Document | Document Title |
---|---|
US11372683B2 |
Placement of virtual GPU requests in virtual GPU enabled systems using a requested memory requirement of the virtual GPU request
Disclosed are aspects of memory-aware placement in systems that include graphics processing units (GPUs) that are virtual GPU (vGPU) enabled. Virtual graphics processing unit (vGPU) data is identified for graphics processing units (GPUs). A configured GPU list and an unconfigured GPU list are generated using the GPU data. The configured GPU list specifies configured vGPU profiles for configured GPUs. The unconfigured GPU list specifies a total GPU memory for unconfigured GPUs. A vGPU request is assigned to a vGPU of a GPU. The GPU is a first fit, from the configured GPU list or the unconfigured GPU list that satisfies a GPU memory requirement of the vGPU request. |
US11372678B2 |
Distributed system resource allocation method, apparatus, and system
Embodiments of the present disclosure can provide distributed system resource allocation methods and apparatuses. The method comprises: receiving a resource preemption request sent by a resource scheduling server, the resource preemption request comprising job execution information corresponding to a first job management server; determining, according to the job execution information corresponding to the first job management server and comprised in the resource preemption request, resources to be returned by a second job management server and a resource return deadline; and returning, according to and the resource return deadline and a current job execution progress of the second job management server, the resources to be returned to the resource scheduling server before expiration of the resource return deadline. |
US11372676B2 |
Rule-driven service management using entangled qubits in quantum computing systems
Rules-driven service management using entangled qubits in quantum computing systems is disclosed. In one example, a first quantum computing device maintains a first qubit entangled with a corresponding second qubit of a second quantum computing device. Upon detecting an occurrence of a trigger condition, the first quantum computing device identifies a quantum operation corresponding to the trigger condition. The first quantum computing device then performs the quantum operation corresponding to the trigger condition on the first qubit. Concurrently with the first quantum computing device performing the quantum operation, the second quantum computing device observes a quantum state of the second qubit. The second quantum computing device identifies a responsive action that corresponds to the quantum state of the second qubit, and performs the responsive action. In this manner, the entangled state between the first and second qubits provides a rules propagation mechanism between the first and second quantum computing devices. |
US11372673B2 |
Artificial intelligence chip and instruction execution method for artificial intelligence chip
Embodiments of the present disclosure disclose an artificial intelligence chip and an instruction execution method for an artificial intelligence chip. A specific embodiment of the artificial intelligence chip includes: an instruction memory, a data memory, at least one general execution unit, and at least one dedicated execution unit. The instruction memory is configured to: receive a kernel code including at least one code block. The general execution unit is configured to: receive the code block, lock the dedicated execution unit associated with the received code block, and send an instruction in the received code block to the locked dedicated execution unit. The dedicated execution unit is configured to: execute the received instruction, and store an execution result in the data memory. The data memory is configured to: store the execution result sent by the dedicated execution unit. |
US11372666B2 |
Redundant system, redundant program, and information processing apparatus
A redundant system (1) includes information processing apparatuses (10), each of which includes a communication interface (11) that communicates with another information processing apparatus (10) and a controller (13) that manages virtual environments capable of running on the respective information processing apparatus (10). The communication interface (11) transmits first equalization information associated with a first environment, among the virtual environments, in an operating state to the other information processing apparatus (10). The communication interface (11) receives second equalization information associated with a second environment in the operating state on the other information processing apparatus (10) from the other information processing apparatus (10). The controller (13) equalizes the second environment onto the respective information processing apparatus (10) based on the second equalization information received by the communication interface (11). The controller (13) maintains the first environment in the operating state and sets the second environment to a standby state. |
US11372665B2 |
System and method for native and non-native replication for virtual volume based machines
A method, computer program product, and computer system for creating, with a first replication product, one or more groups of a plurality of groups that is empty in a storage array. A protection policy may be applied to the one or more groups on the first replication product, wherein the protection policy may include a replication rule. A policy profile may be created by the second replication product, wherein the replication rule may be included to the policy profile. The protection policy may be applied to a virtual machine (VM). The policy profile may be applied to the VM. The first replication product may replicate one or more virtual volumes of the VM on a remote system based upon, at least in part, the replication rule. |
US11372664B2 |
Mobility passport for cross-datacenter migrations of virtual computing instances
Techniques disclosed herein relate to migrating virtual computing instances such as virtual machines (VMs). In one embodiment, VMs are migrated across different virtual infrastructure platforms by, among other things, translating between resource models used by virtual infrastructure managers (VIMs) that manage the different virtual infrastructure platforms. VM migrations may also be validated prior to being performed, including based on resource policies that define what is and/or is not allowed to migrate, thereby providing compliance and controls for borderless data centers. In addition, an agent-based technique may be used to migrate VMs and physical servers to virtual infrastructure, without requiring access to an underlying hypervisor layer. |
US11372663B2 |
Compute platform recommendations for new workloads in a distributed computing environment
Techniques for an optimization service of a service provider network to help optimize the selection, configuration, and utilization, of virtual machine (VM) instance types to support workloads on behalf of users. The optimization service may implement the techniques described herein at various stages in a life cycle of a workload to help optimize the performance of the workload, and reduce underutilization of computing resources. For example, the optimization service may perform techniques to help new users select an optimized VM instance type on which to initially launch their workload. Further, the optimization service may monitor a workload for the life of the workload, and determine new VM instance types, and/or configuration modifications, that optimize the performance of the workload. The optimization service may provide recommendations to users that help improve performance of their workloads, and that also increase the aggregate utilization of computing resources of the service provider network. |
US11372661B2 |
System and method for automatic segmentation of digital guidance content
Provided herein are systems and methods for providing digital guidance in an underlying computer application. In one exemplary implementation, a method includes recording, in a computing device, steps of digital guidance content as the steps are created by a content author. The exemplary method also includes automatically segmenting, in the computing device, the digital guidance content as it is being created such that the digital guidance content is only associated with segments of the underlying computer application where the content is relevant. The exemplary method further includes making the digital guidance content available for playback to an end user on a computing device only when the end user is in a segment of the underlying computer application that is relevant to the digital guidance content. |
US11372660B2 |
Framework for custom actions on an information feed
Systems and methods for providing a custom action for an information post are described. In one embodiment, data for generating a user interface component for display at a client machine may be transmitted from a server to the client machine. The user interface component displaying one or more information posts may be capable of being generated in accordance with first computing programming language instructions provided by a first entity. Each information post may include information relating to a record stored on a storage medium accessible to the server. Selected ones of the information posts may have associated therewith a custom action activation mechanism for activating a custom action relating to the associated information post. The custom action activation mechanism may be capable of being generated in accordance with second computer programming language instructions provided by a second entity. |
US11372655B2 |
Computer-generated reality platform for generating computer-generated reality environments
The present disclosure relates to providing a computer-generated reality (CGR) platform for generating CGR environments including virtual and augmented reality environments. In some embodiments, the platform includes an operating-system-level (OS-level) process that simulates and renders content in the CGR environment, and one or more application-level processes that provide information related to the content to be simulated and rendered to the OS-level process. |
US11372654B1 |
Remote filesystem permissions management for on-demand code execution
Systems and methods are described for remotely configuring a coordinator within a coordinated environment, which coordinator can execute code to manage operation of a set of coordinated devices. A client can submit configuration information to a deployment system, including permissions indicating what data resources each set of code should have access to on the coordinator. The deployment system can remotely, and independently of configuration of the coordinator and in a manner that does not conflict with local configuration of the coordinator, determine filesystem permissions that divide access to the data resources among the sets of code. The deployment system can build a directory structure with the permissions and deploy the structure to the coordinator. The coordinator can locally generate directory structure, adopt the permissions, and execute the code to enforce the client-specified permissions. |
US11372652B2 |
Application processor, system on chip, and method of booting device
A system on chip (SOC) is provided. The system on chip includes a non-volatile memory, an exception detector, and a processor. The non-volatile memory stores a first bootset in a first region, the first bootset including a booting operation bootloader for a first booting operation and stores a second bootset in a second region that is different from the first region. The exception detector is activated after execution of an initialization bootloader, detects an exception occurrence in the system on chip, and generates a reset signal in response to the exception occurrence that is detected. The processor performs a second booting operation by using the second bootset in response to the reset signal received from the exception detector during the first booting operation performed by using the first bootset. |
US11372649B2 |
Flow control for multi-threaded access to contentious resource(s)
Described herein is a system and method of performing flow control for multi-threaded access to contentious resource(s) (e.g., shared memory). A request to enter a critical section of code by a particular thread of a plurality of concurrent threads is received. A determination is made as to whether or not to allow the particular thread to enter the critical section of code based, at least in part, upon a CPU core associated with the particular thread, a state associated with the particular thread, and/or a processing rate in the critical session of code associated with the particular thread. When it is determined to allow the particular thread to enter the critical section of code, the particular thread is allowed to enter the critical section of code. |
US11372648B2 |
Extended tags for speculative and normal executions
A cache system having cache sets, registers associated with the cache sets respectively, and a logic circuit coupled to a processor to control the cache sets according to the registers. When a connection to an address bus of the system receives a memory address from the processor, the logic circuit can be configured to: generate an extended tag from at least the memory address; and determine whether the generated extended tag matches with a first extended tag for a first cache set or a second extended tag for a second cache set of the system. Also, the logic circuit can also be configured to implement a command received from the processor via the first cache set in response to the generated extended tag matching with the first extended tag and via the second cache set in response to the generated extended tag matching with the second extended tag. |
US11372647B2 |
Pipelines for secure multithread execution
Described herein are systems and methods for secure multithread execution. For example, some methods include fetching an instruction of a first thread from a memory into a processor pipeline that is configured to execute instructions from two or more threads in parallel using execution units of the processor pipeline; detecting that the instruction has been designated as a sensitive instruction; responsive to detection of the sensitive instruction, disabling execution of instructions of threads other than the first thread in the processor pipeline during execution of the sensitive instruction by an execution unit of the processor pipeline; executing the sensitive instruction using an execution unit of the processor pipeline; and, responsive to completion of execution of the sensitive instruction, enabling execution of instructions of threads other than the first thread in the processor pipeline. |
US11372644B2 |
Matrix processing instruction with optional up/down sampling of matrix
A processor system comprises a shared memory and a processing element. The processing element includes a matrix processor unit and is in communication with the shared memory. The processing element is configured to receive a processor instruction specifying a data matrix and a matrix manipulation operation. A manipulation matrix based on the processor instruction is identified. The data matrix and the manipulation matrix are loaded into the matrix processor unit and a matrix operation is performed to determine a result matrix. The result matrix is outputted to a destination location. |
US11372635B2 |
In-memory software package installation and testing
Methods, systems, and devices supporting in-memory software package installation and testing are described. Some systems (e.g., a multi-tenant cloud computing platform) may support installation of software packages, where each package may be defined by a set of metadata. If a tenant selects to install a package, the system may test the package for conflicts between the package and the tenant's production environment. The system may automatically detect additional packages linked to the package based on dependencies defined in the metadata and may temporarily install the one or more packages in-memory at one or more servers. The system may pull a subset of data from the tenant's production environment into the in-memory testing environment based on a metadata testing file in order to support running tests defined by the metadata testing file. The system may test the package(s) in-memory at the server(s) for any conflicts using the metadata testing file. |
US11372633B2 |
Method, device and terminal apparatus for code execution and computer readable storage medium
The present application relates to the technical field of computer, and provides a method, a device and a terminal apparatus for code execution and a computer readable storage medium. The present application provide an identifier for parallel processing, and the user can use the parallel processing identifier to identify code statements that need to be processed in parallel in advance. During the execution of the code, when the parallel processing identifier is found in the current code statement to be executed, the task to be processed indicated by the current code statement to be executed is distributed to a preset grid computing system Perform multi-thread parallel processing. During the execution of this code statement, the user can continue to execute the next code statement. |
US11372623B2 |
Random number generating device and operating method of the same
A random number generating device includes a particle detector, a pulse generator, a clock counter, and a random number converter. The particle detector detects particles emitted from a radioactive isotope. The pulse generator generates pulses corresponding to the particles. The clock counter counts the number of clock cycles during time intervals between the pulses and generates a plurality of count values. The random number converter adjusts a clock frequency, based on a minimum value and a maximum value of the plurality of count values and converts a target count value generated depending on the adjusted clock frequency into a random number. |
US11372619B2 |
Smart controlling device and method of controlling therefor
The present specification relates to a smart controlling device capable of utilizing machine learning for voice recognition and a method of controlling therefor. The smart controlling device according to the present invention includes a receiver configured to receive an input including a command trigger, and a controller configured to detect one or more external display devices, select a display device of the detected one or more external display devices, cause a power status of the selected display device to be changed to a first state, and cause a response data corresponding to a first command data received after the command trigger to be output on a display of the selected display device. |
US11372618B2 |
Intercom system for multiple users
An intercom system provides audio communication between multiple users wearing head-mounted devices (HMDs). In an embodiment, the intercom system determines a first location of a first HMD of a first user. The intercom system determines a second location of a second HMD of a second user. The intercom system receives audio of the first user from a microphone of the first HMD. The intercom system determines a volume level of the audio at the second location using at least the first location and the second location. The intercom system transmits the audio to the second HMD responsive to determining that the volume level is less than a threshold volume. The intercom system may also selectively transmit audio based on gaze direction of a user. Additionally, the intercom system may generate a transcript of audio input by users. |
US11372617B2 |
Monitoring loudness level during media replacement event using shorter time constant
In one aspect, an example method includes (i) determining, by a playback device, a first loudness level of a first portion of first media content from a first source while the playback device presents the first media content, with the first portion having a first length; (ii) switching, by the playback device, from presenting the first media content from the first source to presenting second media content from a second source; (iii) based on the switching, determining, by the playback device, second loudness levels of second portions of the first media content while the playback device presents the second media content, with the second portions having a second length that is shorter than the first length; and (iv) while the playback device presents the second media content, adjusting, by the playback device, a volume of the playback device based on one or more of the second loudness levels. |
US11372616B2 |
Portable streaming audio player
A portable streaming audio player and methods of using and programming the portable streaming audio player are described. The portable streaming audio player can include an interface panel that includes one or more assignable selection buttons to which streaming audio content can be assigned. |
US11372614B2 |
Electronic apparatus, control method thereof, and storage medium
An electronic apparatus includes an internal speaker, a communication unit configured to perform a wireless communication with a wearable external speaker, and a control unit. The control unit establishes wireless connection with the external speaker through the communication unit and the control unit continuously performs a control operation for preventing an output of an audio signal from the internal speaker in a case where the wireless connection with the external speaker is disconnected by a first factor in a state where the control unit performs the control operation. The control unit cancels performance of the control operation in a case where the wireless connection with the external speaker is disconnected by a second factor different from the first factor in a state where the control unit performs the control operation for preventing the output of the audio signal from the internal speaker. |
US11372609B2 |
System and method for locally generating data
A method provides pre-rendered information messages for display by a peripheral display unit connected to a base station over a data link. The method involves detecting that a data connection between the base station and the peripheral display unit is available, sending pre-rendered information messages from the base station to the peripheral display unit, and storing the pre-rendered information messages at the peripheral display unit for display in response to a status detected at the peripheral display unit. The base station may perform the pre-rendering of information messages in response to variation in configuration information relating to the peripheral display unit. The pre-rendered information messages may be paired with peripheral display unit statuses and the peripheral display unit may be configured so that, in the event that a particular status is detected, the corresponding pre-rendered information message is displayed without requiring data transmission from the base station. |
US11372607B2 |
Server system to prevent inquiry to suggest print and storage medium
A control method is provided that causes a server system to perform operations that include detecting that a file has been uploaded, determining whether to display an inquiry about performing print of the uploaded file, and controlling a display unit to display the inquiry in response to a determination to display the inquiry in the determining and not to display the inquiry in response to a determination not to display the inquiry in the determining. |
US11372604B2 |
Image forming apparatus, method of controlling the same, and non-transitory storage medium storing program executable by the image forming apparatus
An image forming apparatus, including: an image forming engine; an interface; and a controller; wherein the controller is configured to: supply electric power to an external device via the interface; determine whether to execute, during executing the supplying the electric power to the external device via the interface, a first operation relating to image formation by the image forming engine; limit a power amount to be supplied to the external device when the controller determines to execute the first operation based on a result of the determining whether to execute the first operation; execute the first operation in a state in which the power amount to be supplied to the external device is limited; and determine, after the controller has started the executing the first operation, whether to execute a second operation different from the first operation. |
US11372601B2 |
Information processing apparatus and non-transitory computer readable medium
An information processing apparatus includes a processor. The processor is configured to display an area in association with a setting of a print attribute. The processor is configured to display each page in the area for the print attribute which is set for the page. The pages form a document that is to be printed. |
US11372599B1 |
Information processing apparatus, non-transitory computer readable medium and information processing method
An information processing apparatus includes a processor configured to: in accordance with log information on printing performed on a document by a printer, subtract a number of billing units responsive to printing of the document from a number of billing units held by the printer; and if the printer having printed a document as a print target produced by a producer and corresponding to a substitute document prints the substitute document in accordance with the log information and correspondence information indicating a correspondence relation between the document as the print target and the substitute document substituting for the document, not subtract a number of billing units responsive to printing of the substitute document from the number of billing units held by the printer. |
US11372597B2 |
Information processing system, and non-transitory computer readable medium
An information processing system includes an information acquisition unit that acquires information on multiple bulletins to be posted in posting locations that are different from each other, a determination unit that determines, based on the information, an order of visitation according to which a worker posting bulletins visits each of the posting locations, and an instruction unit that provides an instruction to output printed matter that accounts for the order of visitation determined. |
US11372594B2 |
Method and apparatus for scheduling memory access request, device and storage medium
The present disclosure provides a method and apparatus for scheduling a memory access request, an electronic device and a storage medium. The method may include: acquiring monitoring data of at least one service module; determining a target service module from the at least one service module based on the monitoring data; determining a target NUMA node matching the target service module from a preset NUMA node set, based on the monitoring data; and sending a memory access request of the target service module to the target NUMA node. |
US11372590B2 |
Memory control method, memory storage device and memory control circuit unit
A memory control method for a memory storage device is provided according to an exemplary embodiment of the disclosure. The method includes: reading first data from a first physical unit in response to a first read command from a host system; performing a first decoding operation on the first data to obtain decoded data corresponding to the first data; storing the decoded data corresponding to the first data in a buffer memory; reading second data from the first physical unit in response to a second read command from the host system; performing a second decoding operation on the second data; and in response to failure of the second decoding operation, searching the buffer memory for the decoded data corresponding to the first data to replace the reading of the second data. |
US11372583B2 |
Storage device and control method for maintaining control information in the event of power failure
To appropriately access data managed before a supply of power is stopped. A storage device that receives an I/O request from a host computer and performs an I/O processing in response to the I/O request includes a CPU, a nonvolatile medium, and a memory having access performance higher than that of the nonvolatile medium. The CPU stores control information about a control for performing the I/O processing in the memory and the nonvolatile medium. The control information stored in the nonvolatile medium includes address conversion information for converting a physical address of a drive in which target data of the I/O request is stored and a logical address that indicates a logical area of data stored in the physical address. |
US11372576B2 |
Data processing apparatus, non-transitory computer-readable storage medium, and data processing method
A data processing apparatus includes a memory configured to store a bit array including a first Bloom filter associating with a first subset containing a data element matching a first classification condition and a second Bloom filter associating with a second subset containing a data element matching a second classification condition, and a processor configured to, when a first data element to be a search target is inputted, determine whether the same data element as the first data element is present in the first subset by using the first Bloom filter, determine whether the same data element as the first data element is present in the second data subset by using the second Bloom filter, and when all the data elements contained in the first subset are deleted, delete the first Bloom filter from the bit array. |
US11372572B2 |
Self-relocating data center based on predicted events
A self-relocating data center and method is provided. In implementations, a method includes: receiving input data from a data center over a period of time, the input data including sensor data; determining parameter data sets based on the input data, the parameter data sets reflecting operating states of resources of the data center over the period of time; determining dependencies between the parameter data sets using a stacked long short term memory (LSTM) process; generating a model based on the dependencies between the respective parameter data sets and stored target data parameters; determining an event based on an output of the model and the stored target parameter data, wherein an input to the model is real-time input data received from the data center; and initiating a self-relocating event to automatically relocate data of the data center to a secondary data center without human intervention based on the event. |
US11372569B2 |
De-duplication in master data management
A method and system including at least one application, wherein a data storage is associated with each application; a de-duplication module; a de-duplication processor in communication with the de-duplication module and operative to execute processor-executable process steps to cause the system to: receive a data storage for each of the at least one application, wherein a first data storage and a second data storage include a same record or the one data storage includes two or more of the same record; separate the records into a key portion and a data portion; assign an internal key to each record, wherein the internal key is stored in both the key portion and the data portion for that record; calculate a golden record including golden record values; assign a golden record internal key to the golden record; replace each internal key in the key portion with the golden record internal key; and remove the data portion of each data record where the internal key in the data portion is different from the internal key in the key portion. Numerous other aspects are provided. |
US11372565B2 |
Facilitating data reduction using weighted similarity digest
A technique for managing data storage includes generating digests of chunks of data. The digests are arranged to provide similar results for similar chunks but to weight contributions from different regions of chunks differently based on their entropy. Chunks that differ in low-entropy regions tend to produce more similar digests than do chunks that differ in high-entropy regions. The technique further includes identifying similar chunks based on similarity of their digests and preforming data reduction on one chunk by reference to another, storing any differences between the chunks separately. |
US11372561B1 |
Techniques for identifying misconfigurations and evaluating and determining storage tier distributions
Determining drive configurations may include: receiving a data set including tier distributions for data storage systems; applying principal component analysis to the data set to generate a resulting data set having number of dimension in comparison to the data set; determining clusters using the resulting data set, wherein each cluster includes a portion of the tier distributions, wherein each cluster has an associated cluster tier distribution determined in accordance with the portion of the tier distributions in the cluster; selecting one of the clusters; and performing first processing that determines, in accordance with a storage capacity requirement and in accordance with a corresponding cluster tier distribution of the selected one cluster, a drive configuration. |
US11372554B1 |
Cache management system and method
A method, computer program product, and computing system for receiving one or more IO requests at a cache system for storing content in a storage array. A maximum number of concurrent backend IO requests may be associated with the storage array based upon, at least in part, a change in size of the storage array. The one or more TO requests may be flushed to the storage array via one or more backend IO requests from the cache system based upon, at least in part, the maximum number of concurrent backend IO requests associated with the storage array. |
US11372549B2 |
Reclaiming free space in a storage system
One embodiment provides a system including a computer processor, a computer-readable hardware storage device, and program code embodied with the computer-readable hardware storage device for execution by the computer processor to implement a method that includes receiving a selection of a first blob for reclamation from a first data center. The first blob includes multiple erasure code groups. A first message is sent to a second data center indicating the first blob is to be reclaimed. A global reclamation complete message is received from the second data center. The global reclamation complete message indicates a second blob in the second data center has been reclaimed. The first data center and the second data center each maintain local blob occupancy information. |
US11372548B2 |
Techniques for accessing and utilizing compressed data and its state information
Some systems compress data utilized by a user mode software without the user mode software being aware of any compression taking place. To maintain that illusion, such systems prevent user mode software from being aware of and/or accessing the underlying compressed states of the data. While such an approach protects proprietary compression techniques used in such systems from being deciphered, such restrictions limit the ability of user mode software to use the underlying compressed forms of the data in new ways. Disclosed herein are various techniques for allowing user-mode software to access the underlying compressed states of data either directly or indirectly. Such techniques can be used, for example, to allow various user-mode software on a single system or on multiple systems to exchange data in the underlying compression format of the system(s) even when the user mode software is unable to decipher the compression format. |
US11372547B2 |
Compression of aging data during compaction
Methods and systems for compression of aging data during compaction are disclosed. A method includes: ingesting a plurality of data objects into a dispersed storage network (DSN); determining that a compaction threshold is met for a storage medium in the DSN; and compacting the storage medium, the compaction including, for each of the plurality of data objects: determining a number of times the data object has been compacted; in response to the number of times the data object has been compacted exceeding a predetermined threshold, compressing the data object and rewriting the compressed data object to a new area on a storage medium; and in response to the number of times the data object has been compacted not exceeding the predetermined threshold, rewriting the data object to the new area on the storage medium without compressing the data object. |
US11372539B2 |
Method and apparatus for adjusting a user interface displayed on a user device using a masking layer
This application relates to a method for adjusting a user interface displayed on a user device using a masking layer, for example, so as to hide or block account information. In one aspect, the method includes displaying one or more accounts included in account information received from a financial institution server on a screen of the user device. The method may also include displaying a masking layer to cover a balance display area of the accounts displayed on the screen. The method may further include, if a touch event dragged in one direction occurs on the balance display area, adjusting a size of the masking layer using a length between a touch start point and a touch end point of the touch event. The method may further include, when the touch event ends, readjusting the size of the masking layer to cover the balance display area. |
US11372532B2 |
User role-based interface layout profiles in an information technology (IT) and security operations application
An information technology (IT) and security operations application is described that stores data reflecting customizations that users make to GUIs displaying information about various types of incidents, and further uses such data to generate “popular” interface profiles indicating popular GUI modifications. The analysis of the GUI customizations data is performed using data associated with multiple tenants of the IT and security operations application to develop profiles that may represent a general consensus on a collection and arrangement of interface elements that enable analysts to efficiently respond to certain types of incidents. Users of the IT and security operations application can then optionally apply these popular interface profiles to various GUIs during their use of the application. Among other benefits, the ability to generate and provide popular interface profiles can help analysts and other users more efficiently investigate and respond to a wide variety of incidents within IT environments, thereby improving the operation and security of those environments. |
US11372530B2 |
Using a wireless mobile device and photographic image of a building space to commission and operate devices servicing the building space
One or more screens may be displayed on a touch screen of a wireless mobile device to solicit commissioning information from the user, including uploading a photograph of a room. The photograph may be displayed on the touch screen along with a set of icons corresponding to devices in the room. Individual icons may be moved onto the photograph to locations corresponding to the actual devices. The icons can be used to configure and operate the corresponding devices. |
US11372525B2 |
Dynamically scalable summaries with adaptive graphical associations between people and content
The techniques disclosed herein improve existing systems by providing a system that automatically generates a scalable summary with adaptable graphical associations between people and content. The system can select a level of detail that can be applied to a process for generating a summary of content. The level of detail can be based on a user's engagement with respect to one or more events. The system can improve the usability of the summary by selecting a level of detail that is optimized for the user's contextual status. The system also improves the user's interaction with a computer by providing an adaptable layout of information indicating a source of content. The adaptable layout allows users to readily identify topics, content sources, and high-priority summary sections regardless of the level of detail that is selected for the summary. |
US11372521B2 |
Systems and methods for interaction of satellite and internet protocol features in content delivery systems (“satellite IP interactions”)
Systems and methods for interaction of satellite and Internet protocol features in content delivery systems are presented. Using such systems and methods, the delivery of some content to the same product by Satellite delivery, other content by IP delivery, and still other content by both Satellite and IP delivery can enhance the utility of both the content and the product for an end user and can further optimize the costs and quality of service associated with delivering the content. A method of providing content and data to a combined satellite and IP network receiver is presented, including broadcasting via satellite content and data to the receiver, and sending via an IP based communications network content and data to the receiver, where the content and data provided over the Satellite broadcast enables capabilities of the receiver needed to consume content received by IP delivery, and the content and data provided via IP delivery enables capabilities of the receiver needed to consume content received from the satellite broadcast. |
US11372519B2 |
Reality capture graphical user interface
A method, system, apparatus, and article of manufacture provide the ability to perform multiple actions based on a reality captured image. An adjustable splitter splits a viewport into viewing panes with the ability to freely adjust the splitter angle. A sphere represents a view of a scene from a viewpoint and used to render an interactive preview of the view without moving to the viewpoint. A series of 2D images may be used to simulate the navigation of a 3D model in an expedited manner. A 3D mesh error scroll bar is used navigate unsorted errors resulting from mesh creation. An interactive gradient map can be used to select a points based on a range of values for non-geometric parameters. An irregularly shaped mesh selection boundary can be directly modified by stretching. An elevation slice of a 3D model can be defined and isolated for viewing/manipulation. |
US11372518B2 |
Systems and methods for augmented or mixed reality writing
An augmented reality system that includes processors and storage devices storing instructions. The instructions configure the processors to perform operations. The operations include identifying a writing object in a video feed being displayed in an augmented reality viewer, identify a tip of the writing object based on a contour of the writing object, and tracking movements of the tip in the augmented reality viewer. The operations may also include generating a virtual file, the virtual file storing the tracked movements and generating a text file by performing an image recognition operation associating the tracked movements stored in the virtual file with one or more characters. |
US11372517B2 |
Fuzzy target selection for robotic process automation
A software robot is designed to carry out an activity (e.g., a mouse click, a text input, etc.) on a target element (e.g., a button, an input field, etc.) of a user interface. The robot is configured to automatically identify the target element at runtime according to a set of attributes of the target element specified in the source-code of the user interface. The robot's code specification includes an indicator of a selected fuzzy attribute and a numerical similarity threshold indicative of an acceptable degree of mismatch between design-time and runtime values of the respective fuzzy attribute. The robot is configured to identify the target element from a set of candidates which are sufficiently similar to it according to the specified degree of mismatch. |
US11372512B2 |
Touch panel, method for making same, and touch display device
A touch panel of improved appearance and function includes a substrate, first bridges, insulating strings, first electrodes, and second electrode strings. Each insulating string extends along a first direction and covers the first bridges. The insulating strings are spaced apart from each other in a second direction intersecting with the first direction. Adjacent first electrodes in the second direction are electrically connected to one first bridge to form a first electrode string. Each second electrode string is on one of the insulating strings. Each first electrode string and the adjacent second electrode string are insulated from each other by a difference in height along one insulating string. A method for making the touch panel and a touch display device using the touch panel are also disclosed. |
US11372510B2 |
Multi-conductor touch system
A touchscreen display includes one or more conductive layers that is implemented for a touch sensor and a common portion. The touch screen display may include as few as one conductive layer that is partitioned for both the touch sensor and the common portion in some examples. A first conductor of the touch sensor is composed of first segments(s) that are electrically connected, and a second conductor of the touch sensor is composed of a second segments(s) that are electrically connected. Also, the common portion includes a third conductor. Drive-sense circuits (DSCs) are respectively implemented to service the conductors and to generate digital signals representative of electrical characteristics of signals provided to those conductors. Processing module(s) is/are configured to execute operational instructions to process the digital signals to facilitate operation of the touchscreen display including to detect presence, interaction, and/or gestures, etc. of a user with the touchscreen display. |
US11372509B2 |
Method for making touch panel
A method for making a touch panel, the method includes the following steps. Two touch panel units are made. The two touch panel units are spaced apart from each other. Making each of the two touch panel units includes the following steps. A carbon nanotube material and a substrate are provided. A carbon nanotube floccule structure is made by flocculating the carbon nanotube material. A conductive layer on the substrate is obtained by applying the carbon nanotube floccule structure on the substrate. Two electrodes on opposite ends of the substrate formed to obtain an electrode plate. |
US11372507B2 |
Touch substrate, manufacturing method thereof, and touch display device
The present disclosure provides a touch substrate, a manufacturing method thereof and a touch display device. The touch substrate includes: a base substrate; a touch area on the base substrate; a touch electrode made of nano-silver, the touch electrode including first touch electrodes and second touch electrodes, a first insulating layer located on a side of the touch electrode away from a center of the base substrate, a touch electrode bridge on the first insulating layer, the touch electrode bridge connecting adjacent first touch electrodes and/or adjacent second electrodes by way of a first through-hole penetrating the first insulating layer. An etching liquid applied to the touch electrode bridge is different from the etching liquid applied to the nano-silver. The technical solution of the present disclosure can realize a flexible touch substrate by using nano-silver and a photolithography process. |
US11372506B1 |
System and method for a system-in-package using EMI shielding for capacitive touch sensing
Systems, methods, and computer-readable media are disclosed for systems-in-packages that are encapsulated, at least partially, by a coating serving as electromagnetic interference (EMI) shielding, thereby isolating and otherwise protecting components in the systems-in-package from interference. The systems-in-packages may include one or more capacitive sensors in communication with a portion of the EMI shielding that serves as a sensing pad. In this manner, the system-in-package may benefit from EMI shielding and capacitive touch sensing capability without the complexity and increased cost of a separate capacitive touch sensor and sensing pad. |
US11372505B2 |
Touch display panel, method for preparing the same, and display device
The invention provides a touch display panel, a method for preparing the same, and a display device. The touch display panel includes a display module and a touch module that are arranged in a stack, the display module including two conductive layers and an intermediate insulation layer arranged between the two conductive layers, and the touch module including at least two touch electrodes and a touch insulation layer between the at least two touch electrodes, in which at least one of the intermediate insulation layer and the touch insulation layer is made of an organic material. |
US11372503B2 |
Touch display device and method for touch detection
A touch display device and a method for touch detection are provided. The touch display device is formed by at least two spliced touch screens, and includes an obtaining module, configured to acquire report data of at least one touch screen of the touch display device, where the report data is generated by the at least one touch screen when the at least one touch screen is touched by a user; and a processing module, configured to perform coordinate conversion according to a splicing state and the report data of the touch screen sending the report data, to obtain at least one output coordinate corresponding to an entire display area of the touch display device. |
US11372501B1 |
Control method and control circuit for fingerprint sensing
A control method for fingerprint sensing includes following steps. First fingerprint brightness codes detected in reference with a ramp-counting variable varying in a full range are received during a pre-scanning phase. An initial code is generated according to a distribution of the first fingerprint brightness codes. The initial code is applied to the ramp-counting variable during a normal scanning phase for detecting second fingerprint brightness codes in reference with the ramp-counting variable varying in a partial range. A boundary of the partial range is determined according to the initial code. A control circuit is also disclosure. |
US11372495B2 |
Touch sensing device and electronic device capable of identifying positions of multiple touches
A touch sensing device in an electronic device, the electronic device including a touch manipulation unit disposed in a housing of the electronic device, the touch manipulation unit including a first insulating member penetrating through the housing, the touch sensing device including a first sensor unit disposed on an internal surface of the first insulating member, and an oscillation circuit connected to the first sensor unit, the oscillation circuit being configured to generate a first oscillation signal having a first resonance frequency that varies in response to a touch capacitance generated in response to the first insulating member being touched, wherein the first sensor unit contacts the internal surface of the first insulating member, and does not contact the housing. |
US11372494B2 |
Microstructured phase interfacial device
The present disclosure relates to gripping surfaces and devices comprising the same, wherein the gripping surface comprises a shape tunable surface microstructure, wherein the height, width and spatial periodicity of the microstructures corresponds to an integer multiple of Schallamach wave amplitudes and wavelengths of a target surface, wherein the device microstructures and induced Schallamach waves are entrained by applying strain to the device. |
US11372493B2 |
Touch driver, touch display device, and method of driving touch display device
Provided is a touch display device that can sense a touch input of a finger with the touch display device, recognize a finger touch position, specify a fingerprint sensing area, and sense a fingerprint in the fingerprint sensing area. Provided is also a touch display device that does not need a particularly fingerprint sensing line by performing fingerprint sensing using data lines of the touch display device and that can sense a fingerprint without decreasing a fingerprint sensing performance by minimizing a parasitic capacitance which can be generated in data lines, gate lines, touch electrodes, or the like at the time of sensing a fingerprint. |
US11372486B1 |
Setting digital pen input mode using tilt angle
Systems and methods for switching an input mode of a digital pen used with an electronic document. One system includes a memory configured to store instructions and an electronic processor coupled to the memory. The electronic processor, in conjunction with the instructions stored in the memory, is configured to receive a tilt angle of the digital pen while the digital pen is operating in a first input mode, the first input mode being an inking mode, compare the tilt angle of the digital pen to a predetermined threshold associated with a second input mode, and, in response to the tilt angle satisfying the predetermined threshold, set the input mode of the digital pen to the second input mode. |
US11372485B2 |
Mouse
A mouse, including a mouse body and a wheel module, is provided. The wheel module includes a first wheel, a second wheel and an axle connecting assembly. The first wheel has a first axle portion, the second wheel has a second axle portion, and the first wheel and the second wheel are respectively rotatably disposed on the mouse body along a same axis of rotation by the first axle portion and the second axle portion. The axle connecting assembly is connected to and in between the first axle portion and the second axle portion, and the first axle portion and the second axle portion rotate relative to each other by the axle connecting assembly. |
US11372478B2 |
Head mounted display
A head mounted display, including at least one display, an image capture device, a light beam generator, and an optical compensation element, is provided. The display has an open area and generates at least one image light beam. The image capture device is disposed by overlapping with the display corresponding to the open area. The image capture device is configured to capture a target area image through the open area. The light beam generator is configured to project at least one light beam to a target area. The target area reflects the light beam to generate at least one reflection light beam. The optical compensation element is configured to convert a transmission direction of the image light beam and enable the reflection light beam to be directly transmitted to the image capture device. |
US11372476B1 |
Low profile helmet mounted display (HMD) eye tracker
A low-profile eye-tracking system for an off-visor helmet-mounted display (HMD) includes annular illuminators clipped to, and aligned with, the terminal component (e.g., the emitter or combiner) of the HMD optical chain. The illuminators include visible-light or IR light sources mounted around the circumference of the illuminator for bouncing light off the visor's inner surface and into the pilot's left or right eye (the HMD may include separate eye-tracking systems for each eye). Image sensors are positioned to sequentially capture images of the illuminated eyes reflected off the visor surface. HMD onboard electronics analyze the captured image sequence to determine the azimuth and elevation of the pilot's eye relative to the centerline of the HMD optics. |
US11372473B2 |
Information processing apparatus and information processing method
It is desirable to enhance the human-like motion of an object. Provided is an information processing apparatus including: a motion control unit configured to control, when an abnormality of a signal input for controlling a motion of an object is detected, the motion of the object such that the object continues a predetermined motion until a normality of the signal input is detected, the signal input responding to a motion of a user, in which until the motion of the object transitions to the predetermined motion after the detection of the abnormality of the signal input, the motion control unit controls the object such that the object performs at least one first intermediate motion, the at least one first intermediate motion being different from the motion of the object at the detection of the abnormality of the signal input and the predetermined motion. |
US11372471B2 |
System circuit board, operating method for a system circuit board, and computer system
A system circuit board configured to be supplied by at least one power supply unit, with an operating voltage in an operating state and a stand-by voltage in at least one stand-by state, the system circuit board includes at least one connection device for at least one extension card, wherein the connection device is configured to provide at least one first card voltage on the basis of the operating voltage; at least one switching element arranged on the system circuit board and configured to disconnect the at least one connection device from the operating voltage; and a control device arranged on the system circuit board, and configured to identify a type of a connected power supply unit and send a switching signal to the switching element depending on the identified type. |
US11372468B2 |
Power supply architecture for USB-C controllers
A power supply architecture for USB Type-C controllers is described herein. In an example embodiment, an integrated circuit (IC) controller comprises a VCONN pin, a power rail coupled to internal circuits of the IC controller, and a VCONN switch coupled between the VCONN pin and the power rail. The VCONN switch comprises: a drain-extended n-type field effect transistor (DENFET) coupled between the VCONN pin and the power rail; a pump switch coupled to a gate of the DENFET; a resistor coupled between the VCONN pin and the gate of the DENFET; and a diode clamp coupled between the gate of the DENFET and ground. |
US11372466B1 |
Power saving method for peripheral device
A power saving method for a peripheral device in a wireless operation mode is provided. The power saving method at least includes the steps of allowing the peripheral device to enter an idle mode and judging whether the peripheral device receives a startup trigger event. In the idle mode, the light source in an operation region of the peripheral device is in an on state or a high-brightness state. If the peripheral device receives the startup trigger event, the peripheral device is switched from the idle mode to a power saving mode. In the power saving mode, the light source in the operation region of the peripheral device is in an off state or a low-brightness state. The peripheral device in the power saving mode consumes less electric power than the peripheral device in the idle mode. |
US11372465B1 |
Voltage monitoring over multiple frequency ranges for autonomous machine applications
In various examples, a voltage monitor may determine whether the voltage supplied to at least one component of a computing system is safe using two sets of thresholds—e.g., a high-frequency over-voltage (OV) threshold, a high-frequency under-voltage (UV) threshold, a low-frequency OV threshold, and a low-frequency UV threshold. A high-frequency voltage error detector may compare the supplied or input voltage to the high-frequency OV and UV thresholds and a low-frequency voltage error detector that may filter the supplied voltage to remove or reduce noise and then may compare the filtered voltage to the low-frequency OV and UV thresholds. Upon detecting a voltage error, a safety monitor may cause a change to an operating state of the at least one component. |
US11372459B2 |
Fastener for securing interface card
A fastener includes a base having a joint plate extended therefrom toward a first direction, a joint plate extended from the joint plate toward a second direction and configured to secure to an electronic base board, and a fastening member protruded thereon toward a third direction. The fastener includes an elastic compressive unit connected to the joint plate and including a pushing part configured to abut with a circuit board downwardly rotated. Subject to the stress in the first direction and applied by the circuit board, the pushing part is moved back and the elastically-compressive unit is compressed to make the circuit board rotate to the bottom side of the pushing part, and an edge of the circuit board can be inserted into and abutted thereon the fastening member, and the circuit board is accommodated in a fastening space formed on the outside of the fastening member. |
US11372458B2 |
Structure of case assembly
A case assembly includes a case body including a bottom panel, two side panels, a back panel higher than the side panels, a mounting structure located on the side panels, a first circuit board mounted on the bottom panel and a second circuit board mounted on the back panel and electrically connected to the first circuit board, and a cover including a top cover panel for covering the top open side of the case body, a front cover panel pivotally connected to the top cover panel for covering the front side of the case body and a positioning structure located on the bottom side of the top cover panel for detachably fastened to the mounting structure of the case body through a sliding action facilitating repair or replacement of the first circuit board or the second circuit board. |
US11372456B2 |
Electronic device comprising display with switch
An electronic device according to an embodiment of the present disclosure may include: a housing including a first plate and a second plate, wherein the first plate includes an opening; a display panel at least partially exposed through the opening and including a touch sensor; a first support member coupled to the display panel and a portion of the first plate along at least part of one side of the opening; and a switch device configured to be actuated according to a depression of the display panel, the depression caused by a downward force exerted on an upper portion of the display panel. Other various embodiments are also possible. |
US11372450B2 |
Flexible display device including touch sensor
A flexible display device including a touch sensor is disclosed. In one aspect, the display device includes a flexible substrate, a light emission layer formed over the flexible substrate, and an encapsulation layer formed over the light emission layer and comprising a plurality of encapsulating thin films and a touch detecting layer configured to detect a touch input. The encapsulating thin films include at least one inorganic film and at least one organic film and the touch detecting layer is interposed between a selected one of the at least one inorganic film and a selected one of the at least one organic film that are adjacent to each other. |
US11372448B2 |
Waterproof expansion electronic device with functional module
Provided is an expansion electronic device suitable for being disposed at an edge of a main framework having therein a motherboard. The expansion electronic device includes an expansion frame bar and functional module. The expansion frame bar has thereon an expansion box. The expansion box has an access opening. The inner rim of the access opening has an inner annular wall. The access opening is covered with a protective cover. The outer rim of the protective cover has an outer annular wall corresponding in shape to the inner annular wall. A resilient annular surface is defined on the outer surface of the outer annular wall. The resilient annular surface abuts against the inner annular wall to hermetically seal the access opening. The functional module is disposed in the expansion box and electrically connected to a control wire exiting the functional module and electrically connected to the motherboard. |
US11372446B2 |
Foldable electronic device and method for displaying information in foldable electronic device
An electronic device includes a foldable housing, a sensor module, a display, a processor operatively connected to the sensor module and the display, and memory operatively connected to the processor. The memory may store instructions that, when executed, cause the processor to determine a visual line of a user, based on obtaining direction information of the electronic device when the foldable housing is in a fully unfolded state; sense an angle between the first housing and the second housing when folding of the foldable housing is sensed via the sensor module; determine a direction of the first face of the display and a direction of the third face of the display; and determine at least one of a position or a size of a content displayed on the display, based on at least one of the visual line of the user, the direction of the first face, or the direction of the third face. |
US11372440B2 |
Single axis joystick
A joystick with a first casing that has a piece of a sensor/effector pair. A second section is attached to the first casing, where at least one of the first and second casings form a void within the first and second casings. A puck with a cylindrical shape is disposed within the void, where the puck has a piece of the sensor/effector pair. A shaft is connected to the puck, with a distal end free to move, thereby rotating the puck. The shaft passes through a void between the first and second casings, and as the shaft is moved and the puck rotates, an interaction between the pieces of the sensor/effector pair produces a signal indicating a degree of movement of the shaft. |
US11372425B2 |
Autonomous vehicles and methods of zone driving
Autonomous vehicles are capable of executing missions that abide by on-street rules or regulations, while also being able to seamlessly transition to and from “zones,” including off-street zones, with their our set(s) of rules or regulations. An on-board memory stores roadgraph information. An on-board computer is operative to execute commanded driving missions using the roadgraph information, including missions with one or more zones, each zone being defined by a sub-roadgraph with its own set of zone-specific driving rules and parameters. A mission may be coordinated with one or more payload operations, including zone with “free drive paths” as in a warehouse facility with loading and unloading zones to pick up payloads and place them down, or zone staging or entry points to one or more points of payload acquisition or placement. The vehicle may be a warehousing vehicle such as a forklift. |
US11372423B2 |
Robot localization with co-located markers
One method disclosed includes identifying, in a map of markers fixed in an environment, two co-located markers within a threshold distance of each other, where each of the two co-located markers has a non-overlapping visibility region. The method further includes determining a set of detected markers based on sensor data from a robotic device. The method additionally includes identifying, from the set of detected markers, a detected marker proximate to a first marker of the two co-located markers. The method also includes enforcing a visibility constraint based on the non-overlapping visibility region of each of the two co-located markers to determine an association between the detected marker and a second marker of the two co-located markers. The method further includes determining a location of the robotic device in the environment relative to the map based on the determined association. |
US11372420B2 |
System and method docking robotic mower
A method and a system for docking a robotic mower with a charging station, the system including a boundary wire and a charging station loop wherein the boundary wire makes a loop in the charging station that is narrower than and crosses the charging station loop. A return signal is received from a control unit commanding the robotic mower to return to the charging station. In response thereto, the robotic mower is controlled to follow the boundary wire until the charging station loop is detected. The robotic mower then follows the charging station loop until a crossing between the charging station loop and the boundary wire loop is detected. Thereafter, the robotic mower is controlled to follow the charging station loop a first distance, and then continuing to drive the robotic mower in a direction straight forward for a second distance. When the robotic mower has moved the second distance it is turned a predefined angle towards the charging station and controlled to follow the boundary wire loop until a charging position is reached. |
US11372418B2 |
Robot and controlling method thereof
A robot according to an embodiment may include at least one driving motor for providing a driving force for driving of the robot, a position detector including at least one sensor or receiver for detecting a position of the robot, a pressure detector including at least one sensor for detecting whether a user who in on board the robot gets off the robot and a processor for detecting the position of the robot through the position detector, recognizing that the user has arrived at the destination when it is detected that the user gets off the robot and recognize that the user has not arrived at the destination when it is not detected that the user gets off the robot. |
US11372417B2 |
Method for predicting exiting intersection of moving obstacles for autonomous driving vehicles
A moving obstacle such as a vehicle within a proximity of an intersection and one or more exits of the intersection are identified. An obstacle state evolution of a spatial position of the moving obstacle over a period of time is determined. For each of the exits, an intersection exit encoding of the exit is determined based on intersection exit features of the exit. An aggregated exit encoding based on aggregating all of the intersection exit encodings for the exits is determined. For each of the exits, an exit probability of the exit that the moving obstacle likely exits the intersection through the exit is determined based on the obstacle state evolution and the aggregated exit encoding. Thereafter, a trajectory of the ADV is planned to control the ADV to avoid a collision with the moving obstacle based on the exit probabilities of the exits. |
US11372416B2 |
Systems and methods for navigating with sensing uncertainty
The present disclosure relates to navigational systems for vehicles. In one implementation, such a navigational system may receive a first output from a first sensor and a second output from a second sensor; identify a target object in the first output; determine whether the target object is included in the second output; and determine a detected driving condition associated with the target object and whether the condition triggers a navigational constraint. If the navigational constraint is not triggered, the system may cause a first navigational adjustment if the target object is included in both the first output and the second output, and may forego any navigational adjustments if the target object is included in the first output but not in the second output. If the navigational constraint is triggered and the target object is included either in the first or second output, the system may cause a second navigational adjustment. |
US11372410B2 |
Methods and apparatus for regulating a position of a drone
A drone autonomously operates to track an object, track an object while being stealthy and/or observe the details of an object while maintaining communication at a rate equal to or greater than a threshold. A drone may operate to maintain the image of an object at or above a predetermined resolution in an image captured by a camera mounted on the drone and to maintain a wireless communication rate equal to or greater than a threshold rate. A drone may operate so that the sound intensity level caused by the operation of the drone is less than or equal to a sound intensity level threshold as perceived by an object (e.g., person, target, suspect) being tracked. |
US11372407B2 |
Predicting and responding to cut in vehicles and altruistic responses
A vehicle navigation system may comprise a memory including instructions and circuitry configured by the instructions to identify a target vehicle in an environment of a vehicle that includes the vehicle navigation system. The circuitry may receive image data of the target vehicle from at least one image capture device of the vehicle; identify, based on analysis of the image data, one or more situational characteristics of the target vehicle, the situational characteristics of the target including an indication that the target vehicle has an activated blinker; and change a navigational state of the vehicle to allow an action of the target vehicle. The vehicle may be configured to cause the change in the navigational state based on a determination that the one or more situational characteristics, including the activated blinker, indicate that the target vehicle would benefit from the change in the navigational state. |
US11372402B2 |
Autonomous grain cart dimensioned to fit behind header
An autonomous grain cart includes a width less than or equal to a distance from an end of the header of an agricultural vehicle to a lateral side of the agricultural vehicle, wherein the end and the lateral side are on a same longitudinal side of a lateral centerline of the agricultural vehicle, wherein the autonomous grain cart is configured to receive grain from the agricultural vehicle. The autonomous grain cart also includes a controller, comprising a processor and a memory. The autonomous grain cart further includes a drive system communicatively coupled to the controller, wherein the controller is configured to instruct the drive system to propel the autonomous grain cart. The autonomous grain cart also includes a steering system communicatively coupled to the controller, wherein the controller is configured to instruct the steering system to steer the autonomous grain cart. |
US11372400B1 |
Unmanned vehicle morphing
Unmanned vehicles may be terrestrial, aerial, nautical, or multi-mode. Unmanned vehicles may accomplish tasks by breaking out into sub-drones, re-grouping itself, changing form, or re-orienting its sensors. |
US11372398B2 |
System and method of asynchronous robotic retrieval and delivery of items
Asynchronous item delivery utilizes a depot and a mobile robot. A method includes (1) receiving a specification by a user of a destination depot and an item, (2) selecting, based on item delivery data and by a depot control system, a drawer from a rack module in a depot that houses drawers, (3) receiving the item from the user via the depot user interface, (4) communicating the item to the drawer within the rack module that houses drawers, communicating, from the depot and to a mobile robot, a message to pick up the item, (5) swapping a first battery on the mobile robot with a second batter charged by the depot, (6) transferring the item from the drawer in the depot to the mobile robot using a depot drawer-swapping module and a mobile robot drawer-swapping module and (7) delivering, by the mobile robot, the item to the destination depot. |
US11372391B2 |
Safety in dynamic 3D healthcare environment
A medical safety-system for dynamic 3D healthcare environments, a medical examination system with motorized equipment, an image acquisition arrangement, and a method for providing safe movements in dynamic 3D healthcare environments. The medical safety-system for dynamic 3D healthcare environments includes a detection system, a processing unit, and an interface unit. The detection system includes at least one sensor arrangement to provide depth information of at least a part of an observed scene. The processing unit includes a correlation unit to assign the depth information and a generation unit to generate a 3D free space model to provide the 3D free space model. |
US11372387B2 |
Metadata-based smart home automation
Systems, methods, and devices of the various embodiments include initiating operation of network application logic by receiving an instruction related to a presentation of a selected media content configured to be consumed by a target consumer. The various embodiments further include, determining whether the selected media content includes content-type metadata that identifies the selected media content as a predetermined type of content, and initiating operation of network application logic configured to control a network-connected electronic device in response to determining the selected media content includes the content-type metadata that identifies the selected media content as the predetermined type of content. |
US11372385B2 |
Shot peening valve controller
A shot peening valve controller comprises a hub connector configurable for connecting or operating one or more shot peening valve; a microprocessor that is connected to the hub connector; and a human-machine interface that is connected to the microprocessor. The human-machine interface is configured to operate the one or more shot peening valves respectively. |
US11372382B2 |
Building management system with augmented deep learning using combined regression and artificial neural network modeling
A method for controlling a plant includes using a neural network modeling technique to calculate a neural network prediction based on plant input data, using a second modeling technique to calculate a second prediction based on the plant input data, and determining whether to use (1) the neural network prediction without the second prediction, (2) the second prediction without the neural network prediction, or (3) both the neural network prediction and the second prediction by comparing a location of the plant input data in a multi-dimensional modeling space to one or more thresholds. The method includes generating a combined prediction using one or both of the neural network prediction and the second prediction in accordance with a result of the determining and controlling the plant using the combined prediction. |
US11372381B1 |
Synthetic engine for artificial intelligence
A method of orienting a human behavioral model to a problem context in an artificial intelligence algorithm includes instantiating pattern instances from a class hierarchy to generate executable objects, each binding autonomously with a data store and executing a completeness function for the binding. The bound executable objects are joined into a pattern instance graph autonomously operating as a deduction processor, and the behavioral model is oriented to the problem context by repeatedly evaluating a fit between the bound pattern instance graphs and the human behavioral model. Behavioral models are competitively executed against the bound pattern instances to compute levels of fitness for the models and assigning one of the models as a current controller based on the levels of fitness. |
US11372379B2 |
Computer system and control method
A computer system includes a processor and a memory connected to the processor, and manages pieces of reward function information for defining rewards for states and actions of the control targets for each of the control targets. The pieces of reward function information includes first reward function information for defining the reward of a first control target and second reward function information for defining the reward of a second control target. When updating the first reward function information, the processor compares the rewards of the first reward function information and the second reward function information with each other, specifies a reward, which is reflected in the first reward function information from rewards set in the second reward function information, updates the first reward function information on the basis of the specified reward, and decides an optimal action of the first control target by using the first reward function information. |
US11372376B2 |
Method for cook time synchronization
A method for cook time synchronization includes synchronizing a cook time in one of a plurality of cooking appliances to a user selected remaining cook time from one of the other of the plurality of cooking appliances. The method also includes: (1) transmitting, to the one of the plurality of cooking appliances, a remaining cook time from each of the other of the plurality of cooking appliances over a network; and/or (2) requesting, at the one of the plurality of cooking appliances, the remaining cook time from each of the other of the plurality of cooking appliances over the network in response to a user input at the one of the plurality of cooking appliances. |
US11372373B2 |
Watch with a striking mechanism having a governor and time setting safety function
Watch with a time setting mechanism with an uncouplable motion work lever, with a striking mechanism having a governor, including at least one control piece set in motion by a movement or on user command, and a governor mechanism arranged to regulate to a substantially constant value the rotational speed of a strike function actuator, this striking mechanism including, for at least one control piece, a governor trigger piece arranged, according to the angular position of this control piece, to operate a governor stop jumper able to block or allow the rotation of this governor mechanism, and, by means of an articulated connection, to isolate the motion work lever in an uncoupling position or place it in a coupling position. |
US11372365B2 |
Developing apparatus, process cartridge, and image forming apparatus
A developing cartridge includes a developing frame body rotatably supporting a developing roller. A first end member is attached to the first end of the developing frame and a second end member is attached to the second end of the developing frame body. The first end member and the second end member are rotatable independently of each other and relative to the developing frame body about a rotational axis common to the first end member and the second end member, and with rotation of the developing frame body relative to the first end member and the second end member, the developing roller moves from a first position to a second position in a direction that crosses a position of an axis of the developing roller when the developing roller is in the first position. |
US11372364B2 |
Frame of image forming apparatus and image forming apparatus
A frame for an image forming apparatus which includes a sheet cassette, an image forming unit, a first conveying roller, and a second conveying roller. The frame includes a first frame above which a second frame is coupled, the first frame supporting the sheet cassette and the first conveying roller, and the second frame supporting the second conveying roller and the image forming unit. A coupling member couples a first strut and a second strut, the first strut being part of the first frame and including: a first base portion; a first plate portion; and a second plate portion. The second strut is part of the second frame and includes: a second base portion disposed above the first base portion and contacting the first base portion; a third plate portion; and a fourth plate portion. The coupling member includes: a third base portion opposed to and spaced apart from the first base portion and the second base portion; a fifth plate portion; and a sixth plate portion. |
US11372362B2 |
Image forming apparatus including cam having compact structure capable of detection of contact state and separated state of developing roller relative to photosensitive drum
An image forming apparatus includes a developing roller, a photo-interrupter, and a separation mechanism. The developing roller is movable between a contact position and a separated position. The photo-interrupter includes a light emitting element and a light receiving element. The separation mechanism includes a cam configured to move the developing roller between the contact position and the separated position. The cam includes a phase detection wall extending in a circumference direction. The phase detection wall has a first slit and a second slit. The first slit allows the light emitted from the light emitting element to pass therethrough when the developing roller is at the separated position. The second slit allows the light emitted from the light emitting element to pass therethrough when the developing roller is at the contact position. A size of the first slit in the circumferential direction is different from that of the second slit. |
US11372356B2 |
Color registration using noise free data
Provided is an operation method of an image forming apparatus, the operation method including according to a color registration pattern that is a standard for determining an overlapping degree of respective color images of a plurality of colors to form a color image, transferring respective developers with the plurality of colors onto an intermediate transfer body; obtaining patch data of patches of the plurality of colors transferred according to the color registration pattern onto the intermediate transfer body. The patch data is compared with reference patch data corresponding to the color registration pattern, and based on a result of the comparing, noise data corresponding to noise is detected from the patch data. Standard patch data is obtained by removing the noise data from the patch data, and performing color registration based on the standard patch data. |
US11372347B2 |
Powder container
A powder container contains powder and is attached to an image forming apparatus including: a conveying nozzle to convey the powder; a powder receiving hole of the conveying nozzle to receive the powder from the powder container; an apparatus main-body gear to transmit a driving force to the powder container; and a container receiving section including the conveying nozzle and receiving the powder container. The powder container includes: an opening at one end of the powder container in a longitudinal direction; a nozzle receiver at the opening to receive the conveying nozzle; a conveyor to convey the powder; and a container gear to drive the conveyor by meshing with the apparatus main-body gear. The container gear is to mesh with the apparatus main-body gear at a position closer to the opening than the powder receiving hole in the longitudinal direction. The opening is to mate with the container receiving section. |
US11372346B2 |
Developing cartridge having a heat transfer blocking member
An image forming apparatus includes a body, a development cartridge to be attached to or detached from the body, and a fixing device to fix toner to a recording medium. The development cartridge includes a heat transfer blocking member disposed on an outer side of the development cartridge and adjacent to the fixing device when the development cartridge is attached to the body. |
US11372343B2 |
Alignment method and associated metrology device
A method of aligning a substrate within an apparatus. The method includes determining a substrate grid based on measurements of a plurality of targets, each at different locations on a substrate. The determining includes repetitions of updating the substrate grid after each measurement of a target, and using the updated grid to align a measurement of a subsequent target. |
US11372342B2 |
Position measurement apparatus, overlay inspection apparatus, position measurement method, imprint apparatus, and article manufacturing method
Provided is a position measurement apparatus in which a measurement error in a target is reduced.A position measurement apparatus measuring a position of a target includes an illumination unit configured to illuminate the target with illumination light including light of a first wavelength and light of a second wavelength different from the first wavelength, a measurement unit configured to measure the position of the target by detecting light from the target illuminated with the illumination light, and a control unit configured to adjust a ratio of a light intensity of the first wavelength to a light intensity of the second wavelength such that a measurement error varying depending on the position of the target in the measurement unit is reduced. |
US11372341B2 |
Method for temperature control of a component
A method for temperature control of a component that is transferable between a first system and a second system includes: ascertaining a temperature drift of a temperature of the component that is to be expected after transfer of the component from the first system into the second system; and modifying a temperature prevailing in the first system and/or a temperature prevailing in the second system such that the temperature drift that is actually occurring after transfer of the component from the first system into the second system is reduced with respect to the expected temperature drift. |
US11372336B2 |
Lithography apparatus and device manufacturing method
An immersion lithography apparatus controller configured to control a positioner to move a support table to follow an exposure route and to control a liquid confinement structure, the controller configured to: predict whether liquid will be lost from an immersion space during at least one motion of the route in which an edge of the object passes under an edge of the immersion space, and if liquid loss from the immersion space is predicted, modify the fluid flow such that a first fluid flow rate into or out of an opening at a leading edge of the liquid confinement structure is different to a second fluid flow rate into or out of an opening at a trailing edge of the liquid confinement structure during the motion of predicted liquid loss or a motion of the route subsequent to the motion of predicted liquid loss. |
US11372332B2 |
Plasma treatment method to improve photo resist roughness and remove photo resist scum
A patterned photo resist layer (for example an EUV photo resist layer), which may exhibit line width roughness (LWR) and line edge roughness (LER) or scum is treated with a plasma treatment before subsequent etching processes. The plasma treatment reduces LWR, LER, and/or photo resist scum. In one exemplary embodiment, the plasma treatment may include a plasma formed using a gas having a boron and halogen compound. In one embodiment, the gas compound may be a boron and chlorine compound, for example boron trichloride (BCl3) gas. In another embodiment, the gas compound may be a boron and fluorine compound, for example BxFy gases. The plasma treatment process may modify the photoresist surface to improve LWR, LER, and scum effects by removing roughness from the photo resist surface and removing photo resist residues which may case scumming. |
US11372331B2 |
Treatment liquid for manufacturing semiconductor, method of manufacturing treatment liquid for manufacturing semiconductor, pattern forming method, and method of manufacturing electronic device
An object of the present invention is to provide a treatment liquid for manufacturing a semiconductor with which the deterioration of lithographic performance or the occurrence of defects is suppressed such that a fine resist pattern or a fine semiconductor element can be manufactured.A treatment liquid for manufacturing a semiconductor according to an embodiment of the present invention includes: one compound (A) that satisfies the following requirement (a);one compound (B) or two or more compounds (B) that satisfy the following requirement (b); and one inorganic matter (C) or two or more inorganic matters (C) having any element selected from the group consisting of Al, B, S, N, and K. Here, a total content of the compound (B) in the treatment liquid is 10−10 to 0.1 mass %, and a ratio P of the inorganic matter (C) to the compound (B) represented by the following Expression I is 103 to 10−6.Requirement (a): a compound that is selected from the group consisting of an alcohol compound, a ketone compound, and an ester compound and of which a content in the treatment liquid is 90.0 to 99.9999999 mass %Requirement (b): a compound that is selected from the group consisting of an alcohol compound having 6 or more carbon atoms, a ketone compound, an ester compound, an ether compound, and an aldehyde compound and of which a content in the treatment liquid is 10−11 to 0.1 mass % P=[Total Mass of Inorganic Matter (C)]/[Total Mass of Compound (B)] Expression I. |
US11372327B2 |
Molding apparatus and method of manufacturing article
The present invention provides a molding apparatus that performs a molding process for molding a composition on a substrate using a mold, including a holding unit configured to hold the substrate, and a control unit configured to control the molding process, wherein the control unit starts a process for pressing the mold against the composition on the substrate while the substrate is held by the holding unit with a first holding force, causes the holding unit to hold the substrate with a second holding force smaller than the first holding force after the process is started, and maintains the holding of the substrate by the holding unit with the second holding force until completion of filling of the composition on the substrate into the mold. |
US11372325B2 |
Mask and manufacturing method thereof
This application discloses a mask and a manufacture method thereof, including: a full shielding area, made of a light shielding material; a semi-transparent area, where there is at least one semi-transparent area and the semi-transparent area allows transmission of partial light, and a main body of the semi-transparent area is made of semi-transparent films, and full shielding structures are arranged in the semi-transparent films. |
US11372322B2 |
EUV mask blank, photomask manufactured by using the EUV mask blank, lithography apparatus using the photomask and method of fabricating semiconductor device using the photomask
An extreme ultraviolet (EUV) mask blank is provided. The EUV mask blank includes a substrate having a first surface and a second surface opposed to each other, a reflective layer having first reflective layers and second reflective layers alternately stacked on the first surface of the substrate, a capping layer on the reflective layer, and a hydrogen absorber layer between the reflective layer and the capping layer, the hydrogen absorber layer configured to store hydrogen and being in contact with the capping layer. |
US11372317B2 |
Camera supporting device and camera therewith
A camera supporting device includes a supporting frame, an outer casing, a camera holding structure, and a linkage mechanism. The outer casing is rotatably connected to the supporting frame. The camera holding structure is rotatably connected to the supporting frame independently of the outer casing. The linkage mechanism incudes a driving part and a driven part kinematically connected to the driving part. The driving part is fixedly connected to the camera holding structure. The driven part is fixedly connected to the outer casing. An image-capturing device can be fixed on the camera holding structure. Through the camera holding structure driving the outer casing through the linkage mechanism, the outer casing can provide a wider angle range available for the image-capturing device to capturing exterior images. |
US11372315B2 |
Method for attaching a camera objective to an objective holder
A method for attaching a camera objective to an objective holder. The method includes the steps of introducing the camera objective into an attaching element in the region of the objective holder, the attaching element having a plurality of contact elements that extend from a base body and lie elastically on the camera objective, of orienting the camera objective to an image sensor, and of welding the attaching element using a laser, so that the position of the camera objective to the objective holder is fixed. |
US11372312B2 |
Image sensor including auto focus pixel
Provided is an image sensor including a pixel array including a plurality of auto focus (AF) pixels and a plurality of normal pixels, wherein each of the plurality of AF pixels comprises two sub-pixels, a light blocking member provided between the two sub-pixels, and a lens corresponding to the two sub-pixels, and wherein the light blocking member is shifted from an intermediate point of the two sub-pixels. |
US11372309B2 |
Optical system architecture
An example optical system architecture includes a diode laser source having an optical fiber. The diode laser source is configured to generate an optical signal having a main mode and side longitudinal modes and to output the optical signal along an optical path. An optical filter is in the optical path. The optical filter is configured to receive at least part of the optical signal, to output the main mode along the optical path, and to suppress the side longitudinal modes at least in part. One or more optical amplifiers are in the optical path after the optical filter. The one or more optical amplifiers are configured to receive at least part of the main mode, to amplify the at least part of main mode, and to output an amplified version of the at least part of main mode along the optical path. |
US11372307B2 |
Optical modulator
Provided is an optical modulator having an optical modulation high frequency line through which a high frequency electrical signal can be efficiently input to an optical modulation region and which is in a broadband. High frequency lines of an optical modulator, that is, an input high frequency line, an optical modulation high frequency line, and an output high frequency line have a line configuration in which each of the input high frequency line and the output high frequency line is divided into a plurality of segments, and adjacent segments of the plurality of the segments have different characteristic impedances and propagation constants. The input high frequency line and the output high frequency line may be implemented by changing a width or a thickness of a signal electrode formed on a dielectric forming a micro-strip line between adjacent segments. The characteristic impedances and the propagation constants may be changed by changing a dielectric constant of the dielectric instead of changing the width or the thickness of the signal electrode. |
US11372304B2 |
Electrodes for electro-optic devices and methods of making the electrodes
An electro-optic device is provided that includes a first substrate having an inner surface and an outer surface; a first electrode provided at the inner surface of the first substrate; a second substrate having an inner surface and an outer surface, wherein the inner surface of the second substrate faces the inner surface of the first substrate; a second electrode provided at the inner surface of the second substrate; and an electro-optic medium provided between the inner surfaces of the first and second substrates. The first electrode includes a metal mesh formed from metal tracings and having open areas between the metal tracings; and a first transparent conductive coating electrically coupled to the metal mesh and extending at least between the metal tracings so as to extend across the open areas. |
US11372301B2 |
Display device
A display device includes a first conductive layer including horizontal scan lines, and island-type electrodes, which are spaced apart from the horizontal scan lines; a first insulating layer disposed on the first conductive layer; a second conductive layer disposed on the first insulating layer, the second conductive layer including data lines, and a plurality of vertical scan lines; a second insulating layer disposed on the second conductive layer; and a third conductive layer disposed on the second insulating layer and including first shield electrodes, which cover first edges of the vertical scan lines, and second shield electrodes, which are spaced apart from the first shield electrodes, and cover second edges of the vertical scan lines, wherein the vertical scan lines are electrically connected to the island-type electrodes via contact holes that extend through the first insulating layer. |
US11372298B2 |
Liquid crystal display device and electronic device
To provide a semiconductor device, a liquid crystal display device, and an electronic device which have a wide viewing angle and in which the number of manufacturing steps, the number of masks, and manufacturing cost are reduced compared with a conventional one. The liquid crystal display device includes a first electrode formed over an entire surface of one side of a substrate; a first insulating film formed over the first electrode; a thin film transistor formed over the first insulating film; a second insulating film formed over the thin film transistor; a second electrode formed over the second insulating film and having a plurality of openings; and a liquid crystal over the second electrode. The liquid crystal is controlled by an electric field between the first electrode and the second electrode. |
US11372297B2 |
Display panel
A display panel including a pixel array substrate, an opposite substrate, and a display media is provided. The pixel array substrate includes a substrate, a plurality of scan lines, a plurality of data lines, a plurality of pixel units, and a gate driving circuit. The gate driving circuit including a plurality of first signal lines, a plurality of second signal lines, a plurality of dummy signal lines, and a plurality of contact structures is disposed in a peripheral region of the substrate. Each of the second signal lines is electrically connected to one corresponding first signal line. Each of the dummy signal lines is electrically connected to one corresponding second signal line via one corresponding contact structure. Each of the first signal lines is electrically connected to the corresponding second signal line via one corresponding contact structure. |
US11372295B2 |
Display panel, manufacturing method thereof, and display device
This application discloses a display panel, a manufacturing method thereof, and a display device. The display panel includes a first substrate, a second substrate parallel arranged to the first substrate, a pixel unit formed between the first substrate and the second substrate. The pixel unit includes at least two kinds of transparent areas and multiple liquid crystal materials injected in the transparent areas. A penetration rate of each of the liquid crystal materials is injected into the transparent areas are different. the liquid crystal materials include a first liquid crystal material, a second liquid crystal material, and a third liquid crystal material. A penetration rate of the first liquid crystal material, the second liquid crystal material, and the third liquid crystal material increases in sequence. |
US11372290B2 |
Optical device
An optical device includes a first outer substrate; a second outer substrate disposed opposite to the first outer substrate; and an active liquid crystal film or a polarizer, wherein the active liquid crystal film or the polarizer is encapsulated by an encapsulating agent between the first and second outer substrates and wherein a shrinkable film adjacent to any one of the first and second outer substrates is further included. The optical device is capable of varying transmittance. The optical device can be used for various applications such as an eyewear, for example, sunglasses or AR (augmented reality) or VR (virtual reality) eyewears, an outer wall of a building or a sunroof for a vehicle. |
US11372283B1 |
Backlight module and display device
A backlight module includes an optical plate, a light source, and at least one optical film. The optical plate includes a light-emitting surface, a bottom surface and a side surface. The light source faces to the bottom surface or the side surface. The optical film is disposed above the light-emitting surface and includes a main body and at least one refractive part disposed on an end surface of the main body. The refractive part has a plurality of microstructures. The refractive part has non-uniform thickness relative to the end surface along a side direction. A refractive index of the refractive part is different from a refractive index of the main body, such that a plurality of light rays are deflected toward different directions after passing through the refractive part. |
US11372282B2 |
Backlight module and display device
A backlight module includes a back plate, an optical element set, a wavelength conversion film, a light source, and an ink layer. The optical element set is disposed on the back plate and has a first surface, a second surface and at least one end surface. The first surface faces the back plate and is opposite to the second surface. The at least one end surface is connected to the first surface and the second surface. The wavelength conversion film is disposed on the back plate. The light source is adapted to provide light, and the light is transmitted to the wavelength conversion film and the optical element set. The ink layer is disposed on the at least one end surface of the optical element set. A display device is further provided. The backlight module and the display device may reduce the phenomenon of blue edge caused by light leakage. |
US11372277B2 |
Display device comprising first and second polarizing plates having ends located inside an end of a second substrate and an air gap between a resin layer and a second organic insulating film
A first organic insulating film is arranged on a first substrate in a circumference area outside an active area. A mounting portion is located in the circumference area for mounting a signal source. A second organic insulating film is formed on a second substrate in the circumference area so as to face the first substrate. The second substrate exposes the mounting portion. A seal material is arranged between the first organic insulating film and the second organic insulating film to attach the first substrate and the second substrate. A resin layer is arranged between the first organic insulating film and the second organic insulating film in the circumference area, and formed in a rectangular frame shape including four linear ends. An end along the mounting portion is formed broadly than other ends. |
US11372273B2 |
Display device and method for manufacturing the same
A display device includes a display panel including a display area and a non-display area, a window disposed on the display panel and including a base substrate and a printed layer disposed on a surface of the base substrate and overlapping with the non-display area, and an adhesive layer disposed between the display panel and the window. The adhesive layer includes a first adhesive portion overlapping with the non-display area, and a second adhesive portion adjacent to the first adhesive portion and having a creep value different from a creep value of the first adhesive portion. |
US11372271B2 |
Optical modulator, method for forming the same, and method for controlling the same
According to embodiments of the present invention, an optical modulator is provided. The optical modulator includes a substrate, and a waveguiding arrangement on the substrate, the waveguiding arrangement having a waveguide, and at least one graphene layer arranged to interact with light propagating in the waveguiding arrangement, wherein the waveguide is designed such that the light interacting with the at least one graphene layer has a maximum intensity overlapping with the at least one graphene layer. According to further embodiments of the present invention, a method for forming the optical modulator, and a method for controlling the optical modulator are also provided. |
US11372268B2 |
Light-emitting unit, display unit, and lighting unit
There is provided a display unit that is able to provide an indoor environment comfortable to a user. This display unit includes a frame member and a flexible display. The frame member is disposed, in a structure including a daylighting section that lets light through, around the daylighting section and includes a winder including a rotary shaft. The flexible display includes a dimming layer and a display device layer including a light-emitting layer disposed on the dimming layer, and is windable with rotation of the rotary shaft provided in the winder of the frame member and drawable from the winder. |
US11372267B2 |
Contact lens product
A contact lens product includes a contact lens and a buffer solution. The contact lens is immersed in the buffer solution, and the buffer solution includes a cycloplegic agent. |
US11372261B2 |
Optical unit with shake-correction function
An optical unit with shake-correction function is provided and includes: a movable body, a rotational support structure, a gimbal mechanism, a fixed body, and a rolling corrective-magnet drive structure. The rotational support structure, which supports the movable body to be rotatable around an optical axis, is rotatably supported by the gimbal mechanism around two axes intersecting with the optical axis. The rotational support structure includes a first annular groove provided on the movable body, a plate roller including a second annular groove facing the first annular groove, and multiple spherical objects inserted in the first annular groove and the second annular groove. The gimbal mechanism supports the plate roller to be rotatable. The rolling corrective-magnet drive structure, which rotates the movable body around the optical axis, includes a rolling corrective magnet on the movable body side, and two rolling corrective coils on the fixed body side. |
US11372258B2 |
Lens piece, lens assembly and imaging device including the same
There is provided a lens piece and a lens assembly as well as an imaging device including the same. The lens assembly includes the lens piece and a lens barrel. The lens piece has a wing extending transversely from a lens sidewall. The lens barrel carries the lens piece, and includes a reservoir corresponding to the wing of the lens piece for containing adhesive. |
US11372254B2 |
Arrangement for producing a Bessel beam
The invention relates to an arrangement for producing a Bessel beam (5), comprising a beam-forming element (2), which transforms a beam (1) incident as a plane electromagnetic wave into a Bessel beam (5). According to the invention, the beam-forming element (2) comprises at least one annular lens (3, 3′) and a Fourier optical unit, e.g. in the form of a Fourier lens (4). |
US11372253B2 |
Small field of view display mitigation using transitional visuals
Various implementations disclosed herein include devices, systems, and methods that enable improved display of virtual content in computer generated reality (CGR) environments. In some implementations, the CGR environment is provided at an electronic device based on a field of view (FOV) of the device and a position of virtual content within the FOV. A display characteristic of the virtual object is adjusted to minimize or negate any adverse effects of the virtual object or a portion of the virtual object falling outside of the FOV of the electronic device. |
US11372252B2 |
Item of headwear
Items of headwear are disclosed. An item of headwear has a battery, and an information portal. The information portal includes an input device, a human interface device, and a content providing system. The content providing system has non-transitory computer memory with a program with instructions for receiving information from the input device, and relaying the information to the human interface device. The content providing system further includes a processor, an output device, and a networking device. |
US11372248B2 |
Thin waveguide wavelength-selective projector
A device for providing a 1D line of an image is disclosed. The device includes a wavelength-tunable light source for providing image light having the angular distribution encoded in optical spectrum. The device further includes a thin slab waveguide having an out-coupler in form of a diffraction grating for out-coupling the image light at an angle dependent on wavelength. The image may be formed by scanning a collimated beam propagating in the slab waveguide when using tunable monochromatic light sources, or by forming the 1D singular distribution of brightness at a same time when using a tunable-spectrum light sources. The device may be used in a near-eye display for forming a 2D image in angular domain. |
US11372245B2 |
Multi-channel waveguide with reduced crosstalk having offset input gratings
A waveguide apparatus for conveying a virtual image has first and second parallel planar surfaces. A first in-coupling diffractive optic on the first planar surface directs a first subset of image-bearing light beams into the waveguide and a second in-coupling diffractive optic on second planar surface directs a second subset of the image-bearing light beams into the waveguide. The first and second in-coupling diffractive optics are offset with respect to each other along the first and second parallel planar surfaces to independently direct the respective first and second subsets of the image-bearing light beams into the waveguide. |
US11372243B2 |
Optical hybrid reality system having digital correction of aberrations
A virtual/augmented reality head-mounted display system and method with means to correct optical aberrations is disclosed. The system includes the initial profiling of the head-mounted display system and eye-tracking means. |
US11372228B1 |
Reducing lost motion in adjustment knobs for riflescopes and other mechanically adjustable devices
A rotatable adjustment device for a riflescope or other optical device includes a drive screw that is threadably coupled to a rotating spindle and constrained so that the drive screw translates along the axis of rotation of the spindle. The adjustment device further includes a stop screw that also translates along the axis in response to rotation of the spindle until the stop screw contacts an adjustment stop to limit further rotation of the spindle in the first rotational direction. Lost motion is reduced or avoided by a compliant gap between the drive screw and stop screw. |
US11372227B2 |
Microsection sample stabilizer
A microsection sample stabilizer for aligning and stabilizing a microsection sample for microscopic inspection includes a frame including a base and at least one leveling portion supported by the base. The at least one leveling portion can define a viewing window for a microscope. The microsection sample stabilizer includes an interior region within the frame, and at least one compliant device operable within the interior region of the frame and operable to be supported by the base. The compliant device receives and supports the microsection sample, and biases the microsection sample against the at least one leveling portion of the frame to stabilize the microsection sample, such that an examination plane surface of the microsection sample is aligned and viewable through the viewing window by the microscope. |
US11372222B2 |
Confocal microscope and method for taking image using the same
A confocal microscope includes a data acquisition unit configured to acquire a rough-shape data indicating a rough shape of a sample, an illumination light source configured to generate illumination light for illuminating the sample, an objective lens configured to concentrate the illumination light on the sample, an optical scanner configured to scan an illuminated place on the sample in a field of view of the objective lens, a stage configured to scan the illuminated place along the rough shape of the sample by changing a position of the objective lens relative to the sample, and an optical detector configured to detect reflected light through a confocal optical system, the reflected light being light that has been reflected on the sample and has passed through the objective lens. |
US11372220B2 |
Camera lens of catadioptric optical system
Provided is a camera lens of a catadioptric optical system, consisting of two lens assemblies and one lens group and having a small height, a narrow angle, and good optical characteristics. The camera lens includes: a first lens assembly including an object side surface having a first refractive surface and a second reflective surface in a peripheral region and a central region thereof, and an image side surface having a second refractive surface, a fifth refractive surface and a sixth refractive surface that are sequentially arranged from a peripheral region to a central region thereof; a second lens assembly including an object side surface having a third refractive surface and a fourth refractive surface that are sequentially arranged from a peripheral region to a central region thereof, and an image side surface having a first reflective surface; and a third lens group having a refractive power. |
US11372218B2 |
Imaging lens and manufacturing method of light-shielding element
An imaging lens including an aperture and a lens with refractive power arranged from a zoom-in side to a zoom-out side along an optical axis is provided. The aperture includes a substrate and a light-shielding layer. The substrate includes a first middle region and a first outer edge region surrounding the first middle region. The first outer edge region allows visible light and infrared light to substantially pass therethrough. The light-shielding layer includes a second middle region and a second outer edge region surrounding the second middle region. The second outer edge region allows infrared light to substantially pass therethrough and substantially shields visible light. A thickness of the aperture is between 0.01 mm and 0.3 mm along a direction of an optical axis. Furthermore, an imaging lens and a manufacturing method of a light-shielding element are also provided. |
US11372217B2 |
Image forming lens system and image pickup apparatus using the same
An image forming lens system includes an aperture stop, and an image-side lens unit group which is disposed on an image side of the aperture stop. The image-side lens unit group includes a first image-side lens unit having a negative refractive power, a second image-side lens unit having a positive refractive power, and a third image-side lens unit having a negative refractive power. Any one of the first image-side lens unit, the second image side lens unit, and the third image-side lens unit is a focusing lens unit which moves along the optical axis at the time of focusing, and the following conditional expression (1) is satisfied: 0.06<|ffo/f|<0.4 (1) where, f denotes a focal length of the image forming lens system at the time of focusing at an object at infinity, and ffo denotes a focal length of the focusing lens unit. |
US11372216B2 |
Imaging optical lens system, image capturing unit and electronic device
An imaging optical lens system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element and a sixth lens element. The first lens element has negative refractive power. The second lens element has an object-side surface being concave in a paraxial region thereof and an image-side surface being convex in a paraxial region thereof. The third lens element has positive refractive power. The fourth lens element has positive refractive power. The fifth lens element has negative refractive power. The sixth lens element has positive refractive power. The imaging optical lens system has a total of six lens elements. |
US11372214B2 |
Camera lens
The present disclosure provides a camera lens including six lenses, having good optical characteristics, having a wide angle and having a bright F number. The camera lens includes, from an object side: a first lens having a negative refractive power; a second lens having a positive refractive power; a third lens having a positive refractive power; a fourth lens having a negative refractive power; a fifth lens having a positive refractive power; and a sixth lens having a negative refractive power. The camera lens satisfies prescribed conditions. |
US11372212B2 |
Camera optical lens including six lenses of +-+-+- refractive powers
The present disclosure relates to the technical field of optical lens and discloses a camera optical lens. The camera optical lens includes, from an object side to an image side: a first lens, a second lens, a third lens, a fourth lens, a fifth lens and a sixth lens. The camera optical lens satisfies following conditions: 1.00≤f1/f≤20.00 and 30.00≤R1/d1≤40.00, where f denotes a focal length of the camera optical lens; f1 denotes a focal length of the first lens; R1 denotes a curvature radius of an object-side surface of the first lens; and d1 denotes an on-axis thickness of the first lens. The camera optical lens can achieve a high imaging performance while obtaining a low TTL. |
US11372210B2 |
Optical imaging lens
An optical imaging lens includes a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element, a seventh lens element, and an eighth lens element from an object side to an image side in order along an optical axis. The first lens element to the eighth lens element each include an object-side surface facing the object side and an image-side surface facing the image side. The periphery region of the image-side surface of the first lens element is concave. The optical axis region of the image-side surface of the third lens element is concave. The periphery region of the object-side surface of the fourth lens element is concave and the optical axis region of the image-side surface of the fourth lens element is convex. The optical axis region of the image-side surface of the seventh lens element is concave. |
US11372206B2 |
Optical system with two lens groups of +− refractive powers having five lens subgroups of +−+−− refractive powers, and image pickup apparatus including the same
An optical system includes a front lens group and a rear lens group that are disposed in order from an object side to an image side of the optical system, the front lens group having a positive refractive power and the rear lens group having a negative refractive power. The rear lens group consists of a lens unit Ln1 that is arranged to move towards the image side when focusing and that has a negative refractive power, and a lens unit Ln2 that is disposed closer to the image side than the lens unit Ln1 and that has a negative refractive power. The front lens group includes a lens unit Lpf arranged to move during focusing. The rear lens group satisfies a predetermined conditional expression. |
US11372205B2 |
Camera optical lens
The present disclosure relates to the field of optical lenses and provides a camera optical lens. The camera optical lens includes, from an object side to an image side: a first lens; a second lens having a negative refractive power; a third lens having a positive refractive power; a fourth lens; a fifth lens; and a sixth lens. The camera optical lens satisfies following conditions: 3.50≤f1/f≤7.00; and −30.00≤R9/d9≤−10.00. The camera optical lens can achieve a high imaging performance while obtaining a low TTL. |
US11372196B2 |
Imaging device and focusing control method
An imaging device and a focusing control method are provided. The imaging device includes: an imaging element, having pixels including phase-difference detecting pixels and imaging a subject through an imaging optical system including a focus lens; and a focusing controller, selectively performing focusing control using a phase difference AF method or focusing control using a contrast AF method in a mode in which focusing control for focusing on a main subject by driving the focus lens is continuously performed multiple times. The focusing controller performs the focusing control using the contrast AF method in a case where a state in which a degree of reliability of the focusing control using the phase difference AF method is equal to or less than a threshold value persists N times (N=2 or more), while the focusing control using the phase difference AF method is continuously performed. |
US11372189B2 |
Low cost hardened fiber optic connection system
The present disclosure relates to a ruggedized/hardened fiber optic connection system designed to reduce cost. In one example, selected features of a fiber optic adapter are integrated with a wall (24) of an enclosure (22). The adapter comprises a sleeve port (26) into which an optical adapter subassembly is inserted. The subassembly comprises a sleeve part (44) which is inserted into the sleeve, a ferrule alignment sleeve (48) which is inserted into the sleeve part, a ferrule (55) with hub which is inserted into the alignment sleeve, and fixing clip (46) securing the ferrule with hub into the alignment sleeve and the sleeve part. |
US11372181B2 |
Optical module
An optical module includes: a housing formed of a conductor that is insertable and removable with respect to an opening portion of an apparatus; a substrate arranged in an internal space of the housing; and a blocking unit that divides the internal space in which the substrate is arranged into two spaces. The blocking unit includes: a first conductor pattern formed on one surface of the substrate; a second conductor pattern formed on another surface of the substrate; a plurality of vias that penetrate through the substrate and connect the first conductor pattern and the second conductor pattern; a first auxiliary member formed of a conductor that comes into contact with the first conductor pattern and the housing; and a second auxiliary member formed of a conductor that comes into contact with the second conductor pattern and the housing. |
US11372175B2 |
Optical module
An optical module includes a wiring board having a first electrode, an optical waveguide provided on the wiring board, an optical element having a second electrode and provided on the optical waveguide, a conductive bonding material bonding the first and second electrodes, and a fixing member that fixes the optical element to the optical waveguide. The optical waveguide includes a core layer, a first cladding layer provided on a first side of the core layer, a second cladding layer provided on a second side of the core layer opposite to the first side, and an optical path conversion mirror provided on the core layer or the second cladding layer. The optical element is optically coupled to one end of the core layer via the optical path conversion mirror, and a softening point of the fixing member is higher than a melting point of the conductive bonding material. |
US11372172B2 |
Fiber optic connector with field installable outer connector housing
An optical connector includes a first sub-assembly that is factory-installed to a first end of an optical fiber and a second sub-assembly that is field-installed to the first end of the optical fiber. The optical fiber and first sub-assembly can be routed through a structure (e.g., a building) prior to installation of the second sub-assembly. The second sub-assembly interlocks with the first sub-assembly to inhibit relative axial movement therebetween. Example first sub-assemblies include a ferrule, a hub, and a strain-relief sleeve that mount to an optical fiber. Example second sub-assemblies include a mounting block; and an outer connector housing forming a plug portion. |
US11372164B2 |
Optical connector system and optical connection structure
An optical connector system includes: an optical path-changing device including a fiber-holding part that holds a single-mode optical fiber along a first direction, and a reflection surface that reflects an optical signal; and a relay device on a substrate. The substrate includes a grating coupler for inputting/outputting an optical signal in a second direction that is inclined with respect to a direction perpendicular to a surface of the substrate. The optical path-changing device and the relay device each have an input/output surface to/from which the optical signal is inputted/outputted. A first convex lens is disposed on the input/output surface of the optical path-changing device. A second convex lens is disposed on the input/output surface of the relay device. |
US11372163B2 |
Wavelength switching apparatus and system
A wavelength switching apparatus includes M input components, a first optical component, a first switch array, a second switch array, a second optical component, and K output components. The M input components include at least one local input component having N input ports, and a light beam input by the local input component can be converged, under an action of the first optical component, on a row of switch units that are in the first switch array and that are corresponding to the local input component. In this way, this is equivalent to further connecting an N*1-dimensional WSS to an input end of an M*K-dimensional WSS, so that the wavelength switching apparatus can integrate a wavelength adding function based on the M*K-dimensional WSS. |
US11372158B2 |
Waveguide for guiding an electro-magnetic wave comprising plural waveguide parts with different widths extend in parallel planes
A waveguide for guiding an electro-magnetic wave comprises: a first waveguide part; and a second waveguide part; wherein the first waveguide part has a first width in a first direction (Y) perpendicular to the direction of propagation of the electro-magnetic wave and the second waveguide part has a second width in the first direction (Y), wherein the second width is larger than the first width; and wherein the first and the second waveguide parts are spaced apart by a gap in a second direction (Z) perpendicular to the first and second planes in which the waveguide parts are formed, wherein the gap has a size which is sufficiently small such that the first and second waveguide parts unitely form a single waveguide for guiding the electro-magnetic wave. The waveguide may be used in numerous applications, such as in a photonic integrated circuit, in a sensor or in an actuator. |
US11372152B2 |
Backlight module and display device
A backlight module includes a frame, a first optical film and a fixing assembly. The frame has a near-display panel side and a far-display panel side in a direction perpendicular to a plane enclosed by the frame. The frame includes a frame portion and an extending portion disposed on an inside of the frame portion. The frame portion has at least one film fixing groove, a cross section of the film fixing groove has a stepped shape in a direction perpendicular to a plane enclosed by the frame portion and perpendicular to an edge of the frame portion where the film fixing groove is located. The film fixing groove has a first support surface and a second support surface, and the second support surface is farther away from the near-display panel side than the first support surface. |
US11372149B2 |
Depth-modulated slanted gratings using gray-tone lithography and slant etch
An apparatus with a grating structure and a method for forming the same are disclosed. The grating structure includes forming a wedge-shaped structure in a grating layer using a grayscale resist and photo lithography. A plurality of channels is formed in the grating layer to define slanted grating structures therein. The wedge-shaped structure and the slanted grating structures are formed using a selective etch process. |
US11372145B2 |
Optical element and optical circuit
An optical element has a quarter-wave plate formed on the X-Y plane and laminated in the Z-axis direction in three-dimensional space X, Y, Z. The groove in the wave plate is curved, and the angle relative to the Y-axis varies continuously in the range of 0° to 180°. The optical element separates and converts incoming circularly polarized light into light passing therethrough and circularly polarized light reversely rotating a given angle toward the X axis from the Z axis, and outputs the light. |
US11372141B2 |
Display body
A display body includes a display surface including a plurality of display region groups. Each display region includes at least one reflection surface that is configured to reflect light incident on the display surface toward an area including a corresponding one of reflection directions that are associated with the respective display region groups. Each display region group is configured to form an image unique to the display region group in a corresponding one of the reflection directions through reflection of light on the reflection surfaces in the display region group. The display region groups are configured to form, in two adjacent ones of the reflection directions, different images that have a interrelation between each other. |
US11372140B2 |
Liquid lens, camera module, and optical device including the same
A liquid lens includes a first plate in which a cavity accommodating a first liquid and a second liquid is formed, the first liquid being conductive and the second liquid being non-conductive; a first electrode disposed on the first plate; a second electrode disposed under the first plate; a second plate disposed on the first electrode; and a third plate disposed under the second electrode, wherein an opening formed in the cavity adjacent to the second plate has a diameter of 1.6 mm to 1.9 mm, and wherein the first plate has a thickness of 0.45 mm to 0.55 mm. |
US11372137B2 |
Textured cover assemblies for display applications
Textured cover assemblies for electronic devices are disclosed. The textured cover assemblies may be placed over a display and may provide anti-glare and anti-reflection properties to the electronic device. |
US11372125B2 |
Amphibious portable magnetism detector
An amphibious portable magnetism detector includes a first housing, a first wiring tube, a first magnetic field sensor, and a central control device. The first housing defines a first inner space and a first through hole in communication with the first inner space. The first wiring tube is connected to the first housing with a first leak-tight seal formed between them, and in communication with the first inner space via the first through hole. The first magnetic field sensor is disposed in the first inner space and configured to detect a magnetic field at a target area and generate a first detection signal. The central control device is electrically connected to the first magnetic field sensor and configured to receive the first detection signal and output a first magnetic field value according to the first detection signal. |
US11372124B2 |
First-break picking of seismic data and generating a velocity model
A new method for iteratively picking the seismic first breaks and conducting imaging of the near-surface velocity structures in an iterative fashion is provided that the first-break picks of the input seismic data are applied to image the near-surface velocity structures and the calculated travel times associated with the updated velocity structures are applied to help refine the first-break picks in the first break picking process until first-break picks satisfy a number of quality control criteria, statics solutions are optimized, and the near surface imaging reaches an acceptable data misfit. This invention produces a velocity model that can be used for near surface statics corrections or for the prestack depth migration. |
US11372123B2 |
Method for determining convergence in full wavefield inversion of 4D seismic data
Provided is a method for determining convergence in full wavefield inversion (FWI) of 4D seismic (time-lapse seismic: 3D seismic surveys acquired at different times with the first survey termed as the baseline and subsequent surveys termed as monitors). FWI applied to field seismic data includes iteratively solving for subsurface property models and model difference between monitor and baseline. Iteration occurs until the model difference is sufficiently converged. Rather than determining convergence by examining an entire subsurface region of the models and/or the model difference, subparts of the subsurface region models and/or the model difference are examined in order to determine convergence. For example, different regions behave differently, include the target reservoir region (where hydrocarbon is present) and the background region that is outside the target reservoir region. Thus, transforming the subregions of the models and/or the model difference and analyzing the transformations may indicate convergence of the overall model difference. |
US11372121B1 |
Method for testing and extracting paleo-tectonic geostress based on rock core
A method for testing and extracting paleo-tectonic geostress based on rock core, including: selecting rock cores in different tectonic periods; preparing standard cylindrical samples from the rock cores in a specific orientation; subjecting the samples to an acoustic emission test to test paleo-stresses of multiple tectonic periods and obtain paleo-tectonic stress data sequence; based on a correlation analysis and an Euclidean distance of the stress data sequence, stripping and extracting multi-level Kaiser stress points of the acoustic emission of rock cores from different formations, so as to calculate and evaluate the ground stress of an evaluated formation in an evaluated paleo-tectonic period. |
US11372118B2 |
Ion and radiation detection devices based on carbon nanomaterials and two-dimensional nanomaterials
Ultrasensitive, miniaturized, and inexpensive ion and ionizing radiation detection devices are provided. The devices include an insulating substrate, metallic contact pads disposed on a surface of the substrate, and a strip of an ultrathin two-dimensional material having a thickness of one or a few atomic layers. The strip is in contact with the contact pads, and a voltage is applied across the two-dimensional sensor material. Individual ions contacting the two-dimensional material alter the current flowing through the material and are detected. The devices can be used in a network of monitors for high energy ions and ionizing radiation. |
US11372114B2 |
Systems and methods for high-integrity satellite positioning
A system for estimating a receiver position with high integrity can include a remote server comprising: a reference station observation monitor configured to: receive a set of reference station observations associated with a set of reference stations, detect a predetermined event, and mitigate an effect of the predetermined event; a modeling engine configured to generate corrections; a reliability engine configured to validate the corrections; and a positioning engine comprising: an observation monitor configured to: receive a set of satellite observations from a set of global navigation satellites corresponding to at least one satellite constellation; detect a predetermined event; and mitigate an effect of the predetermined event; a carrier phase determination module configured to determine a carrier phase ambiguity of the set of satellite observations; and a position filter configured to estimate a position of the receiver. |
US11372110B2 |
Image display apparatus
An image display apparatus 10 comprises image capturing units 11L, 11R, display units 12L, 12R, and adjusting units 14, 16 that adjust a position at which to display a captured image 30 on the display units. The adjusting units 14, 16 have a plurality of adjustment modes in which the position can be adjusted. The plurality of adjustment modes include a first mode (self-aiming mode) in which it is possible to adjust the position by an operation on only a first switch 14, and a second mode (service center aiming mode) in which it is possible to adjust the position by a simultaneous operation on the first switch and a second switch 15. |
US11372109B1 |
Lidar with non-circular spatial filtering
A receiver module for a lidar system includes a collection lens for collecting light from a scene to form an image of the light. The receiver module also includes a mask for spatially filtering the light imaged by the collection lens to at least partly transmit a light pulse backscattered from an object in the scene. The mask is opaque apart from at least one non-circular light-transmissive region. Each non-circular light-transmissive region has orthogonal length and width. The length exceeds the width and is sufficient to transmit light incident on the collection lens at a range of incidence angles in a first angular dimension. The receiver module also includes a photodetector for detecting the light pulse collected by the lens and transmitted by the mask. |
US11372106B2 |
Optical phased arrays
An optical phased array formed of a large number of nanophotonic antenna elements can be used to project complex images into the far field. These nanophotonic phased arrays, including the nanophotonic antenna elements and waveguides, can be formed on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) processes. Directional couplers evanescently couple light from the waveguides to the nanophotonic antenna elements, which emit the light as beams with phases and amplitudes selected so that the emitted beams interfere in the far field to produce the desired pattern. In some cases, each antenna in the phased array may be optically coupled to a corresponding variable delay line, such as a thermo-optically tuned waveguide or a liquid-filled cell, which can be used to vary the phase of the antenna's output (and the resulting far-field interference pattern). |
US11372105B1 |
FMCW LIDAR using array waveguide receivers and optical frequency shifting
A system including one or more waveguides to receive a first returned reflection having a first lag angle and generate a first waveguide signal, receive a second returned reflection having a second lag angle different from the first lag angle, and generate a second waveguide signal. The system includes one or more photodetectors to generate a first output signal within a first frequency range, and generate, based on the second waveguide signal and a second LO signal, a second output signal within a second frequency range. The system includes an optical frequency shifter (OFS) to shift a frequency of the second LO signal to cause the second output signal to shift from within the second frequency range to within the first frequency range to generate a shifted signal. The system includes a processor to receive the shifted signal to produce one or more points in a point set. |
US11372104B2 |
Optical sensing system and optical apparatus including the same
Provided are an optical sensing system and an optical apparatus including the same. The optical sensing system may include a light output part configured to emit a laser beam to an object, and a sensing part configured to sense a laser beam emitted from the light output part and reflected from the object. The sensing part may include a photodetector and the active optical device located on an optical path between the photodetector and the object. The active optical device may actively control an orientation of a laser beam passing therethrough and may include a material layer having a refractive index which is changeable by application of an electrical signal. |
US11372103B2 |
Ultrasound imaging with multiple single-element transducers and ultrasound signal propagation correction using delay and sum beamforming based on a cross-correlation function
A method includes receiving first electrical signals from a first single-element transducer (1121) and second electrical signals from a second single-element transducer (1122). The transducers are disposed on a shaft (110), which has a longitudinal axis (200), of an ultrasound imaging probe (102) with transducing sides disposed transverse to and facing away from the longitudinal axis. The transducers are angularly offset from each other on the shaft by a non-zero angle. The transducers are operated at first and second different cutoff frequencies. The shaft concurrently translates and rotates while the transducers receive the first and second ultrasound signals. The method further includes delay and sum beamforming, with first and second beamformers (1201, 1202), the first and second electrical signals, respectively via different processing chains (7121, 7122), employing an adaptive synthetic aperture technique, producing first and second images. The method further includes combining the first and second images, creating a final image, and displaying the final image. |
US11372102B2 |
Systems and associated methods for producing a 3D sonar image
Provided are a sonar system and transducer assembly for producing a 3D image of an underwater environment. The sonar system may include a housing mountable to a watercraft having a transmit transducer that may transmit sonar pulses into the water. The system may include at least one sidescan transducer array in the housing that receives first and second sonar returns with first and second transducer elements and converts the first and second returns into first and second sonar return data. A sonar signal processor may then generate a 3D mesh data using the first and second sonar return data and at least a predetermined distance between the transducer elements. An associated method of using the sonar system is also provided. |
US11372100B2 |
Radar object classification and communication using smart targets
A radar system for an autonomous driving vehicle (ADV) is disclosed. The system includes a target that includes a number of target elements disposed in a predetermined configuration on the target to collectively represent a radar readable code. The system further includes a radar unit included in the ADV and configured to: transmit a first electromagnetic (EM) signal to the target within a driving environment, receive a second EM signal reflected by the target, compute a radar cross section (RCS) signature based on the received second EM signal, generate a corresponding communication message based on the computed RCS signature, and transmit radar data that includes the communication message, where the ADV is controlled based on the communication message. |
US11372093B2 |
Automated fault detection and correction in an ultrasound imaging system
A processor in an ultrasound imaging system identifies faults or errors in the system. In one embodiment, fault or error conditions are detected by monitoring system parameters during a self-test. In another embodiment, a processor provides ultrasound image data to a trained neural network to identify fault conditions in a transducer or the imaging system. In some embodiments, the processor makes adjustments to one or more operating parameters to compensate for the identified fault conditions so that the system continues to operate and produce images with the detected fault condition. |
US11372092B2 |
Hybrid ultrasound transmitter
Systems and methods for utilizing a hybrid transmitter in an ultrasound system. A system can include a hybrid transmitter configured to transmit ultrasound waves toward a subject area. The hybrid transmitter can comprise a linear transmitter configured to generate linear transmitter output and a switching transmitter configured to generate switching transmitter output. The hybrid transmitter can also comprise a summer configured to sum the linear transmitter output and the switching transmitter output to generate hybrid transmitter output for driving a transducer load to generate the ultrasound waves transmitted towards the subject area. The ultrasound system can also comprise a receiver configured to receive one or more ultrasound waves from the subject area in response to the ultrasound waves transmitted toward the subject area for generating ultrasound images of the subject area. |
US11372083B2 |
Calibrating array antennas based on signal energy distribution as a function of velocity
A radar antenna calibration method includes: forming a detection matrix from signals detected by an arrangement of receive antennas in response to chirps transmitted by an arrangement of transmit antennas, the detection matrix having multiple rows corresponding to the chirps, multiple columns corresponding to a signal sample, and multiple planes corresponding the receive antennas; deriving a range matrix by performing a frequency transform on a portion of each row of the detection matrix; extracting a slice of the range matrix, with different rows of the slice being associated with different chirps and with different receive antennas; deriving a velocity matrix from the extracted slice by performing a frequency transform on a portion of each column of the extracted slice; analyzing the velocity matrix to determine a current peak width; and adjusting, based on the current peak width, phase shifts associated with one or more of the receive antennas. |
US11372078B2 |
Wireless communication device
A wireless communication device for a road side zone includes a wireless communication circuit that forms beams in plural different directions in a time division scheme in an area which includes plural routes. The wireless communication device for a road side zone includes a recording circuit that records time transition in the direction of the beam used by the wireless communication circuit, which forms the beams in the plural different directions in a time division scheme, for wireless communication with a second wireless communication device provided to a mobile apparatus which moves on any of the plural routes. |
US11372072B2 |
Radio beacon system
A radio beacon system configured to assist autonomous flight of one or more unmanned aerial vehicles (UAVs), wherein the radio beacon system comprises: —a drone device (200), configured to be installed on an UAV and including a radio transceiver, and —a radio beacon device (100), configured to be installed on ground and including N antenna arrays (110, 120) with N≥2, one or more radio transceivers configured to communicate with the radio transceiver of the drone device (200), and at least one processing unit (130), wherein each antenna array (110, 120) has M antenna elements (115, 125) with M≥2 associated to respective beamforming electronic weights w(n, m), with n ranging from 1 to N and m ranging from 1 to M, wherein said at least one processing unit (130) is configured to perform an adaptive beamforming method for assisting autonomous flight of the UAV. |
US11372071B2 |
Method and system for diffusion magnetic resonance imaging
A method may include obtaining a plurality of groups of imaging data. Each group of the plurality of groups of imaging data may be generated based on MR signals acquired by an MR scanner via scanning a subject using a diffusion sequence. The method may also include determining one or more correction coefficients associated with an error caused by the diffusion sequence for each group of the plurality of groups of imaging data. The method may also include determining, based on the one or more correction coefficients corresponding to the each group of the plurality of groups of imaging data, a plurality of groups of corrected imaging data. The method may further include determining averaged imaging data by averaging the plurality of groups of corrected imaging data in a complex domain and generating, based on the averaged imaging data, an MR image. |
US11372067B2 |
Method for acquiring water-fat separation image, and magnetic resonance imaging apparatus therefor
Provided are a method of obtaining a water-fat separation image and a magnetic resonance imaging (MRI) apparatus including a controller configured to obtain first partial k-space data, second partial k-space data, and third partial k-space data, respectively based on a first partial echo signal, a second partial echo signal, and a third partial echo signal, which are magnetic resonance signals corresponding to a plurality of echo times with respect to an object, obtain first reconstruction image data, second reconstruction image data, and third reconstruction image data with respect to the object, respectively based on the first partial k-space data, the second partial k-space data, and the third partial k-space data, and obtain first water image data, first fat image data, and first phase image data of the object, respectively based on the first reconstruction image data, the second reconstruction image data, and the third reconstruction image data, by using a Dixon technique. |
US11372064B2 |
Magnetic resonance receive coil with detune circuit and energy harvesting circuit
The invention relates to a magnetic resonance receive coil including a resonator for use in a magnetic resonance imaging system. The radio frequency receive coil according to the invention comprises a first conducting element of the resonator having a conductive loop wherein the received signal is induced in that loop, configured to form a primary resonant circuit tunable to at least one first resonance frequency and a second conducting element of the resonator configured to form an electric circuit electrically insulated from and reactively coupled to the primary resonant circuit, the electric circuit being adapted to detune the primary resonant circuit to at least one second resonance frequency. The second conducting element of the resonator has a conductive loop with a pair of ends connected to a preamplifier. The radio frequency receive coil further comprises an energy harvesting circuit electrically coupled in parallel over the pair of ends of the second conducting element, wherein the energy harvesting circuit is adapted for being connected to the second conducting element during transmission by a switch. A rechargeable power source is coupled to the energy harvesting circuit, wherein the rechargeable power source is adapted for being charged by the energy harvesting circuit. A switching component is circuited in parallel to the energy harvesting circuit, wherein is adapted to redirect a current as soon as the rechargeable power source is charged to a sufficient voltage. In this way, a magnetic resonance receive coil with a detune circuit and an energy harvesting circuit for energy harvesting is provided without a significant loss of detuning performance. |
US11372059B2 |
Testing device
The present disclosure relates to a testing device comprising a bracket including a first groove and a second groove parallel to each other, wherein the first groove and the second groove run through an inner surface of the bracket perpendicularly to a thickness direction of the testing device; a plate assembly including a first plate and a second plate parallel to each other, wherein the first plate is disposed within the first groove and fits closely within the first groove along a length direction and a thickness direction of the testing device, the second plate is disposed within the second groove, with a gap present in the second groove along a length direction and/or a thickness direction of the testing device; a connector array including a plurality of connector assemblies disposed on the plate assembly in a predetermined pattern, wherein each of the plurality of connector assemblies is connected between the first plate and the second plate; and a displacing tool disposed on the bracket and/or the plate assembly and configured to displace the second plate relative to the first plate within the second groove along a length direction and/or a thickness direction of the testing device. The testing device may simulate various different axial deviations and/or angular deviations of the opposed printed circuit boards, and may be used to test the performance parameters such as low PIM, return loss and insertion loss between the printed circuit boards and the connectors under different axial deviations and/or angular deviations. |
US11372058B2 |
Impedance matching device, abnormality diagnosis method, and storage medium for abnormality diagnosis program
An impedance matching device includes: a variable capacitor connected between a radio-frequency power supply and a load; a first detector that detects an index value that determines impedance matching between the radio-frequency power supply and the load, and a first state value that indicates a state of a radio-frequency power; a second detector that detects a second state value that indicates a state of radio-frequency power output to the load; an adjustment unit that adjusts a capacitance value of the variable capacitor such that the index value detected by the first detector falls within a target range; and a diagnosis unit configured to diagnose an abnormality of the variable capacitor, the first detector, or the second detector based on the capacitance value adjusted by the adjustment unit, the first state value detected by the first detector, and the second state value detected by the second detector. |
US11372055B2 |
Method for determining a resistance parameter value of an electrical energy storage unit, and corresponding device, computer program, machine-readable storage medium and electrical energy storage unit
A method for determining a resistance parameter value of an electrical energy storage unit is disclosed, comprising the following steps: a) determining a current variable representing an electric current flowing into or out of the electrical energy storage unit; b) determining a first voltage variable, which represents an electrical voltage prevailing between two pole terminals of the electrical energy storage unit; c) determining a second voltage variable, which represents an electrical voltage and results from a mathematical model of the electrical energy storage unit, wherein the current variable determined in step a) is applied to the mathematical model and the latter comprises a resistance parameter which represents an internal resistance of the electrical energy storage unit and to which a first value is allocated; d) generating an adaptation value for the resistance parameter, wherein the adaptation value is dependent on a difference variable between the first voltage variable and the second voltage variable; and e) determining a second value of the resistance parameter as a sum of the first value of the resistance parameter and the adaptation value. |
US11372053B2 |
Methods for estimating a number of workflow cycles able to be completed from a remaining battery capacity
Methods are provided for generating an estimated number of workflow cycles able to be executed with a remaining battery capacity of a battery in a device. A workflow cycle comprising a predefined series of tasks of a work application executed during a defined timeframe is defined. Beginning battery capacity is determined at start of work application execution. End battery capacity at completion of work application execution is determined. Battery usage estimate associated with work application is calculated from difference between beginning battery capacity and end battery capacity. The estimated number of workflow cycles able to be executed is based on the remaining battery capacity and the battery usage estimate. |
US11372042B2 |
Semiconductor device and burn-in test method thereof
A semiconductor device includes a temperature sensor, a scan control circuit which generates scan chain selection information in accordance with a measurement result of the temperature sensor, a clock control circuit which generates one or more scan chain clock signals based on an external clock signal and the scan chain selection information, a pattern generation circuit which generates a test pattern, and a logic circuit which includes a plurality of scan chains and which receives the scan chain clock signals and the test pattern. The clock control circuit generates the scan chain clock signal in association with each scan chain. During a burn-in test, the logic circuit captures the test pattern into the scan chain associated with the scan chain clock signal. |
US11372039B2 |
Trailer lighting outage detection circuit
A vehicle LED lighting outage detection circuit is disclosed for detecting a fault in the LED light and automatically increasing the power drawn from the light power supply in response to the fault. A complementary detection circuit is also disclosed for detecting the increased power draw and signaling a fault to an operator. The increased power draw can be selected to be in the form of a pulse that settles to a lower power draw state after a time to avoid excessive and wasteful power draw. The system can be mounted in a vehicle and, more particularly, to a semi-tractor truck. |
US11372037B2 |
Freespace antenna measurement system
Embodiments of the present invention may provide an antenna characterization system. The system may include a horn antenna including a waveguide and a horn section with an open end and at least one lens disposed at the open end of the horn antenna, having a focal length. The system may also include a platform to hold an antenna under test (AUT) positioned at substantially distance x from the open end of the horn antenna, wherein x is the sum of the focal length and a far-field distance property of the AUT. The system may further include an analyzer coupled to the horn antenna to measure a radiation pattern and other properties such as EIRP, TRP, EVR and spurious emission of a passive or active AUT. |
US11372031B2 |
Defect detection in high voltage power supply apparatus
A high voltage power supply apparatus includes: a comparator, a transformer, a rectifier, and a detector. The comparator is to control output of a basic voltage. A high voltage based on the basic voltage is used to perform an image forming job in an image forming apparatus. The transformer is to output an alternating current voltage of a second side of the transformer by amplifying an alternating current voltage of a first side of the transformer, the amplifying being based on a resonance phenomenon induced from the basic voltage. The rectifier is to output the high voltage by rectifying the alternating current voltage of the second side. The detector is to sense a voltage applied to the comparator and a voltage applied to the transformer, and is to output operational state information of the high voltage power supply apparatus based on the sensed voltages. |
US11372030B2 |
Electrical overstress detection device
The disclosed technology generally relates to electrical overstress protection devices, and more particularly to electrical overstress monitoring devices for detecting electrical overstress events in semiconductor devices. In one aspect, a device configured to monitor electrical overstress (EOS) events includes a pair of spaced conductive structures configured to electrically arc in response to an EOS event, wherein the spaced conductive structures are formed of a material and have a shape such that arcing causes a detectable change in shape of the spaced conductive structures, and wherein the device is configured such that the change in shape of the spaced conductive structures is detectable to serve as an EOS monitor. |
US11372027B2 |
Low-voltage power switch and arc fault detection unit with compensation due to phase shifting
A Rogowski coil is used for determining the magnitude of the electrical current of a conductor of a low-voltage AC circuit, which outputs an analogue voltage which is equivalent to the magnitude of the electrical current of the conductor. The Rogowski coil is connected to an analogue integrator, which is followed by an analogue-digital converter, which converts the integrated analogue voltage into a digital signal which is further processed by a microprocessor in such a way that the phase shift generated by the Rogowski coil and the components connected downstream of the Rogowski coil is compensated such that there are in-phase current values for the detection of error situations in order to protect the low-voltage AC circuit, in particular for a low-voltage power switch or an arc fault detection unit. |
US11372021B2 |
Electronic component handling device and electronic component testing apparatus
An electronic component handling apparatus, for handling a DUT having a temperature detection circuit and pressing the DUT against a socket electrically connected to a tester testing the DUT, includes: a temperature adjuster adjusting a temperature of the DUT; a first calculator calculating the temperature of the DUT based on a detection result of the temperature detection circuit; a temperature controller controlling the temperature adjuster; and a first receiver receiving a first signal output from the tester, a temperature control including a first temperature control based on the temperature of the DUT calculated by the first calculator and a second temperature control, and the temperature controller switching the temperature control of the DUT from the first temperature control to the second temperature control when the first receiver receives the first signal after the temperature controller starts the first temperature control. |
US11372017B2 |
Monocular visual-inertial alignment for scaled distance estimation on mobile devices
Methods, techniques, apparatus, and algorithms are described for robustly measuring real-world distances using any mobile device equipped with an accelerometer and monocular camera. A general software implementation processes 2D video, precisely tracking points of interest across frames to estimate the unsealed trajectory of the device, which is used to correct the device's inertially derived trajectory. The visual and inertial trajectories are then aligned in scale space to estimate the physical distance travelled by the device and the true distance between the visually tracked points. |
US11372007B2 |
Method of detecting biological material, and chemiluminescent indicator used therein
Provided is a method of detecting a biological material, by which quantitative measurement can be performed easily. The method of detecting a biological material in a sample includes: mixing, with the sample, a fusion protein (C) in which a protein (A) capable of binding the biological material and a chemiluminescent protein (B) are fused together and a substrate for the chemiluminescent protein (B); and observing a luminescent signal from the sample, wherein the protein (A) and the protein (B) are linked in such a manner that resonance energy transfer can occur, the protein (A) is either a protein (A1) that can emit fluorescence in a state where the biological material is bound thereto or a protein (A2) capable of binding an autofluorescent molecule as the biological material, and the protein (B) can excite fluorescence or autofluorescence of the protein (A) with its luminescence energy. |
US11372001B2 |
Anti-human IgG4 monoclonal antibody and methods of making and using same
Provided are: a monoclonal antibody against human IgG4, for which the epitope is present in the CH3 of human IgG4 given by SEQ ID NO: 4; a hybridoma that produces the monoclonal antibody; a method for detecting IgG4 using the monoclonal antibody; and a kit used in this method. |
US11371998B2 |
Devices and kits to improve reduction or labeling of carbohydrates
The present invention provides methods, devices, and kits to improve procedures for reducing carbohydrates, such as glycans released from glycoconjugates, or for labeling carbohydrates by reductive amination. |
US11371994B2 |
Phosphorylated Akt-specific capture agents, compositions, and methods of using and making
The present application provides stable peptide-based Akt capture agents and methods of use as detection and diagnosis agents and in the treatment of diseases and disorders. The application further provides methods of manufacturing Akt capture agents using iterative on-bead in situ click chemistry. |
US11371990B2 |
Methods for identifying candidate biomarkers
The disclosed embodiments concern methods, devices, and systems for identifying candidate biomarkers useful for the diagnosis, prognosis, monitoring and screening and/or as targets for the treatment of diseases and conditions in subjects, in particular autoimmune and infectious diseases. The identification of candidate biomarkers is predicated on identifying discriminating peptides present on a peptide array, which can distinguish samples from different subjects having different health conditions by the binding patterns of antibodies present in the samples. |
US11371980B2 |
Method for treating biomolecules and method for analyzing biomolecules
The purpose of the present invention is to provide a method for treating biomolecules and a method for analyzing biomolecules with which it is possible to effectively suppress the clog of nanopores. The present invention is a method for treating biomolecules for analysis in which nanopores are used, wherein the method includes a step for preparing a sample solution that includes ammonium cations represented by a prescribed formula and biomolecules in which at least a portion of the higher-order structure has been fused. |
US11371973B2 |
Test device and method for the semi-quantitative determination of chlorine dioxide in a liquid sample containing free chlorine
Test device and method for the semi-quantitative determination of chlorine dioxide in a liquid sample has at least two carrier matrices. The first carrier matrix comprises at least one amino acid, sodium thiosulphate, at least one redox indicator, buffer substances and at least one surfactant. The second carrier matrix comprises at least one inorganic iodide salt, starch and/or at least one starch derivative, sodium thiosulfate, buffer substances and at least one surfactant. |
US11371970B2 |
Method for analyzing molecular weight of each component of polymer compound, and analysis system used therefor
The present invention relates to a method for analyzing the molecular weight of each polymer comprised in a polymer compound, and an analysis system used therefor. More specifically, the present invention relates to an analysis method of components of polymer compounds and molecular weight by component using a system in which size-exclusion chromatography (SEC)-pyrolysis gas chromatography (Py-GC)-mass spectrometry (MS) are connected in series and to an analysis system used in the method. |
US11371968B2 |
Branching off fluidic sample with low influence on source flow path
A sample management device which comprises a source flow path in which a fluidic sample can flow, a volume flow adjustment unit configured for adjusting a volume flow of the fluidic sample to be branched off from the source flow path at a fluidic coupling point, and a fluidic valve fluidically coupled with the source flow path and with the volume flow adjustment unit, wherein the fluidic valve is switchable into a branch off state in which the fluidic coupling point is established within the source flow path to branch off an adjustable volume of the fluidic sample from the source flow path via the fluidic coupling point while a flow of the fluidic sample in the source flow path continues. |
US11371965B2 |
Digital twin model inversion for testing
Creation and use of a digital twin instance (DTI) for a physical instance of the part. The DTI may be created by a model inversion process such that model parameters are iterated until a convergence criterion related to a physical resonance inspection result and a digital resonance inspection result is satisfied. The DTI may then be used in relation to part evaluation including through simulated use of the part. The physical instance of the part may be evaluated by way of the DTI or the DTI may be used to generate maintenance schedules specific to the physical instance of the part. |
US11371964B2 |
Condition monitoring of ultrasonic transducers and probes
Systems and methods for monitoring the condition of ultrasonic transducers and ultrasonic probes used in non-destructive testing are provided. In one aspect, a degree of deterioration and end of life of an ultrasonic transducer can be estimated based upon measured environmental and/or operating parameters of the ultrasonic transducer. In another aspect, testing parameters acquired by a single ultrasonic probe or different ultrasonic probes can be measured and analyzed to identify deterioration of an ultrasonic probe. |
US11371962B1 |
Multi-frequency acoustic velocity measurement device for core
A multi-frequency acoustic velocity measurement device for a core includes: a fixing device, for fixing a core and heating and pressurizing the core according to a preset condition; a transmitting end acoustic wave probe, connected to a first end of a control unit and one end of the fixing device, and configured to transmit an acoustic wave signal to the core; a receiving end acoustic wave probe, connected to a second end of the control unit and the other end of the fixing device, and configured to receive the acoustic wave signal transmitted by the transmitting end acoustic wave probe; and the control unit, for controlling the transmitting end acoustic wave probe to transmit acoustic wave signals of different frequencies, receiving the acoustic wave signal received by the receiving end acoustic wave probe, and determining an acoustic velocity of the core according to the acoustic wave signal. |
US11371961B2 |
Method for assembling conductive particles into conductive pathways and sensors thus formed
A sensor is achieved by applying a layer of a mixture that contains polymer and conductive particles over a substrate or first surface, when the mixture has a first viscosity that allows the conductive particles to rearrange within the material. An electric field is applied over the layer, so that a number of the conductive particles are assembled into one or more chain-like conductive pathways with the field and thereafter the viscosity of the layer is changed to a second, higher viscosity, in order to mechanically stabilise the material. The conductivity of the pathway is highly sensitive to the deformations and it can therefore act as deformation sensor. The pathways can be transparent and is thus suited for conductive and resistive touch screens. Other sensors such as strain gauge and vapour sensor can also be achieved. |
US11371959B2 |
Assay with digital readout
A device and a method for performing an assay is provided. The assay device, which may be used for determining the concentration of an analyte in a sample, includes a plurality of microchambers and a Field-effect transistor (FET) arranged at the bottom of each of the plurality of microchambers. Capture probe molecules for the analyte can be arranged within the plurality of microchambers such that each microchamber contains at most one capture probe molecule. The FET can be arranged in said microchamber to give a readable output signal based on binding of the analyte, or competitor to the analyte, with the capture probe molecule. |
US11371956B2 |
Methods for stabilizing palladium films
The present disclosure relates to methods of creating a biosensor. A palladium film is deposited onto a surface of a substrate. The palladium film is then treated with an air plasma to stabilize the palladium and reduce or eliminate its catalytic activity. The biosensor is created from the treated palladium film and the substrate. |
US11371952B2 |
Verifying structural integrity of materials
An armor piece may include a tested material. The armor piece also may include a plurality of electrical contacts distributed about and electrically connected to the tested material. The armor piece further may include a non-volatile memory (NVM) device. The NVM device may be hardened against exposure to x-ray radiation. The NVM device may be configured to store control voltages associated with respective electrical contacts of the plurality of electrical contacts. |
US11371950B2 |
Moisture detection element, exhaled gas detector, exhalation test system, and manufacturing method of exhalation detection element
A moisture detection element includes: an insulating substrate of an insulating material; an application part which is formed on the insulating substrate and to which a voltage is applied; an output part which is formed on the insulating substrate and configured to output a voltage signal corresponding in response to a current flowing through an electric path via water molecules adhering to a surface of the insulating substrate under the voltage applied to the application part; and a conductive film which is electrically insulated from the application part and the output part and is provided on the insulating substrate. An insulating film of an insulating material is provided on the application part, the output part, and the conductive film. |
US11371947B2 |
Generating a holographic image to visualize contaminants
Visualizing a contaminant is provided. A contaminant of a plurality of different contaminants included in a contaminant knowledgebase is identified based on analysis of contaminant-relevant data received from one or more sensors of a plurality of different sensor arrays regarding an enclosed physical space. A concentration and a type of the contaminant is identified based on the contaminant-relevant data and information included in the contaminant knowledgebase. A location of the contaminant is identified within the enclosed physical space based on location of the one or more sensors that obtained the contaminant-relevant data and a digital twin of the enclosed physical space. A visualization of the contaminant is projected at an area proximate to the location of the contaminant using a holographic image indicating the concentration and the type of the contaminant within the enclosed physical space. |
US11371946B2 |
Apparatus and method for optical inspection of objects
An apparatus (1) for optical inspection of objects (2) comprises: a conveyor (3) configured to transport the objects (2) in succession, each object (2) having a bottom wall (21), which rests on the conveyor (3), and a side wall (22); an inspection station (4), disposed along the conveyor (3); an illuminator (6) mounted above the inspection station (4) to emit a beam of light rays towards the conveyor (3); a first lens (7) configured to transmit a corresponding beam of collimated rays; a second lens (8) configured to make the light rays converge on the side wall (22) of the object (2) to be inspected. |
US11371945B2 |
Ultrafast colorimetric humidity sensor and method of preparing the same
The present disclosure relates to a colorimetric humidity sensor and a method of preparing the same, and in the colorimetric humidity sensor that is an ultrafast colorimetric humidity sensor including a colorimetric member including humidity-responsive particles configured in a disordered monolayer arrangement on a substrate, the humidity-responsive particles are amorphous, porous, and polydispersed microspheres, and the colorimetric humidity sensor indicates a color change according to humidity upon light irradiation. |
US11371944B2 |
Sheared pad detection systems and methods
Embodiments of the present invention encompass systems and methods for detecting the presence of a test pad on a test strip. Exemplary techniques involve receiving a test strip having at least one test pad, where individual test pads have a pad width with ink disposed on two ink zones at two opposing sides of the width of the pad, illuminating the at least one test pad with a light source, detecting reflected signals from the test pad, generating an image comprising of pixels of the two ink zones based on the reflected signals, detecting the presence of each of the ink zones by comparing the number of consecutive pixels against a predetermined threshold, and determining the presence of the test pad on the test strip if two ink zones are detected within the pad width. |
US11371943B2 |
Coated fiber optic chemical and radiation sensors
Distributed fiber optic chemical and radiation sensors formed by coating the fibers with certain types of response materials are provided. For distributed chemical sensors, the coatings are reactive with the targets; the heat absorbed or released during a reaction will cause a local temperature change on the fiber. For distributed radiation sensors, coating a fiber with a scintillator enhances sensitivity toward thermal neutrons, for example, by injecting light into the fiber. The luminescent components in these materials are taken from conjugated polymeric and oligomeric dyes, metal organic frameworks with sorbed dyes, and two-photon-absorbing semiconductors. The compositions may exhibit strong gamma rejection. Other scintillators combining luminescent materials with neutron converters are available. With a multiple-layer coating, it may be possible to identify the presence of both neutrons and gamma rays, for example. Coatings may be applied during manufacture or in the field. |
US11371936B2 |
Multi-wavelength light radiating apparatus
A multiwavelength-light-radiating apparatus (1) includes: a light source (11) that radiates continuous light (Lc); a diffracting part (12) that diffracts the continuous light (Lc) into numerous monochromatic lights (Lm), whose wavelengths differ from one another, and emits the numerous monochromatic lights (Lm); numerous optical waveguides (2) that respectively transmit the numerous monochromatic lights (Lm) emitted from the diffracting part (12) from incident ends (21) to output ends (22) where the numerous monochromatic lights (Lm) are respectively emitted; and a sample-placement part (3) that holds numerous samples such that the output ends (22) of the numerous optical waveguides (2) respectively oppose the samples. The numerous monochromatic irradiation lights, whose wavelengths differ from one another, are arranged to be radiated simultaneously onto the numerous samples, one light per sample. |
US11371935B2 |
Polymer resin orientation evaluation method
Provided is a polymer resin orientation evaluation method including: setting an axis intersecting a front surface of an object to be inspected as an inspection axis, and acquiring an optical characteristic value of the object to be inspected with respect to a plurality of polarization directions of a terahertz wave around the inspection axis; and evaluating orientation of a polymer resin that constitutes the object to be inspected on the basis of a variation amount of the optical characteristic value with respect to change of the polarization direction. |
US11371934B2 |
Method for correcting light intensity measurement value and concentration measurement device in which reference value is measured at time gate fixed optical length
The present disclosure provides a method for correcting a light intensity measurement value is provided. The method includes: emitting detection light into a measured object; measuring a light intensity measurement value at a measurement position, and measuring light intensity of photons at a benchmark position as a light intensity reference value. A sensitivity of the light intensity of photons to a concentration change of a specific substance in the measured object is less than or equal to a preset threshold, and a change rate of the light intensity at the measurement position with a concentration of the specific substance in the measured object is greater than a change rate of the light intensity at the benchmark position with the concentration of the specific substance; correcting the light intensity measurement value by using the light intensity reference value. The present disclosure further provides a concentration measurement device. |
US11371933B2 |
Electromagnetic metamaterial cells, detectors comprising the same, and methods of their use
Electromagnetic metamaterial cells are described. An example of an electromagnetic metamaterial cell includes spatially separate absorptive features disposed in a planar rotationally symmetric arrangement. Each of the absorptive features may include a curvilinear segment that is convex relative to a center of symmetry of the arrangement. In some embodiments, each of the absorptive features includes one or more forks extending from the curvilinear segment. Each of the one or more forks may include a stem and at least two tines extending from the stem. The electromagnetic metamaterial cell may be included in a detector, such as a microbolometer, which itself may be included in a Fourier-transform infrared spectroscopy (FTIR) system. In some embodiments, the FTIR system may be used to characterize fluid in a wellbore. The fluid may be a drilling fluid or a downhole fluid, such as crude oil. |
US11371931B2 |
Methods and instruments for measuring samples in a well plate
Methods and instruments for measuring a liquid sample (S1) in a well plate (50) by means of an optical chip 10. The chip (10) comprises an optical sensor (13) that is accessible to the liquid sample (S1) at a sampling area (SA) of the chip. A free-space optical coupler (11,12) is accessible to receive input light (L1) and/or emit output light (L2) via a coupling area (CA) of the chip (10). The sampling area (SA) of the chip 10 is submerged in the liquid sample (S1) while keeping the liquid sample (S1) away from the coupling area (CA) for interrogating the optical coupler (11,12) via an optical path (P) that does not pass through the liquid sample (S1). |
US11371929B2 |
Systems, devices and methods for three-dimensional imaging of moving particles
Disclosed are methods, devices, systems and applications for camera-less, high-throughput three-dimensional imaging of particles in motion. In some aspects, a system includes a particle motion device to allow particles to move along a travel path; an optical illumination system to produce an asymmetric illumination area of light in a region of the travel path of a particle that scans over a plurality of sections of the particle at multiple time points while the particle is moving; an optical detection system optically interfaced with the particle motion device to obtain optical signal data associated with different parts of the particle corresponding to the particle's volume during motion in the travel path; and a data processing unit to process the optical signal data obtained by the optical detection system and produce data including information indicative of 3D features of the particle. |
US11371925B2 |
Measurement apparatus for measuring mass concentration of particles using correlation of number concentration, humidity and concentration and measurement method for measuring mass concentration of particles using correlation of number concentration, humidity and concentration
A measurement apparatus includes: a number concentration measurement device configured to measure a number concentration of particles in a air; a humidity measurement device configured to measure a humidity of the air; and a air concentration measurement device configured to measure a concentration of a specific air in the air, wherein a mass concentration of the particles in the air is calculated based on a measured number concentration, a measured humidity, a measured concentration of the specific air, and a predetermined correlation between the number concentration, the humidity, and the concentration of the specific air, and the mass concentration of the particles in the air. |
US11371921B1 |
Clamp and shear test device
A clamp and a shear test device are provided, and relate to the technical field of rock mass mechanics tests. The clamp comprises a box body, wherein an opening is formed in one side of the box body, two clamping structures are oppositely arranged in the box body, a sample is arranged between the two clamping structures, each clamping structure comprises an adjusting mechanism, and a distance between the two clamping structures is adjusted through adjusting mechanisms of the two clamping structures. According to the clamp, real-time dynamic adjustment is conveniently and rapidly achieved, the stability of sample clamping is ensured, and therefore the requirement that the shear load can be truly and effectively transmitted to the sample through the box body is met. |
US11371920B2 |
Sample container and use of a sample container
A sample container (1) with a sample-receiving chamber (2) and with a closure piece (3) for closing the sample-receiving chamber (2) in a sealed manner. The sample container (1) has at least two seals (4, 5, 15, 16) arranged separately from each other, and/or the sample-receiving chamber (2) is subdivided into at least two compartments (6) which are thermally decoupled from each other and are connectable by liquid, and/or the sample container (1) has, on an outer wall (7) of the sample-receiving chamber (2), at least one coupling point (8) for the docking of an auxiliary container (9) via a matching counter-coupling point (10) of the auxiliary container (9). The outer wall (7) has at least one predetermined breaking point (11), which is pierced through upon coupling to the auxiliary container (9). |
US11371916B1 |
Passive sampling of airborne particles with the aid of natural air flow
An apparatus for passive sampling of airborne particles such as those found in an aerosol is disclosed. The passive sampler is designed to take advantage of natural air flow to collect airborne particles, such as those contained in an aerosol, for subsequent analysis. The passive sampler increases the sampling efficiency for diffusion and electrostatic collection of particles by using natural airflow or movement to bring particles closer to the deposition surface. Alternately charged electret filters further increase the sampling efficiency. |
US11371913B2 |
Methods and devices for sample capture using gas-pulse nanoparticle displacement
The present disclosure provides for sampling instruments and methods of collecting sample particles. The sampling instrument can include a high-pressure pulsed valve coupled to a gas flow system to displace a sample from a surface. Also included can be a voltage supply coupled to a voltage switch, a suction device, a sample collector, and a collection filter. To collect a sample, extractive particles can be deposited onto a sample present on a substrate. At least a portion of the sample becomes coupled to a portion of the extractive particles to form sample particles. High-pressure gas can be discharged at the sample, thereby aerosolizing a portion of the sample particles to disperse aerosolized sample particles. A portion of the aerosolized sample particles can be collected onto a collection filter to form a collected sample. |
US11371909B2 |
Lifespan diagnosis device, method, non-transitory storage medium, and system for motion guidance device
A lifespan diagnosis device for a motion guidance device including: a stress calculating means which calculates stresses during movement for each of virtual segments, the stresses during movement being stresses that occur in each segment during a movement of the moving member; a counting means which counts, for each of the segments, on the basis of the amount of displacement, the number of occurrences of the stresses during movement which repetitively occur with waving during a movement of the moving member along the track; and a diagnostic means which calculates, for each of the segments, a lifespan exhaustion ratio on the basis of magnitudes of the stresses during movement and the number of occurrences of the stresses during movement, and which diagnoses the lifespan of the motion guidance device on the basis of the calculated lifespan exhaustion ratios of the respective segments. |
US11371908B2 |
Wind tunnel testing device for torsional-vertical coupled free vibration with adjustable frequency ratio
The invention discloses a coupled free vibration wind tunnel testing device with adjustable frequency ratio of torsional-vertical vibration, belonging to the technical field of bridge wind tunnel testing device. The device includes rigid testing model, lightweight rigid rods, lightweight rigid circular hubs, thin strings, linear tensile springs, carbon fiber ropes, and lightweight small hubs. The invention adjusts the torsional stiffness of the system by conveniently changing the diameter of the small hub, the diameter and length of the carbon fiber rope, etc. The device has the advantages of simple structure, convenient installation and avoiding the previous tedious work. It can achieve a variety of torsional-vertical vibration frequency ratio testing conditions by using only one diameter large hub. It can not only greatly save the time of replacing the large hub, but also facilitate the realization of higher torsional-vertical vibration frequency ratio testing conditions which are difficult to achieve by the previous methods. |
US11371904B2 |
Sensor module and sensor system with improved abnormality detection and abnormality determination method for an inertial sensor
A sensor module that includes an inertial sensor and an abnormality determination unit that determines that the inertial sensor is abnormal when a structural resonance frequency at the first time point and a structural resonance frequency at the second time point are separated by a predetermined value or more. |
US11371901B2 |
Pressure gauge capable of releasing pressure safely
A pressure gauge includes a hollow tube, a drive element, an anti-leak spring, a resilient element, and a cap. The hollow tube includes an accommodation chamber, a connector having a conduit, and a display unit. The drive element includes a protection unit, a first open segment, a second distal segment, a receiving portion, a hollow extension, and a protrusion. An anti-leak spring is received in the hollow extension of the drive element and abuts against the protrusion and the protection unit. The resilient element is received in the receiving portion. The cap includes a seat, a push bolt, and multiple passages. The accommodation chamber has a first fixing section and a second fixing section, a diameter of which is different from that of the first fixing section. The hollow tube further includes a tilted surround section and at least one discharge orifice. |
US11371898B2 |
Pressure sensor including increased processing precision
A pressure sensor that includes a housing with an upper housing part and a lower housing part, the upper housing part and the lower housing part being configured such that a chamber is formed between them. A diaphragm is provided between the upper housing part and the lower housing part, and dividing the chamber into an upper chamber and a lower chamber. A magnetic core is linked to the diaphragm. An operating spring includes a top end and a bottom end, the top end being supported against the upper housing part and the bottom end being supported against the magnetic core. At least one of the top end and the bottom end of the operating spring is provided with an adhesive layer. The pressure sensor enables the operating spring and the magnetic core to move integrally with each other, thereby improving the precision of the pressure sensor. |
US11371896B2 |
Sensor module containing elongate piezoelectric substrate and pressure distribution sensor provided with the same
A sensor module includes a holding member formed of an elastic body, a pressure bearing face provided at the holding member and configured to bear pressure, an adjoining face provided at the holding member so as to adjoin the pressure bearing face and configured to undergo deformation in accordance with the pressure borne by the pressure bearing face, and an elongate piezoelectric substrate arranged on the adjoining face. |
US11371894B2 |
Method for the in-situ calibration of a thermometer
The present disclosure relates to a method and apparatus for in-situ calibration and/or validation of a thermometer having a temperature sensor and a reference element composed at least partially of a material that undergoes a phase transformation at a phase transformation temperature, wherein the material remains in the solid phase in the phase transformation, the method including detecting and/or registering a measured value from the temperature sensor; detecting and/or registering a reference variable of the reference element; detecting the occurrence of the phase transformation based on a change of the reference variable; ascertaining a phase transformation time at which the phase transformation occurs; determining a sensor temperature using the temperature sensor at a measurement time that has the shortest time separation from the phase transformation time; and comparing the sensor temperature with the phase transformation temperature and/or determining a difference between the sensor temperature and the phase transformation temperature. |
US11371891B2 |
Semiconductor device, semiconductor package, semiconductor module, and semiconductor circuit device
A semiconductor device that can detect temperature appropriately is provided. A semiconductor device provided with a semiconductor substrate in which one or more transistor portions and one or more diode portions are provided is provided, including: a temperature detecting portion provided above the top surface of the semiconductor substrate and having a longitudinal side in a predetermined longitudinal direction; a top surface electrode provided above the top surface of the semiconductor substrate; and one or more external lines that have a connecting part connected with the top surface electrode and electrically connect the top surface electrode to a circuit outside the semiconductor device. The temperature detecting portion extends across the one or more transistor portions and the one or more diode portions in the longitudinal direction, and the connecting part of at least one of the external lines is arranged around the temperature detecting portion when seen from above. |
US11371888B2 |
Microbolometer apparatus, methods, and applications
A polarization and color sensitive pixel device and a focal plane array made therefrom. Each incorporates a thick color/polarization filter stack and microlens array for visible (0.4-0.75 micron), near infrared (0.75-3 micron), mid infrared (3-8 micron) and long wave infrared (8-15 micron) imaging. A thick pixel filter has a thickness of between about one to 10× the operational wavelength, while a thick focal plane array filter is on the order of or larger than the size or up to 10× the pitch of the pixels in the focal plane array. The optical filters can be precisely fabricated on a wafer. A filter array can be mounted directly on top of an image sensor to create a polarization camera. Alternatively, the optical filters can be fabricated directly on the image sensor. |
US11371887B2 |
Tunable coherent light filter for optical sensing and imaging
Systems and methods are provided for filtering coherent infrared light from a thermal background for protection of infrared (IR) imaging arrays and detection systems. A Michelson interferometer is used for coherent light filtering. In an implementation, a system includes a fixed mirror, a beam splitter, and a moving mirror which can be controlled translationally, as well as tip/tilt. The Michelson interferometer may be used as an imaging system. For imaging applications, a system may comprise a tunable array of micro-electromechanical systems (MEMS) mirrors. A mid-wave IR interferometer with electronic feedback and MEMS mirror array is provided. |
US11371885B2 |
Optical sensor circuit
An optical sensor circuit is provided. In the optical sensor circuit, an output stage circuit transmits a voltage of first and second node to the output line according to a first driving signal. A first sensor is configured to generate a first photocurrent according to a first color light that senses an ambient light, and generate a second photocurrent according to a second color light. A second sensor is configured to generate a third photocurrent according to a third color light, and generate a fourth photocurrent according to the second color light. In a sensing phase, when the first sensor senses the first color light, and the second sensor senses the third color light, the first sensor adjusts a voltage level of the voltage according to the first photocurrent, and the second sensor adjusts the voltage level of the voltage according to the third photocurrent. |
US11371875B2 |
Nondestructive inspection method and nondestructive inspection system
According to an embodiment, a nondestructive inspection method includes: detecting, by a plurality of sensors installed in a truck that supports a vehicle body, an elastic wave generated when a lifting member inserted between the vehicle body and the truck moves the vehicle body up and down; and estimating, by an evaluation device, a position of a defect in the truck, based on the elastic wave detected by the plurality of sensors. |
US11371873B2 |
Vehicle based fluid meter tester
The disclosed technology is a portable/mobile test bench apparatus and method for testing the accuracy of fluid flow meters. The system comprises an improved drain line system that better removes the test fluid after testing. The system is configured to automatically test the fluid meter at a plurality of flow rates and record the test data as well as transfer the test data to a centralized database. |
US11371871B2 |
Sensor unit, fluid power unit with sensor unit and method for measuring parameters of a fluid
A sensor unit is described for measuring parameters of a fluid, in particular a hydraulic fluid, in a fluid power unit, in particular a hydraulic power unit, as well as a fluid power unit with a sensor unit and a method for measuring parameters of a fluid in a fluid power unit. The sensor unit has a contact module and two electrode pairs with two electrodes each. The electrode pairs are connected to the contact module and the longitudinal axes of the electrode pairs are arranged essentially perpendicular to each other. This enables capacitive fluid level measurements with different orientations of the sensor unit without the need to adjust the sensor system. The additional measurement of other parameters of the fluid by means of the method efficiently allows for statements about the quality of the fluid to be made. |
US11371870B2 |
Air flow rate measurement device
An air flow rate measurement device includes a flow rate detection unit, a detected flow rate response compensation unit, a pulsation amplitude calculation unit, a correction value calculation unit, and an error correction unit. The flow rate detection unit detects a detected flow rate. The detected flow rate response compensation unit advances a response time of the detected flow rate and calculating a compensation flow rate which is an output obtained by compensating for a response delay of the detected flow rate. The pulsation amplitude calculation unit calculates a pulsation amplitude correlated with a pulsation amplitude in the detected flow rate. The correction value calculation unit calculates a pulsation correction value which is a value for correcting the compensation flow rate based on the pulsation amplitude. The error correction unit corrects the compensation flow rate based on the pulsation correction value. |
US11371869B2 |
Unitized measuring element for water meter assembly
Systems and methods described herein provide a water meter assembly that includes a main case, which may be permanently situated in-line with a monitored piping system, and an interchangeable measuring element installed within the main case. The measuring element may include solid state ultrasonic components to measure fluid flow through the measuring element. The systems and methods allow for installation and/or replacement of the measuring element (e.g., a field installation) without removal of the main case and without additional calibration. According to an implementation, all measuring components may be included within the measuring element to allow for interchangeability. One measuring element may be swapped out with another measuring element (e.g., a replacement or upgrade) without disconnecting from pipe sections to which the main case is attached. |
US11371867B2 |
Fluid flow obstruction device for a process fluid flow measurement device
A fluid flow obstruction device for a process fluid flow measurement device includes a first wall having a first side. A second wall having a proximate end is arranged at a proximate end of the first side of the first wall. The arrangement forms a first apex between the first wall and the second wall. At least one additional wall is arranged parallel to the second wall at a distance from the proximate end of the first side of the first wall. The arrangement of the at least one additional wall and the first wall forms a corresponding additional apex. |
US11371863B2 |
Rotational angle detection apparatus and rotating machine apparatus
A rotational angle detection apparatus is provided with a magnet disposed so as to be rotatable integrally with an axis of rotation, having a substantially circular shape when viewed along the axis of rotation, and including a magnetization vector component in a direction orthogonal to the axis of rotation; a magnetic sensor that outputs a sensor signal on the basis of change in a magnetic field accompanying rotation of the magnet; and a rotational angle detector that detects a rotational angle of the rotating body on the basis of the sensor signal output by the magnetic sensor; wherein the magnet has a curved inclined surface with a concave shape along the axis of rotation from a prescribed position on the outer side in a radial direction toward the axis of rotation, and when a circular virtual plane orthogonal to the axis of rotation and centered at the axis of rotation is established at a position opposed to the curved inclined surface, the magnetic sensor is disposed at a position at which the amplitudes of a magnetic field intensity Hr in a radial direction and a magnetic field intensity Hθ in a circumferential direction on the virtual plane are substantially the same, and the magnetic field intensities Hr and Hθ in the radial direction and/or the circumferential direction is output as the sensor signal. |
US11371862B2 |
Magnetic sensor device, system and method
Angular position sensor system comprising: a cylindrical magnet rotatable about a rotation axis; and an angular position sensor device comprising: a substrate comprising a plurality of magnetic sensitive elements configured for measuring a first magnetic field component in a first direction and a second magnetic field component in a second direction perpendicular to the first direction; and a processing circuit configured for calculating the angular position; the sensor device being oriented such that the first direction is oriented in a circumferential direction, and the second direction is either parallel or orthogonal to the rotation axis; the sensor device being located at a predefined position where a magnitude of a third magnetic field component orthogonal to the first and second magnetic field component is negligible over the 360° angular range. |
US11371859B1 |
Computer-implemented method, wearable device, computer program and computer readable medium for assisting the movement of a visually impaired user
In a first aspect of the invention, it is claimed a computer-implemented method for assisting the movement of a visually impaired user by means of a wearable device 1, comprising the following steps:S1—Acquiring data from the environment of the visually impaired userS2—Fusing the acquired data, creating, repeatedly updating of a Live MapS3—Determining, repeatedly updating and storing, of at least one navigation path together with associated navigation guiding instructions for the visually impaired user to navigate from the current position of the visually impaired user to a point of interest, repeatedly selecting one preferred navigation path from the at least one navigation path, and repeatedly sending to the visually impaired user the preferred navigation path, together with associated navigation guiding instructions. |
US11371848B2 |
Method for characterising an inertial measurement unit
A method of characterizing an inertial measurement unit includes a block carrying one accelerometer positioned on an axis of a measurement reference frame and having one gyro arranged to determine the orientation of the frame relative to an inertial reference frame. The method includes keeping the inertial measurement unit centered on a point that is stationary relative to the ground and that is in a predetermined environment, to obtain accelerometer signals that are images of at least one component of the specific force vector in the measurement reference frame and also gyro signals that are images of at least one component of the instantaneous rotation of the measurement reference frame; processing the signals to obtain data representative of projecting of the specific force vector into the inertial reference frame, after compensating for rotation of the Earth; and calculating Allan variance on the data and comparing it with reference data. |
US11371846B2 |
Systems and methods for determining the position of a device
Systems and methods for determining the position of a device or vehicle by using celestial information captured by an imaging apparatus. The systems and methods identify a star set in the celestial information, generate a star set fingerprint and compare the star set fingerprint with reference celestial information. Once a comparison is made, the location of the device or vehicle can be determined and used within a celestial navigation system. |
US11371845B2 |
Graphical user interface (GUI) within CRM solution enabling layer views for connected devices
A geo-analytical program is integrated into a customer relationship management (CRM) solution. Via the geo-analytical program, users are able to define layer configuration settings for a layer for plotting on a map-based GUI. Layer configuration settings for a respective layer comprise an indication of a data object type serving as a base object type for the respective layer. A method involves receiving from a user user-defined configuration settings for a first layer, electronically receiving, at a geospatial computer system, geospatial data for a plurality of connected devices; electronically receiving, at the geo-analytical program from the geospatial computer system, real-time geospatial data for the plurality of connected devices; and utilizing, by the geo-analytical program, the user-defined layer configuration settings for the first layer to plot the first layer on the map-based GUI based on the received real-time geospatial data for the plurality of connected devices. |
US11371842B2 |
Multi-layer silicon nitride waveguide based integrated photonics optical gyroscope chip with electro-optic phase shifter
An integrated photonics optical gyroscope fabricated on a silicon nitride (SiN) waveguide platform comprises a first silicon nitride (SiN) waveguide layer that constitute a rotation sensing element; and, a second SiN waveguide layer with additional silicon nitride (SiN) waveguide-based optical components that constitute a front-end chip to launch light into and receive light from the rotation sensing element. The two SiN waveguide layers can be stacked together to have a multi-layer configuration vertically coupled with each other. External elements (e.g., laser, detectors, phase shifter) may be made of different material platform than SiN and can be hybridly integrated to the SiN waveguide platform. The phase shifters can be made of lithium niobate or other electro optic material. |
US11371836B2 |
Device for the contactless three-dimensional inspection of a mechanical component with toothing
A device is proposed for the contactless three-dimensional inspection of a circular, mechanical component (20) with toothing having a main axis of rotation, comprising: means for scanning the teeth, comprising at least one first pair of laser measurement modules (12A, 12B) and means for the rotational driving (11), about the main axis, of said component relative to the laser measurement modules; means for rebuilding a virtual three-dimensional representation of the component using data coming from said scanning means; means of dimensional inspection using the three-dimensional representation; each pair of modules comprising a first module oriented towards a first face of a tooth and a second module oriented towards a second face of a tooth; the modules being oriented relative to the component so that during a rotation of the component, the scanning means scan the first and second faces of each tooth throughout their thickness and depth. |
US11371834B2 |
Measuring device
A measuring device includes a measuring unit that measures the morphology of a convex portion, and a position fixing unit that includes an opening in which the convex portion is to be disposed and a fixing member which includes the opening at a center thereof and against which the periphery of the convex portion is to be pressed. The size of the opening of the position fixing unit is capable of being changed. |
US11371833B2 |
Calibration of depth sensing using a sparse array of pulsed beams
Depth sensing apparatus includes a radiation source, which is configured to emit a first plurality of beams of light pulses toward a target scene. An array of a second plurality of sensing elements is configured to output signals indicative of respective times of incidence of photons on the sensing element, wherein the second plurality exceeds the first plurality. Light collection optics are configured to image the target scene onto the array of sensing elements. Processing and control circuitry is coupled to receive the signals from the array and is configured to search over the sensing elements in order to identify, responsively to the signals, respective regions of the array on which the light pulses reflected from the target scene are incident, and to process the signals from the identified regions in order determine respective times of arrival of the light pulses. |
US11371832B2 |
Device and method for contactless thickness measurement of a planar object
A measuring device for measuring thickness of a planar object, where the measuring device comprises a first optical sensor module and a second optical sensor module that located on opposites of the measured planar object with mutual distance the optical sensor modules having at least one light source, a reference shade with two dimensional pattern and an imaging sensor and computing equipment, where the one light source is set to an angle towards measured object and the reference shade is set between the light and the object so that a shadow forms on the surface of the object and the imaging sensor is set so it can detect the reference shade and the shadow while the computing equipment calculates the distance between the surface of the object and sensor module from the distance between the detected shade and shadow of both optical modules and calculate the thickness of the object. |
US11371828B2 |
Coordinate measuring machine and method for measuring coordinates of a workpiece
A coordinate measuring machine has a measurement head having a point measurement device which measures first coordinates of only a single point on the surface of a workpiece at a given time. An area measurement device records images of a reference surface. A displacement device displaces the measurement head and/or the workpiece such that they assume different relative positions with respect to one another. An evaluation device calculates a shift between images that the area measurement device has recorded of the reference surface at different times at different relative positions, with a stitching algorithm. Based on this, second coordinates of the measurement head, which are defined relative to the reference surface, are determined. By linking the first coordinates with the second coordinates, third coordinates are determined, which define the points on the surface of the workpiece measured by the point measurement device relative to the reference surface. |
US11371827B2 |
Multiple scale analysis of core sample to estimate surface roughness
Measurements of a core sample at scales of measurement that differ by multiple orders of magnitude can be used to calculate a value that fairly represents surface roughness of the core sample. This surface roughness value can be used to determine petrophysical properties of the subsurface formation from which the core sample was obtained. The measurements can be nuclear magnetic resonance (NMR) diffusion-relaxation and gas-adsorption measurements. Surface relaxivities at the different scales are determined from the measurements and a ratio those surface relaxivities can be used to calculate the surface roughness value. |
US11371824B2 |
Stray field robust out of shaft angle sensor and measurement system
The described techniques address the issues associated with conventional OoS sensor systems by mounting a magnetized ring onto a rotatable shaft for which an angular position is to be measured. Specific sensor configurations are disclosed regarding each magnetic sensor's position with respect to one another and each magnetic sensor's position with respect to the rotatable shaft. The described configurations provide a stray-field robust solution due to the specific magnetic sensor configurations such that, when stray fields are present, pairs of magnetic sensors are exposed to essentially the same stray field components, which thus cancel one another. Thus, the angle of the rotatable shaft as a function of the measured strength of the magnetic field components at any time instant can be calculated even in the present of stray magnetic fields. |
US11371821B2 |
Method for extracting gear tooth profile edge based on engagement-pixel image edge tracking method
A method for extracting a gear tooth profile edge based on an engagement-pixel image edge tracking method includes defining a transmission ratio relationship between a cutter and an envelope tooth profile, setting a cutter profile step size and an envelope step size, acquiring instantaneous contact images at different engaging times, and performing a binarization processing on each curve envelope cluster image; sweeping a boundary of an envelope curve cluster, acquiring pixel points of the edge; preliminarily tracking a tooth profile edge, and then performing a secondary extraction and compensation on the pixel points; calibrating coordinates of a cutter profile; extracting a pixel coordinate of an instantaneous engaging point; converting the pixel points among different instantaneous engaging images; extracting a final tooth profile coordinate of the gear, and performing a tooth shape error analysis and a contact line error analysis. |
US11371817B2 |
Multipurpose projectile apparatus, method of manufacture, and method of use thereof
The invention comprises a projectile, compliant with the U.S. Code of Federal Regulations and/or the United States Code, such as 18 U.S.C. § 921(a)(17)(B), which regulates bullet materials and mass fractions. For example, the invention is to a projectile comprising: (1) a metal core, such as a cobalt alloy core, including a base and a tip, where the base and the tip are separated by a core length along a z-axis running longitudinally through a center of the metal core; and (2) a jacket circumferentially attached to the metal core, the jacket surrounding at least fifty percent of the core length of the metal core, where the jacket includes: a polymer and a first jacket radial thickness along at least a section of an interquartile portion of the core length of greater than 0.03 inches. |
US11371814B2 |
Ground-projectile guidance system
A range extension unit extends the range of a guided mortar bomb. The range extension unit includes a housing interface defining an internal cup that receives a rear portion of a guided mortar bomb, wherein the housing interface covers a rear portion of the mortar bomb. The housing interface, when coupled to the mortar bomb, collectively forms an aerodynamically shaped body with the mortar bomb. At least two deployable wings are attached to the housing interface, wherein the wings transition between a retracted state and a deployed state. |
US11371809B1 |
Systems and methods for addressing tactical situations via electronic and robotic devices
A method for addressing tactical situations via tactical devices may include (i) observing, via a device associated with an operator, a tactical situation involving the operator, (ii) retrieving, from a set of data about the operator, at least one attribute of the operator that is relevant to the tactical situation, (iii) gathering at least one attribute of the environment of the tactical situation from at least one sensor device monitoring the environment, and (iv) calculating a success probability for a by the operator the addresses the tactical situation based on the at least one attribute of the operator that is relevant to the tactical situation and the at least one attribute of the environment of the tactical situation. Various other systems, and methods are also disclosed. |
US11371805B2 |
Range finding display with power and angle indicators
An enhanced display reticle for a range finding device, the reticle including a display in communication with a rangefinder and an inclinometer, the display defining a live angle meter and a power meter, the live angle meter including a plurality of incline hashes, the power meter including a plurality of strength hashes; a processor configured to illuminate one or more of the plurality of incline hashes in response to a signal from the inclinometer; illuminate one or more of the plurality of strength hashes in response to a signal received from the laser rangefinder. |
US11371803B2 |
Weapon interface panels
In an example embodiment, there is disclosed herein a molded panel configured for mounting on a rail of a weapon, the molded panel having a slot that will allowing a cavity to be opened into the panel for allowing a friction fit insert to be inserted into the slot, The friction insert causes the molded panel to be locked onto a rail while the friction fit is inserted into the cavity. |
US11371802B2 |
Handguard quick dismantling structure of toy gun
A handguard quick dismantling structure is provided for a toy gun and includes a barrel portion that has a barrel pivoting portion, a handguard portion that has a handguard pivoting portion, a barrel retaining piece including a barrel connecting portion and barrel coupling portion respectively arranged at opposite locations, and a handguard retaining piece including a handguard connecting portion and a handguard coupling portion respectively arranged at opposite ends. The handguard retaining piece is such that when the handguard portion and the barrel portion are combined, the handguard coupling portion is in coupling engagement with and fixed to the barrel coupling portion, and when the handguard portion and the barrel portion are separated, the handguard coupling portion is disengageble from the barrel coupling portion to achieve an effect of quick dismantling of the handguard. |
US11371796B1 |
Drag adjusting reel assembly
A drag adjusting reel assembly suitable for facilitating selective manual adjustment of a drag force applied to a fishing line may include a reel mount bracket configured for mounting on a fishing bow. A reel shaft may be carried by the reel mount bracket. A line spool may be drivingly engaged for rotation by the reel shaft. A drag adjusting mechanism may include a drag adjusting bracket carried by the reel mount bracket. A spool extension may extend from and be rotational with the line spool. The spool extension may be disposed adjacent to the drag adjusting bracket. A drag adjusting lever may include a cam having a cam surface configured to selectively actuate the spool extension against the drag adjusting bracket. The cam may be rotational between a free-spooling position in which the cam surface disengages or minimally engages the spool extension and the spool extension disengages or minimally engages the drag adjusting bracket, respectively, and a maximal drag, spool locking position in which the cam surface maximally engages the spool extension and the spool extension maximally engages the drag adjusting bracket. At least one lever arm may extend from the cam. |
US11371790B2 |
Housing
A method for producing a weapon housing and to a weapon housing. Said method is characterized in that the weapon housing includes at least two sub-assemblies, an inner contour being cut into at least one solid block for each sub-assembly. The solid block is a steel block. Openings and recesses are introduced into the at least two sub-assemblies. |
US11371788B2 |
Heat exchangers with a particulate flushing manifold and systems and methods of flushing particulates from a heat exchanger
A heat exchanger including a body. The body includes a plurality of heat transfer pathways, and a flushing manifold formed with the body of the heat exchanger. The flushing manifold includes a plurality of nozzles oriented so as to spray a flushing fluid onto, into, or both onto and into one or more of the plurality of heat transfer pathways. A method of flushing particulates from a heat exchanger including supplying a flushing fluid through a flushing manifold formed with a body of a heat exchanger, and spraying the flushing fluid onto, into, or both onto and into one or more heat transfer pathways using one or more nozzles in fluid communication with the flushing manifold. |
US11371785B2 |
Cooling system and fabrication method thereof
A cooling system for a cold spray nozzle or a thermal spray barrel and a fabrication method thereof are provided. The cooling system includes a sleeve with cooling fins that encapsulate a spray nozzle or barrel to enable heat transfer from the nozzle or barrel to the fins and then to the external ambient environment. The sleeve may optionally include one or more channels with cooling tubes to enable enhanced cooling with a cooling medium flowing through the tubes and across the fins. |
US11371784B2 |
Heat dissipation unit and heat dissipation device using same
A heat dissipation unit and a heat dissipation device using same are disclosed. The heat dissipation device includes a base and one or more heat dissipation units. The base has a first side and an opposite second side; and the heat dissipation units respectively include at least one radiation fin correspondingly provided on the first side of the base. The radiation fin is formed by correspondingly closing a first plate member and a second plate member to each other, such that a plurality of independent flow channels is defined between the closed first and second plate member. The independent flow channels communicate with each other. And, the independent flow channels respectively have an amount of working fluid filled therein. |
US11371779B2 |
Melting furnace with simultaneously rotatable and movable electrode rod
Melting furnace (1), in particular for the production of metal alloys by melting alloying constituents, with a melting crucible (10), a cylindrical electrode rod (40) with a consumable electrode (41) attached thereto and a power supply (50) that is configured to supply the electrode (41) with power via the electrode rod (40), wherein the electrode rod (40) can be rotated about its own axis and moved along its own axis during the melting process. |
US11371778B2 |
Shoulder pad dryer and hanger
A shoulder pad dryer and hanger is shown and described. The shoulder pad dryer and hanger includes a central support. The central support has a pair of cross supports connected opposite each other. The central support and the pair of cross supports are hollow such that air flows through the interior of the device. The central support and the pair of cross supports have apertures therein to allow air to pass therethrough. There is a hook located at the top of the central support. At the bottom of the central support there is a fan to force air through the device. There is a shoulder pad support system attached to each of the cross supports that will keep shoulder pads suspended from the device allowing air to flow beneath the pads. |
US11371776B2 |
System and apparatus for drying hay bales
A bale dryer including a support frame, at least one air intake manifold movably coupled to the support frame for supplying heated air, a bale retainer coupled to the support frame and configured for retaining at least one bale in a fixed position vertically spaced from the at least one air intake manifold, and an actuator coupled to the at least one air intake manifold and configured to move the at least one air intake manifold between a retracted position and an extended position. |
US11371772B2 |
Refrigerator
A refrigerator includes a cabinet including an inner case, and a drawer assembly installed in the inner case. The drawer assembly includes a basket which forms a receiving space and can be pulled in and out of the inner case, a supporter assembly connected to the basket to guide an insertion or withdrawal of the basket, and a cover connected to the supporter assembly to cover or uncover the receiving space. The cover may be movable in a direction opposite to a movement of the basket when the basket is inserted or withdrawn. The basket includes a protrusion configured to engage with or disengage from a notch of a connection member to facilitate or prevent transmission of a movement force of the basket to the cover. |
US11371771B2 |
Household appliance comprising shelf arrangement
The present disclosure refers to a household refrigeration appliance and, more specifically, to a household refrigeration appliance with a multifunctional shelf. A multifunctional shelf arrangement is provided, including: a shelf comprising a frame that is physically associated to the walls of an internal box by shelf rails; the frame comprising lateral, front and rear portions, as well as at least one accessory physically associated to the shelf by accessory rails defining at least one track for displacement of the accessory. Specifically, in accordance with this disclosure, the frame comprises a plurality of receiving structures and the accessory rails comprise fitting projections which engage directly with the receiving structures of the frame, so that the attachment rails are removably fitted with the receiving structures. |
US11371769B2 |
Storage system for house entrance
A storage system for a house entrance includes an entrance refrigerator, a storage placed at a rear of the entrance refrigerator, and a blocking plate covering a gap formed between the entrance refrigerator and the storage. An intake hole is provided at a lower portion of the blocking plate and a discharge hole is provided at an upper portion of the blocking plate. |
US11371765B2 |
Refrigeration system with brushless DC motor compressor drive
A refrigeration system for a temperature-controlled storage device includes a refrigeration circuit, a cooling circuit, and a controller. The refrigeration circuit includes a compressor driven by a brushless DC motor operable at multiple different speeds, a first heat exchanger, an expansion device, and a cooling unit in fluid communication via a first working fluid. The cooling circuit includes a pump and a second heat exchanger in fluid communication with the first heat exchanger via a second working fluid such that the first heat exchanger is liquid-cooled by the second working fluid. The controller operates the brushless DC motor at multiple different speeds to accommodate multiple different thermal loads experienced by the refrigeration system. Each of the speeds corresponds to a different thermal load. The controller modulates the speed of the brushless DC motor to maintain a desired temperature of a temperature-controlled space within the temperature-controlled device. |
US11371759B2 |
Valve comprising a dual piston assembly and method of forming a valve
A valve for a refrigeration system and a method of forming a valve includes a dual piston assembly having an inner piston (44) and an outer piston (42) that are moveable relative to each other to control pressure equalization flow through the valve, and an adjustable control stem (66) engageable with the outer piston that enables a low fluid equalization flow when in a first position and a variably higher fluid equalization flow when in a variable second position. The inner piston has a plurality of bleed orifices (46, 48) that are openable by movement of the outer piston relative to the inner piston. |
US11371754B2 |
GM cryocooler
A GM cryocooler includes a valve portion which defines a valve group including a first intake valve, a first exhaust valve, and a pressure equalizing valve. A valve rotor of the valve portion includes a rotor plane which is in surface contact with a stator plane of a valve stator. The valve rotor includes a high pressure flow path which is open to the rotor plane to form a portion of the first intake valve, a low pressure flow path which is open to the rotor plane to form a portion of the first exhaust valve, and a pressure equalization flow path which is open to the rotor plane to form a portion of the pressure equalizing valve, and the high pressure flow path, the low pressure flow path, and the pressure equalization flow path are circumferentially arranged around a valve rotation axis on the rotor plane. |
US11371753B2 |
Field configuration of commercial water heaters
A system and method for configuring a water heater. The method includes capturing, with a mobile device a scannable feature of a rating plate, establishing a network connection between the mobile device and a server, transmitting information captured from the scannable feature by the mobile device to the server over the network connection, receiving from the server to the mobile device a plurality of water heater configurations in response to the information, receiving, with the mobile device, an input indicative of a configuration selection selected from the plurality of water heater configurations, and transmitting configuration information from the mobile device to the water heater to configure the water heater based on the configuration selection. |
US11371752B2 |
Gas valve control system for a water heater
A system and method of operating a water heater controller that includes a powered vent electronic control circuit including a controller configured to control an operation of heating device having a powered draft inducer, a gas valve assembly configured to control a flow of a fuel gas to a burner of a heating device, and a switch assembly including a switch in each leg of a plurality of legs of a power supply to the gas valve assembly, the switch assembly configured to supply power and a return to the gas valve assembly in a first position and to open the plurality of legs of the power supply to the gas valve assembly in a second position, the switch assembly configured to indicate a position of the switch assembly to the controller. |
US11371750B2 |
WIFI and cloud enabled temperature control system
Disclosed herein are WIFI and could enabled temperature control systems. The temperature control systems are configured to receive user temperature settings and preferences, and control a water heater based on the user temperature settings and preferences. The temperature control systems include two or more sampling rates for enabling a higher efficiency of operation compared to conventional water heaters. |
US11371749B2 |
Fume exhaust assembly and gas water heater
A fume exhaust assembly for a gas water heater. The fume exhaust assembly comprises a fume exhaust hood; the fume exhaust hood is provided with a fume exhaust pipe; the fume exhaust pipe and the fume exhaust hood are integrally formed. By means of integral formation, an assembly operation for the fume exhaust pipe and the fume exhaust hood is saved, an assembly procedure of a gas water heater product is simplified, and thus the production efficiency of the gas water heater product can be improved. |
US11371748B2 |
Portable heater with ceramic substrate
A portable heater that includes a ceramic substrate with a heating element configured to define a field of direct radiation, a heat reflector with a concave reflective surface configured to define a field of reflective radiation, a grill cover mounted on the heat reflector, where the ceramic substrate is mounted on an interior side of the grill cover with the heating element facing the concave reflective surface such that the field of direct radiation onto the concave reflective surface is unobstructed. |
US11371747B2 |
Indoor unit of air-conditioning apparatus and air-conditioning apparatus
The indoor unit of an air-conditioning unit includes: an opening; a cover; a heat medium heat exchanger; and an air processing unit. The air purge valve is positioned on a rear side in a projection direction of the opening inside the casing. The cover includes, on its one side, a single hook protruding from its cover body. The cover includes, on its side opposite to the one side, a temporarily fixing tab configured to temporarily fix the cover to the casing with the cover body closing the opening. |
US11371746B2 |
Indoor unit of air-conditioning apparatus
An indoor unit of an air-conditioning apparatus includes a front design panel in which a recess is formed as a suction port through which air is sucked, the recess being depressed rearward from a front face and extending in a width direction. The front design panel includes a lower panel extending in the width direction below the recess, an upper panel extending in the width direction above the recess, and a connecting portion connecting a back side of the lower panel and a back side of the upper panel. The connecting portion includes a bottom wall extending rearward from the lower panel, and an inner wall extending upward from the bottom wall and connecting to the upper panel. The bottom wall is located below an upper edge of the lower panel. |
US11371740B2 |
Warm sensation calculation apparatus, warm sensation calculation method, air conditioner, and program
A warmth calculation apparatus capable of indicating warmth during a transition is provided. This warmth calculation apparatus includes: a calculator that, on the basis of a human body heat model simulating a human body, calculates a basic index indicating the warm sensation of parts of the human body under inputted environmental conditions; and a corrector that corrects the basic index utilizing, as a correction element, a heat transfer amount caused by blood flow of the human body heat model. |
US11371738B2 |
Enclosure for a controller of an HVAC system
A heating, ventilation, and/or air conditioning (HVAC) control system includes an enclosure having a first portion and a second portion assembled in a clamshell configuration. The first portion and the second portion are configured to hingedly engage in a closed configuration about a controller for an HVAC system and are configured to hingedly disengage into an open configuration. The HVAC control system also includes a hinge feature that is configured to hingedly couple the enclosure to a housing of the HVAC system. |
US11371737B2 |
Optimization engine for energy sustainability
A method for reducing peak electrical demand of a building includes generating a baseline electrical demand profile over a target time period from a model. The baseline electrical demand profile can be used to define a policy including a peak management period having at least a first sub-period and a subsequent second sub-period, the first sub-period having a first temperature set point for at least one air handling system of the building that is different from a normal operating temperature set point, the second sub-period having a second temperature set point different from both the normal operating temperature set point and the first temperature set point, and implementing the policy. The model can be generated from one or more of historical electrical data for the building, weather forecast data, building and equipment operating schedules, sales data, and data based on information received from a video camera located in the building. |
US11371729B2 |
Radiation shielding device for meteorological observation with internal air circulation
A radiation shielding device for meteorological observation with internal air circulation including: a body for allowing meteorological sensors to be mounted therein; a cover for covering the body by engaging with the body; and a modified Venturi tube which is physically formed while the body and the cover are engaged with each other; wherein, the modified Venturi tube is configured as a first opening for receiving external air from an exterior of the body, a second opening for receiving internal air from an interior of the body, and a third opening for releasing the received external air and the received internal air, and wherein, the external air gets into the modified Venturi tube through the first opening, the internal air gets into the modified Venturi tube through the second opening, and the external air and the internal air are released from the modified Venturi tube through the third opening. |
US11371726B2 |
Particulate-matter-size-based fan control system
A control system for a mitigation device includes a processor and a computer-readable medium that includes instructions executable by the processor. The instructions include monitoring a first measured particulate matter (PM) level of a conditioned space. The first measured PM level includes PM having a first range of sizes. The instructions further include monitoring a second measured PM level of the conditioned space. The second measured PM level includes PM having a second range of sizes. The first and second ranges are different but overlapping. The instructions also include asserting, in response to the first measured PM level being greater than a first predetermined threshold, an activation signal. The activation signal forces operation of a fan of the mitigation device. The instructions include asserting, in response to the second measured PM level being greater than a predetermined percentage of the first measured PM level, the activation signal. |
US11371723B2 |
Air-conditioner outdoor unit and control method for fan of air-conditioner outdoor unit
An air-conditioner outdoor unit and a control method for a fan (100) of an air-conditioner outdoor unit; the air-conditioner outdoor unit of the present invention comprises a fan (100) and a deflector ring (200) that is sleeved on the outside of a vane (110) of the fan (100); further comprised are a vane stopping device (300), a wind speed measuring device (400), and a control system. The vane stopping device (300) is disposed on the deflector ring (200), is connected to the control system, and may cause a vane (110) that is passively rotating to stop rotating; the wind speed measuring device (400) is connected to the control system, and is used for detecting the wind speed flowing through the vane (110), the wind speed comprising a wind speed value and a wind speed direction; the control system controls the vane stopping device (300) to start and shut down according to the wind speed that is detected by the wind speed measuring device (400), and controls actual start-up frequency of the fan (100) according to the wind speed that is detected by the wind speed measuring device (400). The air-conditioner outdoor unit and the control method for the fan (100) of the air-conditioner outdoor unit may compensate the rotational speed of the fan (100), and ensure the start-up success rate of the fan (100). |
US11371721B2 |
Push pin bearing mechanism for actuators
A thermostatic radiator valve (TRV) assembly or automatic temperature balanced actuator (ABA) assembly controls a manifold assembly through a push pin bearing mechanism. The push pin bearing mechanism comprises a push pin that moves in a linear direction responsive to rotational movement of a motor gear that is coupled through a helical gear. Rotational movement of the push pin is prevented by a ball bearing assembly. Movement of the push pin is transferred to a manifold pin, which in turn, controls the manifold assembly. Because the push pin moves in a linear rather than a rotational fashion, erosion of the mated manifold pin is substantially reduced with respect to transitional approaches. |
US11371720B2 |
Thermal energy network and methods of providing thermal energy
A thermal energy network interconnecting a plurality of thermal loads and methods of providing thermal energy therebetween, the network and methods including: a primary circuit loop for working fluid, at least two thermal loads thermally connected to the primary circuit loop, at least one of the thermal loads being capable of taking heat from the primary circuit loop and at least one of the thermal loads being capable of rejecting heat into the primary circuit loop, an energy centre connected to the loop and capable of acting as a heat source or a heat sink, and a control system adapted to provide to the primary circuit loop a positive or negative thermal input from the energy centre as a balancing thermal input to compensate for net thermal energy lost to or gained from the at least two thermal loads by the primary circuit loop. |
US11371717B2 |
Wind outlet mechanism for range hood
A wind outlet mechanism for a range hood comprises a wind outlet and a decorative cover. The decorative cover has a plurality of wind discharge holes, a flow guide member is disposed inside the decorative cover, and the flow guide member has a cambered flow guide surface opposite to and protruding toward the wind outlet. The flow guide surface can make the air flow discharged from the wind discharge holes on the decorative cover. |
US11371712B2 |
Pellet grills
Pellet grills and associated methods of operation are disclosed. An example pellet grill includes a burn pot configured to combust pellet fuel received within the burn pot. The pellet grill further includes an auger configured to deliver the pellet fuel to the burn pot. The pellet grill further includes an auger motor operatively coupled to the auger. The pellet grill further includes one or more processors configured to determine whether a shutdown sequence of the pellet grill has been initiated. The one or more processors are further configured, in response to determining that the shutdown sequence has been initiated, to command the auger motor to reverse a direction of rotation of the auger. The reversal is to cause pellet fuel which the auger has not yet delivered to the burn pot to be purged in a direction away from the burn pot. |
US11371711B2 |
Rotating detonation combustor with offset inlet
A combustion system includes an annular tube disposed between an inner wall and an outer wall, the annular tube extending from an inlet end to an outlet end; at least one annulus inlet disposed in the annular tube proximate the inlet end, the annulus inlet providing a conduit through which fluid flows into the annular tube; at least one outlet disposed in the annular tube proximate the outlet end; at least one inlet fluid plenum disposed upstream of the annulus inlet; and at least one fluid inlet disposed upstream of the inlet fluid plenum. The fluid inlet is linearly offset from the annulus inlet. |
US11371708B2 |
Premixer for low emissions gas turbine combustor
A premixer for a gas turbine combustor includes a centerbody, a swirler assembly, and a mixing duct. The swirler assembly includes an inner swirler with vanes that rotate air in a first direction and an outer swirler with vanes that rotate air in an opposite direction. The inner swirler vanes and the outer swirler vanes are separated by an annular splitter. The outer swirler vanes define an outlet plane, and the inner swirler vanes each have a trailing edge that is disposed at an acute angle relative to the outlet plane. In one aspect, the inner swirler is axially offset from the outer swirler. The mixing duct may also define fuel passages that deliver fuel to fuel outlets on the downstream end of the mixing duct. The premixer is designed for operation on gaseous fuel or liquid fuel. |
US11371700B2 |
Deflector for conduit inlet within a combustor section plenum
An assembly is provided for a gas turbine engine. This assembly includes a combustor wall, a case and an inlet. The combustor wall is configured with a quench aperture. The case is displaced from the combustor wall such that a plenum is formed by and extends between the combustor wall and the case. The case includes a case wall, a deflector and a conduit. The deflector projects out from the case wall into the plenum towards the combustor wall. The deflector is arranged upstream of the quench aperture. The inlet to the conduit is arranged next to and downstream of the deflector. |
US11371697B2 |
Gas burner, gas burner assembly and domestic cooking appliance
A gas burner for a household cooking appliance includes a burner casing including a plurality of mixture outlet openings configured to guide out, during operation of the gas burner, a mixture of combustion gas and primary air into an area surrounding the gas burner for producing a burner flame. A mixture distribution chamber evenly distributes the mixture of combustion gas and primary air to the mixture outlet openings. Fluidly connected with the mixture distribution chamber is a storage chamber for storing, during operation of the gas burner, part of the mixture of combustion gas and primary air. The storage chamber includes an ignition flame opening configured to guide out the mixture of combustion gas and primary air that is stored in the storage chamber into the surrounding area for producing an ignition flame. |
US11371696B2 |
System and method for configuring boiler combustion model
A system and method for configuring a boiler combustion model are provided. The system for configuring the boiler combustion model may include a model generator configured to generate the boiler combustion model using, as input/output data, data obtained based on measured data, analysis data, and controller information, a model simulator configured to simulate the generated boiler combustion model and output simulated results, and a model modifier configured to evaluate the boiler combustion model based on the simulated results and generate modification information for modifying the boiler combustion model based on the generated boiler combustion model and corresponding evaluated results. |
US11371686B2 |
Highlighting a product in a store fixture, display or shelf
A lighting device is presented for highlighting a first product over a second product placed in a first and a second section respectively of a store fixture, display or shelf to draw a shopper's attention to the first product, the lighting device comprising: a first and a segment, adjacent to each other, arranged for providing a first light output for illuminating the first product and a second light output for illuminating the second product respectively, a controller arranged for changing an operational mode of the lighting device from a normal lighting mode to a highlighting mode based on a signal indicating presence of a field; wherein in both the normal lighting mode and the highlighting mode, the first segment and the second segment provide illumination, and wherein in the highlighting mode, the first segment highlights the first product over the second product. |
US11371684B1 |
Hinged driver housing for lighting system and lighting system including same
A driver housing for holding driver electronics of a lighting device system includes a first housing portion and a second housing portion. The first housing portion is configured to hold and retain the driver electronics. The second housing portion is configured to contain or hold one or more electrical connectors for connecting the first one or more electrical conductors to the one or more power source conductors. A pivotal joint connects the first housing portion and the second housing portion together, for pivotal movement relative to each other. The pivotal joint improves the ease and ability of installation of the driver housing in small or narrow spaces. |
US11371673B2 |
Outer lens for lighting fixtures for vehicles, lighting fixture for vehicles provided with said outer lens, and method for producing said lighting fixture for vehicles
An outer lens for a lighting fixture for a vehicle includes a first region formed of a first material and a second region formed of a second material adjacent to the first region. The first material transmits light in a visible light range. The second material has a first wavelength range with transmittance equal to or less than a first transmittance. A second wavelength range has a transmittance equal to or more than a second light transmittance. A third wavelength range is between the first wavelength range and the second wavelength range. The first wavelength range includes a visible light at an S wavelength or a shorter wavelength. The second wavelength range includes a wavelength range from an M wavelength to an L wavelength. The third wavelength range increases from the S wavelength to the M wavelength. The first wavelength range includes the emission wavelength. |
US11371667B2 |
Multifunctional solar-powered lighting devices
Lighting devices are described and may include a housing containing a rechargeable battery, a microprocessor, and a plurality of light sources in electronic communication with the rechargeable battery and the microprocessor. At least a portion of the housing may be transparent or translucent, wherein the plurality of light sources face the portion of the housing that is transparent or translucent. The lighting devices may be solar-powered, e.g., including a solar panel coupled to an outer surface of the housing, wherein the solar panel is in electronic communication with the rechargeable battery. The lighting devices herein also include a handle of a malleable material configured to adopt and maintain a variety of positions. |
US11371662B2 |
Filament lamp
The invention provides a light generating device (1000) comprising:—a light source (100) comprising a light emitting surface (110), wherein the light source (100) is configured to generate light source light (101), wherein the light emitting surface (110) is configured in a light chamber (200);—the light chamber (200), wherein the light chamber (200) is at least partly defined by a chamber wall (210), wherein the chamber wall (210) comprises: (i) a first part (211), wherein the first part (211) is transmissive for the light source light (101), wherein the first part (211) has a first reflectance R1 for the light source light (101), and wherein the first part (211) has a first part area (A1); and (ii) one or more second parts (212), wherein each second part (212) is transmissive for the light source light (101), has a second reflectance R2 for the light source light (101), and wherein the one or more second parts (212) together have a second part area (A2), wherein R1−R2≥20%, wherein 65%≤R1<100%, and wherein the second part area (A2) is smaller than the first part area (A1). |
US11371661B2 |
Bulb lamp
The present disclosure discloses a bulb lamp, which includes a lamp cap, a lamp holder and a bulb shell. The bulb holder connects the lamp cap and the bulb shell to form a lamp body, and a light source assembly is provided in the lamp body; the bulb lamp further includes a heat radiator, the heat radiator is arranged in the lamp holder, the heat radiator includes a first hollow mechanism, a contact part is provided at one end, away from the lamp cap, of the radiator, and the light source assembly is arranged on the contact part. |
US11371656B2 |
Inspection apparatus for hydrogen gas dispenser
An inspection apparatus A for a hydrogen gas dispenser includes a receiving-side gas flowing unit 1 including a receptacle 11 configured to be connected to a nozzle C1 of a hydrogen gas dispenser C and an inspection unit including a rate-of-pressure-rise inspection unit 2 configured to measure a rate of pressure rise of hydrogen gas from the hydrogen gas dispenser C and a dispensed-amount inspection unit 3 configured to measure a dispensed amount of the hydrogen gas. The inspection apparatus A for a hydrogen gas dispenser is capable of measuring a dispensed amount and a rate of pressure rise of the hydrogen gas dispenser. |
US11371652B1 |
Pole mounting system for lockable key housing
The mounting system and device secures a container, such as a lockable container to a pole. A housing restricts access to the fasteners and other attachments that secure the container to the pole. A unitary fastener, such as a U-bolt, secures the housing to the pole. The two ends of the unitary fastener enter a first section of a rear wall and a second section of the rear wall to attach to the housing at an interior attachment surface. A curvature in the rear wall separates the first section and the second section of the rear wall. The curvature of the rear wall contacts the pole. The housing, the guard plate, and the container cover the fasteners to reduce access to the fasteners. |
US11371641B2 |
Cable management apparatus and system
There is presented a cable management apparatus for deployment within a pipe, where the pipe houses at least a portion of an umbilical cable. The cable management apparatus comprises a first engagement portion for engaging with an interior surface of the pipe, a second engagement portion for engaging with the umbilical cable, a first end and a second end. The cable management apparatus is configured such that, in use, the umbilical cable extends outwardly and away along the pipe, in substantially opposite directions from the first and second ends. The cable management apparatus is further configured to assist the moving of the umbilical cable along a lengthwise portion of the pipe using at least the first engagement portion and/or the second engagement portion. |
US11371635B2 |
Connector and assembly method for connector
To provide a connector that facilitates assembly while having a great axial-direction engagement force, a male joint member to be connected to a first member has a plurality of outer protrusions, and a female joint member to be connected to a second member has a plurality of inner protrusions. A circumferential-direction gap between adjacent two inner protrusions allows the outer protrusion to pass therethrough. The female joint member has, in an area opposed to inner protrusion back surfaces, a circular space that allows the plurality of outer protrusions to relatively rotate therein. The inner protrusion back surfaces of the plurality of inner protrusions are engaged in the axial direction with outer protrusion back surfaces of the plurality of outer protrusions that have passed through the circumferential-direction gaps between the plurality of inner protrusions. |
US11371634B2 |
Compression collars for coupling a tube to a tube fitting and methods of use
A method for coupling a tube to a tube fitting includes radially outwardly expanding a tubular compression collar from a constricted state to an expanded state, the compression collar having a throughway extending there through and being made of a resiliently flexible material. An end of the tube is inserted within the throughway of the expanded compression collar, the tube bounding a passageway. A tube fitting is inserted within the passageway of the tube. The compression collar is allowed to resiliently rebound back towards the constricted state so that the compression collar pushes the tube against the tube fitting. |
US11371629B2 |
Conduits for transporting fluids and methods of fabricating the same
A method of fabricating a conduit comprises steps of attaching a first tubular outboard ply to a first inner collar portion of a first collar with a third weld and attaching the first tubular outboard ply to a second inner collar portion of a second collar with a fifth weld. The method also comprises steps of interconnecting the first inner collar portion and a first outer collar portion of the first collar with a first weld, interconnecting the second inner collar portion and a second outer collar portion of the second collar with a sixth weld, attaching a trimmed first corrugated-inboard-ply end of a corrugated inboard ply to the first outer collar portion with a second weld, attaching a trimmed second corrugated-inboard-ply end of a corrugated inboard ply to the second outer collar portion with a fourth weld, and communicatively coupling a first sensor with an interstitial space. |
US11371625B2 |
Fluid cross-free switching valve
A fluid cross-free switching valve includes a valve body, a first drive assembly and a second drive assembly. The valve body includes a valve head, a valve core seat and a rotor valve core. The valve core seat is rotatable relative to the valve head. The rotor valve core is slidably mounted on the valve core seat. The rotor valve core is fitted with the valve head. The valve head is provided with at least three reversing connectors. The rotor valve core is provided with a groove that is in communication with the reversing connector on a fitting surface of the rotor valve core and the valve head. The first drive assembly is able to drive the valve core seat to rotate, and the second drive assembly is able to drive the rotor valve core to slide. |
US11371624B2 |
Flow-blocking safety valve to prevent explosion of portable gas container
There is provided a flow-blocking safety valve to prevent an explosion of a portable gas container, wherein, when the portable gas container overheats during use and the temperature rises above a predetermined level, a bridge hold supporting a pin of the safety valve melts and thus a pin or ball securely supported in the bridge holder becomes free to move to close a flow channel through which the gas flows, thereby blocking the gas discharge and preventing an accident occurring when the gas container bursts by overheating. |
US11371623B2 |
Mechanisms and methods for closure of a flow control device
A closure mechanism and a method for plugging a flow control device of a well is provided. The closure mechanism includes a switch having a hollow interior and a U-shaped portion. The closure mechanism also includes a metal insert located within a portion of the hollow interior of the switch. The mechanism further includes a heating device positioned within the well. In the method, the heating device is activated in the well and melts at least a portion of the metal insert. The melted portion of the metal insert collects and re-solidifies within the U-shaped portion of the switch, thereby closing the switch and plugging the flow control device against flow. |
US11371620B2 |
Hydraulic control valve unit
A hydraulic control valve unit includes an input port hydraulically coupled to a pump, a working port hydraulically coupled to the working load, and a return port connected to a hydraulic tank. The unit includes a control slide movable into different working positions in an axial direction for controlling a hydraulic flow between the hydraulic ports and a slide housing surrounding the control slide. The control slide includes a control segment which is delimited in the axial direction by a control edge, and cooperates with an axial housing segment of the slide housing for controlling a flow cross section for hydraulic flow at the control segment. The control slide is rotationally driven about an axis of rotation in a rotational direction. The control edge of the control segment or the housing segment cooperating with the control segment is designed such that the flow cross section has a different size depending on a rotational position of the control slide. |
US11371617B2 |
Secondary seal in a non-contact seal assembly
A seal assembly for sealing a circumferential gap between a first machine component and a second machine component which is rotatable relative to the first machine component about a longitudinal axis. The seal assembly includes a seal carrier, a primary seal, a mid plate, at least one secondary seal, and a front plate. The at least one secondary seal interfaces with the front plate and the mid plate. A harder material is introduced at the interface of the mid plate and the front plate with the at least one secondary seal, that is made from a more wear resistant material than the other components at the interface, to provide the other component/s as a wear component that is replaced more often. |
US11371608B2 |
Park lock arrangement
In the park lock arrangement according to embodiments, a pivoting park pawl is arranged with a roller member against which a lower bearing surface of an actuating member is configured to bear for controlling the park pawl to pivot between a park release position and a park lock position. An upper bearing surface of the actuating member is further configured to bear against an actuator support roller being configured to assist the actuating member in pressing against the roller member of the park pawl to cause the park pawl to pivot. The roller member and the actuator support roller will decrease frictional force arising when the actuating member moves into contact with the roller member for pivoting the park pawl. |
US11371605B2 |
Control device and control method for automatic transmission
A control device for automatic transmission of the present invention includes a transmission mechanism and a park lock device. The park lock device has a rod member and a lock mechanism. The lock mechanism restricts movement of the rod member when being in a locked state. If a CPU reset (reset of a CPU constituting an ATCU) occurs, the control device maintains the locked state of the lock mechanism after a return from the CPU reset. |
US11371598B2 |
Pulley device for a tensioner roller or winding roller
A pulley device for a tensioner roller or winding roller of a transmission element, having a pulley, a bearing, and an annular protective flange. The flange provides a first radial portion of small diameter, the first radial portion bearing against a fixed inner ring of the bearing, a second radial portion of large diameter, and a substantially axial intermediate portion connecting the first and second radial portions. The intermediate portion forms a circumferential trough, the bottom of which is offset radially towards the inside of the pulley device compared with the outer edge of the fixed inner ring. |
US11371594B1 |
Supplemental driver assembly for adjuster
A supplemental driver assembly is disclosed that includes a supplemental drive gear having an upper portion including a tool engagement recess and circumferential supplemental drive gear teeth, and a cylindrical neck extending axially from the upper portion to an output shaft having one or more drive engagement protrusions, as well as a drive guide housing with a gear pocket for housing the upper portion of the supplemental drive gear, the gear pocket including a cylindrical pocket wall extending from a perimeter of a pocket floor, the pocket wall having a drive guide passage extending therethrough for receiving a side adjuster tool, wherein the gear pocket receives the supplemental drive gear and allows for rotational movement of the upper portion within the gear pocket, and a cylindrical collar extending axially from the gear pocket. |
US11371591B2 |
Tensioner lever
An object of the present invention is to provide a tensioner lever capable of consistently exerting appropriate reaction force to various tension fluctuations in conjunction with varying chain behavior, and reducing vibration and noise when the chain runs. The tensioner lever of the present invention includes a torsion coil spring having a pressing arm in which a distal end portion abuts on a lever body to form a first load point, and a support arm in which a distal end portion abuts on a support part provided to an attachment surface to form a first support point. The tensioner lever further includes a spring load adaption structure configured to form one or both of a second loading point and a second support point when a certain level or more of load is received from the chain. |
US11371585B2 |
Oil pump drive device
An oil pump drive device (1) may include a housing (G), an oil pump drive shaft (AN), an electric motor, and a planetary gear set (RS). The planetary gear set (RS) may be supported by the housing (G) and have a first element (E1) connected to a rotor (R) of the electric motor, a second element (E2) connected to the oil pump drive shaft (AN), and a third element (E3) drivable by a drive source located outside the oil pump drive device (1). A first bearing (L1) may be supported on the housing (G) and may support at least one of the elements (E1, E2, E3) of the planetary gear set (RS) in a radial direction. The stator (S) of the electric motor is at least partially surrounded by a plastic mass (K), where the stator (S) is attached to the housing (G) via the plastic mass (K). |
US11371584B2 |
Waste management device and a modular power system for such
A waste management device and a modular power system for such are disclosed. The waste management device may be a compactor or a shredder. The waste management device includes a cylindrical component for handling the waste, and a modular power system arranged to transmit power from one/more motors to the cylindrical component. The modular power system includes an internal gear wheel, a frame and one or more motors attached to the frame. Driving gear wheels of the motors are operably connected to the internal gear wheel such that power of the one or more motors is transmitted from the driving gear wheel(s) to the internal gear wheel. |
US11371582B2 |
Ratchet load binder with two handles
The current invention relates to a load binder comprising an axially extending elongate, preferably tubular, member, two shanks, a first and second ratchet wheel, a first and second oscillatory handle; said member comprising end portions comprising inner screw threads in relatively opposite directions so as to accommodate said shanks which are correspondingly screw-threaded and which comprise distal ends, preferably eyes; whereby rotation of the member in one direction causes the distal ends to draw together and rotation of the member in relatively opposite direction causes the distal ends to spread apart; whereby said rotation of said member is effected by a ratchet mechanism which involves the provision of said first and said second ratchet wheel which are suitably secured intermediate the ends of the member and are rotatably mounted between mutually spaced first side members which project from said first and second handle. |
US11371581B2 |
Torsional vibration damper or torsional tuned mass damper
A torsional vibration damper or torsional tuned mass damper having a rotating system having a primary mass, which is arranged, or preferably fixable for conjoint rotation on a rotatable shaft, such as a crankshaft of a motor, for example, in particular an internal combustion engine, and having a secondary mass, which is movable relative to the primary mass. An assembly for vibration dampening and/or tuned vibration dampening of the relative motion between the primary mass and the secondary mass is formed in part outside of the rotating system of the torsional vibration damper or torsional tuned mass damper. |
US11371580B2 |
Centrifugal pendulum damper
A centrifugal pendulum damper in which a rolling mass can be lubricated by a simple structure without limiting vibration damping performance. The pendulum damper comprises: a rotary member; an inertia body arranged concentrically with the rotary member; a rolling mass held in a retainer on an outer circumference of the rotary member; a recess formed on an inner circumference of the inertia body; and a raceway surface formed on an inner circumference of the recess to which the rolling mass is contacted. In the centrifugal pendulum damper, oil remaining in the recess is discharged out of the recess through an oil passage. |
US11371579B2 |
Variable stiffness bushing
A variable stiffness bushing includes: inner and outer tubular members; and an elastic member connecting these tubular members. At least one pair of liquid chambers axially separated from each other is defined in the elastic member. The liquid chambers are connected by a communication passage including a circumferential passage provided in one of the inner and outer tubular members. The one of the inner and outer tubular members includes a coil wound coaxially therewith and a yoke provided with a gap constituting the circumferential passage. A magnetic fluid fills the liquid chambers and the communication passage. Upper and lower end walls and an axially intermediate partition wall of the elastic member are configured such that when the tubular members are axially displaced relative to each other, a difference is created between volumes of the axially separated liquid chambers. |
US11371577B2 |
Shock absorbing member and method of manufacturing the same
A shock absorbing member includes an outer member being hollow and made of a metal, and an inner member held in the outer member. The inner member includes a wood member and a bracket that is made of a solid resin or a metal and that is integral with the wood member. The inner member includes a holding structure configured to position and hold the bracket to the outer member. |
US11371573B2 |
Methods and systems for EMI assessment for brake pad wear estimation
A method for performing a data validity assessment for a brake pad wear estimation includes providing an electric park brake assembly including a motor and a battery management sensor, receiving motor current data from the motor of the electric park brake assembly, receiving battery current data from the battery management sensor, determining a margin of current from the motor current data and the battery current data, receiving historical motor position data and instant motor position data of the motor, calculating the brake pad wear estimation using the motor current data, comparing the historical motor position data and the instant motor position data against an expected range of motor positions, determining an electromagnetic interference level from the margin of current, the historical and instant motor position data, and the calculated brake pad wear estimation, and discarding the motor current data when the electromagnetic interference level is above a predetermined threshold. |
US11371570B2 |
Drive train of a wind turbine comprising a torque limiter, wind turbine
Provided is a drive train of a wind turbine. The drive train includes a torque limiter assembly including a torque limiter. The torque limiter includes: a first clamping disk, a friction disk, a second clamping disk, and a preloading means. The clamping disks and the friction disk are configured such that the clamping disks frictionally transmit a torque to the friction disk. The torque limiter assembly further includes a torque shaft and a hub shaft. The torque shaft is connected to a rotor of the wind turbine, and the hub shaft is connected to a generator rotor of a generator. The friction disk is bolted to the hub shaft via interface bolts from a downwind side, such that the torque limiter is detachable from the hub shaft as a whole. Further provided is a wind turbine. |
US11371567B2 |
Disconnect apparatus and a method of sensing a state thereof
A disconnect apparatus including a first clutch member and a second clutch member in selective engagement with the first clutch member. The disconnect apparatus also includes a cam mechanism and a sensor assembly. The cam mechanism includes an axially movable first cam member and an axially fixed second cam member, wherein the sensor assembly generates a pulse pattern which is utilized to determine a position of the first cam member, and thereby a state of the disconnect apparatus. |
US11371566B2 |
Wet friction member
The wet friction member 1 of the invention includes a core plate 2 formed in a flat ring shape, a friction part 3 arranged in a ring shape. The friction part 3 has segment pieces including rectangular shaped G1 to G4: G1 in which a lower right corner of rectangular piece is notched; G2 in which an upper left corner of rectangular piece is notched; G3 in which an upper right corner of rectangular piece is notched; G4 in which a lower left corner of rectangular piece is notched. The friction part 3 has arrangements T1 and T2: T1 in which G1 and G2 are arranged in a manner a right side of G1 and a left side of G2 face each other; T2 in which G3 and G4 are arranged in a manner a right side of the G3 and a left side of G4 face each other. |
US11371555B2 |
Transmission input shaft arrangement
The present invention relates to a transmission input shaft arrangement (100) for a vehicle transmission, the transmission input shaft arrangement comprising an input shaft (102); a clutch arrangement (104) and a bearing arrangement (106) arranged at a position spaced apart from the clutch arrangement (104). The bearing arrangement (106) comprises a bearing inner ring (108) rotationally connected to the clutch arrangement (104). |
US11371554B2 |
Bearing device for vehicle wheel
A bearing device for a vehicle wheel that is capable of maintaining the sealability of a protective cover by preventing a seal member of the protective cover from being damaged without performing any complex machining. The bearing device for vehicle wheel (1) is provided with: a cylindrical sensor holder (11) that is fitted outside the protective cover (9), wherein in the outer ring (2), a protective cover fitting part (13A) to which the protective cover (9) is fitted, a seal part (13B) with which the seal member (10) of the protective cover (9) is brought into contact, and a sensor holder fitting part (13C) to which the sensor holder (11) is fitted are formed, the inner diameter of the seal part (13B) is equal to that of the sensor holder fitting part (13C), and the seal part (13B) and the sensor holder fitting part (13C) are adjacent to each other. |
US11371550B2 |
Rotary engine
The present invention provides a rotary engine comprising: a housing provided with three lobe accommodation parts; a rotor which is provided with two lobes continuously accommodated in the lobe accommodation parts, has an intake storage part communicating with an intake port provided on the front surface-side, and has an exhaust storage part communicating with an exhaust port provided on the rear surface-side; an intake-side housing cover provided with an intake hole communicating with the intake storage part; an exhaust-side housing cover provided with an exhaust hole communicating with the exhaust storage part; and a crankshaft, wherein the flow of an exhaust gas into a stroke chamber during an intake stroke is reduced by preventing the exhaust storage part, at a portion of a section in which the exhaust port is open, from communicating with the exhaust hole during the intake stroke. |
US11371548B2 |
Shockproof nut kit
A shockproof nut kit includes an upper nut and a lower nut, in which an end surface of the upper nut is provided with a boss of elliptic cylinder; on the upper end surface of the elliptic cylinder at a longer planar extension side is provided an unfilled corner; in an end surface of the lower nut is concavely formed a cylindrical groove matching with the boss of elliptic cylinder, and in the assembly state, the boss of elliptic cylinder on the upper nut is in clearance fit with the cylindrical groove in the lower nut. The present invention avoids the slipping and displacement of nuts in the meshing process, and ensures the coaxiality of the upper and lower nuts during installation to the utmost. In terms of both safety and shockproof, the present invention achieves satisfactory results, the installation thereof is convenient and reliable, and the disassembly thereof is simple. |
US11371547B2 |
Wood screw structure
A wood screw structure comprises a screw head section, a rod section, a first screw thread and a plurality of crushing rib units. The rod section is sequentially integrally formed from the screw head section and comprises a first rod portion connecting the screw head section, a second rod portion, a third rod portion, and a tapered portion extending and tapering outwardly from the third rod portion. The first screw thread is disposed spirally and is protruded on an outer peripheral surface of the tapered portion, the second rod portion and the third rod portion. The crushing rib units are disposed spirally and protruded around the outer peripheral surface of the third rod portion and the tapered portion, and each of the crushing rib units includes a plurality of crushers protrudingly disposed on a rib body. A first discharge gap is formed between the crushers. |
US11371546B2 |
Self-drilling screw structure
A self-drilling screw structure comprises a screw head and a screw rod extending outwardly from the screw head. The screw rod is formed with a drill bit section at one end opposite to the screw head, a drill tail section and a screw thread section. The drill bit section comprises two first cutting edges extending helically and intersecting at a chisel edge. Two first chip flutes located at the positions respectively between the two first cutting edges and extending from the chisel edge toward the drill tail section. The drill tail section comprises two second cutting edges extending helically toward the screw thread section. Two second chip flutes located at the positions respectively between the two second cutting edges and extending helically toward the screw thread section. Each first chip flute and the second chip flute form a connection at joint between the drill bit and drill tail sections. |
US11371545B2 |
Adjustable-angle mounting system for hazard detector
Various arrangements of a surface mount system are presented herein. The system may include a surface mount plate. The surface mount plate may include a circular lip and nubs located along the circular lip. The system may also include a device housing. The device housing can include slider clips that removably clip to the circular lip of the surface mount plate when the plurality of slider clips are pushed against the circular lip. The slider clips can be disengaged from the circular lip of the surface mount plate when the device housing is rotated with respect to the surface mount plate such that the nubs located on the surface mount plate push the slider clips away from the circular lip. |
US11371541B1 |
Connection device for mobile frame structures
A connection device for mobile frame structures includes a bracket on a surface having a cam shaft and a cam lock has a spiral axial slot having a locking groove and a central cam groove. A cam follower, a spring and a force stop are positioned in the central cam groove. A retention device holds the components in the cam groove. A structural support is engaged to the cam lock. An intersection between the spiral axial slot and the central cam groove has one or more detents which engage the cam follower prior to engagement of the cam lock to the bracket. The cam shaft is positioned in the spiral axial slot and the cam lock is rotated moving the cam shaft into the locking groove and depressing the cam follower relative to the spring to lock the cam shaft into the locking groove. |
US11371535B2 |
Fluid pressure circuit
A fluid pressure circuit includes a directional switching valve arranged between a fixed displacement pump and a fluid pressure actuator and configured to switch a flow passage for a pressurized fluid, an accumulator arranged in a branch flow passage branched from a connection flow passage that connects the fluid pressure actuator and the directional switching valve, an accumulator flow control valve arranged between the connection flow passage and the accumulator, and a pump flow control valve arranged between the fluid pressure actuator and the fixed displacement pump and configured to variably divert a flow rate of the pressurized fluid discharged from the fixed displacement pump into a first system including the tank and a second system including the fluid pressure actuator. |
US11371534B2 |
Compressor and method of operating same
Provided is a compressor including: a compressor body that has a motor and compresses air; an aftercooler for cooling the compressed air supplied from the compressor body; a dryer for dehumidifying the compressed air flowing out from the aftercooler; a drain discharge valve for discharging a drain from the dryer; a first pressure sensor for measuring air pressure downstream of the aftercooler; and a control device having a rotation-speed adjusting unit that drives the motor at second acceleration smaller than first acceleration, the first acceleration being rated acceleration of the motor, when a pressure value measured by the first pressure sensor is less than a first threshold value predetermined at startup of the motor. |
US11371529B2 |
Fan wheel, fan, and system having at least one fan
A fan wheel for a fan is equipped with at least two fan blades with a wavy design. A fan has at least one such fan wheel. A system has at least one fan with such a fan wheel. |
US11371525B2 |
Air treatment equipment, fan and centrifugal fan blade of fan
The present disclosure provides a centrifugal fan blade, an air treatment device and a fan; the centrifugal fan blade includes a hub and a plurality of fan blades; the plurality of fan blades are distributed around the periphery of the hub; each fan blade includes a first blade and a second blade; moreover, the first blade is in a backward blade form; and the second blade is in a forward blade form. The centrifugal fan blade can improve the flowing of the airflow and improve the air output efficiency. |
US11371524B2 |
Windmill and blower comprising the same
A windmill, including a first end plate, a second end plate, and a plurality of primary blades disposed between the first end plate and the second end plate. The first end plate includes a central part provided with a base connected to a motor shaft. The second end plate includes a central part provided with an air inlet; the space between every two adjacent blades forms an air channel. The plurality of primary blades each includes an outmost end with respect to the central part of the first end plate, and the outmost end extends out of an outer edge of the second end plate. The connection line of every two adjacent outmost ends of the plurality of primary blades forms a circle, and the diameter D1 of the circle is larger than the diameter D2 of the second end plate. |
US11371522B2 |
Permanent magnet direct-drive slurry pump based on gas film drag reduction
Disclosed is a permanent magnet direct-drive slurry pump based on gas film drag reduction, which includes a permanent magnet motor, a main shaft, an impeller, and a valve block. The permanent magnet motor includes a housing, a stator core, stator windings, a rotor core, and a permanent magnet. The rotor core and the impeller share the main shaft, and an airflow channel is provided inside the main shaft. The impeller includes a front cover plate, a back cover plate, and blades. The blades are modularly manufactured, and blade gas jet holes and hemispherical pits are provided on the pressure surface. The airflow channel in the main shaft is communicated with the blade gas-jet holes. The valve block is disposed at the tail end of the main shaft so as to control gas exhaust and prevent liquid from entering the shaft. The present invention has such advantages as a small size, high efficiency, and strong wear resistance. |
US11371515B2 |
Regenerative blower
In accordance with one aspect the present invention may comprise a regenerative blower comprising: a housing, a first port and second port in the housing, an airflow channel extending between the first and second ports for airflow between the ports, an impeller rotatable in an impeller channel to promote airflow in the airflow channel from the first port to the second port, a motor to drive the impeller, and an interrupter between the first and second ports to limit airflow from the second port to the first port. |
US11371512B2 |
Centrifugal compressor and seal unit
A centrifugal compressor includes a housing 20 having a facing surface 22f facing the outer peripheral surface of a cover 43, a seal member 50 forming a clearance with the outer peripheral surface of the cover 43, an inclined hole 55 formed in the seal member 50, extending at an angle to the side opposite to a direction of rotation, and having an opening portion 57 opening at a position facing the outer peripheral surface of the cover 43, a first fin 52 provided on the seal member 50 and protruding toward the outer peripheral surface of the cover 43, and a communication flow path portion 64 formed in the housing 20, having an introduction port 66i opening at a position facing the outer peripheral surface of the cover 43, and communicating with the inclined hole 55. |
US11371511B2 |
Diagnostic apparatus for fuel pump
A diagnostic apparatus for a fuel pump diagnoses the state of a fuel pump based on: a correlation between a pump rotational speed that is a rotational speed of the motor and fuel pressure that is pressure of the fuel discharged from the fuel pump; and an initial correlation that is the correlation in an initial actuation period from when the fuel pump is energized for the first time to when a specified period has elapsed. |
US11371509B2 |
Parallel circulation pump coordinating control assembly
A circulation pump assembly (22) includes an electrical drive motor (10) and an electronic control device (12) controlling the drive motor (10). The control device (12) is configured for the speed control of the drive motor (10) according to a control schema (I, II, III). The control device (12) includes a detection function (42) which is configured to detect a condition variable representing an operating condition, from a parallel flow path (16, 18, 20) with a second circulation pump assembly (22). The control device (12) is also configured such that it can change the control schema (I, II, III) on the basis of a condition variable detected by the detection function (42). Further an arrangement of at least two such circulation pump assemblies (22) and a method for the control of such two circulation pump assemblies (22) are provided. |
US11371507B2 |
Oil-injected multistage compressor device and method for controlling such a compressor device
An oil-injected multistage compressor device that comprises at least one low-pressure stage compressor element (2) with an inlet (4a) and an outlet (5a) and a high-pressure stage compressor element (3) with an inlet (4b) and an outlet (5b), whereby the outlet (5a) of the low-pressure stage compressor element (2) is connected to the inlet (4b) of the high-pressure stage compressor element (3) via a conduit (6), characterized in that an intercooler (9) is provided between the low-pressure stage compressor element (2) and the high-pressure stage compressor element (3) in the aforementioned conduit (6) and that the compressor device (1) is also equipped with a restriction (10) for limiting the amount of oil injected in the low-pressure stage compressor element (2). |
US11371506B2 |
Rotary compressor
In a vertical cylindrical hermetically sealed container, a rotary compressor includes a motor unit and a compression unit below the motor unit. The compression unit includes a shaft having an eccentric portion, a piston shaped to fit into the eccentric portion, a flat plate-shaped vane pressed against an outer circumferential surface of the piston, and a cylinder that accommodates the piston and the vane and forms a suction chamber and a compression chamber. The rotary compressor stores, in the hermetically sealed container, lubricating oil of which amount causes immersion of a part of the compression unit. The rotary compressor has a hollow portion on a lower end side of the shaft, and has an oil supply diagonal hole that is inclined with respect to a rotation axis of the shaft and causes the hollow portion and an upper end of the eccentric portion to communicate with each other. |
US11371498B2 |
Liquid pumping cassettes and associated pressure distribution manifold and related methods
A fluid-handling cassette comprising a plurality of diaphragm valves and pumps is configured to have its actuation ports located along a thin or narrow edge of the cassette. Actuation channels within the cassette lead from the actuation ports to actuation chambers of the valves and pumps in a space between plates that comprise the cassette. The individual plates have a nominal thickness that is sufficient to provide a rigid ceiling for the actuation channels, but sufficiently thin to minimize the overall thickness of the cassette. The cassette can be plugged into or unplugged from an actuation receptacle or a manifold by its narrow edge. A plurality of such cassettes can be stacked together or spaced apart from each other to form a cassette assembly, providing for a convenient way to install and remove the cassette assembly from its actuation receptacle. The arrangement allows for an improved way of connecting a complex cassette assembly to its associated pressure distribution manifold without the use of a plurality of flexible connecting tubes between the two. |
US11371496B2 |
Eccentric sleeve for crankshaft of compressor, crankshaft, crankshaft assembly and compressor
An eccentric sleeve for a crankshaft of a compressor, a crankshaft, a crankshaft assembly, and a compressor are provided. The crankshaft has a main shaft, a counterbalance and an eccentric shaft. The main shaft and the eccentric shaft are provided at two sides of the counterbalance and arranged eccentrically. The main shaft is internally provided with a main lubrication oil passage. An outer circumferential wall of the eccentric shaft is provided with an oil leakage hole in fluid communication with the main lubrication oil passage. The eccentric sleeve is fitted over the eccentric shaft. An outer circumferential wall of the eccentric sleeve is provided with a shaft flow hole extending through the outer circumferential wall in a thickness direction of the eccentric sleeve. |
US11371495B2 |
Air pump with retractable needle and/or method of making the same
Certain example embodiments relate to an air pump for balls, tires, toys, and/or the like and include a retractable base, which facilitates the storage of the needle(s) and/or other adapter(s) inside of the pump itself. This arrangement reduces the chances that it/they will break because it/they is/are protected inside of the pump and need not be repeatedly attached/detached. The pump in certain example embodiments includes a tube body into which the retractable base retracts, a plunger disk, a guide system including one or more guides for guiding the plunger disk and/or base within the tube body, a locking mechanism to help lock the base in extended and/or retracted positions, and a handle. The pump safely stores at least one needle/adapter in the tube body. In the event that a needle breaks, it may be replaced as if it were a conventional pump. |
US11371494B2 |
Solid particulate pump
A pump for transporting particulate material that includes a first conveyor and a second conveyor together defining a passage, wherein a working surface of each of the conveyors are canted with respect to each other. The pump includes an inlet for introducing the particulate material into the passage and an outlet for expelling the particulate material from the passage, wherein the outlet is positioned out of line with the inlet. |
US11371492B2 |
Piston-valve engagement in fluid sprayers
A pump draws fluid from a reservoir and drives the fluid downstream to a spray tip where the fluid is applied to a surface. A piston is driven in a reciprocating manner to pump the fluid. A check valve is disposed downstream of the piston to regulate a flow of the fluid downstream from the piston. The pump is initially dry and is primed with fluid prior to operation. To facilitate priming, the piston is dimensioned to impact the ball and unseat a valve member of the check valve during a priming stroke, thereby ejecting any air from the pump through the check valve. With the air ejected from the pump, a vacuum is formed during a suction stroke of the piston, which draws fluid downstream from the reservoir to prime the pump. |
US11371484B2 |
Wind turbine farm
Wind turbine farms are presented including: a number of steerable wind turbines each having a turbine diameter, where the number of steerable wind turbines is grouped pairwise into a number of monopole wind tower pairs, where each monopole wind tower pair is placed in a fixed pair placement and oriented in one of a number of fixed pair orientations, where each one of the number of fixed pair orientations corresponds with one of a number of prevailing wind directions, and where the number of monopole wind tower pairs is placed in a number of fixed pair positions. |
US11371483B2 |
Method of manufacturing a shell of a wind turbine blade having improved leading edge erosion protection, method for manufacturing the wind turbine blade, shell, wind turbine blade and wind turbine
Provided is a method for manufacturing a shell of a wind turbine blade having improved leading edge erosion protection, wherein the method includes the steps of: (a) providing a preform of the shell, (b) providing a protective cover for protection of the shell, (c) arranging the protective cover at a portion of a leading edge of the shell, so that an erosion protected shell is obtained, and (d) casting the erosion protected shell, so that the shell of the wind turbine blade having the improved erosion protection is obtained. Also provided is a method of manufacturing the wind turbine blade and to a shell, a wind turbine blade and a wind turbine. |
US11371482B2 |
Wind turbine blades
A reinforcing structure for a wind turbine blade is in the form of an elongate stack of layers of pultruded fibrous composite strips supported within a U-shaped channel. The length of each layer is slightly different to create a taper at the ends of the stack; the centre of the stack has five layers, and each end has a single layer. The ends of each layer are chamfered, and the stack is coated with a thin flexible pultruded fibrous composite strip extending the full length of the stack. The reinforcing structure extends along a curved path within the outer shell of the blade. The regions of the outer shell of the blade on either side of the reinforcing structure are filled with structural foam, and the reinforcing structure and the foam are both sandwiched between an inner skin and an outer skin. |
US11371478B2 |
Systems and methods for a fuel delivery module helmet of hybrid vehicle
Methods and systems are provided for protective cover. In one example, the protective cover may be configured to protect a fuel delivery module and may include a domed cap. The domed cap may resistant forces exerted on the protective cover and maintain clearance between the domed cap and enclosed electronic ports of the fuel delivery module. |
US11371475B2 |
Air intake structure of saddle riding vehicle
An air intake structure of a saddle riding vehicle is disposed in the saddle riding vehicle in which a frame including a left and right pair of main frames and an air box are disposed, an intake passage is disposed between the main frames and an outer periphery of the head tube, and the intake passage includes: a front side intake duct that extends forward; and a rear side intake duct that couples the air box to the head tube. In the air intake structure of the saddle riding vehicle, the rear side intake duct is a separate body from the air box, the air box has a front surface on which an opening inserted through the rear side intake duct is provided, and the rear side intake duct is coupled to an intake passage from an inside of the air box through the opening. |
US11371474B2 |
Engine air intake device
A heat storage cover is provided in an engine room. The heat storage cover covers an engine from above and surrounds the periphery of an upper portion of the engine to internally store, through the medium of air, heat dissipated from the engine and block upward heat dissipation. The engine includes an air inlet for introducing, into a combustion chamber, high temperature air obtained by the heat storage cover blocking the upward heat dissipation. |
US11371470B2 |
Evaporated fuel treatment apparatus
An evaporated fuel treatment apparatus includes an abnormality determination unit that determines an abnormality of a purge passage. The abnormality determination unit changes an operating cycle of a purge control valve to a cycle longer than an initial set value while maintaining a duty ratio of the purge control valve set according to an operating state of an internal combustion engine, and determines an abnormality of the purge passage based on a first variation range and a second variation range calculated from a detection value detected by an airflow meter before and after the change of the operating cycle. |
US11371468B2 |
Supply system for supplying a rocket engine
A supply system for supplying a rocket engine with at least one propellant, the supply system comprising at least one supply circuit able to circulate the propellant, and at least one reservoir in fluid communication with the supply circuit via at least one communication pipe, so that a fluid contained in the reservoir can flow from the latter up to the supply circuit, and vice versa, via said at least one communication pipe, the reservoir being able to contain a volume of gas, and heating means able to vary the volume of gas in the reservoir, the heating means being configured to vaporize the propellant in the reservoir. |
US11371464B2 |
Methods and system for diagnosing fuel injectors of an engine
Various methods and systems are provided for diagnosing a condition of a fuel injector of an engine. In one example, a method for an engine includes injecting a first pulse of fuel as a first pilot injection into a first subset of cylinders of a plurality of engine cylinders, where the first pilot injection precedes a primary injection of fuel into the first subset of cylinders by a duration; correlating a first response in an engine operating parameter to the first pilot injection; and adjusting the primary injection of fuel into the first subset of cylinders based on the first response. In one example, the first pilot injection precedes the primary injection by a predefined short duration and the primary injection of fuel is adjusted within a predefined or preset upper limit and lower limit. |
US11371459B2 |
Control device for internal combustion engine
To appropriately adjust a pressure of a fuel according to a valve closing force of a fuel injection valve. To that end, a control device for an internal combustion engine includes a fuel pressure control unit that controls a pressure of a fuel supplied to a fuel injection valve that injects the fuel to an internal combustion engine. The fuel injection valve includes a plunger rod that is a valve body, a solenoid coil that is a drive unit for driving the plunger rod, and an orifice cup in which a fuel injection hole that is opened and closed according to drive of the plunger rod is formed. A cylinder pressure sensor that detects an in-cylinder pressure is attached to the internal combustion engine. The fuel pressure control unit controls the pressure of the fuel based on a pressure difference ΔP between the in-cylinder pressure detected by the cylinder pressure sensor before the plunger rod is separated from a seat portion of the orifice cup which is a valve seat and the in-cylinder pressure detected by the cylinder pressure sensor when the plunger rod is separated from the seat portion of the orifice cup. |
US11371453B2 |
Method for regulating a fill of an exhaust component storage of a catalyst
A method is proposed for regulating a fill level of an exhaust component storage of a catalyst (26) of an internal combustion engine (10), wherein the regulating of the fill level is done by using a system model (100), comprising a catalyst model (102), and wherein uncertainties of measured or model variables influencing the regulating of the fill level are corrected by an adaptation, which is based on signals of an exhaust gas probe (34) arranged at the outlet side of the catalyst (26). The method is characterized in that the adaptation takes multiple pathways (200, 210, 220), wherein signals from different signal regions (260, 280, 300) of the exhaust gas probe (34) situated at the outlet side are processed on different pathways. An independent claim is addressed to a controller designed to carry out the method. |
US11371446B2 |
Method and system for monitoring an engine cylinder in an internal combustion engine, a method and device for controlling combustion in said engine cylinder and an ignition apparatus for an internal combustion engine
A method for monitoring an engine cylinder in an internal combustion engine includes, for each engine cycle, detection of the ionisation current generated in the cylinder in a predetermined time interval of a combustion cycle, generation of a signal representing the ionisation current and comparing a maximum value of the signal with a threshold value. Successively, the value of one or more parameters associated with the signal can be changed with respect to an equal number of corresponding reference values when the maximum value of the signal exceeds the threshold value, to reduce the maximum value of the signal in the time interval of a successive combustion cycle. The presence of water in the cylinder can be determined when the maximum value of the signal exceeds the threshold value for a predetermined first number of combustion cycles occurring within a predetermined period of time. |
US11371445B2 |
Systems and methods for vehicular power generation
A vehicle may include: a genset including: an engine configured to combust light fuel such as natural gas, a generator linked to the engine and configured to convert mechanical energy provided by the engine into electrical energy; one or more light fuel storage containers; one or more electrical storage devices such as batteries; a plurality of wheels; a plurality of electric motors configured to drive the plurality of wheels; a first power bus configured to electrically connect the generator of the genset, the one or more electrical storage devices, and the plurality of electric motors. Each of the one or more electrical storage devices may be disposed lower than each of the one or more light fuel storage containers with respect to a vertically extending reference axis that is perpendicular to a reference plane parallel to ground. |
US11371443B2 |
Control system for internal combustion engine, and internal combustion engine
A control system includes a controller. The controller counts the number of driving times of the high pressure fuel pump, which is the number of the reciprocating motions of the plunger based on a crank counter that is counted up at every predetermined crank angle. The controller stores a map in which a top dead center of the plunger is associated with a crank counter value, and store a crank counter value while an engine is stopped as a stop-time counter value. The controller calculates, referring to the map, the number of the crank counter values corresponding to the top dead center of the plunger between a crank counter value and the stop-time counter value, and set a calculated number as the number of driving times. |
US11371442B2 |
Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
Systems and methods for variable pressure inventory control of a closed thermodynamic cycle power generation system or energy storage system, such as a reversible Brayton cycle system, with at least a high pressure tank and an intermediate pressure tank are disclosed. Operational parameters of the system such as working fluid pressure, turbine torque, turbine RPM, generator torque, generator RPM, and current, voltage, phase, frequency, and/or quantity of electrical power generated and/or distributed by the generator may be the basis for controlling a quantity of working fluid that circulates through a closed cycle fluid path of the system. |
US11371438B2 |
Machine component, particularly a turbomachine component, with cooling features and a method for manufacturing and of operation
A cooled machine component having a body with at least one integrated cooling channel having a lattice structure for guiding a cooling fluid through an interior, the lattice structure arranged as a void space penetrated by a plurality of hollow or solid struts. The lattice structure has an inlet for providing the cooling fluid to be guided through the void space of the lattice structure, and has an outlet for receiving the cooling fluid, the outlet being fluidically connected to a hollow interior of at least one of the plurality of hollow struts. At least a subset of the hollow struts provides a fluidic connection for cooling fluid from the outlet to a plurality of further downstream discharge ports. Walls of the body surrounding each of the plurality of further downstream discharge ports are physically connected to corresponding jackets of the at least one of the plurality of hollow struts. |
US11371429B2 |
Semi-closed cycle with turbo membrane O2 source
Disclosed is an improved method and system of operating the semi-closed cycle, which both reduces parasitic loads for oxygen generation and for gas clean up, while also reducing, capital cost of the gas clean up plant (reduced drying requirement) and of the oxygen plant (enabling membranes vs. mole sieves). The invention is applicable to piston or turbine engines, and results in a near fully non-emissive power system via the Semi-Closed Cycle (SCC), in a manner which both captures carbon in the form of carbon dioxide, CO2, and in a manner which improves the efficiency and cost effectiveness of prior disclosures. The captured carbon is of a purity and pressure directly suitable for Enhanced Oil Recovery (EOR), sequestration, or industrial use. |
US11371427B2 |
Geared turbofan engine with targeted modular efficiency
A turbofan engine includes a fan section including a fan blade having a leading edge and hub to tip ratio of less than about 0.34 and greater than about 0.020 measured at the leading edge and a speed change mechanism with gear ratio greater than about 2.6 to 1. A first compression section includes a last blade trailing edge radial tip length that is greater than about 67% of the radial tip length of a leading edge of a first stage of the first compression section. A second compression section includes a last blade trailing edge radial tip length that is greater than about 57% of a radial tip length of a leading edge of a first stage of the first compression section. |
US11371426B2 |
Reciprocating piston machine and method and device for diagnosing and/or controlling a reciprocating piston machine
The invention relates to a reciprocating piston machine, in particular with a variable compression ratio, of at least one cylinder with a piston and a connecting rod which is connected to the piston and to a crankshaft of the reciprocating piston machine. The reciprocating piston machine also has a first sensor which is arranged in a cylinder wall of the at least one cylinder and is configured to detect relative movement between a piston skirt of the piston and the cylinder wall. The invention further relates to a method (100) for diagnosing and/or controlling such a reciprocating piston machine (1), in particular with a variable compression ratio, and a system which is suitable therefor. |
US11371425B2 |
System and method for cleaning deposit from a component of an assembled, on-wing gas turbine engine
Systems and methods for cleaning deposits from a component of an assembled, on-wing gas turbine engine are provided. Accordingly, the method includes operably coupling a delivery assembly to an annular inlet of a core gas turbine engine. A portion of cleaning fluid is atomized with the delivery assembly to develop a cleaning mist having a plurality of atomized droplets. The atomized droplets are suspended within any path of the core gas turbine engine from the annular inlet to an axial position downstream of a compressor of the core gas turbine engine. A portion of the cleaning mist is impacted or precipitated onto the component so as to wet the component, and a portion of the deposits on the component is dissolved by the cleaning mist. |
US11371419B2 |
Systems for a pre-chamber
Methods and systems are provided for a pre-chamber. In one example, a pre-chamber comprises a plurality of slots fluidly coupling it to a primary combustion chamber. The plurality of slots comprising a plurality of corresponding flaps configured to direct gases through the plurality of slots. |
US11371418B2 |
Internal combustion system
An internal combustion system capable of exactly determining timing of exchanging a coolant of an engine. The internal combustion system includes an engine, cooling circulation mechanism circulating the coolant containing ethylene glycol to the engine while cooling it, temperature sensor measuring the temperature of the coolant having passed through the engine, and control device. The control device includes a number of cold starts counting unit determining engine cold start and counting the number of cold starts before coolant exchange, an accumulated amount of time measuring unit measuring an accumulated amount of time when the coolant temperature measured by the temperature sensor is a defined temperature or higher before the coolant exchange, and an exchange determination unit determining the need for coolant exchange, when the accumulated amount of time is a defined amount of time or greater and the number of cold starts is a defined number of times or greater. |
US11371417B2 |
Installation structure of heat accumulator for vehicle
Provided is an installation structure of a heat accumulator for a vehicle, provided on a back surface side of a bumper beam of the vehicle in the front portion of the vehicle and accumulates heat by storing a refrigerant. The bumper beam extends in the left-right direction of the vehicle and has a height dimension A in the vertical direction orthogonal to the length direction. The heat accumulator extends along the length direction of the bumper beam in a state of being close to a back surface of the bumper beam, and has a height dimension B in the vertical direction orthogonal to the length direction. The bumper beam and the heat accumulator are arranged with centers in the vertical direction coinciding with each other in the front-rear direction, and the height dimension B is set to A≤B≤1.6A with respect to the height dimension A. |
US11371411B2 |
Method for operating a motor vehicle having an exhaust gas aftertreatment device, exhaust gas aftertreatment system, computer program product and computer-readable medium
A method for operating a motor vehicle having an exhaust gas aftertreatment device involves an on-board electronic computing device receiving consumption information characterizing consumption of a reducing agent by the exhaust gas aftertreatment device and tank information characterizing a filling level of a reducing agent tank. Tank information is evaluated together with the consumption information with regard to a divergence, and upon determination of the divergence between the tank information and the consumption information, error information is stored in a blockchain characterizing the motor vehicle, and an action of the motor vehicle is triggered. |
US11371408B2 |
Electrically heatable heating disk
An electrically heatable heating disk for use within a device for the aftertreatment of exhaust gas, wherein the heating disk is formed by a layer stack formed from a multiplicity of metal foils which are stacked one on top of the other, the layer stack being wound to form a honeycomb body, wherein the layer stack has alternately arranged, coarsely structured metal foils and finely structured or smooth metal foils, and wherein the honeycomb body has at least one electrical contact at a radial edge region, wherein first metal foils terminate with an offset with respect to one another as a result of the winding in the circumferential direction of the heating disk, wherein finely structured or smooth second metal foils which extend in the circumferential direction extend beyond the respective ends of the terminating first metal foils in the circumferential direction. |
US11371407B2 |
Co clean-up catalyst, after treatment system and after treatment method
An after treatment method is disclosed. The after treatment method may include: operating an engine at a lean air/fuel ratio; calculating an amount of NH3 stored in an SCR catalyst; calculating an amount of NOx which will flow into the SCR catalyst; determining whether conversion to a rich air/fuel ratio is desired; calculating, when the conversion to the rich air/fuel ratio is desired, a rich duration for which the rich air/fuel ratio is maintained and a target air/fuel ratio; and operating the engine at the target air/fuel ratio for the rich duration. |
US11371404B2 |
Engine muffler apparatus
An engine muffler apparatus for reducing noise and pollution from small gas engines such as those on landscaping tools includes an outer housing having a central neck extension with a principal aperture extending through to an outer housing cavity. The neck extension is selectively engageable with an exhaust of a small gas engine. The outer housing cavity has a plurality of vent apertures. An intake extension tube and a medial tube are coupled to the outer housing cavity. The medial tube has a medial cavity. A first filtering medium is coupled within the medial cavity and filters pollutants passing therethrough. A second filtering medium is coupled within the outer housing cavity outside of the medial tube and dampens sound waves passing through the apparatus from the exhaust. |
US11371400B2 |
Systems for crankcase ventilation
Systems are provided for a crankcase ventilation system. In one example, a crankcase ventilation (CCV) system for an engine configured to transmit crankcase gases into a clean side air duct, the clean side air duct comprising a sensor and a crankcase ventilation spigot, wherein the crankcase ventilation spigot is configured to be disposed downstream of the sensor, the crankcase ventilation spigot having an outlet configured to direct crankcase gases emerging from the crankcase ventilation spigot away from the sensor. |
US11371396B2 |
Switchable actuation device for a poppet valve in an internal combustion engine, internal combustion engine and motor vehicle
The present invention relates to a switchable actuation device (100) for a gas exchange valve. The switchable actuation device (100) comprises a two-piece rocker arm (10). Said rocker arm comprises a first rocker arm portion (1a), which is mounted pivotably about a rocker arm shaft (2) and to which a bearing sleeve (1a1) is fastened concentrically with the rocker arm shaft (2), and a second rocker arm portion (1b) mounted pivotably on the bearing sleeve (1a1). Furthermore, both the first and the second rocker arm portions (1a, 1b) each comprise a cut-out (3a, 3b), wherein a locking element (4a) of a coupling device (4) of the switchable actuation device (100) can optionally be brought into and out of engagement with the two cut-outs (3a, 3b). An actuation of the poppet valve, preferably a change between a closed position and an open position of the poppet valve, is interrupted if the locking element (4a) is not in engagement with the two cut-outs (3a, 3b). The invention also relates to an internal combustion engine (20) and a motor vehicle (30). |
US11371395B2 |
Gland steam condenser for a combined cycle power plant and methods of operating the same
A combined cycle power plant that includes a gas turbine engine, a heat recovery steam generator (HRSG), a steam turbine, a primary condenser, a condensate extraction pump, a gland steam condenser, and a cooling module. The HRSG generates steam. The steam turbine receives steam from the HRSG. The primary condenser is fluidly coupled to the steam turbine and receives a first portion of exhaust steam from the steam turbine. The condensate extraction pump is fluidly coupled to the primary condenser and receives a condensed first portion of exhaust steam. The gland steam condenser is fluidly coupled to the steam turbine and receives a second portion of exhaust steam from the steam turbine. The cooling module is fluidly coupled to the gland steam condenser and supplies a cooling fluid to the gland steam condenser. The cooling module is fluidly isolated from the condensate extraction pump. |
US11371393B2 |
Arrangement for converting thermal energy from lost heat of an internal combustion engine
An arrangement for converting thermal energy from lost heat of an internal combustion engine into mechanical energy includes a working circuit for a working medium. An expansion engine is disposed in the working circuit. A heat exchanger is mounted upstream of the expansion engine in a flow direction of the working medium where the working circuit extends through the heat exchange. The heat exchanger includes an exhaust gas recirculation heat exchanger having a cold part and a warm part, an exhaust gas heat exchanger, and a phase transition cooling in the internal combustion engine. The heat exchanger is formed by serial connection in a sequence of the cold part of the exhaust gas recirculation heat exchanger, the exhaust gas heat exchanger, the phase transition cooling in the internal combustion engine, and the warm part of the exhaust gas recirculation heat exchanger. |
US11371390B2 |
Assemblies for transferring compressive loads in flanges of composite gas turbine engine components
An assembly for a gas turbine engine according to an example of the present disclosure includes, among other things, a composite gas turbine engine component including a first flange extending radially from a main body at a junction having an arcuate profile. An adapter ring includes a mate face dimensioned to follow a contour of the junction such that the junction sits on the mate face. A method of assembly for a gas turbine engine is also disclosed. |
US11371389B2 |
Divot for outer case shroud
The invention concerns a turbine exhaust casing (TEC) for a gas turbine engine in which portions of the inner surface of the casing against which exhaust gas flows are provided with recesses extending into the surfaces. The recesses are positioned proximate to the leading edges of struts which extend between an outer shroud and inner hub of the casing. |
US11371386B2 |
Manufacturing methods for multi-lobed cooling holes
A method for producing a diffusion cooling hole extending between a wall having a first wall surface and a second wall surface includes forming a cooling hole inlet at the first wall surface, forming a cooling hole outlet at the second wall surface, forming a metering section downstream from the inlet and forming a multi-lobed diffusing section between the metering section and the outlet. The inlet, outlet, metering section and multi-lobed diffusing section are formed by laser drilling, particle beam machining, fluid jet guided laser machining, mechanical machining, masking and combinations thereof. |
US11371381B2 |
Shaft monitoring system
A monitoring system includes first and second, axially adjacent, phonic wheels formed from respective axially adjacent portions of a unitary annular body and mounted coaxially to the shaft for rotation therewith. The first and second phonic wheels have respective first and second circumferential rows of teeth. The system further includes a sensor configured to detect the passage of the first row of teeth by generating a first alternating measurement signal component, and to detect the passage of the second row of teeth by generating a second alternating measurement signal component. The sensor generates a signal having both the first and the second alternating measurement signal components when axially positioned midway between the first and second phonic wheels. The teeth of the first and second rows are configured such that the first alternating measurement signal component has an identical frequency to the second alternating measurement signal component. |
US11371379B2 |
Turbomachine with alternatingly spaced turbine rotor blades
An engine assembly includes an engine including a component and defining an opening and an interior, the component including a first side and an opposite second side, the second side positioned within the interior of the engine. The engine assembly also includes an inspection tool having a first member including at least one of a receiver or a transmitter and directed at the first side of the component. The inspection tool also includes a second member including the other of the receiver or the transmitter and positioned at least partially within the interior of the engine and directed at the second side of the component to communicate a signal with the first member through the component, the second member being a robotic arm extending through the opening of the engine. |
US11371377B2 |
Gas turbine induction system, corresponding induction heater and method for inductively heating a component
An induction heater is employed with a gas turbine engine in order to heat a static component of the gas turbine engine. The heating of the static component is performed such that the clearance space between the static component and a rotating component remains constant during steady state conditions and transient conditions. |
US11371375B2 |
Heatshield with damper member
A gas turbine engine includes a shaft and a heatshield that circumscribes the shaft. The heatshield defines a cylindrical body that has radially inner and outer sides and extends between first and second axial ends. The heatshield is exclusively supported on the shaft at the first and second axial ends. The heatshield includes at least one seal member on the radially outer side. A damper member is disposed at the radially inner side of the heatshield for attenuating vibration of the heatshield. |
US11371373B2 |
Seal assembly for use in gas turbine engines
A seal housing may comprise an aft flange, an outer diameter (OD) ring and a stopper. The stopper may extend radially inward from a radially inner surface of OD ring. The stopper may be configured to interface with a monobloc carbon seal. The stopper may comprise a circumferential stopping portion and an axial stopping portion. There may be a plurality of the stopper. |
US11371363B1 |
Turbine blade tip shroud surface profiles
A tip shroud may include a pair of opposed, axially extending wings configured to couple to an airfoil at a radially outer end thereof. The tip shroud also includes a tip rail extending radially from the pair of opposed, axially extending wings. Tip shroud surface profiles may be of the downstream and/or upstream side of the tip rail, a leading and/or trailing Z-notch of the tip shroud, and/or upstream and/or downstream radially outer surfaces of a wing. The surface profiles may have a nominal profile in accordance with at least part of Cartesian coordinate values of X, Y, Z and perhaps thickness, set forth in a respective table. |
US11371359B2 |
Turbine blade for a gas turbine engine
A turbine blade for a gas turbine engine has: an airfoil extending along a span from a base to a tip and along a chord from a leading edge to a trailing edge, the airfoil having a pressure side and a suction side, a tip pocket at the tip of the airfoil, the tip pocket at least partially surrounded by a peripheral tip wall defining a portion of the pressure and suction sides; at least one internal cooling passage in the airfoil and having at least one outlet communicating with the tip pocket; and a reinforcing bump located on the pressure side of the airfoil and protruding from a baseline surface of the peripheral tip wall to a bump end located into the tip pocket, the reinforcing bump overlapping a location where a curvature of a concave portion of the pressure side of the airfoil is maximal. |
US11371349B2 |
Gas impingement in-process cooling system
A blade repair apparatus is provided and includes a deposition head which is movable relative to base materials and configured to execute a repair operation that includes a deposition of additional materials onto the base materials during deposition head movements, a temperature control system including a temperature regulating assembly coupled with the deposition head in a trailing position and a controller. The controller is operably coupled to the deposition head and the temperature control system. The controller is configured to control the deposition head movements and depositional operations of the deposition head. The controller is configured to control the temperature control system such that the temperature regulating assembly controls temperatures of at least the base materials and the additional materials during at least the deposition head movements and the depositional operations. |
US11371340B2 |
Determination of borehole shape using standoff measurements
A downhole tool is placed in a borehole of a subsurface formation. The downhole tool comprises a plurality of calipers arranged around a circumference of the downhole tool. A plurality of standoff measurements is received for different rotation angles of the downhole tool, wherein each standoff measurement is indicative of a distance between one of the plurality of calipers and a wall of the borehole. A plurality of apparent diameters of the borehole is determined for the different rotation angles of the downhole tool based on the plurality of standoff measurements and a radius of the downhole tool. A probability function is determined based on the plurality of apparent diameters and at least one of a semiminor axis, semimajor axis, and ellipticity of the borehole is identified based on the probability function. |
US11371338B2 |
Applied cooling for electronics of downhole tool
Systems and methods for cooling an electronics compartment of a downhole tool include a tool assembly. The tool assembly is an elongated member formed of axially aligned tool units. The tool units include a turbine and the electronics compartment. The electronics compartment has an interior cavity containing electronics components. The tool units further include a compressor powered by the turbine. The compressor is operable to compress a coolant fluid. The compressor has a central heat exchanger operable to cool a non-electrically conductive fluid with the coolant fluid. An impeller is rotated by the turbine. The impeller is operable to circulate the non-electrically conductive fluid past the electronics components. |
US11371336B2 |
Systems and methods for estimating refined reservoir productivity values as a function of position in a subsurface volume of interest
Systems and methods are disclosed for estimating reservoir productivity values that maximize reservoir productivity of a refined well design corresponding to a reservoir productivity parameter. A computer-implemented method may use a computer system that includes non-transient electronic storage, a graphical user interface, and one or more physical computer processors. The computer-implemented method may include: obtaining multiple limited production parameter values, obtaining multiple refined well designs, obtaining a productivity algorithm that predicts a reservoir productivity based on a production parameter and a well design, and generating multiple refined reservoir productivity values as a function of position in the subsurface volume of interest by applying the multiple refined well designs and the multiple limited production parameter values to the productivity algorithm. |
US11371335B2 |
Mapping a fracture geometry
A fracture geometry mapping method includes determining a value of a diffusive tortuosity in a first direction in a first rock sample from a subterranean formation with one or more hardware processors; determining a value of a diffusive tortuosity in a second direction in the first rock sample from the subterranean formation with the one or more hardware processors, the second direction orthogonal to the first direction in the first rock sample; determining a value of a diffusive tortuosity in third direction in the first rock sample from the subterranean formation with the one or more hardware processors, the third direction orthogonal to both the first direction and the second direction in the first rock sample; comparing the values of the diffusive tortuosities in the in the first direction, the second direction, and the third direction; and based on the comparison, generating a first fracture network map of the subterranean formation, the first fracture network map including a first plurality of anisotropic fracture pathways. |
US11371334B2 |
Rotary steerable drilling tool and method
A directional drilling system includes a rotary steerable tool. The rotary steerable tool includes an extendable member configured to extend outwardly from the rotary steerable tool upon actuation, and a geolocation electronics device configured to track a position of the rotary steerable tool and the extendable member and control actuation of the extendable member. The geolocation electronics device and extendable member are configured to rotate with the rotary steerable tool. |
US11371329B2 |
Hydrogen production by downhole electrolysis of reservoir brine for enhanced oil recovery
Systems and methods of enhancing oil recovery with an electrochemical apparatus include introducing the electrochemical apparatus into an injection well bore. The electrochemical apparatus includes an anode, a cathode and an interior wall, the interior wall defining an interior that contains both the anode and the cathode. The electrochemical apparatus is operated such that injection water of the injection well bore is introduced into the interior of the electrochemical apparatus. Electrical power is introduced to the electrochemical apparatus such that a portion of the injection water is converted into a product gas, the product gas including hydrogen gas and oxygen gas. The electrochemical apparatus is operated such that the product gas forms product gas bubbles and the product gas bubbles travel into a formation, where the product gas bubbles react with a reservoir hydrocarbon of the formation to form a production fluid that is produced through a production well bore. |
US11371324B2 |
Method and apparatus for installing infield flexible liner of downhole tubing
A method of lining a tube using a spoolable liner includes connecting a connector to a distal end of the spoolable liner. The connector and spoolable liner are inserted into the tube and are advanced to a tube engagement point. A distal connection is formed between the spoolable liner and the tube by attaching the connector to an engagement mechanism at the tube engagement point. A proximal end of the spoolable liner is established and a proximal connection is formed between the proximal end and the tube. The spoolable liner is plugged with a deployable plug in a vicinity of the distal end and with a termination in a vicinity of the proximal end. An interior area is filled with a fluid such that the fluid expands the spoolable liner against an interior wall of the tube. |
US11371322B2 |
Energy transfer mechanism for a junction assembly to communicate with a lateral completion assembly
A system and method to controlling fluid flow to/from multiple intervals in a lateral wellbore. The system and method can include a unitary multibranch inflow control (MIC) junction assembly (a primary passageway through a primary leg and a lateral passageway through a lateral leg) installed at an intersection of main and lateral wellbores. An upper energy transfer mechanism (ETM) can be mounted along the primary passageway, and control lines 100 can provide communication between the upper ETM 214 and lower completion assembly equipment. A lower ETM can be mounted along the lateral passageway, with the upper ETM in communication with the lower ETM via the control lines. A tubing string can be extended through the primary passageway to access lower completion assembly equipment. The upper ETM can communicate with a tubing string ETM to receive/transmit control, data, and/or power signals from/to lower completion equipment in the lateral wellbores. |
US11371320B2 |
Experimental method and system for simulating evolution of reservoir fracture stress field
An experimental method and system for simulating the evolution of reservoir fracture stress field, the experimental method comprises the following steps: (S1) preparing horizontal well fracturing model (100); (S2) applying boundary loads and constraints to the horizontal well fracturing model (100); (S3) injecting fracturing fluid or fracturing gas into a fracturing wellbore (130) of the horizontal well fracturing model (100) after loading for fracturing; in a fracturing stage, a photoelastic fringe image of the horizontal well fracturing model (100) is obtained by an optical phase shift method; the fracturing stage comprises an initial state before fracturing fluid or fracturing gas is injected and an end state after fracturing is completed. The experimental method and system can effectively simulate the whole process of horizontal well fracturing, and accurately obtain the variation law of reservoir stress field and its influence on crack propagation during horizontal well fracturing. |
US11371314B2 |
Cement mixer and multiple purpose pumper (CMMP) for land rig
Embodiments disclosed provide a pump assembly including a first pump for delivering at least one fluid. The first pump may include a first inlet coupled to the first pump for delivering at least one first fluid to the first pump, a second inlet coupled to the first pump for delivering at least one second fluid to the first pump, a first discharge coupled to the first pump for delivering the at least one first fluid at a first pressure, and a second discharge coupled to the first pump for delivering the at least one second fluid at a second pressure. In some embodiments, the first discharge and the second discharge are isolated from each other. |
US11371309B2 |
Blowout preventer with a threaded ram
An assembly for a blowout preventer includes a ram having a threaded opening. The assembly also includes a threaded shaft to engage the threaded opening and a motor to drive rotation of the threaded shaft. Rotation of the threaded shaft causes the ram to move axially along the threaded shaft. |
US11371305B2 |
Setting tools and assemblies for setting a downhole isolation device such as a frac plug
A setting tool for setting frac plugs and the like can include a mandrel having a chamber for housing expandable gas and a gas port in fluid communication with the chamber; a firing head secured to the mandrel for igniting a power charge to generate pressurized gas within the chamber; a barrel piston housing the mandrel and connected to a sleeve for setting the frac plug; and an expansion region defined between the mandrel and the barrel piston and receiving the pressurized gas which exerts force to cause a stroke of the barrel piston over the mandrel as the expansion region expands axially. The setting tool can include various features, such as certain gas bleed systems, an enhanced shear screw assembly, a bleed port and plug assembly, a scribe line, a particular gas port configuration, a liquid escape conduit, no-shoulder barrel configuration, and/or a low-force design for frac plugs. |
US11371303B2 |
Downhole tractor with bi-directional wheel assembly
A downhole tractor for operational use in well casing of a wellbore. The tractor comprising a tractor body, at least one actuator assembly, and at least one tractor wheel. The actuator assembly is actionable to shift the axis of rotation of the tractor wheel. The at least one tractor wheel includes at least one bifurcated tract having a leading and trailing edge for engaging the well casing. The at least one actuator assembly causes the at least one tractor wheel to switch from traversing a first vertical plane of the well casing to a second vertical plane of the well casing when actuated. |
US11371302B2 |
Real time drilling fluid rheology modification to help manage and miniminze drill string vibrations
A method of managing bottom hole assembly vibrations while drilling a wellbore including obtaining data regarding drilling parameters related to one or more drilling operations, determining if the bottom hole assembly has vibration levels outside of the range of normal operation parameters, modifying the drilling mud formulation to alter at least one of its physical properties and rheological properties to keep or maintain the vibration levels of the bottom hole assembly within the range of normal operation parameters, and mitigating the vibrations. |
US11371301B2 |
Lost circulation shape deployment
Methods and systems for sealing a lost circulation zone associated with a subterranean include determining geophysical data of the lost circulation zone. An available range of lost circulation shape data and an available range of lost circulation material data is provided. The geophysical data, the available range of lost circulation shape data, and the available range of lost circulation material data are part of a fixed data set. An initial lost circulation mix is determined from the fixed data set. An initial drill string downhole flow rate and an initial annulus uphole flow rate are determined and an initial loss volume is calculated. The initial lost circulation mix is delivered into the subterranean well. A revised drill string downhole flow rate and a revised annulus uphole flow rate are determined and a revised loss volume is calculated. |
US11371298B2 |
Support device for rotation of high-capacity and compact drill pipe storage unit of seabed drilling rig in lying state
A support device for the rotation of a high-capacity and compact drill pipe storage unit of a seabed drilling rig in a lying state, including: a rack, a plurality of curved support frames, a plurality of lateral drill pipe stoppers and a plurality of annular fences. The curved support frames are provided parallelly and coaxially on a slideway of the rack. A separating plate is provided on each of the curved support frames. A curved support surface of each of the curved support frames is in contact with a circular edge surface of the corresponding separating plate. The annular fences are mounted on the rack. Each of the annular fences is provided with a first gap and a second gap. The first gap is provided corresponding to the lateral drill pipe stopper. The second gap is configured to allow the drill pipes enter and exit the drill pipe storage unit. |
US11371295B2 |
Wellhead connector soft landing system and method
Systems and method for providing a soft landing of a wellhead connector onto a subsea wellhead are provided. One such system includes a wellhead connector configured to be coupled to a subsea wellhead, and a soft landing system disposed on a body of the wellhead connector. The soft landing system includes one or more cylinder assemblies coupled to the body of the wellhead connector, and one or more valve assemblies coupled to the body of the wellhead connector. Each cylinder assembly includes a barrel, a rod disposed within the barrel and extending in one direction from the barrel, and a pad attached to an extended end of the rod. The one or more valve assemblies are each fluidly coupled to the one or more cylinder assemblies. |
US11371294B2 |
Releasable ratchet latch connector
A system including a releasable connector having a housing and a split ring, and a complementary mandrel that is attachable/detachable from the connector, is provided. The mandrel is designed to be received into the housing such that a portion of the mandrel extends out of the housing for connection to a tool. The split ring is disposed in an annular space between the housing and the mandrel when the mandrel is in the housing. The split ring includes at least one set of threads and a detent formed on a radially internal surface, and the mandrel includes complementary threads. The threads on the split ring fully engage the complementary threads on the mandrel when the mandrel is in a particular axial position within the housing. The detent prevents the split ring from collapsing into engagement with the threads on the mandrel until the mandrel is in a desired axial position. |
US11371291B2 |
Side saddle slingshot continuous motion rig
A drilling rig includes a rig floor, first and second support structures, a mast, a lower drilling machine, a continuous drilling unit, an upper drilling machine, and an upper mast assembly. The rig floor includes a V-door defining a V-door axis extending perpendicularly from the side of the rig floor that includes the V-door. The first and second support structures define a traverse corridor having a traverse corridor axis, wherein the traverse corridor axis is perpendicular to the V-door axis. The drilling rig may be used for continuous drilling of a wellbore. |
US11371289B2 |
Drive shaft assembly for downhole drilling and method for using same
A drive shaft assembly for use with downhole mud motors is capable of handling greater torque and thrust forces. The drive shaft assembly has an elongated central drive shaft, and at least one end housing optionally disposed at one or both ends of the central drive shaft. At least one end of the central drive shaft defines a rounded or partially-spherical outer end surface and a plurality of elongate protrusions or “keys” that extend radially outward from the exterior surface of the shaft. Each end housing has a concave interior surface defining a seat for receiving a rounded end surface of the central drive shaft, as well as a plurality of circumferentially spaced axial keyways adapted to receive and engage with the keys in mating relationship. The shaft and end assemblies cooperate to facilitate omnidirectional pivotal movement and the transfer of torque forces between the shaft and each of said end housings. |
US11371288B2 |
Rotary steerable drilling push-the-point-the-bit
A hybrid Rotary Steerable System (RSS) includes both exterior steering pads as in a push-the-bit system and, internal shaft pistons as in a point-the-bit system. The steering pads and the shaft pistons may cooperate to permit the RSS to achieve tighter turning radii. The steering pads and the shaft pistons may be independently or collectively controllable by diverting a portion of drilling fluid flowing through the RSS. In some embodiments, the steering pads and shaft pistons may extend in opposite directions to steer the drill bit, and on other embodiments, the steering pads and shaft pistons may extend in the same direction. |
US11371287B2 |
Fluid operated drilling device and a method for drilling a hole
A fluid operated drilling device for drilling a hole includes a hammer connected to a drill rod, and a rotation device to rotate the drill rod and the hammer. The hammer includes a tubular main body, a back head, a cylindrical piston housing, a reciprocating piston and a space between the piston. The piston housing is divided by an annular pressurizing portion into first and second space portions for elevating and striking the piston. First communication channels from a hollow portion of the piston into a second space between the piston and the main body discharge fluid between the piston and the main body. A method for drilling a hole using the fluid operated drilling device is also disclosed. |
US11371285B2 |
Rolling door guide area heating method and system
A system for heating a door guide area includes: a first and second conduit for channeling a flow of heated air; a heater fluidly connected to the first conduit and configured to provide air to the first and second conduits; first and second openings providing fluid communication between the first and second conduits to allow the air to circulate through the first and second conduits; a heat transfer wall part of the second conduit, to transfer heat from the flow of heated air in the second direction to a space outside of the second conduit that is defined, in part, by the heat transfer wall; and two side supports connected to the heat transfer wall, the side supports located opposing each other and dimensioned and located along with the heat transfer wall to form three sides to encompass a portion of a roll-up door. |
US11371282B2 |
Slat angle adjusting mechanism for window blind
A slat angle adjusting mechanism for a window blind includes a shell, a worm gear rotatably disposed in the shell, and a rotationally driving unit rotatably disposed in the shell and including combinable first and second rotationally driving shafts. The first rotationally driving shaft is located in the shell and has a worm portion engaged with the worm gear, a cone-shaped abutting portion and an embedding portion with non-circular cross-section, which are connected with the worm portion in order. A top end of the second rotationally driving shaft is located in the shell and has an axial hole with non-circular cross-section and two opposite fastening portions each formed at a terminal end thereof with a hooking claw. As a result, the first and second rotationally driving shafts are combinable by the consumer, preventing themselves and the slats from damage during packaging and transportation. |
US11371278B2 |
Window for an above-ground pool
A window for an above-ground pool is provided. The window includes a window portion (200) and a retainer bracket (250). The window portion (200) includes a window pane (210) and a peripheral rim (220) around a perimeter of the window pane (210). The peripheral rim (220) defines grooves (230) between inner and outer flanges (245, 235) on opposite side of the peripheral rim (220). The retainer bracket (250) includes a peripheral rim junction (260), a peripheral plate (270) and a joint (265) connecting the peripheral rim junction (260) and the peripheral plate (270). |
US11371275B2 |
Method for controlling a drive arrangement for a flap of a motor vehicle
The disclosure provides a method for controlling a drive arrangement for a flap of a vehicle by a control arrangement, wherein in a measuring routine a measured movement value is measured by a movement measuring system. It is proposed that in an estimation routine an estimated movement value is estimated, in a movement routine the estimated movement value is determined via the estimation routine and the flap is adjusted according to a set movement value, in a correction routine the estimated movement value is determined from the estimation routine and an estimation error is determined and from the estimated movement value and according to a correction specification the set of model parameters is corrected based on the estimation error and supplied to the estimation routine and in the correction routine the correction of the set of model parameters is performed for a part section of the motorized movement cycle. |
US11371274B2 |
Push-pull door/window
Disclosed is a sliding door or window. The sliding door or window includes a door/window frame, a swing fastening mechanism is disposed at a lower end of a side of the door/window frame, and a locking structure is mounted on an upper end of the side of the door/window frame. The swing fastening mechanism and the locking structure are each provided with a snakelike groove inside which a shaft operative to slide along a groove orientation is arranged. A handle disposed on the door/window frame is operative to drive the shaft to slide in the snakelike groove, thereby forcing the swing fastening mechanism or/and the locking structure to swing. |
US11371269B2 |
Activation device for at least two spatially separated motor vehicle closure units
An activation device for at least two spatially separated motor vehicle closure units, for example for a tailgate latch on the one hand and a fuel filler door latch on the other hand. The activation device possesses a linear drive with a linear actuator. Dependent on its activation direction, the linear drive impinges either the first motor vehicle closure unit or the other second motor vehicle closure unit. According to the invention, dependent on its actuating direction, the linear actuator impinges at least a pivotable activation lever to interact with either the first motor vehicle closure unit or the other second motor vehicle closure unit. |
US11371268B2 |
Motor vehicle lock
The disclosure relates to a motor vehicle lock with a lock mechanism and with a lock housing to receive the lock mechanism, wherein the lock mechanism comprises at least one activating lever which can swivel about a geometrical lever axis, wherein a bearing sleeve element is provided, on which the activating lever is radially mounted, wherein the activating lever is mounted on the bearing sleeve element axially at both sides and for this it is coupled to the bearing sleeve element by a bayonet fitting and in the process of installing the motor vehicle lock the activating lever and the bearing sleeve element can be premounted to form a separate unit by creating the bayonet fitting. |
US11371267B2 |
Motor vehicle lock with rotary latch support
A motor vehicle lock including a rotary latch and a pawl for latching the rotary latch in a latching position, in particular main latching position, and also a lock plate with a screw-on point for attaching the motor vehicle lock to a vehicle door or vehicle flap, wherein the rotary latch comprises a support which is provided in such a manner that, in the latching position, in particular main latching position, the rotary latch can be supported on the screw-on point via the support in the event of an overload. Opening of a vehicle door or flap can thus be avoided even in the event of a crash. |
US11371266B2 |
Chain lock
A chain lock includes a top part pivotably connected to a bottom part. An engaging member is located in the bottom part. A lock cylinder, a rotary member and a rod are connected to each other. A torsion spring is biased between the lock cylinder and the rotary member. The torsion spring, the lock cylinder, the rotary member and the rod are located in a movable member to which a compression spring is mounted. Both of the movable member and the compression spring are received in the top part. A chain is secured in a first radial slot of the top part by the movable member, and the other end is inserted in the second radial slot of the bottom part. The chain lock is locked without using the key, and the key is required to unlock the chain lock. |
US11371265B2 |
Hybrid drawer handle and release mechanism
A drawer release mechanism has a handle having ends, a cylindrical portion and a flange. A pair of end cap interfaces are engaged to the ends of the handle. The end cap interfaces have rotational shafts, cylindrical receiving portions, receiving slots, and flange slots. A pair of end caps are exterior to the end cap interfaces, the end caps have flange recesses, rotation surfaces, shaft openings, and cam receiving areas, where the rotational shafts are disposed through the shaft openings, the receiving portions are adjacent to the rotation surfaces, and the flange slots are disposed in the flange recesses. The end caps are attached to a drawer. A cam is engaged to each of the rotational shafts. Each cam includes a shaft receiver, an actuator support and a cam actuator. The cams engage levers to release a drawer from a cabinet upon actuation of the handle. |
US11371264B2 |
Fence gate limiting mechanism, fence gate assembly and fence gate limiting method
The invention belongs to the technical field of protective articles for infants and young children, and particularly relates to a fence gate limiting mechanism, a fence gate assembly and a fence gate limiting method which can be suitable for protective devices such as fence gates. In the invention, the traditional dual-operation unlocking is transformed into two-stage unlocking, which eliminates the occurrence of unauthorized opening of the gate assembly by infants and young children. The invention also provides a novel connection mechanism with desirable structural strength and connection strength, which reduces the labor intensity and improves the assembly efficiency in production, assembly and maintenance. |
US11371263B2 |
Latch arrangement having a stop latch
A latch arrangement for fastening a panel of a door or a window to a frame element, the panel including a depression is provided. The latch arrangement includes a locking element pivotally mounted on the frame element and displaceable between a locked position in which the locking element is engaged with the depression of the panel locking thereby the panel to the frame element, and an unlocked position in which the locking element is disengaged from the depression of the panel unlocking thereby the panel from the frame element, a stop latch selectively deployable to secure the locking element in the locked position, precluding thereby displacement of the locking element to the unlocked position; and an actuating mechanism configured to selectively pivot the locking element away from the depression to the unlocked position. |
US11371262B2 |
Method and apparatus for deadbolt position sensing
The present disclosure is directed to an electronic deadbolt control system including a deadbolt configured to extend or retract between a locked position and an unlocked position, respectively. An output shaft connected between a final gear and the deadbolt is configured to transmit an actuation force to the deadbolt from an electric motor. A first magnet and a second magnet are associated with the final gear to define a home position for either a left hand deadbolt or a right hand deadbolt. A cam is positioned on the output shaft to engage with a switch such that, in combination with a threshold current motor output, the control system determines whether the deadbolt is in an extended position or a retracted position. A thumb-turn shaft is disengaged from the final gear in the home position to permit manual actuation of a thumb-turn. |
US11371261B2 |
Solenoid actuated locking system
A locking system and a method for using the same are provided. The locking system including a solenoid actuated locking mechanism. The locking mechanism having an armature coupled to a first end of a bell crank and a locking pin coupled to a second end of the bell crank. The activation of the solenoid linearly drives the armature in a first direction along a first axis and the locking pin in a first direction along a second axis where the first axis is generally perpendicular to the second axis. |
US11371257B1 |
Fence lift system and method of use
A fence lift system and method of use comprises a plurality of post members; a plurality of panel members and a plurality of lift members. The post members are laterally spaced, and the panel members are secured between the post members. Each lift member is secured to a post member and attached to a panel member and configured to raise and lower the panel member. |
US11371252B2 |
Systems and methods of concrete apparatus with incorporated lifter
Systems and methods for a concrete apparatus with incorporated lifter are provided. A concrete apparatus is formed by placing a reinforcement system in a mold. The reinforcement system comprises a lifter. Concrete is poured into the mold such that the lifter protrudes from the poured concrete. After the concrete has hardened and the mold is removed, the lifter is used to carry and position the concrete apparatus. After the concrete apparatus is positioned, the lifter is removed at the circumference of the concrete apparatus leaving no holes, thereby eliminating water leakage due to lifting methods. |
US11371250B2 |
Support plate for installing tile
A support for installing facing materials such as ceramic tiles on a substrate, such as, floors, walls and ceilings. The support plate has a plurality of spaced apart raised portions and recesses in the plate material, and a plurality of openings extending through the top surface and bottom surface of the plate material. The openings exposing a mat layer attached to the bottom of the support plate. Support plates of the invention are used for tile installations between a substrate and tile. Thin-set mortar that is used to secure the tile to the support plate flows into the recesses and into the openings forming a continuous bond between the mortar, openings and mat layer to provide a strong bond between the support plate, mortar and the tiles. |
US11371249B2 |
Floor panel
A floor panel has a rectangular and oblong shape, and includes a substrate and a top layer provided on the substrate and forming a decorative side of the floor panel. The top layer is composed of a print provided on a carrier sheet and a transparent thermoplastic layer situated above the print. The substrate has a thickness from 2 to 10 millimeter and forms at least half of the thickness of the floor panel. The substrate is a polyurethane-based substrate and the transparent thermoplastic layer is polyurethane-based. The floor panel has a length of more than 1.1 meters and has a plurality of reinforcing layers situated outside the center line of the substrate. A reinforcing layer may be provided in combination with the substrate and the top layer. |
US11371247B2 |
Panels, mounting clamps and wall or ceiling covering for a 3-dimensional pattern of wall- and ceiling panels
A rectangular or square wall- or ceiling panel is provided, comprising a first profile a first profile on two opposing edges, whereby each such first profile consists of a panel groove, an inner leg on an installation side of a panel and an outer leg on an visible side of a panel, both inner leg and an outer leg confining said panel groove, wherein both said outer legs are longer than said inner legs. A further second profile may be provided on at least one of the other two opposing edges of the panel, said at least one second profile consisting of a recess on the installation side of the panel. The visible side may be a decorative side. |
US11371246B2 |
Automatic downspout assembly
An automatic downspout assembly includes an intake pipe that is fluidly coupled to a downspout of a gutter on a building to receive precipitation from the downspout. A spout is rotatably coupled to and extends laterally away from the intake pipe and the spout is in fluid communication with the intake pipe to receive the precipitation. A stand is positionable beneath the intake pipe when the intake pipe is fluidly coupled to the downspout to support the intake pipe above a support surface. A tipping pipe is fluidly coupled to the spout to receive precipitation from the spout. The tipping pipe is biased into a home position and the tipping pipe can be urged into a tipped position when the tipping pipe fills with precipitation. In this way the tipping pipe directs the precipitation onto ground. |
US11371243B2 |
Building panel
A panel is disclosed for use in construction. The panel comprises opposing surfaces that extend between first and second opposite ends. The panel also comprises a plurality of parallel (e.g. sawtooth) ridges. The ridges are provided on at least one of the opposing surfaces. The ridges extend along and adjacent to a first of the opposite ends of the panel for at least a part length thereof. The ridges are arranged to engage with and move past corresponding ridges of an adjacent panel when the panels move relative to each other in opposite directions. The ridges are further arranged so as to interfere with the ridges of the adjacent panel to resist relative movement in a reverse of the opposite direction. |
US11371234B2 |
Circular parallel plate grit remover
A grit removal unit including a cylindrical grit removal chamber above a grit storage chamber, with an opening to the grit storage chamber through the grit removal chamber bottom. At least one layer plate is an inverted truncated cone around the center axis which is spaced from the grit removal chamber vertical wall to allow fluid flow therebetween. Concentric inverted truncated cone lamella plates are supported in the grit removal chamber above the layered plates, with the lamella plates radially spaced from one another relative to the center axis. An influent opening in the grit removal chamber vertical wall below the layered plates allows fluid and grit into the grit removal chamber, and an effluent opening in the grit removal chamber vertical wall above the lamella plates allows fluid to exit the grit removal chamber. |
US11371232B1 |
Modular toilet flange
The modular toilet flange may be a fitting that mounts a toilet to a floor and directs effluent from the toilet to an outflow pipe. The modular toilet flange may comprise a flange body and an inner ring. The flange body may couple to the floor and to the outflow pipe. The inner ring may be a circular depression in the flange body surrounding an open center of the flange body. A pair of bolts extending downward through the toilet may couple to the inner ring by engaging the inner ring. During installation, the toilet may be operable to rotate above the flange body to any angle and still engage the inner ring, thus eliminating a need for a specific alignment of the toilet with mounting bolts extending upwards from a flange. |
US11371228B2 |
Flushing assembly, water supply assembly, lower position water suction assembly, water tank, check valve for use in a toilet, and method, device, and storage medium for controlling toilet water consumption
The present disclosure provides a water supply assembly of a toilet comprising a water input pipe, a water tank, a water suction pump and a water output pipe; wherein the water input pipe is connected to the water tank; clean water enters the water tank through the water input pipe; the water tank is connected to the water suction pump connected to the water output pipe; the water suction pump pumps the clean water inside the water tank into the water output pipe; the water tank comprises a main water tank portion, an auxiliary water tank portion, and a water equalizing pipe connecting between and through the main water tank and the auxiliary water tank. The present disclosure provides a flushing assembly, a water suction assembly, and a check valve for use in the toilet. The present disclosure provides a method, device, and storage for controlling toilet water consumption. |
US11371216B2 |
Work vehicle
A work vehicle includes a first hydraulic pump that supplies hydraulic oil to a first hydraulic motor so as to drive a first travel device forward when hydraulic pressure applied to a first port is higher than hydraulic pressure applied to a second port, and a second hydraulic pump to drive a second travel device forward when hydraulic pressure applied to a third port is higher than hydraulic pressure applied to a fourth port. A first pilot oil passage, a second pilot oil passage, a third pilot oil passage, and a fourth pilot oil passage connect the operation device to first, second, third, and fourth ports, respectively. A first bypass oil passage connects the first pilot oil passage and the fourth pilot oil passage. A second bypass oil passage connects the second pilot oil passage and the third pilot oil passage. A first throttle is provided in the first bypass oil passage. A second throttle is provided in the second bypass oil passage. |
US11371209B2 |
Work vehicle with switchable propulsion control system
A propulsion control system includes a travel motor configured to be actuated to drive the track assembly in the forward and reverse travel directions; a propulsion control device actuated in first and second input directions; and a propulsion switching mechanism. In a first propulsion direction mode, when the control device is actuated in the first input direction, the travel motor is actuated to drive in the forward travel direction, and when the control device is actuated in the second input direction, the travel motor is actuated to drive in the reverse travel direction. In a second propulsion direction mode, when the control device is actuated in the first input direction, the travel motor is actuated to drive in the reverse travel direction, and when the control device is actuated in the second input direction, the travel motor is actuated to drive in the forward travel direction. |
US11371204B2 |
Ring-shaped cofferdam and temporary pit excavation structure using tapered square pipe, and construction method thereof
A ring-shaped cofferdam and temporary pit excavation structure using tapered square pipes includes a plurality of tapered square pipes a trapezoidal cross-section, in which the plurality of tapered square pipes each have a coupling protrusion or a coupling groove formed in a longitudinal direction on a first side, the plurality of tapered square pipes each have a coupling protrusion or a coupling groove formed in the longitudinal direction on a second side, the plurality of tapered square pipes are assembled by coupling the coupling protrusions and the coupling grooves, a long side of two parallel sides of the trapezoid is disposed outside, and a short side is disposed inside. |
US11371203B2 |
Devices for controlling erosion and storm water runoff
A storm water runoff and erosion control device includes a rigid frame covered by a layer of mesh material. The frame defines an interior space that is filled with filtration material. The device may be configured as a wattle having an elongated frame with a triangular cross-section. The wattle may be extended along the contour of a hill to reduce erosion, or it may be placed at the entrance to a drainage inlet to slow the velocity of, and filter sediment and contaminants from, water entering the inlet. Alternatively, the device may be a compact filter that is a cube, cylinder, sphere, or other suitable geometry. A plurality of these compact filters may be placed in the basin of a storm water drain, and piled sufficiently high to cover the outlet from the basin. Thus, all the water in the basin must pass through the compact filters before exiting. |
US11371198B2 |
Spacer piece for a guard rail system
The present invention provides a spacer piece for securing a guardrail beam to a support post in a guardrail system, the spacer piece including a breakable portion configured to break preferentially during an impact, and release the beam from the support post. |
US11371193B2 |
Method for manufacturing a road pavement comprising a heat exchanger device
The invention relates to a method for manufacturing a road pavement comprising pipes of a device for a heat exchanger, comprising the following steps: a) digging a course to create grooves extending in a same direction and strips connecting the grooves, then b) laying the pipe having a crushing strength higher than 2 000N per linear metre of pipe at 100° C. into the grooves created in step a); and then c) filling the empty space left free by the pipe in the grooves with an asphalt mix having a working temperature lower than 160° C., based on: a hydrocarbon binder, at least 90% by weight, with respect to the total weight of the asphalt mix, of an aggregate fraction the elements of which have dimensions less than 10 mm, and comprising from 30% to 60% by weight, with respect to the total weight of the aggregate fraction, of sand, d) applying a surface course for a road pavement. |
US11371188B2 |
Method of producing a fibrous product and a fibrous product
The present invention relates to multi-layer fiber products and a method of manufacturing these kinds of products. The present product comprises a first layer consists mainly of natural fibers and a second, heat-sealing layer located on top of the first layer. The heat-sealing layer consists mainly of synthetic thermoplastic fibers or particles. According to the present method, the heat-sealing layer is brought onto the first layer already during the web forming process, the first and the second layers being formed and joined together in a foam forming process. With the present invention, it is possible to decrease the amount of plastic materials in packaging materials having heat-sealing properties. |
US11371184B2 |
Method for recycling baled waste material
A method to facilitate recycling waste material, including waste paper and organic material, comprises the steps of receiving a plurality of plastic-wrapped compressed bales of the waste material at a waste material recycling location from a remote baling location, thereafter introducing the plurality of plastic-wrapped compressed bales into a re-pulping device at the waste material recycling location to form a treated waste material including substantially re-pulped waste paper, and thereafter discharging the treated waste material from the re-pulping device. |
US11371180B2 |
Laundry treating appliance having a spray arm assembly
A laundry treating appliance includes a chassis defining an interior. A rotatable treating chamber is located within the interior and has an access opening. A cover is movably mounted to the chassis for selective movement between opened and closed positions to open and close the access opening. The laundry treating appliance further comprises a spray arm assembly having a spray head. |
US11371176B2 |
Laundry treating apparatus
A laundry treating apparatus includes a cabinet, a water tub provided inside the cabinet, and a detergent box to supply detergent to the water tub. The detergent box includes a housing connected to communicate with the water tub, a drawer having a plurality of detergent storage spaces and received in the housing to be drawn out, and a distribution unit to distributively supply wash water into the plurality of detergent storage spaces. The housing may include a through portion communicating with the water tub, a horizontal partition protruding above the through portion and disposed in a left and right direction, and a wash water guide unit to guide the wash water so that a plurality of wash water movement paths is defined at a front region of the horizontal partition. Accordingly, detergent residue at an inner front region of the housing can be suppressed. |
US11371172B2 |
Tubular woven fabric
A tubular woven fabric is useful as a transport hose for a fluid or a powder, as a protective hose for linear bodies such as wires, cables and conduits, as a tubular filter, or as a base material of a vascular prosthesis. The tubular woven fabric includes warp yarns and weft yarns interwoven with each other, the tubular woven fabric having an outer diameter with a variation of within 10% along the warp direction and satisfying the formula: (L2−L1)/L1≤0.1. |
US11371171B2 |
Production method for separated fiber bundle, separated fiber bundle, fiber-reinforced resin molding material using separated fiber bundle, and production method for fiber-reinforced resin molding material using separated fiber bundle
A production method for a separated fiber bundle includes at least: [A] a partial separation step for obtaining a partially separated fiber bundle in which separation-processed parts, each separated into a plurality of bundles, and not-separation-processed parts are alternately formed along the lengthwise direction of a fiber bundle comprising a plurality of single fibers; and [B] a cutting step for cutting the not-separation-processed parts of the partially separated fiber bundle formed in the step [A] along the lengthwise direction of the fiber bundle. A separated fiber bundle produced by the method, a fiber-reinforced resin molding material that uses the separated fiber bundle, and a production method for the fiber-reinforced resin molding material. |
US11371163B2 |
Stabilized, high-doped silicon carbide
Stabilized, high-doped silicon carbide is described. A silicon carbide crystal is grown on a substrate using chemical vapor deposition so that the silicon carbide crystal includes a dopant and the strain compensating component. The strain compensating component can be an isoelectronic element and/or an element with the same majority carrier type as the dopant. The silicon carbide crystal can then be cut into silicon carbide wafers. In some embodiments, the dopant is n-type and the strain compensating component is selected from a group comprising germanium, tin, arsenic, phosphorus, and combinations thereof. In some embodiments, the strain compensating component comprises germanium and the dopant is nitrogen. |
US11371162B2 |
System and method for generating synthetic diamonds via atmospheric carbon capture
One variation of a method includes: ingesting an air sample captured during an air capture period at a target location for collection of a first mixture including carbon dioxide and a first concentration of impurities; conveying the first mixture through a liquefaction unit to generate a second mixture including carbon dioxide and a second concentration of impurities less than the first concentration of impurities; in a methanation reactor, mixing the second mixture with hydrogen to generate a first hydrocarbon mixture comprising a third concentration of impurities comprising nitrogen, carbon dioxide, and hydrogen; conveying the first hydrocarbon mixture through a separation unit configured to remove impurities from the first hydrocarbon mixture to generate a second hydrocarbon a fourth concentration of impurities less than the third concentration of impurities; and depositing the second hydrocarbon mixture in a diamond reactor containing a set of diamond seeds to generate a first set of diamonds. |
US11371159B2 |
Methods of reducing or eliminating deposits after electrochemical plating in an electroplating processor
Methods and apparatus for reducing the formation of insoluble deposits in semiconductor electrochemical plating equipment or a surface thereof during electrochemical plating, including: removing electrochemical plating equipment or a surface thereof from an electroplating solution, wherein residual electroplating solution is disposed atop the electrochemical plating equipment or a surface thereof, and wherein the residual electroplating solution has a first pH; contacting the residual electroplating solution with a rinse agent having a second pH similar to the first pH to form a rinsate; and removing the rinsate from the electrochemical plating equipment or a surface thereof. |
US11371154B2 |
Methods and systems for electrochemical additive manufacturing
Methods and systems for producing a three-dimensional structure using electrochemical additive manufacturing are described herein. The methods can comprise injecting a growth control solution into an electrolyte comprising a metal salt to form a growth control region and applying an electric potential to a working electrode to thereby form a layer of metal at a location defined by the growth control region. The injecting and applying steps of the methods can be repeated for form the three-dimensional structure on a layer-by-layer basis. |
US11371149B2 |
Nickel-based coating composition for improving damping shock absorbing performance of cylinder head of diesel engine, method for producing the same and use thereof
Provided is a nickel-based composite coating, method for producing the same and use thereof. A powder mixture is coated on the surface of a substrate to obtain a nickel-based composite coating, wherein the powder mixture comprises nickel-chromium-boron-silicon powders and barium titanate powders. The barium titanate powders are added to the nickel-based powders as a second phase to form BaTiO3—NiCrBSi metal-based ceramic composite coating. The nickel-based barium titanate composite coating has an excellent damping shock absorbing performance and gives the substrate strength as well. Comparing with the conventional coating materials, the coating obtained by the present disclosure through plasma cladding technique not only bonds with the substrate in a metallurgic way, but also has a small heat affected zone, specifically, an excellent damping shock absorbing performance. In embodiments of the present disclosure, vibration and noise generated by the cylinder head is reduced 20% by using the shock absorbing cladding coating. |
US11371142B2 |
Substrate processing apparatus having exhaust gas decomposer, and exhaust gas processing method therefor
Disclosed is a substrate processing apparatus and the method of processing an exhaust gas. The substrate processing apparatus and the method of processing an exhaust gas according to the present invention, an exhaust gas decomposition module may decompose a source gas exhausted from a process chamber to decompose a ligand of the source gas. Also, the ligand and the source gas of which the ligand has been decomposed may be put in a stabilized state by reacting with separately supplied O2, N2O, or O3, and then, may be changed to a mixed gas including a reactant gas mixed therewith. Subsequently, the mixed gas may flow into the exhaust pump and may be emitted. Alternatively, the ligand and the source gas may be mixed with the reactant gas and may be emitted. Therefore, the ligand and the source gas of which the ligand has been decomposed may not react with the reactant gas or heat which occurs in the exhaust pump, and thus, the ligand-decomposed source gas and the ligand flowing into the exhaust pump are not deposited on an inner surface of the exhaust pump. Also, the ligand-decomposed source gas and ligands piled in the exhaust pump are not exploded. |
US11371141B2 |
Plasma process apparatus with low particle contamination and method of operating the same
Embodiments of the present disclosure disclose a plasma process apparatus with low particle contamination and a method of operating the same, wherein the plasma process apparatus comprises a chamber body and a liner, wherein a dielectric window is provided above the liner; the chamber body, the liner, and the dielectric window enclose a reaction space; a base for placing a wafer is provided at a bottom portion inside the reaction space; a vacuum pump device for pumping a gas out of the reaction space and maintaining a low pressure therein is provided below the base; a shutter for shuttering between an opening on a chamber body sidewall and an opening on a liner sidewall is provided inside the chamber body, for blocking contamination particles in the gas from flowing from a transfer module to the reaction space; a groove is provided at a lower portion of the liner, wherein a flowing space enclosed by a liner outer wall below the shutter and a chamber body inner wall is in communication with an inner space of the liner via the groove to form a gas flow path, such that the contamination particles entering the flowing space are pumped away by the vacuum pump device via the gas flow path. The present disclosure may not only keep the current wafer free from being contaminated, but also may reduce contamination for a next wafer transfer; besides, it enables introduction of clean air to make the contamination particles carried out of the reaction space with a more significant effect and a higher efficiency. |
US11371140B2 |
Method for producing GaN crystal
A method for producing a GaN crystal that includes: (i) a seed crystal preparation step of preparing a GaN seed crystal having one or more facets selected from a {10-10} facet and a {10-1-1} facet; and (ii) a growth step of growing GaN from vapor phase on a surface comprising the one or more facets of the GaN seed crystal using GaCl3 and NH3 as raw materials. |
US11371134B2 |
Nanowire grid polarizer on a curved surface and methods of making and using
An array of nanowires with a period smaller than 150 nm on the surface of curved transparent substrate can be used for applications such as optical polarizers. A curved hard nanomask can be used to manufacture such structures. This nanomask includes a substantially periodic array of substantially parallel elongated elements having a wavelike cross-section. The fabrication method of the nanomask uses ion beams. |
US11371132B2 |
Nitrided part
The present invention has as its technical problem the provision of a part excellent in contact fatigue strength or wear resistance in addition to the rotating bending fatigue strength. In the present invention, the contents of the constituents of the steel, in particular C, Mn, Cr, V, and Mo, are adjusted in accordance with the targeted properties and nitrided parts are prepared while controlling the nitriding potential. |
US11371131B2 |
Powder for film formation and material for film formation
The present invention relates a coating powder comprising a rare earth oxyfluoride (Ln-O—F) and having: an average particle size (D50) of 0.1 to 10 μm, a pore volume of pores having a diameter of 10 μm or smaller of 0.1 to 0.5 cm3/g as measured by mercury intrusion porosimetry, and a ratio of the maximum peak intensity (S0) assigned to a rare earth oxide (LnxOy) in the 2θ angle range of from 20° to 40° to the maximum peak intensity (S1) assigned to the rare earth oxyfluoride (Ln-O—F) in the same range, S0/S1, of 1.0 or smaller in powder X-ray diffractometry using Cu-Kα rays or Cu-Kα1 rays. |
US11371128B2 |
Coated metal band having an improved appearance
A hot-dip-coated, non-skin-passed, cold-rolled metal strip is provided. The metal coating of the metal strip includes a waviness Wa0.8 of less than or equal to 0.70 μm, 0.2 to 8% by weight of aluminum and magnesium, and up to 0.3% by weight of additional elements, the balance being zinc and inevitable impurities. Metal parts are also provided. |
US11371127B2 |
Nickel-containing steel for low temperature
A nickel-containing steel for low temperature according to an aspect of the present invention has a chemical composition within a predetermined range, in which a metallographic structure of a thickness middle portion contains 2.0 vol % to 20.0 vol % of an austenite phase, an average grain size of prior austenite grains is 3.0 μm to 15.0 μm, an average aspect ratio of the prior austenite grains is 1.0 to 2.4, a plate thickness is 4.5 mm to 30 mm, the chemical composition and the average grain size of the prior austenite grains are further limited depending on the plate thickness, a yield stress at room temperature is 460 MPa to 710 MPa, and a tensile strength at the room temperature is 560 MPa to 810 MPa. |
US11371123B2 |
Low thermal expansion alloy
Provided is a low thermal expansion alloy wherein martensitic transformation does not occur even at −120° C. This low thermal expansion alloy contains, in mass %, 1.50-5.00% of Co, while containing Ni in such an amount that if [Ni] (mass %) is the content of Ni and [Co] (mass %) is the content of Co, [Co]≥−4×[Ni]+136 and [Co]≤−4×[Ni]+139 are satisfied, with the balance being made up of Fe and unavoidable impurities. This low thermal expansion alloy has an average thermal expansion coefficient of 0.5×10−6/° C. or less for the range of 0-30° C., while having a martensitic transformation temperature of −120° C. or less. |
US11371118B2 |
Matrices containing lithium aluminates
Provided is a particulate composition comprising a collection of resin beads and LiX.2Al(OH)3.nH2O, wherein n is 0 to 10, wherein X is a halogen, wherein the resin beads contain polymer having 0.5 to 3 equivalents of amine pendant groups per liter of the particulate composition, wherein the resin beads have average pore diameter of 5 to 100 nm, wherein the collection of resin beads has harmonic mean particle diameter of 200-1000 micrometers; wherein the collection of resin beads has surface area of 20 to 150 m2/g; and wherein aluminum is present in an amount of 14.5% percent or higher, by weight of aluminum atoms based on the total weight of the particulate composition. Also provided is a method of removing lithium from brine using such a composition. |
US11371114B2 |
Method of relieving stress from face plate welds of a golf club head
The present disclosure relates to methods for forming a golf club head assembly comprising a golf club head body and a high strength faceplate. The high strength faceplate can be heat treated. After welding the faceplate to the club head body, vibrational waves can be used to relive stress in the weld heat affected zones of the golf club body and faceplate. |
US11371113B2 |
Hot-rolled flat steel product and method for the production thereof
A hot-rolled flat steel product including (in wt %) C: 0.1-0.3%, Mn: 1.5-3.0%, Si: 0.5-1.8%, Al: ≤1.5%, P: ≤0.1%, S: ≤0.03%, N: ≤0.008%, optionally one or more of Cr: 0.1-0.3%, Mo: 0.05-0.25%, Ni: 0.05-2.0%, Nb: 0.01-0.06%, Ti: 0.02-0.07%, V: 0.1-0.3%, and B: 0.0008-0.0020%, the balance being iron and unavoidable impurities. This flat steel product possesses a tensile strength of 800-1500 MPa, a yield strength of >700 MPa, an elongation at break of 7-25%, and a hole expansion of more than 20%. The structure is at least 85 area % martensite, of which at least half is tempered martensite, with the remainder being ≤15 vol % residual austenite, ≤15 area % bainite, ≤15 area % polygonal ferrite, ≤5 area % cementite and/or ≤5 area % nonpolygonal ferrite, and has a kernel average misorientation of at least 1.50°. Also, a method for producing the flat steel product, wherein the microstructure of the flat steel product is set by the heat treatment. |
US11371107B2 |
Method for cooling a metallic item and cooling bar
The invention relates to a method for cooling a metallic item (1) by discharging a cooling medium from a cooling bar (2) onto the item (1), wherein the cooling medium is discharged through a slot (3) in the cooling bar (2). According to the invention, in order to achieve improved cooling, during the cooling process the width (B) of the slot (3) in the conveying direction (F) of the item (1) or of the cooling bar (2) is altered in order to bring the cooling power of the cooling medium to a desired or predefined level by open-loop or closed-loop control. In addition, the invention relates to a cooling bar. |
US11371106B2 |
Heating method and heating apparatus for center pillar for vehicle
A heating method capable of changing thermal hysteresis for each part of the center pillar for the vehicle is provided. A heating method includes heating, when the center pillar for the vehicle is annealed, the center pillar by induction heating so that: a strength of a part of the first part other than the flange part becomes higher than that of the flange part of the first part, and the strength of the flange part of the first part becomes higher than that of the second part; and toughness of the second part becomes higher than that of the flange part of the first part, and the toughness of the flange part of the first part becomes higher than that of the part of the first part other than the flange part. |
US11371100B2 |
Detecting mutations and ploidy in chromosomal segments
The invention provides methods, systems, and computer readable medium for detecting ploidy of chromosome segments or entire chromosomes, for detecting single nucleotide variants and for detecting both ploidy of chromosome segments and single nucleotide variants. In some aspects, the invention provides methods, systems, and computer readable medium for detecting cancer or a chromosomal abnormality in a gestating fetus. |
US11371098B2 |
Methods for diagnosing and evaluating non-alcoholic steatohepatitis
The invention relates to a method for the diagnosis of non-alcoholic steatohepatitis (NASH), for determining the activity, the stage, or the severity of NASH or for classifying a subject as a potential receiver or non receiver of a treatment of NASH using circulating miRNAs and other blood circulating markers of liver damage, e.g. alpha 2 macroglobulin, HbA1c, N-terminal pro-peptide of collagen type III, miR-34 and miR-200. It also relates to a kit for implementing the method of the invention, and the compounds for use in a method for the treatment of NASH, wherein the subject to be treated is identified, evaluated or classified according to the method of the invention. |
US11371097B2 |
Articles for diagnosis of liver fibrosis
Disclosed are methods and articles (e.g., gene arrays or antibodies) for determining the progression or regression of liver fibrosis, for the diagnosis of liver disease, and for screening compounds for hepatotoxicity and efficacy against liver fibrosis. Related therapeutic methods also are disclosed. |
US11371096B2 |
Blood biomarkers for appendicitis and diagnostics methods using biomarkers
The invention relates to methods and kits for diagnosing and/or treating appendicitis in a subject, comprising performing one or more assays configured to detect one or more biomarkers on a body fluid sample obtained from the subject to provide one or more assay result(s) and correlating the assay result(s) to the occurrence or nonoccurrence of appendicitis in the subject or likelihood of the future outcome to the subject. |
US11371095B2 |
High-throughput method for characterizing the genome-wide activity of editing nucleases in vitro (Change-Seq)
The invention relates to a high-throughput method for characterizing the genome-wide activity of editing nucleases in vitro. |
US11371094B2 |
Systems and methods for nucleic acid processing using degenerate nucleotides
Provided herein are compositions, systems and methods for tagging molecular events, reactions, species, etc., but without the need for complex, highly diverse libraries of tagging molecules. Provided are tagging moieties that can have a smaller number, a few, or even a single original “tagging” structure that may be transformed or transformable, in situ, into a collection of larger numbers of unique tagging or “barcode” moieties. |
US11371093B2 |
Biological analysis systems, devices, and methods
A device for performing biological sample reactions may include a plurality of flow cells configured to be mounted to a common microscope translation stage, wherein each flow cell is configured to receive at least one sample holder containing biological sample. Each flow cell also may be configured to be selectively placed in an open position for positioning the at least one sample holder into the flow cell and a closed position for reacting biological sample contained in the at least one sample holder. The plurality of flow cells may be configured to be selectively placed in the open position and the closed position independently of each other. |
US11371081B2 |
Portable, low-cost pathogen detection and strain identification platform
Methods for detecting the presence of a pathogen infection are described. In particular, this document provides a method of detecting target nucleic acids, such as pathogen-specific RNA, in a biological sample obtained from a subject, where the method comprises using one or more toehold switch sensors and an isothermal amplification step to detect the target nucleic acid. Methods specific for detecting and identify the presence of a virus such as Zika virus are also provided. |
US11371079B2 |
Fluorescence-based computation system
Time-resolved nucleic acids include a long-lifetime FRET donor with an emission lifetime of at least one millisecond (such as a terbium complex), configured as a donor in a first FRET process, and at least one fluorescent dye with an emission lifetime of less than 100 nanoseconds configured as an acceptor in the FRET process. They can be configured as photonic wires, hybridization probes or beacons, and/or systems for computing logical operations. |
US11371078B2 |
Coumarin compounds and their uses as fluorescent labels
The present application relates to new coumarin compounds and their uses as fluorescent labels. The compounds may be used as fluorescent labels for nucleotides in nucleic acid sequencing applications. |
US11371077B2 |
High throughput cell-based screening for aptamers
The invention provides eukaryotic cell-based screening methods to identify an aptamer that specifically binds a ligand, or a ligand that specifically binds an aptamer, using a polynucleotide cassette for the regulation of the expression of a reporter gene where the polynucleotide cassette contains a riboswitch in the context of a 5′ intron-alternative exon-3′ intron. The riboswitch comprises an effector region and an aptamer such that when the aptamer binds a ligand, reporter gene expression occurs. |
US11371076B2 |
Polymerase chain reaction normalization through primer titration
Disclosed herein include systems, methods, compositions, and kits for PCR normalization. In some embodiments, after barcoding copies of a higher abundance target (e.g., a cDNA species), the barcoded copies are amplified using a pair of forward primers comprising one or more mismatches and a reverse primer. The amplified copies can be further linearly amplified using a forward primer comprising the sequence of one of the pair of forward primers, and a reverse primer. |
US11371075B2 |
Fully integrated hand-held device to detect specific nucleic acid sequences
A fully integrated and disposable point-of-care device for detecting a target nucleic acid is provided. The device comprises: an extraction chamber adapted to receive a biological sample, wherein said extraction chamber comprises means to extract and lyse the sample to release nucleic acid; a first amplification chamber in communication with the extraction chamber, wherein said amplification chamber comprises means to trigger nucleic acid amplification of a target nucleic acid sequence to occur; and a detection chamber in communication with the amplification chamber, wherein said detection chamber comprises means to detectably label the target nucleic acid and means to detect a signal associated with labeled target nucleic acid, or a single chamber for amplification, detection and identification of multiple nucleic acid sequences. |
US11371072B2 |
Method and apparatus for identification of bacteria
An automated system for identifying in a biological sample microorganisms and their antimicrobial susceptibility (AST). The system provided an automated platform for preparing, from a single biological sample, inoculates for both ID and AST. The system loads a plate for ID testing as samples are being prepared for AST testing. The system tracks the sample and the inoculates from the samples to link the test results to the sample and the patients from whom the sample was obtained. |
US11371071B2 |
Cell culturing structure including growth medium and non-growth medium
A structure for culturing cells includes growth medium regions on a surface of the structure. Each of the growth medium regions includes a growth medium surface configured to receive and promote growth in a cell that is being cultured. The structure includes a non-growth medium. The non-growth medium includes a non-growth medium surface configured to receive the cell that is being cultured. |
US11371070B2 |
Antioxidant protein hydrolysates and peptides from cereal grain crops
Described herein are antioxidant peptides and methods of producing the same. The antioxidant peptides are produced from cereal grain protein sources, which provide a number of advantages over more expensive antioxidant sources and synthetically-produced antioxidants. The antioxidant peptides are produced by reacting the cereal grain material with an enzyme capable of hydrolyzing proteins within the material, thereby forming hydrolysate peptides. The hydrolysate peptides are then selectively recovered to form an antioxidant peptide product. The antioxidant peptide product is useful in a number of applications, particularly as an ingredient in a food product to provide antioxidant properties to the food product. |
US11371066B2 |
Generation of acyl alcohols
Methods, compositions, and cells for generating acyl alcohols. Compositions comprising acyl alcohols. Methods of cleaving acyl amino acids and/or acyl alcohols to generate free fatty acids, free amino acids, and/or free alcohols. |
US11371065B2 |
Genetically engineered strain
The present disclosure discloses a genetically engineered strain, belonging to the technical field of bioengineering. L-amino acid oxidase genes, α-keto acid decarboxylase genes, alcohol dehydrogenase genes, and enzyme genes capable of reducing NAD(P) to NAD(P)H are introduced into the genetically engineered strain of the present disclosure. The present disclosure further discloses a construction method and application of a recombinant Escherichia coli genetically engineered strain. When being applied to the biosynthesis of phenylethanoids, the method of the present disclosure has the characteristics of simple operation, low cost, and high synthesis efficiency and optical purity of the product, and has good industrialization prospects. |