Document | Document Title |
---|---|
US11350179B2 |
Bandwidth efficient multiple user panoramic video stream delivery system and method
A computer-implemented method for transmitting a panoramic video from a source to a plurality of video receivers is provided. The method comprises receiving panoramic video from a camera corresponding to a scene being imaged; transmitting the panoramic video as a plurality of video streams, each to one of the plurality of video receivers; receiving feedback information from the plurality of video receivers; performing an optimization operation to optimize the panoramic video being transmitted based on the feedback information received from each of the plurality of video receivers. |
US11350178B2 |
Content providing server, content providing terminal and content providing method
Disclosed is a scene meta information generating apparatus including: a subtitle information generating unit configured to detect a plurality of unit subtitles based on a subtitle file related to image contents and correct the plurality of unit subtitles; an audio information generating unit configured to extract audio information from the image contents, detect a plurality of speech segments based on the audio information, and perform speech-recognition on audio information in each speech segment; and an image information generating unit configured to detect a video segment corresponding to each speech segment, perform image-recognition on image frames in the video segment, and selecting a representative image from the image frames. |
US11350176B2 |
Adaptive on-screen guide based on channel or content transition commands
Systems and methods for generating a channel sequence for display via an abbreviated on-screen guide are disclosed herein. Channel tuning commands are entered via a user interface of a computing device. Channel tuning data, which describes channel transitions caused by the channel tuning commands, is stored in a buffer. Based on the channel tuning data, a channel family comprising a plurality of channels is generated. A determination is made as to whether a currently tuned channel is included in the channel family. In response to determining that the currently tuned channel is included in the channel family, an on-screen guide, which comprises an abbreviated channel listing of the plurality of channels of the channel family, is generated for display. |
US11350175B2 |
Multi-video capture system
Systems and methods provide for capturing, at a first computing device associated with a first user, a first video stream, and presenting, by the first computing device, and indication that a second computing device associated with a second user is located within a predetermined distance of the first computing device. The systems and methods further providing for receiving, by the first computing device, a request to access a second video stream being captured on the second computing device and displaying, by the first computing device, the second video stream being captured on the second computing device, on a display of the first computing device. |
US11350174B1 |
Method and apparatus to monitor account credential sharing in communication services
Aspects of the subject disclosure may include, for example, a system or method that collects or otherwise accesses information indicating connection patterns such as IP addresses being utilized by communication devices for communication services over a time period, where the communication devices use a same credential of a single account for accessing the communication services. Hubs can be identified according to groups of the communication devices that exhibit a particular sharing pattern such as having used the one or more common IP addresses. A prediction or estimation that the single account is engaging in sharing activity can be made based on an analysis of the hubs, such as based on a number of the hubs. Other embodiments are disclosed. |
US11350171B2 |
Electronic apparatus and controlling method thereof
An electronic apparatus is provided. The electronic apparatus includes: a memory configured to store volume histories for a plurality of content sources; and a processor configured to, based on a content source for providing a content being changed from a first content source to a second content source, among the plurality of content sources, identify a volume level corresponding to the second content source based on a volume history of the first content source and a volume history of the second content source among the stored volume histories, and change a currently-set volume level to the identified volume level, and update the volume history of the second content source based on the changed volume level. |
US11350168B2 |
System and method for dynamically selecting supplemental content based on viewer environment
Embodiments are directed towards providing supplemental content to a viewer based on the viewer's environment while the viewer is viewing content. Content is provided to a content receiver for presentation to the viewer. While the viewer is viewing the content, an image of the viewer's environment is captured and analyzed to detect the context of the environment. Supplemental content is selected based on this detected context and presented to the viewer, which allows the supplemental content to be tailored to the viewer. One or more additional images of the viewer's environment are captured while the viewer is viewing the supplemental content and the context of the viewer's environment emotion while the viewer is viewing the supplemental content is detected. This subsequent context is analyzed to determine if the viewer had an expected response to the supplemental content, which can be used to determine the efficiency of the supplemental content. |
US11350164B2 |
Methods and apparatus to determine audio source impact on an audience of media
Methods, apparatus, systems and articles of manufacture to determine audio source impact on an audience of media are disclosed. A disclosed example method includes dividing monitored audio into successive audio segments including a first audio segment and a second audio segment. The example method also includes generating a first confidence value from the first audio segment and a second confidence value from the second audio segment, the first confidence value associated with a presence of a first audio source in the first audio segment, the second confidence value associated with a presence of the first audio source in the second audio segment. The example method includes identifying whether the monitored audio is associated with a presentation of first media based on the first confidence value and the second confidence value. |
US11350162B2 |
Systems and methods to determine reduction of interest in a content series
Systems and methods are provided herein for determining reduction of interest in a content series and to increasing the interest upon such determination. This may be accomplished by a device monitoring consumption of a content series to determine a pattern of consumption. The device may identify a change in the pattern of consumption indicative of a reduction of interest and determine a reason for the reduction in interest. Based on the reason for the reduction of interest, the device may provide an operation, such as a spoiler, to increase interest in the content series. |
US11350157B2 |
Systems and methods for delayed pausing
Systems and methods are provided herein for delaying pause of the play of a media asset. This may be accomplished by a device receiving a command from a user to pause play of a media asset. The device may, in response to determining that the command was received during a sequence of action or a sequence of dialog, delay the pausing of the play of the media asset until the sequence has completed. |
US11350154B2 |
Receiving method, receiving device, and transmission and reception system
A receiving method of receiving a first data unit in which data making up an encoded stream is stored and the first data unit stores a plurality of second data units. The receiving method includes: receiving the first data unit, first time information indicating a presentation time of the first data unit, second time information indicating, together with the first time information, a presentation time or a decoding time of each of the plurality of second data units, and identification information; calculating the presentation time or the decoding time of each of the plurality of second data units using the first time information and the second time information; and correcting the presentation time or the decoding time of each of the plurality of second data units based on the identification information. |
US11350153B2 |
Remote control with automated audio and video selection control
Disclosed herein are remote controls with automated selection control. A remote control includes a microcontroller with a provisioned infrared remote library, which are programmed with control codes for a content device, a switch, an infrared light emitter, an indicator device, and a delay knob are connected to the microcontroller. The switch is associated with a selection function on the content device and with control codes. The microcontroller and the library, upon selection of a switch position at the switch, control the infrared light emitter to emit repetitive infrared control codes at the content device at a repetition rate responsive to a reaction time for switching the selection function at the content device, the repetitive infrared control codes automatically incrementing or decrementing the selection function at the content device. The delay knob sets the repetition rate. The indicator device indicates emissions from the infrared light emitter. |
US11350149B2 |
Managing data
An apparatus, method, and system are provided for binding application data associated with an application with content asset data associated with a content asset. In some embodiments, capacity or bandwidth for each of the application data and the content asset data may be allocated in accordance with one or more profiles. The one or more profiles may include horizontal aspects, vertical aspects, linear and non-linear aspects, and the like. In some embodiments, the binding may take place at a content provider location in accordance with early binding practices, at a central location in accordance with late binding practices, and/or at a user equipment device in accordance with user binding practices. |
US11350144B2 |
Consolidating content streams to conserve bandwidth
In one example, a method includes monitoring a delivery of an item of multimedia content to a first user endpoint device in a first stream of data, monitoring a delivery of the item of multimedia content to a second user endpoint device in a second stream of data, consolidating the stream of data and the second stream of data into a third stream of data, sending an first instruction to a source of the first stream of data and a source of the second stream of data to cease delivering the first stream of data and the second stream of data, and sending a second instruction to the source of the first stream of data and the source of the second stream to begin delivering the third stream of data to the first user endpoint device and the second user endpoint device. |
US11350142B2 |
Intelligent video frame dropping for improved digital video flow control over a crowded wireless network
A device, system and method for intelligently dropping frames in a congested wireless network. Video frames from a video encoder may be received and queued in an ordered sequence of outgoing video frames in a transmission queue to be transmitted as data packets by a wireless communication circuit. When network congestion is detected, a relative contextual importance level of an incoming frame received from the video input channel may be compared relative to at least one frame in the transmission queue. The compared frame that has a lower relative contextual importance level may be dropped or omitted from the transmission queue, thereby transmitting data packets of the frames in the transmission queue without the dropped or omitted frames. |
US11350139B2 |
Video live broadcast method and apparatus
A video live broadcast method and an apparatus, where when a regional node receives a video request from a video playing client but does not have a corresponding video stream, information about a regional node that has the video stream is learned by searching the live broadcast record table, and then a stream is pulled from the regional node. |
US11350138B2 |
Managing a multi-view event comprising several streams, stream buffers, and rendering onto a single canvas
JavaScript in a Multiview template adjusts playout of two AV streams of the same event from two buffers such that the two streams are synchronized on a display. The playout from one buffer is adjusted based on an observed difference between actual playout times of frames from the respective buffers with the same timestamps. |
US11350136B2 |
Method and apparatus encoding/decoding with quad and binary tree partitioning
A method for decoding a video according to the present invention may comprise: determining whether to divide a current block with quad tree partitioning, determining whether to divide the current block with binary tree partitioning when the current block is not divided with the quad tree partitioning, determining a binary tree partition type for the current block when it is determined to divide the current block with the binary tree partitioning, and dividing the current block into two partitions according to the determined binary tree partition type. |
US11350134B2 |
Encoding apparatus, image interpolating apparatus and encoding program
A coding device of the present invention for coding an image includes: a region acquiring unit configured to acquire a region of a first image that matches a predetermined condition; an image acquiring unit configured to obtain a second image by associating the first image, the acquired region, and a region obtained by removing the acquired region from the first image with each other; and a coding unit configured to code the second image. Also, an image interpolation system of the present invention for interpolating a first image includes: an acquiring unit configured to acquire the first image and auxiliary information by associating a second image, a matching region of the second image that matches a predetermined condition, and a region obtained by removing the matching region from the second image with each other; and an interpolating unit configured to interpolate the first image using the auxiliary information, and obtain an image that approximates the second image. With the present invention, it is possible to execute image interpolation processing while suppressing degradation of the subjective image quality. |
US11350131B2 |
Signaling coding of transform-skipped blocks
A method for performing transform skip mode (TSM) in a video decoder is provided. A video decoder receives data from a bitstream to be decoded as a plurality of video pictures. The video decoder parses the bitstream for a first syntax element in a sequence parameter set (SPS) of a current sequence of video pictures. When the first syntax element indicates that transform skip mode is allowed for the current sequence of video pictures and when transform skip mode is used for a current block in a current picture of the current sequence, the video decoder reconstructs the current block by using quantized residual signals that are not transformed. |
US11350127B2 |
Apparatus and method for image processing
The present disclosure relates to an apparatus and a method for image processing each of which enables reduction of a coding efficiency to be suppressed. In the case where primary transformation as transformation processing for a predictive residue as a difference between an image and a predictive image of the image and secondary transformation as transformation processing for a primary transformation coefficient obtained by subjecting the predictive residue to the primary transformation are caused to be skipped, a switch also causes bandwidth limitation for a secondary transformation coefficient obtained by subjecting the primary transformation coefficient to the secondary transformation to be skipped. The present disclosure, for example, can be applied to an image processing apparatus, an image coding apparatus, an image decoding apparatus or the like. |
US11350125B2 |
Method and device for intra-prediction
The multi sample prediction method of the present invention comprises the steps of: determining a sample group consisting of a plurality of samples inside a decoding target block; determining a representative position corresponding to the sample group, inside the decoding target block; determining a representative prediction value for the sample group, on the basis of the determined representative position; and determining the determined representative prediction value as the final prediction value for each of the plurality of samples making up the sample group. The present invention enhances efficiency in encoding/decoding and reduces complexity thereof. |
US11350123B2 |
Bit-width control for bi-directional optical flow
A method for controlling bit-width for bi-directional optical flow (BDOF) for video coding includes decoding a first reference picture and a second reference picture, the second reference picture being different than the first reference picture, wherein the first reference picture is displayed before a current picture and the second reference picture is displayed after the current picture. A motion refinement of a coding unit (CU) is calculated by minimizing a difference between a first prediction L0 and a second prediction L1. First gradient values for the first prediction Lo and second gradient values for the second prediction L1 are calculated. A final bi-prediction of the CU is calculated. Also disclosed are an associated apparatus and an associated non-transitory computer readable storage medium. |
US11350116B2 |
Buffer initialization for intra block copy in video coding
A method of visual media processing includes determining a size of a buffer to store reference samples for prediction in an intra block copy mode; and performing a conversion between a current video block of visual media data and a bitstream representation of the current video block, using the reference samples stored in the buffer, wherein the conversion is performed in the intra block copy mode which is based on motion information related to a reconstructed block located in same video region with the current video block without referring to a reference picture. |
US11350104B2 |
Method for processing a set of images of a video sequence
Disclosed is a method, implemented by computer, for processing a video sequence including a set of images, which method includes: obtaining information indicating at least one image in the set of images to be encoded using a spatial correlation-based predictive coding mode, determining consecutive subsets of images in the set of images, and encoding the video sequence on the basis of the determined consecutive subsets of images, wherein the respective sizes of at least some of the subsets of images are dependent on the at least one image to be encoded using the spatial correlation-based predictive coding mode. |
US11350103B2 |
Methods and systems for automated synchronization and optimization of audio-visual files
One variation of a method for autonomously generating an optimized audio-visual (AV) file from an original AV file comprises: a) generating a vector cube comprising a plurality of vector matrices for an original AV file; b) for each vector matrix within the vector cube, determining an optimal subframe having a subframe size larger than or equal to a predetermined minimum subframe size; and c) generating an optimized AV file based on the optimal subframes determined for each of the vector matrices within the vector cube. |
US11350100B2 |
Transform coding based on matrix-based intra prediction
Devices, systems and methods for digital video coding, which includes matrix-based intra prediction methods for video coding, are described. In a representative aspect, a method for video processing includes performing a conversion between a current video block of a video and a bitstream representation of the current video block according to a rule, where the rule specifies a relationship between applicability of a matrix based intra prediction (MIP) mode or a transform mode during the conversion, where the MIP mode includes determining a prediction block of the current video block by performing, on previously coded samples of the video, a boundary downsampling operation, followed by a matrix vector multiplication operation, and selectively followed by an upsampling operation, and where the transform mode specifies use of a transform operation for the determining the prediction block for the current video block. |
US11350089B2 |
Video encoding method and apparatus, and video decoding method and apparatus
Provided are a video decoding method and apparatus and a video encoding method and apparatus which determine whether to use a Most Probable Mode (MPM) list, based on encoding information of a current block, obtain, from a bitstream, intra prediction mode index information indicating one of candidate intra prediction modes included in the MPM list, and determine an intra prediction mode of the current block by using the obtained intra prediction mode index information. |
US11350083B2 |
Intra block copy merging data syntax for video coding
A method of encoding and decoding video data, including coding a first syntax element that specifies a value used to derive a maximum number of intra block copy merging candidates, deriving the maximum number of intra block copy merging candidates based on the value of the first sytnax element, and coding a first block of video data using intra block copy mode according to the maximum number of intra block copy merging candidates. |
US11350081B2 |
Head mounted display device and method for providing visual aid using same
An external scene image captured by an external scene imaging electronic camera attached to a head mounted display (HMD) is projected and displayed onto an image display screen arranged in front of the eyes of the user as a virtual image with a suitable viewing distance corresponding to the visual acuity of the user. At this time, for each object image presented in the virtual image of the external scene image, the virtual image is processed and formatted to add a predetermined degree of binocular disparity and image blur to the virtual image projected and displayed on the right and the left image display screen on the basis of a predetermined converted distance calculated from the real distance of each object. Thus, the user is given a sense of a realistic perspective for the virtual image of the external scene, free of the discomfort or unease. |
US11350079B2 |
Wearable 3D augmented reality display
A wearable 3D augmented reality display and method, which may include 3D integral imaging optics. |
US11350076B2 |
Information processing apparatus, information processing method, and storage medium
An apparatus acquires update information indicating a predetermined frame update interval on a moving image at a virtual viewpoint reproduced by updating a virtual viewpoint image at the interval, the virtual viewpoint image being generated using multi-viewpoint images and viewpoint information; acquires frame information of the multi-viewpoint images for use in generating the moving image, the frame information including information of a plurality of frames corresponding to different imaging times; and generates the viewpoint information based on the update information and the frame information, such that the viewpoint information indicating a position of a virtual viewpoint and a direction from the virtual viewpoint updated at an interval longer than the predetermined frame update interval is generated as the viewpoint information for the moving image generated using a smaller number of frames of multi-viewpoint images than frames of virtual viewpoint images forming the moving image. |
US11350071B2 |
Augmented reality based user interfacing
A display system renders a motion parallax view of object images based upon multiple observers. Also, a headset renders stereoscopic images that augment either physical objects viewed through the headset, or virtual objects projected by a stereoscopic display separate from the headset, or both. The headset includes a system for locating both physical objects and object images within a stereographic projection. Also, a proprioceptive user interface defines interface locations relative to body parts of an observer, the body parts include the head and the shoulders of the observer. The observer may enable a process associated with the interface location by indicating an intersection with the interface location with a physical object, such as a wand or a finger of the observer. |
US11350067B2 |
Evaluation method for image projection system, image projection system, and image projection control apparatus
A first image, a second image, and a third image generated by a camera that captures a screen at a first timing, a second timing, and a third timing are sequentially acquired. The projection states of a first projector and a second projector at the third timing are caused to be the same as the projection states of the first and second projectors at the first timing. The projection state of the first projector is caused to differ from the projection state of the second projector at least one of the first timing or the second timing. Whether or not the first projector needs to be adjusted is evaluated based on the first image, the second image, and the third image. |
US11350060B1 |
Using motion sensors for direction detection
The application is directed to an electronic that includes multiple motion sensors, such as passive infrared sensors, that the electronic device uses to detect characteristics of objects. For instance, the motion sensors may be substantially vertically aligned and/or substantially horizontally aligned with one another, where each motion sensor is positioned at a respective angle with respect to a ground plane. When the motion sensors detect an object, the electronic device can then determine a direction at which the object is moving and/or a speed at which the object is moving. In some instances, the direction may include towards the electronic device or away from the electronic device. Additionally, based on the characteristics of the object, the electronic device may perform an action, such as generating image data using a camera and/or sending a user alert. |
US11350057B2 |
Solid-state imaging element, imaging apparatus, and method for controlling solid-state imaging element
To improve an SN ratio in a solid-state imaging element provided with a capacitance for reducing a noise component.A first capacitance connection circuit connects one end of a first capacitance to a first signal line in a case where a first pixel signal is transmitted via the first signal line. A second capacitance connection circuit connects one end of a second capacitance to a second signal line in a case where a second pixel signal is transmitted via the second signal line. An intercapacitance connection circuit connects one end of each of the first capacitance and the second capacitance in a case where one of the first pixel signal and the second pixel signal is transmitted, and disconnects one end of each of the first capacitance and the second capacitance in a case where both the first pixel signal and the second pixel signal are transmitted. |
US11350055B2 |
Pixel binning method and related image readout circuit
A pixel binning method for processing pixel data acquired from an image sensor comprising a pixel array, the pixel binning method includes performing a first scanning process that is to scan a sensing area of the image sensor, to obtain a first number of pixel data; performing a second scanning process that is to scan the sensing area after the first scanning process is completed, to obtain a second number of pixel data; performing pixel binning on the second number of pixel data according to an offset value and an arithmetic value, wherein the offset value is determined according to the first number of pixel data. |
US11350050B2 |
Semiconductor integrated circuit and imaging device
In a solid-state imaging element provided with a differential pair of transistors, noise of a signal from the differential pair is reduced. The semiconductor integrated circuit includes a pixel circuit and a pair of TFETs (Tunnel Field Effect Transistors). In the semiconductor integrated circuit, the pixel circuit photoelectrically converts incident light to generate a pixel signal. Further, in the semiconductor integrated circuit, the pair of TFETs amplifies the difference between the pixel signal generated by the pixel circuit and a predetermined reference signal that changes with time, and outputs the amplified difference as a differential amplification signal. |
US11350049B2 |
Dark current calibration method and associated pixel circuitry
Image sensors capable of dark current calibration and associated circuits are disclosed herein. The method for calibrating dark current includes acquiring at least one dark current frame of a first plurality of pixels of a pixel array of the image sensor. The dark current frame contains readings of individual dark currents for the corresponding pixels obtained during an exposure period when a transistor is turned on disabling the photodiode. The method also includes acquiring at least one normal frame of a second plurality of pixels of the pixel array of the image sensor. The normal frame contains readings of individual signals for the corresponding pixels obtained during the exposure period when the transistor is turned OFF. The method includes subtracting the at least one dark current frame from the at least one normal frame. |
US11350048B1 |
Luminance-adaptive processing of hexa-deca RGBW color filter arrays in CMOS image sensors
Techniques are described for luminance-adaptive processing of hexa-deca red-green-blue-white (RGBW) color filter arrays (CFAs) in digital imaging systems. Original image data is acquired by a sensor array configured according to a hexa-deca RGBW CFA pattern, and associated ambient luminance information is also acquired. The ambient luminance information is used to detect one of a number of predetermined luminance conditions. Based on the detected luminance condition, embodiments can determine whether and how much to downsample the original image data as part of the readout from the sensor array (e.g., using binning techniques), and whether and how much to remosaic and/or upsample the downsampled data to generate an RGB output array for communication to other processing components of the imaging system. |
US11350045B2 |
Image sensing apparatus and image binning method thereof
Provided is an image sensing apparatus including an image sensor including a pixel array configured to output a raw image having a Bayer pattern, and an analog end configured to perform an analog binning process on groups of pixels of same colors included in same columns of each of a plurality of sub-kernels corresponding to a first green pixel, a red pixel, a blue pixel, and a second green pixel, and output median values for different colors, and a digital signal processor configured to perform a digital binning process on the median values for the different colors included in different columns of each of the plurality of sub-kernels, and output a binned image. |
US11350044B2 |
Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
A pixel PXL includes a first photodiode PDSL and a second photodiode PSLS having different well capacities and responsivities, transfer transistors TGSL-Tr, TGLS-Tr for transferring the charges stored in the photodiodes to a floating diffusion FD, and a capacitance changing part 80 for changing the capacitance of the floating diffusion depending on a capacitance changing signal. The first well capacity of the first photodiode PDSL is smaller than the second well capacity of the second photodiode PDLS, and the first responsivity of the first photodiode PDSL is larger than the second responsivity of the second photodiode PDLS. With these configurations, it becomes possible to realize a widened dynamic range, prevent the read-out noise from affecting the performance, and eventually achieve improved image quality. |
US11350040B2 |
Electronic device for controlling camera on basis of external light, and control method therefor
When a three-dimensional image of a specific subject is acquired by means of an infrared camera and an external light (for example, external light such as sunlight at the time of outdoor photography) having a relatively large intensity exists, it is difficult to acquire the image. To this end, the present invention proposes an electronic device for reducing a current peak by adaptively changing optical power and an exposure time of an infrared camera according to the intensity of external light. |
US11350038B2 |
Dual aperture zoom camera with video support and switching / non-switching dynamic control
A dual-aperture zoom digital camera operable in both still and video modes. The camera includes Wide and Tele imaging sections with respective lens/sensor combinations and image signal processors and a camera controller operatively coupled to the Wide and Tele imaging sections. The Wide and Tele imaging sections provide respective image data. The controller is configured to output, in a zoom-in operation between a lower zoom factor (ZF) value and a higher ZF value, a zoom video output image that includes only Wide image data or only Tele image data, depending on whether a no-switching criterion is fulfilled or not. |
US11350036B2 |
Image pickup apparatus and lens device that have image blur correction function
An image pickup apparatus and a lens device which are capable of preventing an unnatural image from being photographed when both of an image pickup apparatus body and an interchangeable lens are each equipped with an image blur correction function. A system controller of a camera body sets an image blur correction mode of an image processor of the camera body. When a lens device including a lens driving section which optically performs image blur correction by driving a lens is attached to the camera body, the system controller changes the image blur correction mode of the image processor according to an image blur correction mode of the lens device. |
US11350035B2 |
Method and apparatus for operating sensor of electronic device
The present disclosure provides an electronic device. The electronic device includes at least two camera modules, a motion sensor, and a control circuit configured to determine whether a first camera module of the at least two camera modules is activated, and when it is determined that the first camera module of the at least two camera modules is activated, control optical image stabilization of the first camera module using a signal received from the motion sensor. |
US11350034B1 |
Systems and methods to mitigate adverse jitter effects in mobile imaging
Some embodiments provide enhanced resolution imaging systems comprising: a mounting; an electro-optical image capture system; an angular jitter sensor system; an illumination source system; and an image capture control circuit is configured to: receive ling of sight displacement sensor data; obtain, during the capture frame, an angular displacement of the image capture system and monitor when the detected angular displacement of the image capture system, based on the sensor data, is beyond an angular displacement threshold envelope; and activate exposure of the image capture system to illumination, during the capture frame, when the detected angular displacement of the image capture system is within the angular displacement threshold envelope, and control a level of exposure of the image capture system to illumination, during the capture frame, when the detected angular displacement is not within the angular displacement threshold envelope. |
US11350032B2 |
Method of operating intraoral scanner
A method operating an intraoral scanner including a projection device of the intraoral scanner projecting a predetermined pattern, an image capture device of the intraoral scanner capturing K images of the predetermined pattern projected on an object under test, a controller of the intraoral scanner generating (K−1) overall brightness change indications according to (K−1) sets of two consecutive images of the K images, and if the (K−1) overall brightness change indications are all less than a predetermined threshold, the controller turning off the intraoral scanner. K is a positive integer greater than 1. |
US11350025B2 |
Optical device and mobile terminal comprising same
Provided is an optical device for reducing the time for auto focusing (AF) performed by a contrast detection system, the optical device comprises a liquid lens having a curvature that varies on the basis of an applied electrical signal and the liquid lens may be auto-focused at one time from the current curvature (i.e., the first curvature state, p) to a target curvature corresponding to a distance to the subject (i.e., a second curvature state) based on the FV slope ratio. |
US11350021B2 |
Camera module comprising infrared filter and electronic device comprising same
A camera module according to one embodiment comprises: a housing including a through hole and a lens assembly disposed in the through hole toward a first surface on which light is incident; an infrared filter attached to a second surface of the housing, positioned on the opposite side of the first surface to shield inflow of infrared rays from the incident light; and an image sensor for recognizing the light passing through the infrared filter, wherein the infrared filter comprises: an effective filtering region for transmitting visible light; an attachment region attached by an adhesive applied to the second surface of the housing, for forming the exterior of the infrared filter; and a masking region formed between the attachment region and the effective filtering region, wherein the effective filtering region is formed to protrude from a vertex region and overlaps with a region in which the image sensor is positioned and the attachment region is formed as an area capable of securing adhesion with the second surface and forms chamfered edges according to a shape of the masking region such that ultraviolet light can be transmitted to cure the adhesive. |
US11350020B2 |
Camera module array and assembly method therefor
The present application provides a camera module array, comprising at least two camera modules, wherein at least one of the camera modules has a free-form lens sheet, and the free-form lens sheet performs active alignment according to an actual imaging result received by a photosensitive chip, so that a difference between an actual reference direction of the free-form lens sheet and a reference direction determined by an optical design is not greater than 0.05 degrees. The present application further provides a corresponding assembly method for camera module array. In the present application, a TTL of the camera modules can be reduced by means of the free-form lens sheet so as to, for example, make a TTL of a wide-angle module equal or approximately equal to a TTL of a telephoto module, so that a dual-camera module composed of the wide-angle module and the telephoto module is easily mounted in a terminal device such as a mobile phone. The present application can also effectively improve the mounting precision of the free-form lens sheet. |
US11350019B2 |
Lens device
The lens device includes an imaging lens and a controller. The imaging lens includes a focusing lens group which moves during focusing and an aberration correction lens group having a refractive power lower than a refractive power of the focusing lens group having the lowest refractive power. The controller adjusts a position of the aberration correction lens group relative to the focusing lens group of which focus sensitivity is maximized according to a changed condition. A predetermined conditional expression related to the focus sensitivity of the focusing lens group is satisfied. |
US11350017B1 |
Printing device calibration system and methods
Calibration requests are received at a network service. The network service assigns a request identifier for the data of a request. The request identifier is encoded into a control strip on a test color sheet using color patches. A color encoding key encodes the request identifier using the color patches. After the test color sheet is printed, a color measurement tool is used to decode the information from the control strip, including the request identifier. The color measurement tool measures the test color strips on test color sheet. The request identifier corresponds to the measurement data. The measurement data along with the request identifier is sent to the network service. The measurement data is processed to generate calibration data, which is used to update the printing device. |
US11350015B2 |
Image processing system and method
For at least one component of a digitized image, if a magnitude of a difference between a pixel component value and a representative image-cell-value is less than a threshold for each pixel of a subset of pixels of an image cell of a digitized image, the corresponding pixel component values of corresponding pixels of a corresponding processed image cell are set to the representative image-cell-value. Otherwise, at least the most significant portion of the corresponding pixel component values of the corresponding pixels of the corresponding processed image cell are set to the value of pixel component values of the digitized image. |
US11350009B2 |
Sever for sending facsimile request information to function execution device by using server-push communication
A server may establish a session with a function execution device via the Internet, the session being for executing server-push communication, the function execution device being capable of executing at least a facsimile function, receive first image data from a terminal device via the Internet, and in a case where the first image data is received from the terminal device, send facsimile request information to the function execution device via the Internet by using the session, the facsimile request information being for requesting a facsimile transmission of an image corresponding to the first image data. |
US11350006B2 |
Image forming apparatus that calibrates a folding position
An image forming apparatus includes: a folder configured to fold a medium by forming a fold such that a side of the medium is aligned with a predetermined first position on the medium; and an image forming device configured to form a first image on a region different from a region located within a predetermined range from the first position, on at least a part of the side of the medium before the medium is folded by the folder. |
US11350001B2 |
Operation receiving apparatus, control method, image forming system, and recording medium
An operation receiving apparatus includes: a display; a user interface that overlaps with the display and receives a manual operation by a user; and a controller that acquires a recognition result of a user voice, and controls the display to display a first display region and a second display. The first display region displays an operation item that can receive an instruction by the manual operation, and the second display region displays an operation item that can be instructed by the user voice based on the recognition result. |
US11349993B2 |
Method and apparatus for interfacing analog page party system to internet protocol page party system
An audio bridge unit is provided for connecting a conventional analog page/party station in an analog page/party system to IP-based page/party stations that employ multicast Voice over Internet Protocol (VoIP) technology to support page/party communications between analog page/party stations and the VoIP page/party stations. The audio bridge unit converts page and/or party audio line(s) to multicast channel(s). The audio bridge unit analog interfaces for its respective page and/or party lines, and each analog interface is assigned to an independent multicast channel on which it will transmit and receive full duplex audio between an analog page/party station and one or more IP-based page/party stations. The audio bridge unit provides the ability to configure the multicast group, port and Time to Live (TTL) setting for each of the analog channels associated with the page and/or party lines. |
US11349992B2 |
Method and apparatus for supporting internet call sessions in a communication network
Aspects of the subject disclosure may include, for example, including a processing system for performing operations for determining service requirements of a call session at first user equipment associated with a communication network, determining a first codec to facilitate the call session at the first user equipment according to the service requirements of the call session, searching a session border controller table according to the first codec to obtain a first resource identifier associated with a first session border controller type to facilitate the call session at the user equipment, receiving a first address of a first session border controller associated with the communication network from a domain name server associated with the communication network responsive to a first query including the first resource identifier, and sending a first transport protocol message to the first session border controller according to the first address. Other embodiments are disclosed. |
US11349991B2 |
Systems and methods to present voice message information to a user of a computing device
Systems and methods to process and/or present information relating to voice messages for a user that are received from other persons. In one embodiment, a method implemented in a data processing system includes: receiving first data associated with prior communications or activities for a first user on a mobile device; receiving a voice message for the first user; transcribing the voice message using the first data to provide a transcribed message; and sending the transcribed message to the mobile device for display to the user. |
US11349990B1 |
Call routing system
Call routing technology can route a current call from a person based on an analysis of call data related to a prior call from the same person. For example, based at least on a customer satisfaction score determined from call data related to a prior call, a call routing server can identify one or more persons to whom a current call from the same person should be routed. Next, the call routing server can route the current call to one of the identified customer service representatives. |
US11349984B2 |
Telecommunications data management interface
A system for visualizing call routing data associated with a telecommunications identifier is provided. The system includes a client interface and a parsing tool. The client interface is structured to communicate with a telecommunications management platform having a database that stores call routing data. The parsing tool is associated with the client interface. The parsing tool receives call routing data associated with the telecommunications identifier in response to a query of the database, and the parsing tool generates parsed data by parsing the call routing data. The parsed data is structured to display the call routing data in a tree format on the client interface. |
US11349972B2 |
Mobile phone and slave machine
A mobile phone includes a master machine and a slave machine. The master machine includes a first power source unit; the slave machine includes a second power source unit, a display screen, a main board and a fingerprint identification assembly. The slave machine is able to be mounted to the master machine and detached from the master machine. When the slave machine is detached from the master machine, the slave machine is able to be in communication connection with the master machine. The main board is provided with a first through hole, the fingerprint identification assembly includes a connecting circuit board and an identification unit, the identification unit is able to be in communication connection with the main board through the connecting circuit board, and the identification unit is inserted into the first through hole. The present application further provides a slave machine. |
US11349965B1 |
Self-describing cable
A system may include a controller, an endpoint device, and a cable coupled between the controller and the endpoint device and comprising a communication wire for bidirectionally communicating signals between the controller and the endpoint device and a circuit formed as a part of the cable and communicatively coupled to the communication wire, the circuit having a microcontroller unit configured to communicate identifying information regarding the cable to the controller via the communication wire and without contention with the signals bidirectionally communicated between the controller and the endpoint device. |
US11349964B2 |
Selective TCP/IP stack reconfiguration
A method, system, and program product are provided. A plurality of recovery groups is defined on each transmission control protocol/internet protocol (TCP/IP) stack in a cluster of servers. The recovery group includes a service, one or more IP addresses associated with the service, a trigger condition, and a recovery action. Each of the recovery groups is monitored for an occurrence of the trigger condition associated with the service. In response to detecting the trigger condition, a backup TCP/IP stack is notified to automatically perform the recovery action defined for a failing recovery group on an owning TCP/IP stack. Only the failing recovery group is recovered and the remaining recovery groups execute uninterrupted. |
US11349963B1 |
Method and system for detecting anomalies of server and client
A method is provided for finding vulnerabilities of a server and a client communicating according to a communication protocol standard. The method includes establishing a connection between the server and client according to the communication protocol standard; generating valid packets from a communication protocol model, the valid packets being compliant with the communication protocol standard; generating mutated packets by mutating the valid packets according to mutation probabilities; sending the mutated packets from the server to the client or from the client to the server during different states of the communication protocol model; receiving first responses to the mutated packets; sending invalid packets from the server to the client or from the client to the server during different states of the communication protocol model; receiving second responses to the invalid packets; and identifying anomalies of the client or server based on the received first and/or second responses. |
US11349962B2 |
Data transmission method and device
Provided are a data transmission method and device. The method includes: processing a first data packet to be sent by using a compression strategy obtained in advance from a receiving end, deleting specified duplicated data comprised in the compression strategy in the first data packet; generating a second data packet to be sent from the processed first data packet, where the second data packet includes a modification record field for indicating the deleted duplicated data; and sending the second data packet to the receiving end. |
US11349952B2 |
Remote execution using a global identity
Embodiments of the present disclosure may provide a streamlined process for performing operations, such as data sharing and data replication, using multiple accounts. A global identity (also referred to as an organization user) may be employed, where the global identity may have access to multiple accounts across the same or different deployments. The global identity may switch between accounts from its login session and perform various tasks in the context of different accounts without undergoing further authentication. |
US11349949B2 |
Method of using path signatures to facilitate the recovery from network link failures
At any instant, a channel's path signature reflects the last successful path used to access file data. During the course of processing a request from an upstream site currently not connected to the target file, the downstream site will establish a connection to the upstream site and then include in its request response a path signature constructed by adding its signature to the channel's path signature. |
US11349947B1 |
Proxying hypertext transfer protocol (HTTP) requests for microservices
In various embodiments, a gateway application generates an outgoing Hypertext Transmission Protocol (HTTP) request based on an incoming HTTP request. In operation, the gateway application receives the incoming HTTP request and identifies an upstream service based on at least one of an HTTP method and a header included in the incoming HTTP request. Subsequently, the gateway application generates an outgoing HTTP request based on the upstream service and the incoming HTTP request. Finally, the gateway application issues the outgoing HTTP request. The outgoing HTTP request causes the upstream service to perform an action requested in the incoming HTTP request. Advantageously, the gateway application enables underlying upstream services to perform actions specified via incoming HTTP requests without directly exposing the upstream services to users. |
US11349942B2 |
Methods and apparatus to identify sponsored media in a document object model
Methods, apparatus, systems and articles of manufacture are disclosed to identify sponsored media in a Document Object Model. An example method includes in response to initiation of a search for sponsored media in a first branch of a document object model for a webpage, initiating a first timer having a first search time period and a second timer having a second search time period, the first search time period and the second search time period overlap, the search to be terminated upon completion of traversing the first branch when the search reaches a document node that is at a root of the first branch, the first branch including a candidate node. The example method also includes in response to identifying the candidate node as sponsored media, parsing the sponsored media to generate monitoring information, and modifying a user agent setting to include a unique identifier. |
US11349934B2 |
Opportunistic transmission control protocol (TCP) connection establishment
A TCP intermediate device receives a first SYN packet from a TCP client to establish a TCP connection between the TCP client and a TCP origin server. Prior to the TCP connection being fully established, the TCP intermediate device transmits a second SYN packet to the TCP origin server. The TCP intermediate device transmits a first SYN-ACK packet to the TCP client. The TCP intermediate device receives a first ACK packet from the TCP client. The TCP intermediate device receives a second SYN-ACK packet from the TCP origin server. The TCP intermediate device transmits a second ACK packet to the TCP origin server as part of establishing the third TCP connection. |
US11349932B2 |
Policy-based connection provisioning using domain name system (DNS) requests
Techniques for policy-based connection provisioning using Domain Name System (DNS) requests are described herein. The techniques may include receiving policy data associated with one or more headend nodes that manage connections to computing resources. Additionally, the techniques may include receiving a DNS request from a client device to establish a connection between the client device and a first headend node of the one or more headend nodes. The DNS request may include an attribute associated with the client device. A provisioning service may determine that the connection should be established between the client device and the first headend node based at least in part on evaluating the attribute with respect to the policy data. Additionally, the techniques may include sending an internet protocol (IP) address, which is associated with the first headend node, to the client device to facilitate establishment of the connection. |
US11349930B2 |
Identifying and deleting idle remote sessions in a distributed file system
Techniques are provided for identifying and deleting idle remote sessions in a distributed file system. In an example, a server that serves a plurality of server message block (SMB) sessions analyzes those sessions to determine which sessions are idle. Of the idle sessions, the server can determine which possess a lock on a computer file. Where another, active session is waiting for that resource, the server can terminate the idle session and release the lock so that the active session acquires access to the requested computer file. |
US11349922B2 |
System and method for a database proxy
A database proxy includes a computing device and a hardware-accelerated database proxy module. The computing device includes one or more processors, memory, a first bus interface, and a network interface coupling the database proxy to one or more networks. The database proxy module includes a second bus interface coupled to the first bus interface via one or more buses, and a request processor. The database proxy is configured to receive a database read request from a client via the one or more networks and the network interface; forward the database read request to the request processor using the one or more buses; process, using the request processor, the database read request; and return results of the database read request to the client. In some embodiments, the computing device or the database proxy module further includes a flash memory interface for accessing one or more flash memory devices. |
US11349920B2 |
Methods, devices and computer readable mediums for data synchronization
Embodiments of the present disclosure relate to methods, devices and computer readable mediums for data synchronization. A method comprises in response to receiving, at a first processor, a first request to synchronize data, initiating, to a second processor, a first remote direct memory access (RDMA) operation for transmitting the data between a first cache in the first processor and a second cache in the second processor. The method further comprises in response to completion of the first RDMA operation, writing the data into a first persistent storage device coupled to the first processor. The method further comprises transmitting, to the second processor, a command to instruct the second processor to commit the data to a second persistent storage device coupled to the second processor. Moreover, the method further comprises detecting, from the second processor, an acknowledgement for the command, the acknowledgement indicating that the data is synchronized between the first and second processors. |
US11349918B2 |
Distributed computing reservation platform for storing and handling shared data records
A system and a method for handling and storing data records are provided. A software application is configured to process user requests and accordingly generate a master data record that is associated with at least one user and/or a user application. The software application further generates a partition token, which is used by a routing module to route the user request for storing a master data record to the master storage partition associated with the partition identifier indicated in the generated partition token. |
US11349916B2 |
Learning client preferences to optimize event-based synchronization
Techniques to perform event-based synchronization of data among a plurality of endpoints are disclosed. In various embodiments, a user interaction associated with synchronization set data that has been synchronized based on synchronization events downloaded from a synchronization server configured to propagate changes via a synchronization event stream is observed. The observed user interaction is used to infer a user preference with respect to downloaded synchronization set data. Access is provided to synchronization event related data in a subsequent download in a manner determined based at least in part on the inferred user preference. |
US11349915B2 |
Distributed replication and deduplication of an object from a source site to a destination site
A source worker node at a source site fetches a task from a message queue. The task specifies replicating a first object at the source site to a destination site. A request for a connection is issued from the source worker node to the destination site. The request is received by a load balancer at the destination site and assigned to a destination worker node. A connection is established between the source and destination worker nodes. A determination is made that the destination site does not include an object that is the same as the first object. Upon the determination, a deduplication is performed between the source and destination worker nodes of segments into which the first object has been divided. Deduplicated segments of the first object are transmitted from the source worker node to the destination worker node for storage at the destination site. |
US11349912B2 |
Cross-cluster direct server return in a content delivery network (CDN)
A computer-implemented method, operable on a device in a content delivery network (CDN), wherein the CDN delivers content on behalf of at least one content provider, the device implementing a content delivery (CD) service, the method includes receiving a request from a client for particular content; determining a second device in the CDN, the first device being in a first cluster and the second device being in a second cluster distinct from the first cluster; migrating the request to the second device; and then providing the second device with network traffic from the client. |
US11349900B2 |
Voice encoding and sending method and apparatus
This application relates to a voice encoding and sending method performed at a mobile terminal that is communicatively connected to a plurality of mobile terminals via a computer server. The method includes sending voice data to the plurality of mobile terminals; receiving, from one or more of the plurality of mobile terminals, one or more paths of Real-Time Transport Control Protocol (RTCP) packets based on the voice data received by the one or more mobile terminals; parsing the one or more paths of RTCP packets and generating current network status information from the RTCP packets; adjusting a quality of service (QoS) parameter according to the current network status information; and encoding and sending new voice data according to the adjusted QoS parameter. |
US11349899B2 |
Protocol conversion of a video stream
Aspects of the technology described herein are directed towards systems, methods, and computer storage media for, among other things, converting a video stream being transmitted in a first streaming protocol to a second streaming protocol without transcoding the content communicated in the video stream. For example, the technology described herein may convert an RTP video stream to a non-RTP video stream without transcoding. The technology described herein extracts a plurality of media content from an RTP package and repackages the extracted content into a non-RTP streaming protocol, such as WebRTC or HLS. Moreover, the technology described herein can provide for the synchronization of video and audio data during conversion. |
US11349895B2 |
Broadcast signal transmission device, broadcast signal reception device, broadcast signal transmission method, and broadcast signal reception method
A method for generating and processing a broadcast signal according to an embodiment of the present invention includes encoding broadcast data for one or more broadcast services, encoding first level signaling information including information describing properties of the one or more broadcast services, encoding second level signaling information including information for scanning the one or more broadcast services and generating a broadcast signal including the broadcast data, the first level signaling information and the second level signaling information, wherein the first level signaling information includes user service description (USD) information describing service layer properties with respect to the broadcast services, wherein the USD information includes capability information specifying capabilities necessary to present broadcast content of the broadcast services. |
US11349894B1 |
Bandwidth-dependent media stream compression
In general, this disclosure describes media stream transmission techniques for a computing device. The computing device captures a first media item and identifies a primary portion of the first media item and a secondary portion of the first media item different than the primary portion. The computing device applies a first compression algorithm to the primary portion of the first media item to generate a compressed primary portion. The computing device applies a second compression algorithm to the secondary portion of the first media item to generate a compressed secondary portion, where a data compression ratio of the second compression algorithm is greater than a data compression ratio of the first compression algorithm. The computing device transmits, to a central computing device, the compressed primary portion of the first media item and the compressed secondary portion of the first media item. |
US11349893B1 |
System and method for normalizing shared content during a video conference sessions
A host server information handling system executing a multimedia multi-user collaboration application (MMCA) ma include a processor; a memory; a power management unit; a network interface device to receive and transmit audio/visual (AV) data during execution of the MMCA for a video conference session; the processor configured to execute a screen resolution normalization system to: initiate an out-of-band (OOB) communication with each participating endpoint device and requests data descriptive of a resolution of an presenting display at each participating endpoint device; receive the data descriptive of the resolution of the presenting displays at each participating endpoint device to every other participating endpoint device; and determine an autoscaling factor descriptive of how to upscale and downscale video frames of the AV data received at each of the participating endpoint devices based on the data descriptive of the resolution of the presenting displays; transmit the autoscaling factor based on the resolution of the presenting displays at each participating endpoint device to each participating endpoint device. |
US11349891B1 |
Hybrid static and dynamic multicast configuration for media serving environment
This disclosure describes techniques for configuring an edge router of a communication provider network, the edge router coupled to communicate with a plurality of media streaming playback devices. Based at least in part on an indication of characteristics associated with the plurality of media streaming playback devices, a first multicast join for the edge router is configured to the communication provider network such that one or more media servers delivers a first plurality of media streams to the edge router via the communication provider network. Based at least in part on an indication of a request for an additional media stream not included in the first plurality of media streams, a second multicast join for the edge router is configured to the communication provider network such that the one or more media servers delivers the additional media stream to the edge router via the communication provider network. |
US11349890B2 |
Systems and methods for multimedia multipoint real-time conferencing allowing real-time bandwidth management and prioritized media distribution
A system is disclosed for multimedia multipoint real-time conferencing that includes a communication module to receive a request to share media content in a virtual room setting. The content may include an audio, a video, a text, or a HyperText Markup Language (HTML) code referencing a third-party resource. The system may further include a content encoder at the host website to create a data packet encapsulating the transport characteristics and the routing requirements and a multipoint router to share the content via the transport protocol in the real-time group conference associated with the users of the virtual room. |
US11349889B1 |
Collaborative remote interactive platform
Systems and methods for providing a remote interactive experience are provided. The systems and methods may include computer executable code stored in a non-transitory memory and run on a processor. The remote interactive experience may be provided via a digital platform. The platform may provide management of a shared browser. The shared browser may be shared by a plurality of participant devices. The platform may store the shared browser in a cloud-based location. The shared browser may thus be cloud-based. The platform may enable the plurality of participant devices to access the cloud-based shared browser. The platform may receive, as input, actions performed to each of the plurality of participant devices. The actions may include at least one of an action list that includes: a cursor movement, a window-sizing, a window-positioning, and a file navigation performed to the shared browser. The platform may propagate the actions to the shared browser. |
US11349888B2 |
Text data transmission-reception system, shared terminal, and method of processing information
A text data transmission-reception system includes a plurality of user terminals; a shared terminal; and an information processing apparatus connectable to each of the plurality of user terminals and the shared terminal via a network. The information processing apparatus includes circuitry configured to receive text data transmitted and received between the plurality of user terminals; determine whether or not the text data transmitted and received between the plurality of user terminals includes a request for controlling the shared terminal; and control the shared terminal based on a determination that the text data includes the request for controlling the shared terminal. |
US11349885B2 |
Scalable layered two-dimensional (2D) telecommunications network architecture
Aspects of the disclosure are directed to a telecommunications network architecture. In accordance with one aspect, a scalable telecommunications network architecture includes at least one infrastructure switching node; at least one user switching node for receiving a session request, wherein the session request includes at least one user attribute; and at least one controller coupled to the at least one user switching node, the at least one controller for examining the session request a) to allocate at least one bandwidth or at least one data rate for the at least one user switching node based on a resource allocation policy and b) to allocate a quantity of switch elements in the at least one infrastructure switching node based on an interconnection policy. In one example, the at least one controller establishes a communications session for a user terminal based on the session request. |
US11349884B2 |
Method and a SIP proxy for managing calls in a voice over SIP network
A method is provided of managing calls in a voice over IP network, and is performed by a SIP proxy. The method includes receiving a registration request issued by a voice over IP terminal to register with the SIP proxy, obtaining from a database the address of at least one voice over IP platform associated with the voice over IP terminal, registering the SIP proxy with a said voice over IP platform, and sending a request to a number portability server suitable for managing incoming calls to said voice over IP terminal, the request requesting the server to associate the telephone number of the voice over IP terminal with a routing prefix associated with the voice over IP platform. |
US11349879B1 |
System and method for multi-transaction policy orchestration with first and second level derived policies for authentication and authorization
A system and method for authentication policy orchestration may include a user device, a client device, and a server. The server may include a network interface configured to be communicatively coupled to a network. The server may further include a processor configured to obtain, from a client device via the network, a transaction request for a transaction, determine an authorization requirement for the transaction request based, at least in part, on a plurality of authorization policies, individual ones of the plurality of authorization policies being separately configurable by at least one of a relying party and an authorizing party, and complete the transaction based on the authorization requirement having been met. |
US11349878B2 |
Method for handling security settings in a mobile end device
In a procedure for handling security settings of a mobile end device the operating conditions of the end device are determined. Then minimum security requirements are established according to the operating conditions by evaluating contextual data regarding the operating conditions of the end device. Next it is determined whether the security settings on the end device comply with at a least with the minimum security requirements. Access to applications is allowed or denied according to the security settings on the mobile end device. Should the end device not meet minimum security requirements the user may be prompted to change the security settings on the end device. The method may involve locating the end device and issuing of a warning in the end device does not meet minimum security settings. |
US11349877B2 |
Solution management systems and methods for addressing cybersecurity vulnerabilities
Solution management systems and methods are presently disclosed that enable receiving, compiling, and analyzing vendor solutions, determining the vendor solutions that address a target vulnerability of a client network and/or client devices, determining additional vulnerabilities of the client network and/or client devices that the vendor solutions address, and selecting a vendor solution to remediate the target vulnerability. The presently disclosed systems and methods also enable scoring, risk evaluation, and additional metrics to facilitate determining the vendor solution(s) that have the largest impact and/or benefit to the various vulnerabilities of the client network and/or client devices. |
US11349875B2 |
Dynamic balancing of security rules execution in a database protection system
A database protection system (DPS) is configured to dynamically-optimize security rule validation throughput based on evaluating resource consumption data collected from prior validations. In particular, the DPS analyzes collected resource consumption information and determines which security rules in a set should then be active. To this end, the DPS is configured with multiple security rules engines (SREs), and each is configured to evaluate the same set of security rules. When an SRE applies a validation (to a request or response flow), an associated collector collects and analyzes associated resource consumption data. This data is provided to an optimizer, which receives similar resource consumption data from other SREs. Based on the resource consumption data collected from the SRE collector(s), the optimizer dynamically optimizes security rules validation in real-time, e.g., by dynamically switching on or off given security rule(s) in the set of security rules at given one(s) of the SREs. |
US11349874B2 |
Methods and systems for providing a secure connection to a mobile communications device with the level of security based on a context of the communication
Based on context received regarding a mobile communications device a server determines whether an existing network connection employed by the mobile communications device offers a level of security that is appropriate. When the server determines that the level of security is appropriate, the mobile communications device is allowed to continue using the network connection. Otherwise, the server directs the mobile communications device to terminate the network connection. |
US11349870B2 |
Methods and devices for virtualizing device security using a multi-access server that is separate from a device
An exemplary security virtualization system implemented by a multi-access edge compute (“MEC”) server identifies a security policy for a device that is separate from and communicatively coupled to the MEC server. The security virtualization system intercepts data transmitted to the device from an application server, and applies a security service to the intercepted data in accordance with the security policy identified for the device. Subsequent to the applying of the security service, the security virtualization system delivers, to the device by way of a secure connection between the security virtualization system and the device, sanitized data that corresponds to the intercepted data and has been sanitized by way of the security service. Corresponding methods and systems are also disclosed. |
US11349867B2 |
Rogue device detection including mac address spoofing detection
Systems, methods, and related technologies including media access control (MAC) address spoofing detection are described. The MAC address spoofing detection and response may include accessing a first MAC address associated with a first communication on a first port of a first network device and accessing a second MAC address associated with a second communication on a second port of a second network device. Whether the first MAC address and the second MAC address match may be determined. Information associated with a third communication associated with the first MAC address on the first port of the first network device and information associated with a fourth communication associated with the second MAC address on the second port of the second network device may be accessed. An action may be performed associated with the second port of the second network device based on the second MAC address matching the first MAC address. |
US11349861B1 |
Identifying network entities based on beaconing activity
Embodiments are directed to monitoring network traffic using network monitoring computers (NMCs). Metrics may be determined based on monitoring network traffic associated with a plurality of entities each associated with a profile that includes the metrics for each entity. Beaconing metrics associated with beaconing activity may be determined based on the metrics. The profile of each entity may be compared with the beaconing metrics to determine the entities that may be engaged in beaconing activity. The entities may be characterized based on beaconing activity such that the beaconing activity includes communication with endpoints associated with the third parties, employing communication protocols associated with the third-parties, or exchanging payloads consistent with the beaconing activity. Reports that include information associated with the entities and its beaconing activity may be generated. |
US11349858B2 |
Malware detection system attack prevention
Systems and methods may be used to prevent attacks on a malware detection system. A method may include modeling a time series of directed graphs using incoming binary files during training of a machine learning system and detecting, during a time-window of the time series, an anomaly based on a directed graph of the time series of directed graphs. The method may include providing an alert that the anomaly has corrupted the machine learning system. The method may include preventing or remedying corruption of the machine learning system. |
US11349854B1 |
Efficient threat context-aware packet filtering for network protection
A threat intelligence gateway (TIG) may protect TCP/IP networks from network (e.g., Internet) threats by enforcing certain policies on in-transit packets that are crossing network boundaries. The policies may be composed of packet filtering rules with packet-matching criteria derived from cyber threat intelligence (CTI) associated with Internet threats. These CTI-derived packet-filtering rules may be created offline by policy creation and management servers, which may distribute the policies to subscribing TIGs that subsequently enforce the policies on in-transit packets. Each packet filtering rule may specify a disposition that may be applied to a matching in-transit packet, such as deny/block/drop the in-transit packet or pass/allow/forward the in-transit packet, and also may specify directives that may be applied to a matching in-transit packet, such as log, capture, spoof-tcp-rst, etc. Often, however, the selection of a rule's disposition and directives that best protect the associated network may not be optimally determined before a matching in-transit packet is observed by the associated TIG. In such cases, threat context information that may only be available (e.g., computable) at in-transit packet observation and/or filtering time, such as current time-of-day, current TIG/network location, current TIG/network administrator, the in-transit packet being determined to be part of an active attack on the network, etc., may be helpful to determine the disposition and directives that may best protect the network from the threat associated with the in-transit packet. The present disclosure describes examples of methods, systems, and apparatuses that may be used for efficiently determining (e.g., accessing and/or computing), in response to the in-transit packet, threat context information associated with an in-transit packet. The threat context information may be used to efficiently determine the disposition and/or one or more directives to apply to the in-transit packet. This may result in dispositions and/or directives being applied to in-transit packets that better protect the network as compared with solely using dispositions and directives that were predetermined prior to receiving the in-transit packet. |
US11349853B2 |
Systems and methods for determining individual and group risk scores
Embodiments disclosed herein describe a server, for example a security awareness server or an artificial intelligence machine learning system that establishes a risk score or vulnerable for a user of a security awareness system, or for a group of users of a security awareness system. The server may create a frequency score for a user, which predicts the frequency at which the user is to be hit with a malicious attack. The frequency score may be based on at least a job score, which may be represented by a value that is based on the type of job the user has, and a breach score that may be represented by a value that is based on the user's level of exposure to email. |
US11349849B2 |
Using smart groups for computer-based security awareness training systems
This disclosure describes embodiments of an improvement to the static group solution because all the administrator needs to do is specify the criteria they care about. Unlike static groups, where the administrator needs to keep track of the status of individual users and move them between static groups as their status changes, smart groups allows for automatic identification of the relevant users at the moment that action needs to be taken. This feature automates user management for the purposes of enrollment in either phishing and training campaigns. Because the smart group membership is determined as the group is about to be used for something, the smart group membership is always accurate and never outdated. The query that determines the smart group membership gets run at the time when you are about to do a campaign or perform some other action that needs to know the membership of the smart group. |
US11349847B2 |
Unified identity verification
Apparatus, systems, and methods are disclosed that operate to receiving an authentication request at a server associated with an authenticating entity from a requesting party responsive to a request being provided to the requesting party by a client terminal associated with an unauthenticated individual purporting to be an individual account owner previously authenticated with the authenticating entity. A token from the client terminal associated with the unauthenticated individual is received, and the token includes information associated with the unauthenticated individual and a user permission authorizing the authenticating entity to share a selected portion of the information with a plurality of selected requesting parties. The server associated with the authenticating entity authenticates the unauthenticated individual as the individual account owner based on, inter alia, matching the token to a pre-registered identity uniquely associated with the individual account owner. Additional apparatus, systems, and methods are disclosed. |
US11349841B2 |
Managing user access to restricted content through intelligent content redaction
A method, system and/or computer usable program product for managing user access to restricted data including authenticating a set of users requesting attendance to a teleconference; obtaining content access rights associated with each of the authenticated users; converting and reviewing content of the teleconference in real-time to identify restricted data in the teleconference content; determining whether each of the authenticated users has content access rights to identified restricted data; upon determining at least one authenticated user does not have content access rights to the identified restricted data, redacting the identified restricted data in real-time from the teleconference content to generate a redacted teleconference content; and providing the teleconference content in real-time to each authenticated user with content access rights to the identified restricted data, and providing the redacted teleconference content in real-time to each authenticated user without content access rights to the identified restricted data. |
US11349827B2 |
Anonymous attestation
An anonymous attestation cryptographic protocol is provided for enabling a target (device 4) to attest to a predetermined property of the device without needing to reveal its identity to a verifier (8). When obtaining a credential from an issuer (6) to attest to the predetermined property, the credential is validated by an intermediary device (2) which is a separate consumer electronics device to the target device (4) itself. This allows the relatively processor-intensive calculations required for validating the credential to be performed on a separate device (2) from the device (4) for which the attestation has been made, allowing anonymous attestation protocols to be used for lower powered target devices such as sensors in the internet of things. |
US11349825B1 |
Secured automatic user log-in at website via personal electronic device
Techniques for providing secured, automatic log-in and authentication of a user to a website via a browser executing at the user's personal electronic device (PED) include generating a token based on an identifier of the PED and a user identifier, and storing the token at the user's PED for use in validating and authenticating the user and device credentials against those stored at back-end system and/or in another memory location at the device. Based on the persisted token (and optionally on a user preference), the user may be automatically logged in as the user navigates across restricted and unrestricted portions of the website, and/or to other websites (e.g., without the user's knowledge). At least these features enable automatic log-in and authentication to be performed on an as-needed basis, and/or on a per-device basis, thereby providing significantly more secure access as compared to known techniques. |
US11349824B2 |
Block sequencing method and system based on tree-graph structure, and data processing terminal
The present invention relates to a block sequencing method based on a tree-graph structure, comprising of: linking all blocks into a tree-graph structure according to reference relationships; selecting one pivot chain from the tree-graph structure and taking all blocks in the pivot chain as pivot blocks; dividing all blocks into a plurality of Epochs according to a time sequence arrangement of the pivot blocks; sorting the blocks in the Epoch to obtain a set sequence of the Epoch in time sequence; and obtaining a global sequence of all blocks of the tree-graph structure based on all set sequences. The present invention also relates to a block sequencing system based on the tree-graph structure, a data processing terminal for sequencing blocks by the block sequencing method, and a P2P network using the data processing terminal. |
US11349823B2 |
System and method for PC as a service authentication and subscription via low power wide area network communications
A method of managing access to on-demand cloud services may comprise receiving at a PCaaS cloud management service information handling system log-in credentials from a remote information handling system via a low-power wide area network communication link, executing code instructions to determine if the log-in credentials are associated with an existing subscriber, if the log-in credentials are associated with an existing subscriber whose subscription is not expired, transmitting via the wireless adapter a verification of the log-in credentials to the remote information handling system, establishing via the wireless adapter a high-speed wireless communication link with the remote information handling system, and transmitting code instructions via the wireless adapter of one or more in-band applications associated with the existing subscriber via the high-speed wireless communication link. |
US11349817B2 |
Session management framework for secure communications between host devices and trusted devices
Embodiments are directed to a session management framework for secure communications between host systems and trusted devices. An embodiment of computer-readable storage mediums includes instructions for establishing a security agreement between a host system and a trusted device, the host device including a trusted execution environment (TEE); initiating a key exchange between the host system and the trusted device, including sending a key agreement message from the host system to the trusted device; sending an initialization message to the trusted device; validating capabilities of the trusted device for a secure communication session between the host system and the trusted device; provisioning secrets to the trusted device and initializing cryptographic parameters with the trusted device; and sending an activate session message to the trusted device to activate the secure communication session over a secure communication channel. |
US11349815B2 |
Systems and methods for providing communications between on-premises servers and remote devices
A system having an off-premises proxy server residing in a cloud computing environment and backend servers residing in an enterprise computing environment are provided. Requests received by the off-premises proxy server for access to a first, non-publicly accessible backend server are routed to a tunnel server which stores the request and waits to be polled by a tunnel agent connected to the first backend server. When the tunnel server is polled, the request is forwarded through an HTTP tunnel to the tunnel agent, which forwards it to the backend server for processing. Responsive information is returned to the tunnel agent, which forwards it through the HTTP tunnel to the tunnel server and returned through the off-premises proxy server to the remote application. Requests for access to a first, publicly accessible backend server are routed by the off-premises proxy server directly to the backend server for processing and return of responsive information. |
US11349808B2 |
Internet protocol security messages for subnetworks
An end controller, comprising: a processing resource; and a memory resource storing machine-readable instructions to cause the processing resource to: receive, using internet protocol security (IPSec) messages, a plurality of subnetworks that form a route to a branch device via a branch gateway; transfer the plurality of subnetworks to a layer-2-layer-3 module; transfer the plurality of subnetworks to an open shortest path first (OSPF) module; and publish the plurality of subnetworks that form the route to the branch device to a core router using OSPF link state advertisements (LSAs). |
US11349807B2 |
Directed multicast based on multi-dimensional addressing relative to identifiable LLN properties
In one embodiment, a method comprises: receiving, by a root network device providing a DAG topology in a low power and lossy network (LLN), one or more multicast registration messages from an LLN device and identifying distinct properties of the LLN device; receiving, by the root network device, one or more multicast address group identifiers of one or more multicast streams to which the LLN device has subscribed, and associating the one or more multicast address group identifiers with the distinct properties; receiving a multicast message specifying one of the multicast address group identifiers; and generating, by the root network device, a directed multicast message having a multi-dimensional addressing data structure comprising a selected one of the distinct properties and the one multicast address group identifier, causing parent network devices in the DAG topology to selectively retransmit based on determining a child network device has the selected one distinct property. |
US11349806B2 |
Methods, apparatuses and systems for assigning IP addresses in a virtualized environment
Some embodiments use proxies on host devices to capture broadcast DHCP traffic in a network. Each host in some embodiments executes one or more virtual machines (VMs). In some embodiments, a proxy operates on each host between each VM and the underlying network. For instance, in some embodiments, a VM's proxy operates between the VM and a physical forwarding element executing on the VM's host. To suppress DHCP broadcast, the proxy for a particular VM monitors the VM's traffic to detect and intercept a DHCP discover message. When the proxy receives a DHCP discover message, the proxy retrieves DHCP configuration data that was previously stored on the host for the VM. In some embodiments, the DHCP configuration data is stored on the host for the VM during the installation of the VM in response to an administrator's request or as part of an installation script that installs the VM. The DHCP configuration data in some embodiments is stored in one common data store for all the VMs that execute on the host, while in other embodiments, each VM's DHCP configuration data is stored in a DHCP data store that is uniquely maintained for the VM. In some of these latter embodiments, the data in the unique DHCP data store for a VM can easily migrate with the VM when the VM migrates from one host to another host. |
US11349797B2 |
Co-location connection service
An example co-location connection service is described. The online co-location connection service is provided by a messaging system configured to selectively pair user profiles associated with respective client devices equipped with sensors that communicate with each other within the predetermined physical range. The messaging system monitors physical proximity of the client devices based on the sensor data obtained by the co-location connection service from the respective messaging clients executing at the respective client devices. In response to detecting that the client devices are within a predetermined physical proximity range the messaging system generates co-location experience by modifying the user interface in the respective messaging clients. |
US11349796B2 |
Generating a stitched data stream
Systems and methods provide for a server computer to receive a plurality of messages from a plurality of user computing devices, each message of the plurality of messages comprising a data stream, determine a subset of messages of the plurality of messages associated with a similar geolocation and time period, determine a set of messages of the subset of messages based on a match score for each pair of messages, and stitch together the set of messages to generate a stitched data stream from the data streams for each message of the set of messages based on a time period for each message, wherein the stitched data stream comprises messages with data streams that overlap in time periods such that there may be more than one data stream for a given time period. |
US11349793B2 |
Enforcing messaging policies using tags
A messaging system receives a message sent by an enterprise to an individual user. The message has an associated message tag describing the content of the message. The messaging system applies a filtering policy to the message. The filtering policy selectively blocks messages sent by enterprises to users. The filtering policy allows the message having the associated tag to pass through the filter even though the message might otherwise violate the filtering policy. The messaging system samples a subset of tagged messages from enterprises and analyzes the messages for compliance with a tagging policy. The messaging system may also train one or more tag models to recognize the correct tags for the messages. |
US11349785B1 |
Open conversation user interface
Disclosed are systems and methods for conducting an open conversation user interface and more particularly, to a channel-agnostic user interface experience which can utilize automated background intelligence to simplify the exchange between a software system or member service representative (MSR) and a member, and avoids the need for web-based free form inputs. |
US11349783B2 |
Host input/output based load balancing on fibre channel N_port virtualizer switch uplinks
A method includes measuring input/output traffic for respective hosts that are connected to a Fibre Channel N_Port Virtualizer (FC-NPV) switch, which is in communication with a first N_Port ID Virtualization (NPIV) core switch via a first port channel and with a second NPIV core switch via a second port channel; determining that traffic carried on the first port channel between the FC-NPV switch and the first NPIV Core switch exceeds a predetermined threshold compared to traffic carried on the second port channel; and re-assigning traffic from a given host carried on the first port channel to the second port channel between the FC-NPV switch and the second NPIV core switch. |
US11349781B1 |
Recording in an external memory data messages processed by a data plane circuit
Some embodiments provide novel circuits for recording data messages received by a data plane circuit of a forwarding element in an external memory outside of the data plane circuit. The external memory in some embodiments is outside of the forwarding element. In some embodiments, the data plane circuit encapsulates the received data messages that should be recorded with encapsulation headers, inserts into these headers addresses that identify locations for storing these data messages in a memory external to the data plane circuit, and forwards these encapsulated data messages so that these messages can be stored in the external memory by another circuit. Instead of encapsulating received data messages for storage, the data plane circuit in some embodiments encapsulates copies of the received data messages for storage. Accordingly, in these embodiments, the data plane circuit makes copies of the data messages that it needs to record. |
US11349779B2 |
Upstream bandwidth management methods and apparatus
A system and method for managing bandwidth of an upstream communications channel in a communications system. |
US11349776B2 |
Sharing account data between different interfaces to a service
Some embodiments provide a method for an electronic device. The method stores user data associated with a web-based third party service based on user interaction with a web domain for the third party service through a web browser. The method receives a request from a service-specific application to utilize the user data stored for the third party service. The method provides the user data to the application only when the application is verified by the web domain for receiving user data associated with the third party service. |
US11349773B2 |
Maintaining distributed references to data for use by devices of a computer network
Maintaining distributed references to data stored on devices of a computer network is described. For instance, a system includes a request component that can communicate a removal request to network equipment to remove a resource from storage by first storage equipment. The system can further include an indicator component that can receive, from the network equipment, a first indication that the removal request did not cause removal of the resource. The removal request can be determined not to have caused the network equipment to remove the resource based on index information of a resource index, which could have identified that the resource was referenced by a resource stub stored on second storage equipment. |
US11349772B2 |
Multi-level resource reservation
The present disclosure is directed to a multi-level resource reservation system that obviates one or more of the problems due to limitations and disadvantages of the related art. The multi-level resource reservation system creates, or modifies existing, peer-to-peer protocol(s) to complete a continuous chain of configured ports to support QoS feature(s), e.g., bound latency and guaranteed jitter, for a data flow that traverses an arbitrary sequence of bridges, routers, and virtual links. |
US11349761B2 |
Cost effective congestion isolation for lossless ethernet
A cost effective congestion isolation for lossless Ethernet utilizing random selection is provided. Upon detecting congestion at one of its egress ports, a downstream device randomly selects a data packet received at one or more of its ingress ports for isolation in a congested priority queue at the ingress port. The downstream device sends a congestion isolation message, including a list of isolation hashes to an upstream device to identify data packets selected for isolation. Upon receipt, the upstream device identifies data packets selected for isolation and begins to queue such packets in a congested priority queue of the upstream device. When priority-based flow control is triggered, the upstream device ceases transmission of packets in the congested priority queue only, while allowing continued transmission of non-isolated data packets. |
US11349759B2 |
Routing control method, network device, and controller
A routing control methodincludes: the network device obtains a route suppression request; determines the second routing entry; and sets a state of the second routing entry to a non-delivery state that is used to indicate that the second routing entry does not need to be delivered to a forwarding table. Wherein the network device has a first routing entry and a second routing entry, an address prefix of the first routing entry is a first address prefix, an address prefix of the second routing entry is a second address prefix, a network segment to which the second address prefix belongs is a subset of a network segment to which the first address prefix belongs, and a mask in the second address prefix is greater than a mask in the first address prefix. |
US11349756B2 |
Apparatus and method for transmitting and receiving signal in multimedia system
A method of operating a transmitting apparatus in a multimedia system is provided. The method includes inputting at least one network layer packet, generating a link layer packet based on the at least one network layer packet, and transmitting the link layer packet, wherein the link layer packet includes a header including information indicating whether the link layer packet includes a single network layer packet and information indicating an identifier related to the at least one network layer packet. |
US11349755B2 |
Routing data between computing entities using electronic data interchange
A system is provided for exchanging data using Electronic Data Interchange (EDI). A transmitting entity obtains an EDI file from a document that is to be transmitted to a destination server and adds routing information to the EDI file based on a first routing configuration, wherein the routing information is to be used by the receiving entity for routing the EDI file to the destination server. The receiving entity receives the EDI file from the transmitting entity and extracts the routing information from the EDI file. The receiving entity determines the destination server from a second routing configuration based on the extracted routing information and forwards the EDI file to the destination server. |
US11349749B2 |
Node protection for bum traffic for multi-homed node failure
Techniques are described for facilitating node protection for Broadcast, unknown Unicast, and Multicast (BUM) traffic for a multi-homed node failure. For example, each VTEP (e.g., PE device) may advertise a protected VTEP address that indicates an IP address of a remote PE device that is to be protected in the event of a node failure. In the event a multi-homed PE device fails, the ingress PE device sends a BUM packet including the protected VTEP address for the failed node. When an egress PE device receives the BUM packet, the egress PE device determines whether the BUM packet includes the protected VTEP address and whether the egress PE device is operating as a backup designated forwarder (DF). If the BUM packet includes the protected VTEP address and the egress PE device is a backup DF, the egress PE device forwards the BUM traffic to the ESI. |
US11349748B2 |
System and method for optimizing layer three link aggregation in a mesh network
An information handling system operating a mesh network link aggregation optimization system may comprise a plurality of mesh access points, and one or more client devices connected via a plurality of wireless links forming a mesh wireless network. A processor may execute code instructions to generate a congestion score for each of the links based on measured traffic and quality of service of each of the links, determine the congestion score for a congested link does not meet a preset congestion threshold value, determine a location within the mesh wireless network in which to aggregate links between two mesh access points, based on availability of one or more radios, and transmit an instruction to one of the plurality of mesh access points to aggregate two or more links at the network layer at the determined location for simultaneous transmission on a single band. |
US11349747B1 |
Hybrid mesh network monitoring signaling environment
Techniques are described to improve the robustness of communication of critical life safety data when broadband networks are used as uphaul networks. Monitoring systems are examples of critical monitoring appliances, but the techniques described throughout this disclosure may be applied to any type of critical monitoring appliances, such as life-support devices, fire detectors, smoke detectors, and the like. |
US11349746B2 |
Specifying link layer information in a URL
A system of specifying link layer information in a URL is described. In an embodiment, a URL is generated which includes both a link layer network type and information which is used by a resolving device to identify a particular link layer network of the specified type. In various embodiments, the URL includes a link layer network type and a corresponding link layer network name or pairs of link layer network types and corresponding link layer network names. Where the URL comprises more than one link layer network name, the resolving device may determine at runtime which of the named link layer networks to connect to and this decision may be based on criteria or preference information included within the URL. |
US11349743B2 |
Machine learning training system for identification or classification of wireless signals
A signal generator outputs a reference signal corresponding to at least one wireless signal according to the predefined signal encoding to a channel emulator processor. The channel emulator processor is programmed to use at least one synthesized channel parameter and the reference signal to produce and store a perturbed signal as data for training machine learning and artificial intelligence systems. The synthesized channel parameter is synthesized using a channel synthesizer processor programmed to: ingest map elevation data, reference a transmitter and a receiver to the map elevation data, and perform ray tracing of a representative signal between the transmitter and the receiver, while applying at least one predetermined perturbation property to synthesize at least one channel parameter. |
US11349741B2 |
Method and apparatus for controlling power to an electrical load based on sensor data
A load-controlling interfacing device obtains and processes event data, for example, from a touch-screen user interface and/or other devices, and that processes rules based on the event data to control an electrical load, such as a light fixture. During operation, when the interfacing device obtains event data, the interfacing device selects a rule to process based on the event data from the touch-screen user interface. If the interfacing device determines that the rule's condition is satisfied, the interfacing device can process the rule's action description to perform a corresponding action for controlling power to the electrical load. |
US11349739B2 |
Method and apparatus for splitting data in multi-connectivity
A method for multi-connectivity between a plurality of base stations and user equipment includes estimating, at the user equipment, a first round trip time (RTT) taken in transmitting first data to a first base station, estimating, at the user equipment, a second RTT taken in transmitting second data to a second base station, and determining a size of the first data which is to be transmitted to the first base station, based on the first RTT and the second RTT. |
US11349735B2 |
Faster fault-detection mechanism, for example using bidirectional forwarding detection (BFD), on network nodes and/or hosts multihomed using a link aggregation group (LAG)
For use in a system including a first data forwarding device, a second data forwarding device, a third data forwarding device, a first communications link between the first data forwarding device and the second data forwarding device, and a second communications link between the first data forwarding device and the third data forwarding device, the first and second communications links belonging to a link aggregation group (LAG), a method includes (1) generating a message (i) for testing a first path between the first data forwarding device and the second data forwarding device, and a second path between the first data forwarding device and the third data forwarding device, and (ii) including an Internet protocol (IP) datagram including a multicast IP destination address and a payload containing path testing information; and (2) sending, over the LAG, the message from the first data forwarding device to both the second data forwarding device and the third data forwarding device. Responsive to receiving an instance of the message by either of the second or third data forwarding device, such device(s) (1) determine whether or not the received instance of the message is a fault detection on a multihomed link aggregation group message, and (2) processing the received instance of the message based on the determination of whether or not it is a fault detection on a multihomed link aggregation group message. |
US11349726B2 |
Systems and methods for real-time service assurance
Service assurance using real-time monitoring, management and maintenance capabilities is enabled to provide customers and vendors with information related to the state of the service. The service assurance domain implements end-to-end functionality with a level of granularity sufficient to diagnose issues to the device and call/session level. |
US11349725B2 |
Method and apparatus for providing cognitive functions and facilitating management in cognitive network management systems
Various methods are provided for enabling the application of machine learning to network management and in particular to enabling cognitive network management in radio access networks. One example method may comprise interpreting one or more operator goals for the CNM or for a specific CF to ensure that the specific CF adjusts its behavior in order to fulfil the operator goals, abstracting an environment into states configured for use in subsequent decision making, wherein the abstracted environment represent are built from one or more of a combination of quantitative KPIs, abstract state labels, and operational contexts, defining legal candidate network configurations for different contexts of the CF based on the abstracted environments and operational contexts as inferred by the EMA engine, and matching a current abstract state, abstracted environment, or operational context as derived by the EMA engine to an appropriate network configuration selected from the set of legal candidate network configurations. |
US11349723B1 |
Identification mapping for network devices
Examples disclosed herein relate to a method comprising transmitting an ISID VLAN mapping request including a first plurality of ISID VLAN mappings and rejecting a first ISID VLAN mapping belonging to the plurality. The method comprises performing a recovery event, transmitting a mapping request message to the AAC in response to the recovery event and transmitting a second plurality of ISID VLAN mappings including the first ISID VLAN mapping. The method comprises validating first ISID VLAN mapping; and establishing network traffic between the AAS and the AAC for the first ISID VLAN mapping. |
US11349710B1 |
Composable edge device platforms
Techniques discussed herein relate to providing composable edge devices. In some embodiments, a user request specifying a set of services to be executed at a cloud-computing edge device may be received by a computing device operated by a cloud computing provider. A manifest may be generated in accordance with the user request. The manifest may specify a configuration for the cloud-computing edge device. Another request can be received specifying the same or a different set of services to be executed at another edge device. Another manifest which specifies the configuration for that edge device may be generated and subsequently used to provision the request set of services on that device. In this manner, manifests can be used to compose the platform to be utilized at any given edge device. |
US11349708B2 |
Configuration generation for virtual network functions (VNFs) with requested service availability
A Virtual Network Function (VNF) is provided for deployment in a Network Function Virtualization Infrastructure (NFVI). First, an input is obtained that includes a description of available software components, configuration requirements specifying service types to be provided by the VNF, and infrastructure information specifying resources provided by the NFVI. The infrastructure information includes characteristics of virtual machines (VMs). For each service type, a VNF component (VNFC) configuration is generated. The generated VNFC configuration optimizes usage of the resources and satisfies requested service availability. A VNF configuration is formed that includes a collection of VNFC configurations created for the service types. The VNF configuration is delivered to a Network Function Virtualization (NFV) system for the deployment of VNFC instances on the VMs thereby providing the VNF. |
US11349702B2 |
Communication apparatus, system, rollback method, and non-transitory medium
A communication apparatus comprises a rollback control unit that rolls back a first process to a second process; and a storage unit to store one or more network states shared by the first process and the second process, the second process enabled to take over or more network states from the first process; wherein the rollback control unit includes a network state control unit that controls to provide delayed updating of at least one of the one or more network states taken over by the second process. |
US11349688B2 |
Transmission rate control based on empirical MI estimation
A first wireless device may generate a first pseudo-random data based on a seed known to a second wireless device, and may transmit a first training signal including first pseudo-random data to the second wireless device for a MI estimation at the second wireless device, the first pseudo-random data being modulated with a first modulation order. The second wireless device may estimate, based on the received first training signal and through the MI estimation, a reception quality associated with at least one modulation order lower than or equal to the first modulation order, and determine a second modulation order of the at least one modulation order lower than or equal to the first modulation order based on the MI estimation, the second modulation order being estimated to provide a reception quality greater than or equal to a reception quality threshold. The MI estimation may be periodic or aperiodic. |
US11349684B2 |
Utility vehicle control system with real time clock
A utility vehicle that includes a vehicle control system having one or more real time clocks (RTC). The RTC can be embedded in the vehicle control system, or in components or subsystems of the vehicle control system, and can be either dedicated electronics or software based. Information provided by the RTC can be used to synchronize components and subsystems of the vehicle control system. Further, such inclusion of the RTC can enable the vehicle control system to initiate a number of time based functions, including, for example, time based functions relating to battery charging, wake-up and shut down of components, status reporting, periodic vehicle level events and maintenance, and management of time based operation or use of the utility vehicle or components thereof, including vehicle cameras. |
US11349679B1 |
Conversational AI for intelligent meeting service
A computing system for real-time analyzing meeting conversations using artificial intelligence (AI) is configured to establish a meeting communication channel that facilitates a meeting among multiple client systems. Each of the multiple client systems corresponds to a meeting participant. In response to receiving communication from the multiple client systems, the computing system analyzes currently received communication via an AI engine while the meeting remains active. The currently received communication is communication received within a rolling time window ending at a current time. Based on the analysis, the computing system identifies an agenda item that has a highest correlation with the currently received communication or a task that is assigned to at least one of the participants, and causes, in substantially real time, at least one of the plurality of the client systems to display the agenda item or add the task to a task list. |
US11349666B2 |
Electronically signing and distributing identification data as a service that provides proof of identity, integrity, validity and origin of data for non-repudiation and ID validation methods
The present solution is directed to methods and systems for storing personal identifiable information. In some implementations, the information is collected during the authentication of identification (ID) documents. The personal identifiable information can be useful in processes such as client enrollment, mobile device management, identification processes, and transaction audits. However, the data can be a target for bad actors. The present solution includes a one-way hashing and cryptographic function that converts unique personal identifiable information into a unique digest which can be securely stored on a mobile device and rendered as an original state digital image for proof of ID. |
US11349665B2 |
Device attestation server and method for attesting to the integrity of a mobile device
A device attestation server and method for attesting to the integrity of a mobile device is provided. An attestation request is sent from a mobile device to a device attestation server. The device attestation server runs an attestation method that is supported by the mobile device. The device attestation server creates an attestation token that includes a validation result and a plurality of attributes. The device attestation server sends the attestation token to the mobile device, which performs a validation method using the attestation token. |
US11349663B2 |
Secure workload configuration
Described are techniques for secure workload configuration including a method comprising receiving a workload definition file at a worker node and from a master node, where the workload definition file comprises an encrypted immutable definition, a partially immutable definition with a predefined range of values and a first value modified by the master node, and a variable definition with a second value modified by the master node. The method further comprises decrypting, by the worker node, the encrypted immutable definition to generate a decrypted immutable definition. The method further comprises verifying, by the worker node, that the first value satisfies the predefined range of values. The method further comprises, in response to decrypting the encrypted immutable definition and verifying that the first value satisfies the predefined range of values, executing a workload based on the workload definition file in a virtual computing environment. |
US11349659B2 |
Transmitting an encrypted communication to a user in a second secure communication network
The present disclosure describes a method, system, and non-transitory computer readable medium that includes instructions that permit users of different secure communication networks to exchange secure communications. A secure communication platform includes a user database that allows users from different secure communication networks to access keys for recipients outside of their network. Additionally, the secure communication platform provides a high degree of trust regarding the sender's identity, allowing the receiving network to trust the sender. |
US11349655B2 |
System and method for a distributed keystore
Described herein are systems and methods for a distributed Java Keystore, in accordance with an embodiment. This KeyStore can provide a secure place for a distributed queue to persist credentials, private keys, and other sensitive information. Such a KeyStore can be utilized within other distributed systems that require scaling (in and out) in runtime. |
US11349651B2 |
Measurement processing of high-speed cryptographic operation
A method including a security chip receiving a cryptographic operation request; the security chip acquiring a measurement result, wherein the measurement result is a result of measuring a dynamic measurement module in a cryptographic operation module by using a platform measurement root; and the security chip starting a cryptographic operation when determining that the measurement result is identical to a pre-stored standard value. The present disclosure solves a technical problem of failure to guarantee a dynamic trust for measurement code when starting dynamic measurement of a cryptographic operation. |
US11349649B2 |
Methods and systems for modifying blockchain network configuration
A computer-implemented method for blockchain network configuration modification, includes obtaining, by a management client device, modification operation information, where the management client device is a blockchain client device of a blockchain network on which an administrator account is logged in as a logged-in administrator account, and where a user account of the blockchain network comprises at least one administrator account. The management client device constructs a configuration modification transaction including the modification operation information. The configuration modification transaction is signed using the logged-in administrator account. The signed configuration modification transaction is submitted to the blockchain network. After performing signature verification on the configuration modification transaction, each node in the blockchain network modifies, based on the modification operation information comprised in the configuration modification transaction, blockchain network configuration information stored in the node and the configuration modification transaction is written into the blockchain network. |
US11349642B2 |
Hearing device system, devices and method of creating a trusted bond between a hearing device and a user accessory device
The present disclosure relates to a method of creating a trusted bond between a hearing device and a user accessory device, wherein the method comprises: transmitting, by a hearing device fitting system, an authentication key to the hearing device; creating, by the hearing device fitting system authentication data comprising the authentication key in encrypted form; obtaining, by the user accessory device, the created authentication data; receiving, by the user accessory device, identification information from the hearing device the identification information identifying the hearing device; decrypting, by the user accessory device, the encrypted authentication key comprised in the obtained authentication data using at least the received identification information; establishing communication between the hearing device and the user accessory device based on the authentication key. |
US11349637B2 |
Random node selection for permissioned blockchain
An example operation may include one or more of retrieving a block hash of a data block stored on a blockchain, randomly determining a subset of peer organizations from a blockchain network of the blockchain to be endorsers based on a value of the block hash, transmitting a blockchain storage request from a client to the randomly determined subset of endorser peer organizations, and collecting simulated responses from the randomly determined subset of endorser peer organizations into a storage request proposal. |
US11349635B2 |
Fault attack resistant cryptographic systems and methods
Described herein are systems and methods that prevent against fault injection attacks. In various embodiments this is accomplished by taking advantage of the fact that an attacker cannot utilize a result that has been faulted to recover a secret. By using infective computation, an error is propagated in a loop such that the faulted value will provide to the attacker no useful information or information from which useful information may be extracted. Faults from a fault attack will be so large that a relatively large number of bits will change. As a result, practically no secret information can be extracted by restoring bits. |
US11349634B2 |
Cycle estimation device for pulse train signal, cycle estimation method for pulse train signal, and cycle estimation program for pulse train signal
A cycle estimation device (10) includes: a candidate cycle extraction unit (11) which extracts a candidate cycle that is a cycle determination target from an input time-series pulse train; a pulse train shape analysis unit (12) which converts arrangement of the time-series pulse train into numerical values on the basis of the extracted candidate cycle and outputs a constant that adjusts a random noise threshold value of pulse repetition interval (PRI) conversion in response to an index indicating a degree of concentration of calculated numerical values; and a cycle detection unit (13) which executes PRI conversion using a value of the candidate cycle and the constant and performs cycle determination and cycle value detection. |
US11349631B2 |
Techniques for providing full-duplex communications in wireless radio access technologies
Aspects of the present disclosure relate to receiving, at a first node and from a second node configured for full-duplex wireless communications, a signal indicating an interference floor for receiving signals at the second node, wherein the interference floor is based on interference caused by a transmitter of the second node, determining, by the first node and based at least in part on the interference floor, a modulation and coding scheme (MCS) for transmitting one or more signals to the second node, and transmitting, by the first node and based on the MCS, the one or more signals to the second node. |
US11349624B2 |
Deactivation timer for a secondary cell with a control channel
A wireless device receives configuration parameters of cells grouped into physical uplink control channel (PUCCH) groups. The PUCCH groups comprise a secondary PUCCH group. The secondary PUCCH group comprises a PUCCH secondary cell with a secondary PUCCH. A deactivation timer of the PUCCH secondary cell is restarts in response to a physical downlink control channel (PDCCH) on any secondary cell, other than the PUCCH secondary cell, in the secondary PUCCH group indicating an uplink grant or a downlink assignment. The PUCCH secondary cell is deactivated in response to the deactivation timer expiring. |
US11349621B2 |
DMRS structure for MMW RAN
There is disclosed a method of operating a transmitting node in a millimeter-wave communication network. The method includes transmitting communication signaling in a transmission timing structure, the communication signaling including control signaling and data signaling, the communication signaling further comprising reference signaling common to the control signaling and data signaling. The disclosure also pertains to related devices and methods. |
US11349618B2 |
Method and apparatus for transmitting and receiving reference signal in wireless communication system
A method and user equipment for transmitting a sounding reference signal (SRS) of a user equipment in a wireless communication system are provided. The method includes calculating an SRS transmission count based on at least one of a numerology, an SRS periodicity, a number of SRS symbols, and an SRS repetition factor, and transmitting the SRS based on the SRS transmission count. |
US11349614B2 |
HARQ-ACK reporting with PDSCH grouping
A wireless device receives downlink control information (DCI) from a network node, determines a physical downlink shared channel (PDSCH) group based on information in the received DCI, and transmits a hybrid automatic hybrid automatic repeat request acknowledgement (HARQ-ACK) report to the network node based on the determined PDSCH group. |
US11349613B2 |
Retransmission indication based on an acknowledgement based feedback scheme for wireless communication
Aspects of the present disclosure provide various hybrid automatic repeat request (HARQ) retransmission indication schemes used in a HARQ retransmission process. The HARQ retransmission indication can implicitly or explicitly indicate which part of a transport block (TB), code block group(s), or code block(s) is/are being retransmitted so that the receiver can associate the retransmitted TB, code block group(s), code block(s) with the correct prior reception, for example, for HARQ combining purposes. |
US11349610B2 |
Method and apparatus for transmitting receipt acknowledgement in wireless communication system
One embodiment of the present invention relates to a method for a second user equipment transmitting a receipt acknowledgement in a wireless communication system, the method for transmitting the receipt acknowledgement comprising the steps of: the second UE receiving data from the first UE; determining a subframe to transmit the receipt acknowledgement by comparing a time resource pattern for transmission (T-RPT) of the first UE and a T-RPT of the second UE; and transmitting the receipt acknowledgement relating to the data from the determined subframe to the first UE. |
US11349609B2 |
Hybrid automatic repeat request acknowledgement feedback enhancement for new radio-unlicensed
Hybrid automatic repeat request (HARQ) acknowledgement (ACK) feedback enhancements are disclosed for new radio (NR) unlicensed (NR-U). In the downlink control channel, two sets of identifiers (IDs) may be explicitly or implicitly signaled. The two IDs identify a current set ID and an additional set ID. Where the two IDs match, then the ACK feedback transmitted in the current ACK message will reflect the current transmissions. Otherwise, where the two IDs are different, the additional set ID identifies any previous or different ACK information that should be transmitted for prior transmissions. |
US11349608B2 |
Method and apparatus for transmitting and receiving duplicate packets in next-generation mobile communication system
A communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT) is provided. The method includes intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.The disclosure provides a packet processing method of a transmitter that include transmitting a radio link control (RLC) service data unit (SDU) to a receiver; receiving, from the receiver, a first message including information about whether the RLC SDU is successfully transmitted; and transmitting a first indicator indicating successful transmission of the RLC SDU from an RLC entity of the transmitter to a packet data convergence protocol (PDCP) entity of the transmitter when the receiver receives the RLC SDU. |
US11349606B2 |
Method and apparatus for downlink retransmission under unreliable code block group (CBG) level feedback
Aspects of the present disclosure relate to techniques for retransmission of code block groups when code block group (CBG) level feedback is unreliable. A user equipment (UE), in a first slot, transmits a first CBG feedback corresponding to a first set of CBGs received from a base station. In a second slot after the first slot, the UE receives downlink control information (DCI) and a first cyclic redundancy check (CRC). The first CRC is generated based on the DCI and further scrambled by a first concatenation of CBG feedbacks as decoded by the base station. The UE generates a second CRC based on the DCI and further scrambled by a second concatenation of CBG feedbacks including the first CBG feedback. The UE determines that the base station correctly decoded the first CBG feedback based on a comparison of the first CRC and the second CRC. |
US11349602B2 |
Method and device for determining and indicating communications system parameter
This disclosure provides a method for determining a communications system parameter, a method for indicating a communications system parameter, and devices thereof. The method for determining a communications system parameter includes: determining a communications system parameter based on obtained first indication information, and/or determining a communications system parameter based on a mapping relationship between an influencing factor of the communications system parameter and the communications system parameter, where the communications system parameter includes a subcarrier spacing of a sidelink channel, and the communications system parameter is used to decode information carried on the sidelink channel. |
US11349597B2 |
Method and device in UE and base station for multi-antenna communication
The disclosure provides a method and a device in a User Equipment (UE) and a base station for multi-antenna communication. The UE first monitors a first signaling set in a first time-frequency resource set, then transmits a first radio signal, and finally monitors a second signaling set and a third signaling set in a second time-frequency resource set and a third time-frequency resource set respectively; the first radio signal is used for triggering a monitoring of the second signaling set; and the first radio signal is used for determining that a number of maximum blind decoding times for the third signaling set in the third time-frequency resource set changes from X1 to X3. Anew blind decoding mechanism is designed through transmitting the first radio signal, thus the number of blind decoding times of the UE is reassigned, the reception complexity and power consumption of the UE are reduced. |
US11349590B2 |
Signaling aspects for indication of co-scheduled DMRS ports in MU-MIMO
The present disclosure relates to a mobile terminal, a base station, a method for data transmission/reception by a mobile terminal, and a method for data reception/transmission by a base station. The mobile terminal comprises circuitry which, in operation, receives a parameter defining a configuration for assigning to ports respective resources for carrying reference signals, the resources being grouped in a plurality of code division multiplexing, CDM, groups, and receives control information indicating one of the set of layer-to-port mapping combinations which is to be applied for arranging reference signals on ports of at least one CDM group for data transmission and/or reception, wherein the control information indicates a co-scheduling information for the at least one and/or at least a different CDM group of the plurality of CDM groups for the same data transmission and/or reception. |
US11349589B2 |
Methods and systems for decentralized rail signaling and positive train control
Systems and methods are provided for decentralized rail signaling and positive train control. A decentralized train control system may include a plurality of wayside units, configured for placement on or near tracks in a railway network, and one or more train-mounted units, each configured for use in a train operating in a railway network that support use of the decentralized train control system. Each train-mounted unit may configured to receive communicate with any wayside unit and/or train-mounted unit that comes within range, with the communicating including use of ultra-wideband (UWB) signals, and for generating control information based on the UWB signals, for use in controlling one or more functions associated with operation of the train. |
US11349588B2 |
Communication apparatus and reference signal receiving method
Provided are a wireless communication apparatus and a reference signal generating method, wherein inter-cell interference is reduced inside and outside a CoMP set. A CoMP mode setting unit (101) sets whether the terminal (100) thereof is a CoMP terminal or a Non-CoMP terminal. When the terminal (100) is set as a Non-CoMP terminal, the hopping pattern calculating unit (104) calculates a ZC sequence number to be used as the transmission timing, from among all the ZC sequence numbers that can be used within the system. When the terminal (100) is set as a CoMP terminal, the hopping pattern calculating unit (104) calculates a ZC sequence number to be used as the transmission timing, by hopping the ZC sequence numbers to be used within the CoMP set. A ZC sequence generating unit (105) generates a ZC sequence to be used as an SRS, using the calculated ZC sequence number. |
US11349584B2 |
System and method of providing content to a broadcast network
Methods, systems and computer program products are provided for prioritizing content delivery. Content files associated with one of a plurality of content types are received and saved in one of a plurality of delivery queues according to the content type of the content file where each delivery queue is associated with a priority. In turn, the content files saved in the plurality of delivery queues are delivered over one or more networks to one or more affiliate systems. The transmission order of the content files is based on the priority of the delivery queue. |
US11349583B2 |
Prorogation environment recognition method and propagation environment recognition apparatus
A measuring robot (1) measures radio waves using a radio wave measuring unit (11) at a measurement point. A self-propelled route control unit (14) controls, in a case that reliability of communication using the radio wave at the measurement point is determined to be low based on one or more of a measurement result by the radio wave measuring unit (11) and information on an obstacle detected by a terrain/obstacle/position detection sensor unit (12), a radio wave measuring unit (11) to measure the radio wave more precisely compared to the measurement of the electromagnetic wave in a case that the reliability of the communication using the radio wave is determined to be high. |
US11349581B1 |
Interference monitoring in radio communication systems
Apparatus and methods for monitoring interference in radio communication systems are provided. In certain embodiments, an interference monitor system for a ground terminal detects for interference based on a sum of the power levels of orthogonal polarizations of detected interference, thereby allowing the total and average peak interference power levels to be obtained independent of interference polarization. Further, the interference can be divided into frequency bins over the received signal bandwidth(s), thereby facilitating measurement of interference spectral characteristics. Multiple interference monitors can be included to detect interference over the full angular range over which potential interference has access as well as to determine an angular direction of the interference. |
US11349578B2 |
Vehicle, server, vehicle system and method for recommending a radio signal
A vehicle system includes: a server configured to set a radio signal recommendation scheme based on whether a destination is set, determine whether a radio signal recommended in the set recommendation scheme is applicable, and transmit a radio signal recommendation list generated based on a determination result; and a vehicle configured to receive a radio signal. The vehicle receives the radio signal recommendation list from the server when a strength of the received radio signal is less than a specified value, compares a strength of at least one radio signal included in the radio signal recommendation list with the strength of the received radio signal, and determines whether to receive the recommended radio signal based on the comparison result. |
US11349577B2 |
System and method to prevent unauthorized voice detection via fiber links
A random acoustic phase scrambler device is installed in-line with a telecommunications fiber link to prevent voice detection via fiber links. The device includes a transducer to produce vibrations; a length of optical fiber positioned to receive the vibration from the transducer; and a random acoustic phase driver configured to control the intensity and frequency of the vibrations. The transducer produces randomized vibrations within an acoustic bandwidth. The device is configured to introduce device-induced phase changes to signals within the telecommunications fiber link. The bandwidth of the device-induced phase changes is greater than the bandwidth of voice-induced phase changes, and the device-induced phase changes are greater in intensity than the voice-induced phase changes. The device-induced phase changes mask voice-induced phase changes through the telecommunications fiber link that are otherwise detectable by voice detection equipment tapped to the telecommunications fiber link. |
US11349574B2 |
Opto-electronic assembly
A construction and configuration for the receiving function of a high speed optical communication system with reduced manufacturing cost and improved performance. In an aspect, mounting the cover and lens provides a self-alignment behaviour that advantageously positions the cover and the lens to be in the optimum position for the photodiode. An assembly of electronic components receives data using an optical fibre. In one aspect, the assembly includes a photodiode, an amplifier coupled to the photodiode, and a printed circuit board on which the photodiode and amplifier are physically mounted, The printed circuit board has areas of a first material to which components may be attached using a fixing agent, and areas of a second material to which components will not attach using the fixing agent. Conductive bond wires are configured to directly couple the amplifier and the photodiode to conductive traces on an opposite side of the printed circuit board. A cover is configured to cover the amplifier and the photodiode, and is physically attached to the printed circuit board to provide mechanical rigidity around the photodiode and the amplifier. The cover has an optically transparent aperture containing a lens configured to focus modulated light signals from a fibre onto the photodiode. The printed circuit board has areas of a first material and second material configured to fix a location of the cover by use of the fixing agent to align the lens to focus the light signals from the fibre onto the photodiode. |
US11349572B2 |
Optical transmission system, optical transmitting apparatus, and optical receiving apparatus
An optical communication system is provided in which a serial/parallel converting unit outputs bit sequences of sequence groups a number of which is determined by a logarithmic value and a bit sequence of a highest-order sequence group, a converting unit converts the bit sequence of the sequence group input to the converting unit into a bit sequence for which a probability of occurrence of 0 or a probability of occurrence of 1 is a predetermined probability of occurrence, a selecting unit acquires a bit sequence for which the probability of occurrence is converted by a converting unit higher in order than the converting unit for the selecting unit, and selects an order of output of a symbol to other selecting units in the sequence groups higher in order than the selecting unit in accordance with the acquired bit sequence, a multiplication unit multiplies a value representing the symbol selected by a highest-order selecting unit, by a number in accordance with the bit sequence of the highest order sequence group, a transmission unit transmits an optical signal based on a result of the multiplication by the number, an optical receiver includes a reception unit and a demodulation unit, and the reception unit receives the optical signal, and performs demodulation processing. |
US11349570B2 |
Optical communication method and apparatus
Embodiments of the present disclosure relate to a method and apparatus for optical communication. For example, there is provided a method implemented at a passive optical network device configured to perform high-rate communication via a bandwidth-limited link. The method comprises: receiving, via the bandwidth-limited link, a training signal from an optical network unit; obtaining a delay signal by delay-sampling the training signal; determining, based on the delay signal, a first channel response of the bandwidth-limited link, the first channel response characterizing change of the training signal caused by the bandwidth-limited link; and compensating, based on the first channel response, a communication signal received via the bandwidth-limited link from the optical network unit, to reduce distortion of the communication signal. A corresponding apparatus is also disclosed. |
US11349559B1 |
Accurately determining a round trip time to a satellite
According to one or more of the embodiments herein, systems and techniques are provided for accurately determining a round trip time (RTT) to a satellite. In particular, a method according to one embodiment herein may comprise: receiving, at a device, a reference signal with a stable phase; measuring, by the device, a phase delta over time between the reference signal and an internal signal of an internal oscillator of the device; transmitting, by the device at a transmission time, a ranging signal toward a particular satellite; receiving, by the device at a reception time, a return of the ranging signal from the particular satellite; and determining, by the device, a round trip time (RTT) of the ranging signal that accounts for a phase drift of the internal oscillator between the transmission time and the reception time according to the measured phase delta over time. |
US11349554B2 |
Method and electronic device for forming beam in wireless communication system
Disclosed is a method for forming a beam pair link, by a processor of an electronic device, including measuring a first strength of a first beam generated by a first external electronic device by using a first directional beam formed in a first direction through at least one antenna module of an electronic device, measuring, based on the number of measurements, a second strength of a second beam generated by at least one of the first external electronic device and a second external electronic device by using a second directional beam formed in a second direction different from the first direction, and replacing at least one threshold with another threshold to be used for changing the current beam pair link for the communication with the external electronic device, the replacing being based at least in part on a determination that at least one strength of the first strength of the first beam or the second strength of the second beam satisfies a specified condition, wherein the number of measurements is defined for measuring, by using a directional beam, a strength of a plurality of beams having different directions and generated by at least one external electronic device, and wherein the at least one threshold is defined for changing a current beam pair link for communication with the external electronic device. |
US11349552B2 |
Millimeter wave idle channel optimization
Concepts and technologies disclosed herein are directed to millimeter wave (“mmWave”) idle channel optimization. According to one aspect disclosed herein, an antenna system can include an antenna array that is configured in a first antenna configuration. The antenna system can generate and send downlink beams directed towards a network edge. A beam index scanner operating at the network edge can scan the downlink beams to determine beam index scanner data for the first antenna configuration. The beam index scanner can send the bream index scanner data to an antenna technician device. The beam index scanner data can indicate that a downlink channel provided by the downlink beams is not optimized. The antenna system can configure the antenna array in a new antenna configuration in an attempt to optimize the downlink channel provided by the downlink beams. |
US11349549B2 |
Allocation and directional information distribution in millimeter wave WLAN networks
A wireless communication apparatus, system or method utilizing directional data transmission over a communication (e.g., mmW) band, and broadcasting time and directional allocations in each direction. Stations sending beacons containing time and directional allocations in its direction of transmission. Stations comparing beam identifications with received allocation to determine if the allocation is in the direction of reception. Stations performing receiver beamforming with a station from which a beacon was received in order to determine if the station can access the direction (channel) in its intended direction. |
US11349545B2 |
Beam management without beam correspondence
Apparatuses, systems, and methods for a wireless device to perform beam management procedures with a base station. A wireless device in communication with a 5G base station may perform measurements and determine constraints relevant to beam selection. The device may select a recommended beam based on the measurements and constraint(s) and indicate the recommended beam to the base station. A recommended uplink beam may not correspond to a recommended downlink beam. |
US11349539B2 |
Spatial thermal density reduction for MMWAVE antenna arrays
An apparatus, method and computer readable medium for special thermal density reduction by antenna thinning. A system comprises N transmit/receive (TX/RX) chains, where each TX/RX chain comprises an RFFE and each RFFE comprises one or more thermal sensors configured to measure heat in the RFFE. An antenna array coupled to the plurality of TX/RX chains. A codebook that comprises a plurality of code words configured to respond to real-time heat measurements from the thermal sensors in each TX/RX chain is configured to switch off selected TX/RX chains to reduce thermal density at the antenna array while maintaining M RFFEs switched on, where M |
US11349538B2 |
Method for performing, by terminal, communication according to cyclic delay diversity (CDD) using multiple antennas in wireless communication system and apparatus therefor
Provided, according to various embodiments, are a method for performing, by a terminal, communication according to cyclic delay diversity (CDD) using multiple antennas in a wireless communication system and an apparatus therefor. Disclosed are a method for performing communication according to cyclic delay diversity (CDD) and an apparatus therefor, the method comprising the steps of: determining a delay range of a delay value for CDD on the basis of a moving speed of a terminal; determining the delay value of the CDD within a set delay range; and transmitting a cyclically delayed signal to a target terminal, according to the determined delay value, wherein the preset delay range is determined on the basis of the moving speed of the terminal. |
US11349531B2 |
Pilot scheme for a MIMO communication system
The present invention employs a pilot scheme for frequency division multiple access (FDM) communication systems, such as single carrier FDM communication systems. A given transmit time interval will include numerous traffic symbols and two or more short pilot symbols, which are spaced apart from one another by at least one traffic symbol and will have a Fourier transform length that is less than the Fourier transform length of any given traffic symbol. Multiple transmitters will generate pilot information and modulate the pilot information onto sub-carriers of the short pilot symbols in an orthogonal manner. Each transmitter may use different sub-carriers within the time and frequency domain, which is encompassed by the short pilot symbols within the transmit time interval. Alternatively, each transmitter may uniquely encode the pilot information using a unique code division multiplexed code and modulate the encoded pilot information onto common sub-carriers of the short pilot symbols. |
US11349524B2 |
Symbol-determining device and symbol determination method
A symbol-determining device according to an embodiment includes: a transmission line shortening unit that multiplies each symbol value of a symbol array that is part of an input signal by a tap gain of a linear digital filter and outputs a symbol array representing a sum of values acquired through the multiplication; a transmission line estimating unit that estimates a transfer function of a transmission line using an adaptive nonlinear digital filter on the basis of a symbol array representing a state of the transmission line; an addition comparison processing unit that calculates a minimum value of a distance function in a Viterbi algorithm on the basis of a metric that is calculated on the basis of the output of the transmission line shortening unit and the transfer function; and a path tracing-back determination unit that performs symbol determination by tracing back a trellis path in the Viterbi algorithm on the basis of the minimum value of the distance function. |
US11349521B2 |
Radio-frequency signal transmitting and receiving circuit
A radio-frequency signal transmitting and receiving circuit includes a power amplifier, a transmission band pass filter configured to transmit a radio-frequency input signal, a first reception band pass filter configured to transmit a first radio-frequency reception signal, a first low-noise amplifier configured to amplify the first radio-frequency reception signal and output a first radio-frequency output signal, a first transmitting and receiving filter having a first end and a second end, the first end being electrically connected to a first antenna terminal, and a switch configured to electrically connect the transmission band pass filter to the second end of the first transmitting and receiving filter to output the radio-frequency input signal to the first antenna terminal and electrically connect the second end of the first transmitting and receiving filter to the first reception band pass filter to receive the first radio-frequency reception signal from the first antenna terminal. |
US11349519B2 |
Fan-out phone case wallet
A case may include a compartment configured to contain at least one card. The compartment may be open on a first side. Some embodiments may include an ejector disposed at least partially in the compartment and configured to eject the at least one card through the first side. In some embodiments, the ejector may include a slider configured to slide in a first direction from a second side of the compartment opposite the first side of the compartment towards the first side of the compartment. In some embodiments, the ejector may include an expander configured to expand in a first direction from a second side of the compartment opposite the first side of the compartment towards the first side of the compartment. Some embodiments of the case may include a spring wall configured to compress the at least one card within the compartment. |
US11349517B2 |
Phone gravity holder
A phone gravity holder comprises a base, a pull rod configured to hold the phone, and a left clamping arm and a right clamping arm configured to clamp the phone, wherein the base is provided with a positioning shaft, the left clamping arm and the right clamping arm are both mounted on the positioning shaft in a rotatable manner, and the pull rod is respectively in transmission connection with the left clamping arm and the right clamping arm, respectively. When the phone is used, the phone is directly placed on the pull rod, and under the gravity effect of the phone, the pull rod drives the left clamping arm and the right clamping arm to rotate in reverse to clamp the phone. The phone can be clamped automatically by utilizing the gravity of the phone and simple mechanical principles, the structure is simple, and the production cost is greatly reduced. |
US11349510B2 |
Radio frequency front end module and communication device
A radio frequency (RF) front end module is capable of simultaneously transmitting an RF signal of a first communication channel in a communication band (CB) to which communication channels are allocated and an RF signal of a second communication channel of the CB. The module includes a common terminal, a power amplifier to which RF signals of the first and second communication channels are simultaneously input, a multiplexer that has a transmission filter unit and a reception filter unit connected to the common terminal and treating a transmission bandwidth of the CB and a reception bandwidth of the CB, respectively, as a pass band, and a transmission filter arranged between an output terminal of the power amplifier and an input terminal of the transmission filter unit and treating a bandwidth including the transmission bandwidth as a pass band and a bandwidth including the reception bandwidth as an attenuation band. |
US11349508B2 |
Radio frequency module and communication device
A radio frequency module includes: a first filter circuit disposed on a first path that connects an antenna terminal and a first input/output terminal, and having a passband that is a first frequency band; a second filter circuit disposed on a second path that connects the antenna terminal and a second input/output terminal, and having a passband that is a second frequency band higher than the first frequency band; and a band-elimination filter circuit disposed on the second path and having an attenuation band that is a partial band of a third frequency band that belongs to an unlicensed band ranging from 5 GHz or higher, and is higher than the second frequency band. The second filter circuit is an LC filter circuit that includes an inductor and a capacitor. |
US11349504B2 |
Ganged and switch combined systems for satellite-navigation-band filters
Architectures and techniques relate to ganged and switch combined systems for satellite-navigation-band filters. For example, a system can include a multiplexer configured to receive an input signal from an antenna and provide an output signal, and a combined-filter circuit coupled to the multiplexer and including a mid-range-band filter and a satellite-navigation-band filter. The combined-filter circuit can be configured to receive the output signal from the multiplexer and route the output signal to the mid-range-band filter and the satellite-navigation-band filter. The mid-range-band filter and the satellite-navigation-band filter can be implemented in at least one of a ganged configuration or a switch-combined configuration. |
US11349501B2 |
Multistep recovery employing erasure coding in a geographically diverse data storage system
Multistep recovery of chunk fragments of a peer group employing hierarchical erasure coding for geographically diverse data storage protection is disclosed. A peer group of chunks can employ zone-level erasure coding of chunks that can each employ chunk-level erasure coding. In a first iteration, fragment recovery can be performed across peer group chunks based on the zone-level erasure coding. Subsequently, the first iteration can perform recovery of other fragments within a chunk based on the chunk-level erasure coding. Where additional fragments are to be recovered, subsequent iterations can be performed. The disclosed multistep recovery can enable recovery of fragments that would typically have been considered unrecoverable via conventional techniques. Additionally, multistep recovery can enable recovery of fragments across a peer group of chunks that can be more computing resource efficient than recovery of chunks across the peer group of chunks. |
US11349499B2 |
Transmitting apparatus and bit interleaving method thereof
A transmitting apparatus is provided. The transmitting apparatus includes: an encoder configured to generate a low-density parity check (LDPC) codeword by LDPC encoding of input bits based on a parity check matrix including information word bits and parity bits, the LDPC codeword including a plurality of bit groups each including a plurality of bits; an interleaver configured to interleave the LDPC codeword; and a modulator configured to map the interleaved LDPC codeword onto a modulation symbol, wherein the interleaver is further configured to interleave the LDPC codeword such that a bit included in a predetermined bit group from among the plurality of bit groups constituting the LDPC codeword onto a predetermined bit of the modulation symbol. |
US11349498B2 |
Bit flipping low-density parity-check decoders with low error floor
A memory device having a Low-Density Parity-Check (LDPC) decoder that is energy efficient and has a low error floor. The decoder is configured to determine syndromes of bits in a codeword, select bits in the codeword based at least in part on the syndromes according to a first mode, and flip the selected bits in the codeword. The decoder can repeat the bit selection and flipping operations to iteratively improve the codeword and reduce parity violations. Further, the decoder can detect a pattern in parity violations of the codeword in its iterative bit flipping operations. In response, the decoder can change from the first mode to a second mode in bit selection for flipping. For example, the decoder can transmit from a dynamic syndrome mode to a static syndrome mode in response to the pattern of repeating a cycle of bit flipping iterations. |
US11349496B2 |
Memory controller and method of data bus inversion using an error detection correction code
Memory controllers, devices and associated methods are disclosed. In one embodiment, a memory controller includes write circuitry to transmit write data to a memory device, the write circuitry includes a write error detection correction (EDC) encoder to generate first error information associated with the write data. Data bus inversion (DBI) circuitry conditionally inverts data bits associated with each of the write data words based on threshold criteria. Read circuitry receives read data from the memory device. The read circuitry includes a read EDC encoder to generate second error information associated with the received read data. Logic evaluates the first and second error information and conditionally reverse-inverts at least a portion of the read data based on the decoding. |
US11349493B2 |
Digital-to-analog conversion circuit
A digital-to-analog conversion circuit (60) for converting a digital input sequence to an analog representation is disclosed. It comprises a first DAC, (100) wherein the first DAC (100) is of a capacitive voltage division type having a capacitive load (110). Furthermore, it comprises a second DAC (120) having a resistive load (130). An output (104) of the first DAC (100) and an output (124) of the second DAC (120) are connected, such that said capacitive load (110) and said resistive load (130) are connected in parallel. |
US11349492B2 |
Analog-to-digital converter
An analog-to-digital converter (ADC) circuit includes a signal input terminal, a sample-and-hold circuit, and a successive approximation register (SAR) ADC. The sample-and-hold circuit includes an input terminal coupled to the signal input terminal. The SAR ADC includes a comparator, a first capacitive digital-to-analog converter (CDAC), and a second CDAC. The first CDAC includes a first input terminal coupled to the signal input terminal, a second input terminal coupled to an output terminal of the sample-and-hold circuit, and an output terminal coupled to a first input terminal of the comparator. The second CDAC includes a first input terminal coupled to the signal input terminal, an output terminal coupled to a second input terminal of the comparator. |
US11349491B2 |
Time-interleaved sampling circuits with randomized skipping
A time-interleaved sampling system includes an input signal having a time-varying analog value and a plurality of samplers. Each sampler is operable in a hold mode and a track mode. In the track mode, the samplers track the analog value of the input signal. In the hold mode, each sampler holds a respective analog value of the input signal that a respective sampler tracked immediately before entering the hold mode. The samplers enter the track mode in a predetermined sequence. After a last sampler in the predetermined sequence enters the track mode, the predetermined sequence is repeated in a loop. At random intervals, a skipped sampler in the predetermined sequence is bypassed from entering the track mode. |
US11349482B2 |
Integrated circuit for low-voltage thermoelectric energy harvesting with self-start
The integrated circuit (IC) described herein lowers the start-up voltage to, for example, 50 mV, compatible for starting a DC-DC converter from a thermoelectric generator (TEG), even with a small temperature gradient. The IC further improves end-to-end efficiency of the energy harvester by improving power efficiency of the DC-DC converter while ensuring maximum power transfer from the TEG at low voltages. The IC uses a low voltage integrated charge pump that can boost sub-100 mV input voltage. A startup clock is generated by a ring-oscillator that begins operation with low supply (e.g., 50 mV or less), and which allows for one inductor to be used for DC-DC converter and for startup of the converter. The IC can be configured between the TEG and any downstream sensor or communication circuits to provide an acceptable (e.g., greater than 1 V) voltage for powering the downstream circuits from a low-voltage (e.g., less than 200 mV) TEG energy source. |
US11349480B2 |
Circuits based on magnetoelectric transistor devices
Logic circuits constructed with magnetoelectric (ME) transistors are described herein. A ME logic gate device can include at least one conducting device, for example, at least one MOS transistor; and at least one ME transistor coupled to the at least one conducting device. The ME transistor can be a ME field effect transistor (ME-FET), which can be can be an anti-ferromagnetic spin-orbit read (AFSOR) device or a non-AFSOR device. The gates and logic circuits described herein can be included as standard cells in a design library. Cells of the cell library can include standard cells for a ME inverter device, a ME minority gate device, a ME majority gate device, a ME full adder, a ME XNOR device, a ME XOR device, or a combination thereof. |
US11349478B2 |
Integrated circuit that applies different data interface terminations during and after write data reception
In an integrated circuit component having a command interface to receive commands, a data interface to receive write data during a write-data reception interval, and first and second registers, control circuitry within the integrated circuit component responds to one or more of the commands by storing within the first register and the second register, respectively, a first control value that specifies a first termination to be applied to the data interface during the write-data reception interval, and a second control value that specifies a second termination to be applied to the data interface after the write-data reception interval transpires. |
US11349472B2 |
Method for reducing a thermal load on a controllable switching element
A method for reducing a thermal load on a switching element of an electronic fuse when switching on a load, wherein (a) a switching element is activated, (b) the switching element is deactivated and (c) the switching element is re-activated after reaching a set value of a switch-off duration, where steps (b) and (c) are repeated until an output voltage reaches a value that falls below a specified difference with respect to an input voltage of an electronic fuse or an output current reaches a specified duration current, where set values of a switch-on duration and/or switch-off current and the switch-off duration are maintained until new set values have been determined based on the output voltage, output current, and/or temperature, a pulse duty factor between the switch-on duration and the switch-off duration is adapted, and the specified maximum allowable temperature increase of the switching element is further observed. |
US11349470B2 |
Gate driver and protection system for a solid-state switch
A circuitry includes an electronic solid-state switch including a first power terminal and a second power terminal and a driver and switch protection system electrically connected to the electronic solid-state switch. The driver and switch protection system includes an isolated bias power circuit configured to output a direct current voltage of at least fifteen volts, a current buffer circuit electrically connected between the isolated bias power circuit and the electronic solid-state switch, and a snubber circuit electrically connected to the first power terminal and the second power terminal. |
US11349460B1 |
Current-mode Schmitt trigger using current output stages
A current-mode Schmitt Trigger includes a plurality of current output stages connected to a common supply voltage that powers the current-mode Schmitt Trigger, a main input on one of the current output stages that receives an input current, and a non-inverting output on a different one of the current output stages that is shorted to the main input to establish a positive closed-loop feedback and supplies a non-inverting output current as the input current. The current-mode Schmitt Trigger includes only active components. |
US11349457B2 |
Signal generation circuit having minimum delay, semiconductor apparatus using the same, and signal generation method
A signal generation circuit includes a first delay circuit, a second delay circuit, and a duty control circuit. The first delay circuit delays a first input signal to generate a first output signal. The second delay circuit delays a second input signal to generate a second output signal. The duty control circuit compares phases of the first and second output signals and changes the value of the second delay control signal, and then decreases the times, by which the first and second input signals are delayed, by the same value. |
US11349456B2 |
Ultra-low energy per cycle oscillator topology
In described examples of an integrated circuit (IC), an oscillator includes Schmitt trigger delay cells connected in a ring topology. The Schmitt trigger delay cells have a high input threshold approximately equal to Vdd and a low input threshold approximately equal to Vss to increase delay through each cell. An output buffer receives a phase signal from an output terminal of one of the Schmitt trigger delay cells and converts a transition phase signal to a faster transition clock signal. The output buffer has control circuitry that generates non-overlapping control signals in response to the phase signal, to control an output stage to generate the fast transition clock signal while preventing short circuit current in the output stage. |
US11349453B2 |
Bulk acoustic wave resonator filters including rejection-band resonators
A BAW resonator filter can include a BAW resonator pass-band filter ladder, the BAW resonator pass-band filter ladder can be configured to pass frequency components of an input signal in a pass-band of frequencies received at an input node of the BAW resonator pass-band filter ladder to an output node of the BAW resonator pass-band filter ladder. A first rejection-band series resonator can be coupled in series between an input port of the BAW resonator pass-band filter ladder and the input node, the first rejection-band series resonator can have a first anti-resonant frequency peak in a rejection-band of frequencies that is less than the pass-band of frequencies. A second rejection-band series resonator can be coupled in series between an output port of the BAW resonator filter and the output node, the second rejection-band series resonator can have a second anti-resonant frequency peak in the rejection-band of frequencies. |
US11349448B2 |
Harmonic filtering for high power radio frequency (RF) communications
Systems and methods are disclosed for on-chip harmonic filtering for radio frequency (RF) communications. For disclosed embodiments, a filter circuit is coupled between a first internal node and a connection pad for an integrated circuit. The filter circuit includes a first inductance, a variable capacitance, and a second inductance. The capacitance amount for the variable capacitance is controlled to tune filtering for the filter circuit to a harmonic of a frequency for a transmit output signal. A power amplifier outputs the transmit output signal to the connection pad without passing through the filter circuit. The filter circuit filters the harmonic of the frequency for the transmit output signal, shunting harmonic current to ground. For one embodiment, the filtered harmonic is a third harmonic of the transmit frequency. For one embodiment, the transmit output signal has an output power greater than or equal to 15 dBm. |
US11349446B2 |
Amplifier bias control using tunneling current
An apparatus and method for using the known phenomena of quantum gate tunneling in semiconductor transistors to define the DC state of a charge-coupled amplifier is described. A first stage in which the tunneling current is bipolar (by pairing PMOS and NMOS transistors) in combination with a second stage with a controlled common mode voltage that can be used to control the first stage tunneling current, and thus the common mode voltage at the input. This can be done without the use of additional elements that may degrade performance or power consumption, since the input devices both process the input signal and maintain the DC operating point of the circuit. The approach may be advantageously used not only in charge-coupled amplifiers as described herein, but also in other capacitively coupled circuits such as charge balancing analog to digital converters (ADCs) and digital to analog converters (DACs). |
US11349429B2 |
Shift range control device
A shift range control device is provided for a shift range switching system that includes a motor and a plurality of detectors. The motor has a plurality of winding sets. Each of the detectors is configured to detect a physical quantity that changes in accordance with rotation of the motor. The shift range control device includes a plurality of controllers configured to control switching of a shift range by controlling drive of the motor. Each of the controllers is provided to corresponding one of the winding sets and configured to acquire detection signals from the detectors, determine, based on the detection signals, a calculation signal having a same value between the controllers, and control, based on a target shift range and the calculation signal, a current supply to the corresponding one of the winding sets. |
US11349427B2 |
Control of power cells of a variable speed drive on the basis of rectified voltages
A method for controlling a variable speed drive comprising Ni low-voltage power cells connected in series for each phase among multiple phases, i being a phase index. The method comprises repeating P iterations comprising: activating at least one cell of one or more phases and deactivating the other power cells of the variable speed drive, wherein the at least one activated cell is selected on the basis of predefined activation controls depending on an iteration index; and receiving at least one output voltage of the variable speed drive across the terminals of the electrical device for at least one phase. The method further comprises, at the end of the P iterations, determining, from the measured output voltages, values of rectified voltage at the output of respective rectification stages of the power cells, and storing the rectified voltages obtained, which are respectively associated with the power cells. |
US11349422B2 |
Power detecting device and method thereof
A power detecting device includes a vehicle driving system, a battery detecting module and a controlling module. A first stator winding and a second stator winding are synchronized and connected in parallel with each other. A first end of a first current sensor is coupled to a first-phase winding end of the first stator winding for measuring a first-phase current. A first end of a second current sensor is coupled to a second-phase winding end of the first stator winding for measuring a second-phase current. The battery detecting module is coupled to a first power supply for measuring a current signal and a voltage signal. A controller generates a first power according to the current signal and the voltage signal and generates a second power according to a plurality of data from a database. The controller compares the first power with the second power to generate a detecting result. |
US11349421B2 |
Method and device for determining the position and the rotational speed of a rotor of an electric machine
The invention relates to a method for determining the position (ΘR) and the rotational speed (nR) of a rotor of an electrical machine during an active short circuit and a rotor-state determining device (10) designed to carry out the method. The method comprises the steps of determining the short circuit currents (Iu, Iv, Iw) resulting during the short circuit, determining a total current (Iα, Iβ) resulting from the short circuit currents (Iu, Iv, Iw), determining a stator current angle (ψI) of the total current (Iα, Iβ) with respect to a stator coordinate system (α, β), determining a rotor current angle (φI) of the total current (Iα, Iβ) with respect to a flux direction (dR) of the rotor, this step comprising the steps of calculating an amount variable (I) of the total current (Iα, Iβ), determining the rotor current angle (φI) on the basis of a characteristic dependence between the amount variable (I) and a rotor current angle (φI), which dependence is created for the electrical machine, the rotor position (ΘR) corresponding to a sum of the stator current angle (ψI) and the rotor current angle (φI), and the rotor rotational speed (nR) resulting from monitoring of the rotor position (ΘR). |
US11349419B2 |
Motor drive system including removable bypass circuit and/or cooling features
A motor control system to drive an alternating-current (AC) motor, including a motor drive with a power circuit and a motor drive controller powered by the power circuit and configured to cause the power circuit to generate a motor voltage; a motor drive contactor having first contacts electrically connected between the power circuit and the AC motor; a bypass contactor having second contacts electrically connected between a line voltage source and the AC motor; and a bypass controller communicatively coupled with the motor drive contactor and the bypass contractor; wherein the motor drive controller is structured to generate a speed reference and to command the bypass controller to connect the AC motor to the line voltage source upon the motor drive controller determining that the speed reference is substantially equal to a line frequency of the line voltage source. |
US11349418B2 |
Method and system for cranking an internal combustion engine
The invention relates to a method for cranking an internal combustion engine, including the steps of: (a) receiving a start signal; (b) determining an initial position of the rotor with respect to a stator phase winding; (c) applying a pulse-width-modulated signal to the stator winding corresponding to determined initial position of the rotor; (d) determining a threshold value of the stator current variation; (e) measuring current of the stator winding in response to applied pulse-width-modulated signal to determine current variation; (f) if current variation is more than the threshold value, determining updated rotor position, applying a pulse-width-modulated signal to the stator winding corresponding to the updated rotor position; and repeating steps (d)-(f); and (g) if current variation is less than the threshold value, applying a pulse-width-modulated signal to the stator winding corresponding to the last updated rotor position and repeating steps (d)-(g). |
US11349414B2 |
Apparatus and method for monitoring the relative relationship between the wafer and the chuck
An apparatus and a method for monitoring the relative relationship between the wafer and the chuck is provided, especially for monitoring whether the wafer is sticky on the chuck when the wafer is de-chucked. The lift pins may be extended outside the chuck to separate the wafer and the chuck when the wafer is de-chucked. By detecting the capacitance between the de-chucked wafer and the chuck, especially by comparing the detected capacitance with the capacitance that the wafer is held by the chuck, one may determine whether the wafer is sticky on the chuck, or even whether the wafer is properly supported by the lift pins. Accordingly, an early alarm may be issued if the wafer is sticky or improperly removed. Besides, by controlling a switch electrically connected to a lift pin that contacted the wafer, the charges at the wafer may be eliminated. |
US11349408B2 |
Power supply system and method for controlling power supply system
A power supply system according to the present embodiment includes a plurality of first power converters configured to supply power according to dispatching characteristics of power to be supplied to a load, and a plurality of control devices each configured to associate a change ratio of active power to an output frequency of each of the first power converters with the dispatching characteristics and control each of the first power converters based on the change ratio. |
US11349406B2 |
Synchronous converter having under- and overcurrent protection
The invention relates to a synchronous converter (10) comprising a transformer (11A, 11B) having a predefined winding ratio, which couples a supply-side (12) and a load side (13) of the synchronous converter (10), which are each allocated limit current intensities (15′, 15″, 24′, 24″); detection means (14), which are configured to detect a current intensity (15) on one side (12) from the supply side (12) and the load side (13); conversion means (16), which are configured to provide the limit current intensities (24′, 24″) from the other side (13) from the supply-side (12) and the load side (13), converted via the predefined winding ratio, as corresponding limit current intensities (15*, 15**) on the one side (12); and comparison means (17), which are configured to compare the detected current intensity (15) with the limit current intensities (15′, 15″) of the one side (12) and with the corresponding limit current intensities (15*, 15**) on the one side (12). |
US11349404B2 |
Power conversion circuit and power conversion apparatus with same
A power conversion circuit includes a first terminal, a second terminal, a first switching conversion unit, a second switching conversion unit, a flying capacitor and a magnetic element. The first switching conversion unit includes a first switch and a third switch. The second switching conversion unit includes a second switch and a fourth switch. The magnetic element includes two first windings and a second winding. A first one of the two first windings is serially connected between the flying capacitor and the second terminal. A second one of the two first windings is serially connected between the second switch and the second terminal. The second winding is serially connected with the flying capacitor and the first one of the two first windings. A turn ratio between the second winding, the first one of the two first windings and the second one of the two first windings is N:1:1. |
US11349403B2 |
Half-bridge circuit, power supply device, and method for driving half-bridge circuit
In a half-bridge circuit, in a case that a first transistor element is turned ON, a primary winding current flows from a power supply to a primary winding. Then, in a case that the first transistor element is turned OFF, (i) a first rectifying element current flows from a secondary winding to a first rectifying element, or (ii) a second rectifying element current flows from a tertiary winding to a second rectifying element. |
US11349400B2 |
Multiple parallel-connected resonant converter, inductor-integrated magnetic element and transformer-integrated magnetic element
A multiple parallel-connected resonant converter, an inductor-integrated magnetic element and a transformer-integrated magnetic element are provided. The multiple parallel-connected resonant converter includes a first and a second converters. The first converter having a first input and output end includes a first inductor, a first transformer and a first capacitor connected in series. The second converter having a second input and output end includes a second inductor, a second transformer and a second capacitor connected in series. The second output end is connected with the first output end in parallel. The first and second inductor are integrated in a first magnetic element, the first magnetic element includes a first and second side column, and a first and second central column. The first inductor includes a first coil positioned around the first central column and the second inductor includes a second coil positioned around the second central column. |
US11349399B2 |
DC-DC converter
The DC-DC converter has a configuration in which a first full-bridge circuit and a second full-bridge circuit are connected via a transformer. A control circuit controls soft switching of each switching element. An inductor current flowing through the transformer or an equivalent inductor equivalent to the transformer at a time of switching of turning on or off each switching element is greater than or equal to a threshold current. When the first full-bridge circuit and the second full-bridge circuit have different output voltages V1 and V2, the control circuit causes the inductor current at start times t4 and t8 of a polarity inversion period to approach the inductor current at end times t5 and t9, the polarity inversion period being a period in which V1 and V2 have reverse polarities. This suppresses an increase in loss resulting from a flow of large current and enables ZVS control. |
US11349396B2 |
Interleaved pulse frequency modulation mode for a multi-phase buck converter using coupled inductors
A method and apparatus for operating a DC-DC converter in an interleaved (or rotating) pulse frequency modulation (PFM) mode is disclosed. A DC-DC converter includes a number of inductor pairs, with each inductor coupled to a corresponding pulse control circuit. During a cycle in which one of the pulse control circuits sources a current pulse through its respectively coupled inductor, a second pulse control circuit coupled to the other inductor of the pair determines if a voltage on its output node (e.g., where it is coupled to its inductor) is less than a threshold voltage. Responsive to determining that the voltage on its output node is less than the threshold, the second pulse control circuit activates a current path through the other inductor of the pair. |
US11349395B2 |
Conversion apparatus, device, and control method
A conversion apparatus includes: a conversion module having plural phases, each including a converter and a sensor, in which the plural phases are electrically connected in parallel, and a controller. The controller includes a first unit for determining a basic duty ratio common to all of the plural phases, so that an input or an output of the conversion module becomes equal to a target voltage or a target current, a second unit for determining a correction duty ratio and correcting the basic duty ratio for each of the plural converters, and a generator for generating the control signal based on the basic duty ratio and the correction duty ratio. The second unit determines the correction duty ratio based on a difference between plural phase currents respectively flowing in the plural converters. The basic duty ratio is equal to or greater than an absolute value of the correction duty ratio. |
US11349382B2 |
Controller
A controller (3) includes an AC voltage generator (12) that generates first to Nth AC voltages, a DC voltage generator (13) that converts the first to Nth AC voltages into first to Nth DC voltages, respectively, and a driver (14) that turns on and off a switch (1) based on the first to Nth DC voltages. The AC voltage generator (12) includes first to Nth isolation transformers (T1 to TN). The primary windings of the nth and (n+1)th isolation transformers receive an AC source voltage. The nth to first isolation transformers are sequentially connected. The (n+1)th to Nth isolation transformers are sequentially connected. The first to Nth isolation transformers respectively output the first to Nth AC voltages from their respective secondary windings. |
US11349381B2 |
Phase redundant power supply with ORing FET current sensing
A power stage in a multi-phase switching power supply incorporates a current sense transistor coupled in series with the output inductor to sense the phase current for the power stage. In some embodiments, the current sense transistor mirrors the output voltage disconnect transistor (the ORing FET) used to switchably connect a power stage to the output voltage node. The current sense transistor measures a portion of the inductor current flowing through the output inductor where the inductor current is indicative of the phase current of the power stage. Accurate current sensing is implemented for the power stage where the current sense value dose not require temperature compensation. |
US11349380B2 |
Linear vibration motor
A linear vibration motor, comprising a stator assembly and a vibrator assembly. The stator assembly comprises a housing (1) having a receiving cavity, a magnet (2) located in the receiving cavity and jointly fixed to the housing (1), and a central magnetic yoke (3) of which at least one end is jointly fixed to the housing (1). The magnet (2) comprises a hollow portion (21) extending along the vibration direction of the vibrator assembly. The vibrator assembly comprises a coil (4) and a mass block (9). When the vibrator assembly vibrates, the coil (4) vibrates along with the vibrator assembly and is inserted into the hollow portion (21) of the magnet (2). The central magnetic yoke (3) runs through the coil (4). An resilient support member (5) is configured to suspend the vibrator assembly in the receiving cavity of the housing (1). According to the linear vibration motor, the magnetism of the magnet can be utilized to the greatest extent, thereby improving the efficiency of utilizing the magnetic line of force of the magnet by the coil, the central magnetic yoke functions as a guide shaft, thereby ensuring the vibration coaxiality of the vibrator assembly. |
US11349379B2 |
Motor and transmission
A motor comprises: a shaft; a rotor coupled to the shaft and including a magnet; a stator disposed outside the rotor and including a coil and a stator core; a cover disposed on an upper side of the rotor; and a magnetic sensor disposed between the cover and the rotor, wherein the magnetic sensor is disposed on an upper side of the magnet, a surface of the magnetic sensor facing the rotor is disposed below the uppermost end of the coil, and the length of the rotor in the shaft direction is longer than the length of the stator core in the shaft direction. |
US11349378B2 |
Coil segment cutting method and coil segment cutting apparatus
A cutting unit has a support member having insertion holes, and a movable member having through holes connected thereto. The respective left sides of upper surfaces of the square through holes are first movable blades, and the respective right sides thereof are second movable blades. Firstly, the movable member 14 is moved to the right by a predetermined amount to cut peeled-off portions of segment end portions only, and then the movable member is moved to the left by a predetermined amount to cut peeled-off portions of the segment end portions only. Distal ends of the coil segments can be cut into a uniform length to enable high quality welding, through this process. |
US11349377B2 |
Electric machine for a hybrid or electric vehicle
An electric machine that is configured to propel a vehicle includes a stator and a rotor. The stator has windings that are configured to generate magnetic fields. The rotor has a plurality of magnetic blocks that interacts with the magnetic fields to produce rotational motion. Each of the plurality of magnetic blocks is segmented into a plurality of permanent magnets. Adjacent permanent magnets within each magnetic block are separated from and secured to each other via an intermediate electrically insulating material. The intermediate electrically insulating material is comprised of magnetic particles that are suspended in an adhesive matrix. |
US11349376B2 |
Rotor, assembly method and replacement method for integrated magnetic pole modules of rotor, and generator
The present application relates to a rotor, an assembly method and a replacement method for integrated magnetic pole modules of rotor, and a generator. The rotor includes: a rotor yoke having a mounting surface and an outer peripheral surface which are opposite to each other in a radial direction; multiple beads, which are distributed and spaced apart on the mounting surface along a circumferential direction of the rotor yoke, in which a radial distance between each bead and the mounting surface is adjustable; multiple integrated magnetic pole modules, each of which is detachably connected between two adjacent beads, and includes a carrier plate and multiple permanent magnets arranged on the carrier plate; and multiple fixing members, in which each of the beads is mounted to the mounting surface by the fixing members, and each of the fixing members has an operation portion that can protrude from the outer peripheral surface. |
US11349374B2 |
Motor
A motor according to a disclosed embodiment includes: a plurality of magnetic sensors that output sine wave signals having a certain phase difference in order in accordance with rotation of a rotor; a signal amplifier that amplifies a difference between an output signal of each of the plurality of magnetic sensors and an average signal that is an average of the output signals of the plurality of magnetic sensors; and a pulse signal generation unit that converts an output signal of the signal amplifier into a pulse signal. |
US11349372B2 |
Combustion engine and electric generator
There is provided a combustion engine and an electric generator. The combustion engine comprises an engine housing, a cylindrical member configured to rotate about an axis within a cavity of the engine housing, a piston, and an engagement section for engaging the piston. The piston is mounted to the engine housing and the engagement section is mounted to the cylindrical member, or the piston is mounted to the cylindrical member and the engagement section is mounted to the engine housing, such that the piston and the engagement section periodically rotate past one another as the cylindrical member is rotated within the engine housing. The piston engages the engagement section as they rotate past one another, the engagement forcing the piston to compress gases in a combustion chamber, which fire to drive the rotation of the cylindrical member. The electric generator may be driven by the combustion engine. |
US11349370B2 |
Rotary electric machine with shrink-fitted bearing
The invention relates mainly to a rotary electric machine for a motor vehicle. The machine (10) comprises a shaft (13); a rotor (12); a stator (16) comprising a body (25) provided with slots, and a winding (26) inserted into the slots; a first bearing (37) and a second bearing (38) surrounding an assembly formed by the rotor and the stator and each comprising a housing (40, 44) for rotatably mounting the rotor shaft (13). The first bearing comprises a transverse flange (371) and a cylindrical wall (372) of axial orientation derived from an outer periphery of said flange. The second bearing comprises a transverse flange (48) closing the first bearing and at least one rim (63) projecting from the flange and forming a junction area (64) where it joins the first bearing. Furthermore, the stator body has a region (Z1) of shrink-fitting to the cylindrical wall. |
US11349364B2 |
Stator of an electrical machine
A stator of an electrical machine which has stator slots and conductor elements arranged in the stator slots, which conductor elements each have two conductor ends, is already known. A plurality of conductor ends, which are situated next to one another, of different conductor elements are in each case connected to one another by means of a weld connection, which is provided at the end sides of the conductor ends in question, without additional material. The conductor ends which are connected to one another in each case form a common rectangular conductor cross section which has a height H and a width B, wherein the height H corresponds to the height h of an individual cross section of the conductor ends, and the width B of the common conductor cross section is made up of the sum of the widths b of the individual cross sections of the conductor ends. The weld connection is in each case provided, as seen in the direction of the width B, between two non-melted edge sections of the outermost conductor ends. The weld cross section in the direction of the height H is comparatively low, this having effects on the long-tem mechanical strength of the weld connection and, during operation of the electrical machine, possibly causing temperature peaks at the weld connection as a result of a high current density. In the case of the stator according to the invention, the mechanical strength of the weld connection is increased. According to the invention, it is provided that the extent (L2) of the weld connection (8) in the direction of the height (H) is greater, at least in sections, than the height (H) of the common conductor cross section (9), and the surface of the weld connection (8) is consequently sunken in relation to the end sides (6) of the edge sections (10). |
US11349363B2 |
Lamination for main generator rotor in an integrated drive generator
A lamination for use in an integrated drive generator is formed from a plurality of plates having a body including a pair of opposed cylindrical surfaces. Non-cylindrical ditches are defined circumferentially intermediate the pair of cylindrical surfaces. A plurality of passages are formed in an outer periphery of the cylindrical surfaces including relatively large holes extending through a slot to the outer periphery. Grooves are formed intermediate the relatively large holes. |
US11349362B2 |
Rotor
A rotor includes: a rotor core having a rotor shaft hole into which a rotor shaft is tightened and a plurality of magnet insertion holes provided along a circumferential direction; and a plurality of magnetic pole portions constituted by magnets inserted into the magnet insertion holes. The rotor core includes a cooling portion having a plurality of refrigerant flow passage holes provided radially inward of the plurality of magnetic pole portions and arranged along a circumferential direction, the plurality of refrigerant flow passage holes are arranged on both circumferential end portion sides of each magnetic pole portion, the refrigerant flow passage hole includes an inner radial side apex portion protruding radially inward, and an outer peripheral wall of the refrigerant flow passage hole includes an outer radial side apex portion protruding radially outward. |
US11349359B2 |
Electric machine with SMC rotor core sandwiched between bandage and magnets
A radial flux electric machine includes an inner stator and an outer rotor configured to rotate about the stator. The outer rotor may include a rotor base and a plurality of annularly arranged permanent magnets axially extending from the rotor base parallel to an axis of rotation of the rotor. A cylindrical core may extend from the rotor base encircling the plurality of permanent magnets. The core may be formed of a Soft Magnetic Composite (SMC). A sleeve may encircle the rotor. The sleeve may support the cylindrical core and the cylindrical core may support the plurality of permanent magnets. The cylindrical core may be positioned radially between the sleeve and the plurality of permanent magnets. |
US11349355B2 |
Stator core, a stator and a motor
A stator core, a stator and a motor are provided. The stator core may include a head that extends in a circumferential direction; a tooth that extends inward from the head; a first protruding portion that extends outward from an outer circumferential surface of the head; and a second protruding portion that protrudes from an outer circumferential surface of the first protruding portion. |
US11349352B2 |
Method and device for suppressing change of wireless power
A method for suppressing a change of wireless power includes a parameter setting step, a first power verifying step, a power adjusting step and a second power verifying step. The parameter setting step is performed to set a power parameter set. The first power verifying step is performed to verify whether a first power difference is greater than the power adjustment start difference to generate a first verification result. The power adjusting step is performed to drive a processing unit to adjust the power amplifying unit according to the adjustment parameter set. The second power verifying step is performed to verify whether a second power difference is smaller than or equal to the power adjustment stop difference to generate a second verification result. The processing unit determines whether the power adjusting step is performed according to one of the first verification result and the second verification result. |
US11349351B2 |
Method for safe and secure free space power and data transfer
A method of coordinating wireless power transfer and data communication between a transmitter and a receiver comprising recognizing at the receiver that an energy store electrically coupled to the receiver requires an electrical charge, emitting from the receiver a beacon signal to the transmitter, the beacon signal including information about the receiver and a state of charge of the energy store, recognizing at the receiver first and second localization signals from the transmitter, establishing low-power and high-power laser beam connections between the receiver and the transmitter in response to the localization signals, and communicating further information via the low-power beam on a periodic basis while optical power is being transferred via the high-power beam. The low-power beam connection includes further information about the receiver and the state of charge of the energy store. Optical power is transferred from the transmitter to the receiver via the high-power beam. |
US11349350B2 |
Wireless charging method, wireless charging device, wireless charging system and device to be charged
The present disclosure provides a wireless charging method, a wireless charging device, a wireless charging system and a device to be charged. The method includes: after a wireless charging device is coupled to a power supply device, the wireless charging device identifying the type of the power supply device; the wireless charging device charging a battery of a device to be charged in a target wireless charging mode according to the type of the power supply device, the target wireless charging mode being a first wireless charging mode or a second wireless charging mode, wherein a charging speed of the wireless charging device charging the battery in the first wireless charging mode is greater than a charging speed of the wireless charging device charging the battery in the second wireless charging mode. |
US11349345B2 |
Wireless power transmission device
The present specification relates to a wireless power transmission device. The present specification provides a wireless power transmission device comprising: a power supply unit for supplying power to the wireless power transmission device; at least one first coil for transmitting power to a wireless power reception device; and first and second condensers configured so as to be connected respectively to different both ends of the power supply unit and the first coil. |
US11349344B2 |
Safe operation in wireless power transmission systems
A mobile side circuit of a wireless power transmission system comprises a mobile side resonant circuit inductively coupled to a stationary side resonant circuit of the wireless power transmission system. A mobile side control circuit is adapted to change the operative mode of a mobile side rectifier upon occurrence of a failure state in the mobile side circuit. The present invention ensures a safe operation of the wireless power transmission system while effectively avoiding damage to the mobile side circuitry upon occurrence of a failure state at the mobile side. |
US11349340B2 |
System and method for optimizing the sensing of electromagnetic waves
This invention refers to a system comprising an oscillation capture module, an impedance matching module, a capture optimizer module and an ground, the oscillation capture module comprising means for tuning and capturing electromagnetic waves, the impedance matching module comprising at least one impedance matching circuit associated with a control module, the capture optimizer module being configured to capture a negative half-cycle of an electromagnetic wave through the ground, and the ground being arranged between the oscillation capture module and the impedance matching module.The present invention also refers to a method for optimizing the capture of electromagnetic waves through the use of such a system. |
US11349337B2 |
Energy setting device, energy setting method, and recording medium
A reduction instruction receiver receives a reduction instruction for energy from a server. An energy setter sets, when the reduction instruction receiver receives the reduction instruction, individual target energies for the respective subsystems, the individual target energies each being a target value of a consumption energy for a corresponding subsystem such that (i) a total of individual target energies that are target values of consumption energies for the respective subsystems is smaller than a total target energy that is a target value of a consumption energy of an entirety of the subsystems, and (ii) a higher correlation among consumption energies of the respective subsystems provides an increase in a total margin energy, the total margin energy being a difference between the total target energy and the sum of the individual target energies. The control-instruction transmitter transmits control-instruction information for control of the facility device based on the set individual target energies. |
US11349336B2 |
Method for operating power factor correction circuit and method for operating uninterruptible power supply apparatus
A method for operating a power factor correction (PFC) circuit of an uninterruptible power supply (UPS) apparatus is provided. The PFC circuit includes two T-type converters, and each of the T-type converters includes four switching tubes. The method includes: converting AC input voltage into a positive bus voltage across a first capacitor and a negative bus voltage across a second capacitor that is connected in series with the first capacitor when the UPS apparatus is operated under a normal supply mode; and controlling conduction states of the switching tubes of the T-type converters to balance the positive bus voltage and the negative bus voltage when the UPS apparatus is operated under a battery supply mode. |
US11349335B2 |
Power supplying device
A power supplying device comprising a battery, a charging circuit and a DC-AC conversion circuit is provided. The charging circuit is electrically coupled to an AC power source and configured to charge the battery. The DC-AC conversion circuit is electrically coupled to the battery and configured to supply an AC output. When the power supplying device is powered on, both of the charging circuit and the DC-AC conversion circuit are enabled. |
US11349334B2 |
Charge balancing control for parallel-connected battery energy storage system
According to one embodiment, a battery backup system includes an output terminal, one or more BBUs coupled in parallel to provide backup power to an external electronic device coupled to the output terminal, and a control circuit to control the power distribution from the BBUs. Each of the BBUs includes a battery pack having one or more battery cells and a converter to regulate and output power to the output terminal. The control circuit is configured to control a duty cycle for each of the BBUs, which when used to drive the BBU, adjusts power output in order to balance charges amongst the BBUs. The duty cycle of each BBU is determined based on an output voltage across the output terminal, an output current flowing through the output terminal, and characteristics of the battery pack of the BBU. |
US11349332B2 |
Battery energy storage system
A battery energy storage system is provided with: a charging/discharging control device capable of controlling charging/discharging of each of a plurality of electricity storage units in accordance with the supply and demand state of a power system; and a management device for adjusting the progression of deterioration of each of the electricity storage units by differentiating the charging/discharging amount of each of the electricity storage units and managing by differentiating the electricity storage units having a low degree of progression of deterioration from the electricity storage units having a high degree of progression deterioration. |
US11349330B2 |
Electronic device for charging batteries of a plurality of portions
A first electronic device is provided. The first electronic device, comprises [MD2] a first communication module, a first battery configured to supply power to the first electronic device, a first power management module connected and configured to control the first battery, a first power transfer module, and a first processor operationally connected with the first communication module, the first power management module, and the first power transfer module, wherein the first communication module is configured to identify a remaining capacity of a second battery in the second electronic device, and wherein the first processor is configured to, when a remaining capacity of the first battery is greater than the remaining capacity of the second battery by greater than or equal to a specified threshold value, transfer at least a portion of the power of the first battery to the second electronic device using the first power transfer module. |
US11349326B2 |
Electrical energy storage system and method for operating same
Electrical energy storage system comprising a plurality of electrochemical energy stores, which are electrically connectable to primary connection poles of the electrical energy storage system for providing a primary voltage; secondary connection poles for providing a secondary voltage, wherein the secondary connection poles are electrically connectable to an electric power source by means of secondary switches; at least one first primary switch, which is electrically connected to an electrical connection between two of the electrochemical energy stores and to an electrical connection between a first secondary switch and a first secondary connection pole, wherein the electrochemical energy stores electrically connected between the electrical connection and a second primary connection pole are electrically connectable to the first secondary connection pole of the electrical energy storage system by means of the first primary switch to provide a secondary voltage, which is lower than the primary voltage. |
US11349320B2 |
Wireless power transmitting device
The present invention relates to a wireless power transmitting device. The wireless power transmitting device comprises a transmitter coil section with a plurality of partially overlapping transmitter coils; a fan for cooling heat generated by the transmitter coil section; and a controller for sending out a detection signal through the transmitter coil section, calculating the number of operating coils based on the strength of a response signal to the detection signal, and controlling the fan based on the calculated number of operating coils. Accordingly, heat generated by the transmitter coils can be reduced more efficiently. |
US11349318B2 |
Battery management apparatus, battery module, and battery pack
A battery management apparatus includes a processor configured to collect sensing data of a battery using a sensor, and infrared (IR) communicators located to face a neighboring battery management apparatus of the battery management apparatus. The processor is configured to transmit the collected sensing data to the neighboring battery management apparatus using one of the IR communicators. |
US11349311B2 |
Voltage stability monitoring device and method
A voltage stability monitoring device and a method capable of obtaining information of voltage stability that can be served to practical use within a range of assumed conditions during a predetermined monitoring period are provided. The present invention provides a voltage stability monitoring device for estimating a voltage stability by using a voltage stability curve representing the voltage stability in an electric power system, including a voltage stability limit prediction unit for predicting a voltage stability limit, a voltage stability calculation condition determination unit for determining voltage stability calculation conditions by using a prediction result of voltage stability limit, a voltage stability curve calculation unit for calculating the voltage stability curve using a result of the voltage stability calculation condition determination, and a voltage stability margin calculation unit for calculating a voltage stability margin using a calculation result of the voltage stability curve. |
US11349310B2 |
Adaptive control technique for stability of impedance injection unit
Transients occur on power transmission lines for unpredictable reasons including breakers opening and closing, load variations, and inputs to the grid from renewable energy sources turning on and off. A recursive technique allows a linear function to be fitted to a non-linear grid dynamic of the power line transients. The technique is adaptive and helps to stabilize an impedance injection unit while it injects correcting impedance into a transmission line for the purpose of achieving power flow control. When applied to many injection units the technique may also help to stabilize the overall grid. The stabilization system using the recursive technique provides real-time monitoring of the associated power line and stabilization with respect to power line transients. |
US11349308B2 |
Automatic generation control enhancement for fast-ramping resources
A method for operating an electrical power grid system is provided. The electrical power grid system includes an electrical power grid, a plurality of power generation participants providing electrical power to the electrical power grid, and a plurality of consumers drawing electrical power from the electrical power grid, where at least a portion of the power generation participants include fast-ramping power generation resources and at least a portion of the power generation participants include slow-ramping power generation resources. The method involves controlling dispatch of electricity on the electrical power grid including enabling fast-ramping resources. |
US11349296B2 |
Solid-state circuit interrupters
A circuit interrupter includes a solid-state switch and a mode control circuit. The solid-state switch is serially connected between a line input terminal and a load output terminal of the circuit interrupter. The mode control circuit is configured to implement a first control mode and a second control mode to control operation of the circuit interrupter. The first control mode is configured to generate a self-bias turn-on threshold voltage for the solid-state switch during power-up of the circuit interrupter, while maintaining the solid-state switch in a switched-off state until the self-bias turn-on threshold voltage is generated. The second control mode is configured to disrupt the self-bias turn-on threshold voltage and place the solid-state switch into a switched-off state. |
US11349291B2 |
Locking cable hanger and method of using
A cable hanger for the solar, mining, and electrical industry for use in supporting a plurality of conductive cables from a messenger wire. |
US11349288B2 |
Weatherproof multipurpose enclosure with integrated flashing
Enclosure assemblies with integrating flashing for protecting an accessory on a rooftop. The enclosure assemblies can include a base configured to protect the rooftop from water intrusion and a cover configured to be joined to the raised portion of the base. The base can include a bottom wall and a raised portion extending from the bottom wall. The base can include an uphill portion configured to be positioned beneath at least one full course of roof shingle on the rooftop, without having to cut the roof shingle. The raised portion can be disposed off-center relative to the central transverse axis of the bottom wall, leaving the uphill portion of the bottom wall uncovered. |
US11349286B2 |
Electric power transmission carrier, manufacturing process thereof and enclosure
An electric power transmission carrier and a manufacturing method of the electric power transmission carrier and an enclosure are provided. The electric power transmission carrier includes an enclosure and an electric power transmission cable mounted on the enclosure. The electric power transmission cable is in direct or indirect surface contact with an inner wall of the enclosure, and the enclosure functions as a heat sink of the electric power transmission cable. In the present application, the electric power transmission cable or the conductor is mounted on the enclosure such as a tower barrel or a high tower, to perform electric power transmission and take the enclosure as a heat sink. The electric power transmission component takes the enclosure, the “heat sink” having a huge thermal capacity, as a “cold source”. |
US11349282B2 |
High voltage electric switchboard
A high voltage electric switchboard in which manufacturing productivity is greatly improved and each functional part can be easily replaced and repaired is provided. In the high voltage electric switchboard, a plurality of functional parts including a bus bar part, a measurement and supervisory controller, a circuit breaker part, a wire part, and potential transformer part are independently modularized such that the functional parts do not have a shared surface with each other and at least two outer surfaces of an enclosure of each of the modularized functional parts are installed to be in contact with an outer surface of an enclosure of another functional part adjacent in a horizontal direction or a vertical direction. |
US11349275B2 |
Complementary optical fiber-based amplifiers with built-in gain flattening
A fiber-based optical amplifying system for use with a multi-wavelength input optical signal operating over a predetermined bandwidth is specifically configured to eliminate the need for a separate gain-flattening filter, improving the power conversion efficiency (PCE) of the system. Both a distributed Raman amplifier (DRA) and an erbium-doped fiber amplifier (EDFA) are used, where the DRA component is configured to use a pump beam with at a power level no greater than 200 mW. The EDFA is configured to exhibit a gain profile the complements that of the DRA, while also providing amplification that is no less than 10dB at any wavelength within the system bandwidth. With these parameters, the combination of the DRA and EDFA is able to maintain an output gain deviation of less than about 2 dB. |
US11349274B2 |
Amplifier assembly
An amplifier assembly may include a first heat sink plate that includes a first channel, a second heat sink plate that includes a second channel, and an amplifier rod disposed in the first channel and the second channel. The second heat sink plate may be connected with the first heat sink plate such that the first channel and the second channel align. The amplifier rod may be connected to the first heat sink plate and the second heat sink plate by a non-eutectic solder. |
US11349271B2 |
Fixed bulk compressor for use in a chirped pulse amplification system
A bulk compressor for use in a chirped pulse amplification system (CPA) comprising a tunable pulse stretcher and an amplifier is provided. The bulk compressor includes a mounting block formed as a monolithic structure and made of solid material. The mounting block may define a plurality of mounting surfaces each forming a collar surrounding a light passage. Optical components are mounted on the mounting block in a fixed mutual spatial relationship, each optical component having a front face having a peripheral portion mounted in direct contact with the collar formed by a respective one of the mounting surfaces. The bulk compressor may be provided as a stand-alone component, a part of a stretcher-compressor pair or a full CPA system, and may be used in a method for amplifying input optical pulses. |
US11349270B2 |
Modular lamp
The present invention discloses a modular lamp, including several modular units and lamp connectors, where the modular unit is a single lamp, and the lamp connector is configured to connect to the modular unit; and a male connector terminal on either side of each lamp connector is electrically plug-connected to a female connector terminal of one modular unit. In the present invention, female connector terminals connected to a power cable and a control cable are disposed on the modular unit, matched male connector terminals are disposed on the lamp connector, and the lamp connector is directly plug-connected to multiple modular units, so that the multiple modular units can be simultaneously physically and electrically connected to obtain the modular lamp. In this way, diversified lighting requirements can be met by adding different installation accessories to the modules. In addition, assembly operations can be completed by simply performing plugging and unplugging operations, without needing a professional to perform cable-connection and cable-routing between the modular units. Special scenario requirements such as good lighting effects and high ambient temperatures can be met by adjusting module power. |
US11349265B2 |
Magnetic current sensor integration into high current connector device
A power connector is provided that is configured to conduct a current. The power connector includes a conductive frame including a base structure, an extension structure, and a cap structure that define a connector volume. The base structure is coupled to an output node of a primary conductor and receives the current from the primary conductor. The cap structure is configured to mechanically couple the power connector to a load and outputs the current from the power connector to the load. The extension structure is coupled to and extends between the base structure and the cap structure. The extension structure includes a current constriction region configured to cause a defined magnetic field of the current flowing through the current constriction region at a position of a magnetic current sensor that generates a sensor signal based on the defined magnetic field produced by the current flowing through the current constriction region. |
US11349263B1 |
Electromagnetic interference shielding for a coaxial connector using a gasket assembly
An electromagnetic interference (EMI) shield system is disclosed. The system may include an EMI gasket assembly configured to prevent radio frequency (RF) radiation from escaping through a gap between a RF connector and the enclosure. The gasket assembly may include a gasket including a receiving portion. The receiving portion may be configured to receive a portion of a shaft of the RF connector. The gasket may be formed of a compressible material. The gasket assembly may include a spacer configured to couple to a portion of the shaft of the RF connector. The spacer may be configured to compress the gasket against a portion of the enclosure when the spacer is rotated in a first direction. The spacer may be configured to provide electrical continuity between the radio frequency connector and the gasket by causing the gasket to form an electrical connection with the enclosure when the gasket is compressed. |
US11349261B2 |
Electrical connector
An electrical connector includes an insulative elongated housing, and a plurality of contacts retained to the housing. The housing includes a base extending along the longitudinal direction and a mating tongue extending forwardly from the base in a front-to-back direction perpendicular to the longitudinal direction. Each contact includes a contacting/mating section exposed upon the mating tongue. The contacts include a plurality of differential-pair signal contacts and a plurality of grounding contacts alternately arranged with each other along the longitudinal direction. Each differential-pair signal contact is associated with a metallic wiping piece in front with a tiny gap so as to have the distance between the rear end of the contacting section and the front edge of the wiping piece is still equal to 3.9 mm which is regulated by the industry standard specification as a full length of the contacting section of the traditional contact. |
US11349260B2 |
Connector, harness and connector assembly
A connector comprises a plurality of signal terminals, a plurality of ground terminals which are configured to be connected to outer conductors of cables, and a ground member which is configured to be connected to the outer conductors. The ground member has a ground portion. The signal terminals and the ground terminals are alternately arranged in a pitch direction (Y-direction) to form one terminal row. Each of the signal terminals has a first adjustment portion. Each of the ground terminals has a second adjustment portion. The signal terminals include an outer signal terminal located at an end of the terminal row. The first adjustment portion of the outer signal terminal protrudes toward the ground portion. A position of the first adjustment portion of the outer signal terminal in a perpendicular plane (XZ-plane) is equal to or overlaps with a position of the ground portion in the perpendicular plane. |
US11349259B2 |
Electrical connector
An electrical connector includes: an insulating housing; and plural terminals held in the insulating housing and arranged in terminal pairs, each of the terminals including: a holding portion held in the insulating housing; a cantilever extending forward from the holding portion, a slot being provided on the cantilever; a contact portion at a front of the cantilever; and a mounting portion for mounting on a circuit board; wherein the slot extends to the contact portion; and in each terminal pair, a first distance from a center of the contact portion of one terminal thereof to a center of the contact portion of the other terminal thereof is less than a second distance from a center of the mounting portion of one terminal thereof to a center of the mounting portion of the other terminal thereof. |
US11349256B2 |
Electrical connector with detection member
A connector includes an outer housing, an inner housing fitted to the outer housing, and a detection member assembled to the outer housing and restricted from being separated in a removal direction. The detection member has a flexible lock arm and a member-side protrusion formed on a free end side of the lock arm and facing an outer-side protrusion in the removal direction in an assembled state. When a locking arm gets over the outer-side protrusion and is locked to the outer-side protrusion, the locking arm moves in an insertion direction while being elastically deformed, and elastically returns after getting over the outer-side protrusion to press the member-side protrusion outward an inner housing accommodating space, so that the lock arm allows the outer-side protrusion and the member-side protrusion to be in a non-facing state in the insertion/removal direction, and allows the detection member to be separated in the removal direction. |
US11349254B2 |
Hinged strain relief backshells, cable assemblies and methods for strain relief
A hinged strain relief backshell, selectively disposed about a cable, adjacent to a cable connector for selective assembly with the connector, includes a first integral semi-cylindrical backshell half and a second integral semi-cylindrical backshell half second hinged to the first integral backshell half. The integral semi-cylindrical backshell halves configured to be to be selectively disposed about the cable with one another. Each integral semi-cylindrical backshell half defining complementary half-threads defined by the respective backshell half and corresponding wrench flats defined in an outside surface portion of each backshell half. At least one of the integral semi-cylindrical backshell halves defining at least one strain clamp ear portion extending from a connector distal portion of the backshell half for retraining the cable at least in a direction parallel to the cable. |
US11349253B2 |
Method for connecting two connector parts
A method for connecting a movable connector part to a stationary connector part, the movable part being initially placed on a support and the stationary part being covered by a cap. The method includes gripping the cap by element of a lifting tool (10); depositing the cap (6) on the movable part by element of the lifting tool; and transporting the assembly of the cap and movable part onto the stationary part, by element of the lifting tool, in order to connect the stationary part and the movable part (4) to each other. |
US11349247B2 |
Electrical plug connector
An electrical plug connector includes a metallic shell and first and second insulated housings in the metallic shell. An insertion cavity is between an inner side of an assembly of the first insulated housing and the second insulated housing. The first terminals, from right to left, include a rightmost first ground terminal, a pair of first high-speed signal terminals, a first power terminal, a first function detection terminal, a pair of first low-speed signal terminals, and a leftmost first ground terminal. First flexible contact portions of the first terminals are in the insertion cavity. The second terminals, from right to left, include a second power terminal, a pair of second high-speed signal terminals, and a second power terminal. Second flexible contact portions of the second terminals are in the insertion cavity. |
US11349246B2 |
Method of making an electrical connector by holding carrier strips against each other for over-molding
A method of making an electrical connector which includes an insulative housing having a tongue and a first and second rows of contacts with respective contacting portions exposed to the two opposite surfaces of the tongue and respective soldering portions is characterized by the steps of: forming the first row of contacts from a first contact carrier to have the soldering portions thereof connected to a first carrier strip; forming the second row of contacts from a second contact carrier to have the soldering portions thereof connected to a second carrier strip; insert-molding the first row of contacts with a first insulator to form a first contact module unit; insert-molding the second row of contacts with a second insulator to form a second contact module unit; holding the first carrier strip and the second carrier strip against each other for further over-molding to form the complete contact module. |
US11349244B2 |
Electrical contact
An electrical contact includes a retention section of an outer part and an extension section of an inner part parallel to each other and linked to each other via a transverse bridge located in another vertical plane perpendicular to both the retention section and the extension section. An upper contacting arm extends, toward the extension section, from an upper end of the retention section with an upper mating apex and an upper abutment tip region, and a lower contacting arm extends, toward the extension, from a lower end of the retention section with a lower mating apex and a lower abutment tip region. An upper abutment tab upwardly and obliquely extends from an upper end of the extension section toward the retention section and adapted to be mated with the upper abutment tip region when the upper contacting arm is downwardly depressed by the CPU. |
US11349242B2 |
Male wire terminal and male wire connector
A male terminal to be accommodated into a cavity of a housing includes a plate-like tab formed in a front end part, and a box portion in the form of a rectangular tube connected to a rear part of the tab and open rearward. A front end part of the box portion includes a contact portion configured to come into contact with an inner wall of the cavity from behind and a supporting portion located behind the contact portion. The contact portion has a contact surface constituted by a plate surface of a metal plate material constituting the box portion and the contact surface comes into contact with the inner wall of the cavity. The supporting portion supports the contact portion 44 from a side opposite to the contact surface when the contact portion comes into contact with the inner wall of the cavity. |
US11349241B2 |
Power socket for electrical connector system
A power socket includes a power socket body extending between a first end and a second end and having a tube being tubular shaped along at least a portion of the power socket body. The power socket includes a power pin termination at the first end and a cable termination at the second end. The power pin termination includes a socket configured to receive a mating end of a power pin and a spring band contact received in the socket having a plurality of mating interfaces. A first edge of the power socket body is rolled inward to form a retaining lip to retain the spring band contact in the socket. The cable termination includes a deformation terminated to an end of a cable conductor of a cable to electrically connect the power socket to the cable. The deformation transforms the tube from a tubular to a deformed shape. |
US11349233B2 |
Connection structure including circuit body and conductive body
A connection structure includes: a circuit body including a flexible printed circuit having a wiring pattern; and a conductive body connected to a mounting surface of the circuit body using a solder. The conductive body has a pair of connection portions opposed to each other and extending along the mounting surface. The solder forms solder fillets located around the pair of connection portions and extending along the mounting surface. A first fillet width of one solder fillet among the solder fillets located in an inside region between the pair of connection portions is larger than a second fillet width of another solder among the solder fillets located in an outside region of one of the pair of connection portions, which is on a side opposite to the inside region across the one of the pair of connection portions. |
US11349230B2 |
Charging cable for transmitting electric energy, charging plug and charging station for discharging electric energy to a recipient of electric energy
A charging cable for transmitting electric energy has a non-metallic sheathed cable and includes at least four electric conductor cables (a1, a2, b1, b2, pe) provided in the non-metallic sheathed cable. A first electric conductor cable and a second electric conductor cable are both assigned to a first voltage potential. A third electric conductor cable and a fourth electric conductor cable are both assigned to a second voltage potential. |
US11349224B2 |
Conformal array antenna
A conformal array antenna includes a substrate and a conductive circuit. The substrate has a non-conductive roughened curved surface formed with a plurality of hook-shaped structures that are formed by blasting a plurality of particles on the substrate. The non-conductive roughened curved surface defines a plurality of spaced-apart antenna pattern regions. The conductive circuit is located in the antenna pattern regions, and includes an activation layer formed on the roughened curved surface and containing an active metal, and a first metal layer formed on the activation layer. |
US11349223B2 |
Laminar phased array with polarization-isolated transmit/receive interfaces
A phased array includes a laminar substrate having both 1) a plurality of elements forming a patch phased array, and 2) a plurality of integrated circuits. Each integrated circuit is configured to control receipt and transmission of signals by the plurality of elements in the patch phased array. The integrated circuits also are configured to operate the phased array at one or more satellite frequencies—to transmit signals to and/or receive signals from a satellite. Each integrated circuit physically couples with one corresponding element so that incoming signals are received by the corresponding element in a first polarization, and outgoing signals are transmitted by the corresponding element in a second polarization. The phased array isolates the transmit signals from the receive signals by orienting the first and second polarizations differently. |
US11349218B2 |
Antenna assembly having a helical antenna disposed on a flexible substrate wrapped around a tube structure
An antenna assembly is provided. The antenna assembly includes a tube structure disposed on a circuit board. The antenna assembly further includes a helical antenna comprising a plurality of conductive traces disposed on a flexible substrate wrapped around the tube structure. |
US11349213B2 |
Antenna structure and single dual-polarization antenna array
An antenna structure includes a ground, a first patch, a second patch, a first conductive post, and a second conductive post. The first patch is spaced apart from the ground. The first patch includes a circular slit, a main patch portion and a circular portion. The circular portion and the circular slit surround the main patch portion, and the circular slit is located between the main patch portion and the circular portion. The second patch is disposed between and spaced apart from the ground and the main patch portion. A dimension of the second patch is less than a dimension of the main patch portion. One end of the first conductive post is connected to the second patch. Another end of the first conductive post passes through the ground and is coupled to a signal feeding end. The circular portion is connected to the ground through the second conductive post. |
US11349212B2 |
Antenna device
An antenna device including: a ground plane; an antenna pattern overlapping the ground plane with respect to a first direction; a dielectric layer interposed between the ground plane and the antenna pattern; a feed via coupled with the antenna pattern and penetrating at least a portion of the dielectric layer; a ground via connected to the ground plane and penetrating at least a portion of the dielectric layer; and a ground pattern extending from the ground via and disposed adjacent to a lateral surface of the feed via in a second direction that forms a predetermined angle with the first direction. |
US11349211B2 |
Electronic device including antenna
Disclosed is an electronic device which performs wireless communication and includes a first antenna configured to transmit and receive a signal in a first frequency band, a conductive member disposed to be spaced from the first antenna as much as a first distance, a printed circuit board disposed parallel to a first surface of the conductive member, and at least one conductive connection member interposed between the conductive member and the printed circuit board, wherein the conductive member is gap fed from the first antenna and operates as a radiator for wireless communication. |
US11349210B2 |
Electronic device and antenna module
An electronic device and an antenna module are provided. The electronic device includes a metal cover and the antenna module. The metal cover has a short slot and a long slot. The antenna module includes a substrate and an antenna structure. The antenna structure includes a first excitation segment, a second excitation segment, and a connection segment. Two projection regions respectively defined by orthogonally projecting the first excitation segment and the second excitation segment onto the metal cover overlap with the shot slot and the long slot, respectively. When a signal source is fed into the antenna structure, a first frequency band generated by the antenna structure and the short slot, a second frequency band generated by the antenna structure and the long slot, and a third frequency band generated by the antenna structure are different from each other in terms of corresponding frequency ranges. |
US11349204B2 |
Electronic devices having multilayer millimeter wave antennas
An electronic device may have a phased antenna array. An antenna in the array may include a rectangular patch element with diagonal axes. The antenna may have first and second antenna feeds coupled to the patch element along the diagonal axes. The antenna may be rotated at a forty-five degree angle relative to other antennas in the array. The antenna may have one or two layers of parasitic elements overlapping the patch element. For example, the antenna may have a layer of coplanar parasitic patches separated by a gap. The antenna may also have an additional parasitic patch that is located farther from the patch element than the layer of coplanar parasitic patches. The additional parasitic patch may overlap the patch element and the gap in the coplanar parasitic patches. The antenna may exhibit a relatively small footprint and minimal mutual coupling with other antennas in the array. |
US11349197B2 |
Antenna structure and electronic device
The present disclosure provides an antenna and an electronic device. The antenna includes: a cavity structure configured to contain an electrolyte solution; and a plurality of antenna feed points disposed on the cavity structure. The cavity structure containing the electrolyte solution is configured to be an antenna radiator of the antenna. The plurality of antenna feed points is configured to receive and transmit radio frequency signals. |
US11349194B2 |
Mobile communication terminal and antenna apparatus thereof
An antenna apparatus for a mobile communication terminal with a no-breakpoint metal middle frame and an all-metal back cover is provided. The antenna apparatus includes an antenna main body, where an end of the antenna main body is connected to a circuit mainboard in a contacting manner, and the antenna main body is connected to the metal middle frame; and a notch structure connected to the circuit mainboard. A mobile communication terminal including the antenna apparatus is also provided. |
US11349191B1 |
Ring-shaped devices with combined battery and antenna assemblies
Systems, methods, and computer-readable media are disclosed for ring-shaped devices with combined battery and antenna. In one embodiment, an example device may include an inner shell, and an outer shell coupled to the inner shell, where the outer shell and inner shell together form a first side portion, a second side portion, and a lower portion of the ring-shaped device. The device may include an antenna element coupled to the outer shell and the inner shell, where the antenna element forms an upper portion of the ring-shaped device, a battery disposed adjacent to the antenna element, and a flexible printed circuit assembly disposed along the first side portion, wherein the flexible printed circuit assembly is coupled to the antenna element and the battery. |
US11349186B2 |
Magnetic-free non-reciprocal circuits based on sub-harmonic spatio-temporal conductance modulation
A circuit comprising a differential transmission line and eight switches provides non-reciprocal signal flow. In some embodiments, the circuit can be driven by four local oscillator signals using a boosting circuit. The circuit can be used to form a gyrator. The circuit can be used to form a circulator. The circuit can be used to form three-port circulator than can provide direction signal flow between a transmitter and an antenna and from the antenna to a receiver. The three-port circulator can be used to implement a full duplex transceiver that uses a single antenna for transmitting and receiving. |
US11349183B2 |
Contactless waveguide switch and method for manufacturing a waveguide switch
A waveguide switch for switching between an ON-state and an OFF-state for a waveguide channel, including: a moveable waveguide switch body including: an input opening for receiving an electromagnetic wave, an output opening for releasing an electromagnetic wave, wherein the waveguide switch body further includes a blocking element arranged such that in the ON state, an electromagnetic wave may pass from the input opening to the output opening, and in the OFF state the blocking element substantially impedes an electromagnetic wave traveling from the input opening to the output opening, whereby the switch from the ON state to the OFF state is a rotational or translation movement of the waveguide switch body. Also, a waveguide system employing such a switch and a method of manufacturing such a switch. Contactless switching is provided in a high-frequency system. |
US11349182B2 |
Electrode assembly
The present invention relates to an electrode assembly in which resistance is capable of being reduced. Also, an electrode assembly having a wound position and an unwound position includes an electrode having an electrode collector, the electrode collector having a coating portion coated with an active material and a non-coating portion on which the active material is not applied, when the electrode assembly is in the unwound position, the coating portion and the non-coating portion are adjacent to one another in a longitudinal direction of the electrode collector, one or more tab members extending from the non-coating portion, and one or more foil tabs extending from the coating portion in a width direction of the electrode collector perpendicular to the longitudinal direction, the active material not being applied to the foil tabs. |
US11349180B2 |
Battery pack
A battery pack including a plurality of battery cells; and a rigid printed circuit board (PCB) electrically connected to each battery cell and extending across the plurality of battery cells, wherein the rigid PCB includes a bus to electrically connect the plurality of battery cells to each other, and a battery management system (BMS) to control a charge/discharge operation of the plurality of battery cells. |
US11349177B2 |
Separator including separator substrate with coating layer including carboxymethyl cellulose, particle-type binder, and dissolution-type binder
A separator for secondary batteries, including: a separator substrate having at least one surface, wherein the separator substrate includes a polyolefin-based polymer resin having a porous structure and a coating layer is applied to one surface or opposite surfaces of a separator substrate made of a polyolefin-based polymer resin having a porous structure, wherein the coating layer includes a thickener, a filler, a particle-type binder, and a dissolution-type binder, wherein the thickener comprises carboxymethyl cellulose, and wherein an amount of the particle-type binder is greater than an amount of the dissolution-type binder. |
US11349169B2 |
Multilayer packaging structure for a thin film battery and a method for manufacturing of such a structure
The present invention relates to multilayer packaging structure (10) for a thin film battery (5) wherein a metal layer (14) is sandwiched between a first layer (11) and a second layer (12). A first opening (21) is arranged in the first layer (11) such that a first portion (24) of the metal layer (14) associated with the first opening (21) is exposed and is configured to be able to be in electrical contact with a current collector of the thin film battery (5). A second opening (22) is arranged in the second layer (12) such that a second portion (25) of the metal layer (14) associated with the second opening (22) is exposed and is configured to be able to be electrically connected to an external circuitry. The invention further relates to a method (30) for manufacturing of the multilayer packaging structure (10). |
US11349164B2 |
Battery cooler support architecture
A battery cooler assembly having a frame with a pair of opposed parallel walls, with each wall having a ledge extending outwardly from the wall. A heat exchanger positioned between the walls, and having a plate pair together defining a fluid flow channel permitting fluid flow from an inlet to an outlet on the heat exchanger. One or more battery modules positioned on the heat exchanger. A plurality of support structures engage the heat exchanger and positioned between the walls; and extend from a first edge to a second end of the heat exchanger, where the first edge is proximate to one of the walls and the second edge is proximate to the other wall. The plurality of support structures engaging the one or more battery modules reducing stress on the heat exchanger. |
US11349161B2 |
Rechargeable battery with hydrogen scavenger
Energy storage devices, battery cells, and batteries of the present technology may include a first current collector and a second current collector. The batteries may include an anode material coupled with the first current collector. The batteries may include a cathode material coupled with the second current collector. The batteries may also include a separator positioned between the cathode material and the anode material. The batteries may include a hydrogen-scavenger material incorporated within the anode active material or the cathode active material. The hydrogen scavenger material may absorb or react with hydrogen at a temperature above or about 20° C. |
US11349160B2 |
Method for checking the plausibility of an electronic circuit for time measurement of an electrochemical energy storage system
Method for checking the plausibility of an electronic circuit for time measurement of an electrochemical energy storage system by means of a cooling behavior of at least one electrochemical energy store during non-use of the electrochemical energy store. |
US11349157B2 |
Vehicular battery charger, charging system, and method with interruption detection
A vehicle battery charger and a vehicle battery charging system are described and illustrated, and can include a controller enabling a user to enter a time of day at which the vehicle battery charger or system begins and/or ends charging of the vehicle battery. The vehicle battery charger can be separate from the vehicle, can be at least partially integrated into the vehicle, can include a transmitter and/or a receiver capable of communication with a controller that is remote from the vehicle and vehicle charger, and can be controlled by a user or another party (e.g., a power utility) to control battery charging based upon a time of day, cost of power, or other factors. |
US11349156B2 |
Power supply device
In a power supply device including a plurality of battery modules each including a secondary battery, in which the battery modules are connected in series to one another according to a gate driving signal from a controller and in each of the battery modules, the gate driving signal is delayed in a gate driving signal processing circuit included in the battery module and then transmitted from upstream to downstream of the series connection, an ID is provided for each of the battery modules by transmitting an ID setting signal for providing an ID unique to the battery module using a gate signal line for transmitting the gate driving signal. |
US11349155B2 |
Electrolyte element and a cell incorporating the electrolyte element
An electrolyte element (10) comprises a perforated sheet (11) of non-reactive metal such as an aluminium-bearing ferritic steel, and a non-permeable ceramic layer (16b) of sodium-ion-conducting ceramic bonded to one face of the perforated sheet (11) by a porous ceramic sub-layer (16a). The perforated sheet (11) may be of thickness in the range 50 μm up to 500 μm, and the thickness of the non-permeable ceramic layer (16b) may be no more than 50 μm, for example 20 μm or 10 μm. Thus the electrolyte properties are provided by the non-permeable thin layer (16b) of ceramic, while mechanical strength is provided by the perforated sheet (11). The electrolyte element (10) may be used in a rechargeable molten sodium-metal halide cell, in particular a sodium/nickel chloride cell (20). It makes cells with increased power density possible. |
US11349150B2 |
Ceramic soft composites for solid-state batteries
The present disclosure relates to a composite material of formula (I): (LPS)a(OIPC)b wherein each of a and b is a mass % value from 1% to 99% such that a+b is 100%; (LPS) is a material selected from the group consisting of Li3PS4, Li7P3S11, Li10GeP2S11, and a material of formula (II): xLi2S.yP2S5.(100−x−y)LiX; wherein X is I, Cl or Br, each of x and y is a mass % value of from 33.3% to 50% such that x+y is from 75% to 100% and the total mass % of Li2S, P2S5 and LiX is 100%; and (OIPC) is a salt of a cation and a closo-borane cluster anion. |
US11349148B2 |
Anodeless lithium metal battery and method of manufacturing the same
An anodeless lithium metal battery includes: a cathode including a cathode current collector and a cathode active material layer on the cathode current collector; an anode current collector on the cathode; and a composite electrolyte between the cathode and the anode current collector, wherein the composite electrolyte includes a first liquid electrolyte and at least one of lithium metal or a lithium metal alloy. |
US11349141B2 |
High solubility iron hexacyanides
Stable solutions comprising high concentrations of charged coordination complexes, including iron hexacyanides are described, as are methods of preparing and using same in chemical energy storage systems, including flow battery systems. The use of these compositions allows energy storage densities at levels unavailable by other iron hexacyanide systems. |
US11349140B2 |
Antioxidant for electrolyte membrane of fuel cells and method for preparing the same
Disclosed is an antioxidant for an electrolyte membrane of fuel cells. The antioxidant may include a support including silicon dioxide and having a nanotube shape, and a metal oxide supported on the support. |
US11349137B2 |
Humidifier
In a humidifier in which an inlet head and an outlet head are connected to one end and another end of a cylindrical housing of a humidifying module, a humidified-fluid inlet joint is connected to the inlet head via a first joint connection, and a fluid-to-be-humidified outlet joint is connected to the outlet head via a second joint connection, clearances that are capable of adjusting connecting positions in directions of the connecting surfaces are provided on the joint connections as well as on connections between the housing and the inlet head and the outlet head. |
US11349135B2 |
Method of preparation and application for glass ceramic sealing thin strips
A method of preparation and application for a glass ceramic sealing thin strip with high sealing performance, differing from using conventional glass ceramic packaging paste applied to the junction of the cell stack assembly and connecting plates. The glass ceramic sealing thin strip of present invention utilizes tape casting to produce a single layer or multi-layer stacking in accordance with the required thickness of the glass-ceramic sealing thin strip, and cutting the glass ceramic sealing thin strips from molds in accordance with the geometry of cell stacks with equal thickness of the glass ceramic sealing thin strip for SOFC cell stack assembly, aiming to overcome the setbacks of the conventional dispensing method with glass ceramic packaging paste that makes the thickness difficult to control, and to effectively improve sealing performance of the cell stack assembly and the power generation efficiency, and achieve commercial application with mass production. |
US11349131B2 |
Catalyst for fuel cells, membrane electrode assembly, and polymer electrolyte fuel cell
Provided is a catalyst for fuel cells including an oxygen atom, a nitrogen atom, a pentavalent phosphorus atom, and a transition metal atom, in which when the transition metal atom is represented by M, the catalyst for fuel cells is represented by a chemical formula MOxNyPz, and the transition metal atom is at least one selected from the group consisting of a titanium atom, a tantalum atom, a niobium atom, and a zirconium atom. |
US11349129B1 |
Preparation method of the matrix material for the gas diffusion layer of a fuel cell
The invention provides a preparation method of the matrix material for the gas diffusion layer of a fuel cell. The matrix material is obtained on the polyurethane sponge through the following process: conductively treating, electroplating, dissolving nickel by electrolysis, heat-treating, tungsten-nickel alloy electroplating, heat-treating, rolling. The mass content of the metal nickel of the matrix material is 88˜92%, and the mass content of the metal tungsten is 8˜12%. The material prepared by the invention has a high specific surface area, excellent thermal conductivity and gas permeability performance, excellent electrical corrosion resistance and oxidation resistance. After being prepared as the gas diffusion layer, as the diffusion layer and fuel cell electrode are closely connected, the material can effectively resist the electrochemical corrosion of the diffusion layer caused by the electrochemical reaction and is suitable for the matrix material of the gas diffusion layer. |
US11349127B2 |
Cell stack and electrochemical cell
In a cell stack, each of the plurality of the electrochemical cells includes an alloy member, a first electrode layer, a second electrode layer, and an electrolyte layer. The alloy member includes a base member constituted by an alloy material containing chromium, a coating film that covers at least a part of a surface of the base member, and a separation inhibiting portion that inhibits the coating film from separating from the base member. The number of the separation inhibiting portions included in the alloy member of the central electrochemical cell is larger than the number of the separation inhibiting portions included in the alloy member of the end electrochemical cell. |
US11349126B2 |
Positive electrode plate, electrochemical device and safety coating
The present application relates to a positive electrode plate, an electrochemical device and a safety coating. The positive electrode plate comprises a current collector, a positive active material layer and a safety coating disposed between the current collector and the positive active material layer, the safety coating comprising a fluorinated polyolefin and/or chlorinated polyolefin polymer matrix, a conductive material and an inorganic filler. The positive electrode plate can quickly disconnect circuit when the electrochemical device (such as a capacitor, primary battery, or secondary battery, and the like) is in a high temperature condition or an internal short circuit occurs, thereby improving high temperature safety performance of the electrochemical device. |
US11349122B2 |
Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
A positive active material for a rechargeable lithium battery includes nickel-based lithium transition metal oxide secondary particles, in which a plurality of primary particles are aggregated. The primary particles include polycrystalline primary particles composed of 2 to 10 single crystals, and each of the single crystals has a particle diameter of about 0.5 μm to about 3 μm. |
US11349121B2 |
Positive electrode active substance for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
This positive electrode active substance for a nonaqueous electrolyte secondary battery contains secondary particles that are aggregates of primary particles of a lithium transition metal oxide. The average particle diameter of the primary particles is within the range of 0.5 to 2 μm, the compressive breaking strength of the primary particles is 1,000 MPa or greater, and the crystallite diameter of the primary particles is within the range of 100 to 280 nm. |
US11349120B2 |
Nanocomposite silicon electrode and method
A silicon based micro-structured material and methods are shown. In one example, the silicon based micro-structured material includes a carbon coating. In one example, the silicon based micro-structured material is used as an electrode in a battery, such as a lithium ion battery. |
US11349119B2 |
Method for making silicon-containing composite electrodes for lithium-based batteries
Electroactive materials having a nitrogen-containing carbon coating and composite materials for a high-energy-density lithium-based, as well as methods of formation relating thereto, are provided. The composite electrode material includes a silicon-containing electroactive material having a substantially continuous nitrogen-containing carbon coating formed thereon. The method includes contacting the silicon-containing electroactive material and one or more nitrogen-containing precursor materials and heating the mixture. The one or more nitrogen-containing precursor materials include one or more nitrogen-carbon bonds and during heating the nitrogen of the one or more nitrogen-carbon bonds with silicon in the silicon-containing electroactive material to form the nitrogen-containing carbon coating on exposed surfaces of the silicon-containing electroactive material. |
US11349117B2 |
Magnetite (Fe3O4)—multiwalled carbon nanotube composite structures with performance as high rate electrode materials for Li-ion batteries
A method of synthesizing an electrode material for lithium ion batteries from Fe3O4 nanoparticles and multiwalled carbon nanotubes (MWNTs) to yield (Fe3O4-NWNTs) composite heterostructures. The method includes linking the Fe3O4 nanoparticles and multiwalled carbon nanotubes using a π-π interaction synthesis process to yield the composite heterostructure electrode material. Since Fe3O4 has an intermediate voltage, it can be considered an anode (when paired with a higher voltage material) or a cathode (when paired with a lower voltage material). |
US11349114B2 |
Anodeless coating layer for all-solid-state battery and all-solid-state battery including anodeless coating layer
An anodeless coating layer for an all-solid battery, the anodeless coating layer includes: an anode active material capable of forming an alloy with lithium or a compound with lithium; and a binder, wherein the binder includes a block copolymer including a conductive domain, a non-conductive domain, or a combination thereof, and wherein the conductive domain includes an ion-conductive domain, an electron-conductive domain, or a combination thereof. |
US11349112B2 |
Method for preparing hollow structure
A method for preparing a hollow structure, and more particularly, to a method for preparing a hollow structure having various stable structures by using polystyrene particles, into which a functional group is introduced, as a template for preparing the hollow structure. |
US11349111B2 |
Artificial SEI transplantation for insertion anodes
An insertion anode for a Li-ion cell, protected with an SEI by pre-treatment in an SEI-formation cell, is stable for cell cycling even in the presence of substantial water in the cell electrolyte. A method for making the protected anode includes forming an SEI on a lithium-ion insertion electrode by performing multiple charge/discharge cycles on the electrode in a first cell having an SEI formation electrolyte to produce the protected anode. The SEI formation electrolyte includes an ionic liquid having at least one of twelve organic cations. |
US11349108B2 |
Array substrate and manufacturing method thereof, and display panel
The present invention provides an array substrate and a manufacturing method thereof, and a display panel. The manufacturing method of the array substrate includes following steps of: providing a base, wherein the base comprises a non-display region; forming an inorganic film set layer on the base; forming an opening on the inorganic film set layer and forming a patterned source-drain layer, wherein the opening is disposed in the non-display region, and the source-drain layer does not cover or fill the opening; and forming an organic planarization layer on the inorganic film set layer, wherein the organic planarization layer covers the source-drain layer and fills and covers the opening. |
US11349097B2 |
Display device including a barrier layer with a concavo-convex side surface
A display device includes a substrate including a display area and a peripheral area. A display element is disposed in the display area and is electrically connected to a thin film transistor. A power supply line is disposed in the peripheral area. An insulating layer covers a portion of the power supply line. A barrier layer is disposed on the insulating layer and includes a first side surface facing the display area and a second side surface facing away from the display area. At least one of the first side surface or the second side surface includes a concavo-convex surface. The barrier layer forms a step difference with respect to an upper surface of the insulating layer. An end of the insulating layer is positioned beyond the second side surface of the barrier layer on a side of the barrier layer facing away from the display area. |
US11349095B2 |
Optically clear resin composition and display device including the same
An optically transparent adhesive resin composition includes an ester polymer which contains an ester bond within a repeating unit, a (meth)acrylic ester polymer which contains a (meth)acrylic ester bond within the repeating unit, a rubber polymer, and a crystalline polymer. |
US11349094B2 |
Organic light emitting diode and organic light emitting diode display device including the same
An organic light emitting element includes a first electrode a second electrode that faces the first electrode, an emission layer between the first electrode and the second electrode, the emission layer including quantum dots, and a hole transport layer between the first electrode and the emission layer. The quantum dots include at least one of a Group I-VI compound, a Group II-VI compound, and a Group III-VI compound. The hole transport layer includes at least one of a p-doped Group I-VI compound, a p-doped Group II-VI compound, and a p-doped Group III-VI compound. |
US11349089B2 |
Display device
A display device includes: a substrate including an island portion and at least one connection portion extending from the island portion; a display unit on the island portion, the display unit including at least one display element; and an encapsulation layer covering the at least one display element and including an inorganic encapsulation layer and an organic encapsulation layer, wherein the display unit includes: at least one organic insulating layer; and an inorganic insulating layer on the at least one organic insulating layer, the inorganic insulating layer having a tip protruding beyond a side surface of the at least one organic insulating layer, in a direction parallel to an upper surface of the substrate, and the inorganic encapsulation layer is alongside the tip of the inorganic insulating layer. |
US11349081B2 |
Azaindolocarbazole compounds
New azaindolocarbazole compounds are disclosed, which can be used as hosts in an organic electroluminescent device. Compared to existing host materials, the compounds can effectively modulate the charge transporting properties in host materials and give OLEDs better performance. An electroluminescent device and a formulation are also disclosed. |
US11349077B2 |
Organic light emitting diode display
Disclosed is an organic light emitting diode (OLED) display comprising a substrate; an organic light emitting element disposed on the substrate; an encapsulation substrate disposed on the organic light emitting element; and an adhesive layer formed on the substrate, covering the organic light emitting element, and bonding the substrate on which the organic light emitting element is formed with the encapsulation substrate. |
US11349073B2 |
Semiconductor memory device
A semiconductor memory device includes a first wiring to a fifth wiring, a plurality of memory cells disposed between the wirings, and a first contact electrode to a third contact electrode. The first contact electrode is disposed between the first wiring and the fifth wiring, and is electrically connected to the first wiring and the fifth wiring. The second contact electrode is disposed between the first contact electrode and the fifth wiring, and is electrically connected to the first wiring and the fifth wiring. The third contact electrode is disposed between the second contact electrode and the fifth wiring, and is electrically connected to the first wiring and the fifth wiring. The second contact electrode has a width larger than a width of the first contact electrode and larger than a width of the third contact electrode. |
US11349070B2 |
Phase-change random access memory device with doped Ge—Sb—Te layers and method of making the same
A phase-change memory device and method of manufacturing the same, the memory device including: a substrate; a bottom electrode disposed over the substrate; a top electrode disposed over the bottom electrode; and a phase-change layer disposed between the top and bottom electrodes. The phase change layer includes a chalcogenide Ge—Sb—Te (GST) material that includes at least 30 at % Ge and that is doped with a dopant including N, Si, Sc, Ga, C, or any combination thereof. |
US11349069B2 |
Resistive memory devices using a carbon-based conductor line and methods for forming the same
An array of rail structures is formed over a substrate. Each rail structure includes at least one bit line. Dielectric isolation structures straddling the array of rail structures are formed. Line trenches are provided between neighboring pairs of the dielectric isolation structures. A layer stack of a resistive memory material layer and a selector material layer is formed within each of the line trenches. A word line is formed on each of the layer stacks within unfilled volumes of the line trenches. The word lines or at least a subset of the bit lines includes a carbon-based conductive material containing hybridized carbon atoms in a hexagonal arrangement to provide a low resistivity conductive structure. An array of resistive memory elements is formed over the substrate. A plurality of arrays of resistive memory elements may be formed at different levels over the substrate. |
US11349067B2 |
Storage element and memory
A storage element includes a storage layer, a fixed magnetization layer, a spin barrier layer, and a spin absorption layer. The storage layer stores information based on a magnetization state of a magnetic material. The fixed magnetization layer is provided for the storage layer through a tunnel insulating layer. The spin barrier layer suppresses diffusion of spin-polarized electrons and is provided on the side of the storage layer opposite the fixed magnetization layer. The spin absorption layer is formed of a nonmagnetic metal layer causing spin pumping and provided on the side of the spin barrier layer opposite the storage layer. A direction of magnetization in the storage layer is changed by passing current in a layering direction to inject spin-polarized electrons so that information is recorded in the storage layer and the spin barrier layer includes at least a material selected from oxides, nitrides, and fluorides. |
US11349065B2 |
Method for manufacturing a hybrid structure
A method for manufacturing a hybrid structure comprising an effective layer of piezoelectric material having an effective thickness and disposed on a supporting substrate having a substrate thickness and a thermal expansion coefficient lower than that of the effective layer includes: a) a step of providing a bonded structure comprising a piezoelectric material donor substrate and the supporting substrate, b) a first step of thinning the donor substrate to form a thinned layer having an intermediate thickness and disposed on the supporting substrate, the assembly forming a thinned structure; c) a step of heat treating the thinned structure at an annealing temperature; and d) a second step, after step c), of thinning the thinned layer to form the effective layer. The method also comprises, prior to step b), a step a′) of determining a range of intermediate thicknesses that prevent the thinned structure from being damaged during step c). |
US11349063B2 |
Multi-element piezo sensor for in-bed physiological measurements
Disclosed herein are monitoring systems and sensors for physiological measurements. The sensors can be multi-element piezo sensors capable of generating multiple electrical signals, whereby the monitoring systems can receive the multiple electrical signals to analyze the user's vital signs along multiple regions of the user's body. In some examples, the piezo sensor can include one or more corrugations, such as peaks and valleys, to create localized regions with increased mechanical response to force. The sensitivity and resolution of the piezo sensor can be enhanced by further locating electrode sections at the corrugations, where the electrode sections can be electrically isolated and independently operable from other electrode sections. Traces electrically connecting an electrode section to, e.g., an off-panel controller can be routed over and/or around other electrode sections by including an insulator to electrically insulate from the other electrode sections, or by using vias to route through one or more layers. |
US11349057B2 |
Thermoelectric module and manufacturing method thereof
A thermoelectric module includes an N-type thermoelectric material and a P-type thermoelectric material disposed so as to be spaced apart from the N-type thermoelectric material. A flexible electrode is electrically connected to the N-type thermoelectric material and the P-type thermoelectric material. The flexible electrode is configured to bend to match a curvature of an object, e.g., a steering wheel of a vehicle. |
US11349054B2 |
Display device and method of fabricating the same
A display device includes a substrate, a first electrode and a second electrode which are spaced apart from each other on the substrate, a first insulating pattern on the substrate to cover at least a portion of each of the first electrode and the second electrode, a light emitting element between the first electrode and the second electrode on the first insulating pattern, a first contact electrode in contact with the first electrode and one end portion of the light emitting element, a second contact electrode in contact with the second electrode and another end portion of the light emitting element, and a second insulating pattern on the light emitting element and of which at least a portion is in contact with each of the first contact electrode and the second contact electrode, wherein the second insulating pattern includes a first upper surface not in contact with the first contact electrode or the second contact electrode. |
US11349052B2 |
Bonding interface for hybrid TFT-based micro display projector
For small, high-resolution, light-emitting diode (LED) displays, such as for a near-eye display in an artificial-reality headset, LEDs are spaced closely together. A backplane can be used to drive an array of LEDs in an LED display. A plurality of interconnects electrically couple the backplane with the array of LEDs. The backplane can have a different coefficient of thermal expansion (CTE) than the array of LEDs. During bonding of the backplane to the array of LEDs, CTE mismatch can cause misalignment of bonding sites. The higher the bonding temperature, the greater the misalignment of bonding sites. Lower temperature bonding, using materials with lower melting or bonding temperatures, can be used to mitigate misalignment during bonding so that interconnects can be more closely spaced, which can allow LEDs to be more closely spaced, to enable a higher-resolution display. |
US11349050B2 |
Conversion element, optoelectronic component, method for producing a plurality of conversion elements, method for producing a plurality of optoelectronic components and method for producing an optoelectronic component
In an embodiment a conversion element includes a grid having a plurality of openings, a plurality of conversion segments configured to convert a part of a primary radiation into a secondary radiation, wherein the conversion segments are arranged in the openings, wherein the conversion segments include a matrix material into which fluorescent particles are incorporated, wherein the fluorescent particles are sedimented in a sedimented layer and a semiconductor material, a plastic or a metal, wherein the grid terminates flush with the conversion segments. |
US11349049B2 |
Semiconductor element, semiconductor device, and method for manufacturing semiconductor element
A semiconductor light emitting element is provided. The semiconductor light emitting element has a semiconductor stack, an n-side conductor layer, a p-side conductor layer, a dielectric multilayered film, an n-side reflective layer and a p-side reflective layer, disposed in that order. The n-side and p-side reflective layers contain Ag as a major component and contain particles of at least one selected from an oxide, a nitride, and a carbide. |
US11349048B2 |
UV LED package structure for improving light extraction
The application is related to a UV LED package structure for improving light extraction efficiency. An UV LED chip is set on a substrate with an anti-flare film for increasing upward light extraction to concentrate the emitted light by an optical element. Because no glue is filled between the UV LED chip and the optical element, it will be prevented the glue from spoiling and deteriorating by the UV light from the UV LED chip. Thereby, the UV LED package structure can prevent from the light performance reducing. |
US11349045B2 |
Light emission diode with flip-chip structure and manufacturing method thereof
A light emitting diode device with flip-chip structure includes a transparent protective substrate, a transparent conductor layer, a glue layer, a group III-V stack layer, a first conductivity metal electrode, a second conductivity metal electrode and an insulating layer. The transparent conductor layer is formed on the transparent protective substrate. The glue layer bonds the transparent protective substrate and the transparent conductor layer. The group III-V stack layer and the first conductivity metal electrode are respectively formed on a first portion and a second portion of the transparent conductor layer. The second conductivity metal electrode is formed on a portion of the group III-V stack layer. The insulating layer covers exposed portions of the transparent conductor layer and the group III-V stack layer, and the insulating layer further covers portions of the first and second conductivity metal electrodes, so as to expose the first and second conductivity metal electrodes. |
US11349041B2 |
Double-sided light-concentrating solar apparatus and system
A double-sided light-concentrating solar apparatus and system. The apparatus comprises a front-side concentrating groove (110), a back-side concentrating groove (110′), and a photovoltaic panel (120) provided at the bottom of each concentrating groove. Each concentrating groove comprises two groove walls (111, 112; 111′, 112′) extending along the bottom; opposite surfaces of the two groove walls are reflecting surfaces; the open side of each of the two groove walls forms an opening of the concentrating groove; the opening direction of the front-side concentrating groove (110) is opposite to the opening direction of the back-side concentrating groove (110′). According to the double-sided concentrating solar device, sunlight (LL) can be concentrated and received from two different directions, thereby enhancing direction adaptability and expanding device mounting methods. |
US11349039B2 |
Axially-integrated epitaxially-grown tandem wire arrays
A photoelectrode, methods of making and using, including systems for water-splitting are provided. The photoelectrode can be a semiconducting material having a photocatalyst such as nickel or nickel-molybdenum coated on the material. The photoelectrode includes an elongated axially integrated wire having at least two different wire compositions. |
US11349038B2 |
Quantum dot complex and display apparatus including the same
The display apparatus includes a light source; and a quantum dot complex disposed in front of the light source, and configured to convert a wavelength of light emitted from the light source. The quantum dot complex includes an oxide having dendritic structure; and a quantum dot bonded to the oxide. |
US11349036B2 |
Saw-toothed electrode and method for enhancing performance of nanowire UV detector
The present invention discloses a saw-toothed electrode and a method for enhancing the performance of a nanowire UV detector, and relates to the field of semiconductor technologies. The saw-toothed electrode includes two symmetrically arranged patterns; the pattern includes a rectangle and multiple isosceles trapeziums; lower bases of the isosceles trapeziums are connected to a same long side of the rectangle; opposite sides of the two patterns are sides on which multiple isosceles trapeziums are located; equal-length legs and the upper base of the isosceles trapezium are used to grow nanowires; and nanowires grown on upper bases of two isosceles trapeziums, symmetric to each other, on the opposite sides of the two patterns form bridges. |
US11349032B2 |
Semiconductor device
A semiconductor device having favorable characteristics is provided. A semiconductor device having stable electrical characteristics is provided. An island-shaped insulating layer containing an oxide is provided in contact with a bottom surface of a semiconductor layer containing a metal oxide that exhibits semiconductor characteristics. The insulating layer containing an oxide is provided in contact with a portion of the semiconductor layer to be a channel formation region and is not provided under portions to be low-resistance regions. |
US11349030B2 |
Methods of forming transistor devices comprising a single semiconductor structure and the resulting devices
A transistor device that includes a single semiconductor structure having an outer perimeter and a vertical height, wherein the single semiconductor structure is at least partially defined by a trench formed in a semiconductor substrate and a first layer of material positioned on the bottom surface of the trench and around the outer perimeter of the single semiconductor structure. The device also includes a second layer of material positioned on the first layer of material and around the outer perimeter of the single semiconductor structure, a gap between the outer perimeter of the single semiconductor structure and both the first and second layers of material (when considered collectively) and an insulating sidewall spacer positioned in the gap, wherein the insulating sidewall spacer has a vertical height that is less than the vertical height of the single semiconductor structure. |
US11349025B2 |
Multi-channel device to improve transistor speed
In some embodiments, the present disclosure relates to a semiconductor device including a semiconductor region over a bulk oxide, which is over a semiconductor substrate. Above the bulk oxide is a lower source region that is laterally spaced from a lower drain region by a lower portion of the semiconductor region. An upper source region is laterally spaced from an upper drain region by an upper portion of the semiconductor region and is vertically spaced from the lower source region and the lower drain region. The upper source region is coupled to the lower source region, and the upper drain region is coupled to the lower drain region. A gate electrode, coupled to the semiconductor substrate and over a gate oxide, is above the upper portion of the semiconductor region. The lower and upper portions of the semiconductor region respectively include a first channel region and a second channel region. |
US11349017B2 |
Bidirectional electrostatic discharge (ESD) protection device
A bidirectional electrostatic discharge protection device and a method for fabricating the same is disclosed. The protection device includes a heavily-doped semiconductor substrate, a first semiconductor epitaxial layer, a second semiconductor epitaxial layer, a heavily-doped area, and a lightly-doped area. The substrate, the heavily-doped area, and the lightly-doped area have a first conductivity type and the epitaxial layers have a second conductivity type. The first semiconductor epitaxial layer and the second semiconductor epitaxial layer are sequentially formed on the substrate, and the heavily-doped area and the lightly-doped area are formed in the second semiconductor epitaxial layer. The lightly-doped area covers the corner of the heavily-doped area, and the breakdown voltage of a junction between the heavily-doped semiconductor substrate and the first semiconductor epitaxial layer corresponds to the breakdown voltage of a junction between the second semiconductor epitaxial layer and the heavily-doped area. |
US11349014B2 |
Air spacer and method of forming same
In an embodiment, a method of forming a semiconductor device includes forming a dummy gate stack over a substrate; forming a first spacer layer over the dummy gate stack; oxidizing a surface of the first spacer layer to form a sacrificial liner; forming one or more second spacer layers over the sacrificial liner; forming a third spacer layer over the one or more second spacer layers; forming an inter-layer dielectric (ILD) layer over the third spacer layer; etching at least a portion of the one or more second spacer layers to form an air gap, the air gap being interposed between the third spacer layer and the first spacer layer; and forming a refill layer to fill an upper portion of the air gap. |
US11349006B2 |
Semiconductor device and fabrication method thereof
A semiconductor device is fabricated by a method including the following steps: a first step of forming a semiconductor film containing a metal oxide over an insulating layer; a second step of forming a conductive film over the semiconductor film; a third step of forming a first resist mask over the conductive film and etching the conductive film to form a first conductive layer and to expose a top surface of the semiconductor film that is not covered with the first conductive layer; and a fourth step of forming a second resist mask that covers a top surface and a side surface of the first conductive layer and part of the top surface of the semiconductor film and etching the semiconductor film to form a semiconductor layer and to expose a top surface of the insulating layer that is not covered with the semiconductor layer. |
US11348992B2 |
Display apparatus
A display apparatus includes a substrate, a driving thin-film transistor arranged on the substrate and including a driving semiconductor layer and a driving gate electrode, a first scanning line arranged on the first substrate and which extends in a first direction, a data line which extends in a second direction that intersects with the first direction, a node connection line arranged in the same layer as the first scanning line, and a shielding conductive layer arranged between the data line and the node connection line and disposed in the same layer as the driving gate electrode, where an end of the node connection line is connected to the driving gate electrode through a first node contact hole. |
US11348990B2 |
Stretchable display device
A stretchable display device comprises a lower substrate; a plurality of island substrates spaced apart from each other and disposed on the lower substrate; a plurality of pixels defined on the plurality of island substrates; a plurality of base polymers disposed between adjacent island substrates of the plurality of island substrates; and a plurality of conductive particles distributed in the base polymer and electrically connecting a plurality of pads disposed on the adjacent island substrates. |
US11348988B2 |
Display panel, display device and detection compensation method of display panel
Display panel, display device and detection compensation method of display panel are disclosed herein. In one embodiment, a display panel includes: display pixels arranged in M rows and N columns and provided in a display area, where both M and N are both positive integers; first power supply lines provided in the display area; and an integrated circuit, a switch circuit and a voltage stabilization transistor provided in a border area. One row of display pixels is electrically connected to one first power supply line. The first power supply lines are electrically connected to a first pin of the integrated circuit. A detection pin of the integrated circuit is electrically connected to the switch circuit. The voltage stabilization transistor includes: a control electrode electrically connected to the second pin, a first electrode electrically connected to the detection pin, and a second electrode electrically connected to one row of display pixels. |
US11348987B2 |
OLED display substrate having large aperture ratio, method of manufacturing the same, and display device
An OLED display substrate, a method of manufacturing the OLED display substrate, and a display device are provided. The OLED display substrate includes a plurality of aperture regions arranged in an array on a base substrate; and a plurality of storage capacitors on the base substrate, an orthographic projection of each storage capacitor of the plurality of storage capacitors on the base substrate having an overlapping region with an orthographic projection of an aperture region corresponding to the storage capacitor in the plurality of aperture regions on the base substrate. |
US11348986B2 |
Display apparatus having a light-emitting device
A display apparatus including two lines is provided. The two lines may extend in a first direction. A light-emitting device may be disposed between the two lines. Each line may be bent or extended in the direction of the device substrate which supports the light-emitting device. Thus, in the display apparatus, mixing of light emitted to the outside through the device substrate may be prevented. Therefore, in the display apparatus, the quality of realized image may be improved. |
US11348980B2 |
Display device
A display device includes an organic light emitting display panel defining a display area for displaying an image and a non-display area adjacent the display area, and including a base layer, a circuit layer on the base layer, a light emitting device layer on the circuit layer, and a thin film sealing layer on the light emitting device layer and divided into a first thin film sealing area, and a second thin film sealing area adjacent the first thin film sealing area, and a touch detection unit including a first sensor part on the first thin film sealing area of the thin film sealing layer, and a second sensor part on the second thin film sealing area of the thin film sealing layer, wherein an upper surface of the thin film sealing layer that faces the touch detection unit includes a first upper surface in the first thin film sealing area, and a second upper surface in the second thin film sealing area and protruding away from the base layer. |
US11348978B2 |
Display panel and method for manufacturing the same, and display device
The present disclosure provides a display panel and a method for manufacturing the same, and a display device. The display panel includes: a substrate; a pixel unit array disposed on one side of the substrate, wherein the pixel unit array comprises a plurality of pixel units, at least one of the plurality of pixel units comprising an anode layer, a cathode layer, and a light emitting layer located between the anode layer and the cathode layer, the cathode layer defining an opening configured to transmit a light emitted from the light emitting layer; and at least one sensor disposed on one side of the pixel unit array away from the substrate and configured to detect a light transmitted through the opening. |
US11348973B2 |
Threshold switching selector based memory
Embodiments include a threshold switching selector. The threshold switching selector may include a threshold switching layer and a semiconductor layer between two electrodes. A memory cell may include the threshold switching selector coupled to a storage cell. The storage cell may be a PCRAM storage cell, a MRAM storage cell, or a RRAM storage cell. In addition, a RRAM device may include a RRAM storage cell, coupled to a threshold switching selector, where the threshold switching selector may include a threshold switching layer and a semiconductor layer, and the semiconductor layer of the threshold switching selector may be shared with the semiconductor layer of the RRAM storage cell. |
US11348970B2 |
Spin orbit torque (SOT) memory device with self-aligned contacts and their methods of fabrication
A spin orbit torque (SOT) memory device includes an SOT electrode on an upper end of an MTJ device. The MTJ device includes a free magnet, a fixed magnet and a tunnel barrier between the free magnet and the fixed magnet and is coupled with a conductive interconnect at a lower end of the MTJ device. The SOT electrode has a footprint that is substantially the same as a footprint of the MTJ device. The SOT device includes a first contact and a second contact on an upper surface of the SOT electrode. The first contact and the second contact are laterally spaced apart by a distance that is no greater than a length of the MTJ device. |
US11348969B2 |
Display devices
A display device is provided. The display device includes a substrate, and a first sub-pixel and a second sub-pixel disposed on the substrate, wherein the first sub-pixel and the second sub-pixel respectively correspond to two different colors. The first sub-pixel includes a first light-emitting element and a first wavelength conversion layer adjacent to the first light-emitting element, wherein a light emitted from the first light-emitting element passes through the first wavelength conversion layer. The second sub-pixel includes a second light-emitting element and a second wavelength conversion layer adjacent to the second light-emitting element, wherein a light emitted from the second light-emitting element passes through the second wavelength conversion layer. An area of the first wavelength conversion layer and an area of the second wavelength conversion layer are different. |
US11348967B2 |
Light emitting diode display apparatus having a trench structure
A light emitting diode display apparatus includes a display substrate having a plurality of subpixel areas; and a light emitting diode disposed on the display substrate to correspond to a corresponding subpixel area of the plurality of subpixel areas, wherein the light emitting diode includes an emission area and a non-emission area adjacent to the emission area, wherein the light emitting diode includes a trench part provided to overlap a boundary between the emission area and the non-emission area, and wherein the trench part is configured such that a side light emitted from the emission area is reflected in a display direction of the light emitting diode display apparatus. |
US11348964B2 |
Pixel definition in a porous silicon quantum dot radiation detector
An imaging module (114) of an imaging system comprises a porous silicon membrane (116) with a first side (208), a contact side (210) opposite the first side, columns of silicon (212) configured to extend from the first side to the contact side, and columnar holes (214, 502) interlaced with the columns of silicon and configured to extend from the first side to the contact side. The imaging module further includes quantum dots (118) in the columnar holes. The imaging module further includes a metal pad (120) electrically coupled to the columns of silicon of the porous silicon membrane. The quantum dots in the columnar holes are electrically insulated from the metal pad. The imaging module further includes a substrate (122) with an electrically conductive pad (204) in electrical communication with the metal pad that defines a pixel. |
US11348960B2 |
Semiconductor device
An image sensor is provided. The image sensor includes a substrate and a conductive line pattern. The substrate includes an isolation pattern that extends from a bottom surface of the substrate into the substrate and defines pixel regions, and a photoelectric conversion region and a transistor for each of the pixel regions. The conductive line pattern is disposed on a top surface of the substrate, and vertically overlaps the isolation pattern in plan view and electrically connects to transistors of two or more of the pixel regions. |
US11348959B2 |
CMOS image sensors
Disclosed is a complementary metal oxide semiconductor (CMOS) image sensor. The image sensor comprises a first separation zone in a substrate, the first separation zone defining first and second pixel regions arranged in a first direction, the first separation zone including first parts substantially parallel extending in the first direction, and the substrate including a first active region vertically overlapping one of the first parts and a second active region vertically overlapping another of the first parts. The image sensor further comprises first and second photoelectric conversion devices arranged in the first direction on at least one of the first and second pixel regions in the substrate, and a source follower gate on the first active region of the substrate. |
US11348957B2 |
Transistor having increased effective channel width
Image sensors include a photodiode formed in a substrate material and a transistor coupled to the photodiode. The transistor has a trench structure formed in the substrate material, an isolation layer disposed on the substrate material, and a gate disposed on the isolation layer and extending into the trench structure. The trench structure has a polygonal cross section in a channel width plane, the polygonal cross section defining at least four sidewall portions of the substrate material, which contribute to an effective channel width measured in the channel width plane that is wider than a planar channel width of the transistor. |
US11348954B2 |
Time-resolving sensor for range measurement and 2D greyscale imaging
A pixel of an image sensor includes a pinned photodiode (PPD), a switching device and an output circuit. A first terminal of the switching device is coupled to the PPD. A second terminal of the switching device is coupled to a floating diffusion (FD). A third terminal of the switching device is coupled to a first enable signal and a second enable signal. The switching device is responsive to the first enable signal to transfer a first charge on the PPD to the FD, and responsive to the second enable signal to transfer a second charge on the PPD to the FD. The output circuit outputs a first voltage based on the first charge and outputs a second voltage based on the second charge in which the first voltage corresponds to a time of flight of one or more detected photons and the second voltage corresponds to a greyscale image. |
US11348949B2 |
Semiconductor device
An object is to provide a semiconductor device having a structure with which parasitic capacitance between wirings can be sufficiently reduced. An oxide insulating layer serving as a channel protective layer is formed over part of an oxide semiconductor layer overlapping with a gate electrode layer. In the same step as formation of the oxide insulating layer, an oxide insulating layer covering a peripheral portion of the oxide semiconductor layer is formed. The oxide insulating layer which covers the peripheral portion of the oxide semiconductor layer is provided to increase the distance between the gate electrode layer and a wiring layer formed above or in the periphery of the gate electrode layer, whereby parasitic capacitance is reduced. |
US11348948B2 |
Manufacturing method of a display device
The purpose of the present invention is to realize the display device having thin film transistors of the oxide semiconductor of stable characteristics. An example of the concrete structure is that: A display device having a substrate including a display area, plural pixels formed in the display area, the pixel includes a first thin film transistor having an oxide semiconductor film, a first insulating film made of a first silicon oxide on a first side of the oxide semiconductor film, a second insulating film made of a second silicon oxide on a second side of the oxide semiconductor film, wherein oxygen desorption amount per unit area from the first insulating film is larger than that from the second insulating film, when measured by TDS (Thermal Desorption Spectrometry) provided M/z=32 and a measuring range in temperature is from 100 centigrade to 500 centigrade. |
US11348945B2 |
Switch branch structure
Disclosed is a switch branch structure having an input terminal, an output terminal, and a series stack of an N-number of transistors formed in an active device layer within a first plane, wherein a first one of the N-number of transistors is coupled to the input terminal, and an nth one of the N-number of transistors is coupled to the output terminal, where n is a positive integer greater than one. A metal layer element has a planar body with a proximal end that is electrically coupled to the input terminal and distal end that is electrically open, wherein the planar body is within a second plane spaced from and in parallel with the first plane such that the planar body capacitively couples a radio frequency signal at the input terminal to between 10% and 90% of the N-number of transistors when the switch branch structure is in an off-state. |
US11348944B2 |
Semiconductor wafer with devices having different top layer thicknesses
A circuit includes a base silicon layer, a base oxide layer, a first top silicon layer, a second top silicon layer, a first semiconductor device, and a second semiconductor device. The base oxide layer is formed over the base silicon layer. The first top silicon layer is formed over a first region of the base oxide layer and has a first thickness. The second top silicon layer is formed over a second region of the base oxide layer and has a second thickness less than the first thickness. The first semiconductor device is formed over the first top silicon layer and the second semiconductor device is formed over the second top silicon layer. The ability to fabricate a top silicon layers with differing thicknesses can provide a single substrate having devices with different characteristics, such as having both fully depleted and partially depleted devices on a single substrate. |
US11348943B2 |
Non-volatile ferroelectric memory and method of preparing the same
The present disclosure relates to a non-volatile ferroelectric memory and a method of preparing the same. The ferroelectric memory includes a ferroelectric storage layer, a first electrode and a second electrode; the first electrode and the second electrode each include a buried conductive layer formed by patterning in a surface of the ferroelectric storage layer and an electrode layer formed on the buried conductive layer; and when a write signal in a certain direction is applied between the first electrode and the second electrode, the electric domains of a part of the ferroelectric storage layer between a pair of the buried conductive layers are enabled to be reversed, so that a domain wall conductive passage that electrically connects the first electrode and the second electrode can be established. |
US11348938B2 |
Methods of manufacturing a vertical memory device
In a method of manufacturing a vertical memory device, a first sacrificial layer including a nitride is formed on a substrate. A mold including an insulation layer and a second sacrificial layer alternately and repeatedly stacked on the first sacrificial layer is formed. The insulation layer and the second sacrificial layer include a first oxide and a second oxide, respectively. A channel is formed through the mold and the first sacrificial layer. An opening is formed through the mold and the first sacrificial layer to expose an upper surface of the substrate. The first sacrificial layer is removed through the opening to form a first gap. A channel connecting pattern is formed to fill the first gap. The second sacrificial layer is replaced with a gate electrode. |
US11348931B2 |
Nonvolatile memory device
A nonvolatile memory device includes a cell array formed on a substrate, and a control gate pickup structure, wherein the cell array comprises floating gates, and a control gate surrounding the floating gates, wherein the control gate pickup structure comprises a floating gate polysilicon layer, a control gate polysilicon layer surrounding the floating gate polysilicon layer and connected to the control gate, and at least one contact plug formed on the control gate polysilicon layer. |
US11348930B2 |
Semiconductor device and method of manufacturing the same
A semiconductor device includes a substrate including a memory cell region and a connection region, a plurality of gate electrodes stacked on the substrate, a channel structure penetrating the plurality of gate electrodes and including a channel layer extending in a vertical direction perpendicular to an upper surface of the substrate in the memory cell region, a dummy channel structure penetrating the plurality of gate electrodes and including a dummy channel layer extending in the vertical direction in the connection region, a first semiconductor layer disposed between the substrate and a lowermost one of the plurality of gate electrodes and surrounding the channel structure in the memory cell region, and an insulating separation structure disposed between the substrate and the lowermost one of the plurality of gate electrodes and surrounding the dummy channel layer. |
US11348927B2 |
Conductive feature formation
The present disclosure provides example embodiments relating to conductive features, and methods of forming the conductive features, that have differing dimensions. In an embodiment, a structure includes a substrate, a dielectric layer over the substrate, and first and second conductive features through the dielectric layer to first and second source/drain regions, respectively, on the substrate. The first conductive feature has a first length along a longitudinal axis of the first conductive feature and a first width perpendicular to the first length. The second conductive feature has a second length along a longitudinal axis of the second conductive feature and a second width perpendicular to the second length. The longitudinal axis of the first conductive feature is aligned with the longitudinal axis of the second conductive feature. The first width is greater than the second width, and the first length is less than the second length. |
US11348925B2 |
Matching nanowire FET periodic structuire to standard cell periodic structure in integrated circuits
A semiconductor integrated circuit device using nanowire FETs has a circuit block in which a plurality of cell rows each including a plurality of standard cells lined up in the X direction are placed side by side in the Y direction. The plurality of standard cells each include a plurality of nanowires that extend in the X direction and are placed at a predetermined pitch in the Y direction. The plurality of standard cells have a cell height, that is a size in the Y direction, M times (M is an odd number) as large as half the pitch of the nanowires. |
US11348919B2 |
Gate-all-around integrated circuit structures having depopulated channel structures using selective bottom-up approach
Gate-all-around integrated circuit structures having depopulated channel structures, and methods of fabricating gate-all-around integrated circuit structures having depopulated channel structures using a selective bottom-up approach, are described. For example, an integrated circuit structure includes a vertical arrangement of nanowires above a substrate. The vertical arrangement of nanowires has one or more active nanowires above one or more oxide nanowires. A first gate stack is over and around the one or more active nanowires. A second gate stack is over and around the one or more oxide nanowires. |
US11348908B2 |
Contact architectures for tunnel junction devices
A flip chip III-Nitride LED which utilizes a dielectric coating backed by a metallic reflector (e.g., aluminum or silver). High reflectivity and low resistance contacts for optoelectronic devices. Low ESD rating optoelectronic devices. A VCSEL comprising a tunnel junction for current and optical confinement. |
US11348907B2 |
Lighting-emitting device filament
A light emitting device filament includes a substrate, light emitting device chips, two electrode pads, and connection lines. The substrate includes a first surface and a second surface opposite to the first surface. The substrate extends in a first direction and has a width in a second direction. The light emitting device chips are disposed on the first surface of the substrate. The two electrode pads are disposed on the substrate. The connection lines electrically connect the light emitting device chips and the electrode pads. At least one of the connection lines includes a first portion extending in the first direction and a second portion extending in the second direction. |
US11348906B2 |
Optoelectronic device comprising a phosphor plate and method of manufacturing the optoelectronic device
An optoelectronic device comprises a phosphor plate, an optoelectronic chip comprising a layer stack of a first optoelectronic semiconductor layer and a second optoelectronic semiconductor layer, a first electrode, and a second electrode. The optoelectronic chip is attached to the phosphor plate, so that the second optoelectronic semiconductor layer is arranged between the phosphor plate and the first optoelectronic semiconductor layer. The first electrode and the second electrode are arranged on a first main surface of the first optoelectronic semiconductor layer on a side remote from the phosphor plate. The second electrode directly contacts the first optoelectronic semiconductor layer. |
US11348905B2 |
Method and system for assembly of micro-LEDs onto a substrate
MicroLED chips are transferred from an epitaxy wafer to a first coupon substrate. The first coupon substrate has a first, soft adhesive layer that temporarily holds the microLED chips. Using a first transfer substrate, a subset of the microLED chips are transferred from the first coupon substrate to a second coupon substrate having a second, soft adhesive layer. A pattern of microLED chips are transferred from another substrate to the second coupon substrate via a second transfer substrate to fill vacancies in the subset of microLED chips. The transfer substrates are operable to hold and release pluralities of micro objects. |
US11348901B1 |
Interfacial tilt-resistant bonded assembly and methods for forming the same
A first bonding unit is provided, which includes a first substrate, a first passivation dielectric layer, and first bonding pads. A second bonding unit is provided, which includes a second substrate, a second passivation dielectric layer, and second bonding pads including bonding pillar structures. Solder material portions are formed on physically exposed surfaces of the first bonding pads. The second bonding unit is attached to the first bonding unit by bonding the at least one of the bonding pillar structures to a respective solder material portion. |
US11348900B2 |
Package structure
A package structure comprising: a substrate, having at least one conductive units provided at a first surface of the substrate; at least one first die, provided on a second surface of the substrate; a connecting layer, provided on the first die; a second die, provided on the connecting layer, wherein the connecting layer comprises at least one bump for connecting the first die; and at least one bonding wire. The connecting layer has a first touch side and a second touch side, the first touch side contacts a first surface of the first die and the second touch side contacts a second surface of the second die, an area of the first touch side is smaller than which for the first surface of the first die, and a size of the first die equals to which of the second die. |
US11348896B2 |
Method for producing a semiconductor module by using adhesive attachment prior to sintering
A method for producing a semiconductor module, involving the steps: providing a carrier plate and a substrate having a bonding layer arranged on a surface of the carrier plate or the substrate, applying adhesive in multiple adhesive areas of the carrier plate or the substrate which are free from the bonding layer, positioning the substrate on the carrier plate such that the substrate and the carrier plate are in contact with the bonding layer and the adhesive, and joining the substrate and the carrier plate across the bonding layer by melting or sintering of the bonding layer. |
US11348895B2 |
Microelectronic assemblies
Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a package substrate having a first surface and an opposing second surface, and a die secured to the package substrate, wherein the die has a first surface and an opposing second surface, the die has first conductive contacts at the first surface and second conductive contacts at the second surface, and the first conductive contacts are coupled to conductive pathways in the package substrate by first non-solder interconnects. |
US11348893B2 |
Semiconductor package
A semiconductor package includes a first semiconductor die, a first substrate, a second semiconductor die, and a second substrate. The first substrate is disposed on the first semiconductor die and includes a plurality of first metal line layers vertically spaced apart from each other, and each of the first metal line layers is electrically connected to one of the followings: a ground source and a plurality of power sources of different types. The second semiconductor die is disposed on the first substrate. The second substrate is disposed on the second semiconductor die and includes a plurality of second metal line layers vertically spaced apart from each other, and each of the second metal line layers is electrically connected to one of the followings: the ground source and the power sources of different types. |
US11348891B2 |
Anisotropic conductive film and method of producing the same
An anisotropic conductive film has a three-layer structure in which a first connection layer is sandwiched between a second connection layer and a third connection layer that each are formed mainly of an insulating resin. The first connection layer has a structure in which conductive particles are arranged in a single layer in the plane direction of an insulating resin layer on a side of the second connection layer, and the thickness of the insulating resin layer in central regions between adjacent ones of the conductive particles is smaller than that of the insulating resin layer in regions in proximity to the conductive particles. |
US11348886B2 |
Integrated fan-out package
An integrated fan-out (InFO) package includes a plurality of dies, an encapsulant, an insulating layer, a redistribution structure, a plurality of conductive structures, an antenna confinement structure, and a slot antenna. The encapsulant laterally encapsulates the dies. The insulating layer is disposed over the dies and the encapsulant. The redistribution structure is sandwiched between the insulating layer and the dies. The conductive structures and the antenna confinement structure are embedded in the insulating layer. The slot antenna is disposed on the insulating layer. |
US11348878B2 |
Reinforced semiconductor die and related methods
Implementations of methods of forming a plurality of reinforced die may include forming a plurality of die on a substrate and patterning a metal gang frame to form a plurality of metal plates. The plurality of metal plates may correspond to the plurality of die. The method may include coupling the metal gang frame over the plurality of die and singulating the plurality of die. Each die of the plurality of die may include the corresponding metal plate from the plurality of metal plates coupled over the plurality of die. |
US11348875B2 |
Semiconductor devices with flexible connector array
Semiconductor devices having an array of flexible connectors configured to mitigate thermomechanical stresses, and associated systems and methods, are disclosed herein. In one embodiment, a semiconductor assembly includes a substrate coupled to an array of flexible connectors. Each flexible connector can be transformed between a resting configuration and a loaded configuration. Each flexible connector can include a conductive wire electrically coupled to the substrate and a support material at least partially surrounding the conductive wire. The conductive wire can have a first shape when the flexible connector is in the resting configuration and a second, different shape when the flexible connector is in the loaded configuration. |
US11348873B2 |
Wafer stacking method and wafer stacking structure
A wafer stacking method and structure are provided. The wafer stacking method includes: providing a first wafer having an upper surface comprising a first bonding pad configured to connect to a first signal; fabricating a first lower redistribution layer (RDL) and a first upper RDL on the first wafer, with the first lower RDL including a first wiring connected to the first bonding pad, the first upper RDL including a second wiring connected to the first wiring, and the second wiring having a first landing pad; bonding a second wafer on the first upper RDL, wherein an upper surface of the second wafer includes a second bonding pad configured to connect to a second signal and located corresponding to the first bonding pad; and fabricating a first through silicon via (TSV) connected to the first landing pad. The wafer stacking method improves the manufacturing yield of a die. |
US11348870B2 |
Electrical fuse formation during a multiple patterning process
Interconnect structures and methods of fabricating an interconnect structure. A first interconnect and a second interconnect extend in a first direction in a interlayer dielectric layer and are spaced apart from each other. A third interconnect is arranged in the interlayer dielectric layer to connect the first interconnect with the second interconnect. The first interconnect and the second interconnect have a first width, and the third interconnect has a second width that is less than the first width. |
US11348868B2 |
Channel structure for signal transmission
A channel structure for signal transmission is provided. The channel structure includes a first common pad, disposed on a first layer; a second common pad, disposed on a second layer; a via, for electrically connecting the first common pad and the second common pad; a first device path pad, disposed on the second layer and located in a first direction of the second common pad; and a second device path pad disposed on the second layer and located in a second direction of the second common pad. The channel structure includes a first electrical element electrically coupled between the second common pad and the first device path pad, or includes a second electrical element electrically coupled between the second common pad and the second device path pad. |
US11348864B2 |
Redistribution substrate having redistribution pattern including via seed patterns covering bottom surface and sidewall surface of wiring conductive patterns and semiconductor package including the same
Disclosed are redistribution substrates and semiconductor packages including the same. For example, a redistribution substrate including a dielectric pattern, and a first redistribution pattern in the dielectric pattern is provided. The first redistribution pattern may include: a first via part having a first via seed pattern and a first via conductive pattern on the first via seed pattern, and a first wiring part having a first wiring seed pattern and a first wiring conductive pattern, the first wiring part being disposed on the first via part and having a horizontal width that is different from a horizontal width of the first via part. Additionally, the first wiring seed pattern may cover a bottom surface and a sidewall surface of the first wiring conductive pattern, and the first via conductive pattern is directly connected to the first wiring conductive pattern. |
US11348861B2 |
Semiconductor package and method of manufacturing a semiconductor package
A semiconductor package includes a semiconductor die having a semiconductor device, and first and second contact pads arranged on opposite surfaces of the die. The semiconductor die is embedded in a dielectric layer. The semiconductor package also includes one or more first package contact pads and one or more second package contact pads arranged on a first major surface of the semiconductor package. The first contact pad of the die is coupled to the one or more first package contact pads, and the second contact pad of the die is coupled to the one or more second package contact pads. In operation, the semiconductor device causes a current path between the first contact pad and the second contact pad. The package contact pads are arranged on the first major surface of the semiconductor package to provide multiple non-parallel current paths. |
US11348860B2 |
Water-cooling thermal dissipating method
A water-cooling thermal dissipating method controls at least one of a fan, a pump, and a throttle valve to cool a heat generating element inside an electronic device through a cooling liquid. The method includes steps of: (a) performing a self-condition inspection, (b) detecting whether a working temperature of the cooling liquid is greater than a first predetermined temperature, and detecting whether a working temperature of the heat generating element is greater than a second predetermined temperature, (c) outputting a first warning signal if the working temperature of the cooling liquid is greater than the first predetermined temperature and a liquid level of the cooling liquid is not lower than a threshold liquid level, and outputting a second warning signal if the working temperature of the heat generating element is greater than the second predetermined temperature, and (d) displaying the first warning signal and the second warning signal. |
US11348859B2 |
Thermoelectric cooler (TEC) for spot cooling of 2.5D/3D IC packages
While the use of 2.5D/3D packaging technology results in a compact IC package, it also raises challenges with respect to thermal management. Integrated component packages according to the present disclosure provide a thermal management solution for 2.5D/3D IC packages that include a high-power component integrated with multiple lower-power components. The thermal solution provided by the present disclosure includes a mix of passive cooling by traditional heatsink or cold plate and active cooling by thermoelectric cooling (TEC) elements. Certain methods according to the present disclosure include controlling a temperature during normal operation in an IC package that includes a plurality of lower-power components located adjacent to a high-power component in which the high-power component generates a greater amount of heat relative to each of the lower-power components during normal operation. |
US11348857B2 |
Lidded microelectronic device packages and related systems, apparatus, and methods of manufacture
A microelectronic device package may include one or more semiconductor dice coupled to a substrate. The microelectronic device package may further include a lid coupled to the substrate, the lid defining a volume over and around the one or more semiconductor die. The microelectronic device package may further include a thermally conductive dielectric filler material substantially filling the volume defined around the semiconductor die. |
US11348855B2 |
Semiconductor component and power module
A semiconductor component includes: a semiconductor device; an insulating molded portion configured to encapsulate the semiconductor device; a terminal connected to the semiconductor device, the terminal being configured to project out from the insulating molded portion; and a cooler mounted with the insulating molded portion such that the semiconductor device is cooled; wherein a recessed portion is formed in a surface of the cooler on which the insulating molded portion is mounted so as to extend from a position facing the terminal to a position at inner side of an end portion of the insulating molded portion. |
US11348848B2 |
Semiconductor die, semiconductor wafer, semiconductor device including the semiconductor die and method of manufacturing the semiconductor device
A nonvolatile memory device includes a memory cell region including first pads and a peripheral circuit region including second pads. The regions comprises switches that are electrically connected with the pads, respectively, a test signal generator that generates test signals and to transmit the test signals to the switches, internal circuits that receive first signals through the pads and the switches, to perform operations based on the first signals, and to output second signals through the switches and the pads based on a result of the operations, and a switch controller that controls the switches so that the pads communicate with the test signal generator during a test operation and that the pads communicate with the internal circuits after a completion of the test operation. The peripheral circuit region is vertically connected to the memory cell region by the first metal pads and the second metal pads directly. |
US11348847B2 |
Testkey detection circuit
The invention provides a testkey detection circuit, including a plurality of oscillators and a driving circuit. Each of the oscillators has an enable terminal, a voltage terminal and an output terminal, wherein the enable terminals are connected to a common enable terminal. The driving circuit receives the output terminals of the oscillators and increases a driving level of a selected one of the output terminals as a frequency output. |
US11348843B2 |
Semiconductor device
A semiconductor device includes a field plate on an insulating film covering a transistor, the field plate being electrically coupled to a gate of the transistor via the insulating film, and the transistor being located on a substrate, a silicon nitride protective film covering the insulating film and the field plate, a silicon oxide base film on the silicon nitride protective film, and a MIM capacitor on the silicon oxide base film. The MIM capacitor includes a first electrode, a dielectric film and a second electrode which are stacked in an order. The MIM capacitor is formed by performing wet etching on the silicon oxide base film on the field plate after the dielectric film is formed. |
US11348839B2 |
Method of manufacturing semiconductor devices with multiple silicide regions
A semiconductor device with multiple silicide regions is provided. In embodiments a first silicide precursor and a second silicide precursor are deposited on a source/drain region. A first silicide with a first phase is formed, and the second silicide precursor is insoluble within the first phase of the first silicide. The first phase of the first silicide is modified to a second phase of the first silicide, and the second silicide precursor being soluble within the second phase of the first silicide. A second silicide is formed with the second silicide precursor and the second phase of the first silicide. |
US11348833B2 |
IR assisted fan-out wafer level packaging using silicon handler
A support structure for use in fan-out wafer level packaging is provided that includes, a silicon handler wafer having a first surface and a second surface opposite the first surface, a release layer is located above the first surface of the silicon handler wafer, and a layer selected from the group consisting of an adhesive layer and a redistribution layer is located on a surface of the release layer. After building-up a fan-out wafer level package on the support structure, infrared radiation is employed to remove (via laser ablation) the release layer, and thus remove the silicon handler wafer from the fan-out wafer level package. |
US11348832B2 |
Self-aligned via interconnect structures
A self-aligned via interconnect structures and methods of manufacturing thereof are disclosed. The method includes forming a wiring structure in a dielectric material. The method further includes forming a cap layer over a surface of the wiring structure and the dielectric material. The method further includes forming an opening in the cap layer to expose a portion of the wiring structure. The method further includes selectively growing a metal or metal-alloy via interconnect structure material on the exposed portion of the wiring structure, through the opening in the cap layer. The method further includes forming an upper wiring structure in electrical contact with the metal or metal-alloy via interconnect structure. |
US11348831B2 |
Method of manufacturing a semiconductor unit
A semiconductor assembly manufacturing method includes: providing a substrate including a first conductive circuit; disposing a first electronic component on a side of the substrate; forming a first plastic seal layer covering the substrate and the first electronic component; setting up a plurality of grooves in the first plastic seal layer, the groove exposes at least a portion of the first conductive circuit of the substrate; and filling a conductive material in each of the grooves by vacuum printing so as to form a second conductive circuit electrically connected to the first conductive circuit of the substrate, and a second electronic component pad position thereof in the first plastic seal layer. |
US11348827B2 |
Semiconductor device and method of fabricating the same
A semiconductor device including a first interlayer insulating film; a conductive pattern in the first interlayer insulating film; a resistance pattern on the conductive pattern; an upper etching stopper film spaced apart from the resistance pattern, extending in parallel with a top surface of the resistance pattern, and including a first metal; a lower etching stopper film on the conductive pattern, extending in parallel with a top surface of the first interlayer insulating film, and including a second metal; and a second interlayer insulating film on the upper etching stopper film and the lower etching stopper film, wherein a distance from a top surface of the second interlayer insulating film to a top surface of the upper etching stopper film is smaller than a distance from the top surface of the second interlayer insulating film to a top surface of the lower etching stopper film. |
US11348825B2 |
Method and device for surface treatment of substrates
A method for surface treatment of an at least primarily crystalline substrate surface of a substrate such that by amorphization of the substrate surface, an amorphous layer is formed at the substrate surface with a thickness d>0 nm of the amorphous layer. This invention also relates to a corresponding device for surface treatment of substrates. |
US11348822B2 |
Support substrate, method for peeling off support substrate, and method for manufacturing semiconductor device
A method of separating a support substrate and a wafer adhered to the support substrate includes inserting a trigger member into a space between the support substrate and the wafer. The space opens on a gap region of the support substrate. The gap region is within an outer periphery of a base member of the support substrate. The base member has an adhesive layer contacting the wafer. The adhesive layer does not extend to an edge of the base member facing the gap region at the space. The wafer and the base member are contacted by the trigger member which promotes separation of the wafer and the support substrate from each other. |
US11348816B2 |
Systems and methods for die container warehousing
In an embodiment, a system includes: a warehousing apparatus configured to interface with a semiconductor die processing tool configured to process a semiconductor die singulated from a wafer, wherein the semiconductor die processing tool comprise an in-port and an out-port, wherein the warehousing apparatus is configured to: move a first die vessel that contains the semiconductor die to the in-port from a first die vessel container, wherein the first die vessel container is configured to house the first die vessel; move the first die vessel from the in-port to a buffer region; and move a second die vessel from the buffer region to the out-port. |
US11348813B2 |
Correcting component failures in ion implant semiconductor manufacturing tool
Methods, systems, and non-transitory computer readable medium are provided for correcting component failures in ion implant semiconductor manufacturing tool. A method includes receiving, from sensors associated with an ion implant tool, current sensor data corresponding to features; performing feature analysis to generate additional features for the current sensor data; providing the additional features as input to a trained machine learning model; obtaining one or more outputs from the trained machine learning model, where the one or more outputs are indicative of a level of confidence of a predicted window; predicting, based on the level of confidence of the predicted window, whether one or more components of the ion implant tool are within a pre-failure window; and responsive to predicting that the one or more components are within the pre-failure window, performing a corrective action associated with the ion implant tool. |
US11348812B2 |
Substrate treating apparatus and substrate transporting method
Disclosed are a substrate treating apparatus and a substrate transporting method for the substrate treating apparatus. Two treating blocks are arranged so as not to be stacked, and a first treating block, an ID block, and a second treating block are linearly connected horizontally. Accordingly, the number of treatment layers is increasable while a height of the substrate treating apparatus is suppressed. The first and second treating blocks are each connected to the ID block directly. This enables suppression in step of passing a substrate through a treating block without performing any treatment on the substrate, leading to prevention of decrease in throughput. In addition, a substrate buffer is placed in the middle of the two treating blocks. The two treating blocks enable transportation of substrates W with the substrate buffer. Thus, reduction in footprint of the substrate treating apparatus is obtainable. |
US11348811B2 |
Thermal chamber exhaust structure and method
An exhaust structure includes an intake section which includes an inlet, an output section which includes an outlet, and a piping section coupled to the intake section and the output section at a section interface. The piping section includes a first inner diameter from the intake section to the output section, wherein one of the intake section or the output section has a second inner diameter at the section interface. The second inner diameter includes a same value as a value of the first inner diameter. A plurality of smoothing layers are configured to resist turbulence and condensation produced by a flow of one or more gasses in the intake section, the output section, and the piping section. |
US11348803B2 |
Formation of bottom isolation
A method may include forming a plasma of a fluorine-containing precursor and contacting a semiconductor substrate with plasma effluents. The semiconductor substrate may include a layer of a first silicon-containing material having a first germanium content formed over the semiconductor substrate, and alternating layers of a second silicon-containing material and a third silicon-containing material over the layer of the first silicon-containing material. The third silicon-containing material may have a second germanium content. The method may further include laterally recessing the third silicon-containing material relative to the first and second silicon-containing materials. The method may further include depositing a spacer material adjacent to the third silicon-containing material relative to the first and second silicon-containing materials. The method may also include etching the first silicon-containing material relative to the second silicon-containing material and the spacer material. |
US11348796B2 |
Backmetal removal methods
Various implementations of a method of forming a semiconductor package may include forming a plurality of notches into the first side of a semiconductor substrate; forming an organic material over the first side of the semiconductor substrate and the plurality of notches; thinning a second side of the semiconductor substrate opposite the first side one of to or into the plurality of notches; stress relief etching the second side of the semiconductor substrate; applying a backmetal over the second side of the semiconductor substrate; removing one or more portions of the backmetal through jet ablating the second side of the semiconductor substrate; and singulating the semiconductor substrate through the permanent coating material into a plurality of semiconductor packages. |
US11348794B2 |
Semiconductor film forming method using hydrazine-based compound gas
A film forming method includes: repeatedly performing a source gas adsorption process including supplying a source gas containing a metal element to form a nitride film on a substrate in a chamber and purging a residual gas, and a nitriding process including supplying a nitriding gas onto the substrate and purging a residual gas; and supplying a hydrazine-based compound gas as a part or all of the nitriding gas. |
US11348793B2 |
Laser processing apparatus and laser processing method
A laser processing apparatus has a laser beam applying unit for applying a laser beam to a workpiece held on a chuck table. The laser beam applying unit includes an elliptical spot forming member for changing the spot shape of a pulsed laser beam into an elliptical shape and making the major axis of the elliptical beam spot parallel to a feeding direction, a diffractive optical element for branching the pulsed laser beam having the elliptical beam spot obtained by the elliptical spot forming member, into a plurality of pulsed laser beams each having an elliptical beam spot whose major axis extends in the feeding direction, and a condensing lens for condensing each of the pulsed laser beams branched by the diffractive optical element to the workpiece in such a manner that the major axes of the elliptical beam spots of the pulsed laser beams branched are partially overlapped. |
US11348792B2 |
Reduce well dopant loss in FinFETs through co-implantation
A method of forming a semiconductor device includes performing a first implantation process on a semiconductor substrate to form a deep p-well region, performing a second implantation process on the semiconductor substrate with a diffusion-retarding element to form a co-implantation region, and performing a third implantation process on the semiconductor substrate to form a shallow p-well region over the deep p-well region. The co-implantation region is spaced apart from a top surface of the semiconductor substrate by a portion of the shallow p-well region, and the deep-well region and the shallow p-well region are joined with each other. An n-type Fin Field-Effect Transistor (FinFET) is formed, with the deep p-well region and the shallow p-well region acting as a well region of the n-type FinFET. |
US11348791B2 |
Bonding apparatus and bonding method
A bonding apparatus configured to bond a first substrate and a second substrate includes a first holder configured to hold the first substrate; a second holder configured to hold the second substrate; a first imaging device provided at the first holder and configured to image the second substrate held by the second holder; a first light irradiating device provided at the first holder and configured to irradiate light to the second substrate when the second substrate is imaged; a second imaging device provided at the second holder and configured to image the first substrate held by the first holder; and a second light irradiating device provided at the second holder and configured to irradiate light to the first substrate when the first substrate is imaged. Each of the first light irradiating device and the second light irradiating device is connected to a first light source configured to irradiate white light. |
US11348789B2 |
Method for manufacturing semiconductor device with metallization structure
A method for manufacturing a semiconductor device includes: providing a semiconductor substrate having first and second sides; forming at least one doping region at the first side; forming a first metallization structure at the first side on and in contact with the at least one doping region; and subsequently forming a second metallization structure at the second side, the second metallization structure forming at least one silicide interface region with the semiconductor substrate and at least one non-silicide interface region with the semiconductor substrate. |
US11348788B2 |
Methods for device fabrication using pitch reduction
Embodiments of a method for device fabrication by reverse pitch reduction flow include forming a first pattern of features above a substrate and forming a second pattern of pitch-multiplied spacers subsequent to forming the first pattern of features. In embodiments of the invention the first pattern of features may be formed by photolithography and the second pattern of pitch-multiplied spacers may be formed by pitch multiplication. Other methods for device fabrication are provided. |
US11348785B2 |
Apparatus for manufacturing group III nitride single crystal, method for manufacturing group III nitride single crystal using the apparatus, and aluminum nitride single crystal
An apparatus for manufacturing a group III nitride single crystal including: a reaction vessel including a reaction area, wherein in the reaction area, a group III source gas and a nitrogen source gas are reacted such that a group III nitride crystal is grown on a substrate; a susceptor arranged in the reaction area and supporting the substrate; a group III source gas supply nozzle supplying the group III source gas to the reaction area; and a nitrogen source gas supply nozzle supplying the nitrogen source gas to the reaction area, wherein the nitrogen source gas supply nozzle is configured to supply the nitrogen source gas and at least one halogen-based gas selected from the group consisting of a hydrogen halide gas and a halogen gas to the reaction area. |
US11348782B2 |
Dual gate dielectric layers grown with an inhibitor layer
A semiconductor device including a first dielectric layer and a second dielectric layer is formed by forming an inhibitor layer over a semiconductor material. The inhibitor layer includes at least silicon and nitrogen. The semiconductor material is heated in an oxygen-containing ambient which oxidizes the inhibitor layer and forms the first dielectric layer which includes the oxidized inhibitor layer, and oxidizes the semiconductor material to form the second dielectric layer. The second dielectric layer is thicker than, the first dielectric layer. The first dielectric layer and the second dielectric layer each include at least 90 weight percent silicon dioxide and less than 1 weight percent nitrogen. The first dielectric layer and the second dielectric layer may be used to form gate dielectric layers for a first MOS transistor and a second MOS transistor that operates at a higher voltage than the first MOS transistor. |
US11348780B2 |
Methods and systems utilizing ultrasound-assisted sampling interfaces for mass spectrometric analysis
An ultrasonic transmitter (95) and detector (e.g., integrated as an ultrasound transducer) utilized in a feedback control system automatically monitors and/or detects surface profile (e.g., shape) of the liquid-air interface and adjusts the flow rate of sampling liquid to ensure that experimental conditions remain consistent at the time of sample introduction during serial samplings. The feedback control can provide for automated adjustment of the surface profile of the liquid-air interface in accordance with changes in desired set point according to an experimental workflow (e.g., automated adjustment between an interface corresponding to a vortex sampling set point and an overflow cleaning set point). Improvements in desorption efficiency and quality of mass spectrometry data by degassing of the liquid solvent utilized within the sampling interfaces, and/or utilization in a feedback control system for generating data indicative of a surface profile of the liquid-air interface within the interface's sampling port may be realized. |
US11348778B2 |
Precursor and neutral loss scan in an ion trap
The invention generally relates to systems and methods for precursor and neutral loss scan in an ion trap. In certain aspects, the invention provides a system that includes a mass spectrometer having an ion trap, and a central processing unit (CPU). The CPU includes storage coupled to the CPU for storing instructions that when executed by the CPU cause the system to excite a precursor ion and eject a product ion in the single ion trap. |
US11348775B2 |
Mass spectrometry data processing program
A mass spectrometric data processing program that processes mass spectrometric data causes a data processor including a computer to execute a data conversion process in which representative value data, which is representative value data including a data set of a representative value of mass-to-charge ratio information and an ion intensity with respect to the representative value, is converted into profile data, which is ion intensity data with respect to the mass-to-charge ratio information. |
US11348770B2 |
Sputtering cathode, sputtering cathode assembly, and sputtering apparatus
The sputtering cathode has a tubular shape having a pair of long sides facing each other in cross-sectional shape, has a sputtering target whose erosion surface faces inward, and a magnetic circuit is provided along the sputtering target. The pair of long sides are constituted by rotary targets each having a cylindrical shape. The rotary target is internally provided with a magnetic circuit and configured to allow the flow of cooling water. The magnetic circuit is provided parallel to the central axis of the rotary target and has a rectangular cross-sectional shape having a long side perpendicular to the radial direction of the rotary target. |
US11348763B2 |
Corrosion-resistant structure for a gas delivery system in a plasma processing apparatus
Disclosed is a corrosion-resistant structure for a gas delivery system in a plasma processing apparatus. By providing a plating layer of corrosion-resistant material at the parts including the gas channel to avoid reacting with the delivered corrosive gas, metal and particle contaminations are reduced. By reversely mounting nozzles such that they reliably cover the plating layer inside the gas outlet holes, the disclosure prevents the corrosion-resistant material from being damaged by the plasma generated inside the cavity. By forming a corrosion-resistant yttrium oxide coating at the surfaces of the nozzles exposed to the cavity, the disclosure prevents the plasma from eroding the nozzles. The disclosure further leverages a flexible corrosion-resistant material, such as Teflon, to the sealing surfaces of the liner in contact with the dielectric window and the cavity, which improves the overall sealing effect of the liner. The disclosure may effectively enhance the corrosion-resistant and sealing properties of the liner and prolong its service life, as well as improving operating stability of the plasma processing apparatus. |
US11348756B2 |
Aberration correction in charged particle system
A lens element of a charged particle system comprises an electrode having a central opening. The lens element is configured for functionally cooperating with an aperture array that is located directly adjacent said electrode, wherein the aperture array is configured for blocking part of a charged particle beam passing through the central opening of said electrode. The electrode is configured to operate at a first electric potential and the aperture array is configured to operate at a second electric potential different from the first electric potential. The electrode and the aperture array together form an aberration correcting lens. |
US11348753B2 |
Contactor having fixed and movable iron cores and a movable contact
A contactor includes a fixed iron core, a movable iron core, an operation coil, a first crossbar, a tripping spring, and a second crossbar. The contactor includes a push spring to push a movable contact toward a fixed contact, a trip coil connected to the fixed contact, and a plunger that is operated by an electromagnetic force generated in the trip coil when a current of a predetermined value or higher flows through the trip coil. The contactor includes an opening lever to push the second crossbar in a direction away from the first crossbar in conjunction with the operation of the plunger. |
US11348752B2 |
Intelligent circuit breakers with air-gap and solid-state switches
A circuit breaker comprises a solid-state switch, an air-gap electromagnetic switch, switch control circuitry, a zero-crossing detection circuit, and a current sensor. The solid-state and air-gap switches are connected in series in an electrical path between line input and load output terminals of the circuit breaker. The switch control circuitry controls the solid-state and air-gap switches. The zero-crossing detection circuit detects zero crossings of an AC waveform on the electrical path. The current sensor senses current flow in the electrical path to detect a fault condition based on the sensed current flow. In response to a detected fault condition, the switch control circuitry generates control signals to place the solid-state switch into a switched-off state and place the air-gap switch into a switched-open state after the solid-state switch is placed into the switched-off state. The switch control circuitry utilizes zero-crossing detection signals output from the zero-crossing detection circuit to determine when to place the air-gap switch into the switched-open state. |
US11348750B2 |
Relay
A relay includes a first fixed contact, a second fixed contact, a movable contact piece having first and second movable contacts, a contact piece holding unit configured to hold the movable contact piece, and first to fourth magnets. The first magnet and the second magnet are disposed so that same poles thereof face each other. The movable contact piece is disposed between the first magnet and the second magnet in a width direction of the movable contact piece. The third magnet is disposed so as to increase a magnetic flux in a longitudinal direction of the movable contact piece at a position between the first fixed contact and the first movable contact. The fourth magnet is disposed so as to increase a magnetic flux in the longitudinal direction of the movable contact piece at a position between the second fixed contact and the second movable contact. |
US11348747B2 |
Switch assembly with energy harvesting
A switch assembly including a switch and a high impedance element used for energy harvesting purposes that are connected to a power line at one end and assembly electronics at an opposite end, where in one non-limiting embodiment the switch assembly has particular application for use in connection with a vacuum interrupter. The high impedance element has higher impedance than the switch so that current flows through the switch from the power line when the switch is closed and through the high impedance element from the power line when the switch is open, where power from the high impedance element can power a switch closing device, such as a solenoid actuator. The high impedance element can be a resistive element, a capacitive element or a combination of a resistive and capacitive element. |
US11348743B2 |
Automatic balance apparatus with double-moving-contact spring leaf
The utility model discloses an automatic balance apparatus with a double-moving-contact spring leaf in a socket, which may ensure that two moving contacts are in good contact with corresponding stationary contacts. The automatic balance apparatus includes a lifting slide block, where the lifting slide block is provided with a lifting base below the spring leaf, a balance warped plate corresponding to an arrangement direction of moving contacts is movably disposed in the lifting base, and upward protruding portions are respectively disposed on two sides of the top surface of the balance warped plate. The utility model is particularly applicable to various ground fault circuit interrupters (GFCIs) and arc fault circuit interrupters (AFCIs). |
US11348742B2 |
Wet/dry contact sequencer
Device, circuit, system, and method for contact sequencing are discussed. An electrical circuit includes a first pair of terminals adapted to be connected across a first set of switchable contacts, and a second pair of terminals adapted to be connected across a second set of switchable contacts that are coupled to an arc suppression circuit. A controller circuit is coupled to the first and second pairs of terminals and is configured to sequence activation or deactivation of the first and second sets of contacts based on a contact control signal. A first power switching circuit is coupled to the first pair of terminals and the controller circuit. The first power switching circuit is configured to switch power from an external power source and to trigger the activation or the deactivation of the first set of switchable contacts based on a first logic state signal from the controller circuit. |
US11348737B2 |
Plate capacitor having a plate made of an elastic material
A plate capacitor having a first capacitor plate which is arranged at a distance from a second capacitor plate. The first capacitor plate is produced from an elastic material and has a curved shape in the unloaded state. The first capacitor plate is held by a holder. The elastic material to be is electrically conductive or is provided with an electrically conductive layer. An electrically insulating layer is arranged between the first and the second capacitor plate. |
US11348731B2 |
Multi-layer ceramic electronic component and method of producing the same
A multi-layer ceramic electronic component includes a ceramic body including a multi-layer unit, a side margin, and ridges. The multi-layer unit includes a capacitance forming unit including ceramic layers laminated in a first direction and internal electrodes disposed between the ceramic layers, a cover that covers the capacitance forming unit in the first direction, and a side surface facing in a second direction orthogonal to the first direction. The side margin covers the side surface. The ridges are rounded and extend in a third direction orthogonal to the first and second directions. The capacitance forming unit includes a first region disposed at a center portion in the first direction, and a second region disposed between the cover and the first region, end portions of the internal electrodes in the second direction in the second region being positioned inward in the second direction relative to those in the first region. |
US11348730B2 |
Multilayer ceramic capacitor and method of manufacturing the same
A multilayer ceramic capacitor includes: a ceramic body including dielectric layers and having first and second surfaces opposing each other, third and fourth surfaces connecting the first and second surfaces, and fifth and sixth surfaces connected to the first to fourth surfaces and opposing each other; a plurality of internal electrodes; and first and second side margin portions disposed on end portions of the internal electrodes exposed to the first and second surfaces, wherein each of the first and second side margin portions is divided into a first region adjacent to an outer side surface of the side margin portion and a second region adjacent to the internal electrodes exposed to the first and second surfaces, and a content of magnesium (Mg) contained in the second region is higher than a content of magnesium (Mg) contained in the first region. |
US11348725B2 |
Method of manufacturing visually stereoscopic print film and visually stereoscopic print film manufactured using the method
Disclosed are a stereoscopic magnetic print film formed using magnetic particles and a method of manufacturing the stereoscopic magnetic print film. The method includes preparing magnetic ink including magnetic particles, forming a printing layer on a base layer using the prepared magnetic ink, and forming a stereoscopic pattern by applying a magnetic field to the printing layer. |
US11348722B2 |
Coil component and method of manufacturing the same
A coil component includes a body; an internal insulating layer buried in the body; insulating walls disposed on the internal insulating layer, and including openings each having a planar coil shape having at least one turn; coil patterns including first conductive layers disposed in the openings, and second conductive layers disposed between the first conductive layers and internal surfaces of the openings, and each having a first surface in contact with the internal insulating layer and a second surface opposing the first surface; and a recessed portion formed on the second surface of each of the coil patterns and exposing at least portions of the openings of the internal walls. |
US11348711B2 |
Core-shell particle, fired product of core-shell particle, manufacturing method of core-shell particle, epsilon type iron oxide-based compound particle, manufacturing method of epsilon type iron oxide-based compound particle, magnetic recording medium, and manufacturing method of magnetic recording medium
The invention provides a core-shell particle which can provide, by being calcinated, epsilon type iron oxide-based compound particles that have a small coefficient of variation of primary particle diameter and show excellent SNR and running durability when employed in a magnetic recording medium as well as applications thereof. The core-shell particle includes: a core including at least one iron oxide selected from Fe2O3 or Fe3O4, or iron oxyhydroxide; and a shell that coats the core, the shell including a polycondensate of a metal alkoxide and a metal element other than iron, as well as applications thereof. |
US11348710B1 |
Surface mount metal oxide varistor device
A metal oxide varistor (MOV) device including a MOV chip having first and second electrodes disposed on opposing side thereof, a first lead frame portion including a first contact tab electrically connected to the first electrode and a first lead contiguous with the first contact tab and extending away from the MOV chip, a second lead frame portion including a second contact tab electrically connected to the second electrode and a second lead contiguous with the second contact tab and extending away from the MOV chip, and a device body encasing the MOV chip, the first contact tab, the second contact tab, and portions of the first and second leads, wherein the first and second leads extend out of the device body and are bent into flat abutment with a bottom surface of the device body. |
US11348706B2 |
Shielded electrical cable
A shielded electrical cable includes conductor sets extending along a length of the cable and spaced apart from each other along a width of the cable. First and second shielding films are disposed on opposite sides of the cable and include cover portions and pinched portions arranged such that, in transverse cross section, the cover portions of the films in combination substantially surround each conductor set. An adhesive layer bonds the shielding films together in the pinched portions of the cable. A transverse bending of the cable at a cable location of no more than 180 degrees over an inner radius of at most 2 mm causes a cable impedance of the selected insulated conductor proximate the cable location to vary by no more than 2 percent from an initial cable impedance measured at the cable location in an unbent configuration. |
US11348704B2 |
Production method for insulated electric wire and insulated electric wire
An insulated electric wire includes a conductor of a plurality of twisted elemental wires made of a conductive material, and an insulation covering. The wire includes an exposed portion in which the insulation covering is removed, and a covered portion in which the insulation covering covers the conductor. The exposed portion and the covered portion are adjacent with each other along a longitudinal axis of the wire. The covered portion includes an adjacent area located adjacent to the exposed portion, and a remote area located adjacent to the adjacent area and apart from the exposed portion. A density of the conductive material per unit length is higher in the exposed portion than in the remote area. The elemental wires are twisted in both the exposed portion and the remote area. Gaps between the elemental wires of the exposed portion are filled with a sealant. |
US11348702B2 |
System, emanation generator, and process for production of high-purity therapeutic radioisotopes
An isotope production system, emanation generator, and process are disclosed for production of high-purity radioisotopes. In one implementation example, high-purity Pb-212 and/or Bi-212 isotopes are produced suitable for therapeutic applications. In one embodiment the process includes transporting gaseous radon-220 from a radium-224 bearing generator which provides gas-phase separation of the Rn-220 from the Ra-224 in the generator. Subsequent decay of the captured Rn-220 accumulates high-purity Pb-212 and/or Bi-212 isotopes suitable for direct therapeutic applications. Other high-purity product isotopes may also be prepared. |
US11348695B2 |
Machine logic for recommending specialized first aid services
Technology for locating medical supplies, medical practitioners and/or non-medical-practitioner individuals who are in proximity to a first user who is experiencing a medical emergency. Appropriate notifications of and/or to the proximate medical supplies, medical practitioners and/or non-medical-practitioner individuals are made over a communication network. |
US11348683B2 |
System and method for processing medical claims
A computer-implemented system for processing medical claims is disclosed. The system includes a medical device configured to be manipulated by a user while the user performs a treatment plan; a patient interface associated with the medical device, the patient interface comprising an output configured to present telemedicine information associated with a telemedicine session; and a processor. During the telemedicine session, the processor is configured to receive information from a medical device. Using the device-generated information, the processor is further configured to determine device-based medical coding information. The processor is further configured to transmit the device-based medical coding information to a claim adjudication server. |
US11348676B2 |
Medical examination system control apparatus and control method therefor
A medical examination system causes a display unit to display an object for shifting to examination processing together with patient information corresponding to identification information of a patient received by a receiving unit if the patient information of the patient is input via an operation unit when the receiving unit receives the identification information of the patient from an external device. The medical examination system shifts to the examination processing without causing the display unit to display the object if the patient information is not input via the operation unit when the receiving unit receives the patient information. |
US11348673B2 |
System and method for distributed medication management
A method including authorizing a user to access a dispensing unit upon receipt of a medication request, is provided. The dispensing unit comprises a storage location with one or more door enclosure storing at least one container. The method also includes providing a visual indicator to the user for a selected container in the storage location with one or more door enclosure, the selected container comprising a medication associated with the medication request, and unlocking the selected container for the user by wirelessly actuating a latch for a lid in the selected container from a mat that is communicatively coupled with the dispensing unit. The method also includes locking the selected container when the user verifies a transaction comprising the medication request, and updating a record and a medication inventory in a remote server based on the transaction. A storage location with one or more door enclosure and a container used in the above method are also provided. |
US11348669B2 |
Clinical trial re-evaluation system
A clinical trial re-evaluation system is operable to perform at least one assessment function on a set of medical scans for each of a first subset of a set of patients of a failed clinical trial to generate automated assessment data for each of the first subset of the set of patients. The first subset of the set of patients corresponds to a subset of human assessment data determined to have failed to meet criteria of the clinical trial. Patient re-evaluation data is generated for each of the first subset of the set of patients by comparing the automated assessment data to the criteria. The patient re-evaluation data for a second subset of the first subset of the set of patients indicates the automated assessment data passes the criteria. Trial re-evaluation data is generated based on the patient re-evaluation data for transmission to a computing device for display. |
US11348664B1 |
Machine learning driven chemical compound replacement technology
Techniques to suggest alternative chemical compounds that can be used to recreate or mimic a target flavor using artificial intelligence are disclosed. A neural network based model is trained on source chemical compounds and their corresponding flavors and odors. The neural network-based model learns compound embeddings of the source chemical compounds and a target chemical compound of a food item. From the compound embeddings, one or more chemical compounds that are closest to the target chemical compound may be determined by a distance metric. Each suggested chemical compound is an alternative that can be used to recreate functional features of the target chemical compound. |
US11348659B2 |
Adjustable voltage drop detection threshold in a memory device
Devices and techniques for an adjustable voltage drop detection threshold in a memory device are disclosed herein. A voltage drop detection threshold of a memory device is dynamically established. A power loss event is triggered when the supply voltage falls below the voltage drop detection threshold. An error parameter associated with performing multiple memory operations on the memory device is collected. The multiple memory operations are performed while applying a supply voltage at a second supply voltage level of the memory device which is less than a first supply voltage level established as a first operating voltage for the memory device. Determining whether the error parameter is below an allowable error threshold. In response to determining that the error parameter is below the allowable error threshold, the voltage drop detection threshold is established at a voltage level less than the first supply voltage level. |
US11348658B2 |
Memory controller and storage device including the same
A memory controller and a storage device including the same are provided. The memory controller performs decoding by selecting a decoder of a level enough to correct bit errors in a codeword from among a plurality of error correction code (ECC) decoders based on a bit error history of a non-volatile memory device. |
US11348657B2 |
Storage control circuit, storage apparatus, imaging apparatus, and storage control method
It is aimed to detect an error of an address abnormality in a memory. An address error detection information generating unit generates address error detection information for detecting an error relating to an access address for a memory. A control part stores the address error detection information generated by the address error detection information generating unit in the memory at a time of write access. An error detecting part compares the address error detection information generated by the address error detection information generating unit with the address error detection information stored in the memory to detect an error at a time of read access. |
US11348652B2 |
Neural network inference accelerator based on one-time-programmable (OTP) memory arrays with one-way selectors
The disclosed embodiments provide neural network inference accelerator based on one-time-programmable (OTP) memory arrays with one-way selectors. In some embodiments, a memory array may comprise: a plurality of one-time-programmable memory cells each comprising: a one-time-programmable memory element; a top electrode having an upper surface in contact with the one-time-programmable memory element; a dielectric layer in contact with a lower surface of the top electrode; a bottom electrode; and a dense layer having an upper surface in contact with the dielectric layer, and a lower surface in contact with the bottom electrode, wherein the dense layer comprises Al2O3 or MgO. |
US11348651B2 |
Hot carrier injection fuse memory
Memory cell circuitry is disclosed. The memory cell circuitry includes a first transistor configured to have a threshold voltage of the first transistor modulated by hot carrier injection, a second transistor coupled to the first transistor and configured to have a threshold voltage of the second transistor modulated by hot carrier injection, a word line coupled to a gate of the first transistor and to a gate of the second transistor, a first bit line coupled to the first transistor and a second bit line coupled to the second transistor. In addition, the memory cell circuitry includes a source line coupled to the drain of the first transistor and to the drain of the second transistor, the word line and the source line configured to cause hot carrier injection (HCI) into the first transistor when a first supply voltage is applied to the word line and the source line, and the second bit line is floated and the first bit line is grounded. The word line and the source line are configured to cause hot carrier injection into the second transistor when the first supply voltage is applied to the word line and the source line, and the first bit line is floated and the second bit line is grounded. Methods utilizing this technology for generating a multi-time programmable non-volatile memory and a random number generator for physical unclonable function applications are included in this disclosure. |
US11348650B2 |
Destruction of data and verification of data destruction on a memory device
A failed erase operation is detected at a memory block of a memory device. Based on detecting the failed erase operation at the memory block, data on the memory block is destroyed using a data destruction algorithm that corrupts data stored by one or more cells of the block. The data on the memory block is verified to be destroyed. A passing data destruction status for the memory block is provided based on verifying the data on the memory block is destroyed. |
US11348645B1 |
Method for programming B4 flash memory
A method for programming a B4 flash memory includes: floating a source of a P-channel flash memory device; separately applying voltages to a gate, a drain, and a bulk of the P-channel flash memory device, and injecting holes into the bulk, so that electrons are gathered in the drain to form primary electrons; separately applying voltages to the drain and the bulk, so that an electric field is formed between the drain and the bulk, where the holes accelerate downward under the action of the electric field and impact the bulk in the P-channel flash memory device to generate secondary electrons; and separately applying voltages to the gate and the bulk of the P-channel flash memory device, so that the secondary electrons form tertiary electrons under the action of the electric field in a vertical direction, where the tertiary electrons are superposed with the primary electrons to be injected into a floating gate. |
US11348638B2 |
Memory sense amplifier with precharge
A memory device includes a memory cell and a sense amplifier. The sense amplifier has a reference circuit configured to output a reference voltage and a sensing circuit connected to the memory cell. A comparator includes a first input and a second input, with the first input connected to the reference circuit to receive the reference voltage, and the second input connected to the memory cell. A precharger is configured to selectively precharge the sensing circuit to a predetermined precharge voltage. |
US11348633B2 |
Selectively controlling clock transmission to a data (DQ) system
An apparatus may include a delay line that receives a command signal and provides a delayed command signal. The apparatus may include an edge starter that provides a clock enable signal responsive, at least in part, to a change in level of the command signal. A gate circuit of the apparatus may provide a shift clock signal responsive, at least in part, to the clock enable signal. The apparatus may also include a shifter that captures and shifts the delay command signal responsive, at least in part, to the shift clock signal. |
US11348628B2 |
Non-volatle memory with virtual ground voltage provided to unselected column lines during memory read operation
A memory includes virtual ground circuitry configured to generate a virtual ground voltage (greater than zero volts) at a virtual ground node, a memory array of resistive memory cells in which each resistive memory cell includes a select transistor and a resistive storage element and is coupled to a first column line of a plurality of first column lines, and a first decoder configured to select a set of first column lines for a memory read operation from a selected set of the resistive memory cells. The memory includes read circuitry, and a first column line multiplexer configured to couple each selected first column line of the set of first column lines to the read circuitry during the memory read operation, and configured to couple each unselected first column line of the plurality of first column lines to the virtual ground node during the memory read operation. |
US11348626B2 |
Magnetic memory devices having multiple magnetic layers therein
A magnetic memory device includes a first magnetic layer extending in a first direction, a second magnetic layer that extends on and parallel to the first magnetic layer, and a conductive layer extending between the first magnetic layer and the second magnetic layer. The first magnetic layer includes a first region having magnetic moments oriented in a first rotational direction along the first direction. The second magnetic layer includes a second region having magnetic moments oriented in a second rotational direction along the first direction. The second rotational direction is different from the first rotational direction. |
US11348625B2 |
Enable signal generation circuit and semiconductor apparatus using the same
A semiconductor apparatus includes a command decoding circuit and an enable signal generation circuit. The command decoding circuit generates an operation code and a strobe pulse based on a command signal and a clock signal. The enable signal generation circuit generates a seed signal based on the operation code and the strobe pulse and generates an enable signal by shifting the seed signal. The enable signal generation circuit generates a plurality of guard keys based on a plurality of operation codes and the strobe pulse and prevents the generation of the enable signal for a predetermined time when the plurality of guard keys are not sequentially enabled. |
US11348623B2 |
Memory device, controller controlling the same, memory system including the same, and operating method thereof
A method of operating a memory device includes receiving a training request for a data channel, detecting at least one mode parameter according to the training request, transmitting the detected mode parameter to an external device, setting at least one of an NRZ mode and a PAM4 mode to a transmission signaling mode based on mode register set setting information from the external device, and performing communications with the external device according to the set transmission signaling mode. |
US11348622B2 |
Conditional write back scheme for memory
Apparatuses and methods can be related to implementing a conditional write back scheme for memory. The data may be stored by memory cells of a memory array. The data may be moved to sense circuitry. The data can be conditionally held by the sense circuitry while a plurality of operations is performed. The results of the plurality of operations can dictate whether to commit the data to the memory cells. |
US11348619B2 |
Dual gasket for manufacturing of hermetically-sealed hard disk drive
A hard disk drive (HDD) includes an enclosure base, a first cover coupled to the base, and two separate gasket seals composed of different materials and configured to seal the interface between the first cover and the base. One gasket seal is composed of a material having a low permeability to helium or another lighter-than-air gas contained within the HDD, and the other gasket seal is composed of material having a low water vapor or moisture transmission. By using two separate independent gaskets which have different attributes, helium concentration is kept high and humidity is kept low during manufacturing testing, prior to affixing a hermetic second cover over the first cover, and degradation of HDD performance due to change of flying height is ultimately avoided. |
US11348618B2 |
Systems and methods for dynamic video bookmarking
Methods and systems for dynamic bookmarking in branched video are described. An application provides a video tree having a plurality of video segments, with each video segment including a predefined portion of one or more paths in the video tree, and each path being associated with a different video presentation. One of the paths in the video tree is traversed based on one or more decisions made by a user during playback of the video presentation associated with the path being traversed. A selection of a particular location in the path being traversed is received by the application, which stores a bookmark of the location for subsequent retrieval. The bookmark identifies a sequence of video segments in the video tree having been traversed to reach the location. The structure of the video tree is modified, and the bookmark is automatically updated, if necessary. At a later time, the application receives a selection of the stored bookmark and seeks to the bookmarked location. The application further restores the decisions made by the user during the previous playback of the presentation. |
US11348605B1 |
Writer with adaptive side gap
A PMR (perpendicular magnetic recording) write head configured for thermally assisted magnetic recording (TAMR) and microwave assisted magnetic recording (MAMR) is made adaptive to writing at different frequencies by inserting thin layers of magnetic material into the material filling the side gaps (SG) between the magnetic pole (MP) and the side shields (SS). At high frequencies, the thin magnetic layers saturate and lower the magnetic potential of the bulky side shields. |
US11348601B1 |
Natural language understanding using voice characteristics
A system is provided for using voice characteristics in determining a user intent corresponding to an utterance. The system processes a NLU hypothesis and voice characteristics data, using a trained model, to determine an alternate NLU hypothesis based on the voice characteristics data. The voice characteristics data may indicate if a user's level of uncertainty when speaking the utterance, an age group of the user, a sentiment of the user when speaking the utterance, and other data. |
US11348599B1 |
System and method for classifying audio detected during operation of a hard disk drive to determine drive health
A method, system, and computer-usable medium are disclosed for classifying audio detected during operation of a hard disk drive to determine the status of the hard disk drive. One general aspect of the disclosure is directed to a system in which digital audio corresponding to audio detected by an audio transducer in proximity to moving mechanical components of a hard disk drive is recorded. The recorded digital audio is classified, using a trained machine learning model, to provide a health status of the hard disk drive based on the classification. |
US11348597B2 |
Intent-based network validation
A network validation system is described which may perform operations such as generating, analyzing, verifying, correcting, recommending, and deploying language, symbols, etc., such as domain specific language, configured to allow users to express their intent on the configuration and operation of a network, such as a cloud-based network. The network validation system may provide domain specific language that includes rules, statements, symbols, data, etc., configured to convey the intent of users on the configuration and operation of networks for purposes such as configuring and/or validating communication paths, testing or setting associated network object configurations, and may be employed to report violations in such configurations relative to user intent of the one or more users. The network validation system may also be employed to monitor such domain specific language and generate telemetry signaling, for example, that a rule has or has not been violated, actions a user may take, etc. |
US11348593B2 |
Method and system for encoding and decoding data in audio
A method and system for encoding data in audio are provided. A sequence of time deltas is generated at least partially based on a set of data. At least some of the time deltas are less than a threshold at which a human naturally detects an echo. A second audio channel is generated from a first audio channel, the second audio channel being temporally shifted relative to the first audio channel using the sequence of time deltas. The first and second audio channels are played back simultaneously via at least one audio transducer. The composite audio channel is registered via at least one microphone and processed to identify the first and second audio channels that are at least partially relatively temporally shifted. A sequence of time deltas by which the second audio channel is shifted temporally relative to the first audio channel is determined, and a set of data is decoded at least partially therefrom. |
US11348585B2 |
Artificial intelligence apparatus
Disclosed herein are an artificial intelligence apparatus and a method of operating the same. The artificial intelligence apparatus includes one or more processors that obtain weight data of a container and speech data, determines whether the container is seated on a seating portion of a water dispensing apparatus using the weight data, adjusts a speech recognition sensitivity according to whether the container is seated on the seating portion, inputs the first speech data to a speech recognition model and allows the water dispensing apparatus to perform a first water dispensing operation corresponding to first water dispensing information when the speech recognition model outputs the first water dispensing information based on the first speech data. |
US11348584B2 |
Method for voice recognition via earphone and earphone
A method for voice recognition via an earphone is disclosed. The method includes receiving first audio data via the first microphone and buffering the first audio data in response to the first trigger signal; receiving second audio data via the first microphone and recognizing whether the first audio data contains data of a wake-on-voice word in response to the second trigger signal; and recognizing whether the second audio data contains data of the wake-on-voice word. The first audio data is received and buffered in a first duration starting from when the first trigger signal is received and ending when the second trigger signal is received. The second audio data is received in a second duration starting from when the second trigger signal is received and ending when whether the first audio data contains data of the wake-on-voice word is recognized. |
US11348583B2 |
Data processing method and apparatus for intelligent device, and storage medium
The present disclosure discloses a data processing method and apparatus for an intelligent device, and a storage medium, which relates to a field of artificial intelligence technologies. The method includes: extracting key voice information from collected user voice information; in a non-wireless fidelity (WiFi) network environment, transmitting the key voice information to a mobile terminal, so that the mobile terminal transmits the key voice information to a server, and receives a processing result fed back by the server after the server processes the key voice information; and obtaining the processing result from the mobile terminal to display the processing result. |
US11348580B2 |
Hearing aid device with speech control functionality
A hearing aid device for processing signals comprising audio in order to assist a hearing impaired user and being configured to be arranged at, behind and/or in an ear of the user is disclosed. The hearing aid device comprises at least one input transducer, an output transducer, an antenna, a wireless interface, and a signal processing unit. The at least one input transducer is adapted for receiving signals comprising audio. The output transducer is adapted for providing signals comprising audio to the user. The antenna is adapted for wirelessly communicating with a respective external device. The wireless interface is adapted for receiving and/or sending data via the antenna. The signal processing unit is adapted for processing signals comprising audio in order to assist a hearing impaired user. Furthermore the signal processing unit is adapted for extracting speech signals from the signals comprising audio and for generating control signals based on the speech signals. At least one of the control signals generated by the signal processing unit is adapted for controlling the respective external device. The wireless interface is adapted for sending the at least one of the control signals to the respective external device via the antenna in order to control the respective external device. |
US11348576B1 |
Universal and user-specific command processing
A system configured to process an incoming spoken utterance and to coordinate among multiple speechlet components to execute an action of the utterance, where a trained model considers user history and preference information to select the primary speechlet to execute the action as well as any intermediate speechlets that may be provide input data to the speechlet that will ultimately perform the action. The trained model may also consider current dialog information, feedback data, or other data when determining how to process a dialog. |
US11348575B2 |
Speaker recognition method and apparatus
A speaker recognition method and apparatus receives a first voice signal of a speaker, generates a second voice signal by enhancing the first voice signal through speech enhancement, generates a multi-channel voice signal by associating the first voice signal with the second voice signal, and recognizes the speaker based on the multi-channel voice signal. |
US11348573B2 |
Multimodality in digital assistant systems
Systems and processes for operating an intelligent automated assistant are provided. An example process for determining user intent includes receiving a natural language input and detecting an event. The process further includes, determining, at a first time, based on the natural language input, a first value for a first node of a parsing structure; and determining, at a second time, based on the detected data event, a second value for a second node of the parsing structure. The process further includes in accordance with a determination that the first time and the second time are within the predetermined time: determining, using the parsing structure, the first value, and the second value, a user intent associated with the natural language input; initiating a task based on the determined intent; and providing an output indicative of the task. |
US11348572B2 |
Speech recognition method and apparatus
A speech recognition method includes obtaining an acoustic sequence divided into a plurality of frames, and determining pronunciations in the acoustic sequence by predicting a duration of a same pronunciation in the acoustic sequence and skipping a pronunciation prediction for a frame corresponding to the duration. |
US11348569B2 |
Speech processing device, speech processing method, and computer program product using compensation parameters
A speech processing device includes a hardware processor configured to receive input speech and extract speech frames from the input speech. The hardware processor is configured to calculate a spectrum parameter for each of the speech frames, calculate a first phase spectrum for each of the speech frames, calculate a group delay spectrum from the first phase spectrum based on a frequency component of the first phase spectrum, calculate a band group delay parameter in a predetermined frequency band from the group delay spectrum, and calculate a band group delay compensation parameter to compensate a difference between a second phase spectrum reconstructed from the band group delay parameter and the first phase spectrum. The hardware processor is configured to generate a speech waveform based on the spectrum parameter, the band group delay parameter, and the band group delay compensation parameter. |
US11348568B2 |
Reactive silent speaker device for simulating harmonic nonlinearities of a loudspeaker
Disclosed is a device for introducing loudspeaker harmonic nonlinearities to a signal without outputting the signal as audio or sound through a loudspeaker and recording the output audio or sound. The device includes a resistive element and an inductive element. The resistive element includes a hollow core and a first wire wound around the hollow core in a first direction. The inductive element is inserted within the hollow core of the resistive element, and includes a metal-based core and a second wire wound around the metal-based core in an opposite second direction. A signal or current is first passed through the inductive element, creating electromagnetic distortion between the resistive element and the inductive element that simulates inductance of the loudspeaker voice-coil. The electromagnetic distortion alters the signal by introducing harmonic nonlinearities into the signal. |
US11348565B2 |
Assembly forming an acoustic insulator
An assembly forming an acoustic insulator having a first sheet, a pierced second sheet, and a plurality of first and second structures. Each first structure comprises a first and a second strip, wherein each is shaped to form half of the wall of a cage and wherein, for two successive halves, each strip comprises a facet of a joining wall. Each second structure is made up of a first and a second strip, wherein each is shaped to form half of the wall of a cone, wherein. For each strip, at least one of the wall halves of each cone is pierced. For two successive halves, each strip comprises one facet of the connecting wall. Each cone is located in a cell and each connecting wall is located between the two facets of a joining wall, and, between two adjacent first structures, a second structure is likewise fitted. |
US11348563B2 |
Pickup saddles for stringed instruments utilizing interference fit
In several embodiments of the invention, a pickup saddle for a stringed instrument includes a U-shaped top cap having two legs, each leg including a receiving portion configured to mate with a mating portion of a base, a base fitted to the interior of the top cap, where two surfaces of the base include a mating portion matching with and affixed to a receiving portion of the top cap, a piezoelectric transducer placed between the top cap and the base and electrically connected to the base, a positive wire connected to the piezoelectric transducer, and a ground wire connected to the base. |
US11348555B2 |
Display with localized brightness adjustment capabilities
An electronic device may have a display with an array of pixels. The device may have an array of components such as an array of light sensors for capturing fingerprints of a user through an array of corresponding transparent windows in the display. A capacitive touch sensor, proximity sensor, force sensor, or other sensor may be used by control circuitry in the device to monitor for the presence of a user's finger over the array of light sensors. In response, the control circuitry can direct the display to illuminate a subset of the pixels, thereby illuminating the user's finger and causing reflected light from the finger to illuminate the array of light sensors for a fingerprint capture operation. The display may have display driver circuitry that facilitates the momentary illumination of the subset of pixels with uniform flash data while image data is displayed in other portions of the display. |
US11348554B1 |
Electronic devices having displays with peripheral luminance compensation
An electronic device may have a display. A protective display cover layer for the display may tend to dim pixels near the edge of the display. Control circuitry in the electronic device may boost luminance for pixels in an edge region of a displayed image relative to a center region of the image. This ensures that image brightness does not vary across the image. The control circuitry may include a graphics processing unit, a pixel pipeline implemented in a system-on-chip circuit block, and a display drive circuit block. Luminance compensation may be implemented in the system-on-chip block and/or in the display driver circuit block. |
US11348552B2 |
Method for determining data processing sequence, display apparatus and display method thereof
A method for determining a data processing sequence, for determining a selected color in a plurality of colors display by subpixels included in each pixel of a display apparatus, and the method comprising: determining, according to grayscale values of subpixels of candidate colors in a plurality of pixels included in a plurality of frames of images displayed in a current detection cycle, a usage level representative value of each candidate color in the current detection cycle; and selecting one of the candidate colors as a selected color of a next detection cycle according to detection sequence determining parameters, the detection sequence determining parameters including the usage level representative value of each candidate color in the current detection cycle. By this method, the subpixels of colors with large usage level representative values may be detected and compensated in time. |
US11348550B2 |
Driving method of display panel and display device
A driving method of a display panel, comprising: dividing pixels into a plurality of pairs of pixel sets comprising a first pixel set and a second pixel set comprising different color sub-pixels; acquiring a first voltage signal and a second voltage signal, wherein the frame comprises a first frame and a second frame at neighboring timings; adopting the first voltage signals to drive the color sub-pixels of the first pixel set, and adopting the second voltage signals to drive the color sub-pixels of the second pixel set upon displaying the first frame; and adopting the second voltage signals to drive the color sub-pixels of the first pixel set, and adopting the first voltage signals to drive the color sub-pixels of the second pixel set upon displaying the second frame. |
US11348549B2 |
Display device and method of driving display device
According to one embodiment, a display device includes a first scanning line, a second scanning line, a signal line, a capacitance line, and a pixel. The pixel includes a pixel electrode, an auxiliary electrode, a first switch, a second switch, and a third switch. The first switch is electrically connected to the signal line, the pixel electrode, and the first scanning line. The second switch is electrically connected to the auxiliary electrode, the first scanning line, and the capacitance line. The third switch is electrically connected to the signal line, the second scanning line, and the auxiliary electrode. |
US11348545B2 |
Image processing device, display device, and image processing method
Image quality degradation in a display device with two liquid crystal cells is reduced. For this purpose, as an image signal for a liquid crystal display panel in which a display image is generated by light passing through a rear liquid crystal cell and a front liquid crystal cell, an image processing unit generates a rear image signal for the rear liquid crystal cell and a rear image signal for the front liquid crystal cell.This image processing unit includes a gradation value conversion unit that performs a gradation value conversion on an input image signal so as to generate a rear image signal for the rear liquid crystal cell, and a limit processing unit that performs a process of limiting a value of the rear image signal output from the gradation value conversion unit to a predetermined limit value. |
US11348540B2 |
Display device driving method, and display device
This application discloses a display device driving method and a display device. The driving method includes steps of: synchronously starting a backlight circuit, a timing control circuit and a power circuit; outputting a first signal after the timing control circuit is initialized; outputting a second signal after the power circuit is started; and controlling a gate driver to output a drive signal according to the first signal and the second signal. |
US11348539B2 |
Driving method of display device and display device
A driving method of a display device and the display device, a display panel includes at least one pixel area and at least one backlight module area. The pixel area and the backlight module area are in one-to-one correspondence. Each of the pixel areas includes a plurality of pixel units. The driving method includes: acquiring a first component, a second component, and a third component of each of the pixel units in the pixel area in a first color space; acquiring a tone angle value and a saturation in a second color space according to an average value of the first component, an average value of the second component, and an average value of the third component of the pixel unit in the pixel area; acquiring a maximum target gray-scale value of a specified pixel unit in the pixel area according to the tone angle value and the saturation; matching a display gray-scale value group corresponding to the specified pixel unit to a target gray-scale value group according to the maximum target gray-scale value; the number of gray-scale values in the display gray-scale value group is equal to the number of gray-scale values in the target gray-scale value group, the maximum target gray-scale value is less than a maximum display gray-scale value in the display gray-scale value group; and driving the specified pixel unit in the pixel area to display according to the target gray-scale value group. |
US11348538B2 |
Power saving display having improved image quality
The present disclosure is directed to systems and methods of optimizing display image quality on display devices having a plurality of display power modes. An example apparatus includes processor circuitry to execute instructions to: determine a baseline allowable percentage of distorted pixels for a power mode of a display; determine a baseline first relationship between an original pixel value and a boosted pixel value for the power mode; determine a baseline second relationship based on the baseline allowable percentage and the baseline first relationship; select a plurality of test distorted pixel percentages; determine, for respective selected test distorted pixel percentages, a corresponding test relationship between an original pixel color value distribution and a boosted pixel color value distribution based on the baseline second relationship; determine, for respective test relationships, a respective test peak signal to noise ratio (PSNR); determine, for the respective test PSNRs, respective values indicative of the change in image quality for the test distorted pixel percentages; and select, as the operating distorted original pixel percentage value, one of the test distorted pixel percentages based on the values. |
US11348536B2 |
Detection circuit and driving method thereof, and display panel
Provided is a detection circuit and a driving method thereof, and a display panel. The detection circuit includes: a plurality of first detection circuits, a plurality of second detection circuits, and a plurality of third detection circuits. The first detection circuit is connected to a first pin, a first control signal terminal, a first detection signal terminal, and a first gate line corresponding to the first detection circuit; the second detection circuit is connected to a second pin, a second control signal terminal, a second detection signal terminal, and a second gate line corresponding to the second detection circuit; the third detection circuit is connected to a first data line corresponding to the third detection circuit, a sensing signal line corresponding to the third detection circuit, a third detection signal terminal, and a third control signal terminal. |
US11348534B2 |
Shift register unit and method for driving the same, and gate driving circuit
A shift register unit and a method for driving the same, and a gate driving circuit are provided. The shift register unit includes: an adjustment circuit coupled between an input signal terminal and an input node of the shift register unit, and configured to couple or decouple the input signal terminal and the input node under control of a potential at the input signal terminal; an input circuit for providing a potential at the input node to the pull-up node under control of a potential at the input signal terminal; an output circuit for receiving a clock signal from the clock signal terminal and provide an output signal to the output signal terminal based on the received clock signal under control of a potential at the pull-up node; and a control circuit for controlling a potential at the output signal terminal under control of a potential at the pull-up node. |