managed by the AP. Such MU-PPDU includes a first signal field and a second signal field, the first signal field having bandwidth information indicating the transmission bandwidth, the second signal field having user-specific information with allocation for orthogonal frequency division multiple access (OFDMA) transmission. |
US11601844B2 |
Managing overload in at least one core network
A shared Radio Network Node, RNN, and a method for managing overload in a core network. The shared RNN is configured to serve a wireless device, and the wireless device and the RNN are operating in a wireless communications network connected to the core network. The RNN receives a connection request from the wireless device, wherein the connection request comprises a mapping parameter configured to map to an MME connected to the RNN. Further, the MME is logically partitioned into several MMEs and configured to support multiple MME Codes, MMECs, each of which MMECs is pointing at a sharing operator. The mapping parameter comprises an MMEC configured to map to one MMEC supported by the MME. Further, the RNN rejects or redirects the connection request when the MMEC configured to map to one MMEC supported by the MME is associated with an overload action. |
US11601841B2 |
Radio station, radio communication method, non-transitory computer readable medium, and radio communication system
The present disclosure provides a radio station and a radio communication method capable of performing efficient control in Dual Connectivity. A radio station (10) includes: a classification unit (11) that classifies, when a data radio bearer is established with a communication terminal through a radio station (20), the data radio bearer into one of a plurality of groups based on a predetermined classification condition; and a transmission unit (12) that transmits, to the radio station (20), an establishment request message requesting establishment of the data radio bearer, and the group into which the data radio bearer is classified. |
US11601840B2 |
Enhanced congestion control mechanism for sidelink
A first wireless device receives, from a base station, a configuration message indicating: a first power control parameter set for a first sidelink feedback type; and a second power control parameter set for a second sidelink feedback type. The first wireless device receives, from a second wireless device, a sidelink feedback type indication one of the first sidelink feedback type and the second sidelink feedback type. The first wireless device selects, based on the sidelink feedback type indication, one of the first power control parameter set and the second power control parameter set as a selected power control parameter set. The first wireless device determines a transmit power of a feedback signal based on the selected power control parameter set. The first wireless device transmits to the second wireless device, the sidelink feedback signal based on the transmit power. |
US11601839B1 |
Adaptive physical layer interface control for a wireless local area network
A wireless access point (WAP) supports one or more physical layer (PHY) operational parameters which can be restricted from use to lessen congestion within a wireless network (WN). The WAP periodically transmits a management frame to enable one or more communication devices to establish and/or maintain communication with the WAP. The wireless network can restrict one or more of the one or more PHY operational parameters, such as PHY data rates to provide an example, that are supported by the WAP from being utilized for communicating the management frame. This restriction of the one or more PHY operational parameters allows the WAP to periodically transmit the management frame at an increased PHY data rate thereby decreasing time needed for communicating the management frame which can lessen the congestion within the WN. |
US11601829B2 |
Modular test and measurement device
A modular test instrument for performing tests and measurements in a network is disclosed. The modular test instrument may include a modular processing unit comprising a processor and memory, the modular processing unit connectable to at least one modular test unit or modular test subunit. The modular test instrument may also include a modular display unit connectable to the modular processing unit or the modular test unit. Display modularity may enable quick and cost-efficient display replacement when damage, malfunction, or failure is incurred. Furthermore, the modular test instrument may include an additional modular test subunit connectable to at least one of the modular processing unit or the modular test unit. When the modular processing unit is fitted with the modular display unit, the modular least, or modular test subunit, for example, the modular test instrument may form an integrated test instrument for performing any number of tests and measurements associated with installation, troubleshooting, or maintenance of a long-term evolution (LTE) or 5G network. |
US11601826B2 |
Method and apparatus for implementing wireless system discovery and control using a state-space
Systems and methods for controlling a wireless network receive data from wireless access points within a wireless network and use the data in a model of the wireless network to identify allowable transitions between states defined by the model. Parameters for the wireless access points are adjusted to initiate transitions between the states and, based on the transitions, the model is updated. |
US11601823B2 |
Mobile station control method and mobile station control apparatus
A mobile station control method by a computer for controlling a first mobile station for communicating with a second mobile station includes: distance detecting of detecting a distance between the first mobile station and the second mobile station; and first switching of switching a beam width of an electromagnetic wave emitted from the first mobile station to the second mobile station switching a beam width of an electromagnetic wave emitted from the first mobile station to the second mobile station the distance. |
US11601822B2 |
Random access method and communications device
This disclosure provides a random access method and a communications device. The method includes: transmitting a message in a random access process by using a target beam in selectable beams, where the message in the random access process is an Msg1, an Msg2, an Msg3, or an Msg4. |
US11601817B2 |
Postponed eSIM delivery to secondary mobile wireless device for cellular wireless service subscription
This Application sets forth techniques for cellular wireless service management for a secondary mobile wireless device assisted by a primary mobile wireless device, including delayed delivery of an electronic subscriber identity module (eSIM) to the secondary mobile wireless device for subscription to cellular wireless service of a mobile network operator (MNO). |
US11601816B2 |
Permission-based system and network for access control using mobile identification credential including mobile passport
A provider system is connected to readers disposed at distances from the provider system. A secure local connection is established between the client device and the provider system via one of the readers. Before the client reaches an access touchpoint, the provider system receives from the client device a request for client access, the provider system sends to the client device a request for identification information of the client, and the client device sends client information associated with a first mobile identification credential (MIC) which the client device received from an authorizing party system (APS), the client having consented to release the client information to the provider system, and the client information having been verified. The provider system uses the verified client information associated with the first MIC to verify or not verify the identity of the client before granting or denying the request to the client. |
US11601815B2 |
Method and device for communication, and readable storage medium
A communication method, a communication device, and a readable storage medium, wherein the communication method includes: establishing a communication connection with a data source device; establishing a second wired connection with at least one other device; and exchanging identification information with the at least one other device through the second wired connection, thereby the at least one other device receiving communication data sent from the data source device according to the received identification information. With the above method, multi-device communication is performed quickly and reliably. |
US11601813B2 |
Preventing wireless connections to an unauthorized access point on a data communication network using NAV values
Broadcasts of a probe request are detected from a wireless station with the MAC address for an unauthorized access point in order to begin association between the wireless station and the unauthorized access point. Responsive to the probe request detection, a spoofed probe response is transmitted including a MAC address of the unauthorized access point to the station to appear as if sent by the unauthorized access point. The probe response includes a NAV element and the MAC address of the unauthorized access point, the NAV element set at a value high enough to prevent the station from transmitting to the unauthorized access point during a period. |
US11601812B2 |
System and method for small unmanned aerial systems (sUAS) defense
Provided is a method and a computer device for performing the method for defending a perimeter against a small unmanned aerial system (sUAS). The method includes detecting a presence of a wireless access point (WAP) associated with a sUAS; analyzing data packets intercepted from the WAP; determining the type of sUAS based on the data packets that were intercepted using a machine learning classifier; determining one or more exploits from a library of exploits to initiate against the sUAS based on the type of sUAS determined by the machine learning classifier; and transmitting the one or more exploits to the sUAS. |
US11601810B2 |
Communication protocols in integrated systems
A system and methods comprise a touchscreen at a premises. The touchscreen includes a processor running gateways and coupled to a security system at the premises. User interfaces are presented via the touchscreen. The user interfaces include a security interface that provides control of functions of the security system and access to data collected by the security system, and a network interface that provides access to network devices. A network device at the premises is coupled to the touchscreen via a Wi-Fi channel. A security server at a remote location is coupled to the touchscreen. The security server comprises a client interface through which remote client devices exchange data with the touchscreen and the security system. |
US11601808B2 |
Flexible device onboarding via bootstrap keys
This technology uses a bootstrap key (“BSK”) to securely onboard a computing device to a network. A unique BSK associated with an onboarding computing device is used to verify for various deployment models (1) that the computing device has proof the computing device is connecting to the correct wired or wireless network and (2) that the network has proof the computing device is trusted. The BSK may be an associated BSK or an embedded BSK. A computing device receives a signed voucher from the manufacturer authorized signing authority (“MASA”) before the computing device may onboard to a network. The MASA will issue a voucher to a Bootstrapping Remote Secure Key Infrastructure (“BRSKI”) registrar if the registrar proves knowledge of the computing device's BSK to the MASA or the registrar has an established trust relationship with the MASA. |
US11601805B2 |
5G broadcast/multicast security
A user equipment (UE) may receive a quality of service (QoS) flow for a multicast or broadcast service that is secured with a multicast-broadcast key. The UE may transmit a data session establishment request to a service management function (SMF) for the multicast or broadcast service. The UE may receive at least one multicast-broadcast key for the PDU session. The UE may determine a radio bearer (RB) configuration for the multicast or broadcast service. The UE may receive one or more QoS flow packets for the multicast or broadcast service over the RB. The UE may decode the one or more QoS flow packets using the at least one multicast-broadcast key, or a key derived from the at least one multicast-broadcast key. Decoding may include decrypting, verifying the integrity, or a combination thereof. |
US11601804B2 |
Communication apparatus and method for secure low power transmission
The present disclosure provides a communication apparatus comprising a cryptographic circuitry which, in operation, uses a shared cryptographic secret Key and a cryptographic salt to generate a cryptographically encoded Message Integrity Code (MIC) that is computed over the address field of a Wake Up Radio (WUR) frame; and a transmission signal generator which, in operation, generates a secure WUR signal by replacing the address field of the WUR frame with the MIC; and a transmitter which, in operation, transmits the secure WUR signal. |
US11601801B2 |
System, method, apparatus, and computer program product for providing mobile device support services
A method is provided for providing mobile device support services. The method may include monitoring a mobile device status. The method may additionally include performing device diagnostics based at least in part on captured deice status data to identify potential faults that may affect mobile device functionality. A corresponding system, apparatus, and computer program product are also provided. |
US11601799B2 |
Radio communication module, radio terminal, vehicle, and control method
A radio communication module 10 includes: a radio communicator 12 configured to perform radio communication; a storage 14 configured to store set information that sets operation relating to radio communication; and a controller 13 configured to stop at least transmission operation of the radio communicator 12 or change at least a part of set information accorded to a specification of a communication carrier of a first country, when it is set so as to operate by using the set information accorded to the specification of the communication carrier of the first county and the radio communication module 10 locates in a second country different to the first country. |
US11601793B2 |
Electronic device supporting proximity communication service and method for obtaining information of short-range communication device using the same
According to certain embodiments, an electronic device comprises a first communication circuit configured to support a first communication protocol; a display; and at least one processor operatively connected to the first communication circuit and the display, wherein the at least one processor is configured to: configure a cluster with at least one external electronic based on the first communication protocol device through the first communication circuit, receive through the first communication circuit, from the at least one external electronic device, information identifying at least one short-range communication device connected to the at least one external electronic device via a second communication protocol, and control the display to display at least one indicator of the at least one short-range communication device based on the information received from the at least one external electronic device. |
US11601786B2 |
Posting right giving device, posting right giving method, and posting right giving program
A posting right giving device acquires region information indicating a region designated by an establisher requesting creation of a community. The posting right giving device stores the acquired region information and community identification information for identifying the community in association with each other in a storage. The posting right giving device acquires positional information indicating a position of a terminal device used by a user different from the establisher. The posting right giving device executes, when the position indicated by the acquired positional information is included in the region indicated by the stored region information, processing for giving the user a right to post information to the community identified with the community identification information stored in association with the region information. The right to post information allows the user to post the information regardless of whether the terminal device is located within the region. |
US11601776B2 |
Smart hybrid rendering for augmented reality/virtual reality audio
An example device for processing one or more audio streams includes a memory configured to store the one or more audio streams and one or more processors implemented in circuitry coupled to the memory. The one or more processors are configured to determine a listener position. The one or more processors are also configured to determine one or more clusters of the one or more audio streams. The one or more processors are also configured to determine a rendering mode based on the listener position and the one or more clusters. The device also includes a renderer configured to render at least one of the one or more clusters of audio streams based on the rendering mode. |
US11601773B2 |
Binaural multi-channel decoder in the context of non-energy-conserving upmix rules
A multi-channel decoder for generating a binaural signal from a downmix signal using upmix rule information on an energy-error introducing upmix rule for calculating a gain factor based on the upmix rule information and characteristics of head related transfer function based filters corresponding to upmix channels. The one or more gain factors are used by a filter processor for filtering the downmix signal so that an energy corrected binaural signal having a left binaural channel and a right binaural channel is obtained. |
US11601772B2 |
Systems and methods for enhancing attitude awareness in ambiguous environments
Systems and methods for using auditorily-induced vection (AIV) to enhance a person's attitude awareness are provided herein. In at least one embodiment, an auditory object is projected based on the orientation of the person or a vehicle and the projected auditory is provided to the person. By projecting the auditory object, the attitude of the person or the vehicle can be conveyed to the person to enhance the person's attitude awareness. |
US11601769B2 |
Method for testing an audio signal system and aircraft comprising an audio signal system
A method for testing an audio signal system having multiple audio component connection sockets, each socket having at least one audio signal interface connected to a ground interface of the socket via a series circuit including a resistor and a capacitor, including feeding, via a signal processing device, a time domain reflectometry test signal into a wired network of the audio signal system, in which the sockets are connected to the signal processing device via differently lengthed electrical lines, detecting in a temporally resolved manner, via the signal processing device, test return signals reflected at the multiple sockets, comparing the detected test return signals with a temporally resolved reference pattern for test return signals, which reference pattern was created under predefined boundary conditions, and determining a faulty connection of a socket if comparing the detected test return signals with the reference pattern reveals a deviation above a predefined threshold value. |
US11601767B2 |
Antenna structure for hearing devices
A hearing device includes an enclosure comprising a shell and a faceplate and is configured for at least partial insertion within an ear of a user. An antenna structure of the hearing device is oriented such that a direction of an electric field (E-field) of a propagating electromagnetic signal generated by the antenna structure is directed non-tangentially with respect to the user at the location of the user's ear. The antenna structure includes an antenna disposed in or on the faceplate and a ground plane at least partially supported by the faceplate. A battery and electronic circuitry are disposed within the shell. The electronic circuitry is powered by the battery and is electrically coupled to send and/or receive signals via the antenna structure. |
US11601766B2 |
Binaural hearing system having two hearing instruments to be worn in or on the ear of the user, and method of operating such a hearing system
A binaural hearing system for assisting a hearing of a user includes two hearing instruments each to be worn in or on an ear of the user. An audio signal is modified in each of the two hearing instruments by way of a programmable signal processor of the respective hearing instrument by executing a plurality of software modules of firmware of the hearing system and is output by an output transducer of the respective hearing instrument. The executed software modules of the firmware are distributed asymmetrically on the two hearing instruments, so that at least one of the software modules of the firmware is selectively executed in one of the two hearing instruments. |
US11601764B2 |
Audio analysis and processing system
An audio analysis and processing system with a processor configured with an audio array input thread connected to a plurality of audio input channels each corresponding to an audio input sensor. An audio input sensor may be positionally related to a position of other audio input sensors and a source input thread may be configured to be connected to a microphone audio input channel. An audio output thread may be configured to be connected to a speaker output channel and a beamformer thread may be responsive to the audio array input thread. A beam analysis and selection thread may be connected to an output of the beamformer thread and a mixer thread may have a first input connected to an output of the source input thread and a second input connected to an output of the beam analysis and selection thread and may have an output connected to the audio output thread. The audio input channel may be connected to the personal communication device. The microphone audio input channel may be connected to the personal communication device. The processor may include a line output thread configured to connect to an audio output channel. An audio information interface may be provided to connect signals representing audio to the processor. |
US11601763B2 |
Lateral mode capacitive microphone including a capacitor plate with sandwich structure for ultra high performance
The present invention provides a capacitive microphone including a MEMS microphone. In the microphone, a movable or deflectable membrane/diaphragm moves in a lateral manner relative to a fixed backplate, instead of moving toward/from the fixed backplate. The fixed backplate includes an electrical insulator sandwiched between two sub-conductors to cancel systematic/background noise. The squeeze film damping is substantially avoided, and the performance, such as signal to noise ratio, of the microphone is significantly improved. |
US11601759B2 |
Multi-channel cinema amplifier with power-sharing, messaging and multi-phase power supply
An integrated cinema amplifier comprises a power supply stage that distributes power over a plurality of channels for rendering immersive audio content in a surround sound listening environment. The amplifier automatically detects maximum and net power availability and requirements based on audio content by decoding audio metadata and dynamically adjusts gains to each channel or sets of channels based on content and operational/environmental conditions. A power supply stage provides power to drive a plurality of channels corresponding to speaker feeds to a plurality of speakers. The amplifier has a front panel having an LED array with each LED associated with a respective channel or group of channels of the multi-channel amplifier, and a control unit configured to light the LEDs according to display patterns based on operating status or error conditions of the amplifier. |
US11601758B2 |
Audio signal processing chip, multichannel system, and audio signal processing method
An audio processing chip includes a detector circuit, a first-in first-out (FIFO) circuit, and an adjustment circuitry. The detector circuit is configured to detect an audio stream to output an enable signal. The FIFO circuit is configured to start outputting audio data corresponding to a channel in the audio stream to be a first signal. The adjustment circuitry is configured to process the first signal, in order to generate an output signal and transmit the output signal to a speaker. |
US11601751B2 |
Display control device and display control method
A display control device includes a control unit that displays a sound pressure level distribution of predetermined sound data and a recordable range corresponding to a quantization bit depth during recording of the sound data on a display unit. |
US11601749B1 |
Ceiling tile microphone system
This disclosure describes a ceiling tile microphone system that includes a plurality of microphones coupled together as a microphone array and used for beamforming processing, one or more separate processing devices that couple to the microphone array, where one or more separate processing devices further include beamforming, acoustic echo cancellation, and adaptive acoustic processing; a single ceiling tile with an outer surface on the front side of the ceiling tile where the outer surface is acoustically transparent, the microphone array combines with the ceiling tile as a single unit, the ceiling tile being mountable in a drop ceiling in place of a ceiling tile included in the drop ceiling; where the system is used in a drop ceiling mounting configuration; where the microphone array couples to the back side of the ceiling tile and all or part of the system is in the drop space of the drop ceiling. |
US11601746B2 |
Integrated sub-assembly for wearable audio device
An audio headset sub-assembly (600, 700, 900, 1000, 1200, 1300, 1500) providing the operative functionality for true wireless headphones/headset (100) includes circuitry operative to effect wireless communication and audio signal processing, and a battery (212). These circuits and battery (212) are contained in a sealed enclosure (610, 710, 1210, 1310). In one embodiment, the sub-assembly (600, 700, 900, 1000, 1200, 1300, 1500) includes all electronic components for wireless communications and audio signal processing, and a battery (212), but does not include a speaker. A microphone (240) may be part of the sub-assembly (600, 700, 900, 1000, 1200, 1300, 1500) or may be external. In another embodiment, a speaker (230) is part of the sub-assembly (600, 700, 900, 1000, 1200, 1300, 1500) as well. The sub-assembly (600, 700, 900, 1000, 1200, 1300, 1500) may include several cavities (1254, 1252) and vents (1264, 1262) before and behind the speaker (230) for optimal acoustic performance. The sub-assembly (600, 700, 900, 1000, 1200, 1300, 1500), and any necessary external audio components, can be inserted in an external housing (104) forming the visual product appearance and the anthropometric comfort and fit design of a true wireless headphone or headset (100). |
US11601740B2 |
Automated microphone system and method of adjustment thereof
There is provided an automated microphone system (100) having a microphone (104). The system (100) comprises a microphone stand (102) having at least one movable arm (1022), at least one movable leg (1024) and a fixed base (1026) attached to the at least one movable leg (1024), the at least one movable arm (1022) being adapted to mount the microphone (104) at a first end and connected with the at least one movable leg (1024) at a second end, one or more sensors (106) disposed at one or more of the at least one movable leg (1024), the at least one movable arm (1022) and the fixed base (1026), one or more motors (108) connected with each of the at least one movable arm (1022), the at least one movable leg (1024) and the fixed base (1026) and a control module (110) connected with the one or more sensors (106) and the one or more motors (108). |
US11601736B2 |
Transmitting method, receiving method, transmitting device, and receiving device for interface data
Disclosed are a transmitting method, a receiving method, a transmitting device and a receiving device for interface data. The transmitting method includes: interface data is obtained by the transmitting device via a first USB interface. The interface data is processed to obtain UDP packet by the transmitting device. The UDP packet is transmitted, by the transmitting device, to a first communication module. The UDP packet is transmitted to the receiving device or switch. By adopting the disclosure, ultra-low latency transmission of USB interface data between devices in long-distance transmission can be achieved. |
US11601733B2 |
Temperature sensing of a photodetector array
Methods and apparatus for temperature sensing in a detector system. Dark current from pixels in a pixel array of the detector system can be filtered to remove noise and processed to determine a temperature of the pixel array from the filtered dark current. Calibration of the dark current for a range of temperatures can be performed. In embodiments, the pixels comprise photodiodes. |
US11601731B1 |
Computer program product and method for auto-focusing a camera on an in-person attendee who is speaking into a microphone at a hybrid meeting that is being streamed via a videoconferencing system to remote attendees
A camera is auto-focused on an in-person attendee in a hybrid meeting who is speaking into a microphone at a live location of the hybrid meeting, wherein the hybrid meeting is being streamed via a videoconferencing system to one or more remote attendees. The live location includes a real-time location system (RTLS) having a RTLS tag and a plurality of RTLS anchors for locating a position of the RTLS tag in three-dimensional space. The RTLS tag is fixed to the microphone. In operation, it detected when the microphone is active. The position of the RTLS tag in the live location is then identified, wherein the position of the RTLS tag in the live location is presumed to be the same position as the microphone that the RTLS tag is fixed to. The camera is auto-focused on the identified live location when the microphone is active, the camera thereby outputting a video signal of an area in the proximity of the microphone which is presumed to include an image of the in-person attendee who is speaking into the microphone. The live location camera image and the audio signal are then transmitted to the videoconferencing system for streaming to the one or more remote attendees. |
US11601730B2 |
Non-temporal advertising
Methods, systems, and apparatuses are described herein for providing alternate content in place of other content based on an issue associated with receiving the other content. The alternate content may be an advertisement associated with the other content. Output of the other content may resume once the issue is resolved and/or after output of the alternate content has concluded. |
US11601727B2 |
Interactive advertising system
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for providing an interactive advertising system and components thereof. |
US11601725B2 |
Server, terminal apparatus, display device, and control method thereof
The disclosure relates to a server, a terminal apparatus, a display apparatus and control methods thereof, the server including: a communicator configured to communicate with an outside; a storage; and a processor configured to, based on a user input for setting a user screen corresponding to a predetermined user being received in a terminal apparatus connected through the communicator, identify a configuration of an edit screen for setting the user screen based on user information stored in the storage, control the communicator to transmit information about the edit screen based on the identified configuration to the terminal apparatus, receive user input information about the edit screen displayed on the terminal apparatus through the communicator, set the user screen by storing the received user input information in the storage, and control the communicator to provide the set user screen to the display apparatus. Thus, there is provided a user screen configured with information needed for a user. |
US11601723B2 |
Media-providing system, method and computer program for processing on-demand requests for commerce content
A method for transmitting, by a media-providing server, on-demand content related to commerce content to a set-top box includes receiving a first on-demand request signal for the on-demand content from the set-top box and transmitting the first on-demand request signal to a data server, by the media-providing server, in response to the first on-demand request signal, generating an on-demand call request signal including a product code of the commerce content and a user code of the set-top box and transmitting the on-demand call request signal to an on-demand ARS server, by the data server; receiving process status information on the on-demand call request signal from the on-demand ARS server and transmitting a message corresponding to the process status information to a user terminal corresponding to the first on-demand request signal, by the data server. |
US11601721B2 |
Interactive video dynamic adaptation and user profiling
The presentation of an interactive video is dynamically modified based on a user profile. A first interactive video can be represented by a first video tree defining multiple branches in the first interactive video, with each branch having one or more video segments. Information is tracked including (i) the content of video segments played during presentation of the first interactive video and/or (ii) decisions of a user made during the presentation of the first interactive video. A user profile having measured attributes is generated based on the tracked information. The profile can then be used in dynamically modifying the presentation of a second interactive video. |
US11601720B2 |
Content event messaging
Methods, systems, computer readable media, and apparatuses are disclosed for providing event messages to a user. The event messages may include video data or a link to video of the event. In some variations, a user or content provider may define criteria for the event messages that are to be displayed to the user. The event messages may be stored so that a user may be able to browse through the stored event messages and decide when to view the video of the event. Upon a user's selection of the event message, the video of the event may be displayed to the user on the same display device or another display device. |
US11601715B2 |
System and method for dynamically adjusting content playback based on viewer emotions
A system and method of adjusting playback of content in response to a viewer's emotional reaction is disclosed. The method includes detecting viewer emotion, via a camera, in reaction to subject matter of the content being presented on a display screen. The content includes subject matter and metadata associated with the subject matter. Additionally, the method analyzes the viewer emotion in reaction to the subject matter of the content presented on the display screen and identifies the analyzed viewer emotion in reaction to the subject matter of the content. The method also associates an identified viewer emotion with at least one playback attribute linked with the presentation of the content using the metadata associated with the subject matter of the content presented on the display screen. Further, the method adjusts the at least one playback attribute linked with presentation of the content that corresponds with the identified viewer emotion. |
US11601714B2 |
Methods, apparatus, and machine-readable storage media to monitor a media presentation
Methods, apparatus, and machine-readable storage media to monitor media presentations are disclosed. A disclosed example apparatus includes a locator to compare a location of a mobile device with a set of reference locations at which audio monitoring is to be performed. The disclosed example apparatus further includes an audio receiver to enable a microphone of the mobile device to collect audio for media monitoring when (1) the location of the mobile device corresponds to a first one of the reference locations and (2) a media presentation monitor at the first one of the reference locations indicates a likelihood of media being presented at the first location satisfies a threshold. In some disclosed examples, the audio receiver of the example apparatus is to disable the microphone from collecting audio for media monitoring when the location of the mobile device does not correspond to any of the reference locations. |
US11601713B2 |
System and method for media segment identification
A system and method for identifying media segments using audio augmented image cross-comparison is disclosed, in which a media segment identifying system analyses both audio and video content, producing a unique identifier to compare with previously identified media segments in a media segment database. The characteristic landmark-linked-image-comparisons are constructed by first identifying an audio landmark. The audio landmark is an audio peak that exceeds a predetermined threshold. Two digital images are then obtained, one associated directly with the audio landmark, and one obtained a predetermined landmark time removed from the first image. The two images are then used to provide a characteristic landmark-linked-image-comparison. The pair of images are reduced in pixel size and converted to gray scale. Corresponding pixels are compared to form a numeric comparison. One image is mirrored before comparison to reduce the possibility of null comparisons. |
US11601708B2 |
Synchronizing streams of co-watching digital video content while providing live digital video chat streams across multiple client devices
This disclosure describes a video co-watching system that can efficiently, flexibly, and securely provide access to, and synchronize, co-watching digital video content across multiple participant devices while providing live digital video chat streams between the participant devices. For example, the video co-watching system can enable the participant devices to simultaneously present co-watching digital video content together with a presentation of a video chat. In addition, the video co-watching system can synchronize the co-watching digital video content at each participant device while also facilitating video chatting between the participant devices by transmitting a playback modifier signal to cause one participant device to perform a modification to the playback made at another participant device. |
US11601705B2 |
Electronic apparatus and controlling method thereof
An electronic apparatus includes a communication interface; a memory storing a control code information of a content providing apparatus; and at least one processor configured to: based on repeatedly receiving, from a remote controller, a control signal for changing a volume value of the electronic apparatus more than a threshold number of times through the communication interface, obtain state information of the content providing apparatus, identify a current volume value of the content providing apparatus or a state of the content providing apparatus, based on the state information, and based on the current volume value of the content providing apparatus being less than or equal to a threshold value or the content providing apparatus being in a mute state, control the communication interface to transmit a control signal to change the volume value of the content providing apparatus to the remote controller based on the stored control code information. |
US11601704B2 |
Notification for account management
A server operated by a service provider may enable a user to upgrade and/or purchase one or more service plans associated with a user account and provided by the service provider. The service plan may include access to one or more third-party services that provide content accessible via applications. The service provider may inform a notification service that operates a device management platform that the user account is permitted access to the content provider. The notification service may send a message to the user device including an indication that the user device now has access to the content provider and/or a selectable option to install an application associated with the content provider. |
US11601698B2 |
Intelligent synchronization of media streams
Systems and methods for intelligent synchronization of media streams are provided. A server may receive streams corresponding to an interactive session and sent over a communication network from user devices in the interactive session. A predetermined attribute may be identified as present in each of the streams, but received at different times by the server. The server may determine a time difference between a time that a predetermined attribute in a first stream of the streams was received and a time that the predetermined attribute in a second stream of the streams was received. The first stream and the second stream may then be synchronized using the time difference and provided to a recipient device. |
US11601696B2 |
Transmission apparatus, transmission method, reception apparatus, and reception method
To enable satisfactory decoding processing corresponding to a decoding capability on a reception side.Image data of pictures constituting moving image data are sorted into multiple hierarchies, image data of pictures of each of the sorted hierarchies are encoded, and video data including the encoded image data of the pictures of each of the hierarchies is generated. A container of a predetermined format including the video data is transmitted. The multiple hierarchies are divided into a predetermined number of hierarchy groups, the predetermined number being two or more, and identification information for identifying a hierarchy group to which encoded image data of each picture included in the video data belongs is inserted into a packet as a container of the video data. |
US11601691B2 |
Method and apparatus for providing audio and video within an acceptable delay tolerance
Certain aspects of the present disclosure provide techniques for delivering video and audio to one or more user devices. A method includes obtaining a video signal and an audio signal that are synchronized in time. The method includes applying a first time delay, greater than a predetermined maximum amount of time delay, to the video signal and outputting the delayed video signal to a display device. The method includes generating a plurality of copies of the audio signal and applying a plurality of time delays to the copies of the audio signal. A different time delay is applied to each of the plurality of copies of the audio signal and each of the plurality of time delays is smaller than the first time delay. The method includes outputting the plurality of delayed copies of the audio signal for broadcast to one or more user devices over a wireless network. |
US11601689B2 |
Remote virtual reality viewing of an event using crowdsourcing
A mechanism is provided for remote virtual reality viewing of an event using crowdsourcing. Each video perspective of a plurality of video perspectives of the event is analyzed to identify content and context of the event. A digital virtual reality (VR) experience (VRX) token stream of each video perspective of the plurality of video perspectives is produced based on the identified content and the identified context of the event. Responsive to a remote user initiating a viewing of a virtual reality presentation of the event, a set of digital VRX token streams of the event is presented to the remote user. Responsive to the remote user selecting one digital VRX token stream of the set of digital VRX token streams, the selected digital VRX token stream is presented to the remote user in a virtual reality format. |
US11601688B2 |
Automated self-test of cabin loudspeakers
A test module for functionally testing an audio device of an aircraft passenger service unit (PSU) is configured to allocate a first operating mode to a first individual audio device of one PSU of a set of PSUs during which, a test tone is emitted. The test module allocates a second operating mode to other audio devices different than the first audio device. In the second operating mode, the test tone emitted by the first audio device is intended to be received. The other audio devices each belong to different PSUs within the set of PSUs. The test module emits the test tone via the first audio device. The test module initiates a functional test of the first audio device. The functional test is based on the test tone received by the other audio devices. The test module may be part of a system and an aircraft. |
US11601686B2 |
Signaling usage of adaptive loop filter in video coding
Methods, systems and devices for signaling the usage of adaptive loop filtering in image and video coding are described. An example method of video processing includes determining, for a conversion between a current region of a video and a bitstream representation of the video, whether a luma adaptive loop filter is used during the conversion and whether luma adaptive loop filter coefficients are included in the bitstream representation, wherein a single syntax element in the bitstream representation is indicative of use of the luma adaptive loop filter and signaling of the luma adaptive loop filter coefficients, and performing, based on the determining, the conversion. |
US11601685B2 |
Image processing device and method using adaptive offset filter in units of largest coding unit
Aspects of the present disclosure provide an image processing device that includes circuitry configured to perform a decoding process on an encoded stream for generating an image. The encoded stream is arranged into largest coding units (LCUs), and filtering parameters applicable to each LCU are provided at a beginning portion of the corresponding LCU. The circuitry is further configured to perform adaptive offset filtering on portions of the image that correspond to the LCUs using the filtering parameters set at the beginning portions of the LCUs, respectively. |
US11601684B1 |
Reducing latency in video encoding and decoding
Techniques and tools for reducing latency in video encoding and decoding by constraining latency due to reordering of video frames, and by indicating the constraint on frame reordering latency with one or more syntax elements that accompany encoded data for the video frames. For example, a real-time communication tool with a video encoder sets a syntax element that indicates a constraint on frame reordering latency, which is consistent with inter-frame dependencies between multiple frames of a video sequence, then outputs the syntax element. A corresponding real-time communication tool with a video decoder receives the syntax element that indicates the constraint on frame reordering latency, determines the constraint on frame reordering latency based on the syntax element, and uses the constraint on frame reordering latency to determine when a reconstructed frame is ready for output (in terms of output order). |
US11601682B2 |
Reducing latency in video encoding and decoding
Techniques and tools for reducing latency in video encoding and decoding by constraining latency due to reordering of video frames, and by indicating the constraint on frame reordering latency with one or more syntax elements that accompany encoded data for the video frames. For example, a real-time communication tool with a video encoder sets a syntax element that indicates a constraint on frame reordering latency, which is consistent with inter-frame dependencies between multiple frames of a video sequence, then outputs the syntax element. A corresponding real-time communication tool with a video decoder receives the syntax element that indicates the constraint on frame reordering latency, determines the constraint on frame reordering latency based on the syntax element, and uses the constraint on frame reordering latency to determine when a reconstructed frame is ready for output (in terms of output order). |
US11601679B2 |
Image coding method on basis of transformation and device therefor
An image decoding method performed by means of a decoding device according to the present invention comprises the steps of: deriving quantized transform coefficients with respect to a target block from a bitstream; performing inverse quantization with respect to the quantized transform coefficients with respect to the target block and deriving transform coefficients; deriving residual samples with respect to the target block on the basis of reduced inverse transform with respect to the transform coefficients; and generating a reconstructed picture on the basis of the residual samples with respect to the target block and prediction samples with respect to the target block. The reduced inverse transform is performed on the basis of a reduced inverse transform matrix. The reduced inverse transform matrix is a non-square matrix of which the number of columns is smaller than the number of rows. |
US11601676B2 |
Sample derivation for 360-degree video coding
Systems, methods, and instrumentalities are disclosed for performing horizontal geometry padding on a current sample based on receiving a wraparound enabled indication that indicates whether a horizontal wraparound motion compensation is enabled. If the horizontal wraparound motion compensation is enabled based on the wraparound enabled indication, a video coding device may determine a reference sample wraparound offset of a current sample in a picture. The reference sample wraparound offset may indicate a face width of the picture. The video coding device may determine a reference sample location for the current sample based on the reference sample wraparound offset, a picture width of the picture, and a current sample location. The video coding device may predict the current sample based on the reference sample location in a horizontal direction. Repetitive padding or clipping may be used in the vertical direction. |
US11601674B2 |
Encoding a privacy masked image
A method, system, and non-transitory computer readable medium for encoding a privacy masked image into an encoded image frame of a video stream is disclosed. The encoding comprises receiving pixel divided image data of an image; receiving data defining an area and graphical characteristic of a privacy mask that masks part of the image; extending the privacy mask to be aligned with one or more encoding units having one or more pixels located within the privacy mask to form a redefined privacy mask; generating a privacy masked image by applying the redefined privacy mask and the graphical characteristic of the privacy mask to the image; and encoding the privacy masked image into the encoded image frame of the video stream, wherein the encoding comprises preventing spatial prediction encoding and/or temporal prediction encoding of pixels within the redefined privacy mask of the image in response to certain conditions. |
US11601670B2 |
Systems and methods for player input motion compensation by anticipating motion vectors and/or caching repetitive motion vectors
Systems and methods for reducing latency through motion estimation and compensation techniques are disclosed. The systems and methods include a client device that uses transmitted lookup tables from a remote server to match user input to motion vectors, and tag and sum those motion vectors. When a remote server transmits encoded video frames to the client, the client decodes those video frames and applies the summed motion vectors to the decoded frames to estimate motion in those frames. In certain embodiments, the systems and methods generate motion vectors at a server based on predetermined criteria and transmit the generated motion vectors and one or more invalidators to a client, which caches those motion vectors and invalidators. The server instructs the client to receive input from a user, and use that input to match to cached motion vectors or invalidators. Based on that comparison, the client then applies the matched motion vectors or invalidators to effect motion compensation in a graphic interface. In other embodiments, the systems and methods cache repetitive motion vectors at a server, which transmits a previously generated motion vector library to a client. The client stores the motion vector library, and monitors for user input data. The server instructs the client to calculate a motion estimate from the input data and instructs the client to update the stored motion vector library based on the input data, so that the client applies the stored motion vector library to initiate motion in a graphic interface prior to receiving actual motion vector data from the server. In this manner, latency in video data streams is reduced. |
US11601668B2 |
System and method of motion information storage for video coding and signaling
A system and method are provided for inter-ceding video in which encoder and decoder memory requirements associated with storage of motion information related to collocated coding units is reduced. In some embodiments motion information related to only a single collocated coding unit may be stored at the encoder and decoder. In operation, if the encoder determines that motion information for a current coding unit should replace the currently stored motion information for the currently stored motion information for the collocated coding unit, then the encoder can replace the motion information at the encoder and transmit an indicator with the current coding unit to signal to the decoder that the motion information currently stored should be updated or replaced with the motion information associated with the current coding unit. |
US11601662B2 |
Hierarchical data structure
A method of decoding a stream of encoded data the method comprising, at a decoder: receiving an encoded dataset comprising multiple tiles; receiving a data structure, said data structure indicative of the amount of data required to encode a plurality of tiles; identifying a portion of the encoded dataset to be decoded by: identifying the tiles associated with the portion to be decoded; determining the location of data related to the tiles based on the amount of data required to encode said tiles; extracting the identified portion of the encoded dataset from the encoded dataset; and decoding said identified portion of the encoded data set. |
US11601657B2 |
LUMA mapping with chroma scaling (LMCS) in video coding
A method of coding video data includes determining that chroma related syntax elements of the video data are present for luma mapping with chroma scaling (LMCS) for a coding unit (CU) of the video data, coding a syntax element of the video data when the chroma related syntax elements are present for LMCS for the CU, the syntax element is indicative of a value for determining a scaling parameter for chroma scaling in LMCS, and coding a chroma block of the CU based on the scaling parameter for chroma scaling. |
US11601655B2 |
Tile and slice partitioning in video processing
The present disclosure provides a computer-implemented method for encoding or decoding video. The method includes encoding or decoding, in a plurality of picture parameter sets (PPS) associated with pictures of a coded layer video sequence (CLVS), corresponding first PPS flags indicating whether pictures are allowed to be partitioned into a plurality of tiles or slices. In a first PPS, a corresponding first PPS flag with a first value indicates a first picture of the CLVS is unpartitioned, and in a second PPS, another corresponding first PPS flag with a second value being different from the first value indicates that a second picture of the CLVS is allowed to be partitioned. |
US11601642B2 |
String matching with a single value from reference locations
A method, computer program, and computer system is provided for coding video data. Video data including one or more reference locations is received. The one or more reference locations are updated in a history list associated with the received video data based on intra block copy for a single value string mode. The video data is decoded based on the updated reference locations. |
US11601637B2 |
Multifocal display devices and methods
An image transmission device of a multifocal display system is described, for transmitting a set of N composite images based on a set of N primary images to an image reception device. N is greater or equal 2, and each of the N primary images has a focus distance associated therewith. The image transmission device includes processing circuitry configured to partition each of the N primary images into image portions and generate the N composite images by placing each image portion of each of the N primary images into one of the N composite images such that each of the N composite images comprises image portions from two or more of the N primary images. A communication interface transmits the N composite images to the image reception device (103). |
US11601632B2 |
Device and method of creating an augmented interactive virtual reality system
A system for detecting and incorporating three-dimensional objects into a video stream reads an input video data stream. The user specifies areas of attention wherein said areas of attention or hotspots. Tracking movement of the hotspots generating a trajectory of said at least one object. Generating a cloud of points and tracking said points to detect configurations of points most similar to the initially defined hotspot. Obtaining a three dimensional topology defining a volume of interest in a three-dimensional space. Building virtual structures or pseudo objects that are placed within a spherical environment generated on the input video. |
US11601627B2 |
Apparatus, control method, and storage medium
An apparatus includes a projection unit configured to project a video image, a capturing unit configured to capture an image, an identification unit configured to identify a shape of a surface onto which the video image is to be projected, based on the captured image, an inference unit configured to infer a viewpoint position and an attitude of a viewer of the video image based on the captured image, a correction unit configured to correct the video image based on the shape of the surface and the viewpoint position and the attitude of the viewer, and a control unit configured to control the projection unit to project the corrected video image. |
US11601625B2 |
Color stain analyzing method and electronic device using the method
An electronic device includes a frequency analyzing circuit and a color difference calculating circuit. The frequency analyzing circuit receives an image signal including information about a subject, may convert the image signal into first color data which are based on a first color domain, converts the first color data into frequency data which are based on a frequency domain, and applies frequency weights corresponding to the frequency data to the first color data to generate processed color data. The color difference calculating circuit calculates color difference values for evaluating a color stain generated by the image signal, based on the processed color data. The frequency weights are selected based on sensitivity information of an observer according to a frequency change of the frequency data. |
US11601624B2 |
Backside illumination image sensor and image-capturing device
A backside illumination image sensor that includes a semiconductor substrate with a plurality of photoelectric conversion elements and a read circuit formed on a front surface side of the semiconductor substrate, and captures an image by outputting, via the read circuit, electrical signals generated as incident light having reached a back surface side of the semiconductor substrate is received at the photoelectric conversion elements includes: a light shielding film formed on a side where incident light enters the photoelectric conversion elements, with an opening formed therein in correspondence to each photoelectric conversion element; and an on-chip lens formed at a position set apart from the light shielding film by a predetermined distance in correspondence to each photoelectric conversion element. The light shielding film and an exit pupil plane of the image forming optical system achieve a conjugate relation to each other with regard to the on-chip lens. |
US11601621B2 |
Vehicular display system
A vehicular display system shows a view image including a blind area with superior visibility. Embodiments include an imaging unit that captures an image of a surrounding area of a vehicle; an image processing unit that converts the image into a view image of the surrounding area of the vehicle seen from inside a cabin; and a display unit. The image processing unit generates a rear-view image acquired when an area behind the vehicle is seen from a first virtual viewpoint located in the cabin, and a front-view image acquired when an area in front of the vehicle is seen from a second virtual viewpoint located behind the first virtual viewpoint in the cabin. The display unit shows the rear-view image when the vehicle travels backward, the front-view image when the vehicle travels forward, and shows both of the view images at substantially the same angle of view. |
US11601620B2 |
Cloud-based segregated video storage and retrieval for improved network scalability and throughput
The invention is based, in part, on a system and method designed to be able to easily and automatically scale up to millions of cameras and users. To do this, this discourse teaches use of modern cloud computing technology, including automated service provisioning, automated virtual machine migration services, RESTful API, and various firewall traversing methods to facilitate the scaling process. Moreover, the system and method described herein teaches scalable cloud solutions providing for higher though-put camera provisioning and event recognition. The network may segregate the retrieval server from the storage server, and by doing so, minimizing the load on any one server and improving network efficiency and scalability. |
US11601618B1 |
Method of using online, real-time, interactive, multiplane camera view to enhance videoconferencing platforms
A user interface display is provided to a participant who is viewing an event via a communication system that provides videoconferencing. The communication system provides a composite video stream that includes a plurality of different video layers, each video layer providing a different portion of the composite video stream. The participant has a participant computer for allowing the participant to receive the composite video stream for display on the user interface display. A plurality of participants view the event via user interface displays of their respective participant computers. The layers include a participant layer that displays video streams of the participants, a foreground layer, an event layer that includes video of the event, an audience layer, a background layer, and an immersive layer. |
US11601617B2 |
Method for forming an output image sequence from an input image sequence, method for reconstructing an input image sequence from an output image sequence, associated devices, server equipment, client equipment and computer programs
A method for forming an image sequence that is an output sequence, from an input image sequence, is provided. The input image sequence has an input spatial resolution and an input temporal resolution. The output sequence has an output temporal resolution equal to the input temporal resolution and an output spatial resolution equal to a predetermined fraction 1/N of the input spatial resolution by an integer number N higher than or equal to 2. The method, implemented for a sub-sequence of the input frame sequence that is a current input sub-sequence and including a preset number of images, includes: obtaining a temporal frequency that is an image frequency, associated with the current input sub-sequence; processing the current input sub-sequence to obtain an output sub-sequence; and inserting the output sub-sequence and the associated image frequency into an output container. |
US11601613B1 |
Customized graphics for video conversations
An online system customizes video conversations between users of the online system. During a video conversation, the online system presents a composite view to the participating users. The composite view may include visual representations of the users, a background graphic, or other types of graphics such as masks and props that the users can wear or interact with in the environment of the video conversation. The visual representations may be generated based on a live video feed of the users or include avatars of the users. The online system can determine the graphics based on information about the users. For instance, the online system determines a background graphic showing a location that the users have each visited. Upon viewing the background graphic, the users may be encouraged to interact with the background graphic or other graphics included in the composite view, which can promote an engaging video conversation experience. |
US11601609B2 |
Image sensors and methods of operating the same
An image sensor includes a pixel array of pixels arranged in one or more rows and one or more columns, the pixel array configured to generate an image based on light being incident on one or more pixels of the pixel array. The image sensor includes pixel load circuitry connected to one column of pixels and including transistors serially connected to each other. The image sensor includes switches connected in parallel to separate, respective nodes between adjacent transistors. The image sensor includes image sensor processing circuitry configured to receive, from image processor circuitry, gain information indicating an intensity of light concurrently with an image being generated by the image sensor, and control at least one switch of the plurality of switches to be turned on/off to change an electrical path of a current that passes through the pixel load circuitry, based on the gain information. |
US11601607B2 |
Infrared and non-infrared channel blender for depth mapping using structured light
An electronic device includes one or more processors and memory storing instructions for execution by the one or more processors. The stored instructions include instructions for: receiving infrared image information for a three-dimensional area; receiving non-infrared image information for the same three-dimensional area; performing nonlinear intensity adjustment for the received infrared image information; performing nonlinear intensity adjustment for the received non-infrared image information; blending the intensity-adjusted infrared image information and the intensity-adjusted non-infrared image information to obtain a merged image information; and providing the merged image information for determining a depth map. Also disclosed are a corresponding method performed by the electronic device and a computer readable storage medium storing instructions for execution by one or more processors of an electronic device. |
US11601605B2 |
Thermal imaging camera device
An improved camera system includes an uncooled thermal imaging sensor, a rotary actuator, a rotary encoder, and a slip ring. The rotary actuator is physically coupled to the uncooled thermal imaging sensor and enables the sensor to rotate a full 360 degrees any number of times relative to the system's horizontal base. Through the use of the slip ring, the sensor and the sensor's wiring can rotate freely without impedance. Notably, the sensor's wiring can be disposed through a central through-hole running the length of the rotary actuator. Therefore, prior to reaching the slip ring, the sensor and its wiring rotate in unison with the rotary actuator. The encoder is structured to monitor the angular position of the sensor in order to accurately determine where the sensor is being aimed. |
US11601603B2 |
System and method for real-time camera tracking to form a composite image
A system and method for tracking the movement of a recording device to form a composite image is provided. The system has a user device with a sensor array capturing motion data and velocity vector data of the recording device when the recording device is in motion, an attachment member for coupling the user device to the motion capturing device, and a server with program modules. The program modules described are a calibration module for calibrating a position of the user device relative to a position of a lens of the recording device, a recorder module for receiving the motion data and velocity vector data from the sensor array; and a conversion module for combining the position of the user device relative to the lens of the recording device, and the motion data and velocity vector data and transforming the data into a file that is usable by a compositing suite, a three-dimensional application, or both. |
US11601602B2 |
Computational imaging of the electric grid
A method comprising receiving data representing light intensity values corresponding to a flicker pattern of a reference light source powered by an alternating current (AC); operating a controllable illumination source, based, at least in part, on said data; capturing, using an imaging device, a sequence of images of a scene illuminated, at least in part, by said controllable illumination source; estimating an intensity value for at least one pixel in said array, correspondingly in each of said images in said sequence of images; and determining a temporal point in said flicker pattern of said reference light source, based, at least in part, on said estimating. |
US11601600B2 |
Control method and electronic device
A control method in an imaging device is provided. The imaging device includes a pixel-cell array including a plurality of photosensitive pixel-units, each photosensitive pixel-unit of the photosensitive pixel-units includes at least two exposure pixels including at least one medium-exposure pixel. The method includes determining an ambient brightness level of a photographing environment; adjusting a first ratio to be a first value, in response to a brightness level of the photographing environment belonging to a high-level or a low-level, wherein the first ratio indicates a ratio of the at least one medium-exposure pixel in the each photosensitive pixel-unit; and adjusting the first ratio to be a second value, in response to the brightness level of the photographing environment belonging to a medium-level, wherein the low-level, the medium-level, and the high-level are in an ascending order, and the first value is greater than the second value. |
US11601599B1 |
Aerial image capture system with single axis camera rotation
An example arial image capture system captures a sequence of images from a camera attached to a flight vehicle while the flight vehicle moves in a lateral direction relative to underlying terrain and while concurrently rotating the camera along a circular path about an axis of rotation. The rotation of the camera controllably alters the camera's field-of-view to trace a curved swath of the underlying terrain with each rotation period of the camera around an area external to the camera's field-of-view. |
US11601597B2 |
Dual-camera device and terminal device
A dual-camera device includes a first camera and a second camera, where the first camera includes a first motor, and the first motor includes at least one first Hall effect sensor, where the second camera includes a second motor, the second motor and the first motor are disposed in parallel, the second motor includes N second coils and N second magnets, the second coils are configured to levitate and support the second magnets during power-on, N is a positive integer and is a multiple of four. A distance between a first disposition location of the first Hall effect sensor and a second disposition location of the second magnets in the second motor is greater than or equal to a first preset distance. |
US11601594B2 |
Image sensing assembly
An image sensing assembly includes an enclosure that defines a first viewport aperture in a front wall of the enclosure. The image sensing assembly includes a first image sensor attached within the enclosure, the first image sensor aligned with the first viewport aperture in the front wall of the enclosure to capture image data representative of a scene viewed through the first viewport aperture. The image sensing assembly includes a bracket attached to the enclosure at a first portion of the bracket and attached to a first mounting plate at a second portion of the bracket. The image sensing assembly includes a vibration dampening mount located between the bracket and the first mounting plate to at least partially isolate the enclosure from vibration of the first mounting plate. |
US11601592B2 |
Head mounted display having a plurality of display modes
Methods and apparatus provide for controlling an information processing apparatus that is connected to an image display apparatus worn on a head of a user, including: producing a planar image representing virtual objects in a virtual world, wherein the planar image includes characteristics that require the image display apparatus to be a non-see-through image display apparatus that does not allow the user to visually recognize real world objects outside the virtual world; and displaying the planar image on the image display apparatus in a display mode that changes a shape of the planar image as a function of a change in position and/or orientation of the image display apparatus, wherein the change in the shape of the planar image includes presenting the planar image in an orientation other than a front direction of the user. |
US11601587B2 |
System and method for monitoring plants in plant growing areas
A monitoring system is presented for monitoring plants' conditions in one or more plant growing areas. The system comprises: a data collection system configured and operable to provide characterization data about plants in said one or more plant growing areas, the data collection system comprising data collection modules of at least first and second different types, the first type data collection module comprising a first imaging device of predetermined first optical properties and the second type data collection module comprising a second imaging device of predetermined second optical properties different from the first optical properties, the characterization data provided by at least one of the first and second imaging devices being indicative of various parameters of the plants being imaged; and a control system configured and operable to be in data communication with an analyzer to be responsive to operational data received from the analyzer and being based on analysis of the image data indicative of one or more plants being imaged by the first type imaging device, to selectively activate the second type imaging device to apply the second type imaging to at least a part of said one or more plants. |
US11601586B2 |
Electronic apparatus and control method therefor
An electronic apparatus includes a first operation member, a second operation member different from the first operation member, a specific operation unit, and a control unit. Where the electronic apparatus is in a first operation mode and in response to the first operation member being operated, the control unit performs control to execute a specific function different from a switching function of switching a lock setting state of an operation on the specific operation unit. Where the electronic apparatus is in a second operation mode different from the first operation mode and in response to the first operation member being operated, the control unit performs control to execute the switching function. The first operation member is an operation member located on a surface lower in height in a direction perpendicular to an operation surface than a surface on which the second operation member is located. |
US11601585B2 |
Mobile terminal and method of performing multi-focusing and photographing image including plurality of objects using the same
The present invention provides a mobile terminal and a method of capturing an image using the same. The mobile terminal controls a camera conveniently and efficiently to capture an image and performs focusing in various manners to capture an image. Accordingly, a user can obtain a desired image easily and conveniently. |
US11601582B2 |
Image transmission apparatus and image transmission method
To appropriately prevent an image with disadvantageous or inappropriate imaged content from being transmitted when such imaged content is generated in a use case such as real-time distribution of a captured image, and to prevent mistrust of a viewer due to malfunction or the like. Therefore, a transmission unit is caused to execute transmission of a first image that is delayed by a delay processing unit. If a switching trigger is detected during this time, the image that the transmission unit is caused to transmit is switched from a first image to a second image that is reproduced by a reproduction unit. |
US11601579B2 |
Electronic device
An electronic device is provided. The electronic device includes a cover plate, a main board, an iris camera, an infrared lamp, a polarizing member. The iris camera is coupled with the main board and arranged on a side of the main board facing the cover plate. The infrared lamp is coupled with the main board and arranged on the side of the main board facing the cover plate. The infrared lamp is spaced apart from the iris camera. The polarizing member is arranged between the infrared lamp and the cover plate to reduce an angle of infrared light emitted from the infrared lamp. |
US11601576B2 |
Array camera module having height difference, circuit board assembly and manufacturing method therefor, and electronic device
An array camera module having a height difference, a circuit board assembly and a manufacturing method therefor, and an electronic device. The array camera module comprises a first camera module unit and a second camera module unit, wherein the first camera module unit comprises at least one first photosensitive assembly and at least one first lens; the first lens is located on a photosensitive path of the first photosensitive assembly; the first photosensitive assembly comprises at least one extension portion; the extension portion at least partially extends towards the direction away from the first photosensitive assembly; and the second camera module unit is fixedly connected to a second extension portion, so that the ends of the two camera module units are consistent. |
US11601575B2 |
Electrical connectivity between detachable components
In one aspect of the present disclosure, a digital image capturing device (DICD) is disclosed that includes a device body with a printed circuit board (PCB), and an integrated sensor-lens assembly (ISLA) that is configured for releasable connection to the device body. The PCB defines a plurality of openings that extend therethrough and includes a plurality of connector pins that are fixedly positioned within the openings. The ISLA includes at least one connective surface that is configured for contact with the connector pins to establish electrical communication between the device body and the ISLA. |
US11601572B2 |
Electronic tracking device for camera and related system for controlling image output of the camera
A trackable camera beacon is provided that is mountable onto a camera, so that the camera can be more easily tracked and automatically controlled. The camera beacon obtains lens data from the lens of a camera, position data corresponding to the camera beacon, and outputs a unified and synchronized data packet. The unified and synchronized output includes position, orientation and lens data. This can be used to also control the camera, such as the focus, iris and zoom parameters of the lens. |
US11601562B2 |
Information processing apparatus, method for controlling information processing apparatus, and storage medium
An information processing apparatus includes a display unit configured to display a plurality of display objects for giving an instruction to execute processing on an operation screen, a determination unit configured to determine whether to change a display order of the plurality of display objects based on a state of the information processing apparatus, and a change unit configured to change the display order of the plurality of display objects displayed on the operation screen based on the numbers of uses of the respective display objects in a case where the determination unit determines to change the display order. |
US11601561B2 |
Image forming apparatus, method of controlling display, and recording medium
An image forming apparatus installed with at least one first application includes a setting receiving unit, a storage unit, an installation unit, and an addition unit. The setting receiving unit displays at least one first setting screen for setting the first application and receives an input of setting value corresponding to the first application. The storage unit stores first information used, by the setting receiving unit, to display the first setting screen for setting the first application. The installation unit installs a second application on the image forming apparatus. The addition unit adds, to the storage unit, second information used for displaying at least one second setting screen for setting the second application. The setting receiving unit displays the second setting screen based on the second information added to the storage unit and to receive an input of setting value of the second application. |
US11601560B2 |
Image forming apparatus having an operation portion with a near field communication portion, a touch panel, and an input key
Provided is an input device comprising: a touch panel which receives an operation from a user; an external member having an external surface substantially the same as a surface of the touch panel; and a near field communication unit which is provided near the surrounding of the touch panel and inside of the external member and performs communication with an object to be detected which is brought close to a detection range, wherein a position corresponding to the near field communication unit of the external member projects from the touch panel and is inclined such that the side close to the touch panel is higher than the side distant from the touch panel. |
US11601559B2 |
Information processing device and method for controlling information processing device
An information processing device including a numerical value inputter that inputs a numerical value, the information processing device comprising: a display that displays the numerical value inputter on an operation screen; and a numerical value inputting method controller that selects a numerical value inputting method of the numerical value inputter based on a physical display size of the numerical value inputter relative to the operation screen. |
US11601555B2 |
Methods and apparatuses for service layer charging correlation with underlying networks
The present application at least describes a computer-implemented method including a step of setting, via a service layer residing on a server outside of an underlying 3GPP network, a trigger in the underlying 3GPP network, where the trigger defines an QoS parameter change in the underlying 3GPP network. The underlying 3GPP network is configured with functionality to send a notification to the service layer upon detecting the QoS parameter change. The computer-implemented method also includes a step of receiving, from the underlying 3GPP network, the notification the detected QoS parameter change has occurred. The computer-implemented method further includes a step of performing, at the service layer residing on the server a service layer operation in response to the received notification. |
US11601553B2 |
System and method for enhanced virtual queuing
A system and method for managing virtual queues. A cloud-based queue service manages a plurality of queues hosted by one or more entities. The queue service is in constant communication with the entities providing queue management, queue analysis, and queue recommendations. The queue service is likewise in direct communication with queued persons. Sending periodic updates while also motivating and incentivizing punctuality and minimizing wait times based on predictive analysis. The predictive analysis uses “Big Data” and other available data resources, for which the predictions assist in the balancing of persons across multiple queues for the same event or multiple persons across a sequence of queues for sequential events. |
US11601551B2 |
Methods and systems for providing rich interactive communication services on an electronic device
Disclosed is a method for providing at least one rich interactive communication service on an electronic device including receiving, by the electronic device, a notification of at least one communication service from at least one server, identifying, by the electronic device, at least one unique identifier of the received at least one communication service based on the notification, determining, by the electronic device, that the identified unique identifier is authenticated, sending, by the electronic device, a request to at least one communication server based on the identified identifier, in response to determining that the identified unique identifier is authenticated, receiving, by the electronic device, at least one rich media for the received at least one communication service from the at least one communication server, responding to the request, and displaying, by the electronic device, the received at least one communication service with the least one rich media. |
US11601544B2 |
Setting devices in focus mode to reduce distractions
A communication device includes one or more processors and one or more memories supporting communication, the device comprising a plurality of modes, including at least one focused mode. When the device is in the focused mode, one or more features of the device are at least partially disabled, and wherein the one or more features of the device that are at least partially disabled in the focused mode include one or more features relating to communication supported by the device. The device supports a user interface for setting the device into a focused mode. The interface may have a “focus” button. A focused mode is implemented, at least in part, by an operating system of the device. Setting the device in focus mode causes at least one other device associated with the user to be set to focus mode. |
US11601542B1 |
Crash detection system comprising a microphone, first and second batteries, and first and second antennas and a method of operating the same
A crash detection system for a vehicle comprises first and second batteries and a computational system comprising a processor and a non-transitory computer-readable medium. First and second antennas are both in electronic communication with the computational system and powered by one of the batteries, with the antennas configured to independently wirelessly communicate with an external network. A microphone powered by one of the batteries and in electronic communication with the computational system. The microphone continuously receives sound waves in real time and transmits sound signals to the processor. The processor monitors properties of the sound waves within the sound signals, compares the properties to thresholds stored in the non-transitory computer-readable medium, determines if the vehicle has been involved in a collision if at least one of the properties crosses the respective threshold, and communicates with the external network to report the collision with one of the antennas. |
US11601537B2 |
Electronic device including display
An electronic device is provided. The electronic device includes: a display panel including a display area in which a plurality of pixels are arranged and configured to display an image in a first direction, and a first camera module including camera circuitry and a second camera module including camera circuitry arranged under the display panel, wherein the display area includes a first display area overlapping the first camera module in the first direction and a second display area overlapping the second camera module in the first direction, wherein pixels per inch (PPI) of the first display area is less than the PPI of the second display area. |
US11601529B1 |
Method and system of generating generic protocol handlers
A method of generating generic protocol handlers includes receiving a user request in a middleware, generating a request payload by analyzing the request in a protocol handler of the middleware, transforming the request payload into a set of canonical types, transmitting the set of canonical types to a path module, receiving a response payload, transforming the response payload in a second protocol handler of the middleware, and transmitting the response to the user. |
US11601525B2 |
Apparatus and methods for content access, retrieval, and delivery in a content distribution network
Methods and apparatus for retrieving and delivering content in a network. In one embodiment, unique data codes representative of content are generated by a network entity. The data codes are distributed to viewers either via a physical medium or on a display of similar content. The user device requests the content from the network by reading the data code. The requested content is delivered directly to the requesting device or provided to another device identified by the requesting device or user. In another alternative, the unique data code may be representative of the user or subscriber himself. This type of data code may be generated by the network or the device, and enables the user to access content he is entitled to via another device or terminal by delivery of information contained in the data code (or the code itself) to the network. |
US11601516B2 |
Dynamic alteration of notification preferences within a communication platform
Methods and systems provide for dynamically altering notification preferences within a communication platform. The system receives one or more future events and one or more past events associated with a user of a communication platform; a notification associated with a future event; and a user behavioral profile associated with the user. The system determines whether one of the future events coincides with the notification time for the notification. The system then deploys an artificial intelligence (AI) model to analyze the user behavioral profile with respect to the event notifications at the notification time, the one or more past events, and any coinciding future events, and provide, based on the analysis, a prediction score for whether notification preferences associated with the notification should be altered for the user at the notification time. Finally, the system alters the notification preferences if the prediction score meets or exceeds an alteration threshold. |
US11601514B2 |
Microlocations using tagged data
A semi-supervised machine learning model can provide for classifying an input data point as associated with a particular target location or a particular action. Each data point comprises one or more sensor values from one or more signals emitted by one or more signal sources located within a physical area. A tagged sample set and an untagged sample set are combined to train the machine learning model. Each tagged sample includes a respective data point and a label representing a respective location/action. Each untagged sample includes a data point, but is unlabeled. Once trained, given a current data point, the machine learning model can classify the current data point as associated with a particular location/action, after which a target object (e.g., other device or application to be used) can be predicted. |
US11601512B2 |
System and method for throttling service requests having non-uniform workloads
A system that provides services to clients may receive and service requests, various ones of which may require different amounts of work. The system may determine whether it is operating in an overloaded or underloaded state based on a current work throughput rate, a target work throughput rate, a maximum request rate, or an actual request rate, and may dynamically adjust the maximum request rate in response. For example, if the maximum request rate is being exceeded, the maximum request rate may be raised or lowered, dependent on the current work throughput rate. If the target or committed work throughput rate is being exceeded, but the maximum request rate is not being exceeded, a lower maximum request rate may be proposed. Adjustments to the maximum request rate may be made using multiple incremental adjustments. Service request tokens may be added to a leaky token bucket at the maximum request rate. |
US11601510B1 |
Method and system for topic disambiguation and classification
A method for generating recommendations involves selecting a first platform message, making a first determination that the first platform message is potentially associated with a plurality of topics including a first topic and a second topic, obtaining additional information associated with the first platform message including at least one of information about an account that authored the first platform message and information about third party accounts engaging with the first platform message, making a second determining that the first platform message is associated with the first topic using the plurality of topics and at least a portion of the additional information, wherein the first topic is an initial classification of the first platform message, generating a recommendation for at least one account based on the second determination, and providing the recommendation to at least one account. |
US11601505B1 |
Communication functions in a mesh network
A method including receiving, at an infrastructure device from a first device in a mesh network, a request to determine a communication parameter associated with communicating meshnet data with the first device; configuring a transport layer included in a network stack associated with the infrastructure device to determine the communication parameter and to transmit identification information indicating the communication parameter to an application layer included in the network stack; configuring the application layer to determine a response including the identification information; and transmitting, by the infrastructure device, the response to the first device. Various other aspects are contemplated. |
US11601498B2 |
Reconciliation of data stored on permissioned database storage across independent computing nodes
Reconciliation and subscription-model permissions of data stored across independent ledger instances of a database. A system includes a resource manager coupled to a plurality of client accounts. The system includes an execution platform and a shared permissioned ledger comprising independent processing and storage nodes for executing data operations for the plurality of client accounts. The resource manager defines a settlement group comprising one or more client accounts and authenticates an observer node associated with the settlement group. The resource manager assigns ingested data an encryption level on a key hierarchy based on content of the ingested data. |
US11601497B1 |
Seamless reconfiguration of distributed stateful network functions
A system can include a gateway, a plurality of network function nodes, and a distributed load balancer including load balancer nodes each having a flow table portion stored thereon. The load balancer nodes can form a node chain having a tail and head nodes. A load balancer node can receive a packet from the gateway. In response, the load balancer node can generate a query, directed to the tail node, that identifies the packet and a network function identifier associated with a network function node that is proposed to handle a connection. The tail node can determine whether an entry for the connection exists in a flow table portion associated with the tail node. If not, the tail node can initiate an insert request for writing the entry for the connection via the head node. The entry can then be written to all load balancer nodes in the node chain. |
US11601494B2 |
Method for transferring data from a device to a data management means, switching unit, device and system
Method for transferring data from a device to a data management means, switching unit, device and system The invention relates to a method for transferring data (16) from a device (6) to a data management means (4). In order to reduce the amount of data transferred and according to the method of the invention, using modeling data (26, 42) present in the device (6) a model (30, 44) described by the modeling data (26, 42) is determined. Using the model (30, 44), the data that is actually to be transferred to the data management means (4) is selected from a volume of data (40) provided for transfer. The device (6) transfers the selected data to the data management means (4). |
US11601493B2 |
Method and apparatus for storing information in a browser storage area of a client device
Disclosed is a method and apparatus for performing steps to cause encoded information to be stored at a client device during a first network session between a server and the client device. To cause encoded information to be stored at a client device, the server first determines a set of network resource requests that encode the information. These network resource requests may include requests for one or more specific URLs and/or requests for one or more files. The server then causes the client device to initiate the network resource requests. The server may cause this initiation by, for example, redirecting the client device to the network resources. The client device initiating the network resource requests causes data representative of the network resource requests to be stored at the client device. |
US11601490B2 |
Visualization and interaction of 3D models via remotely rendered video stream system and method
The disclosure is directed to systems and methods for local rendering of 3D models which are then accessed by remote computers. The advantage of the system is that extensive hardware needed for rendering complex 3D models is centralized and can be accessed by smaller remote computers without and special hardware or software installation. The system also provides enhanced security as model data can be restricted to a limited number of servers instead of stored on individual computers. |
US11601489B2 |
Method for transmitting stream, streaming server and storage medium
A method for transmitting a stream includes: receiving a streaming request from a stream receiver, in which the streaming request includes a stream identifier and a type of the stream receiver; obtaining an encapsulated stream by performing protocol encapsulation on a stream corresponding to the stream identifier based on a streaming protocol corresponding to the type; and transmitting the encapsulated stream to the stream receiver. |
US11601485B2 |
Instant conferencing system
A method including receiving, at a platform and from a first user using a first user device, selection of a uniform resource indicator (URI) unique to a second user using a second user device. The method also includes generating, automatically by the platform in response to receiving the URI, a conference session unique to the first user and the second user. The method also includes transmitting, automatically by the platform, a message to the second user, the message indicating that the conference session is initiated. The method also includes receiving, by the platform, an indication from the second user device that the second user joins the conference session. The method also includes joining, automatically by the platform, the first user device and the second user device in the conference session. |
US11601484B2 |
System and method for augmented and virtual reality
One embodiment is directed to a system for enabling two or more users to interact within a virtual world comprising virtual world data, comprising a computer network comprising one or more computing devices, the one or more computing devices comprising memory, processing circuitry, and software stored at least in part in the memory and executable by the processing circuitry to process at least a portion of the virtual world data; wherein at least a first portion of the virtual world data originates from a first user virtual world local to a first user, and wherein the computer network is operable to transmit the first portion to a user device for presentation to a second user, such that the second user may experience the first portion from the location of the second user, such that aspects of the first user virtual world are effectively passed to the second user. |
US11601482B2 |
Methods and apparatus for performing virtual relocation during a network conference
Methods and apparatus for performing virtual relocation during a network conference. In an embodiment, a method is provided for relocating a conference participant during a network conference. The method includes receiving, at a first conference participant, video streams from one or more additional conference participants, and identifying a video stream of a selected conference participant. The method also includes transmitting a request to the selected conference participant to remove a background from the video stream of the selected conference participant to generate a modified video stream, and receiving the modified video stream from the selected conference participant. The method also includes relocating the modified video stream in a background of the first conference participant, and transmitting an instruction for relocating the modified video stream within the background of the first conference participant. |
US11601481B2 |
Image-based file and media loading
Disclosed herein are various embodiments for an augmented reality contextual menu system. An embodiment operates by receiving a request to open a file from a user. A social media channel associated with the user is identified, wherein the social media channel includes shared media. A graphical social icon representing the social media channel is generated based on the shared media. A plurality of icons, including the graphical social icon, are displayed responsive to the request. A selection of the graphical social icon causes at least a portion of the social media channel to be rendered with a computing workspace. |
US11601480B1 |
Systems and methods for creating and managing breakout sessions for a conference session
Systems and methods for creating, monitoring, and managing a breakout conference for a conference call are disclosed. The methods determine topics for breakout rooms and their complexity scores. A breakout room is created for the topics, including separate breakout rooms for complex topics. An expertise score based on a plurality of factors for each device associated with a participant is also calculated. Devices are assigned to separate breakout rooms based on either just the expertise score or if the expertise score meets the threshold of the complexity score. Performance within the breakout rooms is displayed in real-time, such as in a graph. A moderator schedule is generated based the performance within the breakout rooms, where priority is given to a breakout room that has a negative performance over a breakout room with a positive performance. |
US11601472B2 |
One-way transfer device with secure reverse channel
A data diode provides a flexible device for collecting data from a data source and transmitting the data to a data destination using one-way data transmission across a main channel. On-board processing elements allow the data diode to identify automatically the type of connectivity provided to the data diode and configure the data diode to handle the identified type of connectivity. Either or both of the inbound and outbound side of the data diode may comprise one or both of wired and wireless communication interfaces. A secure reverse channel, separate from the main channel, allows carefully predetermined communications from the data destination to the data source. |
US11601469B2 |
Detecting and preventing denial of service attacks due to fraudulent BSS color collision events
A management entity obtains from a first wireless access point a Basic Service Set (BSS) color collision event detected by the first wireless access point. The first wireless access point uses a first BSS color. A color collision event occurs when the first wireless access point receives from a device in a BSS of a different physical wireless access point a frame or PHY Protocol Data Unit (PPDU) that includes the first BSS color. The management entity obtains from the first wireless access point an indication whether the color collision event has been detected for longer than a predetermined duration. When the color collision event has been detected for longer than the predetermined duration, the management computes a probability of the color collision event. The management entity determines whether the color collision event is malicious or benign, and determines whether to maintain the first BSS color. |
US11601468B2 |
Detection of an adversarial backdoor attack on a trained model at inference time
Systems, computer-implemented methods, and computer program products that can facilitate detection of an adversarial backdoor attack on a trained model at inference time are provided. According to an embodiment, a system can comprise a memory that stores computer executable components and a processor that executes the computer executable components stored in the memory. The computer executable components can comprise a log component that records predictions and corresponding activation values generated by a trained model based on inference requests. The computer executable components can further comprise an analysis component that employs a model at an inference time to detect a backdoor trigger request based on the predictions and the corresponding activation values. In some embodiments, the log component records the predictions and the corresponding activation values from one or more layers of the trained model. |
US11601464B2 |
Systems and methods for mitigating risks of third-party computing system functionality integration into a first-party computing system
In general, various aspects of the present invention provide methods, apparatuses, systems, computing devices, computing entities, and/or the like for integrating third party computing system functionality into a first party computing system by providing a risk management and mitigation computing system configured to analyze a risk of integrating the functionality provided by the third party computing system and facilitating implementation of one or more data-related controls that include performing computer-specific operations to mitigate and/or eliminate the identified risks. For example, the risk management and mitigation computing system can access risk data in tenant computing systems to determine a risk score related to the integration of the third party computing system functionality based on risks determined during prior integrations of the third party computing system functionality by other tenant computing systems. The risk management and mitigation computing system can generate a recommended control when integrating the third party computing system functionality. |
US11601460B1 |
Clustering domains for vulnerability scanning
Website assets are optimized for vulnerability scanning using node centrality techniques. A digital footprint of network nodes associated with a domain is determined. A similarity metric is defined using a weighted linear combination of features of a node. After determining a similarity metric for pairs of related nodes in the digital footprint of a domain, a set of centroids is determined. The reduced set of centroids is acted upon for vulnerability scanning. |
US11601456B2 |
Transparent inspection of traffic encrypted with perfect forward secrecy (PFS)
A method is provided for inspecting network traffic. The method, performed in a single contained device, includes receiving network traffic inbound from an external host that is external to the protected network flowing to a protected host of the protected network, wherein the network traffic is transported by a secure protocol that implements ephemeral keys that endure for a limited time. The method further includes performing a first transmission control protocol (TCP) handshake with the external host, obtaining source and destination data during the first TCP handshake, the source and destination data including source and destination link and internet addresses obtained, caching the source and destination data, and using the cached source and destination data to obtain a Layer-7 request from the external host to the protected host and to pass a Layer-7 response from the protected host to the external host. |
US11601453B2 |
Methods and systems for establishing semantic equivalence in access sequences using sentence embeddings
Systems and methods are provided for utilizing natural language process (NLP), namely semantic learning approaches in network security. Techniques include analyzing network transaction records to form a corpus related to a semantics of network activity. The corpus includes formulated network sentences, representing sequences of network entities that are accessed in the network. A corpus of network sentences can include sequences of servers accessed by each user. A network sentence embeddings model can be trained on the corpus. The network sentence embeddings model includes an embedding space of text that captures the semantic meanings of the network sentences. In sentence embeddings, network sentences with equivalent semantic meanings are co-located in the embeddings space. Further, proximity measures in the embedding space can be used to identify whether network sentences (e.g., access sequences), are semantically equivalent. Using network sentence embeddings model, equivalent semantics of access can be established to efficiently detect anomalies. |
US11601450B1 |
Suspicious message report processing and threat response
The present invention relates to methods, network devices, and machine-readable media for an integrated environment for automated processing of reports of suspicious messages, and furthermore, to a network for distributing information about detected phishing attacks. |
US11601445B2 |
Clustering enhanced analysis
Systems, methods, and related technologies for clustering are described. Network traffic is accessed from a network and the network may be associated with a plurality of entities. Behavior associated with each entity of the plurality of entities may be determined. The behavior may be determined based one or more communications associated with each entity. A processing device may be used to determine one or more clusters of entities based on entities having similar behavior. A cluster may comprise one or more entities with similar behavior. One or more anomalies may be determined based on the one or more clusters and storing data associated with at least one of the one or more clusters and the one or more anomalies may be stored. |
US11601440B2 |
Method of detecting an email phishing attempt or fraudulent email using sequential email numbering
Herein is disclosed a method of verifying the authenticity of emails sent from a first email application of a sender to a second email application of a recipient, the emails each having a sender's email address, a receiver's email address, and a user accessible field for receiving content. The content of the user accessible field is visible to the recipient upon opening an email inbox in the second email application. The method includes the steps of first identifying the receiver for an email to be sent by the sender. A current sequence marker for the receiver is then generated. The current sequence marker represents a next sequence identifier in a sequence of emails between the sender and the receiver. The current sequence marker is then inserted into the user-accessible field of the email and the email is then sent. |
US11601434B1 |
System and method for providing a dynamically reconfigurable integrated virtual environment
The present disclosure relates to a system, comprising: a first server computing device configured to store various application data relating to the system, and control a first plurality of modules to simultaneously establish multiple logically separate and secure networks within a self-supported computing environment; a second server computing device configured to control a second plurality of modules to perform out-of-band management of the system; and a third server computing device configured to control a third plurality of modules to control inbound and outbound data traffic of the logically separate and secure networks. The system is scalable by at least adding additional one or more first server computing devices to host additional application data within the self-supported computing environment's secure configuration and logical separation of networks while maintaining the second and third server computing devices. |
US11601433B2 |
Communication device, communication method, and communication system
A communication device is connected to first and second networks. The communication device includes a processor executing a process including relaying communication between the first and second networks; and confirming connection to a first device connected to the first network or a second device connected to the second network, based on a device list registered in advance. The confirming includes blocking the relaying when the confirmation of the connection to the first device is unsuccessful; enabling the relaying when the confirmation of the connection to the first device is successful and when the second device is not registered in the device list; enabling the relaying when the confirmation of the connections to the first and second devices is successful; and blocking the relaying when the confirmation of the connection to the first device is successful and when the confirmation of the connection to the second device is unsuccessful. |
US11601431B2 |
Split-tiered point-to-point inline authentication architecture
Systems and methods for authenticating presumptively incompatible elements in a digital network are provided. A method may include receiving an access request from a client node in the network. The access request may be requesting access to an application in the network. The access request may be associated with a uniform resource identifier (“authURI”). The method may include extracting a target application from the URI. The method may include determining an authentication protocol that is supported by the target application. The method may include generating, based on the authentication protocol, a series of one or more authentication tests that, in combination, satisfy the authentication protocol. The authentication tests may satisfy the authentication protocol even when the client node natively supports a different authentication protocol. The method may include executing the series of authentication tests to authenticate the client node vis-à-vis the target application. |
US11601430B2 |
Method and system for verifying user identity
Embodiments disclosed herein generally relate to a system and method of verifying an identity of user. A computing system receives a HTTP request. The HTTP request includes at least a user name and an IP address associated with a router accessed by the remote client device. The computing system parses the HTTP request to extract the user name and the IP address contained therein. The computing system identifies a user account associated with the extracted user name. The computing system identifies an internet service provider associated with the IP address. The computing system transmits a verification message to the third party service provider. The computing system receives a confirmation message from the third party service provider. The computing system increases a level of confidence in an identification verification process based on the confirmation. |
US11601429B2 |
Network service control for access to wireless radio networks
Concepts and technologies of network service control for remote access to wireless radio networks are provided herein. In an embodiment, a client network can be provided by a network access point that can include a processor that is configured to detect a guest user equipment and determine whether the guest user equipment is a recognized device. In response to determining that the guest user equipment is not a recognized device, the processor can create an identity verification request message that seeks approval from a host device to allow the guest user equipment to access the client network. The processor can provide the identity verification request message to the host device and receive a trigger response message. The processor can create a network access package that provides the guest user equipment with access credentials to access the client network and provide the network access package to the guest user equipment. |
US11601428B2 |
Cloud delivered access
Cloud delivered access may be provided. A network device may provide a client device with a pre-authentication virtual network and a pre-authentication address. Next, a policy may be received in response to the client device authenticating. The client device may then be moved to a post-authentication virtual network based on the policy. A post-authentication address may then be obtained for the client device in response to moving the client device to a post-authentication virtual network. Traffic for the client device may then be translated to the post-authentication address. |
US11601427B2 |
Dynamic service management using voice-activated devices
Disclosed are various aspects of voice skill session lifetime management. In some examples, an inaudible sonic check-in announcement is detected. An inaudible sonic request for check-in authentication is emitted by a voice-activated device. An inaudible sonic authentication is detected. The inaudible sonic authentication includes a service provider identifier. The inaudible sonic check-in announcement is identified as authentic based on task data retrieved based on the service provider identifier. An inaudible sonic approval to perform a task specified in the task data is emitted by the voice-activated device. |
US11601423B2 |
Biometric methods for online user authentication
Methods for authenticating a genuine presence of a human involve directing one or more modulated probes towards a body part of the human, receiving a response to the probes from the body part, and analyzing the response to determine whether it contains spectral characteristics that match a class of responses to such probes for the human body part in a human population. Replay attacks are countered by varying the modulation of the probe temporally, spatially, and spectrally each time authentication is performed. The probes may include electromagnetic radiation, acoustic beams, or particle beams that generate a detected reflection, absorption pattern, scintillation, or fluorescence response of the body part. The analysis of the response may be directed to one or more of temporal, spatial, and spectral variations in accordance with the nature of the probes and the modulation. |
US11601418B2 |
System for increasing authentication complexity for access to online systems
A system is provided for increasing authentication complexity for access to online systems. In particular, the system may use a hidden or obscured method for creating and enforcing a multi-factor authentication scheme. In this regard, the system may introduce authentication logic to a particular application in the network environment such that one or more “invalid” login credentials are generated by a local agent using a pre-shared key and/or algorithm. A back-end authentication system may be calculate its own set of “invalid” login credentials based on the same pre-shared key and/or algorithm, then subsequently compare the calculated incorrect credentials with the incorrect login credentials received from the local agent. If a match is detected, the system may permit a valid set of authentication credentials to be provided to authorize access to the target application and/or online system. |
US11601417B2 |
Software activation system, sewing machine, and server
A software activation system includes a sewing machine and at least one server connected via a network. The sewing machine acquires an authentication code corresponding to an activation target software that is at least one of a program and data not activated on the sewing machine, and transmits, to an authentication server included in the at least one server, an authentication request including the acquired authentication code. The server acquires an authentication key on the basis of the authentication request, when the authentication request is received by the first receiver; and transmits the acquired authentication key to the sewing machine. The sewing machine also receives the authentication key from the authentication server, determines whether the received authentication key satisfies a predetermined authentication condition, and activates the activation target software on the sewing machine when it is determined that the authentication key satisfies the predetermined condition. |
US11601413B2 |
Single sign-on control function (SOF) for mobile networks
A new control function is defined for the control plane of a 5G mobile network to enable the operator's mobile user, who is using a premium network slice, to access application services on the public Internet, by operator sign-on only when accessing the application on said slice. This unique single sign-on capability allows the user to bypass the service authentication after operator authenticates the mobile device by the user session establishment procedure. The new function registers a plurality of service applications, which sign-up for single sign-on capability. It also coordinates the mapping and storage of credentials of the user across the mobile operator's service and the service provider's application for each of said plurality of service applications, and transfers user credentials to the application so that the user's sign-in step is bypassed. |
US11601407B2 |
Fast oblivious transfers
Systems, methods, and computing device readable media for implementing fast oblivious transfer between two computing devices may improve data security and computational efficiency. The various aspects may use random oracles with or without key agreements to improve the security of oblivious transfer key exchanges. Some techniques may include public/private key strategies for oblivious transfer, while other techniques may use key agreements to achieve simultaneous and efficient cryptographic key exchange. |
US11601405B2 |
Method for decoding secure socket layer for security of packet transmitted in preset operating system
Decoding includes sensing a packet related to SSL handshake for connecting a SSL between a client and a server after a TCP session has been established between the client and the server in an SSL decoding device. If the packet for an SSL handshake is transmitted in a preset operating system, an SSL between the client and the SSL decoding device and an SSL between the SSL decoding device and the server is established. A TCP session between a virtual client corresponding to the client and a virtual server corresponding to the server is also established. A packet transmitted/received between the virtual client and the virtual server is transmitted when the TCP session is established. If a first SSL packet transferred from the client to the SSL decoding device is received, the SSL packet is decoded and transmitted to the security device and to the server. |
US11601404B2 |
Domain specific browser identifiers as replacement of browser cookies
The present disclosure provides a secure, user-transparent, and highly efficient content provider-specific identifier (“CPSID”), sometimes referred to as a “read-only cookie” (“ROC”). These content provider-specific identifiers may be generated by the client device and encrypted with a public key of the content provider, preventing third parties from indirectly identifying matches, and obviating the need for provider-side cookie matching tables and resource-intensive tracking communications. The generation of content provider-specific identifiers may be controlled by user policies, such that identifiers are only created for content providers with compliant terms of service (ToS), e.g. retrievable from a predetermined address within the domain; content providers that are on a whitelist (e.g. for which the user has explicitly provided consent); and/or content providers that are not on a blacklist (e.g. for which the user has explicitly refused consent). |
US11601400B2 |
Aggregating alerts of malicious events for computer security
A method by a computing device implementing an attack analyzer for processing malicious events. The method includes determining a first set of features describing a malicious event detected by a firewall, determining a set of distances using a non-Euclidean distance function and the first set of features, wherein the non-Euclidean distance function is used to determine geographic origin similarity between different Internet Protocol addresses included in the first and second set of features, generating a statistical distribution object using the set of distances, wherein the statistical distribution object includes information describing a cluster that includes at least the malicious event and one or more other malicious events that are determined to be similar to the malicious event in terms of geographic origin, and transmitting information describing the cluster to a management console for presentation to an administrator on a graphical user interface. |
US11601398B2 |
Multiplexed data exchange portal interface in scalable data networks
Various embodiments relate generally to computer science, data science, application architecture, and computer data security. More specifically, techniques for credential and authentication management in scalable data networks is described, including, but not limited to, multiplexed data exchanges in a scalable data network. For example, a method may include receiving a subset of requests to access a data network. The requests each may originate from an associated computing device having a source identifier. The method also may include data to cause modification of data representing presentation of a hosted page via the data network, monitoring data traffic from the data network and managing actions initiated via a request based on the data traffic. Optionally, data traffic received via an aggregation port may be filtered to origination of a request associated with a source identifier. |
US11601394B2 |
Dynamic binding and load determination in a content delivery network (CDN)
A content provider has a plurality of content provider domain names, and a content delivery network (CDN) allocates a plurality of CDN domain names to the particular content provider. The content provider domain names are mapped to the CDN domain names. CDN domain names are bound to corresponding CDN clusters. The binding of the of CDN domain names to corresponding CDN clusters is modified. |
US11601392B2 |
Deployment of a custom address to a remotely managed computational instance
An example embodiment may include a computational instance and a computing device within a remote network management platform. The computing device may be configured to: receive, from a client device of the managed network, a request to redirect, to a second URL, future requests addressed to a first URL; provide, to the client device, instructions to generate a certificate that binds an identity of the entity that operates the managed network to the first URL; receive, from the client device, the certificate; store the certificate and a corresponding cryptographic key; and generate a mapping between the first URL and the second URL. The computational instance may be configured to, in response to receiving a content request referencing the destination, generate a content response containing content from the destination, where any hyperlinks to the second URL in the content are replaced with hyperlinks to the first URL. |
US11601391B2 |
Automated image processing and insight presentation
Systems, methods, devices, computer readable instruction media, and other embodiments are described for automated image processing and insight presentation. One embodiment involves receiving a plurality of ephemeral content messages from a plurality of client devices, and processing the messages to identify content associated with at least a first content type. A set of analysis data associated with the first content type is then generated from the messages, and portions of the messages associated with the first content type are processed to generate a first content collection. The first content collection and the set of analysis data are then communicated to a client device configured for a display interface comprising the first content collection and a representation of at least a portion of the set of analysis data. |
US11601388B2 |
Media request system
A media request system to perform operations that include: receiving, at a client device, a response to a request, the response comprising media content; adding the media content from the response to a collection of media content within a media folder associated with the request at the client device; causing display of a notification at the client device in response to the receiving the response to the request, the notification including an identification of the request; receiving an input that selects the notification; and causing display of a presentation of the collection of media content in response to the input that selects the notification, the presentation of the collection of media content including the media content from the response, according to certain example embodiments. |
US11601383B1 |
In-place conversion of a virtual switch on a host
The disclosure provides an approach for in-place conversion of a virtual switch on a host. Techniques are provided for in-place conversion of a virtual switch from a first type of virtual switch to a destination type of virtual switch. A method includes rekeying, by a second manager agent, one or more uplink ports associated with one or more logical switches implemented by the virtual on the host with the unique identifier. The rekeying includes updating one or more existing uplink port identifiers assigned to the one or more uplink ports with the unique identifier associated with a first manager agent. The method includes removing, by the first manager agent, an association of the one or more uplink ports with the opaque network; and informing the first manager and the second manager that the virtual switch is of the destination type of virtual switch. |
US11601378B2 |
Method and apparatus for allocating server resource, electronic device and storage medium
Embodiments of the present disclosure disclose a method and apparatus for allocating a server resource, an electronic device and a computer readable storage medium, and relate to the technical fields of cloud platform, cloud environment, containerization and resource allocation. A specific implementation of the method comprises: acquiring a container group creation request initiated by a user for creating a target container group; determining a required amount of server resources required by the user and a remaining amount of the server resources according to the container group creation request, the remaining amount comprising at least one of an exclusive server resource or a shared server resource; rating qualities of the remaining amount of server resources in the remaining amount, and selecting a target server resource corresponding to the required amount according to an obtained actual rating; and allocating the target server resource to the user for creating the target container group. |
US11601375B2 |
Electronic device and frame transmission method of electronic device
A frame transmission method of an electronic device, wherein the frame transmission method includes the steps of: receiving a pause frame from another electronic device, wherein the pause frame includes a plurality of packet size ranges and corresponding pause times; referring to content of the pause frame, and determining a first frame interval according to which packet size range a first packet to be sent to the other electronic device belongs to; and after a first frame including the first packet is sent to said another electronic device, at least waiting for the first frame interval before starting to send a second frame to said another electronic device. |
US11601374B2 |
Systems and methods for data packet metadata stabilization
Systems and methods for accelerated stabilization of data packet metadata are disclosed herein. The system can include a memory having a content database and a user profile database. The system can include a user device having a first network interface and a first I/O subsystem. The system can include one or more servers. The one or more servers can: retrieve data packet metadata for a data packet; determine that the data packet metadata is unstable; identify a set of potential recipients of the data packet; select one of the set of potential recipients as the recipient of the data packet; provide the data packet to the recipient of the data packet; receive a response from the recipient to the provided data packet; and automatically update the data packet metadata based on the response received from the recipient. |
US11601368B2 |
Predictive congestion detection
A system and method for predictive congestion detection for network devices is provided. A routing engine associated with an input of a router receives congestion information from an output, utilizing the received congestion information to initialize a congestion value associated with that output. Between receipt of updated congestion information from the output, the routing engine predicts a potential change in the congestion state at the output based on the congestion value and information regarding usage of the output that is known to the routing engine. |
US11601367B2 |
Systems and methods for dynamic network function resource allocation through the network repository function
A device may include a processor configured to register a network function, of a core network associated with a radio access network, in a network function repository for the core network. The processor may be further configured to obtain load information for the network function, wherein the load information indicates a load associated with the network function during a time period; determine that the load associated with the network function has reached a threshold based on the load information; and send an alert to an orchestration system to adjust a capacity for the network function, in response to determining that the load associated with the network function has reached the threshold. |
US11601365B2 |
Wide area networking service using provider network backbone network
An indication of a set of premises between which network traffic is to be routed via a private fiber backbone of a provider network is obtained. Respective virtual routers are configured for a first premise and a second premise, and connectivity is established between the virtual routers and routing information sources at the premises. Contents of at least one network packet originating at the first premise are transmitted to the second premise via the private fiber backbone using routing information obtained at the virtual routers from the routing information source at the second premise. |
US11601363B2 |
Intelligent internet traffic routing
A primary internet connection via a gateway or router located at a premises may be used to route internet traffic from devices located at the premises. A change in the primary internet connection, such as a loss or a degradation of the connection, may occur. Based on the change in the primary internet connection, metrics of alternative internet connections, such as cellular or hotspot connections, may be used to select one of the alternative internet connections. Internet traffic may be routed via the selected alternative internet connection until the primary internet connection is reestablished or improves. |
US11601362B2 |
Route server mode for dynamic routing between logical and physical networks
Some embodiments provide a method for configuring a logical router that interfaces with an external network. The method receives a configuration for a logical network that includes a logical router with several interfaces that connect to at least one physical router external to the logical network. The method selects a separate host machine to host a centralized routing component for each of the interfaces. The method selects a particular one of the host machines for operating a dynamic routing protocol control plane that receives routing protocol data from each of the centralized routing components and updates routing tables of each of the centralized routing components. |
US11601360B2 |
Automated link aggregation group configuration system
An automated Link Aggregation Group (LAG) configuration system includes a plurality of slave switch devices that are each coupled to an endhost device by at least one respective link. Each of the plurality of slave switch devices receives a Link Aggregation Group (LAG) communication from the endhost device, and forwards endhost device information in that LAG communication to a master switch device. The master switch device receives endhost device information from each of the plurality of slave switch devices and determines that each of the plurality of slave switch devices are coupled to the endhost device. In response, the master switch device sends a LAG instruction to each of the plurality of slave switch devices that causes the at least one respective link that couples each of the plurality of slave switch devices to the endhost device to be configured in a LAG. |
US11601357B2 |
System and method for generation of quality metrics for optimization tasks in topology synthesis of a network
System and methods are disclosed to qualify networks properties and that can be used for topology synthesis of networks, such as a network-on-chip (NoC). In accordance with various embodiments and different aspects of the invention, quality metric are generated, analyzed, and used to determine a quantitative quality set of values for a given generated solution for a network. The method disclosed allows the network designer or an automated network generation process to understand if the results produced are a good, an average or a bad solution. The advantage of the invention includes simplification of design process and the work of the designer by using quality metrics. Various quality metrics are generated using network definitions. These quality metrics provide quality evaluation and the quality assessment of the optimization process for a generated (optimized) network. The quality metrics include analyzing latency through a network and analyzing total wore length used by the network. |
US11601356B2 |
Emulating packet flows to assess network links for SD-WAN
Some embodiments provide a novel method for assessing the suitability of network links for connecting compute nodes located at different geographic sites. The method of some embodiments identifies and analyzes sample packets from a set of flows exchanged between first and second compute sites that are connected through a first network link in order to identify attributes of the sampled packets. The method also computes attributes of predicted packets between the identified samples in order to identify attributes of each flow in the set of flows. The method then uses the identified and computed attributes of each flow in the set of flows to emulate the set of flows passing between the two compute sites through the second network link in order to assess whether a second network link should be used for future flows (e.g., future flows exchanged between the first and second compute sites). |
US11601355B2 |
Contextual bandwidth management of audio/video conference
An information handling system includes a network hardware device and a processor. The network hardware device transmits Internet Protocol (IP) datagram packets. Each of the IP datagram packets includes a respective user datagram protocol (UDP) packet. The processor detects a UDP packet. The UDP packet includes a real-time protocol (RTP) packet. The processor inspects one or more fields of the RTP packet, and determines whether a conferencing application generated the RTP packet. In response to a conferencing application generating the RTP packet, the processor determines whether the RTP packet is a real-time audio/video packet, and determines whether an audio/video session is in-progress. In response to the audio/video session being in-progress, the processor determines a network traffic policy for the RTP packet, and the network hardware device to transmit the UDP packet encapsulating the RTP packet based on the determined network traffic policy. |
US11601350B2 |
System and method for logging and displaying routing of communication
The present invention allows a user to review the routing of various communications. The system receives incoming communications for analysis by a smart routing engine (SRE) software module. The SRE module analyzes the communication at various system routing points, which is used by SRE to route the communication to an appropriate party. The SRE updates a routing log at each point to ensure a record of the reasons for routing the communication in a certain way. The routing log passes with the communication. This ensures that the ultimate recipient of the communication understands why they have received the communication and reduces the time required for a communication to be acted upon. |
US11601349B2 |
System and method of detecting hidden processes by analyzing packet flows
A method includes capturing first data associated with a first packet flow originating from a first host using a first capture agent deployed at the first host to yield first flow data, capturing second data associated with a second packet flow originating from the first host from a second capture agent deployed outside of the first host to yield second flow data and comparing the first flow data and the second flow data to yield a difference. When the difference is above a threshold value, the method includes determining that a hidden process exists and corrective action can be taken. |
US11601348B2 |
Managing radio-based private networks
Disclosed are various embodiments for managing radio-based private networks. In one embodiment, a cellular network comprises at least one cell that provides a radio-based private network coverage of a site of an organization. The system further comprises at least one computing device in a cloud provider network that implements one or more network functions for an associated core network of the radio-based private network. |
US11601347B2 |
Identification of incident required resolution time
A system to provide end users with recommendations on improving the quality of the incident management process is provided. A computer device identifies a set of historical incident reports, wherein the historical incident reports identify: (i) incident tickets, (ii) one or more skills associated with personnel assigned to the incident tickets, and (iii) whether the incident tickets were resolved within threshold periods of time to resolve. The computing device trains a machine learning model to predict sets of skills associated with resolving incident tickets within the threshold periods of time to resolve based, at least in part, on the identified set of historical incident reports. The computing device assigns a set of personnel to the new incident ticket based, at least in part, on the predicted set of skills associated with resolving the new incident ticket within the threshold period of time to resolve. |
US11601345B2 |
Network service activation system
Aspects of the present disclosure involve systems and methods for a service activation system in a telecommunications network that utilizes one or more generic container files for building the configuration file to instantiate the service on the network. A request for service from a network may be received from an order entry system that includes specific information about the requested service. A collection of generic configuration files may be selected based on the information included in the service order and arranged to build a configuration file to be executed on the network. The service activation system may also include a component or group of components to verify a received service order and alter the service order with default information or data where applicable. The configuration file may also be executed on the network through one or more drivers communicating with the affected devices to configure the one or more network devices. |
US11601344B1 |
Cloud gateway outage risk detector
A cloud gateway outage risk detector can receive, by an event listener module, user session data associated with a plurality of user sessions over a cloud gateway. The event listener module can store the data in a database. A run-time collection module can obtain at least a portion of the data. The run-time collection module can provide the portion of the data to a run-time risk criteria evaluation module that can determine, based upon the portion of the data, a run-time outage risk criteria for the cloud gateway. A baseline risk criteria evaluation module can obtain historical data from the database. The baseline risk criteria evaluation module can determine, based upon the data, a baseline outage risk criteria for the cloud gateway. The run-time risk criteria evaluation module can determine whether the run-time outage risk criteria meets or exceeds an outage risk threshold. |
US11601343B2 |
Dynamic adaptive network
Systems and methods for managing a network are disclosed. In certain systems and methods, access to a network such as a wireless network, can be granted or denied based upon a threshold number of devices accessing the network. Moreover, access to a first service available over the network can be granted or denied based upon a threshold number of devices accessing the first service. Various network resource can be allocated to the first service based at least upon the number of device access the first service. |
US11601341B2 |
Method for managing system and apparatus therefor
The present disclosure provides a method of managing a system and an apparatus therefor. The method of the present disclosure may include providing a menu management tool for managing a menu of a system, setting an item of the menu and an authority to access the item by receiving an input through the menu management tool, and providing, when a terminal having the authority accesses the system, information regarding the item to the terminal. |
US11601340B2 |
Integration of a device platform with a core network or a multiaccess edge computing environment
Techniques for integrating a device platform in a core network or MEC environment, and managing data communications associated with devices are presented. The device platform, integrated with the core network or MEC environment, can comprise a communication management component (CMC) that can manage communication of data associated with devices connected to the core network. CMC can receive data and metadata from a device, analyze the data and metadata, and, based on the analyzing and data management criteria, determine whether any, all, or a portion of the data is to be communicated to a second device associated with the core network or associated communication network. CMC can be trained, using machine learning, to learn to identify device types, communication protocols, and data payload formats of devices. Based on the analyzing and the training, CMC can determine the device type, communication protocol, and data payload format associated with the device. |
US11601339B2 |
Methods and systems for creating multi-dimensional baselines from network conversations using sequence prediction models
Systems and methods are provided for utilizing natural language process (NLP), namely sequence prediction approaches, in the realm of network security. Techniques include analyzing network transaction records to form network sentences representative of network activity. The network sentences are formulated by regularizing transactions records using words, allowing the network sentences to represent the network activity using natural language terminology. In some cases, multiple variations of the network sentences having different sequences of words are generated to form a corpus of network sentences related to a semantics of network activity. Accordingly, an NLP-based network prediction model can be created and trained using the corpus of network sentences. The network prediction model can be trained over to identify dimensions corresponding to particular sequences of words in the network sentences, and predict an expected dimension. Using the network prediction model predictions of expected network are provided, and anomalies efficiently detected. |
US11601336B2 |
Assigning routing paths based on interior gateway protocol metric optimization
Methods, systems, and apparatus, including computer-readable storage media, optimizing interior gateway protocol (IGP) metrics using reinforcement learning (RL) for a network domain. The system can receive a topology (G) of a network domain, a set of flows (F), and an objective function. The system can optimize, using reinforcement learning, the objective function based on the received topology and the one or more flows F. The system can determine updated IGP metrics based on the optimization of the objective function. The IGP metrics for the metric domain may be updated with the updated IGP metrics. |
US11601333B2 |
Systems and methods for configuration verification across secured network boundaries
Systems and methods are described for testing server configuration across a secured network edge. A server administrator submitting configuration instructions from an external network separated from an internal network by a network boundary device may not have adequate access for proper testing. A test platform within the internal network receives, from a management device in the external network, a test request indicating a client characteristic. The test platform generates a data request with origination information for a source of the data request conforming to the indicated client characteristic and transmits the generated data request to a data server within the internal network responsive to receiving the test request from the management device. The test platform then receives a response to the generated data request and provides, to the management device in the external network, a report based on the received response. |
US11601328B2 |
Communication path control device, communication path control method, and communication path control system
Provided is a communication path control device that transmits path information for controlling a path for transmitting data to a plurality of communication devices which are connected by a wired path and through which data addressed to the plurality of communication devices is sequentially forwarded. |
US11601326B1 |
Problem detection and categorization for integration flows
A system and method to determine an event for an executing integration flow defining how messages are passed between a sender system and a receiver system; determine message processing states of messages of the integration flow before an event time; determine message processing states of messages of the integration flow after the event time; determine, based on an evaluation of failed message processing states for the messages before and after the event time, whether the event is associated with a problem; assign, in response to the determination that the event time is associated with a problem, one or more categories to the problem; and store a record of the assignment of the one or more categories to the problem. |
US11601324B1 |
Composite display of multi-sourced IT incident related information
An application executing on a mobile computing platform provides independent data channels over a mobile network to multiple separate computing systems that each maintain some data pertinent to problem determination and resolution when an incident arises in a monitored information technology (IT) environment. The application maintains and separately exercises the channels to provide timely information in a user interface that composites data to present a single interface with a multi-sourced contextual rendering. Some systems may include an IT monitoring system and a separate incident management system among its sources. Channels may include extended functionality to improve security or other aspects of communication with mobile platforms. |
US11601323B2 |
Techniques for wireless access and wireline network integration
One embodiment is a method and includes receiving at a termination element of a first network a bandwidth report (“BWR”), in which the BWR includes information regarding a data transmission opportunity over a second network for at least one endpoint data; scheduling a first network transmission opportunity for the at least one endpoint data using information derived from the received BWR; and receiving from a first network forwarding device the at least one endpoint data in accordance with the scheduled first network transmission opportunity. |
US11601321B2 |
Data center management over a power plane
Data center management over a power plane, including: coupling, via a plurality of power planes, a management hub to one or more servers; and transferring, via the plurality of power planes, data between the management hub and the one or more servers. |
US11601320B1 |
Single-point demodulation reference for noise mitigation in 5G and 6G
To mitigate phase noise and amplitude noise in a 5G or 6G message, the transmitter can include an extremely compact demodulation reference with a predetermined format including a first branch and an orthogonal second branch. The first branch can exhibit the maximum positive amplitude level of the modulation scheme, and the second branch can exhibit either the minimum positive level or the maximum negative level, depending on implementation. The receiver can determine, from the received branch amplitudes, a phase correction and an amplitude correction. Upon receiving a message including noise, the receiver can calculate a sum-signal amplitude and sum-signal phase according to the branch amplitudes of each message element, subtract the amplitude correction and phase correction, derive corrected branch amplitudes, and compare them to the predetermined amplitude levels of the modulation scheme. The receiver can thereby demodulate the message element with the phase noise and amplitude noise largely negated. |
US11601318B2 |
Contention-based payload transmissions using differential coding
Methods, systems, and devices for contention-based transmissions using differential coding techniques in mobile communication technology are described. An exemplary method for wireless communication includes transmitting, by a wireless device, a payload including a first portion that is modulated using a differential coding technique and a second portion that is modulated using an amplitude-shift keying (ASK) or phase-shift keying (PSK) modulation, and where the payload includes an identity of the wireless device and at least one of a user plane data or a control plane data. |
US11601311B2 |
Uplink transmission waveform configuration method, base station, and user equipment
Provided is a base station, comprising: a configuration unit, configured to configure a transmission waveform of a User Equipment (UE) for uplink transmission; and a transmission unit, configured to transmit information related to the configuration to the UE. The configuration unit is configured by using any of the following modes: physical layer signaling, a Random Access Response (RAR) message of Media Access Control (MAC), and Radio Resource Control (RRC) signaling. The present application also provides a user equipment (UE) and a corresponding method. |
US11601306B2 |
Channel estimation in a wireless communication system
Radio equipment (10) is configured for tap separated channel estimation in a wireless communication system. The radio equipment (10) obtains a channel estimate (16) of a radio channel over which a reference signal (12) is received, and separates the channel estimate (16) into channel estimate components (20) that correspond to respective channel taps (22). The radio equipment (10) then compensates the channel estimate components (20) for Doppler shifts respectively associated with the channel taps (22) to which the channel estimate components (20) correspond. The radio equipment (10) processes the compensated channel estimate components (32) separately. Such processing comprises filtering, interpolating, and/or extrapolating. The radio equipment (10) then de-compensates the processed channel estimate components (34) for the respective Doppler shifts, and forms a combined channel estimate (42) of the radio channel by combining the de-compensated channel estimate components (38). |
US11601304B2 |
Blockchain based vehicle control
A vehicle control method of starting and shutting down an engine, in which a processor receives a blockchain update comprising a first transaction with instructions to perform an engine startup or shutdown; the blockchain update is validated; an engine startup or shutdown is performed based on the validated blockchain update; where the engine startup or shutdown is delayed based on validating a predetermined number of subsequent blockchain updates, including a second transaction with instructions to perform the engine startup or shutdown. |
US11601300B2 |
Method for incident management of a home automation installation
The present invention relates to a method for incident management of home automation equipment comprising at least one home automation device (D) and at least one central control unit (U), the method being implemented by a management unit (Sv) and comprising the following steps: a step (EDSv1) of receiving a diagnosis request concerning at least one central control unit (U) belonging to the home automation equipment or at least one home automation device belonging to the home automation equipment (St); a step (EDS3) of sending at least one diagnosis request message to the at least one central control unit (U) concerned by the diagnosis request or to the at least one central control unit (U) to which the at least one home automation device concerned by the diagnosis request is attached; a step (EDSv8) of receiving a diagnosis result coming from a central control unit (U); a step (EDSv9) of providing a diagnosis report to the maintenance user (USAV), comprising: information concerning the communication between the management unit and the home automation device or the central control unit concerned by the diagnosis request, and/or, if the home automation device or the central control unit can communicate such a result: the last known values of the state variables for the home automation devices (D) and for the central control units (U); and/or the results of commands or connection attempts initiated by the end user (UsrF). |
US11601298B2 |
Apparatus registration method, program for implementing the method and apparatus system
There are provided an apparatus registration method capable of efficiently associating specific information about apparatuses and arrangement information about the apparatuses stored in an operation terminal, a program for implementing the method, and an apparatus system. A method for registration of luminaires associates a plurality of luminaires with items of arrangement information about the luminaires stored in an operation terminal for operating the luminaires. The method for registration of luminaires is adapted to include the steps of: consecutively reading at least two or more of items of specific information about the luminaires included in the luminaires using a RF reader; storing items of arrangement information about the luminaires into the operation terminal; and consecutively associating the at least two or more items of specific information consecutively read by the RF reader with at least two or more items of arrangement information among the items of arrangement information about the luminaires. |
US11601290B2 |
Centralized database with provisions to prevent PKI key and security certificate duplication
A system and method for preventing use of invalid digital certificates is disclosed. The method comprises receiving, in a validation service from a requesting entity, a cryptographic asset and a request to evaluate the cryptographic asset, the cryptographic asset uniquely assigned to one of the plurality of devices by an associated one of the commercially distinct entities, the request comprising the cryptographic asset, determining an evaluation state of the cryptographic asset at least in part from a database derived from a plurality of public keys currently assigned to the plurality of devices and previously received by the validation service, determining a disposition of the cryptographic asset according to a disposition policy associated with the determined evaluation state and the device and effecting the determined disposition of the cryptographic asset. |
US11601288B1 |
On-demand security certificates for improved home router security
A secure connection to a router web UI is provided. In one implementation, responsive to a client request to securely connect to a router web server (RWS), the RWS generates and sends a certificate signing request (CSR) to a remote-security certificate server (R-SCS). Upon validation of the RWS, the R-SCS signs and transmits a router web UI certificate (RWUIC) to the RWS to present to the client. In another implementation, the router includes a local-SCS (L-SCS) that periodically obtains a short-lived intermediate certification authority (ICA) certificate from the R-SCS. Responsive to a client request for secure access to the RWS, the RWS generates and sends a CSR to the L-SCS for the RWUIC. The L-SCS signs the RWUIC and passes the ICA certificate and RWUIC to the RWS, which presents the certificate(s) to the client. Upon validation of the certificate(s), a secure channel between the client and RWS is established. |
US11601285B2 |
Securely authorizing service level access to a backup system using a specialized access key
Described is a system (and method) for securely authorizing service level access to a backup system using an access key. The service level access (or access via a service account) may provide a user with an enhanced set of privileges to perform troubleshooting operations on the backup system. Such privileges may be unlocked by allowing a user to perform operations using an unrestricted interface of the backup system such as an operating system shell. To authorize such access, the system may provide a limited (or specialized) access key. The access key may be narrowly tailored to only provide access to a particular backup system and only remain viable for a limited duration. Accordingly, the access key may be configured to embed a system identifier, a timestamp, and a digital signature, which may be independently verifiable by the backup system before granting service level access. |
US11601284B2 |
Digital signature system based on a cloud of dedicated local devices
Method and apparatus are disclosed for attack tolerant implementations of public key digital signatures based on a cloud of dedicated local devices. A system includes a first security device, a second security device, and a computing device remote from the first and second security devices. The first security device stores a first private key and, in response to receiving a message, generates a first signature based on a message received from the computing device and the first private key. The second security device stores a second private key that is independent from the first private key and, in response to receiving a message, generates a second signature based on a message received from the computing device and the first private key. The computing device generates a composite cryptographic signature based on the first signature and the second signature. |
US11601280B2 |
Reversible hash generators for pairs of complementary sequences
A first string, having a first string value, that is associated with a sample set of material is received, wherein a second string, having a complementary value relative to the first string value, is also associated with the sample set of material. A determinative hash is generated using the first string value and a symmetric generator polynomial. A second hash, corresponding to the second string, is generated directly from the determinative hash. A canonized hash is generated using the determinative hash and the second hash. It is determined whether at least one of the first string or the second string is stored in string storage that is configured to store a plurality of strings, including by searching a hash table for the canonized hash; in the event it is determined that at least one of the first string or the second string is not stored in the string storage, at least one of the first string or the second string is stored in the string storage. |
US11601277B1 |
Domain isolated processing for coalition environments
A first cryptographic communication system is disclosed. The first cryptographic communication system includes a common hardware module configured to receive local cryptographic signals and coalition cryptographic signals that includes a transmitter, a receiver, a common router, a trusted router, and a data loader. The first cryptographic communication system further includes a local cryptographic assembly and a coalition cryptographic assembly each including and end cryptographic unit communicatively coupled to the trusted router, a cross domain guard communicatively coupled to the end cryptographic unit and the trusted router, and a general purpose security module communicatively coupled to the cross domain guard. The first cryptographic communication system further includes a data recoding module communicatively coupled to the data loader that includes local and coalition data recording devices. A cryptographic communication networking is also disclosed that includes the first cryptographic communication system and a second cryptographic communication system. |
US11601273B2 |
Systems, methods, and computer program products for interfacing multiple service provider trusted service managers and secure elements
System, methods, and computer program products are provided for interfacing between one of a plurality of service provider (SP) trusted service managers (TSM) and one of a plurality of secure elements (SE). A first request to renew a service is received from an SP system over a communications network. The first request includes a service qualifier associated with the service. A secure element corresponding to the service qualifier is determined. A second request to delete data associated with the service qualifier from the secure element is transmitted to the secure element. A third request to install an application on the secure element is transmitted to the secure element. A fourth request to activate the application on the secure element is transmitted to the secure element. |
US11601270B1 |
Methods, systems and computer program products for rotating cryptographic keys for encrypted files
Methods for rotating cryptographic keys to revoke access to encrypted data stored on a remote server. Obtaining a first cryptographic key from a key store. Generating a second cryptographic key at a user device. Obtaining a first chunk of data from an encrypted file stored on the remote server. Decrypting the first chunk of data using the first cryptographic key to provide a decrypted first chunk of data. Re-encrypting the decrypted first chunk of data using the second cryptographic key to provide a re-encrypted first chunk of data. Uploading the re-encrypted first chunk of data to the remote server from non-persistent storage. Repeating the steps until an entire encrypted file has been decrypted and re-encrypted. Combining all the re-encrypted chunks of the encrypted file to provide a reassembled encrypted file that is associated with the second cryptographic key. Updating the remote server with the reassembled encrypted file associated with the second cryptographic key. Storing the second cryptographic key in place of the first cryptographic key. |
US11601262B2 |
Distributed key management system
A distributed key management system includes a first SCP subsystem coupled to second SCP subsystems via a network. The first SCP subsystem establishes secure communication channels with the second SCP subsystems, and a first key management subsystem in the first SCP subsystem retrieves enabling key(s) for communicating via the secure communication channels from a second key management subsystem in one of the second SCP subsystems, and stores the enabling key(s). The first key management subsystem then receives a first enabling key request from the first SCP subsystem and determines whether the first SCP subsystem is trusted. If the first SCP subsystem is trusted, the first key management subsystem provides the first SCP subsystem access to the at least one enabling key. If the first SCP subsystem is not trusted, the first key management subsystem prevents the first SCP subsystem from accessing the at least one enabling key stored. |
US11601260B1 |
Encryption/decryption using key encapsulation/decapsulation
Systems and methods relating to the encryption and decryption of messages to be sent through a communications link. The system and method uses a random data source at the receive and transmit sides, along with a trusted random sampler that produces correlated random samples from the random data source to be used at the send and receive sides. At the transmit side, the correlated random sample is used to generate a symmetric key as well as a ciphertext. The symmetric key is then used to encrypt the message. The ciphertext is transmitted, along with the encrypted message, to the receive side. The receive side then uses the ciphertext, along with its own correlated random sample, to recover the symmetric key. The symmetric key is then used to decrypt the encrypted message. |
US11601258B2 |
Selector derived encryption systems and methods
Example selector derived encryption methods and systems include creating a hashed and encrypted database, as well as performing a query against the hashed and encrypted database using an encrypted selector exchange protocol to prevent the exposure of extraneous data from the hashed and encrypted database. |
US11601257B2 |
Creating deterministic ciphertext using wide-block encryption
A computer-implemented method according to one embodiment includes compressing an uncompressed instance of data to create a compressed instance of data; encrypting the compressed instance of data utilizing wide-block encryption in response to determining that a size of the compressed instance of data is less than a predetermined threshold; and adding a zero pad to the encrypted compressed instance of data to create a ciphertext string. |
US11601256B2 |
Consensus-based voting for network member identification employing blockchain-based identity signature mechanisms
A communication method and a method for operating the communication network are disclosed. The method includes: obtaining a network identifier (NI) for a first member of the communication network, where the first member is un-validated and associated with a first user; obtaining a vote value regarding the first user from a second user of a second member in the communication network, where the second member is validated; generating a trust score for the NI based on the vote value; and validating the first member, in response to the trust score satisfying a trust score threshold, by inserting a first validated member identity hash block (MIHB) based on the NI into a master blockchain ledger for the communication network. |
US11601255B2 |
Wireless-wireline physically converged architectures
Embodiments of the present invention provide systems, devices and methods for improving the performance and range of wireless communication systems. In various embodiments, a wireless and wireline architecture is implemented to allow a channel to more efficiently span physical barriers within the channel. The wireline portion of the channel may leverage pre-existing copper deployed within a building by interfacing copper with north and south transceiver nodes that allow the signal to propagate through a physical structure on the wire itself resulting in significantly less signal degradation compared to the signal having to traverse the physical structure wirelessly. |
US11601252B2 |
Bandwidth part operations
A wireless device receives one or more RRC messages comprising configuration parameters of a cell. The configuration parameters indicate uplink BWPs of an uplink carrier of the cell. The uplink BWPs comprise a first uplink BWP and a second uplink BWP. The configuration parameters further indicate a sidelink BWP of the uplink carrier of the cell. A numerology of the second uplink BWP is different than a numerology of the sidelink BWP. The wireless device activates the first uplink BWP. The wireless device activates the sidelink BWP. The wireless device switches from the first uplink BWP to the second uplink BWP as an active uplink BWP. The wireless device deactivates, based on the switch, the sidelink BWP. |
US11601250B2 |
Method for determining feedback information, terminal device, and network device
Embodiments of this application provide a method for processing information bits in a wireless communication network. A communication device receives a radio resource control (RRC) signaling, wherein the RRC signaling comprises time window information and time unit format information, wherein the time window information comprises a hybrid automatic repeat request (HARQ) time sequence K1 set, wherein K1 is a time relationship between a time unit of a physical downlink shared channel (PDSCH) and a time unit of a physical uplink control channel (PUCCH), or wherein the K1 is a time relationship between a time unit of a (PDSCH) and a time unit of a physical uplink shared channel (PUSCH). The device determines HARQ feedback information based on the time window information and the time unit format information and sends the HARQ feedback information. |
US11601248B2 |
Communication method and communications apparatus
This application provides a communication method and a communications apparatus. The method includes: receiving, by a terminal device, a configuration message from a network device, where the configuration message is used to configure a plurality of uplink BWPs and a plurality of downlink BWPs; determining, by the terminal device, a first BWP in the plurality of uplink BWPs, where the first BWP is used to transmit feedback information of downlink information that is on a second BWP, and the second BWP is any one of the plurality of downlink BWPs; receiving, by the terminal device, the downlink information on the second BWP; and sending, by the terminal device, the feedback information of the downlink information by using the first BWP, so that a BWP on which the feedback information is sent can be determined in a scenario in which a plurality of BWPs are activated. |
US11601244B2 |
Space division multiplexing mapping of transmission configuration indicator states to a control channel
Methods, systems, and devices for wireless communications are described. A control resource set (CORESET) may be configured to support multiple transmission configuration indicator (TCI) state control channels. Space division multiplexing (SDM) may be implemented to enable multi-TCI states by using multiple ports and layers. A certain layer and demodulation reference signal (DMRS) port may be associated with a certain TCI state. For orthogonal ports, resources elements (REs) may be assigned such that a first set of REs are assigned to the first DMRS port and a second set of REs are assigned to the second port. The multiple DMRS ports may be code division multiplexed (CDM'd) within an RE such that multiple DMRS ports may be associated with the same RE. For non-orthogonal ports, the same RE may be used for multiple TCI states, where scrambling sequences may be applied to DMRSs associated with the TCI states. |
US11601241B2 |
Narrowband positioning reference signal configuration
Systems and methods for configuring Narrowband Positioning Reference Signals (NPRS) for NB-IoT are provided. A network node generates and transmits NPRS configuration information including a first NPRS bitmap for FDD mode and/or a second NPRS bitmap for TDD mode. A wireless device can determine a NPRS configuration in accordance with the second NPRS bitmap for TDD mode and perform measurements using the NPRS configuration. |
US11601239B2 |
Physical (PHY) layer control for wireless local area network (WLAN) communication
This disclosure provides methods, devices and systems for wireless communication, and particularly, methods, devices and systems for physical (PHY) layer control signaling. A first physical layer convergence protocol (PLCP) protocol data unit (PPDU) may precede a second PPDU. The first PPDU may be referred to as a PHY control PPDU and may include a physical layer control signaling field (CNT-SIG) that informs one or more stations (STAs) regarding a physical layer configuration they should use for the second PPDU. The PHY control PPDU may enable dynamic subchannel assignments for one or more identified STAs, legacy STAs, or sub-bandwidth operating devices. The techniques of this disclosure may enable sharing of a wide bandwidth wireless channel by different types of devices or different basic service sets (BSSs) assigned to different subchannels of the wireless channel. |
US11601237B2 |
Method and system for a repeater network that utilizes distributed transceivers with array processing
A device that comprises a plurality of distributed transceivers, a central processor and a network management engine may be configured to function as relay device, relaying an input data stream from a source device to at least one other device. The relaying may include configuring one or more of the plurality of distributed transceivers to particular mode of relay operation and receiving the input data stream from the source device via at least one of the configured one or more of the plurality of distributed transceivers. The relaying may also include transmitting at least one relay data stream corresponding to the input data stream to the at least one other device, via at least one of the configured one or more of the plurality of distributed transceivers. |
US11601235B2 |
Determination of positioning reference signal resources in out-of-coverage sidelink-assisted cooperative positioning
Disclosed are techniques for wireless communication. In an aspect, an assisting user equipment (UE) receives a request to perform a positioning procedure from a target UE over a sidelink between the assisting UE and the target UE, wherein the assisting UE and the target UE are both out of network coverage, determines, based at least on the request, a set of time and/or frequency resources on which to transmit one or more positioning reference signals for the positioning procedure, and transmits the one or more positioning reference signals to the target UE via the set of time and/or frequency resources. |
US11601227B2 |
Duplication and rlc operation in new radio access technology
In accordance with example embodiments as described herein there is at least an apparatus and method to perform determining that at least one packet data convergence protocol data unit of a packet data convergence protocol sublayer are duplicate packet data convergence protocol data units of the packet data convergence protocol sublayer having been submitted for transmission on two or more carriers in a communication network; signaling to a control sublayer an indication of each packet data convergence protocol data unit that is a duplicate packet data convergence protocol data unit; and based on the indication, preventing a trigger of a radio link failure when a number of retransmissions based on the duplicate packet data convergence protocol data units reaches a threshold number of retransmissions. Further, there is at least an apparatus and method to perform transmitting packet data convergence protocol data unit duplicates over two or more carriers; receiving an indication that indicates packet data convergence protocol data unit has been correctly transmitted via one of two or more carriers; and upon receiving the indication, instructing to discard other packet data convergence protocol duplicates over carriers other than the one of two or more carriers with a successful delivery. |
US11601224B2 |
Medium access protocol data unit assembly in wireless systems
Systems, methods, and instrumentalities (e.g. aspects of entities, interfaces and procedures in a wireless transmit/receive unit (WTRU) and/or network layers LI, L2, 13) are disclosed for low latency medium access control (MAC) protocol data unit (PDU) assembly in wireless systems, such as 5G flexible radio access technology (RAT) (5gFLEX). Latency may be reduced, for example, by WTRU determination of network transmission parameters and signaling prior to a transmission grant. A WTRU may receive a modulation and coding scheme (MCS), resource range, etc. prior to a grant, e.g., for use in future grants. Data blocks may be incrementally created/encoded prior to a grant. Data units may be segmented, assembled and multiplexed, for example, based on data block sizes that allow MAC and radio link control (RLC) processing prior to a grant. Flexible grant sizes may be provided for early generation of transport blocks before a grant. A minimum guaranteed transport block size (TBS) may be signaled to permit early generation of a MAC PDU. Transmission parameters may be selected prior to a grant, for example, using blind decoding or a DCI reception procedure. |
US11601223B2 |
Systems and methods for HARQ transmission and retransmission using multiple code words
A user equipment (UE) in communication with a base station may utilize multiple code word (MCW) transmissions within a hybrid automatic repeat request (HARQ) process. An original transmission has a first transport block allocated to a first code word and a second transport block allocated to a second code word. Each transport block includes multiple code blocks grouped into code block groups. The UE receives a negative acknowledgement indicating that a subset of the code block groups were not successfully received. The UE retransmits the subset of the code block groups on at least one of the first code word or the second code word in a retransmission in the HARQ process. At least one code block is retransmitted on a different code word in the retransmission than in the original transmission. |
US11601221B2 |
Communication control device for a user station for a serial bus system, and method for communicating in a serial bus system
A communication control device for a user station. The communication control device controls a communication of the user station with at least one other user station of the bus system, and generates a transmission signal for transmission onto a bus and/or receives a signal from the bus. The communication control device generates the transmission signal according to a frame in which bits having a predetermined temporal length are provided. The communication control device generates the transmission signal so that its bits may be transmitted bus as a dominant state or a recessive state, so that the recessive state is overwritable by the dominant state. The communication control device shortens in the transmission signal at least one bit, which is to be transmitted as the dominant state, by a predetermined value in comparison to a bit that is to be transmitted onto the bus as the recessive state. |
US11601217B2 |
CRC bits for joint decoding and verification of control information using polar codes
Aspects of the disclosure relate to wireless communication systems configured to provide techniques for polar coding control information together with combined cyclic redundancy check (CRC) information. The combined CRC information may include a number of CRC bits selected to jointly decode and verify the control information to reduce the CRC overhead. |
US11601214B2 |
System and method for nulling or suppressing interfering signals in dynamic conditions
A system and method for nulling or suppressing interfering signals directed toward moving platforms based, at least in part, on dynamic motion data of the moveable platform is provided. The system may be an interference nulling system carried by a moveable platform and may include an antenna array including two or more antenna elements that generates at least one initial steerable null radiation pattern, dynamic motion data logic that determines dynamic motion data of the moveable platform; and update logic that updates the at least one initial steerable null radiation pattern based, at least in part, on the dynamic motion data. The at least one updated steerable null radiation pattern is directed toward a direction from which interfering signals are being transmitted from an interfering signal source. |
US11601213B2 |
Orthogonal time frequency space modulation over a plurality of narrow band subcarriers
An Orthogonal Time Frequency Space Modulation (OTFS) modulation scheme that maps data symbols, along with optional pilot symbols, using a symplectic-like transformation such as a 2D Fourier transform and optional scrambling operation, into a complex wave aggregate and be backward compatible with legacy OFDM systems, is described. This wave aggregate may be processed for transmission by selecting portions of the aggregate according to various time and frequency intervals. The output from this process can be used to modulate transmitted waveforms according to various time intervals over a plurality of narrow-band subcarriers, often by using mutually orthogonal subcarrier “tones” or carrier frequencies. The entire wave aggregate may be transmitted over various time intervals. At the receiver, an inverse of this process can be used to both characterize the data channel and to correct the received signals for channel distortions, thus receiving a clear form of the original data symbols. |
US11601212B2 |
CDMA-IA network concept of operations and media access control (MAC) layer
The present disclosure describes the concept of operations and the medium access control protocols of a wireless communication system using code-division multiple access with interference avoidance (CDMA-IA) as its physical layer. The system can dynamically share a common band with other networks without a central radio resource controller. In one embodiment, the wireless communication system includes a plurality of radio nodes forming a wireless mesh network, wherein the pairs of radio nodes use, individually optimized, time division duplexing. At least one radio node includes a software-defined radio, a memory, and an electronic processor. The electronic processor is configured to control the software-defined radio to transmit a pilot signal and share various state information with the other nodes of the network. The shared information includes local spectrum occupancy and node connectivity sets. The pervasive sharing of spectrum occupancy among all nodes enables the usage of the shared band to be maximized. |
US11601209B2 |
Modeling radio wave propagation in a fifth generation (5G) or other next generation network
The technologies described herein are generally directed to modeling radio wave propagation in a fifth generation (5G) network or other next generation networks. For example, a method described herein can include based on a graphical representation of a layout of a geographic area, identifying, by equipment comprising a processor, a feature of the geographic area relevant to propagation of a signal propagated from a signal point on the layout, resulting in an identified feature. The method can further comprise based on the identified feature and the signal point, generating, by the equipment, a feature map for the geographic area by employing a neural network, wherein the feature map comprises a map depicting estimates of the propagation of the signal at locations within the geographic area. |
US11601208B2 |
Parameter calibration method and semiconductor device utilizing the same
Parameter calibration method for calibrating multiple parameters corresponding to multiple electronic components to be calibrated in a circuit, including steps: (A) turning off all of the electronic components to be calibrated and selecting a first electronic component from the electronic components to be calibrated as an electronic component being calibrated; (B) turning on the electronic component being calibrated and performing a calibration procedure on the electronic component being calibrated to determine a setting value of a parameter corresponding to the electronic component being calibrated; and (C) selecting a second electronic component from the electronic components to be calibrated as the electronic component being calibrated and performing step (B). Step (C) is repeatedly performed until all of the electronic components to be calibrated have become electronic components that have been calibrated, and when performing step (C), the electronic component(s) that have been calibrated are kept being turned on. |
US11601202B2 |
Active bias circuit
Active bias circuits for integrated devices are described. In one example, an active bias circuit includes a voltage control element to establish a control voltage, an active bias device to provide a power bias responsive to the control voltage, and a compensation circuit connected to the active bias device. The compensation circuit can be configured to set output impedance and compensate for parasitic capacitance of the active bias device. In another embodiment, the voltage control element can be omitted, and a control voltage can be relied upon to directly control the power bias output provided by the active bias device. The active bias circuit can be used to power a driver of an integrated optical transmitter, in one example, among other possible applications. |
US11601200B2 |
Multi-channel WDM light emitting device and optical transceiver having the same
A multi-channel wavelength division multiplexing light emitting device includes a casing and an optical communication assembly accommodated in the casing. The optical communication assembly includes a substrate, a plurality of first light emitting units disposed on the substrate, a plurality of second light emitting units disposed on the substrate, a first wavelength division multiplexer, and a second wavelength division multiplexer. The first light emitting units are arranged to correspond with the first wavelength division multiplexer. The second light emitting units are arranged to correspond with the second wavelength division multiplexer. |
US11601190B2 |
Apparatus and methods for radio frequency signal boosters
Provided herein are apparatus and methods for radio frequency signal boosters for cellular and broadcast television signals with Wi-Fi signals transmission function. Cell phone, Wi-Fi, and broadcast television signals are boosted and retransmitted over a shared antenna or over more than one antenna. In certain implementations, a multi-band signal booster is configured to provide signal path gain to at least three signal paths: a first signal path configured to receive a first time division duplexed Wi-Fi signal, a second signal path configured to receive a first frequency division duplexed mobile or cellular signal, and a second signal path configured to receive a broadcast television signal. |
US11601189B2 |
Initial beam sweep for smart directional repeaters
Aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums to enhance functionality of directional repeaters (for instance, wireless devices that relay directional wireless signals). By adding even limited capability within the directional repeaters to buffer digital samples, the functionality of the directional repeaters may be enhanced to provide better coverage and make more efficient use of time, frequency, and spatial resources. |
US11601182B2 |
Method of transmitting and receiving data in wireless communication system supporting full-duplex radio and apparatus therefor
A method of transmitting and receiving a signal by a user equipment (UE) in a wireless communication system is disclosure. The method includes receiving information related to beam switching from a base station (BS), generating at least one transmission beam pattern based on the information related to the beam switching, transmitting a reference signal by using the at least one transmission beam pattern, measuring a self-interference signal based on the reference signal, transmitting information about the measured self-interference signal to the BS, and receiving beam pattern information based on the measured self-interference signal from the BS. The beam pattern information indicates a beam pattern determined by the BS, and the information related to the beam switching includes information about one of whether beam switching is requested, a beam switching interval, and the number of beam switching candidates. |
US11601180B2 |
Systems and methods for RF-based motion sensing and event detection
A system described herein may determine transformations, differences, variations, etc. in radio frequency (“RF”) waveforms sent by a device in order to detect motion-based events. Models associated with the differences in such RF waveforms may be used to identify particular types of events, such as the presence of an individual in a room or other area, a type of motion, or other types of events. An interval or rate at which the device outputs RF waveforms may be modified, in order to increase the resolution of the determination of differences between the RF waveforms as sent and the RF waveforms as received, and/or to conserve power. |
US11601175B2 |
Methods and devices for determining suitable transmit directions for beamformed transmission
Methods, devices and computer programs for determining new transmit directions to use for beamformed transmissions in case the link quality of an existing direction falters. A transmitting communication device and a receiving communication device cooperate via a beam tracking procedure to determine a new suitable transmit direction to use for upcoming beamformed transmissions. Information relating to the beam tracking procedure is communicated over an existing link that enables communication between the transmitting and receiving communication devices. The receiving communication device provides the transmitting communication device with information about a beam scan performed in order to detect tracking beams transmitted by the transmitting communication device. This information allows the transmitting communication device to determine suitable transmit directions to use. |
US11601172B2 |
Technique for controlling a beam pattern employed by an antenna apparatus
A technique is provided for controlling a beam pattern employed by an antenna apparatus. The antenna apparatus comprises an antenna array, and beamforming circuitry to employ a beam pattern in order to generate a beam using the antenna array to facilitate wireless communication with at least one further antenna apparatus. Beam pattern adjustment circuitry is then arranged to receive a control signal indicative of a motion being imparted to the antenna apparatus, and to adjust the beam pattern to be used by the beamforming circuitry in dependence on the control signal, so as to alter a width of the beam in order to mitigate variation in link quality of the wireless communication due to the motion. This hence allows the width of the beam deployed by the antenna apparatus to be adjusted taking into account motion being imparted to the antenna apparatus, so that a balance can be achieved between employing a narrow beam to seek to improve range and resilience to interference, and a wider beam to reduce the variation in link quality that might otherwise arise due to the motion. |
US11601171B2 |
Unified antenna system and method supporting 4G and 5G modems in same device
An information handling system (IHS) includes a sensor for sensing a physical configuration of the IHS, the physical configuration dependent upon a position of a hinge of a housing of the IIS. A first proximity sensor probe may sense whether a first biological entity element is proximate to a first antenna of the IHS, and a second proximity sensor probe may sense whether a second biological entity element is proximate to a second antenna of the IHS. The IHS may reconfigure use of at least one of the first antenna and the second antenna in response to the sensing of at least one of the first proximity sensor probe and the second proximity sensor probe. |
US11601169B2 |
Method and apparatus for port selection in wireless communication systems
A method for operating a user equipment (UE) comprises receiving configuration information for a CSI report. The configuration information includes information to: configure a codebook and parameters for the codebook, the codebook comprising a precoding matrix indicator (PMI) indicating a set of components S to represent N3 precoding matrices, where N3≥1; and partition the PMI into two subsets, a first PMI subset indicating a first subset of components S1 from the set of components S, and a second PMI subset indicating a second subset of components S2 from the set of components S different from the first subset of components S1. The method further comprises determining the CSI report based on the configuration information, the CSI report including the second PMI subset indicating the second subset of components S2, and transmitting the determined CSI report over an uplink (UL) channel. |
US11601167B2 |
Method and device for power adjustment in UE and base station
A method and device for power adjustment in a user equipment and a base station are disclosed in the present disclosure. The user equipment receives first information which is used to trigger a first operation, the first operation including an accumulation reset corresponding to a first power value; and then receives K piece(s) of target information and transmits a first wireless signal. A transmission power value of the first wireless signal is a first power value; the first power value is irrelevant to all piece(s) of target information received prior to triggering the first operation. The K piece(s) of target information is(are) received after triggering the first operation. The sum of K power offset value(s) is used to determine the first power value. The K power offset value(s) are respectively indicated by the K piece(s) of target information. |
US11601166B2 |
Antenna switching on MIMO devices
A multiple-input, multiple-output (MIMO) transceiver comprises a plurality of RF chains, a plurality of antennas, a plurality of switching components, and control circuitry operatively coupled to the plurality of switching components. In some examples, a total quantity of RF chains included in the plurality of RF chains is equal to a first value, and a total quantity of antennas included in the plurality of antennas is equal to a second value that is less than the first value. |
US11601160B2 |
User terminal and radio communication method
The present invention is designated to appropriately control inter-slot frequency hopping of an uplink channel/signal. A user terminal of the present invention includes a transmitting section that transmits an uplink control channel over a plurality of slots and a control section that controls frequency hopping of the uplink control channel between the plurality of slots. |
US11601154B2 |
Multi-chip integrated circuit and interactive communication method for the same
A multi-chip integrated circuit and an interactive communication method for the multi-chip integrated circuit are provided. The multi-chip integrated circuit includes multiple low-voltage chips connected in series with each other instead of an ultra-high voltage chip, to reduce requirements on technology for the chip. In addition, the multiple chips communicate with each other through internal communication ports based on a differential signal, to enhance reliability of communication. Two adjacent chips are connected in series and a low-voltage power supply is arranged, so that a voltage difference between communication ports of the two adjacent chips is small. |
US11601153B2 |
High-frequency signal transmission-reception circuit
A high-frequency signal transmission-reception circuit includes a plurality of band pass filter groups each including a plurality of band pass filter pairs; a first switch including a plurality of band pass filter-side terminal groups each including a plurality of band pass filter-side terminals, and an antenna-side terminal group; a plurality of couplers configured to output respective signal strengths of high-frequency signals transmitted on a plurality of transmission paths; and a second switch including an input terminal group electrically connected to the plurality of couplers, and an output terminal configured to output a detection signal output from one of the plurality of couplers. The first switch electrically connects one band pass filter-side terminal in one band pass filter-side terminal group and one antenna-side terminal, and also electrically connects one band pass filter-side terminal in another band pass filter-side terminal group and another antenna-side terminal. |
US11601152B1 |
Radio-frequency power amplifier with amplitude modulation to phase modulation (AMPM) compensation
An electronic device may include wireless circuitry with a processor, a transceiver, an antenna, and a front-end module coupled between the transceiver and the antenna. The front-end module may include one or more power amplifiers for amplifying a signal for transmission through the antenna. A power amplifier may include a phase distortion compensation circuit. The phase distortion compensation circuit may include one or more n-type metal-oxide-semiconductor capacitors configured to receive a bias voltage. The bias voltage may be set to provide the proper amount of phase distortion compensation. |
US11601150B1 |
Demodulation for phase-noise mitigation in 5G and 6G
At high frequencies planned for 5G and 6G, phase noise may be a limiting factor on reliability and throughput. The default modulation scheme is currently QAM. Disclosed is a more versatile demodulation method based on the amplitude and phase of the sum-signal, which is the vector sum of the two branch amplitudes of QAM. The transmitter modulates a message by sum-signal amplitude and phase. The receiver can process the received waveform according to quadrature branches as usual, and determines the branch amplitudes. The receiver then calculates, from the branch amplitudes, the sum-signal amplitude and sum-signal phase for demodulation. The receiver can thereby obtain substantially enhanced phase-noise tolerance and amplitude spacing uniformity at virtually no cost. In addition, methods are disclosed for determining specific message fault types and non-square modulation tables depending on the type of mitigation required. Sum-signal modulation can provide access to high-frequency bands with enhanced reliability and throughput. |
US11601147B2 |
Semiconductor chip with local oscillator buffer reused for loop-back test and associated loop-back test method
A semiconductor chip includes a first wireless communication circuit, a local oscillator (LO) buffer, and an auxiliary path. The first wireless communication circuit has a signal path, wherein the signal path has a mixer input port and a signal node distinct from the mixer input port. The auxiliary path is used to electrically connect the LO buffer to the signal node of the signal path. The LO buffer is reused for a loop-back test function through the auxiliary path. |
US11601145B2 |
Tunable antenna and communications terminal
A tunable antenna. includes a radio frequency integrated circuit, a first frequency modulation branch coupled to the radio frequency integrated circuit, a first antenna coupled to the radio frequency integrated circuit through the first frequency modulation branch, a second antenna coupled to the radio frequency integrated circuit through a second frequency modulation branch. The first antenna corresponds to a first frequency, the second antenna corresponds to a second frequency, and the first frequency and the second frequency are respectively a transmit frequency and a receive frequency in a specified frequency band. The first antenna and the second antenna are respectively connected to the radio frequency integrated circuit through the frequency modulation branches when the tunable antenna is being designed. |
US11601140B2 |
Communication throughput despite periodic blockages
Methods, systems, and apparatus, including computer programs encoded on computer-storage media, for improving communication throughput despite periodic blockages. In some implementations, a method includes receiving, by a receiver and from a transmitter, code blocks transmitted according to a first set of communication parameters that includes one or more first interleaver parameters used to interleave information in the code blocks prior to transmission. Corrupted portions of at least some of the received code blocks are identified. A blockage duration and a blockage interval of a blockage of communication channel between the transmitter and the receiver are determined based on the corrupted portions of the received code blocks. A second set of communication parameters that includes one or more second interleaver parameters are determined based on the blockage duration and blockage interval. The second set of communication parameters are communicated to the transmitter for subsequent transmissions by the transmitter to the receiver. |
US11601130B2 |
Initialization circuit of delay locked loop
An initialization circuit of a delay locked loop (DLL) includes a sense circuit and a control circuit. The sense circuit receives an enable signal, a reference clock signal, and various delayed reference clock signals, and outputs another enable signal. The control circuit receives the two enable signals and outputs and provides a control signal to a loop filter of the DLL to control a delay value associated with the DLL. The control signal is provided to the loop filter such that the delay value associated with the DLL equals a predetermined delay value for a predetermined time duration. Further, after a lapse of the predetermined time duration, the delay value associated with the DLL increases until a difference between a time period of the reference clock signal and the delay value equals a threshold value. |
US11601128B2 |
Low power cryo-CMOS circuits with non-volatile threshold voltage offset compensation
Systems and methods related to low power cryo-CMOS circuits with non-volatile threshold voltage offset compensation are provided. A system includes a plurality of devices configured to operate in a cryogenic environment, where a first distribution of a threshold voltage associated with the plurality of devices has a first value indicative of a measure of spread of the threshold voltage. The system further includes control logic, coupled to each of the plurality of devices, configured to modify a threshold voltage associated with each of the plurality of devices such that the first distribution is changed to a second distribution having a second value of the measure of spread of the threshold voltage representing a lower variation among threshold voltages of the plurality of devices. |
US11601118B1 |
Latch device and operation method thereof
A latch device includes a differential pair, a differential circuit, and a clock gate circuit. The differential pair receives differential input signals, and the differential circuit performs a logic operation on the differential input signals. The clock gate circuit is configured to supply a supply voltage from the power supply node to the first connection node according to a clock signal. The clock gate circuit includes a reference-independent circuit and a reference-dependent circuit. The reference-independent circuit is configured to control a first electrical path between the power supply node and the first connection node according to the clock signal. The reference-dependent circuit is configured to control a second electrical path between the power supply node and the first connection node according to the clock signal and a first control signal, wherein the first control signal is determined according to a voltage level of one of the differential input signals. |
US11601117B1 |
Sense amplifier for coupling effect reduction
A sense amplifier including a first input transistor having a first input gate and a first drain/source terminal, a second input transistor having a second input gate and a second drain/source terminal, a latch circuit, and a first capacitor. The latch circuit includes a first latch transistor having a third drain/source terminal connected to the first drain/source terminal and a second latch transistor having a fourth drain/source terminal connected to the second drain/source terminal. The first capacitor is connected on one side to the first input gate and on another side to the fourth drain/source terminal to reduce a coupling effect in the sense amplifier. |
US11601116B2 |
System and method for generating sub harmonic locked frequency division and phase interpolation
A system for generating a sub-harmonically injection locked phase interpolated output signal. The system comprises ring oscillator (RO) circuitry to generate an output oscillator signal in response to a periodic input signal. The RO circuitry includes a plurality of differential delay RO stages interconnected in cascade within a closed loop, where each RO stage is configured to establish a corresponding delayed version of the output oscillator signal successively shifted in phase by a predetermined phase difference based on a predetermined interpolation mapping scheme. The system further comprises signal injection circuitry coupled to the RO circuitry to apply a first signal having a first input phase and a second signal having a second input phase to the plurality of differential delay RO stages based on the predetermined interpolation mapping scheme to lock a frequency of the output oscillator signal at one half the frequency of the periodic input signal. |
US11601114B2 |
Surface acoustic wave device and surface acoustic wave filter
A surface acoustic wave filter includes series and parallel arm resonance sections. The series arm resonance section is in a series arm. The parallel arm resonance section is in a parallel arm. The series arm resonance section includes one or more surface acoustic wave devices. Each surface acoustic wave device includes a first resonator group and a second resonator group. The first and second resonator groups are connected in parallel and include surface acoustic wave resonators. The first resonator group includes at least one surface acoustic wave resonator. The second resonator group includes a greater number of surface acoustic wave resonators than the at least one surface acoustic wave resonator in the first resonator group. The resonant frequency of the surface acoustic wave resonator in the first resonator group is higher than the resonant frequency of the surface acoustic wave resonators in the second resonator group. |
US11601105B2 |
Ambient sound activated device
Environmental sound is recorded using one or more microphones. A source of the recorded environmental sound is classified. The recorded environmental sound is weighted based on the classification of the source and the source media sound using a weighting mode to determine whether to mix the recorded environmental. The recorded environmental sound is mixed with source media sound to produce a mixed sound based on the determination. The mixed sound is played over one or more speakers. |
US11601096B2 |
Power amplifier module, frontend circuit, and communication device
A PA module includes: a multilayer substrate having a ground pattern layer connected to a ground of a power source; amplifier transistors disposed on the multilayer substrate; a bypass capacitor having one end connected to the collector of the amplifier transistor; a first wiring line connecting the emitter of the amplifier transistor and the ground pattern layer to each other; a second wiring line connecting the emitter of the amplifier transistor and the ground pattern layer to each other; a third wiring line connecting the other end of the bypass capacitor and the ground pattern layer to each other; and a fourth wiring line formed between the amplifier transistor and the ground pattern layer and between the bypass capacitor and the ground pattern layer and connecting the first wiring line and the third wiring line to each other. |
US11601093B2 |
Differential amplifier
The present document relates to differential amplifiers. A differential amplifier may comprise a current source, a first transistor, a second transistor, and a compensation circuit. A reference voltage may be applied to a first terminal of the first transistor, and a second terminal of the first transistor may be coupled to an output of the current source. A feedback voltage may be applied to a first terminal of the second transistor, and a second terminal of the second transistor may be coupled to the output of the current source. The compensation circuit may comprise a capacitive element coupled to the first terminal of the first transistor, and the compensation circuit may be configured to reduce a change of the reference voltage at the first terminal of the first transistor. |
US11601092B2 |
RF frequency multiplier without balun
Radio frequency (RF) mixer circuits having a complementary frequency multiplier module that requires no balun to multiply a lower frequency base oscillator signal to a higher frequency local oscillator (LO) signal, and which has a significantly reduced IC area compared to balun-based frequency multipliers. In one embodiment, the complementary frequency multiplier module includes a complementary pair of FETs controlled by an applied base oscillator signal. The complementary FETs are coupled to a common-gate FET amplifier and alternate becoming conductive in response to the base oscillator signal. The alternating switching of the complementary FETs in response to the opposing phases of the base oscillator signal cause the common-gate FET amplifier to output a higher frequency local oscillator (LO) signal. The LO signal is coupled to the LO input of a mixer or mixer core of a type suitable for use in conjunction with a frequency multiplier. |
US11601089B1 |
BAW oscillators with dual BAW temperature sensing
A temperature compensated oscillator circuit includes a first oscillator, a second oscillator, a first divider, a second divider, a frequency ratio circuit, and a temperature compensation circuit. The first divider is coupled to the first oscillator, and is configured to divide a frequency of a first oscillator signal generated by the first oscillator. The second divider is coupled to the second oscillator, and is configured to divide a frequency of a second oscillator signal generated by the second oscillator. The frequency ratio circuit is coupled to the first divider and the second divider, and is configured to determine a frequency ratio of an output of the first divider to an output of the second divider. The temperature compensation circuit is coupled to the frequency ratio circuit and the first oscillator, and is configured to generate a compensated frequency based on the frequency ratio and the first oscillator signal. |
US11601088B2 |
Method, system and device providing enhanced quality factor resonant LC tank in an integrated circuits
According to an aspect, a tank circuit in an integrated circuit comprising a plurality of metal strips forming a first part of a closed contour enclosing a first area, a set of split sections forming a second part and geometrically aligned with the closed contour, and a plurality of capacitors coupled between the split sections to form the tank circuit, wherein a first flux linkage due a current flowing in the set of split sections pass through the first area in the same direction as that of a second flux linkage due to the current flowing in the plurality of metal strips, and the set of split sections and the plurality of metal strips together forming an inductance coil. |
US11601084B2 |
Battery pack, power tool and battery pack charger system
When providing alternating current (AC) power to operate AC powered devices such as power tools (such as drills, table saws, miter saws), equipment (such as lawn mowers), and consumer products (such as refrigerators, television, lights) without being tied to a fixed utility power supply typically requires a generator (such as an internal combustion engine based generator) or a battery powered inverter. In order to meet power and runtime needs for these devices, a battery powered inverter must be relatively large and expensive. This simple fact prohibits their use in many environments. |
US11601082B2 |
Rotary machine driving system and vehicle
A rotary machine driving system includes: a rotary machine including a plurality of coils; an inverter device configured to operate the rotary machine at a variable speed, including a control device for controlling power conversion by an inverter circuit, and a coil switching device for switching a connection of the coils according to the control device. The control device commands the coil switching device to switch the connection of the coils when rotation of the rotary machine transitions between a low-speed rotation range and a high-speed rotation range due to acceleration and deceleration. A starting end and a terminal end of at least one set of coils per phase of the rotary machine are drawn out in a freely connectable state. The coil switching device includes at least one movable portion driven by one actuator. |
US11601080B2 |
Motor control device
A motor control device controls a current of a motor based on a torque command, the current being separated into a d-axis current and a q-axis current orthogonal to the d-axis current, the torque command being a target value of a torque of the motor. The motor control device includes a current vector controller that receives input of a d-axis current command and a q-axis current command, and generates a d-axis voltage command and a q-axis voltage command, a difference between a value of the d-axis current and a value of the d-axis current command being zero, a difference between a value of the q-axis current and a value of the q-axis current command being zero, a q-axis current command generator that generates the q-axis current command based on the torque command, a magnetic-flux weakening controller that generates the d-axis current command based on a difference between a voltage command and a reference voltage, the voltage command being a vector with the d-axis voltage command output from the current vector controller as a d-axis component and the q-axis voltage command as a q-axis component, an amplitude of the voltage command not exceeding the reference voltage, a current limiter that limits a magnitude of the d-axis current command according to a magnitude of the q-axis current command, the d-axis current command being a d-axis component of a current command vector of the motor, the q-axis current command being a q-axis component of the current command vector of the motor, a magnitude of the current command vector of the motor not exceeding a current limit value, and a reference voltage correction unit that corrects the reference voltage based on a difference between a value of the d-axis current command before limitation and a value of the d-axis current command after the limitation. |
US11601077B1 |
Technologies for redundant shaft information feedback in electric machine systems including a resolver
Electric machine drive systems, and related electric machine embodiments, include technologies for providing redundancy of shaft information of one or more electric machines between converter controllers of the corresponding system. The converter controllers are configured to control operation of power converters, which control one or more electric machines. The disclosed technologies include establishing one or more communication buses between the converter controllers to share the shaft information, which may be based on analog signals from a single, common resolver and/or from different, redundant resolvers depending on the embodiment. For example, in some embodiments, converter controllers communicatively connected to the same resolver may include separate resolver-to-digital converters (RDCs) to provide redundancy of the RDCs. |
US11601076B2 |
Motor driving apparatus and refrigeration cycle equipment
In a motor driving apparatus having an inverter which can drive n (n being an integer not smaller than 2) motors each having a permanent magnet in its rotor, and a connection switching device for switching the connection state of the n motors, the connection switching device is operated to change the number of the motors connected to the inverter thereby to change the impedance as seen from the inverter towards the motors. When i (i being any of 2 to n) motors among the n motors are concurrently driven by the inverter, the voltage outputted by the inverter may be controlled such that the inductance values of the i motors are identical. It is possible to prevent hunting and step-out due to the phase difference between the motors driven by the inverter. |
US11601075B2 |
Layered actuation structures comprising artificial muscles and connecting ledges
A layered actuation structure includes a first platform pair and a second platform pair. Each of the first platform pair and the second platform pair include an actuation platform and a mounting platform, forming an actuation cavity of each of the first platform pair and the second platform pair. One or more connecting ledges of each platform pair couple at least one of the actuation platform and the mounting platform of each platform pair to at least one of an actuation arm and a support arm, respectively. A collective stiffness of the one or more connecting ledges of the first platform pair is different than a collective stiffness of the one or more connecting ledges of the second platform pair. The layered actuation structure also includes one or more artificial muscles disposed in the actuation cavity of the first platform pair and the second platform pair. |
US11601074B2 |
Actuator
An actuator capable of attaining high output. The actuator includes a frame structure part that forms a frame structure surrounding a housing part, and a volume change part housed in the housing part. The volume change part increases a volume thereof by input of external energy. The frame structure part has a higher Young's modulus than a Young's modulus of the volume change part. The housing part has an anisotropic shape, with a maximum width in first direction of the housing part longer than a maximum width in second direction different from the first direction of the housing part. |
US11601073B2 |
Piezoelectric energy harvesting using a nonlinear buckled beam and method for same
An energy harvester includes a frame having a base, a first side member affixed to the base, and a second side member affixed to the base and spaced apart from the first side member. A beam is coupled between the first side member of the frame and the second side member of the frame. The beam has a substrate layer with a first end affixed to the first side member of the frame, a second end affixed to the second side member of the frame, a first face, and a second face opposite to the first face. The substrate is elastically deformable in response to the vibratory force. The beam further includes a first piezoelectric layer joined to the first face of the substrate layer and having a terminal for electrical connection to a load, the first piezoelectric layer comprising at least one piezoelectric patch. |
US11601059B2 |
Deeply integrated voltage regulator architectures
A system is disclosed. The system includes a substrate, and a first chip on the substrate, where a load circuit is integrated on the first chip. The system also includes a second chip on the substrate, where a power delivery circuit is configured to deliver current to the load circuit according to a regulated voltage at a node. The power delivery circuit includes a first circuit configured to generate an error signal based at least in part on the regulated voltage, and a voltage generator including power switches configured to modify the regulated voltage according to the error signal, where the first circuit of the power delivery circuit is integrated on the first chip, and where at least a portion of the power switches of the power delivery circuit are integrated on the second chip. |
US11601056B2 |
Hybrid architecture for DC-DC conversion
A Hybrid DC-DC switching converter architecture is described. The Hybrid architecture includes a capacitive converter cascaded by an inductive converter for a boost switching converter, and an inductive converter cascaded by a capacitive converter for a buck switching converter. A capacitor at an intermediate node and a switch in the capacitive converter are removed. Reducing the switching converter by one switch and one capacitor results in a smaller implementation area. A single regulation circuit and an inductor with a smaller saturation current (Isat) are used. |
US11601053B2 |
Spectral shaping of spread spectrum clocks/frequencies through post processing
An integrated circuit. The integrated circuit comprises a timebase generator and a switch mode direct current-to-direct current (DC-to-DC) converter coupled to the timebase generator. The timebase generator comprises a linear feedback shift register (LFSR) having an output and a logic circuit comprising a first logic inverter, a first AND logic gate, and a first multiplexer, wherein the first logic inverter has an input coupled to a most significant bit of the output of the LFSR, wherein the first AND logic gate has a first input coupled to a second most significant bit of the output of the LFSR and a second input coupled to an output of the first logic inverter, wherein a selector input of the first multiplexer is coupled to an output of the first AND logic gate. |
US11601052B2 |
Current emulation in a power supply
An apparatus comprises an emulator and a corresponding compensator. During operation, the emulator produces, at different instants of time, an emulated output current value representative of an amount of current supplied from an output voltage to a load. In general, the compensator provides selective compensation to the emulated output current value over time. For example, for a first time duration, compensation adjustments from the compensator are used to modify the emulated output current value. For a second duration of time, compensation adjustments from the compensator are not used to modify the emulated output current value. Disabling or discontinuing application of adjustments (such as based on the actual measured output current) during the second time duration (such as during a respective transient condition) provides more accurate and timely generation of a respective emulated output current value. |
US11601046B2 |
Three-phase double t-type four-level rectifier
A four-level rectifier may include an output, a first capacitor, a second capacitor, a third capacitor, and three phases. The first, second, and third capacitors may be connected in series. The output may be connected between the first capacitor and the third capacitor. Each of the three phases may include an input, a first diode, a second diode, a first switch, a second switch, and a third switch. The first diode may be connected between the input and the first capacitor. The second diode may be connected between the input and the third capacitor. The first switch may be connected between the input and the second switch and the third switch. The second switch may be connected to the first capacitor and to the second capacitor. The third switch may be connected to the second capacitor and to the third capacitor. |
US11601036B2 |
AC-DC power conversion system with zero voltage switching
A circuit technique substantially reduces the switching losses in an AC-DC power conversion system caused by turn-on characteristics of a main switch and the reverse-recovery characteristic of a rectifier. The losses are reduced by using an active soft-switching cell having a series inductor, a series capacitor, a main switch, a rectifier switch, and an auxiliary switch. The reverse-recovery related losses are reduced by the series inductor connected between the main and rectifier switches to control the rate of current change in the body diode of the rectifier switch during its turn-off. The main switch, the rectifier switch, and the auxiliary switch operate under zero-voltage switching (ZVS) conditions. |
US11601030B2 |
Drive device for an electrically drivable vehicle, and vehicle
A drive device for an electrically drivable vehicle includes a housing body with a first fastening device, a cover which, after release of a second fastening device interacting with the first fastening device for fastening the cover to the housing body, is movable from a first position, in which the cover covers live components of the drive device during operation of the drive device, into a second position, in which the components are exposed, and a first connection device, to which a second connection device is connectable for establishing an electrically conductive connection and/or a data connection. The first fastening device and the first connection device are arranged such that in the first position access to the second fastening means in its position fastening the cover is only possible after the second connection device has been released from the first connection device. |
US11601027B2 |
Methods and systems for permanent magnet motors powering electric submersible pumps
Systems and methods for connecting rotors between multiple permanent magnet motors. By coupling the rotors of multiple modules, torque may be transferred while maintaining the angular alignment between the stator and rotor magnetic fields of each individual permanent magnet motor. |
US11601020B2 |
Incompletely compensated wireless power transfer system
Disclosed in the present application is an incompletely compensated wireless power transfer system. On the basis of an SS compensated wireless power transfer system topology, a primary side capacitor C1 and a secondary side capacitor C2 take specific values, and in combination with a phase shift frequency modulation control method, a coupling range of a system output rated power is improved. According to the present application, by finding an appropriate combination of the primary side capacitor C1 and the secondary side capacitor C2, the system can output a required rated power in a larger coupling range under the condition of incomplete compensation. |
US11601019B2 |
RF-ultrasound relay for efficient power and data transfer across interfaces
A hybrid RF-acoustic relay is provided where some but not all of the incident RF power is rectified to power the relay and, optionally, to provide power for further link features. The remaining fraction of the incident RF power is used to directly drive an acoustic transceiver array in communication with one or more acoustically powered nodes. In this manner, power, control and communication can be efficiently provided to acoustically powered nodes even in situations where an RF link or an acoustic link would perform poorly. |
US11601016B2 |
Electronic device for providing wireless charging function and operation method thereof
An electronic device for providing a wireless charging function and a method thereof is provided. The electronic device includes a housing, a touch pad which is disposed in the housing and includes an electrode pattern and multiple openings formed on the electrode pattern, a wireless charging coil, and a processor operationally connected to the touch pad and the wireless charging coil, wherein the processor is configured to perform a touch detection function of detecting a touch by an inputting subject by using at least one electrode pattern of the touch pad, calculate a capacitance variation of the touch pad while the touch detection function is performed, determine whether the inputting subject requires a charging function, based on the calculated capacitance variation, and, in response to determining that the inputting subject requires the charging function, perform a charging function of transmitting power by using the wireless charging coil. |
US11601015B2 |
Wireless charger
A wireless charger, comprising: a thermal-conductive plastic cover; a first circuit board; and a metallic case, wherein the first circuit board are disposed in the metallic case, wherein a wind tunnel is formed between the thermal-conductive plastic cover and the circuit board for lowering the temperature of an electronic device that is wirelessly charged on the thermal-conductive plastic cover. |
US11601014B2 |
Non-contact power reception apparatus for non-contact charging and electronic settlement performed in a single portable terminal
A non-contact power reception apparatus is provided, in which a power reception coil for a charging system and a loop antenna for an electronic settlement system are mounted on a battery pack and a cover case of a portable terminal such that the power reception coil is arranged in the center thereof and the loop antenna is disposed outside the power reception coil, so that a mode of receiving a wireless power signal and a mode of transmitting and receiving data are selectively performed, thereby preventing interference from harmonic components and enabling non-contact charging and electronic settlement using a single portable terminal. A jig for fabricating a core to be mounted to the non-contact power reception apparatus is provided. |
US11601011B2 |
Power supply system for an offshore platform
An offshore oil and gas platform has a power supply system with a cascaded arrangement for a black start. The power supply system includes a first power supply apparatus for providing power at a first energy level, an uninterruptible power supply arrangement configured to receive power from the first power supply apparatus, wherein the uninterruptible power supply is for powering at least one essential and/or safety critical component, and a second power supply apparatus for providing power at a second energy level to a main power distribution system, wherein the second energy level is higher than the first energy level, wherein the second power supply apparatus includes a power source and a high-power energy storage system capable of supplying power at the second energy level, and wherein the second power supply apparatus can receive and store energy from the first power supply apparatus. |
US11600999B2 |
Detachable wireless charging clip
A disclosed wireless charging clip for an information handling system includes a first surface comprising a charging coil, a ferrite sheet positioned below the first surface, mating elements to be coupled to respective mating elements of the information handling system when the charging clip is installed on the information handling system, charging circuitry configured supply inductive power to charge an auxiliary device when the device is placed on top of the first surface, and a connector through which input power is received from the information handling system when the charging clip is installed. The charging coil may include multiple graphene layers. The charging clip may include a second surface and a third surface including the connector through which input power is received from the information handling system. The mating elements may include magnets to align and hold the charging clip in position with respect to the information handling system. |
US11600996B2 |
Electric vehicle (EV) fast recharge station and system
An electric vehicle (EV) charging station for fast charging (e.g. 5 to 15 minutes) an electric vehicle (EV). The EV charging station can be configured to charge multiple EVs and multiple conventional fuel type vehicles at the same time. |
US11600994B2 |
Systems and methods for reactive power management during low voltage ride through in different grid operating mode
Systems and methods for managing reactive power during low voltage ride through are provided. Responsive to detecting a fault on a power grid, a controller may identify a power regulation mode of the generator system. The controller can switch the power regulation mode to an offset power regulation mode of the generator system responsive to identifying the power regulation mode. The controller may adjust a value of a parameter of the generator system from a normal value to an offset value, wherein the parameter is selected based on the offset power regulation mode. The controller can maintain the value of the parameter as the offset value for a period of time. After the period of time, the controller can modify the value of the parameter from the offset value to the normal value, and the power regulation mode from the offset power regulation mode to the identified power regulation mode. |
US11600992B2 |
Electric protection circuit
The present application provides an electric protection circuit, which relates to the field of battery power. The electric protection circuit includes a battery pack, a main positive switch, a load device and a main negative switch connected in series. The main positive switch and/or the main negative switch include at least one semiconductor switch. The main positive switch and/or the main negative switch in the electric protection circuit are connected in parallel to a protection module, which absorbs electric energy across two terminals of the main positive switch and/or the main negative switch when the main positive switch and/or the main negative switch are turned off. The technical solution of the present application can improve the safety of the electric protection circuit. |
US11600991B2 |
Electrical circuit arrangement for an energy storage system and method for operating said electrical circuit arrangement
Electrical circuit arrangement for an energy storage system comprising a first electrochemical energy storage device and a second electrochemical energy storage device. |
US11600988B2 |
Ground fault minimization
A circuit for minimizing energy provided to a ground fault includes a source, a multiple switches, an output filter, and a controller. The switches include a first side pair of switches and a second side pair of switches configured to provide an output signal based on the source. The output filter includes one or more energy storage elements coupled to the first side pair of switches or the second side pair of switches. The controller is configured to receive a ground fault signal that indicates a fault has occurred and configured to generate a switch signal for the switches for a minimum energy state of the output filter and in response to the ground fault signal. |
US11600984B1 |
Leakage current detection and interruption device for power cord and related electrical connectors and electrical appliances
A leakage current detection and interruption (LCDI) device for a power cord includes a switch module that controls an electrical connection of first and second power supply lines between input and an output ends; a leakage current detection module, including first and second leakage current detection lines, which respectively cover the first and second power supply lines, and are respectively configured to detect leakage current signals on the first and second power supply lines and to generate self-test fault signals in response to the first and second leakage current detection lines having an open circuit; and a drive module which receives the first and/or second leakage current signal and the first and/or second self-test fault signal, and drives the switch module to disconnect the electrical connection in response to these signals. The LCDI device can individually detect leaks on the two power supply lines and open circuit on the two leakage current detection lines. |
US11600979B2 |
Laminated busbar having a shield layer for battery systems
A laminated busbar assembly includes one or more busbars that are configured to be electrically coupled to a plurality of battery cells, one or more insulative layers arranged adjacent to the one or more busbars, and a steel layer arranged between the one or more busbars and the plurality of battery cells. The steel layer is configured to shield the one or more busbars from a thermal event associated with one or more battery cells of the plurality of battery cells. The thermal event may include a debris, hot gas, sparks, embers, or other emanations. Each of the battery cells each include a respective venting end, where electrical terminals are located, that face the steel layer. The laminated busbar is a stack of layers that can include two busbars that form a DC bus, with insulation arranged between the busbars and between the steel layer and the proximal busbar. |
US11600978B2 |
Resin structure and wire harness
A resin structure has an insertion portion through which an electric wire runs. The resin structure includes a first resin body and a second resin body to be attached to the first resin body in an attaching direction so as to cover the opening portion. The first resin body includes a first wall portion forming a part of a wall portion perpendicular to the attaching direction, and a first insertion portion provided in the first wall portion and forming a part of the insertion portion. The second resin body includes a second wall portion forming another part of the wall portion, and a second insertion portion provided in the second wall portion and forming another portion of the insertion portion. When the first resin body and the second resin body are attached to each other, the insertion portion is disposed in the wall portion of the resin structure. |
US11600977B2 |
Resin structure
A resin structure includes: a box-shape main body having multiple regions; and multiple lids assembled to the main body. The main body has a first partition wall extending to separate between a pair of the regions. A first one of the multiple lids covers one of the pair of the regions and has a second partition wall provided at its edge portion. A second one of the multiple lids covers the other of the pair of the regions and has a third partition wall provided at its edge portion. The first partition wall and the second partition wall are located to overlap each other in a thickness direction of the first partition wall to form a multi-layer wall structure, and the first partition wall and the third partition wall are located to overlap each other in the thickness direction to form a multi-layer wall structure. |
US11600976B2 |
Cable gland for grounding a cable and method of use
A cable gland and methods for earthing, grounding, bonding, and electromagnetic capability with armored, metal-clad, and metallic-sheathed cable types. The cable gland comprises a gland body, a plurality of extensions, an elastomer seal, a compression member configured to rotate the plurality of extensions towards to the elastomer seal, and an earthing insert mounted in the gland body configured to electrically connect a cable to a neutral and/or grounded conductor. The cable gland is configured to provide an air-tight seal between the exterior of the cable and the elastomer seal through rotation of the plurality of extension upon the elastomer seal. The cable gland may include an o-ring and nut to secure the cable gland to a planar body. The earthing insert comprises a grounding spring in electrical communication with a metallic portion of the cable and a neutral and/or grounded conductor. |
US11600970B1 |
Spark-plug wire having heat shield with retention features
A spark-plug wire includes a boot of electrically insulative material defining a central bore configured to receive a spark plug, an electrical connector disposed in the central bore and configured to connect with the spark plug, and a cylindrical heat shield circumscribing the boot. The heat shield has retaining features extending past a distal end of the boot and configured to radially flex to engage with a hex of the spark plug to increase a retaining force of the spark-plug wire to the spark plug. |
US11600968B2 |
Single-mode micro-laser based on single whispering gallery mode optical microcavity and preparation method thereof
A single-mode micro-laser based on a single whispering gallery mode optical microcavity and a preparation method thereof described includes: preparing a desired single whispering gallery mode optical microcavity doped with rare earth ions or containing a gain material such as quantum dots, wherein an optical microcavity configuration include a micro-disk cavity, a ring-shaped microcavity, and a racetrack-shaped microcavity; a material type include lithium niobate, silicon dioxide, silicon nitride, etc.; preparing an optical fiber cone or an optical waveguide of a required size which can excite high-order modes of the optical microcavity, such as a ridge waveguide and a circular waveguides; and coupling, integrating, and packaging the optical fiber cone or the optical waveguide with the microcavity. A pump light is coupled to the optical fiber cone or the optical waveguide to excite a compound mode with a polygonal configuration. |
US11600966B2 |
Light source system
The present disclosure relates to a light source system suitable for use in a time of flight camera. The light source system includes a light source, such as a laser, and a driver arranged to supply a drive current to the light source to turn the light source on to emit light. The driver includes two transistors coupled to the light source in series, such that when both transistors are turned on, a drive circuit is completed, current flows and the light source turns on. A very short pulse of light emission may be achieved efficiently by switching one of the transistors to the on-state to complete the drive circuit and a short time later turning off the other transistor in order to break the drive circuit. In this way, a pulse of light in the order of less than 1 nanosecond or less than 500 picoseconds may be achieved. |
US11600965B2 |
Burst mode laser driving circuit
A method (900) includes a gain current (IGAIN) to an anode of a gain-section diode (D0) disposed on a shared substrate of a tunable laser (310), delivering a modulation signal to an anode of an Electro-absorption section diode (D2) disposed on the shared substrate of the tunable laser, and receiving a burst mode signal (330) indicative of a burst-on state or a burst-off state. When the burst mode signal is indicative of the burst-off state, the method includes sinking a sink current (ISINK) away from the gain current at the anode of the gain-section diode. When the burst mode signal transitions to be indicative of the burst-on state from the burst-off state, the method includes ceasing the sinking of the sink current away from the gain current and delivering an overshoot current (IOVER) to the anode of the gain-section diode. |
US11600963B2 |
Diamond-based high-stability optical devices for precision frequency and time generation
Chip technology for fabricating ultra-low-noise, high-stability optical devices for use in an optical atomic clock system. The proposed chip technology uses diamond material to form stabilized lasers, frequency references, and passive laser cavity structures. By utilizing the exceptional thermal conductivity of diamond and other optical and dielectric properties, a specific temperature range of operation is proposed that allows significant reduction of the total energy required to generate and maintain an ultra-stable laser. In each configuration, the diamond-based chip is cooled by a cryogenic cooler containing liquid nitrogen. |
US11600961B2 |
Adaptor
The present application provides an adaptor, the adaptor includes a plug, a signal extension cord and an adaptor body; the signal extension cord is in an L shape, and one end of the signal extension cord is connected to a sidewall of a tail end of the plug, the other end of the signal extension cord is connected to the adaptor body, such that the plug, the signal extension cord and the adaptor body are integrally formed a U-shaped structure, and when the adaptor is configured to be plugged into a communication interface of an electronic device, the adaptor body is configured to be located on a back side of the electronic device. The present application provides an adaptor, which has a function of curved structure, and improves the user experience when holding the electronic device. |
US11600959B2 |
Bidirectional duplex electrical connector having high and low surfaces and combination of the bidirectional duplex electrical connector and docking electrical connector
An electrical connector includes: a plastic seat; a tongue; and two rows of terminals; characterized in that a front section of the tongue is a thinner plate body, top and bottom surfaces of the thinner plate body are two front-section surfaces, a rear section of the tongue is a thicker plate body, top and bottom surfaces of the thicker plate body are two rear-section surfaces, the rear-section surface of one of the top and bottom surfaces of the tongue projects more than the entire front-section surface of the corresponding one of the top and bottom surfaces of the tongue by a height so that a step is formed between the rear-section and front-section surfaces of each of the top and bottom surfaces of the tongue. A combination of the bidirectional duplex electrical connector and a docking electrical connector is also provided. |
US11600957B2 |
Selectively plated plastic part
An electrical connector including a housing and electrical conductor plating. The housing includes a first member and a second member. The first member is made of plastic and forms at least one first contact receiving channel therein. The second member is attached around the first member, and the first and second members form at least one second contact receiving channel therebetween. The electrical conductor plating is on the first member. The electrical conductor plating includes at least one first section along the at least one first contact receiving channel and at least one second section along an exterior side of the first member at the at least one second contact receiving channel. The first and second sections of the electrical conductor plating are electrically separate from one another. |
US11600956B2 |
Cable connector system
A cable connector includes a cable including a center conductor and a housing supporting a portion of the center conductor. An imaginary line divides a cross-section of the center conductor into two semicircles, and when the cable connector is mated with a mating connector, only one of the two semicircles is directly connected with a corresponding contact of the mating connector. |
US11600954B2 |
Cable core crossing device
Guide element for electrical cores in a cable with at least four guide tracks, one for each electrical core of the cable, wherein the guide tracks run in such a way that at a first end of the guide element, at least two cores exchange places relative to a second end of the guide element opposite the first end. |
US11600952B2 |
Backplane connector with improved structure
A backplane connector includes a number of wafers and a spacer for assembling the wafers together. Each wafer includes an insulating frame and a number of conductive terminals fixed to the insulating frame. The insulating bracket includes a first protrusion and a second protrusion. The spacer includes a first body portion and a second body portion. The first body portion includes a first clamping slot for clamping the first protrusion. The second body portion includes a second clamping slot for clamping the second protrusion. The present disclosure increases the ability of the spacer to resist external forces and improves the structural stability of the backplane connector. |
US11600948B2 |
Connector
A connector includes a housing fitted into or detached from a mating housing, and a fitting detection member assembled to a member housing section of the housing and detecting a fitting completion. The fitting detection member includes a locked portion locked to or detached from a lock section of a flexible lock arm, and a flexible arm section provided with a slip-off prevention locking section locked to or detached from a locking protrusion of the member housing section, and when fitting of both the housings is released, the flexible arm section is bent and deformed in a direction in which a locking margin between the locking protrusion of the member housing section and the slip-off prevention locking section of the flexible arm section increases. |
US11600944B2 |
Electrical feedthrough and medical device
An electrical feedthrough (1) is provided for improving the thermal properties and the electromagnetic compatibility (EMC) and also for simplified production of a medical instrument (7), in which electrical feedthrough individual contact pins (4), which are guided through a glass body (2) in a housing (20) of the instrument (7), are electrically connected to one another by a pluggable plug element (5), preferably in the form of a sheet metal part. Here, the plug element (5) firstly provides high thermal and electrical conductivity and secondly provides a shielding area that effectively prevents the input coupling of electromagnetic radiation. Preferably, the plug element (5) is formed in such a way that it independently develops a holding force for securing itself to the contact pins (4). |
US11600940B2 |
Connector with built-in substrate and method of manufacturing chain terminal of the connector with built-in substrate
A connector with a built-in substrate includes a chain terminal including a chain portion, a first tab portion configured to protrude from the chain portion in a predetermined direction, a second tab portion configured to protrude from the chain portion in a direction different from a protrusion direction of the first tab portion; an inner housing in which the chain terminal is installed such that the first tab portion and the second tab portion protrude; and a substrate connected to the second tab portion protruding from the inner housing. |
US11600939B2 |
Device with disposable element
The construction of a medical device having a disposable element is disclosed. Detachable elements comprising a body having a retention feature, an electrical contactor, and sensors are also disclosed. Further disclosed are detachable elements comprising a body having a hole and a retention pocket, an electrical contactor, and a printed circuit board assembly (PCB) in contact with the innermost surface of the body that forms the retention pocket. Further disclosed are detachable elements comprising a body having an opening and a printed film comprising conductive elements, where the conductive elements comprise a sensor configured to be aligned with the opening to expose the sensor. Further disclosed are reusable components having matching retention features. |
US11600935B2 |
Locator, connector and harness
A locator is for aligning cables which are configured to be connected with a circuit board having an accommodated portion. The locator comprises at least a main portion which extends in a pitch direction. The main portion is, at least in part, formed with at least one circuit board accommodating portion. The main portion is formed with at least one first through hole and at least one second through hole which is different from the first through hole. The at least one circuit board accommodating portion is configured to accommodate the accommodated portion of the circuit board. The at least one circuit board accommodating portion opens at least forward in a front-rear direction perpendicular to the pitch direction. In the pitch direction, the at least one first through hole is provided at a location which is different from a location of the circuit board accommodating portion. |
US11600932B2 |
Antenna-on-package including multiple types of antenna
An AIP includes a package substrate including a top layer including a top metal layer including a first antenna type and a second antenna type, and a bottom layer including a bottom dielectric and a metal layer including a first and second contact pad and filled vias, and an IC embedded therein. Bond pads of an IC are coupled by a connection including ≥1 filled via for connecting to the top and/or bottom metal layer. A first metal pillar is between the first contact pad and first antenna, and a second metal pillar is between the second contact pad and second antenna. A first filled via is coupled to the first metal pillar providing a transmission line from the first contact pad to the first antenna. A second filled via is coupled to the first metal pillar providing a transmission line from the second contact pad to the second antenna. |
US11600931B2 |
Base station antenna
The present invention relates to a base station antenna, comprising: a plurality of first radiating elements that are arranged as a first vertically-extending array; a plurality of second radiating elements that are arranged as a second vertically-extending array, where the second radiating elements are staggered in the vertical direction with respect to the first radiating elements; wherein phase centers in an azimuth plane for first sub-arrays of the first radiating elements are substantially the same as phase centers in the azimuth plane for respective third sub-arrays of the second radiating elements, and wherein the first sub-arrays each have a first number of first radiating elements and the third sub-arrays each have a second number of second radiating elements, the first number being different than the second number. This can effectively improve the pattern of the base station antenna. |
US11600923B2 |
Coil for mobile device context-driven switching and wireless charging
Apparatus, system and method to provide switchable coils in a computing device, comprising: a plurality of electrically conductive coils to transfer electromagnetic energy; a sensor coupled to a processor, to select a coil from among the plurality of electrically conductive coils; a switch to energize the selected coil; and a switch controller coupled to the switch and to the processor. In some embodiments, the plurality of coils may comprise an inductive charging interface. Some embodiments may further include a communication interface between the processor to the plurality of electrically conductive coils, the plurality of coils comprising an interface for near-field communications (NFC). The antenna coils may be arranged to provide improved NFC coverage when the computing device is in a respective predetermined physical configuration. Sensors may be used to detect the configuration and switch NFC communications to use a preferred antenna coil for the detected configuration. |
US11600922B2 |
Dual band frequency selective radiator array
A dual band frequency selective radiator array includes a high band radiator array disposed on a dielectric layer for transmitting and receiving high band radar signals; a low band radiator array disposed on a front side of the high band radiator array for transmitting and receiving low band radar signals; a frequency selective surface (FSS) tuned to the high band radar signals forming a surface of the low band radiator array and passes the high band radar signals to the high band radiator array; and a single aperture disposed in front of the low band radiator array, the high band radiator array and the FSS for both the low band radiator array and the high band radiator array for transmitting and receiving the radar signals. |
US11600920B2 |
Remote electronic tilt actuators for controlling multiple phase shifters and base station antennas with remote electronic tilt actuators
A first mechanical linkage is connected between a RET actuator and a first phase shifter. A second mechanical linkage is connected between the RET actuator and a second phase shifter. The RET actuator includes a rotary drive element operably coupled to at least one drive gear for moving the at least one drive gear in a first rotary direction and a second rotary direction. A first drive system is connected to the first mechanical linkage and a second drive system is connected to the second mechanical linkage. The first drive system has a first driven gear and the second drive system has a second driven gear where the first driven gear and the second driven gear are coaxially located relative to one another. An index system selectively couples the at least a one drive gear to one of the first driven gear and the second driven gear. |
US11600918B2 |
Integrated antenna arrangement
An antenna arrangement includes a directional antenna assembly, the directional antenna assembly comprising a directional antenna intended to be mounted on an interface delimited by a stationary support structure, the directional antenna generally extending according to a main axis perpendicular to the plane defined by the interface, wherein the antenna arrangement further comprises a rotatable base mounted on the interface, the rotatable base comprising a pole integral with the rotatable base, the pole extending in the direction of the main axis, the rotatable base being rotatable about the main axis 11, a rotation of the rotatable base actuating the rotation of the pole about the main axis. |
US11600915B2 |
Antenna apparatus having heat dissipation features
In one embodiment of the present disclosure, an antenna apparatus includes a housing assembly including a radome portion and a lower enclosure portion, wherein the radome portion and lower enclosure portion are couplable to form an inner compartment for housing antenna components of the antenna assembly, an antenna stack assembly disposed within the inner compartment, wherein the antenna stack assembly generates heat when in operation, and a heat transfer system within the inner compartment configured to facilitate the flow of heat toward the radome portion. |
US11600913B2 |
Antenna board
An antenna board includes a first base board unit including a first insulating layer having a first receiving groove; a first antenna board unit disposed in the first receiving groove, including a second insulating layer and a third insulating layer disposed on the second insulating layer, and further including at least one of a first patch pattern disposed on the second insulating layer and covered by the third insulating layer and a second patch pattern disposed on the third insulating layer; and a first encapsulant covering at least a portion of the first antenna board unit and filling at least a portion of the first receiving groove, wherein a dielectric constant of the second insulating layer is different from a dielectric constant of the third insulating layer. |
US11600906B2 |
Mounting assemblies and mounting kit for base station antennas
The present disclosure relates to a mounting assembly and a mounting kit comprising such a mounting assembly for a base station antenna, wherein the mounting assembly has first and second connection parts, an effective length therebetween is related to the mechanical tilt of the base station antenna, and the effective length is continuously adjustable. The mounting assembly comprises a connecting rod mechanism having a first pair of connecting rods, a second pair of connecting rods, and a threaded connection device, wherein the threaded connection device connects two relatively movable hinged connection parts, the distance between the two hinged connection parts can be continuously adjusted by screwing the threaded connection device, so that the effective length can be continuously adjusted to realize continuous adjustment of the mechanical tilt of the base station antenna. |
US11600904B2 |
Electronic device including antenna
An electronic device in accordance with an example embodiment of the disclosure includes a first non-conductive cover defining a first surface of the electronic device, a second non-conductive cover including a first portion defining a second surface of the electronic device, and a second portion defining one portion of a lateral surface of the electronic device, a conductive frame defining an other portion of the lateral surface of the electronic device, and an antenna module, wherein the antenna module is positioned so that the one surface is substantially perpendicular to the second surface at a position within a specified proximity to the lateral surface of the electronic device and is configured to transmit and/or receive a signal through the lateral surface. |
US11600896B2 |
Antenna control apparatus and antenna system
An antenna system includes an antenna and an antenna control apparatus. The antenna control apparatus includes a control circuit, i.e., a control integrated circuit. The control circuit adjusts and boosts an antenna voltage to supply a required current to the antenna. The antenna voltage is maintained so as not to exceed a predetermined upper limit voltage threshold value. The control circuit is configured to determine a disconnection failure on the antenna when the antenna voltage detected by an overvoltage detection circuit reaches the upper limit voltage threshold value, or is boosted beyond the upper limit voltage threshold value. |
US11600895B2 |
Directional coupler
A directional coupler (1) includes a substrate (10), a main line (20) formed directly or indirectly on the substrate (10), sub-lines (21, 22 and 23) at least part of each of which is formed directly or indirectly on the substrate (10) along the main line (20), a switch (30) switching connections among end portions of the plurality of sub-lines (21, 22 and 23), and detection output terminals (FWD and REV) connected to the sub-line (21), wherein, when looking at the substrate (10) in plan, the end portions of the sub-lines (21, 22 and 23) are disposed on the opposite side to the detection output terminals (FWD and REV) relative to the main line (20), and the sub-line (21) to which the detection output terminals (FWD and REV) are connected is overlapped with or surrounded by the sub-lines (22 and 23). |
US11600892B2 |
Connection portion for connecting removable power unit to an electric device
Applications for use with a rechargeable power unit. In one embodiment, the rechargeable power unit is configured to be releasably connected to one or more interchangeable attachments having an electric functionality. In one embodiment, an electric device is configured having a compartment and connection portion configured to receive and use the rechargeable power unit as a power source. In some embodiments, the rechargeable power unit can be obtained or exchanged at a battery exchange machine. |
US11600887B2 |
Pressure relief element, pressure relief device and battery
The present invention relates to a pressure relief element (11) to be used as an overpressure safety means in devices where a gaseous medium must be rapidly released in case of overpressure, wherein the pressure relief element (11) has at least one notch (9) which is designed as a predetermined breaking point where the pressure relief element (11) breaks at a certain level of overpressure, thereby irreversibly opening an exhaust path for the gaseous medium. The present invention also relates to a pressure relief device of an electrochemical battery, comprising such a pressure relief element and a battery comprising such a pressure relief device. |
US11600883B2 |
Battery module, method for manufacturing battery module, and electronic device
A battery module with high impact resistance is provided. A battery module using an elastic body such as rubber for its exterior body covering a battery is provided. A bendable battery module is provided. As the exterior body covering a battery, an elastic body such as rubber is used, and the exterior body is molded in two steps. First, a first portion provided with a depression in which a battery is stored is molded using a first mold. Next, a battery is inserted into the first portion. Subsequently, second molding is performed using a second mold so as to fill an opening of the depression in the first portion, so that a second portion is formed. The second portion serves as a cover for closing the opening of the depression in the first portion. The second portion is formed in contact with part of the electrodes in the battery and part of an end portion of the second exterior body in the battery. |
US11600878B2 |
Battery block and battery module provided with same
A battery block includes assembled batteries that are arranged in parallel to each other, and the plurality of assembled batteries are each formed of a plurality of batteries as a unit. Each of the batteries has a positive-electrode terminal and a negative-electrode terminal on one end portion of the battery. The assembled battery includes: the plurality of batteries which are arranged in a row with one end portions of the batteries directed in the same direction; an insulation holder which is arranged on one end portion side of the batteries and holds the batteries; and a positive-electrode bus bar and a negative-electrode bus bar arranged on one end portions of the batteries. The positive-electrode bus bar and the negative-electrode bus bar are respectively held by holding portions which are formed on the insulation holder along a row direction and in parallel to each other. |
US11600874B2 |
Electrical equipment battery for vehicles
The electrical equipment battery includes: a circuit board mounted with a heat generating element; and an outer case having a heat radiation plate made of metal. A heat transfer space is defined between the circuit board and the heat radiation plate, and then an electrical-insulating and heat-conducting gel is filled in the heat transfer space. Heat energy of the heat generating element is radiated to the outside via the heat radiation plate of the outer case. The heat radiation plate is provided with a flow-out block partition on the outer side of the heat transfer space. The flow-out block partition suppresses the electrical-insulating and heat-conducting gel from flowing out from the heat transfer space. |
US11600870B2 |
Systems and methods for evaluating electrolyte wetting and distribution
Systems and techniques for measuring process characteristics including electrolyte distribution in a battery cell. A non-destructive method for analyzing a battery cell includes determining acoustic features at two or more locations of the battery cell, the acoustic features based on one or more of acoustic signals travelling through at least one or more portions of the battery cell during one or more points in time or responses to the acoustic signals obtained during one or more points in time, wherein the one or more points in time correspond to one or more stages of electrolyte distribution in the battery cell. One or more characteristics of the battery cell are determined based on the acoustic features at the two or more locations of the battery cell. |
US11600868B2 |
Method and system for producing nonaqueous electrolyte secondary battery
Provided is a method for producing a nonaqueous electrolyte secondary battery, and a production system therefor, that allow forming a good SEI film in a shorter time. The production method includes an assembly step, an initial charging step and a high-temperature aging step. At least one from among the initial charging step and the high-temperature aging step has the following sub-steps: a step of performing an AC impedance measurement on the nonaqueous electrolyte secondary battery and, on the basis of the AC impedance measurement, calculating an ionic conductivity of an SEI film that is formed the surface of a negative electrode of the nonaqueous electrolyte secondary battery; and a step of determining whether the calculated ionic conductivity falls within a predetermined range or not, and terminating the initial charging step or the high-temperature aging step when the ionic conductivity falls within the predetermined range, and continuing the initial charging step or the high-temperature aging step when the ionic conductivity does not fall within the predetermined range. |
US11600867B2 |
Vehicular battery charger, charging system, and method using an estimated latest time to begin charging
A vehicle battery charger and a vehicle battery charging system are described and illustrated, and can include a controller enabling a user to enter a time of day at which the vehicle battery charger or system begins and/or ends charging of the vehicle battery. The vehicle battery charger can be separate from the vehicle, can be at least partially integrated into the vehicle, can include a transmitter and/or a receiver capable of communication with a controller that is remote from the vehicle and vehicle charger, and can be controlled by a user or another party (e.g., a power utility) to control battery charging based upon a time of day, cost of power, or other factors. |
US11600866B2 |
Semiconductor solid state battery
A semiconductor solid state battery has an insulating layer provided between an N-type semiconductor and a P-type semiconductor. The first insulating layer preferably has a thickness of 3 nm to 30 μm and a dielectric constant of 10 or less. The first insulating layer preferably has a density of 60% or more of a bulk body. The semiconductor layer preferably has a capture level introduced. The semiconductor solid state battery can eliminate leakage of an electrolyte solution. |
US11600864B2 |
Constrained electrode assembly
A secondary battery for cycling between a charged and a discharged state, wherein a 2D map of the median vertical position of the first opposing vertical end surface of the electrode active material in the X-Z plane, along the length LE of the electrode active material layer, traces a first vertical end surface plot, EVP1, a 2D map of the median vertical position of the first opposing vertical end surface of the counter-electrode active material layer in the X-Z plane, along the length LC of the counter-electrode active material layer, traces a first vertical end surface plot, CEVP1, wherein for at least 60% of the length Lc of the first counter-electrode active material layer (i) the absolute value of a separation distance, SZ1, between the plots EVP1 and CEVP1 measured in the vertical direction is 1000 μm≥|SZ1|≥5 μm. |
US11600862B2 |
Electrolyte for lithium secondary battery, and lithium secondary battery containing same
The present invention relates to an electrolyte for a lithium secondary battery, comprising an organic solvent, a lithium salt and a compound of Chemical Formula 1, wherein the compound of Chemical Formula 1 is contained in an amount of 0.001 wt % or more and less than 0.1 wt %. In Chemical Formula 1, n is one of the integers 3 to 10. |
US11600860B2 |
Lithium secondary battery having improved low-temperature characteristics and high-temperature characteristics
A lithium secondary battery is disclosed herein. In some embodiment, a lithium secondary battery which includes a positive electrode including a positive electrode material mixture layer, wherein the positive electrode material mixture layer has a loading capacity of 3.7 mAh/cm2 to 10 mAh/cm2, a negative electrode including a negative electrode material mixture layer, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte solution including a lithium salt, an organic solvent, and a compound represented by Formula 1, the concentration of the lithium salt in the non-aqueous electrolyte solution is 1.5 M to 3 M, the organic solvent is a mixed solvent including a cyclic carbonate-based organic solvent and a linear carbonate-based organic solvent, and the compound represented by Formula 1 is included in an amount of 0.1 wt % to 5 wt % based on a total weight of the non-aqueous electrolyte solution. |
US11600857B2 |
Garnet materials for Li secondary batteries and methods of making and using garnet materials
Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device. Also, the methods set forth herein disclose novel sintering techniques, e.g., for heating and/or field assisted (FAST) sintering, for solid state energy storage devices and the components thereof. |
US11600855B2 |
Solid-state electrolyte, solid-state battery including the electrolyte, and method of making the same
A solid-state ion conductor includes a compound of Formula 1: Li(6-a)x+2y-b*z-6A1−xMaxOyXbz Formula 1 wherein, in Formula 1, A is an element having an oxidation state of +6, M is an element having an oxidation state of a, wherein a is +2, +3, +4, +5, or a combination thereof, X is an element having an oxidation state of b, wherein b is −1, −3, or a combination thereof, and 2<[(6−a)x+2y−b*z−6]≤6.5, 0≤x≤1, y>0, and z≥0. |
US11600853B1 |
Systems and methods for storing, transporting, and handling of solid-state electrolytes
A container assembly includes a container defining a sealed chamber, a solid state electrolyte disposed in the chamber, and a hydrophobic substance protecting the solid state electrolyte. A method for preparing a solid state electrolyte includes positioning a solid state electrolyte in a chamber of a container, protecting the solid state electrolyte using a hydrophobic substance, and sealing the chamber. A method for extracting a solid state electrolyte includes positioning the container assembly of in a dry atmosphere, unsealing the chamber, and removing the solid state electrolyte from the chamber to the dry atmosphere. |
US11600851B2 |
Solid-state electrolytes and methods for making the same
The present disclosure relates to solid-state electrolytes and methods of making the same. The method includes admixing a sulfate precursor including one or more of Li2SO4 and Li2SO4.H2O with one or more carbonaceous capacitor materials. The first admixture is calcined to form an electrolyte precursor that is admixed with one or more additional components to form the solid-state electrolyte. When a ratio of the sulfate precursor to the one or more carbonaceous capacitor materials in the first admixture is about 1:2, the electrolyte precursor consists essentially of Li2S. When a ratio of the sulfate precursor to the one or more carbonaceous capacitor materials in the first admixture is less than about 1:2, the electrolyte precursor is a composite precursor including a solid-state capacitor cluster including the one or more carbonaceous capacitor materials and a sulfide coating including Li2S disposed on one or more exposed surfaces of the solid-state capacitor cluster. |
US11600846B2 |
All-solid-state lithium ion secondary battery
Disclosed is an all-solid-state lithium ion secondary battery excellent in cycle characteristics. The battery may be an all-solid-state lithium ion secondary battery, wherein an anode comprises anode active material particles, an electroconductive material and a solid electrolyte; wherein the anode active material particles comprise at least one active material selected from the group consisting of elemental silicon and SiO; and wherein a BET specific surface area of the anode active material particles is 1.9 m2/g or more and 14.2 m2/g or less. |
US11600845B2 |
Secondary battery
A secondary battery has increased space utilization efficiency and can increase a capacity of an electrode assembly within a given dimension. In an exemplary embodiment, a secondary battery includes: an electrode assembly including an electrode uncoated portion; a case receiving the electrode assembly; a cap plate coupled to a top portion of the case and sealing the case; and a current collector including a terminal connector positioned between the electrode assembly and the cap plate, and an electrode connector bent at an end of the terminal connector and positioned between the electrode assembly and the case, and the electrode connector includes a first region connected to the terminal connector and protruding toward the case, and a second region positioned under the first region and protruding toward the electrode assembly. |
US11600843B2 |
Method for manufacturing spiral-wound battery
A method for manufacturing a spiral-wound battery is provided. The method includes the following steps: performing surface plasma treatment on a current collector; coating electrode slurry on a surface of the current collector, to form an electrode foil; performing surface plasma treatment on an isolating film, to improve hydrophilia of the isolating film; arranging and electrically connecting a plurality of metal conductive handles to the electrode foil, where the electrode foil is divided into a plurality of sections, and each section of the electrode foil corresponds to a jelly roll; and sequentially winding the isolating film and the electrode foil to form the spiral-wound battery. According to the method for manufacturing a spiral-wound battery provided in the present disclosure, internal impedance of a jelly roll is effectively reduced, and advantages of a high yield and low costs of a manufacturing process of the spiral-wound battery are maintained. |
US11600842B2 |
Multistage plunger press systems and methods with interlocking fingers for forming battery cell tabs
Presented are metalworking systems for forming metallic workpieces, methods for making such workpieces and methods for operating such systems, and battery cell tabs bent by a multistage plunger press. A metalworking system includes a plunger fixture that mounts adjacent metallic workpieces, and a plunger head movably mounted to the plunger fixture to move between activated and deactivated positions. A first row of plunger fingers is mounted to the plunger head and moves in one direction to press against and bend one metallic workpiece a predefined bend angle. Likewise, a second row of plunger fingers is mounted to the plunger head and moves in an opposite direction to press against and bend another metallic workpiece another predefined bend angle. The plunger head then moves to the activated position, in tandem with the plunger fingers bending the metallic workpieces, to cause the plunger fingers to bend the workpieces additional respective bend angles. |
US11600838B2 |
Ion-selective membrane for redox flow batteries
A fluoro sulfonated poly(phenylene) was rationally designed with an external hydrophobic shell and internal hydrophilic core in order to improve the durability and ion selectivity of a hydrocarbon membrane for vanadium redox flow batteries (VRFBs). The polymer was designed to prevent hydrophilic polymer chain aggregation by attaching acid moieties onto the polymer backbone, while functionalizing the external polymer shell with hydrophobic side chains to prevent excessive vanadium crossover associated with cation exchange membranes. As an example, the hydrophobic shell can be provided by pentafluorobenzoyl group functionalization of the pendent aryl groups on a Diels Alder poly(phenylene) backbone, while the internal polymer chain can contain sulfonic acid moieties to impart hydrophilic character. |
US11600837B2 |
Crosslinked membrane for anion exchange applications
Crosslinked membranes for anion exchange applications, and methods of making and using the same, are described. |
US11600831B2 |
Fuel-cell unit cell
Provided is a fuel-cell unit cell having a first gas diffusion layer that is laid on a first surface of a membrane-electrode assembly such that an outer peripheral edge portion thereof protrudes from the first surface of the membrane-electrode assembly. At a first part of the fuel-cell unit cell: the fuel-cell unit cell has a bonding layer; between the membrane-electrode assembly and a portion of the first gas diffusion layer on an inner side from the outer peripheral edge portion thereof, the bonding layer bonds the membrane-electrode assembly and the portion together; and between a support frame and the outer peripheral edge portion of the first gas diffusion layer, between the support frame and a first separator, and/or between the support frame and a second separator, the bonding layer bonds the support frame and the outer peripheral edge portion or the separator together. |
US11600827B2 |
Alkaline membrane fuel cell assembly comprising a thin membrane and method of making same
A method of making an alkaline membrane fuel cell assembly is disclosed. The method may include: depositing a first catalyst layer on a first gas diffusion layer to form a first gas diffusion electrode; depositing a second catalyst layer one a second gas diffusion layer to form a second gas diffusion electrode; depositing a thin membrane on at least one of: the first catalyst layer and the second catalyst layer; joining together the first and second gas diffusion electrodes to form the alkaline fuel cell assembly such that the thin membrane is located between the first and second catalyst layers; and sealing the first and second gas diffusion layers, the first and second catalyst layers and the thin membrane from all sides. |
US11600826B2 |
All-solid-state battery positive electrode and all-solid-state battery
An all-solid-state battery positive electrode 20 includes a positive electrode current collector 21 and a positive electrode active material layer 22 laminated on the positive electrode current collector 21. The positive electrode active material layer 22 includes an inclined portion 50 (a first inclined portion 50A) provided on an outer circumference thereof. |
US11600808B2 |
Systems and methods for potassium enhancing silicon-containing anodes for improved cyclability
Various methods and techniques for enhancing a silicon-containing anode for a battery cell are presented. The methods may include providing a silicon-containing anode having reversible electrochemical capabilities including a silicon-containing material and an anode material compatible with a lithium-ion battery chemistry having porous and conductive mechanical properties. The methods may also include enriching a surface layer of the silicon-containing anode with sodium ions to intersperse the sodium ions between silicon atoms of the silicon-containing material. The methods may also include displacing the sodium ions with potassium ions to form a compression layer in the silicon-containing anode. The potassium ions may place the silicon atoms of the silicon-containing material in a pre-compressive state to counteract internal stress exerted on the silicon-containing material. |
US11600803B2 |
Organic light-emitting display panel comprising concave structure and convex microlens
An organic light-emitting display (OLED) panel includes a substrate and a light-emitting pixel array disposed on the substrate and including a plurality of light-emitting pixels, each of the plurality of light-emitting pixels includes a concave structure, a light-emitting layer, a planarization layer, and a convex microlens which are sequentially stacked up and aligned up on the substrate in such a manner that light emitted in an angle perpendicular to the light-emitting layer on the concave structure pass through an focal point of the convex microlens. |
US11600802B2 |
Display device having a thin film glass layer
Provided is a display device. The display device includes a flexible display panel configured to display an image, and a window disposed on a display surface of the flexible display panel. The window includes a first protection layer, a thin film glass layer disposed on the first protection layer, and a second protective layer disposed on the thin film glass layer. |
US11600800B2 |
Electronic device having a curved profile interface corresponding to a recess
An electronic device is provided. The electronic device includes a substrate, an inorganic layer, and an organic layer. The substrate has a recess with a side portion. The inorganic layer is disposed on the substrate. The organic layer is disposed on the inorganic layer, wherein the organic layer and the inorganic layer have an interface, the interface includes a first part corresponding to the side portion of the recess, and the first part has a curved profile. |
US11600792B2 |
Apparatus for and method of manufacturing display apparatus
An apparatus for and a method of manufacturing a display apparatus are provided. Transmittance of an opening area may be improved by not forming some layers in the opening area. The display apparatus includes a substrate, a pixel defining layer disposed on the substrate, a first common layer disposed in a first opening of the substrate, and a second common layer disposed in a second opening of the substrate. The substrate includes a first display area, an opening area in the first display area, a peripheral area surrounding at least a portion of the opening area, and a second display area extended from the peripheral area to an edge of the first display area. The pixel defining layer may include the first opening in the first display area, and the second opening in the second display area. |
US11600791B2 |
Organic electroluminescent materials and devices
Organometallic compounds comprising an imidazole carbene ligand having a N-containing ring fused to the imidazole ring are provided. In particular, the N-containing ring fused to the imidazole ring may contain one nitrogen atom or more than one nitrogen atom. These compounds may demonstrate high photoluminescent (PL) efficiency, Gaussian emission spectra, and/or short excited state lifetimes. These materials may be especially useful as blue phosphorescent emitters. |
US11600790B2 |
Polycyclic aromatic compound for organic electroluminescent device
By using a polycyclic aromatic compound as a material for a light-emitting layer, formed by connecting a plurality of aromatic rings with a boron atom and an oxygen, sulfur, or selenium atom, which have been substituted by a specific aryl such as anthracene, an organic EL element having at least one of excellent quantum efficiency and element life can be provided. |
US11600789B2 |
Light-emitting element, compound, organic compound, display module, lighting module, light-emitting device, display device, lighting device, and electronic device
A light-emitting element having high emission efficiency is provided. A light-emitting element having a low driving voltage is provided. A novel compound which can be used for a transport layer or as a host material or a light-emitting material of a light-emitting element is provided. A novel compound with a benzofuropyrimidine skeleton is provided. Also provided is a light-emitting element which includes the compound with the benzofuropyrimidine skeleton between a pair of electrodes. |
US11600788B2 |
Ternary polymer solar cell
The present invention discloses a ternary polymer solar cell. A photoactive layer of the ternary polymer solar cell includes two non-fullerene electron acceptors with large planarity. The weight percentage composition of the photoactive layer in the ternary polymer solar cell is: 41.6-50% of polymer electron donor, 0-50% of polymer electron acceptor, and 0-50% of non-fullerene perylene diimide (PDI) electron acceptor. The non-fullerene PDI electron acceptor is added into the photoactive layer to broaden the spectral absorption of the photoactive layer, improve the phase separation of the photoactive layer and inhibit the recombination of bimolecular charges, resulting in more efficient generation and transport of charges, thereby increasing a short-circuit current density of the ternary polymer solar cell device, and finally improving the power conversion efficiency of the ternary polymer solar cell device. Moreover, a new direction is provided for the selection of the all-polymer non-fullerene acceptor. |
US11600784B2 |
Organic light emitting display device
An organic light emitting display device is provided. The organic light emitting display device includes at least two or more light emitting parts between an anode and a cathode and each having a light emitting layer. At least one of the at least two or more light emitting parts includes an organic layer. The organic layer is formed of a compound comprising a functional group that reacts with alkali metals or alkali earth metals and a functional group with electron transport properties. |
US11600778B2 |
Organic light emitting diode display
Disclosed is an organic light emitting diode (OLED) display comprising a substrate; an organic light emitting element disposed on the substrate; an encapsulation substrate disposed on the organic light emitting element; and an adhesive layer formed on the substrate, covering the organic light emitting element, and bonding the substrate on which the organic light emitting element is formed with the encapsulation substrate. |
US11600776B2 |
Apparatus for and method of fabricating semiconductor device
An apparatus of fabricating a semiconductor device may include a chamber including a housing and a slit valve used to open or close a portion of the housing, a heater chuck provided in a lower region of the housing and used to heat a substrate, a target provided over the heater chuck, a plasma electrode provided in an upper region of the housing and used to generate plasma on the target, a heat-dissipation shield surrounding the inner wall of the housing between the plasma electrode and the heater chuck, and an edge heating structure provided between the heat-dissipation shield and the inner wall of the housing and configured to heat the heat-dissipation shield and an edge region of the substrate and to reduce a difference in temperature between center and edge regions of the substrate. |
US11600774B2 |
Nonvolatile memory device and operating method of the same
A nonvolatile memory device includes a resistance switching layer, a gate on the resistance switching layer, a gate oxide layer between the resistance switching layer and the gate, and a source and a drain, spaced apart from each other, on the resistance switching layer. A resistance value of the resistance switching layer is changed based on an illumination of light irradiated onto the resistance switching layer and is maintained as a changed resistance value. |
US11600755B2 |
Semiconductor light-emitting device and manufacturing method therefor
Disclosed is a semiconductor light emitting device comprising: a substrate; a first semiconductor layer, which is provided on the substrate and has a first conductivity; an active layer, which is provided on the first semiconductor layer and generates ultraviolet light by electron-hole recombination; a second semiconductor layer, which is provided on the active layer and has a second conductivity different from the first conductivity; a first electrode electrically connected to the first semiconductor layer; a second electrode electrically connected to the second semiconductor layer; a second region that includes a plurality of protruded parts of the active layer and the second semiconductor layer protruded from the first semiconductor layer as seen in cross-sectional view and recesses between the protruded parts; and a first region surrounding the second region. |
US11600753B2 |
Passive three-dimensional LED display and method for fabrication thereof
A 3D LED display panel that includes a substrate and an array light emitting devices mounted on the substrate. The array of light emitting devices includes a plurality of first light emitting devices and a plurality of second light emitting devices. Each first light emitting device has an LED chip/package electrically connected to the substrate and a piece of first circular polarizer attached to the LED chip/package. Likewise, each second light emitting device includes an LED chip/package electrically connected to the substrate and a piece of second circular polarizer attached to the LED chip/package. The first circular polarizer the second circular polarizer have opposite circular polarizations. |
US11600751B2 |
Light-emitting semiconductor component and method for producing a light-emitting semiconductor component
A light-emitting semiconductor component may include a semiconductor body having an active region configured to emit a primary radiation, a first conversion element to convert the primary radiation to a first secondary radiation, a second conversion element to convert the primary radiation to a second secondary radiation, and a mask. The first conversion element and the second conversion element may be arranged at a top side of the semiconductor body, may be configured as bodies that partly cover the semiconductor body, and may be connected to the semiconductor body. The mask may be arranged between the first conversion element, the second conversion element, and the semiconductor body. The mask may have an opening in the region of each conversion element. |
US11600750B2 |
Display device
A display device may include: a substrate; first and second electrode on the substrate; light emitting element between the first and second electrodes; a barrier structure on the substrate and including a first surface, a second surface, and a third surface; a light conversion layer on the barrier structure; and a passivation layer on the light conversion layer. A first space defined by the second and third surfaces may be between the substrate and the barrier structure. A second space defined by the first and second surfaces may be between the barrier structure and the passivation layer. The first and second spaces may be alternately located in the first direction. The light emitting element may be in the first space. The light conversion layer may be in the at least one second space. |
US11600746B2 |
Semiconductor device comprising electron blocking layer
A semiconductor device comprises: a first semiconductor structure; a second semiconductor structure on the first semiconductor structure; an active region, wherein the active region comprises multiple alternating well layers and barrier layers, the active region further comprises an upper surface facing the second semiconductor structure and a bottom surface opposite the upper surface; an electron blocking region between the second semiconductor structure and the active region; a first aluminum-containing layer between the electron blocking region and the active region, wherein the first aluminum-containing layer has a band gap greater than the band gap of the first electron blocking layer; and a p-type dopant above the bottom surface of the active region and comprising a concentration profile comprising a peak shape having a peak concentration value, wherein the peak concentration value lies at a distance of between 15 nm and 60 nm from the upper surface of the active region. |
US11600745B2 |
Semiconductor light-emitting device
A semiconductor light-emitting device includes: a substrate, an epitaxial layer structure disposed on the substrate, a first current blocking layer disposed on the epitaxial layer structure, a second current blocking layer disposed on the epitaxial layer structure, a current spreading layer disposed on the epitaxial layer structure and covering the first current blocking layer; a first electrode disposed on a side of the current spreading layer facing away from the epitaxial layer structure, and a second electrode disposed on the epitaxial layer structure and covering the second current blocking layer. The first current blocking layer includes a first main blocking portion and a first extended blocking portion. The second current blocking layer includes a second main blocking portion and a second extended blocking portion. The second extended blocking portion includes spacings. The first extended blocking portion is formed with convex structures. The convex structures are aligned with the spacings. |
US11600737B2 |
Germanium-based sensor with junction-gate field effect transistor and method of fabricating thereof
Germanium-based sensors are disclosed herein. An exemplary germanium-based sensor includes a germanium photodiode and a junction field effect transistor (JFET) formed from a germanium layer disposed in a silicon substrate, in some embodiments, or on a silicon substrate, in some embodiments. A doped silicon layer, which can be formed by in-situ doping epitaxially grown silicon, is disposed between the germanium layer and the silicon substrate. In embodiments where the germanium layer is on the silicon substrate, the doped silicon layer is disposed between the germanium layer and an oxide layer. The JFET has a doped polysilicon gate, and in some embodiments, a gate diffusion region is disposed in the germanium layer under the doped polysilicon gate. In some embodiments, a pinned photodiode passivation layer is disposed in the germanium layer. In some embodiments, a pair of doped regions in the germanium layer is configured as an e-lens of the germanium-based sensor. |
US11600736B2 |
Methods of sperm cell sensing utilizing an avalanche photodiode and cytometer apparatus
A cytometer includes an avalanche photodiode, a switching power supply, a filter, and voltage adjustment circuitry. The switching power supply includes a feedback loop. The filter is electrically connected between the switching power supply and the avalanche photodiode. The voltage adjustment circuitry adjusts a voltage on the feedback loop based at least in part on a voltage measured between the filter and the avalanche photodiode. |
US11600734B2 |
Avalanche photodiode device with a curved absorption region
An avalanche photodiode (APD) device, in particular, a lateral separate absorption charge multiplication (SACM) APD device, and a method for its fabrication is provided. The APD device comprises a first contact region and a second contact region formed in a semiconductor layer. Further, the APD device comprises an absorption region formed on the semiconductor layer, wherein the absorption region is at least partly formed on a first region of the semiconductor layer, wherein the first region is arranged between the first contact region and the second contact region. The APD device further includes a charge region formed in the semiconductor layer between the first region and the second contact region, and an amplification region formed in the semiconductor layer between the charge region and the second contact region. At least the absorption region is curved on the semiconductor layer. |
US11600732B2 |
Variable transmittance window assembly
A window assembly includes an electro-optic assembly that includes a first substrate that defines first and second surfaces, a second substrate that defines third and fourth surfaces, and a seal disposed about a periphery of the first and second substrates. The seal, the first substrate, and the second substrate define a chamber therebetween. A transparent electrode coating is disposed on each of the second surface and the third surface and an electro-optic medium is disposed between the first substrate and the second substrate. A controller is operably coupled with the transparent electrode coating on the second surface and the transparent electrode coating on the third surface and is configured to change a transmittance state of the electro-optic medium. An interface is operably coupled with the controller and allows adjustment of the transmittance state of the electro-optic medium. The interface includes a display that illustrates a selected transmittance state. |
US11600729B2 |
Silicon on insulator semiconductor device with mixed doped regions
In some embodiments, a semiconductor device is provided. The semiconductor device includes a semiconductor substrate having a first semiconductor material layer separated from a second semiconductor material layer by an insulating layer. A source region and a drain region are disposed in the first semiconductor material layer and spaced apart. A gate electrode is disposed over the first semiconductor material layer between the source region and the drain region. A first doped region having a first doping type is disposed in the second semiconductor material layer, where the gate electrode directly overlies the first doped region. A second doped region having a second doping type different than the first doping type is disposed in the second semiconductor material layer, where the second doped region extends beneath the first doped region and contacts opposing sides of the first doped region. |
US11600727B2 |
Method of forming semiconductor device with gate
A method for forming a semiconductor device is provided. The method includes forming an isolation structure in a semiconductor substrate. The method includes forming a gate over the semiconductor substrate. The method includes forming a support film over the isolation structure. The support film is a continuous film which continuously covers the isolation structure and the gate over the isolation structure, the support film conformally covers a first portion of a top surface and a second portion of a first sidewall of the gate, the top surface faces away from the semiconductor substrate, the support film and a topmost surface of the active region do not overlap with each other, and the topmost surface faces the gate. The method includes after forming the support film, forming lightly doped regions in the semiconductor substrate and at two opposite sides of the gate. |
US11600726B2 |
Semiconductor structure
Embodiments of the present disclosure provide a semiconductor structure and a manufacturing method thereof. The semiconductor structure includes: a base; bit lines, located on the base, and a material of the bit line including a metal semiconductor compound; semiconductor channels, each including a first doped region, a channel region and a second doped region arranged in sequence, and the first doped region being in contact with the bit line; a first dielectric layer, covering sidewall surfaces of the first doped regions, and a first interval being provided between parts of the first dielectric layer covering sidewalls of adjacent first doped regions on a same bit line; an insulating layer, covering sidewall surfaces of the channel regions; word lines, covering a sidewall surface of the insulating layer away from the channel regions, and a second interval being provided between adjacent word lines. |
US11600724B2 |
Edge termination structures for semiconductor devices
Semiconductor devices, and more particularly semiconductor devices with improved edge termination structures are disclosed. A semiconductor device includes a drift region that forms part of an active region. An edge termination region is arranged along a perimeter of the active region and also includes a portion of the drift region. The edge termination region includes one or more sub-regions of an opposite doping type than the drift region and one or more electrodes may be capacitively coupled to the drift region by way of the one or more sub-regions. During a forward blocking mode for the semiconductor device, the one or more electrodes may provide a path that draws ions away from passivation layers that are on the edge termination region and away from the active region. In this manner, the semiconductor device may exhibit reduced leakage, particularly at higher operating voltages and higher associated operating temperatures. |
US11600720B2 |
Forming semiconductor structures with two-dimensional materials
A process is provided to fabricate a finFET device having a semiconductor layer of a two-dimensional “2D” semiconductor material. The semiconductor layer of the 2D semiconductor material is a thin film layer formed over a dielectric fin-shaped structure. The 2D semiconductor layer extends over at least three surfaces of the dielectric fin structure, e.g., the upper surface and two sidewall surfaces. A vertical protrusion metal structure, referred to as “metal fin structure”, is formed about an edge of the dielectric fin structure and is used as a seed to grow the 2D semiconductor material. |
US11600718B2 |
Multi-layer dielectric refill for profile control in semiconductor devices
A semiconductor device and method of fabricating a semiconductor device involves formation of a trench above a fin (e.g. a fin of a FinFET device) of the semiconductor device and formation of a multi-layer dielectric structure within the trench. The profile of the multi-layer dielectric structure can be controlled depending on the application to reduce shadowing effects and reduce cut failure risk, among other possible benefits. The multi-layer dielectric structure can include two layers, three layers, or any number of layers and can have a stepped profile, a linear profile, or any other type of profile. |
US11600717B2 |
Dummy FIN profile control to enlarge gate process window
A method includes forming isolation regions extending into a semiconductor substrate, wherein semiconductor strips are located between the isolation regions, and forming a dielectric dummy strip between the isolation regions, recessing the isolation regions. Some portions of the semiconductor strips protrude higher than top surfaces of the recessed isolation regions to form protruding semiconductor fins, and a portion of the dielectric dummy strip protrudes higher than the top surfaces of the recessed isolation regions to form a dielectric dummy fin. The method further includes etching the dielectric dummy fin so that a top width of the dielectric dummy fin is smaller than a bottom width of the dielectric dummy fin. A gate stack is formed on top surfaces and sidewalls of the protruding semiconductor fins and the dielectric dummy fin. |
US11600716B2 |
Method for forming semiconductor structure with contact over source/drain structure
Methods for manufacturing semiconductor structures are provided. The method for manufacturing the semiconductor structure includes forming a fin structure protruding from a substrate and forming a source/drain structure over the fin structure. The method for manufacturing a semiconductor structure further includes forming a metallic layer over the source/drain structure and forming an oxide film on a sidewall of the source/drain structure. In addition, the oxide film and the metallic layer are both in direct contact with the source/drain structure. |
US11600715B2 |
FETs and methods of forming FETs
An embodiment is a method including forming a raised portion of a substrate, forming fins on the raised portion of the substrate, forming an isolation region surrounding the fins, a first portion of the isolation region being on a top surface of the raised portion of the substrate between adjacent fins, forming a gate structure over the fins, and forming source/drain regions on opposing sides of the gate structure, wherein forming the source/drain regions includes epitaxially growing a first epitaxial layer on the fin adjacent the gate structure, etching back the first epitaxial layer, epitaxially growing a second epitaxial layer on the etched first epitaxial layer, and etching back the second epitaxial layer, the etched second epitaxial layer having a non-faceted top surface, the etched first epitaxial layer and the etched second epitaxial layer forming source/drain regions. |
US11600713B2 |
Semiconductor device and method
A method includes forming a semiconductor fin extending a first height above a substrate, forming a dummy dielectric material over the semiconductor fin and over the substrate, forming a dummy gate material over the dummy dielectric material, the dummy gate material extending a second height above the substrate, etching the dummy gate material using multiple etching processes to form a dummy gate stack, wherein each etching process of the multiple etching processes is a different etching process, wherein the dummy gate stack has a first width at the first height, and wherein the dummy gate stack has a second width at the second height that is different from the first width. |
US11600712B2 |
Ferroelectric structure including a ferroelectric film having a net polarization oriented to a polarization enhancement film and semiconductor device including the same
A ferroelectric structure includes a first polarization enhancement film on a ferroelectric film, wherein the ferroelectric film has a first net polarization in a first direction oriented from the ferroelectric film toward the first polarization enhancement film. The first polarization enhancement film has a second net polarization in a second direction crossing the first direction. |
US11600707B2 |
Methods of forming conductive pipes between neighboring features, and integrated assemblies having conductive pipes between neighboring features
Some embodiments include an integrated assembly having a pair of substantially parallel features spaced from one another by an intervening space. A conductive pipe is between the features and substantially parallel to the features. The conductive pipe may be formed within a tube. The tube may be generated by depositing insulative material between the features in a manner which pinches off a top region of the insulative material to leave the tube as a void region under the pinched-off top region. |
US11600705B2 |
Semiconductor device and method for measuring current of semiconductor device
A semiconductor device in which a transistor has the characteristic of low off-state current is provided. The transistor comprises an oxide semiconductor layer having a channel region whose channel width is smaller than 70 nm. A temporal change in off-state current of the transistor over time can be represented by Formula (a2). In Formula (a2), IOFF represents the off-state current, t represents time during which the transistor is off, α and τ are constants, β is a constant that satisfies 0<β≤1, and CS is a constant that represents load capacitance of a source or a drain. I OFF ( t ) = C S × α × β τ β × t β - 1 × e - ( t τ ) β ( a2 ) |
US11600704B2 |
Nitride semiconductor laminate, semiconductor device, method of manufacturing nitride semiconductor laminate, method of manufacturing nitride semiconductor free-standing substrate and method of manufacturing semiconductor device
A nitride semiconductor laminate includes: a substrate comprising a group III nitride semiconductor and including a surface and a reverse surface, the surface being formed from a nitrogen-polar surface, the reverse surface being formed from a group III element-polar surface and being provided on the reverse side from the surface; a protective layer provided at least on the reverse surface side of the substrate and having higher heat resistance than the reverse surface of the substrate; and a semiconductor layer provided on the surface side of the substrate and comprising a group III nitride semiconductor. The concentration of O in the semiconductor layer is lower than 1×1017 at/cm3. |
US11600701B2 |
Semiconductor component having a SiC semiconductor body
A silicon carbide substrate has a trench extending from a main surface of the silicon carbide substrate into the silicon carbide substrate. The trench has a trench width at a trench bottom. A shielding region is formed in the silicon carbide substrate. The shielding region extends along the trench bottom. In at least one doping plane extending approximately parallel to the trench bottom, a dopant concentration in the shielding region over a lateral first width deviates by not more than 10% from a maximum value of the dopant concentration. The first width is less than the trench width and is at least 30% of the trench width. |
US11600700B2 |
Semiconductor devices and methods of forming the same
A semiconductor device is provided. The semiconductor device includes a semiconductor fin over a substrate, and a gate structure along sidewalls and the top surface of the semiconductor fin. The gate structure covers the first portion of the semiconductor fin. The semiconductor device also includes a source/drain feature adjacent to the gate structure. The semiconductor device further includes a source/drain contact connected to the source/drain feature. The source/drain contact extends downwards to a position that is lower than the top surface of the first portion of the semiconductor fin. |
US11600699B2 |
Semiconductor device structure integrating air gaps and methods of forming the same
A semiconductor device structure, along with methods of forming such, are described. In one embodiment, a semiconductor device structure is provided. The semiconductor device structure a first source/drain region, a second source/drain region, and a gate stack disposed between the first source/drain region and the second source/drain region. The semiconductor device structure also includes a conductive feature disposed below the first source/drain region. The semiconductor device structure also includes a power rail disposed below and in contact with the conductive feature. semiconductor device structure also includes a dielectric layer enclosing the conductive feature, wherein an air gap is formed between the dielectric layer and the conductive feature. |
US11600683B2 |
Display apparatus comprising different types of thin film transistors with compact design and method for manufacturing the same
Discussed is a display apparatus capable of realizing a high resolution and a small power consumption, and a method for manufacturing the same, wherein the display apparatus includes a bottom gate type first thin film transistor disposed in a display area, and a top gate type second thin film transistor disposed in a non-display area. |
US11600682B2 |
Display device and method of fabricating the same
A display device and a method of driving a display device are provided. A display device includes a substrate, a first conductive layer on the substrate and including a lower light blocking pattern, a buffer layer on the first conductive layer, a semiconductor layer including a semiconductor pattern on the buffer layer, a gate insulating layer on the semiconductor pattern, a second conductive layer including a gate electrode on the gate insulating layer, a planarization layer on the second conductive layer, and a third conductive layer on the planarization layer and including a first conductive pattern electrically coupling the lower light blocking pattern to the semiconductor pattern, wherein the first conductive pattern is coupled to the lower light blocking pattern through a first contact hole passing through the planarization layer and the buffer layer, and coupled to the semiconductor pattern through a second contact hole passing through the planarization layer. |
US11600681B2 |
Display device and manufacturing method thereof
A display device and a manufacturing method thereof are disclosed. The display device includes a base substrate and at least one pixel circuit provided on the base substrate. The pixel circuit includes a driving transistor, a first transistor, and a second transistor; the base substrate includes a semiconductor body that can be doped, and a first conductive layer and a second conductive layer that are on the semiconductor body; the first transistor includes a first doped region in contact with the first electrode of the first transistor, and a second doped region in contact with a second electrode of the first transistor, and the first doped region of the first transistor and the second doped region of the first transistor are spaced apart from each other, have a same doping type, and are both in the semiconductor body. |
US11600677B2 |
Thin film transistor array substrate and electronic device including the same
A thin film transistor (TFT) array substrate for an electronic device includes a first active layer of a first TFT which is an oxide semiconductor layer including molybdenum, a second active layer of a second TFT which is an oxide semiconductor layer and disposed on a buffer layer to be spaced apart from the first active layer of the first TFT, a first gate insulating film overlapping the first active layer and the second active layer, a first gate electrode of the first TFT overlapping the first gate insulating film and a part of the first active layer, and a second gate electrode of the second TFT overlapping the first gate insulating film, spaced apart from the first gate electrode, and overlapping a part of the second active layer. Accordingly, the first TFT has a high subthreshold parameter, and the second TFT has high mobility. |
US11600674B2 |
Method for manufacturing pixel structure and display panel
The present application provides a method for manufacturing a pixel structure and a display panel. The pixel structure includes a substrate, a plurality of first pixel banks, and a plurality of second pixel banks. The first pixel banks intersect a long side direction of the substrate. The second pixel banks are parallel to the long side direction of the substrate. Light emitting materials with a same color are disposed between two adjacent second pixel banks, so that this pixel design can be compatible with MMG line-bank printing, which alleviates a problem that existing MMG pixel arrangement mode restricts a printing mode. |
US11600663B2 |
Memory cell and memory array select transistor
A semiconductor metal-oxide-semiconductor field effect transistor (MOSFET) with increased on-state current obtained through a parasitic bipolar junction transistor (BJT) of the MOSFET. Methods of operating the MOSFET as a memory cell or a memory array select transistor are provided. |
US11600662B2 |
Data storage devices including a first top electrode and a different second top electrode thereon
Data storage devices are provided. A data storage device includes a memory transistor on a substrate and a data storage structure electrically connected to the memory transistor. The data storage structure includes a magnetic tunnel junction pattern and a top electrode on the magnetic tunnel junction pattern. The top electrode includes a first top electrode and a second top electrode on the first top electrode, and the first and second top electrodes include the same metal nitride. The first top electrode includes first crystal grains of the metal nitride, and the second top electrode includes second crystal grains of the metal nitride. In a section of the top electrode, the number of the first crystal grains per a unit length is greater than the number of the second crystal grains per the unit length. |
US11600653B2 |
Methods and apparatus for via last through-vias
Methods for forming via last through-vias. A method includes providing an active device wafer having a front side including conductive interconnect material disposed in dielectric layers and having an opposing back side; providing a carrier wafer having through vias filled with an oxide extending from a first surface of the carrier wafer to a second surface of the carrier wafer; bonding the front side of the active device wafer to the second surface of the carrier wafer; etching the oxide in the through vias in the carrier wafer to form through oxide vias; and depositing conductor material into the through oxide vias to form conductors that extend to the active carrier wafer and make electrical contact to the conductive interconnect material. An apparatus includes a carrier wafer with through oxide vias extending through the carrier wafer to an active device wafer bonded to the carrier wafer. |
US11600652B2 |
Photoelectric conversion panel and method for manufacturing photoelectric conversion panel
A photoelectric conversion panel includes: a thin film transistor; a first organic film formed in an upper layer with respect to the thin film transistor; a photoelectric conversion element formed in an upper layer with respect to the first organic film; a first inorganic layer formed so as to cover at least a part of the photoelectric conversion element, and to cover the first organic film; and a second organic film formed in an upper layer with respect to the first organic film, wherein the first inorganic layer is provided with a first through hole connecting the first organic film and the second organic film. |
US11600650B2 |
Photoelectric conversion apparatus and imaging system using the same
In a photoelectric conversion apparatus including charge storing portions in its imaging region, isolation regions for the charge storing portions include first isolation portion each having a PN junction, and second isolation portions each having an insulator. A second isolation portion is arranged between a charge storing portion and at least a part of a plurality of transistors. |
US11600641B2 |
Transistor substrate
In a transistor substrate of a display device, a plurality of signal lines to which any one of drive signals of a gate signal and a video signal is supplied include a plurality of first signal lines to which the drive signal is supplied. The first signal line is connected to a driving driver, and is formed in an edge region positioned between an end portion of a substrate and a pixel region and in the pixel region. The first signal line is formed to pass through a first wiring formed in a first layer from a second wiring formed in a second layer in the edge region. |
US11600638B2 |
Three-dimensional semiconductor memory devices and methods of fabricating the same
Disclosed are three-dimensional semiconductor memory devices and methods of fabricating the same. The method comprises sequentially forming a sacrificial pattern and a source conductive layer on a substrate, forming a mold structure including a plurality of insulating layers and a plurality of sacrificial layers on the source conductive layer; forming a plurality of vertical structures penetrating the mold structure, forming a trench penetrating the mold structure, forming a sacrificial spacer on a sidewall of the trench, removing the sacrificial pattern to form a horizontal recess region; removing the sacrificial spacer, and forming a source conductive pattern filling the horizontal recess region. |
US11600634B2 |
Three-dimensional memory device including a composite semiconductor channel and a horizontal source contact layer and method of making the same
A three-dimensional memory device includes a source contact layer overlying a substrate, an alternating stack of insulating layers and electrically conductive layers located overlying the source contact layer, and a memory opening fill structure located within a memory opening extending through the alternating stack and the source contact layer. The memory opening fill structure includes a composite semiconductor channel and a memory film laterally surrounding the composite semiconductor channel. The composite semiconductor channel includes a pedestal channel portion having controlled distribution of n-type dopants that diffuse from the source contact layer with a lower diffusion rate provided by carbon doping and smaller grain sizes, or has arsenic doping providing limited diffusion into the vertical semiconductor channel. The vertical semiconductor channel has large grain sizes to provide high charge carrier mobility, and is free of or includes only a low concentration of carbon atoms and n-type dopants therein. |
US11600628B2 |
Floating gate memory cell and memory array structure
Embodiments of the disclosure provide a floating gate memory cell, including: a silicon-on-insulator (SOI) substrate, the SOI substrate including a semiconductor bulk substrate, a buried oxide layer formed on the semiconductor bulk substrate, and a semiconductor layer formed on the buried oxide layer; a memory device, including: a control gate formed in the semiconductor layer of the SOI substrate; an insulating layer formed on the control gate; and a floating gate formed on the insulating layer; and a transistor device electrically connected to the memory device. The transistor device includes an active region formed in the semiconductor layer of the SOI substrate. |
US11600626B2 |
Semiconductor device including anti-fuse cell
A structure includes anti-fuse cells. The anti-fuse cells include a first active area, a first gate, a second gate, at least one first gate via, and at least one second gate via. The first gate and the second gate are separate from each other. The first gate and the second gate extend to cross over the first active area. The at least one first gate via is coupled to the first gate and disposed directly above the first active area. The at least one second gate via is coupled to the second gate. The first gate is coupled through the at least one first gate via to a first word line for receiving a first programming voltage, and the second gate is coupled through the at least one second gate via to a second word line for receiving a first reading voltage. |
US11600625B2 |
Semiconductor device having an offset source/drain feature and method of fabricating thereof
A semiconductor device and method of fabricating thereof where the device includes a fin structure between a first isolation region and a second isolation region. A first source/drain feature is formed over a recessed portion of the first fin structure. The first source/drain feature interfaces a top surface of the first isolation region for a first distance and interfaces the top surface of the second isolation region for a second distance. The first distance is different than the second distance. The source/drain feature is offset in a direction. |
US11600623B2 |
Well pick-up region design for improving memory macro performance
Well pick-up regions are disclosed herein for improving performance of memory arrays, such as static random access memory arrays. An exemplary integrated circuit (IC) device includes a circuit region; a first well pick-up (WPU) region; a first well oriented lengthwise along a first direction in the circuit region and extending into the first WPU region, the first well having a first conductivity type; and a second well oriented lengthwise along the first direction in the circuit region and extending into the first WPU region, the second well having a second conductivity type different from the first conductivity type, wherein the first well has a first portion in the circuit region and a second portion in the first WPU region, and the second portion of the first well has a width larger than the first portion of the first well along a second direction perpendicular to the first direction. |
US11600620B2 |
Semiconductor memory device
A semiconductor memory device is provided. The device includes a substrate including a cell region and a peripheral region; a plurality of lower electrodes disposed on the substrate in the cell region; a dielectric layer disposed on the plurality of lower electrodes; a metal containing layer disposed on the dielectric layer; a silicon germanium layer disposed on and electrically connected to the metal containing layer; a conductive pad disposed on and electrically connected to the silicon germanium layer; and an upper electrode contact plug disposed on and electrically connected to the conductive pad; The conductive pad extends from the upper electrode contact plug towards the peripheral region in a first direction, and the silicon germanium layer includes an edge portion that extends past the conductive pad in the first direction. |
US11600615B2 |
Protection devices with trigger devices and methods of formation thereof
A method of forming a semiconductor device includes forming a first vertical protection device comprising a thyristor in a substrate, forming a first lateral trigger element for triggering the first vertical protection device in the substrate, and forming an electrical path in the substrate to electrically couple the first lateral trigger element with the first vertical protection device. |
US11600611B2 |
Electronic device including high electron mobility transistors and a resistor and a method of using the same
An electronic device can include a drain terminal, a control terminal, and a source terminal, a first HEMT, and a second HEMT. The first HEMT can include a drain electrode coupled to the drain terminal, a gate electrode coupled to the first control terminal, and a source electrode coupled to the source terminal. The second HEMT can include a drain electrode, a gate electrode, and a source electrode. The drain electrode can be coupled to the drain terminal, and the source electrode can be coupled to the source terminal. In an embodiment, a resistor can be coupled between the gate and source electrodes of the second HEMT, and in another embodiment, the gate electrode of the second HEMT can electrically float. During or after a triggering event, the second HEMT can turn on temporarily to divert some of the charging from the triggering event into the second HEMT. |
US11600607B2 |
Semiconductor module including multiple power management semiconductor packages
A semiconductor module may include a system board including a top surface and a bottom surface, a module substrate provided on the top surface of the system board, a system semiconductor package mounted on the module substrate, and first and second power management semiconductor packages mounted on the module substrate. The first and second power management semiconductor packages may be spaced apart from each other in a first direction, which is parallel to a top surface of the module substrate, with the system semiconductor package interposed therebetween. |
US11600604B2 |
Chip-on-board design with color mixing
Some embodiments of the disclosure provide for a lighting system including a substrate. The lighting system includes several blue light emitting diodes (LEDs) supported by the substrate. The lighting system includes at least one red LED supported by the substrate. The lighting system includes a light conversion material covering the blue LEDs and the at least one red LED. |
US11600601B2 |
Semiconductor package
A semiconductor package comprising a first semiconductor chip and a second semiconductor chip disposed on the first semiconductor chip, wherein the first semiconductor chip includes a first semiconductor body, an upper pad structure, and a first through-electrode penetrating the first semiconductor body and electrically connected to the upper pad structure, and the second semiconductor chip includes a second semiconductor body, a lower bonding pad, and an internal circuit structure including a circuit element, internal circuit wirings, and a connection pad pattern disposed on the same level as the lower bonding pad, the upper pad structure includes upper bonding pads and connection wirings, the upper bonding pads are disposed at positions corresponding to the lower bonding pad and the connection pad pattern, and the internal circuit structure is electrically connected to the first through-electrode through at least one of the upper bonding pads and the connection wirings. |
US11600599B2 |
Stack packages including supporter
A stack package is disclosed. A first semiconductor die and a supporter are disposed on a package substrate. The supporter may include a second side facing a first side of the first semiconductor die having a substantially inclined surface. A second semiconductor die is stacked on the first semiconductor die and on the supporter. An encapsulant layer is formed to fill a portion between the supporter and the first semiconductor die. |
US11600598B2 |
Manufacturing method of semiconductor device
A method of manufacturing a semiconductor device includes forming a cell chip including a first substrate, a source layer on the first substrate, a stacked structure on the source layer, and a channel layer passing through the stacked structure and coupled to the source layer, flipping the cell chip, exposing a rear surface of the source layer by removing the first substrate from the cell chip, performing surface treatment on the rear surface of the source layer to reduce a resistance of the source layer, forming a peripheral circuit chip including a second substrate and a circuit on the second substrate, and bonding the cell chip including the source layer with a reduced resistance to the peripheral circuit chip. |
US11600597B2 |
Semiconductor package structure
The present disclosure provides a semiconductor package, including a substrate, a semiconductor die, and a conductive bump. The substrate has a first surface and a second surface opposite to the first surface. The substrate further includes a conductive line surrounded by a dielectric, and a conductive via connected to the conductive line and protruding from the dielectric at the second surface. The semiconductor die is connected to the first surface of the substrate. The conductive bump is connected to the conductive via at the second surface. |
US11600592B2 |
Package
A package includes a die and a redistribution layer. A top surface of the die has a first area and a second area connected with the first area. The redistribution layer structure includes a first insulation layer, a redistribution layer, and a second insulation layer. The first insulation layer is overlapping with the second area. The redistribution layer is disposed above the die. The second insulation layer is disposed above the redistribution layer and overlapping with the second area and the first area. The second insulation layer covers a top surface of the first insulation layer and is in contact with a side surface of the first insulation layer and the top surface of the die. |
US11600590B2 |
Semiconductor device and semiconductor package
A semiconductor device and a semiconductor package including the same are provided. The semiconductor device includes a semiconductor element; a protective layer disposed adjacent to the surface of the semiconductor element, the protective layer defining an opening to expose the semiconductor element; a first bump disposed on the semiconductor element; and a second bump disposed onto the surface of the protective layer. The first bump has a larger cross-section surface area than the second bump. |
US11600583B2 |
Textured bond pads
In some examples, a package comprises a semiconductor die and a bond pad formed upon the semiconductor die. The bond pad has a protrusion on a top surface of the bond pad. The package also comprises a metal contact and a bond wire coupled to the protrusion and to the metal contact. |
US11600582B2 |
Semiconductor device with redistribution layers formed utilizing dummy substrates
A semiconductor device with redistribution layers formed utilizing dummy substrates is disclosed and may include forming a first redistribution layer on a first dummy substrate, forming a second redistribution layer on a second dummy substrate, electrically connecting a semiconductor die to the first redistribution layer, electrically connecting the first redistribution layer to the second redistribution layer, and removing the dummy substrates. The first redistribution layer may be electrically connected to the second redistribution layer utilizing a conductive pillar. An encapsulant material may be formed between the first and second redistribution layers. Side portions of one of the first and second redistribution layers may be covered with encapsulant. A surface of the semiconductor die may be in contact with the second redistribution layer. The dummy substrates may be in panel form. One of the dummy substrates may be in panel form and the other in unit form. |
US11600578B2 |
Scribe structure for memory device
Apparatuses and methods for manufacturing chips are described. An example method includes: removing a first portion of a cover layer and at least one dielectric layer under the first portion of the cover layer in a cut region between chips to form a groove, and forming a support structure including a second portion of the cover layer and the at least one dielectric layer under the second portion of the cover layer in the cut region; removing a third portion of the cover layer in one of the chips and a portion of the at least one dielectric layer under the third portion of the cover layer to form an hole on the first chip; depositing a conductive layer to cover the cover layer and the hole; forming a conductive pillar on the conductive layer in the hole; and removing the conductive layer on the cover layer and an edge surface of the hole. |
US11600577B2 |
Semiconductor devices
A semiconductor device includes a substrate and a semiconductor layer. The substrate includes a planar portion and a plurality of pillars on a periphery of the planar portion. The pillars are shaped as rectangular columns, and corners of two of the pillars at the same side of the planar portion are aligned in a horizontal direction or a direction perpendicular to the horizontal direction. The semiconductor layer is disposed over the planar portion and between the pillars. |
US11600574B2 |
Method of forming RDLS and structure formed thereof
A method includes encapsulating a device die in an encapsulating material, planarizing the device die and the encapsulating material, and forming a first plurality of conductive features electrically coupling to the device die. The step of forming the first plurality of conductive features includes a deposition-and-etching process, which includes depositing a blanket copper-containing layer, forming a patterned photo resist over the blanket copper-containing layer, and etching the blanket copper-containing layer to transfer patterns of the patterned photo resist into the blanket copper-containing layer. |
US11600571B2 |
Electronic package, packaging substrate, and methods for fabricating the same
An electronic package, a packaging substrate, and methods for fabricating the same are disposed. The electronic package includes a circuit structure having a first side and a second side opposing the first side, an electronic component disposed on the first side of the circuit structure, an encapsulation layer formed on the first side of the circuit structure and encapsulating the electronic component, a metal structure disposed on the second side of the circuit structure, and a plurality of conductive elements disposed on the metal structure. The plurality of conductive elements are disposed on the metal structure, rather than disposed on the circuit structure directly. Therefore, the bonding between the conductive elements and the circuit structure is improved, to avoid the plurality of conductive elements from being peeled. |
US11600556B2 |
Semiconductor package
Disclosed is a semiconductor package comprising a semiconductor chip, a first chip pad on a bottom surface of the semiconductor chip and adjacent to a first lateral surface in a first direction of the semiconductor chip, the first lateral surface separated from the first chip pad from a plan view in a first direction, and a first lead frame coupled to the first chip pad. The first lead frame includes a first segment on a bottom surface of the first chip pad and extending from the first chip pad in a second direction opposite to the first direction and away from the first lateral surface of the semiconductor chip, and a second segment which connects to a first end of the first segment and then extends along the first direction to extend beyond the first lateral surface of the semiconductor chip after passing one side of the first chip pad, when viewed in the plan view. |
US11600555B2 |
Package substrate having integrated passive device(s) between leads
A semiconductor package includes a multilayer package substrate with a top layer including top filled vias through a top dielectric layer and top metal layer providing a top surface for leads and traces connected to the leads, and a bottom layer including bottom filled vias including contact pads through a bottom dielectric and metal layer. The top filled vias are for connecting the bottom and top metal layer. The bottom metal filled vias are for connecting the bottom metal layer to the contact pads. An integrated circuit (IC) die has nodes in its circuitry connected to the bond pads. The IC die is flipchip mounted onto the leads. A passive device(s) is surface mounted by an electrically conductive material on the top metal layer electrically connected between at least one adjacent pair of the leads. A mold compound is for encapsulating at least the IC die and passive device. |
US11600553B2 |
Semiconductor device including through substrate vias and method of manufacturing the semiconductor device
A semiconductor device and a method of manufacturing the semiconductor device are disclosed. The semiconductor device includes a substrate, a first through substrate via configured to penetrate at least partially through the substrate, the first through substrate via having a first aspect ratio, and a second through substrate via configured to penetrate at least partially through the substrate. The second through substrate via has a second aspect ratio greater than the first aspect ratio, and each of the first through substrate via and the second through substrate via includes a first conductive layer and a second conductive layer. A thickness in a vertical direction of the first conductive layer of the first through substrate via is less than a thickness in the vertical direction of the first conductive layer of the second through substrate via. |
US11600552B2 |
Semiconductor device having a through silicon via and methods of manufacturing the same
A semiconductor device is provided. The semiconductor device includes a first insulating interlayer disposed on a first surface of a substrate; a pad pattern disposed on a lower surface of the first insulating interlayer, the pad pattern including a first copper pattern; and a through silicon via passing through the substrate and the first insulating interlayer, and contacting the first copper pattern of the pad pattern. The through silicon via includes a first portion passing through the substrate and the first insulating interlayer, and a second portion under the first portion and extending to a portion of the first copper pattern in the pad pattern. A boundary of the through silicon via has a bent portion between the first portion and the second portion. |
US11600550B2 |
Jet impingement cooling for high power semiconductor devices
A jet impingement cooling assembly for semiconductor devices includes a heat exchange base having an inlet chamber and an outlet chamber. An inlet connection may be in fluid connection with the inlet chamber, while an outlet connection may be in fluid connection with the outlet chamber. A jet plate may be coupled to the inlet chamber, and a jet pedestal may be formed on the jet plate and having a raised surface with a jet nozzle formed therein. |
US11600547B2 |
Semiconductor package with expanded heat spreader
A semiconductor package includes a die pad having a die attach surface, a first laterally separated and vertically offset from the die pad, a semiconductor die mounted on the die attach surface and comprising a first terminal on an upper surface of the semiconductor die, an interconnect clip that is electrically connected to the first terminal and to the first lead, and a heat spreader mounted on top of the interconnect clip. The interconnect clip includes a first planar section that interfaces with the upper surface of the semiconductor die and extends past an outer edge side of the die pad. The heat spreader covers an area of the first planar section that is larger than an area of the semiconductor die. The heat spreader laterally extends past a first outer edge side of the die pad that faces the first lead. |
US11600545B2 |
Semiconductor devices including a lower semiconductor package, an upper semiconductor package on the lower semiconductor package, and a connection pattern between the lower semiconductor package and the upper semiconductor package
A semiconductor includes a lower structure, an upper structure on the lower structure, and a connection pattern between the lower structure and the upper structure. The connection pattern is configured to electrically connect the lower structure and the upper structure to each other. The lower structure includes a lower base and a first lower chip on the lower base. The first lower chip includes a chip bonding pad, a pad structure, and a heat sink structure. The connection pattern is connected to the upper structure and extends away from the upper structure to be connected to the pad structure. The pad structure has a thickness greater than a thickness of the chip bonding pad. At least a portion of the heat sink structure is at a same height level as at least a portion of the pad structure. |
US11600544B2 |
Chip package with staggered pin pattern
A PCB having a first surface and a second surface includes a trench extending through the PCB, a plurality of conductive traces on one or more sidewalls of the trench. The plurality of conductive traces extends through the PCB and may be arranged in pairs across from one another along at least a portion of the length of the trench. A first set of conductive contacts are arranged in a first zig-zag pattern around a perimeter of the trench. A second set of conductive contacts are arranged in a second zig-zag pattern around the perimeter of the trench. In some cases, the first and second zig-zag patterns are arranged with respect to one another around the perimeter of the trench in an alternating fashion. A chip package is also disclosed having a pin arrangement that couples to the corresponding arrangement of conductive contacts on the PCB. |
US11600541B2 |
Semiconductor module
A semiconductor module, including a ceramic board, a circuit pattern metal plate formed on a principal surface of the ceramic board, an external connection terminal bonded, via a solder, to the circuit pattern metal plate, and a low linear expansion coefficient metal plate located between the circuit pattern metal plate and the external connection terminal. The circuit pattern metal plate has a first edge portion and a second edge portion, which are opposite to each other and are respectively at a first side and a second side of the circuit pattern metal plate. The low linear expansion coefficient metal plate has a linear expansion coefficient lower than a linear expansion coefficient of the circuit pattern metal plate. |
US11600539B2 |
Defect detection structure of a semiconductor die, semiconductor device including the same and method of detecting defects in semiconductor die
A semiconductor device includes a semiconductor die, a defect detection structure and an input-output circuit. The semiconductor die includes a central region and a peripheral region surrounding the central region. The peripheral region includes a left-bottom corner region, a left-upper corner region, a right-upper corner region and a right-bottom corner region. The defect detection structure is formed in the peripheral region. The defect detection structure includes a first conduction loop in the left-bottom corner region, a second conduction loop in the right-bottom corner region, a third conduction loop in the left-bottom corner region and the left-upper corner region and a fourth conduction loop in the right-bottom corner region and the right-upper corner region. The input-output circuit is electrically connected to end nodes of the first conduction loop, the second conduction loop, the third conduction loop and the fourth conduction loop. |
US11600537B2 |
Magnetic property measuring system, a method for measuring magnetic properties, and a method for manufacturing a magnetic memory device using the same
A magnetic property measuring system includes a stage configured to hold a sample and a magnetic structure disposed over the stage. The stage includes a body part, a magnetic part adjacent the body part, and a plurality of holes defined in the body part. The magnetic part of the stage and the magnetic structure are configured to apply a magnetic field, which is perpendicular to one surface of the sample, to the sample. The stage is configured to move horizontally in an x-direction and a y-direction which are parallel to the one surface of the sample. |
US11600533B2 |
Semiconductor device fabrication methods and structures thereof
A method includes providing semiconductor channel layers over a substrate; forming a first dipole layer wrapping around the semiconductor channel layers; forming an interfacial dielectric layer wrapping around the first dipole layer; forming a high-k dielectric layer wrapping around the interfacial dielectric layer; forming a second dipole layer wrapping around the high-k dielectric layer; performing a thermal process to drive at least some dipole elements from the second dipole layer into the high-k dielectric layer; removing the second dipole layer; and forming a work function metal layer wrapping around the high-k dielectric layer. |
US11600529B2 |
Multi-gate devices and method of fabricating the same
Provided is a semiconductor device including a semiconductor substrate, a plurality of semiconductor nanosheets, a plurality of source/drain (S/D) features and a gate stack. The semiconductor substrate includes a first fin and a second fin. The first fin has a first width less than a second width of the second fin, and a top surface of the first fin is lower than a top surface of the second fin. The plurality of semiconductor nanosheets are disposed on the first fin and the second fin. The plurality of source/drain (S/D) features are located on the first fin and the second fin and abutting the plurality of semiconductor nanosheets. The gate stack wraps each of the plurality of semiconductor nanosheets. |
US11600528B2 |
Semiconductor structure and method for forming the same
A method for forming a semiconductor structure is provided. The method includes forming a stack over a substrate. The stack includes alternating first semiconductor layers and second semiconductor layers. The method also includes forming a polishing stop layer over the stack and a dummy layer over the polishing stop layer, recessing the dummy layer, the polishing stop layer and the stack to form a recess, forming a third semiconductor layer to fill the recess, and planarizing the dummy layer and the third semiconductor layer until the polishing stop layer is exposed. The method also includes patterning the polishing stop layer and the stack into a first fin structure and the third semiconductor layer into a second fin structure, removing the second semiconductor layers of the first fin structure to form nanostructures, and forming a gate stack across the first fin structure and the second fin structure. |
US11600524B2 |
Self-aligned contacts
A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations. |
US11600521B2 |
Surface modification layer for conductive feature formation
Embodiments described herein relate generally to methods for forming a conductive feature in a dielectric layer in semiconductor processing and structures formed thereby. In some embodiments, a structure includes a dielectric layer over a substrate, a surface modification layer, and a conductive feature. The dielectric layer has a sidewall. The surface modification layer is along the sidewall, and the surface modification layer includes phosphorous and carbon. The conductive feature is along the surface modification layer. |
US11600520B2 |
Air gaps in memory array structures
A memory device includes first transistor over a semiconductor substrate, wherein the first transistor includes a first word line extending over the semiconductor substrate; a second transistor over the semiconductor substrate, wherein the second transistor includes a second word line extending over the first word line; a first air gap extending between the first word line and the second word line; a memory film extending along and contacting the first word line and the second word line; a channel layer extending along the memory film; a source line extending along the channel layer, wherein the memory film is between the source line and the word line; a bit line extending along the channel layer, wherein the memory film is between the bit line and the word line; and an isolation region between the source line and the bit line. |
US11600519B2 |
Skip-via proximity interconnect
A method of forming vias and skip vias is provided. The method includes forming a blocking layer on an underlying layer, and forming an overlying layer on the blocking layer. The method further includes opening a hole in the overlying layer that overlaps the blocking layer, and etching past the blocking layer into the underlying layer to form a second hole that is smaller than the hole in the overlying layer. |
US11600517B2 |
Screwless semiconductor processing chambers
In an embodiment, a system includes: a gas distributor assembly configured to dispense gas into a chamber; and a chuck assembly configured to secure a wafer within the chamber, wherein at least one of the gas distributor assembly and the chuck assembly includes: a first portion comprising a convex protrusion, and a second portion comprising a concave opening, wherein the convex protrusion is configured to engage the concave opening. |
US11600515B2 |
Die pickup module and die bonding apparatus including the same
Provided are a die pickup module and a die bonding apparatus including the same. The die pickup module includes a wafer stage for supporting a wafer including dies attached on a dicing tape, a die ejector arranged under the dicing tape and for separating a die to be picked up from the dicing tape, a non-contact picker for picking up the die in a non-contact manner so as not to contact a front surface of the die, a vacuum gripper for partially vacuum adsorbing a rear surface of the die picked up by the non-contact picker and an inverting driving unit for inverting the vacuum gripper to invert the die so that a rear surface of the die gripped by the vacuum gripper faces upward. |
US11600513B2 |
Processing method of wafer
A processing method of a wafer includes a modified layer forming step of positioning the focal point of a laser beam with a wavelength having transmissibility with respect to the wafer to the inside of a planned dividing line and executing irradiation along the planned dividing line to form modified layers inside and a water-soluble resin coating step of coating the front surface of the wafer with a water-soluble resin before or after the modified layer forming step. The processing method also includes a dividing step of expanding a dicing tape to divide the wafer into individual device chips together with the water-soluble resin with which the front surface of the wafer is coated and a modified layer removal step of executing plasma etching and removing the modified layers that remain at the side surfaces of the device chips in a state in which the dicing tape is expanded and the front surfaces of the individual device chips are coated with the water-soluble resin. |
US11600511B2 |
Substrate processing apparatus
A substrate processing apparatus including an electrostatic chuck on which a substrate is mountable; a ring surrounding the electrostatic chuck, the ring including a first coupling groove; and a first floating electrode in the first coupling groove of the ring, the first floating electrode having a ring shape, wherein a top surface of the first floating electrode is exposed at the ring, and the first floating electrode has a tapered shape including an inclined surface that is inclined in a downward direction toward the electrostatic chuck. |
US11600509B2 |
Micro pick up array and manufacturing method thereof
A micro pick-up array used to pick up a micro device is provided. The micro pick-up array includes a substrate, a pick-up structure, and a soft polymer layer. The pick-up structure is located on the substrate. The pick-up structure includes a cured photo sensitive material. The soft polymer layer covers the pick-up structure. A manufacturing method of a micro pick-up array is also provided. |
US11600507B2 |
Pedestal assembly for a substrate processing chamber
A pedestal assembly for a processing region and comprising first pins coupled to a substrate support, configured to mate with first terminals of an electrostatic chuck, and are configured to be coupled to a first power source. Each of the first pins comprises an interface element, and a compliance element supporting the interface element. Second pins are coupled to the substrate support, configured to mate with second terminals of the electrostatic chuck, and configured to couple to a second power source. Alignment elements are coupled to the substrate support and are configured to interface with centering elements of the electrostatic chuck. The flexible element is coupled to the substrate support, configured to interface with a passageway of the electrostatic chuck, and configured to be coupled to a gas source. |
US11600505B2 |
Systems and methods for systematic physical failure analysis (PFA) fault localization
Systematic fault localization systems and methods are provided which utilize computational GDS-assisted navigation to accelerate physical fault analysis to identify systematic fault locations and patterns. In some embodiments, a method includes detecting a plurality of electrical fault regions of a plurality of dies of a semiconductor wafer. Decomposed Graphic Database System (GDS) cross-layer clips are generated which are associated with the plurality of electrical fault regions. A plurality of cross-layer common patterns is identified based on the decomposed GDS cross-layer clips. Normalized differentials may be determined for each of the cross-layer common patterns, and locations of hotspots in each of the dies may be identified based on the determined normalized differentials. |
US11600503B2 |
High-throughput, multi-chamber substrate processing system
A semiconductor processing system comprises a first, a second, and a third process module assembly. The third process module assembly is between the first and the second process module assemblies, and includes an opening for providing substrates to be processed in the various process module assemblies. The process modules are arranged laterally relative to the opening. The first and second process module assemblies each include an associated transfer chamber, an associated substrate transfer device, and a plurality of associated process modules attached the associated transfer chamber. The third process module assembly may include an associated transfer chamber, an associated substrate transfer device, and a single associated process module attached to the associated transfer chamber. The processing system is configured to sequentially load substrates into the process module assemblies neighboring the third process module assembly, and lastly load substrates into the process module of the third process module assembly. |
US11600501B2 |
Etching method and plasma processing apparatus
An etching method enables plasma etching of a silicon-containing film with reduced lateral etching. The etching method includes providing a substrate in a chamber included in a plasma processing apparatus. The substrate includes a silicon-containing film. The etching method further includes setting a flow rate proportion of a phosphorus-containing gas with respect to a total flow rate of the process gas so as to establish a predetermined ratio of an etching rate of an alternate stack of a silicon oxide film and a silicon nitride film to an etching rate of the silicon oxide film. |
US11600500B2 |
Substrate processing method
A substrate processing method includes forming, by supplying a chemical liquid onto a central portion of a substrate while rotating a rotary table at a first speed, a liquid film of the chemical liquid having a first thickness; forming, by supplying the chemical liquid onto the central portion while rotating the rotary table at a second speed lower than the first speed after the forming of the liquid film having the first thickness, a liquid film of the chemical liquid having a second thickness larger than the first thickness; and heating, by heating the rotary table in a state that the rotary table is rotated at a third speed lower than the second speed or in a state that the rotating of the rotary table is stopped after the forming of the liquid film having the second thickness, the substrate and the liquid film of the chemical liquid. |
US11600497B2 |
Using absolute Z-height values for synergy between tools
A semiconductor review tool receives absolute Z-height values for the semiconductor wafer, such as a semiconductor wafer with a beveled edge. The absolute Z-height values can be determined by a semiconductor inspection tool. The semiconductor review tool reviews the semiconductor wafer within a Z-height based on the absolute Z-height values. Focus can be adjusted to within the Z-height. |
US11600495B2 |
Method of manufacturing semiconductor device
Provided is a method of manufacturing a semiconductor device. The method includes providing a substrate in which a main area including a first cell area and a first peripheral area, and an edge area including a second cell area and a second peripheral area are defined, sequentially forming a mold layer, a supporter layer, a mask layer, and a preliminary pattern layer on the substrate, exposing the preliminary pattern layer to light to simultaneously form a first pattern and a second pattern on the mask layer of the first cell area and the second cell area, respectively, forming an etch stop layer on the second pattern and etching the mask layer using the etch stop layer and the first pattern to form a hole pattern in the mold layer and the supporter layer of the first cell area. |
US11600492B2 |
Electrostatic chuck with reduced current leakage for hybrid laser scribing and plasma etch wafer singulation process
Electrostatic chucks with reduced current leakage and methods of dicing semiconductor wafers are described. In an example, an etch apparatus includes a chamber, and a plasma source within or coupled to the chamber. An electrostatic chuck is within the chamber. The electrostatic chuck includes a conductive pedestal having a plurality of notches at a circumferential edge thereof. The electrostatic chuck also includes a plurality of lift pins corresponding to ones of the plurality of notches. |
US11600491B2 |
Laser apparatus and method of processing thin films
A method of fiber laser processing of thin film deposited on a substrate includes providing a laser beam from at least one fiber laser which is guided through a beam-shaping unit onto the thin film. The beam-shaping optics is configured to shape the laser beam into a line beam which irradiates a first irradiated thin film area Ab on a surface of the thin film, with the irradiated thin film area Ab being a fraction of the thin film area Af. By continuously displacing the beam shaping optics and the film relative to one another in a first direction at a distance dy between sequential irradiations, a sequence of uniform irradiated thin film areas Ab are formed on the film surface defining thus a first elongated column. Thereafter the beam shaped optics and film are displaced relative to one another at a distance dx in a second direction transverse to the first direction with the distance dx being smaller than a length of the irradiated film area Ab. With the steps performed to form respective columns, the elongated columns overlap one another covering the desired thin film area Af. The dx and dy distances are so selected that that each location of the film area Af is exposed to the shaped laser beam during a cumulative predetermined duration. |
US11600489B2 |
Semiconductor device and method for manufacturing the semiconductor device
A semiconductor device having favorable electrical characteristics is provided. A metal oxide is formed over a substrate by the steps of: introducing a first precursor into a chamber in which the substrate is provided; introducing a first oxidizer after the introduction of the first precursor; introducing a second precursor after the introduction of the first oxidizer; and introducing a second oxidizer after the introduction of the second precursor. |
US11600488B2 |
Method of manufacturing semiconductor device
There is provided a technique that includes: loading an m-th substrate into a process chamber, wherein m is an integer less than n; forming a film on the m-th substrate by heating the m-th substrate in the process chamber; unloading the m-th substrate from the process chamber; waiting for a predetermined time in the process chamber, in a state where the substrates are not present in the process chamber, after the act of unloading; loading a next substrate, which is one of the n substrates to be processed next, into the process chamber, after the act of waiting; and forming a film on the next substrate by heating the next substrate in the process chamber. |
US11600485B2 |
Using sacrificial solids in semiconductor processing
In an example, a method may include closing an opening in a structure with a sacrificial material at a first processing tool, moving the structure from the first processing tool to a second processing tool while the opening is closed, and removing the sacrificial material at the second processing tool. The structure may be used in semiconductor devices, such as memory devices. |
US11600481B2 |
Devices and processes for mass spectrometry utilizing vibrating sharp-edge spray ionization
In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, the disclosure, in one aspect, relates to a vibrating sharp edge spray ionization (VSSI) method suitable for coupling with a mass spectrometer, a VSSI method modified with a capillary suitable for use with continuous-flow separation methods such as liquid chromatography, and a VSSI method suitable for coupling with a capillary electrophoresis (CE) device in order to introduce the CE sample flow into a mass spectrometer. Also disclosed herein are devices for carrying out these methods and methods of making the same. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure. |
US11600472B2 |
Vacuum processing apparatus and operating method of vacuum processing apparatus
There is provided a vacuum processing apparatus in which at least one of the processing units includes a lower member and an upper member mounted on the lower member to be attachable and detachable that configure the vacuum container, a turning shaft member which is attached to an outer circumferential part of the base plate between the work space and the vacuum container, and has a turning shaft that moves from above the base plate when the turning shaft is connected to the lower member and the lower member turns around the connected part, and a maintenance member including an arm which is disposed above the turning shaft member and turns in a horizontal direction as the upper member is suspended, and in which the lower member is configured to be fixable at the position at a predetermined angle within a range of an angle at which the lower member is capable of turning around the shaft, and to be vertically movable as the arm of the maintenance member fixes the position above a center portion of the lower member of which the position is fixed within a range of the angle at which the lower member is capable of turning, and the upper member is suspended. |
US11600469B2 |
Plasma processing apparatus
A plasma processing apparatus includes a balun having a first unbalanced terminal, a second unbalanced terminal, a first balanced terminal, and a second balanced terminal, a grounded vacuum container, a first electrode electrically connected to the first balanced terminal, a second electrode electrically connected to the second balanced terminal, and a ground electrode arranged in the vacuum container and grounded. |
US11600468B2 |
Multi channel splitter spool
Embodiments described herein relate to gas line systems with a multichannel splitter spool. In these embodiments, the gas line systems will include a first gas line that is configured to supply a first gas. The first gas line is coupled to a multichannel splitter spool with a plurality of second gas lines into which the first gas flows. Each gas line of the plurality of second gas lines will have a smaller volume than the volume of the first gas line. The smaller second gas lines will be wrapped by a heater jacket. Due to the smaller volume of the second gas lines, when the first gas is flowed through the second gas lines, the heater jacket will sufficiently heat the first gas, eliminating the condensation induced particle defects that occur in conventional gas line systems when the first gas meets with a second gas in the gas line system. |
US11600465B2 |
Atomic-scale processing method by combining extreme ultraviolet light and plasma
Disclosed is an atomic-scale processing method by combining extreme ultraviolet light and plasma. The method includes synergistically applying extreme ultraviolet (EUV) light and plasma to treat a surface of a material, enabling atomic-scale processing of the surface of the material. |
US11600462B2 |
Emitter with excellent structural stability and enhanced efficiency of electron emission and X-ray tube comprising the same
The present invention provides an emitter, which comprises carbon nanotubes and is excellent in the efficiency of electron emission, and an X-ray tube comprising the same. |
US11600459B2 |
Single bottle interrupter
A bi-stable mechanism for a vacuum interrupter. The bi-stable mechanism includes an actuator; and a cam pivotable by the actuator, the cam moving a moveable contact. Wherein a bellows assembly is positioned above a vacuum bottle and coupled to a housing. The bellows assembly includes an outer cylindrical shell surrounding an opening spring, a spring plate, a contact spring, and a bellows. The bellows assembly reciprocates the moveable contact to prevent arcing between a pair of contacts and biasing the pair of contacts apart from each other. |
US11600458B2 |
Haptic generator and driving method thereof
A haptic generator in accordance with an embodiment of the present disclosure may include a driving signal generator and a haptic device. The driving signal generator may be configured to receive a sound signal and generate a driving signal including an impact driving signal and an inertia driving signal. The haptic device may be configured to generate impact vibrations pursuant to the impact driving signal and generate rotational inertia vibrations pursuant to the inertia driving signal, the rotational inertia vibrations being different from the impact vibrations. The impact driving signal and the inertia driving signal may be generated based on different properties of the sound signal. |
US11600455B2 |
Keyswitch
A keyswitch includes a base plate, a keycap, a balance bar, at least one buffer layer, and a membrane switch layer disposed on a base plate. A linking portion of the base plate protruding upward penetrates through the membrane switch layer such that a contact portion of the membrane switch layer is located proximate to the linking portion. A connecting section of the balance bar passes through a through hole of the linking portion. The at least one buffer layer is formed on a lower surface of the contact portion, and extends along a first lateral path and a second lateral path. The contact portion supports the connecting section to abut against a top wall of the linking portion. When the keycap moves upward and downwards, the connecting section pivotally slides on the contact portion, between the first lateral path and the second lateral path. |
US11600454B2 |
Contact assembly for electrical devices and method for making
A contact assembly for an electrical device and a method for making such an assembly are presented. The contact assembly comprises a substrate and a contact material disposed on the substrate. The contact material comprises a composite material comprising a refractory material and a matrix material. The matrix material has a higher ductility than the refractory material. The composite material further comprises a core region and an outer region bounding the core region, the core region having a higher concentration of the refractory material than the outer region. The method applies cold spraying a blended feedstock to produce a layer that includes the composite material described above. |
US11600449B2 |
Layer compositions with improved electrical parameters comprising PEDOT/PSS and a stabilizer
The present invention relates to a process for the production of a layer composition (10) with an electrically conductive layer (11), comprising the process steps: a) provision of a substrate (12) with a substrate surface (13); b) formation of a polymer layer (14) comprising an electrically conductive polymer (15) on at least a part of the substrate surface (13); c) application of a liquid stabilizer phase, comprising a stabilizer and a liquid phase, to the polymer layer (14) from process step b), wherein the stabilizer phase comprises less than 0.2 wt. %, based on the stabilizer phase, of the electrically conductive polymer, wherein the stabilizer is an aromatic compound with at least two OH groups, and a layer composition (10) and uses thereof. |
US11600444B2 |
Ceramic electronic device and manufacturing method of the same
A ceramic electronic device includes a multilayer chip in which each of a plurality of dielectric layers and each of a plurality of internal electrode layers are alternately stacked, the plurality of internal electrode layers being alternately exposed to a first end face and a second end face of the multilayer structure. A bent portion, in which the plurality of dielectric layers in a substantially same position along a stacking direction project along the stacking direction, is formed in the multilayer chip. In the bent portion, a through-hole is formed in two or more of the plurality of internal electrode layers. The through-hole is a defect portion in a first direction in which the first end face faces with the second end face and in a second direction that is vertical to the first direction in a plane of the plurality of internal electrode layers. |
US11600443B2 |
Multilayer electronic component
A multilayer electronic component in the example embodiment includes a Si-organic compound layer including a body covering portion disposed on a region of an exterior surface of a body between external electrodes and an extended portion extending from the body covering portion to a region between a plating layer and an additional plating layer of the external electrode, thereby having improved warpage strength and moisture resistance. |
US11600442B2 |
Multilayer ceramic electronic component
A multilayer ceramic electronic component including: a ceramic body including a dielectric layer and first and second internal electrodes; a first external electrode including a first base electrode disposed to be in contact with the ceramic body and a first conductive layer disposed on the first base electrode; and a second external electrode including a second base electrode disposed to be in contact with the ceramic body and a second conductive layer disposed on the second base electrode, wherein the first conductive layer and the second conductive layer include silver (Ag) and palladium (Pd) and distribution positions of silver (Ag) and palladium (Pd) in central portions of the first conductive layer and the second conductive layer match at 95% or more according to a result of TEM mapping. |
US11600440B2 |
Multilayer ceramic capacitor
A multilayer ceramic capacitor includes: a laminate including dielectric layers and internal electrode layers; and external electrodes on the main surfaces of the laminate. The laminate further includes a first via conductor, a second via conductor, a third via conductor, and a fourth via conductor that connect the internal electrode layers and the external electrodes. The external electrodes include first external electrodes, second external electrodes, third external electrodes, and fourth external electrodes, each connected to the respective end surfaces of the via conductor. Each of the external electrodes does not extend to the side surfaces of the laminate. A ratio W/L of a dimension W in the width direction of the multilayer ceramic capacitor to a dimension L in the length direction of the multilayer ceramic capacitor is about 0.85 or more and about 1 or less. The dimension L in the length direction of the multilayer ceramic capacitor is about 750 μm or smaller. |
US11600439B2 |
Process for manufacturing a thin strip made of soft magnetic alloy and strip obtained
Method for manufacturing a thin strip in a soft magnetic alloy and strip obtained A method for manufacturing a strip in a soft magnetic alloy capable of being cut out mechanically, the chemical composition of which comprises by weight: 18% ≤ Co ≤ 55% 0% ≤ V + W ≤ 3% 0% ≤ Cr ≤ 3% 0% ≤ Si ≤ 3% 0% ≤ Nb ≤ 0.5% 0% ≤ B ≤ 0.05% 0% ≤ C ≤ 0.1% 0% ≤ Zr + Ta ≤ 0.5% 0% ≤ Ni ≤ 5% 0% ≤ Mn ≤ 2% The remainder being iron and impurities resulting from the elaboration, according to which a strip obtained by hot rolling is cold-rolled in order to obtain a cold-rolled strip with a thickness of less than 0.6 mm.After cold rolling, a continuous annealing treatment is carried out by passing into a continuous oven, at a temperature comprised between the order/disorder transition temperature of the alloy and the onset temperature of ferritic/austenitic transformation of the alloy, followed by rapid cooling down to a temperature below 200° C. Strip obtained. |
US11600438B2 |
Inductor and method for producing the same
An inductor includes an element containing a magnetic metal powder and a resin, a coil that includes a winding portion and paired extended portions extended from both ends of the winding portion and that is embedded in the element, a pair of an external terminal electrically connected to one of the extended portions and an external terminal electrically connected to the other of the extended portions, and a conductive layer disposed on a surface of the element that crosses the winding axis of the coil. The conductive layer includes a first metal layer formed by fusing together the magnetic metal powder near the surface of the element and a second metal layer formed by plating on the first metal layer. The electrical resistivity of the second metal layer is lower than the electrical resistivity of the first metal layer. |