Document Document Title
US11336989B2 Earpiece with GPS receiver
An earpiece includes an earpiece housing, a processor disposed within the earpiece, a speaker operatively connected to the processor, a microphone operatively connected the processor, and a global navigation satellite system (GNSS) receiver disposed within the earpiece. A system may include a first earpiece having a connector with earpiece charging contacts, a charging case for the first earpiece, the charging case having contacts for connecting with the earpiece charging contacts, and a global navigation satellite system (GNSS) receiver disposed within the charging case.
US11336985B2 In-ear wireless device
An in-ear listening device having a device housing including a speaker housing and an elongated tube protruding away from the speaker housing, an audio port formed through the speaker housing, a speaker disposed in the speaker housing and aligned to emit sound through the audio port, a microphone port formed through the elongated tube, a microphone disposed in the elongated tube and operatively coupled to receive sound through the microphone port, a rechargeable battery and a wireless antenna disposed within the device housing, wireless circuitry coupled to the wireless antenna and configured to input and output radio frequency signals for wireless communications, a user-interface touch control disposed on the device housing and operable to control a function of the earbud, and battery charging circuitry coupled to the rechargeable battery and positioned within the device housing and operable to charge the rechargeable battery when coupled to receive power from an external power source.
US11336982B1 Hearing device seal modules, modular hearing devices including the same and associated methods
A hearing device seal module for use with a hearing device core including a tubular seal carrier defining a lumen configured for passage of the hearing device core and including a resilient seal support region formed from resilient material and configured to receive the hearing device core, a seal carrier support configured to hold at least a portion of the resilient seal support region open during an insertion of the hearing device core, and a first seal secured to a first portion of the seal support region and extending outwardly therefrom.
US11336980B2 Mobile music store assembly
A mobile music store assembly includes a housing base; a first housing member that is selectively movable relative to the housing base between a first position wherein the mobile music store assembly is in a closed configuration, and a second position wherein the mobile music store assembly is in an open configuration; and a second housing member that is selectively movable relative to the first housing member and the housing base between a first position wherein the mobile music store assembly is in the closed configuration, and a second position wherein the mobile music store assembly is in the open configuration. The mobile music store assembly can further include a music player that is positioned substantially within the housing assembly. The music player is only accessible when the mobile music store assembly is in the open configuration.
US11336978B2 Rotating loudspeaker
The present disclosure relates to loudspeaker devices and configurations. In at least one embodiment, a loudspeaker includes a housing structure having a multi-sided cross-sectional profile, a first speaker configuration coupled to a first face of the housing structure, and a second speaker configuration coupled to a second face of the housing structure. The first face of the housing structure and the second face of the housing structure may be adjacent to each other, and the first face of the housing structure and the second face of the housing structure may be substantially planar, in one or more examples. The loudspeaker may further comprise a controller configured to rotate the housing structure. For example, the housing structure may be rotated about a central axis of the housing structure. Further, the housing may be an elongated triangular structure in at least one example.
US11336974B2 Invisible microphone assembly for a vehicle
A microphone assembly for a vehicle headliner includes a housing arranged to be received within a substrate layer of the headliner and having an upper portion and a lower portion. A circuit board is mounted in the upper portion and has a microphone element coupled thereto. An insert bracket includes a base and a shaft member extending upwardly therefrom, the base having a plurality of apertures aligned with the shaft member, wherein the shaft member engages the lower portion to connect the insert bracket to the housing. A sealing gasket having at least one channel defining an air path extending therethrough is arranged to be received within the shaft member and extend between the base and the upper portion, providing acoustic sealing between the insert bracket and the housing such that the air path directs sound from a cabin of the vehicle through the apertures to the microphone element.
US11336973B2 Optical line terminal OLT device virtualization method and related device
An optical line terminal (OLT) device virtualization method and a related device, the method including creating a plurality of virtual OLT systems on an OLT device, and determining system resources of each of the plurality of virtual OLT systems according to a preset rule. The system resources include a physical resource and a logical resource, and physical resources and logical resources of the plurality of virtual OLT systems are different from each other.
US11336972B1 Automated video preview generation
Systems, methods, and computer-readable media are disclosed for systems and methods for automated video preview generation. Example methods may include determining video content, determining a first shot transition, a second shot transition, a third shot transition, and a fourth shot transition in the video content, and determining that human speech is present during the first shot transition and the second shot transition. Example methods may include determining a first timestamp associated with the third shot transition, determining a second timestamp associated with the fourth shot transition, generating a first video preview of the video content, where the first video preview includes a segment of the video content from the first timestamp to the second timestamp, and causing presentation of the first video preview, where the first video preview does not include a segment of the video content between the first shot transition and the second shot transition.
US11336970B2 Flexible commercial monitoring
Methods, apparatus, systems and articles of manufacture (e.g., physical storage media) to implement flexible commercial monitoring for television audience measurement are disclosed. Example television audience measurement systems disclosed herein include a flexible commercial detector to detect whether a first watermark decoded from a television program broadcast signal is a bridge watermark that indicates a portion of the television broadcast signal including the bridge watermark is associated with a flexible commercial insertion event, the flexible commercial insertion event corresponding to insertion of a flexible commercial in the portion of the television broadcast signal. Disclosed example television audience measurement systems also include a commercial metric calculator to credit audience exposure associated with the portion of the television broadcast signal to a flexible commercial crediting metric in response to a determination that the first watermark is the bridge watermark.
US11336968B2 Method and device for generating content
An operation method for generating content including a user identification (ID), and an apparatus therefor are provided. The operation method of the device includes obtaining mapping information by making one or more pieces of biometric information for each of a plurality of users correspond to a user ID of each of the plurality of users, obtaining first content including a first user by photographing the first user, obtaining first biometric information of the first user, determining a first user ID corresponding to the first biometric information of the first user, based on the mapping information, and associating the first content with the first user ID, and storing the association of the first content with the first user ID.
US11336953B2 Video processing method, electronic device, and computer-readable medium
The present application discloses a video processing method, an electronic device, and a computer-readable medium. The method comprises: a system playing module acquiring a video file to be played and sent by a target client; determining whether playing of the video file is supported; if not, parsing the video file to acquire an audio stream and a video stream in the video file; configuring an audio decoder identifier for the audio stream, and configuring a video decoder identifier for the video stream; and sending to an FFmpeg module the video stream, the audio stream, the video decoder identifier, and the audio decoder identifier, such that the FFmpeg module decodes the video file to acquire audio playing data and video playing data, wherein the audio playing data and the video playing data can be played by an audio and video output module of an electronic device.
US11336950B2 Methods, systems, and media for transferring playback of media content
Methods, systems, and media for transferring playback of media content are provided. In some implementations, the method comprises: receiving a request to initiate a mirroring session in which a tabbed window including a page having a plurality of media content items is rendered on a computing device and transmitted as a video stream to a display device that is in communication with the computing device over a local area network; encoding the video stream including the tabbed window and the plurality of media content items; transmitting the encoded video stream to the display device via the local area network; determining that a user of the tabbed window on the display device intends to view a media content item from the plurality of media content items on the page; inhibiting presentation of the media content item on the computing device; causing the media content item to be decoded and presented on the display device; detecting an event associated with presentation of the media content item on the display device; and, in response to detecting the event associated with presentation of the media content item on the display device, causing the mirroring session to resume.
US11336947B2 Audio transitions when streaming audiovisual media titles
A playback application is configured to analyze audio frames associated with transitions between segments within a media title to identify one or more portions of extraneous audio. The playback application is configured to analyze the one or more portions of extraneous audio and then determine which of the one or more corresponding audio frames should be dropped. In doing so, the playback application can analyze a topology associated with the media title to determine whether any specific portions of extraneous audio are to be played outside of a logical ordering of audio samples set forth in the topology. These specific portions of extraneous audio are preferentially removed.
US11336946B1 Presenting options for selecting content via navigation bars and designated content spaces
User interfaces having navigation bars are rendered on displays by streaming devices or smart applications operating on the displays. The navigation bars include selectable elements corresponding to applications that are preferred or designated users, as well as promoted applications, or utility applications. Placing a cursor or selection element over one of the elements for an application within the navigation bar causes selected content to be displayed above the navigation bar, along with discrete tiles including images associated with the application below the navigation bar. Moving the cursor above or below the navigation bar allows a user to activate the selected content or select one of the discrete tiles. Icons within the navigation bar may be displayed to a user in a predetermined order, at random, or in an order selected by the user.
US11336942B2 Methods and systems for management of a processing offloader
Introduced here are systems to manage and discover a processing offloader. A first multimedia device may identify a processing offloader in a networked environment. A first multimedia device may determine that a bandwidth of a second multimedia device in the networked environment falls below a threshold bandwidth, indicating that the second multimedia device may process instructions and render multimedia information with increased latency or delay. Based on this determination, the first multimedia device may forward instructions from the second multimedia device to the processing offloader for the processing offloader to process and render multimedia information on behalf of the second multimedia device based on the received instructions. The first multimedia device may forward rendered multimedia information from the processing offloader to the second multimedia device, and the second multimedia device may output the rendered multimedia information to an output device.
US11336937B2 Transport and acquisition of DRM-related information
A reception apparatus includes receiver and processing circuitry. The receiving circuitry is configured to receive a broadcast stream. The processing circuitry is configured to extract a service list table (SLT) from the broadcast stream. The SLT includes service information for each of a plurality of services in the broadcast stream. The processing circuitry is configured to determine whether the broadcast stream includes a digital rights management (DRM) service that is supported by the reception apparatus based on service category information in the service information for the plurality of services in the broadcast stream. The processing circuitry is configured to acquire DRM-related information, which is associated with the reception apparatus and delivered in the DRM service, based on a determination that the broadcast stream includes the DRM service that is supported by the reception apparatus.
US11336935B1 Detecting audio-video desyncrhonization
Techniques are described for detecting desynchronization between an audio stream and a video stream.
US11336928B1 Predictive caching of identical starting sequences in content
Disclosed are various embodiments for predictive caching of identical starting sequences in content. A content item library is scanned to identify an initial portion shared by multiple content items. The initial portion is extracted from a first content item. It is determined that a second content item is to be predictively cached by a client. The initial portion of the first content item is sent to the client in place of the initial portion of the second content item.
US11336918B2 Regular coded bin reduction for coefficient coding
A video decoder can be configured to determine a threshold number of regular coded bins for a first decoding pass; for a first set of coefficients, context decode syntax elements of a coefficient group until the threshold number of regular coded bins is reached; and in response to reaching the threshold number of regular coded bins, for a second set of coefficients, bypass decode additional syntax elements, wherein to bypass decode the additional syntax elements the video decoder, for a coefficient of the second set of coefficients, derives a value for a Rice parameter based on a sum of absolute values of neighboring coefficients to the coefficient; determine values for the first set of coefficients of the transform unit based on the context decoded syntax elements; and determine values for the second set of coefficients of the transform unit based on the additional syntax elements.
US11336911B2 Image data processing method
Provided is an image data processing method for preventing decrease of a decoding processing capability of an image processing device even if the image processing device is included in a game machine on which many moving pictures having low resolutions are displayed. First, decoding processing is designed (step S1). For example, it is designed in such a manner that a moving picture X is singly processed and that a moving picture Y and a moving picture Z having low vertical resolutions can be combined together to be subjected to decoding processing. Subsequently, each of the moving picture X, the moving picture Y, and the moving picture Z is encoded (step S2). Next, encoded data of the moving picture X is singly decoded, and the moving picture X is restored and displayed on a display unit of the image processing device at a predetermined timing. Meanwhile, respective pieces of encoded data of the moving picture Y and the moving picture Z are combined together and are decoded depending on respective display timings, and the moving picture X and the moving picture Y are restored and further separated from each other to be displayed on the display unit at the respective timings (step S3).
US11336908B2 Compressing images using neural networks
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for compressing images using neural networks. One of the methods includes receiving an image; processing the image using an encoder neural network, wherein the encoder neural network is configured to receive the image and to process the image to generate an output defining values of a first number of latent variables that each represent a feature of the image; generating a compressed representation of the image using the output defining the values of the first number of latent variables; and providing the compressed representation of the image for use in generating a reconstruction of the image.
US11336901B2 Intra prediction method and apparatus
An intra prediction method according to the present invention comprises the following steps: performing a directional prediction using at least one of a neighboring pixel of a current block and a left upper corner pixel positioned at a left upper corner of the current block so as to obtain a first prediction value for the current block; obtaining a second prediction value for the current block using the reference sample positioned in the current block; and weighted summing the first prediction value and the second prediction value using a weighting matrix so as to obtain a final prediction value for the current block. According to the present invention, image encoding/decoding efficiency may be improved.
US11336900B2 Combined inter and intra prediction mode for video coding
Embodiments include methods and apparatus for encoding and decoding video data. In particular, embodiments include methods and apparatus for encoding and decoding video using a combined inter/intra prediction mode. In one such embodiment, the inter prediction is performed using a equal weighted bi-prediction mode determined using a merge mode that would otherwise indicate a non-equal weighted bi-prediction.
US11336897B2 Method and apparatus for coding video data in palette mode
Methods for performing palette coding of video data may include: determining whether a luma component of a coding unit (CU) and chroma components of the CU are coded jointly or separately in a palette mode; and in response to the luma component and the chroma components being coded jointly in the palette mode, determining a first maximum palette-table size for the CU; determining a first maximum palette-predictor size for the CU; and predicting the CU based on the first maximum palette-table size and the first maximum palette-predictor size.
US11336896B2 Image encoding apparatus and image decoding apparatus, methods of controlling the same, and non-transitory computer-readable storage medium
An encoding apparatus comprises an acquiring unit that acquires image, a divider that divides the image into blocks, and an encoding processor that encodes a block. The encoding processor includes a variable-length encoder that performs quantization on each of pixels in a block so that a code length is no greater than the fixed length, and performs variable-length encoding on quantized block; a determiner that, based on a difference between the code length and the fixed length, determines a size of a free region for filling the fixed length; an analyzer that analyzes each of the pixels and calculates an index value indicating an importance; and a multiplexer that, based on the index values, multiplexes the encoded block data and the bits lost due to the quantization to generate the fixed-length encoded block data.
US11336895B2 Tone-curve optimization method and associated video encoder and video decoder
A method for generating metadata for use by a video decoder for displaying video content encoded by a video encoder includes: (1) accessing a target tone mapping curve; (2) accessing a decoder tone curve corresponding to a tone curve used by the video decoder for tone mapping the video content; (3) generating a plurality of parameters of a trim-pass function used by the video decoder to apply after applying the decoder tone curve to the video content, wherein the parameters of the trim-pass function are generated to approximate the target tone curve with the combination of the trim-pass function and the decoder tone curve, and (4) generating the metadata for use by the video decoder, including said plurality of parameters of the trim-pass function.
US11336894B2 Signaling of reference picture resampling with resampling picture size indication in video bitstream
A method, device, and computer-readable medium for decoding an encoded video bitstream using at least one processor, including obtaining a first flag indicating that a conformance window is present in a current picture; based on the first flag indicating that the conformance window is present, obtaining a second flag indicating whether the conformance window is used for reference picture resampling; based on the second flag indicating that the conformance window is used for the reference picture resampling, determining a resampling ratio between the current picture and a reference picture based on a conformance window size of the conformance window; based on the second flag indicating that the conformance window is not used for the reference picture resampling, determining the resampling ratio based on a resampling picture size; and performing the reference picture resampling on the current picture using the resampling ratio.
US11336892B2 Adaptive multi-hypothesis context-adaptive binary arithmetic coding (MCABAC)
A method comprises obtaining a first weight for a first probability associated with a first probability update window; obtaining a second weight for a second probability associated with a second probability update window, wherein the first weight and the second weight are unequal; and coding, using the first weight and the second weight, a portion of a video.
US11336888B2 Multi-view collimated display
A method of displaying a light field to at least one viewer of a light field display device, the light field based on a 3D model, the light field display device comprising a plurality of spatially distributed display elements, the method including the steps of: (a) determining the viewpoints of the eyes of the at least one viewer relative to the display device; (b) for each eye viewpoint and each of a plurality of the display elements, rendering a partial view image representing a view of the 3D model from the eye viewpoint through the display element; and (c) displaying, via each display element, the set of partial view images rendered for that display element.
US11336882B2 Synchronizing an illumination sequence of illumination sources with image capture in rolling shutter mode
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for a biometric authentication system. In one aspect, a method includes receiving, at one or more processing devices, data corresponding to a first set of pixels of an image sensor. The first set of pixels are exposed under illumination by a first source. Data corresponding to a second set of pixels of the image sensor is received, at the one or more processing devices. The second set of pixels are exposed under illumination by a second source that is spatially separated from the first source. A three-dimensional image is generated using the data corresponding to the first set of pixels as a first image of a pair of photometric stereo images, and the data corresponding to the second set of pixels as a second image of the pair of photometric stereo images.
US11336878B2 Image projecting apparatus and controlling method thereof
An image projecting apparatus including an optical output unit for projecting and image, a camera, a plurality of sensors, and a processor is disclosed. The processor is configured to: identify, based on sensing data received through the plurality of sensors, a distance between each of the plurality of sensors and a projection surface, provide, based on a difference between the identified distances being greater than or equal to a pre-set threshold value, a user interface configured to guide a direction adjustment of the image projecting apparatus, and identify, based on a difference between the identified distances being less than the pre-set threshold value, a shape of a projected image by photographing, using the camera, an image projected to the projection surface, and control the optical output unit to project an image corrected based on the identified shape.
US11336875B2 Wavelength conversion element, light source device, and projector
The wavelength conversion element according to the present disclosure includes a wavelength conversion layer which has a first surface and a second surface different from the first surface, and which includes a scattering element no higher than 5% in volume ratio, and which is configured to convert light in a first wavelength band into light in a second wavelength band different from the first wavelength band, and a plurality of protruding parts which is disposed so as to be opposed to the first surface, and which includes a first protruding part and a second protruding part adjacent to each other. A height of the plurality of protruding parts is no smaller than 1 μm, and a distance between a vertex of the first protruding part and a vertex of the second protruding part in a direction along the first surface is no smaller than 3 μm.
US11336874B2 Image display method and apparatus, and projection device
An image display method includes according to image information of a current image frame to be displayed, adjusting the brightness of a first light source (11) having a first light field, and steering light of a second light source (12) to form a second light field, so as to enable the first light field provided by the second light source (11) and the second light field provided by the second light source (12) to work in concert to satisfy displaying of display partitions of the image frame to be displayed. The image display method implements high-dynamic range display of images, and facilitates improvement of dark field detail expression of images to be displayed. Also provided are an image display apparatus and a projection device.
US11336873B2 Illumination system and projection apparatus
An illumination system includes an excitation light source module, a light splitting and combining module, a filter module, and a wavelength conversion module. The excitation light source module provides an excitation beam. The light splitting and combining module is disposed on a transmission path of the excitation beam. The excitation beam includes a first and a second excitation beam which are different from each other in polarization state or wavelength range. The filter module is disposed on the transmission path of the excitation beam. The filter module includes a light passing area configured to allow the excitation beam to pass there-through and a light filtering area. The wavelength conversion module is disposed on the transmission path of the excitation beam reflected by the light filtering area and configured to convert the reflected excitation beam into a conversion beam. A projection apparatus including the above illumination system is also provided.
US11336871B2 Image device
An image device is provided. The image device includes a pixel array comprising a first pixel array portion of a part of the pixel array and a second pixel array portion of other part of the pixel array that outputs an image; and a color filter array disposed over the pixel array, the color filter array comprising a first color filter pattern on the first pixel array portion and a second color filter pattern on the second pixel array portion, which are comprising a plurality of different color filters in each of the first pixel array portion and the second pixel array portion, wherein the plurality of the color filters in the first color filter pattern is arranged in an array of N*N and the plurality of the color filters in the second color filter pattern is arranged in an array of M*M (N and M are a natural number of 2 or more, and the N and M is different each other) wherein a number of red (R) color filters included in the first color filter pattern is equal to a number of R color filters included in the second color filter pattern.
US11336870B2 Smart motion detection device and related determining method
A smart motion detection device with a determining method includes a memory, a processor, and a sensor array coupled to the memory and the processor. An image captured by the sensor array is processed by the processor. The sensor array is adapted to pre-store the image into the memory when the processor is operated in the sleep mode, and the pre-stored image is transmitted to the processor when the processor is operated in the wakeup mode. The sensor array includes a comparator adapted to generate an alarm signal for switching the processor from the sleep mode to the wakeup mode in accordance with a comparison result of the pre-stored image. The determining method includes the processor analyzing images captured by the sensor array when the sensor array is activated to capture the images, and the processor analyzing images pre-stored inside the memory when the sensor array is not activated.
US11336868B2 Device recording the collisions of flying animals with wind turbines and indicating where they fell on the ground
The device recording the collisions of flying animals with wind turbines and indicating where they fell on the ground includes at least two sensors arranged on at least two different heights of the wind turbine tower. The sensors have a range optimally in a direction perpendicular to the wind turbine tower and are connected with the control and recording unit by wire or wireless data transmission.
US11336865B1 Multiple host management of videoconferencing sub-meetings
One example system for multiple host management of videoconferencing sub-meetings includes a processor and at least one memory device. The processor establishes a main videoconferencing meeting and establishes a host of the main videoconferencing meeting. The host participates using a first host client device. The processor can receive a selection of a participant to be a co-host. The co-host participates in the main videoconferencing meeting from a second host client device. The processor receives a first sub-meeting control input from the second host client device, wherein the first sub-meeting control input identifies an action to perform with respect to a sub-meeting. The system generates a second sub-meeting control input based on the first sub-meeting control input, executes the second sub-meeting control input, and discards the first sub-meeting control input so that the sub-meeting command is associated with the main host.
US11336861B2 Video signal reception module and video signal transmission and reception system
A video signal transmission and reception system includes a first video signal receiver and a second video signal receiver in a video signal reception module and a video signal transmitter in a camera module. The video signal reception module includes the first video signal receiver, the second video signal receiver, and a central operation processor. A frame signal generated in the first video signal receiver is sent to a video signal transmitter of a first group and is output to the second video signal receiver. In addition, the frame signal generated in the first video signal receiver is input into the second video signal receiver and is sent to a video signal transmitter of a second group from the second video signal receiver.
US11336858B2 Image capturing device and method that control an exposure period of a photon-counting type of an image sensor
An image capturing device comprising: an image sensing element having a plurality of pixels each including a sensor that outputs a pulse signal in response to incident of a photon, and a counter that counts a number of the pulse signals; a readout unit that reads out count information from the counters; a control unit that controls the readout unit so as to read out the count information from the counters of at least a part of the plurality of the pixels at a predetermined timing during exposure of the pixels; and a determination unit that determines whether the read out count information satisfies a predetermined condition, wherein, in a case where the predetermined condition is satisfied, counting by the counters is stopped.
US11336854B2 Distance image capturing apparatus and distance image capturing method using distance image capturing apparatus
A distance image capturing apparatus has a light source unit that emits an intermittent light pulse into a space, a light receiving unit that includes a plurality of pixels each having a photoelectric conversion device and electric charge accumulating units, and a distance image processing unit. The distance image processing unit acquires an electric charge amount distributed by a predetermined fixed number of times and accumulated in the accumulating units. The distance image processing unit acquires electric charge amounts accumulated in the accumulating units with different number of times of electric charge distribution as one set and selects one of a first electric charge amount with a larger number of electric charge distribution and a second electric charge amount for acquiring a distance from a subject based on a comparison result with a threshold.
US11336850B2 Electronic device, actuator control method, and program
Provided is an electronic device which includes an event-driven vision sensor that includes a sensor array having a sensor that generates an event signal when the sensor detects a change in intensity of incident light, an actuator that displaces a module including the vision sensor, and a control unit which transmits a control signal to the actuator and reflects a correction value based on the event signal generated when the actuator displaces the module in the control signal.
US11336848B1 Image sensors having dielectric relaxation correction circuitry
Some image sensors include pixels with capacitors. The capacitor may be used to store charge in the imaging pixel before readout. The capacitor may be a metal-insulator-metal (MIM) capacitor that is susceptible to dielectric relaxation. Dielectric relaxation may cause lag in the signal on the capacitor that impacts the signal on the capacitor during sampling. The image sensor may include dielectric relaxation correction circuitry that leverages the linear relationship between voltage stress and lag signal to correct for dielectric relaxation. The image sensor may include shielded pixels that operate with a similar timing scheme as the imaging pixels in the active array. Measured lag signals from the shielded pixels may be used to correct imaging data.
US11336846B1 CMOS image sensor with image black level compensation and method
An image sensor array and circuit design employs a method of black level compensation to address vertical image shading related to global exposure image capture and rolling row by row readout schemes. An image sensor having the invented black level compensation pixel array and method may be incorporated within a digital camera.
US11336845B2 Image sensor and driving method thereof
An image sensor includes a first unit pixel including a first sub-pixel and a second sub-pixel, a second unit pixel including a third sub-pixel and a fourth sub-pixel, a timing controller configured to apply a first effective integration time to the first sub-pixel and the fourth sub-pixel, such that a first sensing signal and a fourth sensing signal are generated from the first sub-pixel and the fourth sub-pixel, respectively, and to apply a second effective integration time shorter than the first effective integration time to the second sub-pixel and the third sub-pixel, such that a second sensing signal and a third sensing signal are generated from the second sub-pixel and the third sub-pixel, respectively, and an analog-to-digital converter configured to perform an averaging operation on the first sensing signal and the fourth sensing signal or on the second sensing signal and the third sensing signal.
US11336844B2 Imaging device, imaging system, and movable object
An imaging device includes a plurality of pixels arranged to form a plurality of rows and a plurality of columns and each including a photoelectric converter, an accumulation time controller that controls accumulation time of the plurality of pixels, and an amplifier that amplifies a signal based on charge generated by the photoelectric converter. The plurality of pixels are divided into a plurality of pixel blocks each including at least two of the plurality of pixels, the accumulation time controller is configured to control the accumulation time individually for the plurality of pixel blocks, and the amplifier is configured to output, for one pixel block of the plurality of blocks, a plurality of signals which are amplified at different gains and correspond to accumulation time of a common frame.
US11336843B2 Time delay integration sensor
The present disclosure provides a time delay integration (TDI) sensor using a rolling shutter. The TDI sensor includes multiple pixel columns. Each pixel column includes multiple pixels arranged in an along-track direction, wherein two adjacent pixels or two adjacent pixel groups in every pixel column have a separation space therebetween. The separation space is equal to a pixel height multiplied by a time ratio of a line time difference of the rolling shutter and a frame period, or equal to a summation of at least one pixel height and a multiplication of the pixel height by a time ratio of the line time difference and the frame period. The line time difference of the TDI sensor is changeable without changing the separation space.
US11336837B2 System, method, and mobile platform for supporting bracketing imaging
A system for supporting imaging includes an imaging device configured to capture a plurality of images for a substantially same scene using respective imaging configurations, a stabilization device configured to stabilize the imaging device on a mobile platform during the capturing of the plurality of images, and a controller communicating with at least one of the imaging device or the stabilization device and configured to control an operation of the mobile platform.
US11336835B2 Method and system for estimating exposure time of a multispectral light source
Methods and/or systems and/or controllers for estimating an exposure time for an imaging device, especially for estimating exposure times that provide maximum saturation levels while keeping the image sensor operating within its linear range. The imaging device includes an external or embedded image sensor and an external or embedded light source. Such a device may be a dermatoscope, a laparoscope, an endoscope, a microscope, or any digital media devices such as mobile phones, tablets, laptops etc. The methods and/or systems and/or controllers can include an LED or OLED light source or any type of solid-state light source.
US11336834B2 Device, control method, and storage medium, with setting exposure condition for each area based on exposure value map
A control method for generating a high quality HDR image is provided. A control device of the technique of this disclosure is a control device configured to control an image capturing element capable of controlling an exposure condition for each of areas, the device including: an acquisition unit configured to acquire an exposure value map obtained by preliminary exposure using the image capturing element; and a setting unit configured to set the exposure condition including a shutter speed and an ISO sensitivity for each of the areas based on the exposure value map.
US11336832B1 Systems and methods for horizon leveling videos
A video may be captured by an image capture device in motion. A horizon-leveled view of the video may be generated by providing a punchout of the video. The punchout of the video may compensate for rotation of the image capture device during capture of the video. The placement of the punchout of the video may be changed based on different rotational positions of to provide a view in which a horizon depicted within the video is leveled.
US11336828B2 Reflection module capable of image stabilization, camera module and electronic device
A reflection module capable of image stabilization includes a reflecting element, a rotatable holder, a fixed base, a spherical supporting structure, an auxiliary supporting structure and an image stabilizing actuator. The reflecting element having a reflecting surface for folding optical path of incident light is disposed on the rotatable holder. The fixed base is connected to the rotatable holder via an elastic element. The spherical supporting structure is disposed between the rotatable holder and the fixed base. The auxiliary supporting structure disposed on at least one of the rotatable holder and the fixed base and corresponds to the spherical supporting structure. At least part of the image stabilizing actuator is disposed on the rotatable holder for driving the rotatable holder to rotate by taking the spherical supporting structure as rotation center. The spherical supporting structure is a ball having at least three contact points with the auxiliary supporting structure.
US11336822B2 Image processing device
According to one embodiment, an image processing device includes buffer circuitry, calculation circuitry, and control circuitry. The buffer circuitry includes n buffer circuits corresponding to each of n cameras, and stores pixel data sequentially output from each of the n cameras. The calculation circuitry reads, as line image data, a pixel data group for one line which is stored in one buffer circuit, and generates frame image data using data obtained by performing image processing on the line image data. The control circuitry stores the pixel data from a certain camera in a certain buffer circuit, and selectively sets a read destination of the pixel data as a base of the line image data to any one of the buffer circuits in which the pixel data not subjected to the image processing is stored.
US11336821B2 Camera system, camera, interchangeable lens, and compatibility determination method of camera system
Provided are a camera system, a camera, an interchangeable lens, and a compatibility determination method of a camera system capable of simply and quickly determining compatibility between the camera and the interchangeable lens. An eleventh contact (CC11) provided in a camera (10) and an eleventh contact (LC11) provided in an interchangeable lens (100) are composed of contacts in which an open drain output is possible. In a case where the camera (10) supports a specific function, the eleventh contact (CC11) on a camera-side is set to a first polarity. In a case where the camera (10) does not support the specific function, the eleventh contact (CC11) on the camera side is set to a second polarity. In a case where the interchangeable lens (100) supports the specific function, the eleventh contact (LC11) on an interchangeable lens-side is set to the first polarity. In a case where the interchangeable lens (100) does not support the specific function, the eleventh contact (LC11) on the interchangeable lens side is set to the second polarity. The eleventh contact (CC11) on the camera side and the eleventh contact (LC11) on the interchangeable lens side, which are mutually connected, are at the first polarity only in a case where both contacts are at the first polarity. Therefore, in a case where the polarities of the eleventh contact (CC11) on the camera side and the eleventh contact (LC11) on the interchangeable lens side are detected, it is possible to determine presence or absence of compatibility in both the camera (10) and the interchangeable lens (100).
US11336820B2 Method and terminal for acquire panoramic image
A method includes: after a panorama shooting instruction triggered by a user is acquired, shooting a first image, and acquiring a shooting parameter of the first image; determining move guiding information according to a preset move guiding policy, and displaying the move guiding information on a terminal, so as to instruct the user to move the terminal according to the move guiding information; shooting a preset quantity of images according to the shooting parameter of the first image after it is detected that the terminal moves, where the preset quantity of images are background images on both the left and right sides of a background corresponding to the first image; and performing, by using the first image as a center and by using a preset splicing scheme, seamless splicing on the first image and the preset quantity of images, to obtain a panoramic image.
US11336809B2 Electric shaver with imaging capability
System and method for improving the shaving experience by providing improved visibility of the skin shaving area. A digital camera is integrated with the electric shaver for close image capturing of shaving area, and displaying it on a display unit. The display unit can be integral part of the electric shaver casing, or housed in a separated device which receives the image via a communication channel. The communication channel can be wireless (using radio, audio or light) or wired, such as dedicated cabling or using powerline communication. A light source is used to better illuminate the shaving area. Video compression and digital image processing techniques are used for providing for improved shaving results. The wired communication medium can simultaneously be used also for carrying power from the electric shaver assembly to the display unit, or from the display unit to the electric shaver.
US11336802B2 Imaging apparatus
An imaging apparatus includes: an imager to capture a subject image to generate an image signal; an image processor to perform predetermined processing on the image signal to generate image data; a display to display luminance level information showing a luminance level in the image; an operation receiver to input a user operation; and a controller to control the display and the operation receiver. The image processor generates the image data using a predetermined gamma curve in which a light amount in the image signal is associated with a luminance level to compress as the light amount increases. When the operation receiver receives a user operation for setting a luminance level in the luminance level information, the controller controls the display to represent the luminance level by a stop number indicating a scaling rate of a corresponding light amount in the gamma curve.
US11336800B2 Apparatus and method for performing color conversions using machine learning
An information processing apparatus storing a machine-learned model that learned, by machine learning, a relationship between a type of a printing medium, an amount of a coloring material on the printing medium per unit area, and an image printed on the printing medium; and estimating, based on a selection information and a imaging information, by using the machine-learned model a limit value indicating a maximum value or a minimum value of an amount of the coloring material to be used in printing on the printing medium by the printing section per unit area; and creating, by using the limit value, a color conversion profile including information regarding mapping between a coordinate value in a color space and an amount of the coloring material.
US11336797B2 Communication system with reduced risk of leakage of network information, method of controlling communication system, and storage medium
A communication system including a first communication apparatus having an image forming unit for forming an image on a sheet and a first wireless communication unit for performing wireless communication, and a second communication apparatus having a second wireless communication unit for performing wireless communication and a reading unit for reading an image. The first communication apparatus registers first network information and prints a QR code based on second network information. The second communication apparatus reads the QR code-printed sheet to acquire the second network information, requests the first communication apparatus to establish direct wireless communication based on the second network information, acquires the first network information from the first communication apparatus using the direct wireless communication, and connects to a router based on the first network information to start wireless LAN communication.
US11336796B2 Information processing apparatus and wireless communication method
An information processing apparatus includes a first communication unit configured to communicate with a first communication apparatus; a second communication unit configured to wirelessly communicate with each of one or more second wireless communication apparatuses; an acquisition unit configured to acquire from the first communication apparatus via the first communication unit an apparatus ID that is held by the first communication apparatus and that is used for identifying one of the one or more second wireless communication apparatuses to or from which the second communication unit transmits or receives data; and a control unit configured to control the second communication unit to transmit or receive the data to or from the one of the one or more second wireless communication apparatuses that is identified by the apparatus ID acquired by the acquisition unit.
US11336795B2 Encoded signal systems and methods to ensure minimal robustness
This disclosure relates to advanced signal processing technology including signal encoding and image processing. One implementation describes an encoding system including a masking module. The masking module scales or eliminates signal encoding adjustments based on an image's luminance or chrominance values. Of course, other implementations, combinations and claims are also provided.
US11336793B2 Scanning system for generating scan data for vocal output, non-transitory computer-readable storage medium storing program for generating scan data for vocal output, and method for generating scan data for vocal output in scanning system
A multi-function printer includes a generating section, an image recognition section, a speaking section, and a transmitting section. The generating section scans an original document to generate scan data. The image recognition section performs image recognition on the scan data. The speaking section causes a word corresponding to a recognition result of the image recognition section and corresponding to a drawing, a photograph, or the like included in the original document to be spoken from a speaker circuit. The transmitting section transmits the scan data generated by the generating section to a specific destination when a specific operation is performed during speaking performed by the speaking section or within a certain period of time after completion of the speaking performed by the speaking section.
US11336792B1 Exposure correction of an image transparency
Systems and methods relate generally to exposure correction of an image transparency. In an example method thereof, an adaptable filter having an adjustable transparency panel and a microcontroller is obtained. The image transparency is backlit to obtain first analog image information by the adaptable filter. An exposure level associated with the first analog image information is sensed. A transparency level of the adjustable transparency panel is adjusted responsive to the sensed exposure level. Second analog image information is obtained from the adjustable transparency panel provided to a sensor array. The second analog image information is the first analog image information with the adjusted transparency level.
US11336786B2 Sheet discharging apparatus, sheet processing apparatus, and image forming system
A sheet discharging apparatus includes a first stacking unit to stack a sheet discharged by a first discharge unit, a second stacking unit disposed below the first stacking unit to stack the sheet discharged by a second discharge unit, and a lifting unit to lift and lower the first and second stacking units. A detection unit changes an output value based on contact of a matter with a lower surface of the first stacking unit, and a distance estimation unit estimates a distance between the first stacking unit and the second stacking unit. A separation process lifts the first stacking unit to increase a distance between the first and second stacking units in a vertical direction in a case where the output value changes based on contact of the matter with the lower surface of the first stacking unit and the estimated distance being smaller than a threshold value.
US11336785B2 Sheet discharging apparatus, sheet processing apparatus, and image forming system
A sheet discharging apparatus includes a first discharge unit and a second discharge unit configured to discharge a sheet respectively, a first stacking unit configured to stack the sheet discharged by the first discharge unit, a second stacking unit disposed below the first stacking unit, and configured to stack the sheet discharged by the second discharge unit, a lifting unit configured to lift and lower the first and second stacking units, and a control unit configured to perform a separation process of moving at least one of the first and second stacking units so as to increase a distance between the first and second stacking units in a vertical direction in a case where a matter has come into contact with a lower surface of the first stacking unit.
US11336784B2 Information processing apparatus and control method
A method of controlling an information processing apparatus includes acquiring information on a sheet size specified by a user and acquiring information on a sheet feeding direction to a printing apparatus for sheet corresponding to the specified sheet size. In a case where the sheet feeding direction is a predetermined direction, a predetermined control is executed. After the predetermined control, a drawing application is notified of information on a page setting.
US11336783B2 Information processing apparatus and non-transitory computer readable medium for controlling operation screen
An image forming apparatus includes a first controller, a selection section, and a second controller. The first controller performs control in which a second operation screen is displayed on a terminal apparatus that is connected to the image forming apparatus in a manner communication is possible, the second operation screen being generated on the basis of a first operation screen of the image forming apparatus. The selection section selects either one of a first mode and a second mode, the first mode being a mode in which an operation from the first operation screen is acceptable, the second mode being a mode in which remote control from the second operation screen is acceptable. The second controller performs control in which, if the second mode is selected by the selection section, a display state of the second operation screen is prohibited from being changed in accordance with an operation occurred in the image forming apparatus other than an operation from the second operation screen.
US11336776B2 Mobile terminal capable of instructing transmission of fax, image forming apparatus, methods of controlling mobile terminal and image forming apparatus, communication system, and storage medium
A mobile terminal improved in operability concerning fax transmission. A CPU of the mobile terminal sets information indicative of a fax transmission destination, sets reading and transmission information concerning fax transmission and original reading, and sends a request for fax transmission, to an image forming apparatus. When a response notifying capability of fax transmission is received from the apparatus, the CPU causes a message for prompting a user to set an original, to be displayed on a display section. When the original has been set and an instruction for fax transmission from the user is received, the CPU sends an instruction for reading the original and executing fax transmission, together with the transmission destination information, and the reading and transmission information, to the apparatus. The CPU causes a result of fax transmission by the apparatus to be displayed on the display section.
US11336773B1 Scheduling automatically initiated call between users
Aspects of the present disclosure involve a system comprising a computer-readable storage medium storing a program and method for scheduling a call to be automatically initiated between users. The program and method provide for receiving, from a first device associated with a first user, a request for a call to be automatically initiated, at a scheduled time, between the first device and a second device corresponding to a second user; providing, to the second device and in response to the receiving, an invitation to participate in the call; receiving, from the second device and in response to the providing, an acceptance of the invitation; and providing for automatically initiating the call between the first device and the second device at the scheduled time.
US11336770B2 Systems and methods for analyzing coaching comments
The methods, apparatuses, and systems described herein are designed to analyze comments provided by a coach relating to an agent's interaction with a customer. The methods include receiving a coaching comment regarding an agent's interaction with a customer, applying at least one scoring algorithm to the comment, and outputting a score of the scoring algorithm.
US11336768B2 Visual translation for telephone commands
This Application discloses the display of stored information when creating a electronic command for use with mobile smartphones and other computer-enabled telephones. A software app recognizes input from the user (such as the initial digits of a phone number) that identifies the organization to be called, and accesses stored representations of information along with corresponding IVR phone tree information and user display preferences. The app then presents a representation of all or part of the retrieved information on a display using the user's language preferences. The user can then respond to the representation by providing selective inputs that cause the synthesis all or part of the commands needed to navigate to the desired destination. Once a command sequence has been synthesized, the user may provide additional input that the system interprets as an instruction to open a phone call and invoke the assembled commands.
US11336766B1 Telephone call-back device
Disclosed is a telephone call-back device that can provide a means for the recipient of a robocall incoming phone call to take action. The telephone call-back device includes an activation device, a call source utility, and a call-back utility. The activation device is a button or switch that a user can activate when they receive a robocall. Once the activation device is activated, the call source utility identifies a source phone number of the robocall incoming phone call. The call-back utility initiates one or more robo call-back outgoing phone calls to be sent to the source phone number. The call-back utility can be programmed to try to send many robo call-back outgoing phone calls to the source phone number to try to swamp the phone number with robo call-back outgoing phone calls.
US11336764B2 Method and communication terminal apparatus for displaying function in communication
A mobile communication terminal and method are provided for receiving an incoming voice call and for displaying a notification, an incoming phone number, and an elapsed voice communication time during an incoming voice communication. The method includes receiving a call request from a base station; responding to the call request, to perform a call-setup with the base station; in response to the call-set up, automatically displaying a plurality of icons together with the notification, the incoming phone number, and the elapsed voice communication time, wherein the plurality of icons are respectively associated with voice communication related functions, and wherein at least one of the plurality of icons includes a graphic symbol portion and a text portion; receiving an input for selecting one of the plurality of icons; and performing a voice communication related function associated with the selected icon while in the incoming voice communication.
US11336756B2 Technologies for programming flexible accelerated network pipeline using eBPF
Technologies for programming flexible accelerated network pipelines include a comping device with a network controller. The computing device loads a program binary file that includes a packet processing program and a requested hint section. The binary file may be an executable and linkable format (ELF) file with an extended Berkeley packet filter (eBPF) program. The computing device determines a hardware configuration for the network controller based on the requested offload hints and programs the network controller. The network controller processes network packets with the requested offloads, such as packet classification, hashing, checksums, traffic shaping, or other offloads. The network controller returns results of the offloads as hints in metadata. The packet processing program performs actions based on the metadata, such as forwarding, dropping, packet modification, or other actions. The computing device may compile an eBPF source file to generate the binary file. Other embodiments are described and claimed.
US11336753B2 Wireless communication device and wireless communication method
According to one embodiment, a wireless communication device includes: a receiver configured to receive a plurality of first frames transmitted by spatial multiplexing; and a transmitter configured to transmit a second frame containing check results indicating whether the first frames are successfully received and first information specifying at least one communication device. The receiver is configured to receive a plurality of third frames transmitted by spatial multiplexing from a communication device having transmitted the first frame the check result of which represents failure and the communication device specified in the first information.
US11336752B2 Apparatus and method for transmitting and receiving signal in multimedia system
A transmitting apparatus and an operating method for the apparatus in a multimedia system are provided. The operating method includes inputting at least one network layer packet, generating a link layer packet based on the at least one network layer packet, and transmitting the link layer packet. The link layer packet includes a header including information indicating a packet type of the at least one network layer packet, information indicating whether the link layer packet includes a single network layer packet, and information indicating an identifier related to the at least one network layer packet.
US11336750B1 Remote procedure calls that offload search pattern matching from clients to servers
A system enables client to convert a command, which specifies applying a search pattern to a data object that is stored by server, into a remote procedure call, which specifies applying the search pattern to the data object that is stored by server, and to use a network connection between client and server to send the remote procedure call to server, in response to receiving the command. The system reads the data object from server, in response to receiving the remote procedure call. The system generates a match result by applying the search pattern to the data object. The system uses the network connection between client and server to send the match result to client as a part of a response to the remote procedure call, thereby enabling client to convert the response to the remote procedure call into a response, which comprises the match result, to the command.
US11336748B2 System and method for deploying resources within a computing infrastructure
Systems and techniques for deploying resources within a computing infrastructure are herein disclosed as comprising, in an implementation, executing a first deployment agent to perform a first deployment action, the first deployment agent configured to deploy a first resource to a first device; changing a deployment state of the first deployment agent responsive to performing the first deployment action; and executing a second deployment agent to perform a second deployment action, the second deployment agent configured to deploy a second resource to a second device. The second deployment agent performs the second deployment action in response to a change in a deployment state of an arbitrary deployment agent not explicitly identified within the second deployment agent. A deployment plan configured to cause the execution of the first and second deployment agents includes an identification of the first deployment agent as the arbitrary deployment agent.
US11336746B2 System and method for improving Internet communication by using intermediate nodes
A method for fetching a content from a web server to a client device is disclosed, using tunnel devices serving as intermediate devices. The client device accesses an acceleration server to receive a list of available tunnel devices. The requested content is partitioned into slices, and the client device sends a request for the slices to the available tunnel devices. The tunnel devices in turn fetch the slices from the data server, and send the slices to the client device, where the content is reconstructed from the received slices. A client device may also serve as a tunnel device, serving as an intermediate device to other client devices. Similarly, a tunnel device may also serve as a client device for fetching content from a data server. The selection of tunnel devices to be used by a client device may be in the acceleration server, in the client device, or in both. The partition into slices may be overlapping or non-overlapping, and the same slice (or the whole content) may be fetched via multiple tunnel devices.
US11336745B2 System and method for improving internet communication by using intermediate nodes
A method for fetching a content from a web server to a client device is disclosed, using tunnel devices serving as intermediate devices. The client device accesses an acceleration server to receive a list of available tunnel devices. The requested content is partitioned into slices, and the client device sends a request for the slices to the available tunnel devices. The tunnel devices in turn fetch the slices from the data server, and send the slices to the client device, where the content is reconstructed from the received slices. A client device may also serve as a tunnel device, serving as an intermediate device to other client devices. Similarly, a tunnel device may also serve as a client device for fetching content from a data server. The selection of tunnel devices to be used by a client device may be in the acceleration server, in the client device, or in both. The partition into slices may be overlapping or non-overlapping, and the same slice (or the whole content) may be fetched via multiple tunnel devices.
US11336738B2 System and method for tracking users of computer applications
A monitoring system that receives messages that are exchanged with the application server. Relationships between users are posited in response to the times at which the messages are received. A relationship between two users may be posited in response to receiving, at approximately the same time, two messages from the application server that are destined, respectively, for the two users. The near-simultaneous receipt of the two messages indicates that the two messages were sent from the server at approximately the same time, which, in turn, indicates that the two messages may correlate with one another. Further indication of a correlation between the messages, which may increase the level of confidence with which the relationship between the two users is posited, may be found by examining the respective sizes of the messages, which indicate the message types.
US11336733B2 Networking connection management based on container identification
Described herein are systems, methods, and software to enhance packet . In one implementation, a host computing element identifies a packet from a process executing on the host computing element. In response to identifying the packet, the host computing element determines whether the packet originates from a container namespace corresponding to a container on the host computing element or a host namespace corresponding to the host computing element. If the packet originates from a container namespace, the host computing element may determine supplemental information for the container associated with the container namespace, and process the packet based on the supplemental information.
US11336725B2 Communication apparatus, communication method, and computer program product
According to an embodiment, a communication apparatus includes a plurality of virtual machines, a storage unit, a transfer unit, and a descriptor output unit. The storage unit includes a multicast storage area specified for each multicast group and storing a multicast frame addressed to virtual machines belonging to a multicast group. The transfer unit writes the multicast frame into a multicast transfer virtual storage area mapped to the multicast storage area. The descriptor output unit outputs a descriptor of the multicast frame to the virtual machines belonging to the multicast group. The virtual machine includes a descriptor receiving unit and a reading unit. The descriptor receiving unit receives the descriptor. When the descriptor is received by the descriptor receiving unit, the reading unit reads the multicast frame from the multicast storage area specified based on the descriptor.
US11336724B2 Data transformation and analytics at edge server
A computer implemented method includes receiving data from multiple devices at an edge server, transforming the data received from the multiple devices, storing the transformed data in an edge server database, performing analytics on the transformed data in the database, and selectively uploading data to a remote server via a network.
US11336723B1 Replicating data volume updates from clients accessing the data volume across fault tolerance zones
Updates for clients accessing a data volume across fault tolerance zones may be replicated. Requests to write or read a block of a logical volume with replicas located in different fault tolerance zones may be sent to the different replicas. Responses for the different requests may be evaluated to determine whether quorum is satisfied for the write or read of the block of the logical volume. For writes that satisfy quorum, a request to commit the write may be sent to the replicas of the logical volume.
US11336721B2 Dynamic resource movement in heterogeneous computing environments including cloud edge locations
Techniques for dynamic resource movement in heterogeneous computing environments including provider substrate extensions are described. A dynamic resource movement service of a provider network monitor conditions of heterogeneous computing environments, including provider substrate extensions of the cloud provider network, to evaluate customer-provided movement policy conditions governing when to move customer application resources from these environments, where to move the resource to, and/or how to move the customer application resources. The customer-provided movement policy conditions may be based on a variety of factors, such as a latency between end-users of the customer application and the application itself.
US11336720B2 Method and system for autoscaling applications
Aspects of the present disclosure involve a system and method for autoscaling application pools. The current disclosure presents a system that can be used to understand the throughput of one instance in an application. The throughput at the one instance in the application and/or traffic trend is used to right-size or auto-scale the application pool for the current traffic trend such that the application pool can be adjusted for varying traffic trends.
US11336719B2 Identifying edge clouds within networks
Techniques for edge cloud identification. An indication of edge clouds is received. Each edge cloud is uniquely identifiable via an associated edge cloud identifier. A characteristic is received from each of the edge clouds. An edge cloud for communication is determined based on the characteristic. The edge cloud is communicated with using its associated edge cloud identifier.
US11336718B2 Usage-based server load balancing
A load balancer determines a first usage load for a first server group that is one of a plurality of server groups associated with a resource. The load balancer determines a usage total for a user group of a plurality of user groups assigned to make requests for the resource via the first server group. The load balancer determines an assignment of the user group to make requests for the resource via the first server group or a second server group of the plurality of server groups based on the usage total of the user group, the first usage load of the first server group, and a second usage load of the second server group. The load balancer routes requests for the resource by the user group to the first server group or the second server group based on the assignment.
US11336716B2 System and method for supporting heterogeneous and asymmetric dual rail fabric configurations in a high performance computing environment
Systems and methods for supporting heterogeneous and asymmetric dual rail fabric configurations in a high performance computing environment. A method can provide, comprising at one or more computers each including one or more microprocessors, a plurality hosts, each of the plurality of hosts comprising at least one dual port adapter, a private fabric, the private fabric comprising two or more switches, and a public fabric, the public fabric comprising a cloud fabric. A workload can be provisioned at a host of the plurality of hosts. A placement policy can be assigned to the provisioned workload. Then, network traffic between peer nodes of the provisioned workload can be assigned to one or more of the private fabric and the public fabric in accordance with the placement policy.
US11336714B1 Queue-based distributed timer
A data processing system for providing a distributed timer implements receiving a first timer message associated with a first computing device requesting creation of a first timer having a first duration and a first timer identifier; responsive to the first timer message creating a first timer, and inserting a first timer queue entry into a first timer queue associated with a first timer wait interval; receiving a plurality of second timer messages to reset the first timer; inserting a plurality of second timer queue entries into the first timer queue based on the plurality of second timer messages; and processing timer queue entries in the first timer queue responsive to the first timer wait interval having passed.
US11336711B2 Method of playing audio and video, computing device, and computer program product
A method of playing audio and video is provided. The method includes: obtaining a streaming media content to be encapsulated, and parsing the streaming media content to obtain audio parameter information and/or video parameter information; forming a Media Presentation Description (MPD) file in JavaScript Object Notation (JSON) format according to the audio parameter information and/or the video parameter information, wherein the MPD file in JSON format includes multiple streaming media content segments, each streaming media content segment includes a video segment and/or an audio segment, each of the video segment and the audio segment includes multiple arrays, and each array includes the audio parameter information or the video parameter information; sending the MPD file in JSON format to a client.
US11336706B1 Providing cognition of multiple ongoing meetings in an online conference system
An approach is provided in which the approach identifies a set of active online meetings in which the approach identifies a set of active online meetings in which a user is participating. The approach dynamically computes an interest level of each of the set of active online meetings based on a set of user preferences to produce a set of interest levels corresponding to the set of active online meetings. The approach determines a priority order of the set of active online meetings based on the set of interest levels and presents the set of active online meetings to the user based on the determined priority order.
US11336701B2 Creation and sharing of contacts groups between communication participants
The technology disclosed herein enables the creation of a contacts group from participants in a communication session along with the ability to share that created contacts group. In a particular embodiment, a method includes identifying participants participating in a communication session and receiving first user input from a first participant of the participants. The first user input identifies a first selection of the participants comprising at least one of the participants. The method further includes obtaining first contact information for the first selection of the participants and including the first contact information in a first contacts group. The method also includes providing the first contacts group to a selection of one or more users.
US11336700B2 Scalable real-time duplex communications service
One example provides a computing system configured to provide scalable, real-time duplex communications across a data network, the computing system comprising one or more processors, and storage comprising instructions executable by the one or more processors to instantiate one or more real-time duplex communication service instances. Each real-time duplex communication service instance comprises a real-time duplex communication framework comprising a client hub configured to receive connections for a plurality of clients and a server hub configured to receive connections for a plurality of servers, and each real-time duplex communication service instance is configured to publish messages regarding a state of the real-time duplex communication framework to a channel accessed by other real-time duplex communication service instances.
US11336699B2 Broadcasting signal transmission device, broadcasting signal reception device, broadcasting signal transmission method, and broadcasting signal reception method
A method of processing a broadcast signal in a broadcast receiver includes receiving the broadcast signal including service data of a service, first signaling information for fast channel scans and service acquisition, and second signaling information providing information for discovery and acquisition of the service data. Further, the first signaling information includes bootstrap information for the second signaling information, identification information for identifying the service, category information for indicating a category of the service and capability information specifying a capability required to decode the service data. In addition, the second signaling information is carried in a Layered Coding Transport (LCT) channel that is identified by a Transport Session Identifier (TSI), and the bootstrap information includes address and port information for access of the second signaling information. The method also includes acquiring the service data based on at least the first signaling information or the second signaling information; and decoding the service data.
US11336695B2 Conversation-based policy distribution
This disclosure describes techniques for improving policy distribution in a network. The policy distribution may be improved based on a conversation between devices of the network. The techniques include initiating a policy download trigger based on the conversation. The policy download trigger may specify a particular destination device for a data transfer across the network. Therefore, policies specific to the destination device may be downloaded and/or installed at points of enforcement in the network. In this way, the techniques described herein may improve the efficiency of network resource use.
US11336691B2 Method and system for managing privacy of in-home devices
A method, a device, and a non-transitory storage medium are described in which a privacy management service is provided. The privacy management service may be included in an in-home device. The privacy management service may multiple levels of privacy relating to traffic received from end devices that are connected to an external network via the in-home device. The privacy management service may include a smart speaker service. The privacy management service may allow a user to configure a privacy level of an end device. The privacy management service may include machine learning logic that may filter sensitive information included in received traffic.
US11336688B2 Systems and methods for end-user security awareness training for calendar-based threats
Systems and methods are described for providing calendar-based simulated phishing attacks to users of an organization. Initially, a context is identified for a calendar-based simulated phishing attack directed towards a user. An electronic calendar invitation for the calendar-based simulated phishing attack is then generated using the context. Thereafter, the electronic calendar invitation may be communicated to an electronic calendar of the user.
US11336687B2 System and method for providing security for master clocks
Embodiments describe monitoring network activity and behavior of authorized clocks to identify suspicious activity, and in response, removing a clock for an authorized clock list. In one embodiment, a network monitor detects changes in profiles corresponding to the authorized clocks such as a disconnecting from a port, changing a network location, unexpected changes in the clock signal, changes to the clock ID or MAC address, and the like. If the network monitor deems these changes suspicious, it removes the clock from the authorized clock list. When the current master clock fails, the PTP endpoints select a new master clock only if that clock is included in the authorized clock list. In this manner, the network monitor can constantly update the authorized clock list to ensure it contains only clocks that have not been tampered with or replaced with rogue clocks.
US11336686B2 Electronic authentication infrastructure
Briefly, example methods, apparatuses, and/or articles of manufacture are disclosed that may be implemented, in whole or in part, using one or more computing devices to facilitate and/or support one or more operations and/or techniques for electronic authentication infrastructure, such as implemented, at least in part, via one or more electronic communications.
US11336685B1 Cloud-native global file system with rapid ransomware recovery
A cloud-native global file system, in which one or more filers are associated with a volume of a versioned files system in a private, public or hybrid cloud object store, is augmented to include a rapid ransomware recovery service. Upon detecting a ransomware attack associated with one or more files or directories of the volume, read and write access to the volume is restricted. A recovery filer is then activated or designated in the cloud. A restore operation is then initiated at the recovery filter. Following completion of the restore operation, a new clean (healthy) snapshot of the volume is then created using the recovery filer For any filer other than the recovery filer, a determination is made whether the filer has completed a merge operation with respect to the new clean snapshot. If so, read and write access to the volume is re-enabled from that filer.
US11336684B2 Mobile device security using a secure execution context
A device includes a secure execution context that is segregated from an operating system of the device. A security application executing in the operating system interfaces with the secure execution context to obtain verified data. The secure execution context may verify that operating system files are free of malware, obtain sensor readings that may be cryptographically signed, verify functioning of a baseband processor, and verify other aspects of the function and security of the device. The verified data may be used for various purposes such as verifying location of the device, training a machine learning model, and the like.
US11336682B2 System and method for generating and implementing a real-time multi-factor authentication policy across multiple channels
Systems and methods for generating and implementing a real-time multi-factor authentication policy across multiple channels, are configured to: during a pre-authentication stage: receive, via a user interface, information defining one or more scenarios; receive, via the user interface, information defining one or more authentication flows; for each of the one or more scenarios, map one of the one or more authentication flows to a given scenario; and generate a multi-factor authentication policy associated with each of the one or more scenarios; and during a real-time authentication stage: upon receiving an interaction, identify, by a decision engine, a relevant scenario of the one or more scenarios; implement, by the decision engine, the multi-factor authentication policy associated with the relevant scenario; and determine, by the decision engine, an authentication result.
US11336681B2 Malware data clustering
In various embodiments, systems, methods, and techniques are disclosed for generating a collection of clusters of related data from a seed. Seeds may be generated based on seed generation strategies or rules. Clusters may be generated by, for example, retrieving a seed, adding the seed to a first cluster, retrieving a clustering strategy or rules, and adding related data and/or data entities to the cluster based on the clustering strategy. Various cluster scores may be generated based on attributes of data in a given cluster. Further, cluster metascores may be generated based on various cluster scores associated with a cluster. Clusters may be ranked based on cluster metascores. Various embodiments may enable an analyst to discover various insights related to data clusters, and may be applicable to various tasks including, for example, tax fraud detection, beaconing malware detection, malware user-agent detection, and/or activity trend detection, among various others.
US11336674B2 Transportation security apparatus, system, and method to analyze images to detect a threat condition
In a transportation security technique, images are stored that are received from image capturing equipment deployed at respective screening nodes. The images are analyzed using a machine learning model, where presence of a particular object in an image indicates that a threat condition exists at the screening node. The analyzed images are transmitted to threat assessment components in accordance with predetermined criteria. An indication that the particular object is observed in the image is received from the threat assessment components. An indication that the particular object is observed in the image is transmitted to the screening node responsive to receiving the indication that the particular object is observed in the image. An indication of whether the particular object is present at the screening node is received. The machine learning model is trained based on the received indication of whether the particular object is observed in the image.
US11336669B2 Artificial intelligence cyber security analyst
An analyzer module forms a hypothesis on what are a possible set of cyber threats that could include the identified abnormal behavior and/or suspicious activity with AI models trained with machine learning on possible cyber threats. The Analyzer analyzes a collection of system data, including metric data, to support or refute each of the possible cyber threat hypotheses that could include the identified abnormal behavior and/or suspicious activity data with the AI models. A formatting and ranking module outputs supported possible cyber threat hypotheses into a formalized report that is presented in 1) printable report, 2) presented digitally on a user interface, or 3) both.
US11336664B2 Inline malware detection
Detection of malicious files is disclosed. A set comprising one or more sample classification models is stored on a networked device. N-gram analysis is performed on a sequence of received packets associated with a received file. Performing the n-gram analysis includes using at least one stored sample classification model. A determination is made that the received file is malicious based at least in part on the n-gram analysis of the sequence of received packets. In response to determining that the file is malicious, propagation of the received file is prevented.
US11336662B2 Technologies for detecting abnormal activities in an electric vehicle charging station
Technologies for detecting abnormal activities in an electric vehicle charging station include an apparatus. The apparatus includes circuitry configured determine a cyber security threat level for the charging station in which the electric vehicle charger is located. Additionally, the circuitry is configured to perform, as a function of the determined cyber security threat level, a responsive action to protect the charging station from a cyber security threat.
US11336659B2 Transparent bridge for monitoring crypto-partitioned wide-area network
This disclosure is directed to monitoring a crypto-partitioned, or cipher-text, wide-area network (WAN). A first computing device may be situated in a plain-text portion of a first enclave behind a first inline network encryptor (INE). A second device may be positioned in a plain-text portion of a second enclave behind a second INE. The two enclaves may be separated by a cipher-text WAN, over which the two enclaved may communicate. The first computing device may receive a data packet from the second computing device. The first computing device may then determine contents of a header of the data packet. The first computing device may, based at least in part on the contents of the header of the data packet, determine a status of the cipher-text WAN.
US11336657B2 Securing communication within a communication network using multiple security functions
The invention relates to a communication network having at least one network element (NE), via which data associated with the communication are conducted. The method comprises the following steps: securing, by means of a first cryptographic security function, the data (D) that are transferred from at least one first communication device (PLC1) to at least one second communication device (PLC2), providing a second cryptographic security function, which secures, between a communication device and a network element, messages that are conducted from the first communication device to the at least second communication device via the at least one network element and that contain the data, providing a checking function by means of the at least one network element, which checking function checks the authenticity and/or integrity of the messages on the basis of the second security function, continuing (6) or stopping (5) the communication in accordance with the result of the check (4) by the checking function, wherein, if the communication is continued, the data remain secured by means of the first security function until the data are received by the at least second communication device.
US11336655B2 Multilevel authorization of workspaces using certificates
Systems and methods provide multilevel authorization of workspaces using certificates, where all of the authorization levels may be authorized separately or may instead be authorized at once. A measurement of an IHS (Information Handling System) is calculated based on the identity of the IHS and based on firmware of the IHS. A measurement of the configuration of the IHS is calculated based on information for configuring the IHS for supporting workspaces and also based on the IHS measurement. A measurement of a workspace session is calculated based on properties of a session used to remotely support operation of the workspace by the IHS and also based on the configuration measurement. Workspace session data may by authorized at all three levels by evaluating the session measurement against a reference session measurement.
US11336641B2 Security enhanced technique of authentication protocol based on trusted execution environment
The present disclosure is drawn to systems and methods for implementing authentication protocols based on trusted execution environments. Each of a principal device, an identity provider server and a service provider server are associated with a respective trusted execution environment. Authentication protocols are provided for registering the principal device to the identity provider server; authenticating the principal device to the identity provider server; and authenticating the principal device to a service provider server.
US11336639B1 Systems and methods for managing a need-to-know domain name system
The disclosed computer-implemented method for managing a need-to-know domain name system may include (i) intercepting, by an agent of the computing device, network traffic received on the computing device, (ii) generating, by the agent, a one-time password based on a unique identifier of the agent of the computing device, (iii) wrapping, by the agent, the network traffic with the one-time password, and (iv) pushing, by the agent, the wrapped network traffic to a cloud server using a local domain name system (DNS) of the agent of the computing device, wherein the local DNS comprises a private domain name unpublished in a global DNS. Various other methods, systems, and computer-readable media are also disclosed.
US11336635B2 Systems and methods for authenticating device through IoT cloud using hardware security module
Provided are a system and method for authenticating a device through an Internet of Things (IoT) cloud by using a hardware security module. The system includes an IoT device connectable to a cloud which provides an IoT service and a security module connected to the IoT device and configured to generate a pair of public and private keys for authenticating the IoT device. The IoT device transmits a certificate generation request including the public key and a device identifier to an authentication server through the cloud in order to generate a device certificate.
US11336634B2 Identity management via a centralized identity management server device
A device can establish an identity for an individual by communicating with a first set of devices. The first set of devices can include a user device, a first server device associated with a certificate authority, or a second server device associated with an identity provider. The device can authenticate the identity of the individual by communicating with a second set of devices. The second set of devices can include the user device, or a third server device associated with a first service provider. The device can authorize the identity of the individual to be used by one or more service providers by communicating with a third set of devices. The third set of devices can include the user device, the third server device, or a fourth server device associated with a second service provider.
US11336633B2 Authentication using a feeder robot in a web environment
Method, system, and programs for performing two-factor authentication for a controlled access application via one or more third-party host verification servers. An example method includes receiving a request to a controlled access application after a user has successfully logged into an enterprise system with a first Identifier (ID) factor, the controlled access application requiring additional authentication with a second ID factor, obtaining first information to complete the second ID factor, at least some of the first information being obtained from the user, and generating a first web form using the first information. The method also includes submitting the first web form to a host verification server, receiving an indication of successful verification from the host verification server; and initiating, in response to receiving the indication of successful verification, access to the controlled access application.
US11336628B2 Methods and systems for securing organizational assets in a shared computing environment
Embodiments of the present disclosure provide methods and systems that configured to, generally, and in no particular order, perform one or more of the following functions: distinguish and identify secured assets that are permitted to an end-point to employ within a shared computing environment; monitor the end-point for certain triggering events, such as data creation, reception, manipulation, storage, or extraction associated with a secured asset; upon detection of a triggering event, monitor at least one unsecured container in order to determine if at least a portion of the secured asset has been otherwise transferred to an unsecured container; and encrypt the unsecured container in order to secure the otherwise unsecured asset.
US11336627B2 Packet inspection and forensics in an encrypted network
According to an implementation of the disclosure, a computing device may record substantially all the network traffic being transported over a first node of a network over a period of time. The computing device may receive an authenticated request from a forensics system that includes access criteria. The first computing device may determine a relevant encrypted and unencrypted portion of the network traffic based on the access criteria. Based on unencrypted portion, the computing device may recalculate an encryption key applicable to the encrypted portion. The computing device may then replicate the relevant portion and the encryption key to the forensics system for forensic analysis.
US11336624B2 Methods and apparatus to distribute media content
Methods and apparatus to distribute media content are disclosed. An example apparatus includes a client interface to receive a request from a wireless communication device for authorization to present media, the media received at the wireless communication device in an encrypted format. A database is to store an association of the wireless communication device and a wired network termination unit. A record interface is to, in response to the request for authorization, query the database based on an identifier of the wireless network communication device to determine whether the wired network termination unit is authorized to receive the media via a wired communication path, and in response to determining that the wired network termination unit is authorized to receive the media via the wired communication path authorize the wireless communication device to decrypt and present the transmitted media.
US11336623B2 Data processing method
There is disclosed a method of processing a data packet received by a packet sniffer, the packet containing an associated identifier, the method including transmitting the packet to a recipient, determining if the identifier corresponds to a particular network, wherein if the identifier is determined to correspond to the particular network, the identifier is provided to the recipient; and if the identifier is determined to not correspond to the particular network, the identifier is withheld from the recipient.
US11336622B2 Apparatus and method for deploying firewall on SDN and network using the same
An apparatus for deploying a firewall on a software-defined network (SDN) includes a public key distributor configured to transmit a public key, a resource monitor configured to monitor resources of a network, a host monitor configured to receive a firewall rule of at least one host, which is encrypted by the public key, a decryption unit configured to decrypt information received from the host monitor by using a secret key, a merge unit configured to merge the decrypted information to provide a merged firewall rule, and a firewall deployment unit configured to deploy the merged firewall rule to a switch.
US11336621B2 WiFiwall
A hardware device with embedded software, for detecting Wi-Fi network attacks, including random access memory storing operating software for the device, Flash or EEPROM memory storing Wi-Fi network attack rules and attack data, a Wi-Fi interface monitoring and intercepting Wi-Fi packets and Wi-Fi frames transmitted to and from a mobile station being protected by the device, embedded operating software analyzing sequences of Wi-Fi packets and frames intercepted by the Wi-Fi interface to detect an attempted Wi-Fi network attack, based on the attack rules and the attack data stored in the Flash or EEPROM memory, and sending a notification message to the mobile station when an attempted Wi-Fi network attack is detected, a processor running the embedded operating software, and a power supply supplying power to the processor, to the random access memory, to the Flash or EEPROM memory, and to the Wi-Fi interface.
US11336612B2 Method and apparatus for sharing user event between chatbots
Provided is a method by which a cross chatbot gateway allows an event to be shared between chatbotsu, and the method includes the steps of: receiving an event message from a first chatbot communicating with a first chatting server using a first chatting protocol, wherein the event message includes destination information and event information of a first user, who is a chatting counterpart of the first chatbot; and transmitting the event information to a second chatbot communicating with a second chatting server using a second chatting protocol, on the basis of the destination information.
US11336611B2 Electronic device, server, and control method and location information providing method for the electronic device
A first electronic device of the present invention comprises at least one communication circuitry, at least one display, at least one memory configured to store instructions, and at least one processor operatively coupled with the at least one communication circuitry and the at least one display. The processor is configured to (1) access to a first server for a navigation service through an application for the navigation service linked with a first account for accessing to a second server, (2) receive a user input through the application, (3) transmit, via the first server to a second electronic device of a second user that is authenticated through the application linked with a second account for accessing to the second server, a message, (4) periodically transmit, via the first server to the second electronic device, information, and (5) display a positional relationship between the two electronic devices over an electronic map.
US11336610B2 Email sender and reply-to authentication to prevent interception of email replies
An electronic messaging system that reviews content of inbound messages, verifies elements of header fields, and initiates an action if Name (N) and Address (A) of From (F)_and Reply-To (R) elements of header fields match or do not match, those elements being NF=NR and AF≠AR, to protect recipients against inadvertent routing of their reply email to an imposter of the named From sender, thereby mitigating risk of recipients falling prey to what is referred to herein as “Reply-To Whaling” attacks, within the email security category of anti-phishing.
US11336607B2 Managing multiple forms of messages in a messaging application
Provided is a method of providing a function of managing a VIP message. The method includes transmitting and receiving messages from a plurality of clients; setting at least one of the plurality of clients to a specific person; extracting messages transmitted by a specific person among the transmitted and received messages as VIP messages; combining the extracted VIP messages; and providing the combined VIP messages through a combined chat room.
US11336606B2 Triggering event notifications based on messages to application users
In accordance with one disclosed method, a first computing system may receive a message from an application hosted on a second computing system, the message being indicative of an event of the application. In response to receiving the message, the first computing system may generate a notification indicative of the event and send the generated notification to a client device. The first computing system may receive a response to the notification from the client device, and may process the response so as to cause the application to take an action responsive to the event.
US11336588B2 Metadata driven static determination of controller availability
Systems and methods for determining if a controller that can service a custom resource (CR) exists are disclosed. A processing device annotates a corresponding deployment of each of a plurality of controllers with filter metadata obtained from the controller. The filter metadata of a controller comprises at least an object type that the controller is to service. In response to generating a CR, the processing device may compare the definitions of the CR with the filter metadata from each of the plurality of controllers, wherein the definitions of the CR comprise at least an object type of the CR. In response to determining that none of the plurality of controllers have filter metadata matching the definitions of the CR, the processing device may provide to a user a no-match alert indicating that there is no controller among the plurality of controllers that can service the CR.
US11336582B1 Packet scheduling
Various example embodiments for supporting packet scheduling in packet networks are presented. Various example embodiments for supporting packet scheduling in packet networks may be configured to support scheduling-as-a-service. Various example embodiments for supporting packet scheduling in packet networks based on scheduling-as-a-service may be configured to support a virtualized packet scheduler which may be provided as a service over a general-purpose hardware platform, may be instantiated in customer hardware, or the like, as well as various combinations thereof. Various example embodiments for supporting packet scheduling in packet networks may be configured to support scheduling of packets of packet queues based on association of transmission credits with timeslots of a periodic service sequence used to provide service to the packet queues.
US11336573B2 Service chaining in multi-fabric cloud networks
Techniques for routing data packets through service chains within and between public cloud networks of multi-cloud fabrics. A router in a network, e.g., a public cloud network, receives data packets from nodes in the network through segments of the network. Based at least in part on (i) a source address of the data packet, (ii) a destination address of the data packet, and (iii) an identity of the segments of the network from which the data packets are received, the router determines a next node in the network to which the data packet is to be forwarded. The router may then forward the data packet through another segment of the network to the next node and then receive the data packet from the next node through the another segment.
US11336571B2 Control of multi-layer communication network
Embodiments include methods of controlling a client layer of a multi-layer communication network that also includes a server layer. Such methods include receiving, at a client physical network controller (PNC), an indication of at least one characteristic associated with one or more paths between server network nodes in the server layer. The indication is received from a multi-domain service controller (MDSC) in the multi-layer communication network, and the server layer is controlled by a server PNC. Such methods include, based on the at least one characteristic, computing one or more paths in the client layer that facilitate protection and/or restoration for the one or more paths in the server layer. Other embodiments include complementary methods performed by a MDSC, as well as client PNCs and MDSCs configured to perform such methods.
US11336570B1 Layer three multi-homing for virtual networks
A network system includes a server comprising a set of virtual routers configured to extend virtual networks to virtual machines. A virtual router of the set of virtual routers may receive a tunnel packet comprising a outer header and an inner packet that defines a first packet flow, and determine, based at least on the outer header, that the tunnel packet is associated with a first virtual network of the virtual networks. The virtual router may also associate, based on the inner packet, the tunnel packet to a layer three link of a plurality of layer three links coupling the virtual router to two or more top-of-rack switches in the virtual network, where the plurality of layer three links form a layer three multi-homing connection between the virtual router and the top-of-rack switches in the virtual network. The virtual router may transmit the tunnel packet via the layer three link.
US11336569B2 Ping and traceroute in inter-autonomous system (AS) segment routing (SR) networks without requiring headend router or path monitoring system (PMS) controller knowledge of topology outside of origin as
Ping or traceroute functionality is supported in a path spanning multiple autonomous systems (ASes) having segment routing (SR) enabled, the path including an ingress node in a first autonomous system (AS) and an egress node in an AS other than the first AS, using a reverse path label pair including (1) a node segment identifier (SID) corresponding to an AS Border Router (ASBR) of the second AS (second ASBR), and (2) an egress peer engineering (EPE) SID corresponding to a segment between the second ASBR to an ASBR of the first AS (first ASBR). Responsive to receiving a ping or traceroute request by a router in the second AS, the router generates a ping or traceroute reply including the reverse path label pair. The ping or traceroute reply is forwarded to the second ASBR using the node SID of the reverse path label pair. The ping or traceroute reply is then forwarded from the second ASBR to the first ASBR using the EPE SID of the reverse path label pair. Finally, the ping or traceroute reply can be forwarded (e.g., using standard IP forwarding) from the first ASBR to the headend router.
US11336568B2 System and method for authorizing traffic flows
A method and system for authorizing traffic flows in a computer network. The method including: receiving a packet from a traffic flow sent by a sender; determining whether the traffic flow has been previously authorized; if the traffic flow has not been previously authorized: determining a subscriber associated with the traffic flow, based on the data retrieved from the packet; requesting authorization from an authorization server based on the subscriber and the data retrieved from the packet; upon receiving a response from the authorization server, sending at least three duplicate acknowledgments to the sender, to generate a retransmission in advance of the standard retransmission timing; otherwise, if the traffic flow has been previously authorized, allowing the packet to continue to a destination.
US11336565B2 Method and node for packet transmission in network
A method for packet transmission in a network includes receiving, by a first node, a second segment identifier sent by the third node, receiving, by the first node, a packet sent by the second node through the first path, determining, by the first node, that a next-hop node of the first node on the first path is faulty, and in response to the determining, by the first node, that a next-hop node of the first node on the first path is faulty, adding, by the first node, the second segment identifier to the packet, and sending the packet to the third node through a second path, where the second path is established by the first node based on the second segment identifier.
US11336561B2 System and method for isochronous switching of packetized media streams
An IP router capable of isochronous switching of a packetized media stream. According to an example, the IP router parses the RTP header within an incoming IP datagram to extract the RTP time stamp, which provides a time value for a unique IP Flow. By inspecting the header, the IP router can switch the flow at the point in time that the RTP time stamp value changes, or matches a target value. In one aspect, the IP router looks for the change in the RTP time stamp value and performs the switch based on the detected change. In another aspect, the IP router performs the switch at a specified time stamp value that can be unique to a group of signals or based on a common “sync” value published to all the ports of the IP router.
US11336556B2 Route exchange between logical routers in different datacenters
Some embodiments provide a method for a first edge device in a first datacenter that implements a centralized routing component of a logical router that spans multiple datacenters and handles data traffic between a logical network implemented across the multiple datacenters and external networks. From a second edge device in a second datacenter, the method receives via routing protocol a route having a particular routing protocol tag. When the first datacenter is a primary datacenter for the logical router such that all data traffic between the logical network and the external networks is handled by one or more centralized routing components implemented at the first datacenter, the method uses the routing protocol tag to determine whether to advertise the received route to the external networks.
US11336555B2 Network segmentation effectiveness system and method
The invention relates to a network segmentation effectiveness attestation system and method. The method may comprise receiving a list of internet protocol (IP) addresses for information technology (IT) assets within a defined scope, and executing a plurality of segmentation scans from outside a cardholder data environment (CDE) using a plurality of software agents. The software agents may be deployed and orchestrated across multiple network tiers. The method may also comprise receiving, automatically interpreting, and certifying results from the segmentation scan, automatically generating a report from the results of the segmentation scan, and automatically posting the report for authorized users to access.
US11336554B2 Universal semiconductor-based automatic highspeed serial signal testing method
The invention relates to a universal semiconductor automatic high-speed serial signal testing method, comprising: a chip to be tested sending, to an impedance matching unit, a high-speed serial signal; then by means of a phase shift unit, sequentially transforming, according to a set fixed resolution, the phase of the high-speed serial signal, the magnitude of each offset phase being determined by a phase shift control signal outputted by a control unit and the resolution of the phase shift unit; after passing through the phase shift unit, the high-speed serial signal keeps channel impedance matching by means of the impedance matching unit; the signal entering an acquisition unit, and being acquired under the action of an acquisition control signal sent by the control unit; the control unit performing signal exchange with semiconductor automatic testing equipment (ATE); and the acquisition unit transmitting the acquired signal back to the universal semiconductor ATE for algorithm operation, and then the actual high-speed serial data stream is obtained. The present invention enables direct testing of high-speed serial interface signals by means of the universal ATE during mass production, greatly improving testing convenience and efficiency.
US11336550B2 Signal analysis method and measurement system
A signal analysis method comprising: receiving an input signal, the input signal comprising a symbol sequence; receiving samples of a reference signal based on a known sample rate, the reference signal comprising the same symbol sequence as the input signal; determining symbol points of the symbol sequence based on the samples; determining measurement times based on the symbol points; and determining at least one signal quality parameter at the measurement times, wherein the at least one signal quality parameter is indicative of a signal quality of the input signal. Further, a measurement system is described.
US11336548B1 Method, apparatus, and computer readable storage medium for managing network slices for the benefit of users
A method for managing network slices for the benefit of users monitors and obtains key performance indicators configured by a user, the indicator values being collected in real time and visually presented. When a user wants to optimize the network slices, weightings, value intervals, and variables are applied by the user to target key performance indicators. The network slices are optimized by a particle swarm algorithm configured by the user. A device and a computer readable and permanent storage medium for executing the network slices management method are also disclosed.
US11336546B2 Multiple link aggregation among local area networks
An information handling system and method includes a plurality of local area networks, an access point, and a client device. The access point includes a server processor in communication with access point network interface circuitry. The server processor is to implement a virtual private network server to establish a virtual private network with a virtual private network client implemented on a client device. The client device includes an application processor in communication with client device network interface circuitry. The application processor is to transmit a first VPN packet to the virtual private network access point via a first local area network and to transmit a second VPN packet to the virtual private network access point via a second local area network. The server processor is to convert the first and second VPN packets to first and second network packets, respectively, and transmit the first and second network packets to the wide area network.
US11336545B2 Network device measurements employing white boxes
A system for network device measurements may use a white box to perform measurements that may help determine the likelihood of network anomalies, such as microbursts.
US11336544B2 HDMI system speed test
A method of assessing at least one of audio and video HDMI performance capabilities of an AV system including one or more sources and one or more sinks, interconnected in a first configuration comprises using an app running on a smart device, wirelessly connected to the AV system, to present audio and/or video performance capability information for each source and sink to a user of the system, based on EDID information received by the smart device from each source and sink.In one embodiment, the app also presents a determination of maximum theoretical data handling capacity of the AV system in the first configuration; runs a test to assess actual data handling capacity of the AC system in the first configuration; and presents one or more results of the test to the user.
US11336542B2 Network packet capture manager
The packet capture manager uses a multi-tiered storage for storing captured network traffic. Captured packets are stored on a primary storage with a time-to-live according to a retention policy. The packet capture manager receives instructions from one or more network monitoring devices identifying one or more captured packets as packets of interest. The packet capture manager flags the identified packets as packets of interest, moves the flagged packets to a secondary storage, and changes the TTL of the moved packets. A machine learning model analyzes historical data of the instructions received from the one or more network monitoring devices. The packet capture manager uses the machine learning model to identify packets of interest and move identified packets to the secondary storage without specific instructions from a network monitoring device.
US11336540B2 Sampling frequency recommendation method, apparatus and device, and storage medium
A sampling frequency recommendation method, apparatus, and device, and a storage medium relating to the field of communications technologies are disclosed. The sampling frequency recommendation method includes: obtaining a network key performance indicator of a to-be-analyzed data stream; sampling the network key performance indicator based on a plurality of different sampling frequencies to obtain an experience quality sequence corresponding to each sampling frequency, where the plurality of different sampling frequencies include one standard sampling frequency and at least two to-be-tested sampling frequencies, and the standard sampling frequency is greater than each to-be-tested sampling frequency; and determining a matching degree between an experience quality sequence corresponding to each to-be-tested sampling frequency and a standard experience quality sequence, and determining a recommended sampling frequency based on the matching degree between the experience quality sequence corresponding to each to-be-tested sampling frequency and the standard experience quality sequence.
US11336539B2 Support ticket summarizer, similarity classifier, and resolution forecaster
A support ticket summarizer, similarity classifier, and resolution forecaster are described. A system trains a machine learning model to identify topic sequences for support ticket communications, identify topic sequences that are classified as similar, and predict subsequent topics for multiple support ticket communications, in response to receiving the support ticket communications. The machine learning model receives a communication for a support ticket, and then identifies a sequence of topics for the communication for the support ticket. The machine-learning model identifies historical sequences of topics, for historical support tickets, which are classified as similar to the sequence of topics. The machine-learning model uses the historical sequences of topics to predict at least one subsequent topic for the sequence of topics. The system outputs the at least one subsequent topic.
US11336537B2 Management service migration for managed devices
Disclosed are various examples for client device migration. In one example, a migration service identifies migration data to migrate a client device from a first management service to a second management service. The migration service transmits a management data request to the first management service, and temporarily stores management data retrieved based on the request. The management data indicates an organizational group. The migration service creates the organizational group with the second management service to facilitate migration of the client device to the second management service.
US11336536B1 Dynamic processing distribution for utility communication networks
Technologies for implementing edge intelligence for utility communication networks are provided. For example, a system includes a mesh network and a utility fog configured to manage the mesh network. The utility fog includes a secure utility system configured for executing a private utility application and a first edge intelligence device configured for executing a first subset of software applications. Each software application is configured to manage endpoints in the mesh network or process data collected by the mesh network. The mesh network includes the endpoints and an edge intelligence device configured for executing a second subset of the software applications that is different from the first subset of software applications.
US11336535B2 Station movement flow driven automatic RF site grouping
Techniques for dynamic RF site configuration are provided. Historical association data is collected from a plurality of access points in a physical environment, and a machine learning model is trained to predict future association events, based on the historical association data. Current association data is then collected from the plurality of access points, and at least one predicted association event is generated by processing the current association data using the trained machine learning model. The plurality of access points is allocated to a plurality of radio frequency (RF) sites based on the at least one predicted association event. Finally, at least one of the plurality of RF sites is configured based on the predicted association event.
US11336534B2 Network operation
A method of operating a communications network is disclosed. In order to manage a network, it is first necessary to establish the state the network is in. This is difficult in practice because the network operational data stored and transmitted in the network takes a myriad of forms owing to the variety of suppliers and types of network equipment. There is a need to distil that network operational data down to aggregate network operational data which can be taken to provide an indication of the state of the network which is of a manageable size, and to which network management apparatus can react by sending control commands to the network. The problem of generating aggregate network operational data is tackled by identifying the type of each attribute found in each network operational data item, and classifying the network operational data items in a manner which takes account of the identified types and thus provides network aggregate data which more accurately reflects the operational state of the network. This in turn leads to the network management apparatus controlling the network to operate in a more efficient manner than has hitherto been possible.
US11336533B1 Network visualization of correlations between logical elements and associated physical elements
Some embodiments of the invention provide a method for providing a visualization of a topology for a logical network implemented in a physical network. The method identifies a set of logical elements of the logical network. For each logical element, the method identifies a set of one or more physical elements in the physical network that implements the logical element. Multiple physical elements are identified for at least one of the logical elements. Through a user interface (UI) the method displays a visualization that includes (1) the set of logical elements, (2) connections between the logical elements, (3) the sets of physical elements that implement each logical element in the set of logical elements, and (4) correlations between each logical element and the set of physical elements that implements the logical element. Each logical element and each physical element is represented by a node in the visualization.
US11336524B2 Guided configuration item class creation in a remote network management platform
A system may include a database disposed within a remote network management platform, a server device disposed in the platform, and a client device. The database may contain representations of configuration items, such as computing devices and software applications associated with the managed network. The server device may provide a graphical user interface including a sequence of panes to the client device. The sequence of panes may include an identifier pane, an identification rules pane, and a reconciliation pane. Each pane may include data entry fields that are operable to define a new class of configuration item. The server device may receive, by way of the graphical user interface, a definition of the new class that uniquely identifies configuration items of a particular type using at least the attributes. The server may store, in the database, the definition of the new class.
US11336522B2 Information handling system physical component inventory to aid operational management through near field communication device interaction
NFC communications from a mobile phone to an information handling system initiates an inventory by a management controller of the information handling system. The inventory is provided to the mobile telephone with a second NFC communication so that an end user can see a visual depiction of the interior of the information handling system before opening the chassis of the system.
US11336520B2 Network design device, network design method, and network design processing program
With a network design apparatus, a network design method, and a network design processing program, a network configuration is designed for a network in which a transfer apparatus is disposed at each of a plurality of communication hubs and the communication hubs are connected via a link by a link portion apparatus in the transfer apparatus. In design of a network configuration, an optimal combination candidate of a link portion apparatus for each link for minimizing a total cost value in an overall network is calculated on the basis of a combination candidate set of link portion apparatuses. The combination candidate set of the link portion apparatuses is configured using only combination candidates with a cost-effectiveness indicating a ratio of a total capacity to a total cost value of the link portion apparatus higher than a predetermined reference.
US11336519B1 Evaluating placement configurations for distributed resource placement
A distributed system may implement evaluating placement configurations for distributed resource placement. Placement requests for a partition of a distributed resource may be received. An evaluation of prospective placement configurations of the distributed resource is performed that locates the partition at different resource hosts. In some embodiments, placement configurations may be analyzed with respect to infrastructure zone locality. Multiple infrastructure zone localities may be analyzed and combined to evaluate prospective placement configurations. Prospective placement configurations may be analyzed with respect to other criteria, such as resource host utilization data. Based, at least in part, on the evaluation of the prospective placement, a resource host is identified for placing the partition.
US11336518B2 Staging configuration changes with deployment freeze options
Techniques for a configuration change service to transition a network controller into a frozen state, causing network users submitting configuration changes associated with the network to refrain from deploying the configuration changes for a period of time are disclosed. A first user configured as a stager role may submit data representing a proposed change to the configuration change service, where the proposed change may be stored in association with a list of proposed changes. A second user configured as an approver role may submit data representing an approval or disapproval of the proposed changes to the configuration change service, where a modified list of proposed changes may be generated. A third user configured as an administrator role may submit data configured to transition the controller to an unfrozen state and/or deploy the changes included in the list of proposed changes to the network controller, subsequent to the period of time.
US11336515B1 Simultaneous interoperability with policy-aware and policy-unaware data center sites
Presented herein are systems and methods to enable simultaneous interoperability with policy-aware and policy-unaware data center sites. A multi-site orchestrator (MSO) device can be configured to obtain configuration information for each of a plurality of different data center sites. The data center sites may include one or more on-premises sites and one or more off-premises sites, each of which may include one or more policy-aware sites and/or one or more policy-unaware sites. The MSO can selectively use namespace translations to create a unified fabric across the different data center sites, enabling one or more hosts and/or applications at a first of the data center sites to communicate with one or more hosts and/or applications at a second of the data center sites, regardless of the sites' respective configurations.
US11336506B1 Automatic diagnostics alerts for streaming content encoded by multiple entities
Automatic diagnostics alerts for streaming multiple types of content is disclosed. At a first time, a set of metrics for a plurality of groups of streaming sessions is computed. A streaming session in a group is associated with streaming of a piece of content encoded by an entity. The streaming of the piece of content encoded by the entity is associated with streaming of another piece of content. An anomaly is identified at least in part by performing anomaly detection using the set of metrics. A cause of the identified anomaly is diagnosed. An alert is generated based at least in part on the diagnosis.
US11336502B2 Deriving network device and host connection
This disclosure describes techniques that determine device connectivity in the absence of a network layer 2 discovery protocol such as Link Layer Discovery Protocol (LLDP). In one example, this disclosure describes a method that includes retrieving, from a bridge data store of a bridge device on a network having one or more host devices, a plurality of first interface indexes, wherein each first interface index corresponds to a network interface of network interfaces of the bridge device; retrieving, from the bridge data store, remote network addresses corresponding to the network interfaces of the bridge device, each remote network address of the remote network addresses corresponding to a second interface index; selecting a remote network address having a second interface index that matches the first interface index; determining a host device having the selected remote network address; and outputting an indication that the bridge device is coupled to the host device.
US11336499B2 Automatic OFDM profile selection
Assigning an appropriate modulation profile for an orthogonal frequency-division multiplexing (OFDM) channel. The current modulation profile assigned to a specific OFDM modem for communicating over a specific OFDM channel is examined to determine whether to consider reassigning the specific OFDM modem to a different modulation profile. Only upon determining consideration should be given, an assessment is made as to which modulation profile, of a set of candidate modulation profiles available to that OFDM modem for communicating over the specific OFDM channel, should be assigned to the specific OFDM modem using linear domain averaging over the OFDM subcarriers of the ratios between a Mean Error Rate (MER) threshold per subcarrier for the specific OFDM modem and the MER reported by the specific OFDM modem per subcarrier. A new modulation profile is assigned to the specific modem based on the assessment.
US11336493B1 Dynamic transmission impairment correction for satellite systems
A system includes a processor and a memory. The memory stores instructions executable by the processor to identify an equalization response for equalizing an output signal of a modulator of a satellite gateway, generate a compensation response based on the equalization response and a sample rate of a pre-distorter of the modulator, and send the equalization response to the pre-distorter.
US11336489B1 Method of configuring decision feedback equalizer and related decision feedback equalizer thereof
A decision feedback equalizer includes: a feedforward equalizer, a feedback equalizer, a slicer and a decision adjustment unit. The feedforward equalizer is arranged to generate a feedforward output signal based on an input signal. The feedback equalizer is coupled to the feedforward equalizer and arranged to generate a feedback output signal according to a decision output signal. The slicer is coupled to the feedforward equalizer and the feedback equalizer, and is controllable by a decision adjustment parameter, wherein the slicer is arranged to perform a slicer decision on a sum of the feedforward output signal and the feedback output signal, thereby generating the decision output signal. The decision adjustment unit is coupled to the slicer, and is arranged to adjust the decision adjustment parameter according to a sleep state of a communication device in which the decision feedback equalizer is disposed.
US11336488B2 Method and apparatus for uplink transmission and reception in a wireless communication system
Disclosed are a method for transmitting and receiving an uplink in a wireless communication system and an apparatus therefore. Specifically, a method for uplink transmission by a User Equipment (UE) in a wireless communication system may include: receiving, from a base station, Sounding Reference Signal (SRS) configuration information, wherein the SRS configuration information includes a parameter set for power control of SRS for each SRS resource set and the SRS resource set includes one or more SRS resources; determining a transmission power of the SRS, based on the parameter set for power control of the SRS; and transmitting the SRS to the base station.
US11336487B1 Optimized high-efficiency (HE) sounding for multi-link device networks
A system and method for optimizing a channel sounding procedure of a multi-link device (MLD) is disclosed. The improved channel sounding procedure disclosed herein involves an MLD requesting channel sounding information from a group of receivers on a first channel representing a first physical frequency, but receiving channel sounding information from a subgroup of the receivers on one or more other channels representing different physical frequencies. In this manner, the channel sounding procedure on a specific link of an MLD is optimized by offloading some of the sounding process to a different radio link that is also operational for the MLD as part of the same association context.
US11336486B2 Selection of managed forwarding element for bridge spanning multiple datacenters
Some embodiments provide a method for a set of central controllers that manages forwarding elements operating in a plurality of datacenters. The method receives a configuration for a bridge between (i) a logical L2 network that spans at least two datacenters and (ii) a physical L2 network. The configuration specifies a particular one of the datacenters for implementation of the bridge. The method identifies multiple managed forwarding elements that implement the logical L2 network and are operating in the particular datacenter. The method selects one of the identified managed forwarding elements to implement the bridge. The method distributes bridge configuration data to the selected managed forwarding element.
US11336483B2 Directional wireless drop systems for broadband networks and related methods
Directional wireless drop systems are provided. These systems include a tap unit that is connected to a communications line of the broadband network; a cable modem unit connected to the tap unit; a plurality of wireless routers connected to the cable modem unit; and a directional antenna unit that is connected to at least a first of the wireless routers. Each wireless router is associated with a respective one of a plurality of subscriber premises that are served by the directional wireless drop system and is configured to communicate with at least one device that is located at the respective one of plurality of subscriber premises.
US11336481B2 Wireless communication system, communication apparatus, setting information providing method, setting information obtaining method, and computer program
A wireless communication system includes an access point, a master communication apparatus, and a slave communication apparatus, and the master communication apparatus and the slave communication apparatus perform wireless communication through the access point. The master communication apparatus stores setting information necessary for accessing the access point; performs wireless communication through the access point using the stored setting information; and performs near field communication with the slave communication apparatus to transmit the stored setting information to the slave communication apparatus in response to a setting information request received from the slave communication apparatus via near field communication. The slave communication apparatus performs near field communication with the master communication apparatus to transmit the setting information request to the master communication apparatus; receives the setting information from the master communication apparatus via near field communication; stores the setting information; and performs wireless communication through the access point using the setting information.
US11336479B2 Information processing apparatus, information processing method, and non-transitory computer readable medium
An information processing apparatus includes an acquisition unit and a transmitter. The acquisition unit acquires input information including information on a user and information that the user conveys to an interaction partner. The transmitter transmits the input information to a device having superiority over other candidate devices as a device for processing response information, to the input information, from the interaction partner.
US11336477B2 Load control system having audio output devices
A control system may comprise a plurality of audio output devices (e.g., controllable speakers), and a remote control device having at least one button for selecting a preset, where the preset defines different commands for at least two of the audio output devices. The at least two audio output devices may be configured to be controlled according to the different commands (e.g., starting, pausing, or stopping playback, adjusting volume, etc.) in response to an actuation of the button of the remote control device. The control system may also comprise a load control device, such as a dimmer configured to control an intensity of a lighting load to a predetermined intensity in response to the actuation of the button of the remote control device to select the preset. The audio output device may be configured to play a feedback signal indicating an operational characteristic of the dimmer.
US11336473B2 Network and method for delivering content while minimizing congestion costs by jointly optimizing forwarding and caching strategies
Embodiments include a unified framework for minimizing congestion-dependent network cost by jointly optimizing forwarding and caching strategies that account for link congestion between neighboring nodes. As caching variables are integer-constrained, the resulting optimization problem is a non-deterministic polynomial time (NP)-hard problem. Embodiments relax the optimization problem, where caching variables are real-valued. Embodiments include optimality conditions for the relaxed problem. Embodiments include an adaptive and distributed joint forwarding and caching method, based on a conditional gradient method. Embodiments elegantly yield feasible routing variables and integer caching variables at each iteration, and can be implemented in a distributed manner with low complexity and overhead. Over a wide range of network topologies, simulation results show that embodiments have significantly better delay performance in the low to moderate request rate regions. Furthermore, embodiments complement each other in delivering superior delay performance across the range of request arrival rates, compared to existing methods.
US11336472B2 Data packet processing method and apparatus
A data packet processing method and apparatus, where a storage apparatus disposed on a network side stores a correspondence between an identifier and data flow characteristic information. When configuring a policy for a data packet including a first identifier, a network-side device requests the storage apparatus for data flow characteristic information corresponding to the first identifier. A policy and charging enforcement function (PCEF) receives a data packet that is sent by a user equipment (UE), matches the data packet against the data flow characteristic information, and when the data packet matches the data flow characteristic information, executes a policy on the data packet according to policy information corresponding to the first identifier.
US11336470B2 Method and apparatus for transmitting and receiving wake-up signal in vehicle network
An operation method of a first end node of an Ethernet-based vehicle network is provided. The operation method includes detecting a local event and transitioning an operation state of a physical layer (PHY) of the first end node from a sleep state to a wake-up state. A pseudo PHY identifier (ID) is configured as a PHY ID of the first end node in response to the first end node operating in the wake-up state. A first beacon including the pseudo PHY ID is then transmitted and the first beacon indicates that the first end node operates in the wake-up state.
US11336468B2 Synthetic physically unclonable function
A circuit for a Synthetic Physically Unclonable Function, acronym SPUF, in a computer device, wherein the circuit is configured to receive data from a plurality of hardware sensors and/or actuators accessible in the computer device; to determine deviations in the data; to determine a multivariate distribution of the deviations and to determine an identifier from the multivariate distribution. In described developments, deviations comprise random errors, statistical moments in data originating from sensors and/or actuators amongst accessible ones in the computer device can be selected, and entropy can be maximized. Computer program product embodiments are described.
US11336467B2 Bot permissions
Permission control and management for messaging application bots is described. A method can include providing a messaging application, on a first computing device associated with a first user, to enable communication between the first user and another user, and detecting, at the messaging application, a user request. The method can also include programmatically determining that an action in response to the user request requires access to data associated with the first user, and causing a permission interface to be rendered in the messaging application, the permission interface enabling the first user to approve or prohibit access to the data associated with the first user. The method can include accessing the data associated with the first user and performing the action in response to the user request, upon receiving user input from the first user indicating approval of the access to the data associated with the first user.
US11336464B2 Identity authentication method and system, as well as computing device and storage medium
The method of identity authentication at the user is provided to prove to the certificate authority that a key is owned by a user. The method can comprise selecting a certain number of keys from a set of keys of the user, obtaining a hash value of a correspondence between each key in the certain number of keys and a user identifier of the user respectively, and transmitting the obtained hash values to the certificate authority, and after receiving from the certificate authority a notification regarding a first subset of hash values, sending keys corresponding to the first subset of hash values as a first subset of keys to the certificate authority. The first subset of hash values can be selected by the certificate authority from the obtained hash values. Zero know ledge proof can be achieved with this technical solution.
US11336462B1 Systems and methods for post-quantum cryptography optimization
Systems, apparatuses, methods, and computer program products are disclosed for quantum computing (QC) detection. An example method includes generating QC detection data. The example method further includes generating a pair of asymmetric cryptographic keys comprising a public cryptographic key and a private cryptographic key, generating encrypted QC detection data based on the pair of asymmetric cryptographic keys, and destroying the private cryptographic key. The example method further includes monitoring a set of data environments for electronic information related to the encrypted QC detection data. Subsequently, the example method may include generating a QC detection alert control signal in response to detection of the electronic information related to the encrypted QC detection data.
US11336461B2 Method for controlling by a server the use of at least one data element of a data owner
The invention relates to a method for controlling by a server called secure server the use of a first set of at least one data element of a data owner and provided by a communication device, the method comprising the steps of: receiving at least one digital signature representative of a process authorized by the data owner and adapted to carry out a series of at least one instructions using the first set of at least one data element; receiving from a process entity the series of at least one instruction, and a ciphered version of the first set of at least one data element which is communicated to the process entity by the communication device; verifying that the series of at least one instruction correspond to a process authorized by the data owner of the communication device by comparing the at least one digital signature received by the secure server with a digital signature obtained by the secure server using as an input the series of at least one instruction received by the secure server; and if the series of at least one instruction correspond to an authorized process: deciphering the first set of at least one data element; generating a result data by executing the series of at least one instruction using the first set of at least one data element as an input; transmitting the result data to the process entity.
US11336455B2 Consensus protocol for blockchain DAG structure
An example operation may include one or more of receiving a chain of blocks from a blockchain comprising a directed acyclic graph (DAG) format in which blocks are independently hash-linked to multiple blocks, identifying temporal relationships between blocks in the chain of blocks based on a structure of the chain of blocks in the DAG format, determining a sequential linear order of the chain of blocks in the DAG format based on the identified temporal relationships, and storing the sequential linear order of the chain of blocks.
US11336453B2 Transactions between services in a multi-tenant architecture
A method for facilitating transactions between tenants in a multi-tenant architecture system is discussed. The method includes receiving a request, at a multi-tenant platform, from a first service of a first tenant of the multi-tenant platform to access a second service of a second tenant of the multi-tenant platform to perform a transaction, in which the request includes a first access token usable to authenticate the transaction with the first tenant. The method includes generating, by the multi-tenant platform using the first access token, a universal access token. The method includes generating, by the multi-tenant platform using the universal access token, a second access token useable to authenticate the transaction with the second tenant. The method includes using, by the multi-tenant platform, the second access token to communicate with the second service to perform the transaction.
US11336452B2 Methods for registering data from an individual's identity document and for authenticating an identity document
The invention proposes a method for registering data from an individual's identity document (1), the method being characterized in that it comprises implementing by data processing means (21) of a server (2) the following steps:(A) Receipt of a photograph of said individual visible on said identity document (1), an optical reading data element of the identity document (1), and at least one personal data element of said individual;(B) Extraction by analysis of said photograph from reference information representative of the appearance of said photograph;(C) Generation of a random string, calculation of an encoded data element by applying an encoding procedure to said reference information representative of the appearance of said photograph and said random string;(D) Storage on the server (2) data storage means (22) of: Said encoded data element; A cryptographic imprint of a first concatenation of the optical reading data element of the identity document (1) and the random string; An encryption with a cryptographic imprint of a second concatenation of the optical reading data element of the identity document (1) and the random string, different from the first concatenation, of at least one personal data element of said individual. The invention also relates to an authentication method and a server for this purpose.
US11336451B2 Cross-blockchain resource transmission
Examples of a method and apparatus for cross-chain resource transmission are described. The cross-chain resource transmission includes sending from a first account of a first blockchain to another blockchain. One example of the method is executed by the first blockchain and includes: initiating, by the first account, a first transaction used for cross-chain resource transmission, to decrement a first resource balance of the first account by a first quantity and save first data obtained through a consensus into the first blockchain based on execution of the first transaction, where the first data includes an authenticable message; and sending the first data and first location information to the relay end, which is used to send the authenticable message to the second blockchain, where a second resource balance of the second account is incremented by a second quantity.
US11336445B2 Method for updating a one-time secret key
This invention relates to a method for updating a one-time secret key Kn maintained in a subscription module implemented in a communication apparatus, a wireless communication network maintaining an identical version of said one-time secret key Kn and configured to determine a result XRES expected from the communication apparatus when an authentication function is applied by the subscription module using a random challenge and said one-time secret key Kn as an input, the method comprising the following steps: receiving from the communication network an authentication request message containing at least a random challenge RANDn; determining by the subscription module a result RES by applying the authentication function using the random number RANDn and the one-time secret key Kn as inputs; transmitting said result RES to the communication network for it to be compared with the expected result XRES determined by the communication network using the random number RANDn and the corresponding version of the one-time secret key Kn, the subscriber being authenticated if said first and second results are matching; updating the one-time secret key Kn by replacing its current version with a new version obtained by applying a first key derivation function using the random challenge RANDn as an input, the updated version of the one-time secret key Kn being used by the subscription module for processing a subsequent authentication request, the same update being carried out by a server accessible or part of the wireless communication network in order to maintain an identical version of the one-time secret key Kn.
US11336441B2 Communication terminal, server apparatus, and program
A communication terminal which is capable of reducing load of a server apparatus by reutilizing a message key to be used for encrypting a message is provided. The communication terminal includes a session key storage part which stores a session key which is shared with another communication terminal and which is not shared with the server apparatus, a message key generating part which generates a message key, a message key storage part which stores the message key to be reutilized in association with a message key identifier, a message encrypting part which generates a message encrypted text based on a common key cryptosystem using the message and the message key, a message key encrypting part which generates a message key encrypted text based on a common key cryptosystem which can perform re-encryption using the session key and the message key, and an encrypted text transmitting part which transmits a group identifier which is an identifier of a group to which an own terminal belongs, the message key encrypted text or the message key identifier, and the message encrypted text to the server apparatus.
US11336439B2 Information processing device, information processing method, and recording medium
An information processing device which includes: a secure storage accessible by only trusted software, in which a first encryption key keeping unit keeping a first encryption key is configured inside a access limit area; a second encryption key keeping unit keeping as a second encryption key; a setup processing activation unit acquiring the second encryption key from the second encryption key keeping unit in response to activation of a local device, and outputting the acquired second encryption key; and a software execution unit being executed as the trusted software, acquiring the second encryption key from the setup processing activation unit, acquiring the first encryption key from the first encryption key keeping unit together with acquisition of the second encryption key, constructing a common encryption key by using the first encryption key and second encryption key, and setting up an encrypted file system by using the constructed common encryption key.
US11336436B2 Key distribution system and method, key generation apparatus, representative user terminal, server apparatus, user terminal, and program
A key distribution system includes a representative user terminal 2p, a server apparatus 3, and an (n+1)-th user terminal 2n+1. The representative user terminal 2p uses a public key for the (n+1)-th user terminal 2n+1 and information for identifying the (n+1)-th user terminal 2n+1 to encrypt key information with a predetermined encryption function in Certificate-less Encryption to obtain ciphertext. The server apparatus 3 sends the ciphertext to the (n+1)-th user terminal 2n+1 when the (n+1)-th user terminal 2n+1 is added. The (n+1)-th user terminal 2n+1 uses a complete secret key for the (n+1)-th user terminal 2n+1 and the information for identifying the (n+1)-th user terminal 2n+1 to decrypt the ciphertext with a predetermined decryption function to obtain the key information.
US11336435B2 Method, apparatus, and system for processing two-dimensional barcodes
This specification describes techniques for processing service requests. An electronic credential request including a user identifier is received from a client. An electronic credential that corresponds to the user identifier and a user public key that corresponds to the user are retrieved. A hash operation is performed on the user public key and the electronic credential by using a hash algorithm to obtain a hash value that is signed within a predetermined time period. Server signature information is generated using the hashed credential, and transmitted with the electronic credential to the client. The server signature information is cryptographically verifiable by the client and enables the client to generate a two-dimensional barcode based on the electronic credential.
US11336431B2 Verification system and method for cooperating with blockchain and off-chain devices
A verification system and method for cooperating with a blockchain and off-chain devices is provided. The system includes a security protocol device, a blockchain device, and a database device. The security protocol device receives and integrates the record data into a binary tree according to a hash function. Hash values of the record data are stored in the leaf nodes. The blockchain device is at the blockchain and communicates with the security protocol device. The security protocol device transmits the root hash to the blockchain device. The database device communicates with the security protocol device in an off-chain manner. The security protocol device stores the binary tree to the database device. The security protocol device compares the root hash from the blockchain device with the root hash of the binary tree stored in the database device to verify the correctness of the binary tree stored in the database device.
US11336430B2 Blockchain-incorporating distributed authentication system
Disclosed herein are system, method, and device embodiments for an authentication workflow incorporating blockchain technology. An embodiment operates by requesting, from a distributed authentication service, transmission of a time-based one-time password to a communication endpoint associated with an end-user, receiving a time-based one-time password submission from a user device associated with the end-user, retrieving a plurality of distributed ledger entries (e.g., a plurality of blocks of a blockchain), and validating the time-based one-time password submission based on the plurality of distributed ledger entries as a part of a two factor authentication workflow.
US11336428B1 Blinded passwords for a distributed storage system
A method for execution by one or more processing modules of one or more computing devices of a dispersed storage network (DSN), the method begins by performing a key derivation function on a password and issuing a set of blinded passwords to a set of storage units. The method continues by receiving at least a decode threshold number of confidential information responses, regenerating a set of keys using the associated passkeys of the confidential information, decrypting a set of encrypted slices of the confidential information using the set of keys to reproduce a set of encoded data slices, and dispersed storage error decoding a decode threshold number of the set of reproduced encoded data slices to produce recovered data.
US11336426B2 Authenticated confirmation and activation message
A data transmitter for transmitting data to a data receiver is provided, wherein individual communication information is known to the data transmitter and the data receiver, the data transmitter being configured to generate an individual synchronization sequence while using the individual communication information.
US11336423B2 Timing synchronization for downlink (DL) transmissions in coordinated multipoint (CoMP) systems
Technology for a user equipment (UE) operable to adjust a receiver timing is disclosed. The UE can decode a plurality of channel-state information reference signals (CSI-RSs) received from a plurality of cooperating nodes, wherein the plurality of cooperating nodes are included in a coordination set of a Coordinated MultiPoint (CoMP) system. The UE can generate a plurality of received RS timings from the plurality of CSI-RSs, wherein the received RS timings represent timings from the plurality of cooperating nodes. The UE can determine a composite received RS timing from the plurality of received RS timings. The UE can adjust the receiver timing based on the composite received RS timing.
US11336422B2 Methods and devices for data transmission with reference signals
Embodiments of the present disclosure relate to methods and devices for data transmission. In example embodiments, a method implemented in a network device is provided. According to the method, a target RS port group is determined from a plurality of RS ports for transmitting a RS. The RS ports are associated with at least one network device. Then, a configuration of the target RS port group is transmitted to the terminal device.
US11336421B2 Method and apparatus for transmitting control information in wireless communication system
The present invention pertains to a wireless communication system, and more particularly, to a method of receiving a downlink (DL) control channel in a wireless communication system and an apparatus therefor, and the method comprises the following steps: receiving a radio resource control (RRC) message including resource block (RB) allocation information; receiving a subframe having a plurality of physical RBs; and monitoring a plurality of downlink control channel candidates in a physical RB set corresponding to the RB allocation information from the plurality of physical RBs to detect a downlink control channel allocated to a communication device, wherein the plurality of downlink control channel candidates do not continuously exist in a virtual RB set corresponding to the physical RB set.
US11336419B2 Reference signal measurement method, reference signal sending method, and related device
A reference signal measurement method, a reference signal sending method, a user equipment, and a base station are provided. According to the embodiments of the present application, a user equipment determines reference signal resource configuration, which includes reference signal port configuration, reference signal subframe configuration, and reference signal configuration, and a quantity of ports configured in the reference signal port configuration is N; receives a reference signal according to the reference signal resource configuration; and performs measurement based on the received reference signal to obtain channel state information and/or signal quality information. In the embodiments of the present invention, a quantity of ports configured in the reference signal port configuration is N; and a quantity of supported ports may vary with different values of N.
US11336418B2 Method and device for avoiding uplink collisions with overlapping TTI
The present invention discloses a data transmission method and apparatus. The method comprises: determining on a terminal side whether there is an overlap between a transmission time of an uplink channel which transmits using a first transmission time interval length and a transmission time of an uplink channel which transmits using a second transmission time interval length; when there is an overlap, then selecting a part of the uplink channel for transmission according to a predetermined rule, and abandoning the remaining uplink channel for transmission or puncturing the transmission of the remaining uplink channel. On a network side, determining that the terminal selects one type of uplink channel for transmission according to the predetermined rule, and abandons another type of uplink channel for transmission or punctures the transmission of another type of uplink channel. With the present invention, correct transmission of the terminal can be achieved even when channels with different transmission time intervals overlap.
US11336414B2 Downlink hybrid automatic repeat request feedback for narrowband Internet of Things devices
Techniques for transmitting hybrid automatic repeat request (HARQ) feedback by narrowband Internet-of-Things (NB-IoT) devices are provided. NB-IoT user equipment (UE) can transmit HARQ feedback in response to a narrowband physical downlink shared channel (NPDSCH) received over a downlink (DL). NB-IoT UEs can transmit the responsive HARQ feedback over a narrowband physical uplink shared channel (NPUSCH) or a narrowband physical uplink control channel (NPUCCH). Options for defining the physical structures of the NPUCCH and NPUSCH and user multiplexing on the uplink (UL) are provided. Determination of an UL resource allocation by determining resources in time, frequency, and the code domain for the HARQ feedback transmissions are also provided. Higher level signaling and/or indications provided in downlink control information (DCI) can be used to determine the time, frequency, or code domain resources.
US11336413B2 Method for transmitting/receiving reference signal in wireless communication system, and device therefor
A method and a device, which: receive, from a base station through a demodulation reference signal (DMRS) symbol, a DMRS set according to a specific pattern by the base station, wherein the DMRS is transmitted in a specific antenna port and positioned on one or two time axis symbols, which are the same as at least one other DMRS transmitted in another antenna port; and decode data by using the DMRS.
US11336412B2 Synchronization signal configuration method and apparatus
Examples synchronization signal configuration methods and apparatus are described. One example method is applied to a relay network including a first node and a second node, and the first node is a parent node of the second node. The example method includes sending synchronization signal configuration information by the first node to the second node, where the synchronization signal configuration information is used to indicate M first synchronization signal time-frequency positions and N second synchronization signal time-frequency positions in a candidate synchronization signal time-frequency position set. The first synchronization signal time-frequency position is used by the second node to send a first synchronization signal, the second synchronization signal time-frequency position is used by the second node to receive or detect a second synchronization signal, the candidate synchronization signal time-frequency position set includes W synchronization signal time-frequency positions, and W≥(M+N).
US11336410B2 Zone-based signaling in new radio
Methods, systems, and devices for wireless communications are described. According to one or more aspects, a device, such as a user equipment (UE), may receive a signal including one or more channel transmission parts associated with one or more zones. The UE may identify, based on receiving the signal, at least one zone of the one or more zones that is associated with the UE. Additionally or alternatively, the UE may identify multiple zones of the one or more zones that are associated with the UE. The UE may select a channel transmission part of the one or more channel transmission parts based on receiving the signal and the identified zone associated with the UE. The UE may decode the one or more selected channel transmission parts, and may communicate based on the decoded channel transmission part or the decoded channel transmission parts.
US11336408B2 Transmission resource allocation method and apparatus, and data sending method and apparatus
This application provides a transmission resource allocation method and apparatus, and a data sending method and apparatus. The method includes: determining, by a network device, at least one basic resource element, where each of the at least one basic resource element corresponds to at least one pilot, a first basic resource element in the at least one basic resource element corresponds to at least two pilots, and the at least two pilots are different; and indicating, by the network device to a terminal device, at least one pilot corresponding to one or more of the at least one basic resource element.
US11336407B2 Reusing long-term evolution (LTE) reference signals for new radio (NR) system operations
Wireless communications systems and methods related to reusing long-term evolution (LTE) resources for new radio (NR) system operations are provided. A UE receives, from a base station, a reference signal configuration of a first network of a long-term evolution (LTE) radio access technology (RAT). The UE and the base station are associated with a second network of another RAT. The reference signal configuration indicates at least a number of antenna ports associated with a reference signal of the first network. The UE determines a location of the reference signal associated with the reference signal configuration and receives, from the base station, a data signal of the second network based at least on the location of the reference signal of the first network.
US11336405B2 Wireless communication device and corresponding apparatus, method and computer program
Embodiments of the present disclosure relate to wireless communication devices, systems comprising wireless communication devices, and to an apparatus, a method and a computer program for a wireless communication device. The apparatus comprises a transceiver module for transmitting and receiving wireless transmissions. The apparatus comprises a processing module that is configured to control the transceiver module. The processing module is configured to communicate with a further wireless communication device via the transceiver module. The communication with the further wireless communication device is based on a transmission of data frames between the wireless communication device and the further wireless communication device. Each data frame is based on a two-dimensional grid in a time-frequency plane having a time dimension resolution and a frequency dimension resolution. The processing module is configured to select a communication mode from a plurality of communication modes for the communication between the wireless communication device and the wireless communication device. The communication mode defines a combination of a frequency dimension resolution and a time dimension resolution of the two-dimensional grid in the time-frequency plane. The communication mode is selected from the plurality of communication modes based on an estimated self-interference of the plurality of communication modes.
US11336401B2 Method of retransmission for downlink transmission in wireless communication system and apparatus for the same
Disclosed herein are a method of retransmission for downlink transmission of a wireless communication system and an apparatus for the same. The method includes receiving multiple feedback signals corresponding to a transmission failure from multiple terminals corresponding to point-to-multipoint transmission, generating retransmission data in response to the multiple feedback signals, and transmitting the retransmission data to the multiple terminals.
US11336399B2 Code block reordering for retransmissions
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a transmitter device may transmit a hybrid automatic repeat request (HARQ) communication using a first code block order for code blocks of the HARQ communication; detect a trigger to retransmit the HARQ communication based at least in part on transmitting the HARQ communication; reorder the code blocks of the HARQ communication based at least in part on detecting the trigger to retransmit the HARQ communication; and retransmit the HARQ communication using a second code block order based at least in part on reordering the code blocks of the HARQ communication. Numerous other aspects are provided.
US11336393B2 Apparatus for generating broadcast signal frame for signaling time interleaving mode and method using the same
An apparatus and method for generating a broadcast signal frame for signaling a time interleaving mode are disclosed. An apparatus for generating broadcast signal frame according to an embodiment of the present invention includes a combiner configured to generate a multiplexed signal by combining a core layer signal and an enhanced layer signal; a power normalizer configured to perform power-normalizing for reducing the power of the multiplexed signal to a power level corresponding to the core layer signal; a time interleaver configured to generate a time-interleaved signal by performing time interleaving after performing the power-normalizing; and a frame builder configured to generate a broadcast signal frame including a preamble for signaling a time interleaving mode corresponding to the time interleaver for each of physical layer pipes (PLPs).
US11336389B2 Transmitting device which generates a physical layer packet by inserting padding and transmitting method thereof
A transmission device is disclosed. The transmitting device comprises a processor for generating a packet comprising a header and a payload, on the basis of an input packet, and generating a frame comprising the generated packet, and a transmission unit for transmitting a signal generated on the basis of the frame. The processor inserts padding into at least one packet from among a plurality of packets included in the frame, on the basis of the number of packets included in the frame, the length of each input packet included in the frame, and the lengths of the packets. Here, the boundary of an input packet may be included in a packet into which padding is inserted.
US11336388B2 System and method for setting link parameters in a WiFi link
A method for operating a link method includes estimating a plurality of throughputs, each throughput corresponding to one of a plurality of modulation and coding schemes, each one of the plurality of modulation and coding schemes corresponding to one of a plurality of combinations of spatial stream numbers and bandwidths, selecting a maximum throughput from the plurality of throughputs, and transmitting data according to a modulation and coding scheme, a spatial stream number, and a bandwidth corresponding to the maximum throughput.
US11336386B2 Submarine branching apparatus, optical submarine cable system, and optical communication method
In order to provide a submarine optical transmission system that utilizes multiple wavelength bands, the submarine branching apparatus is provided with: a first demultiplexing part for demultiplexing a wavelength-multiplex optical signal input from a first terminal station into a first wavelength-multiplex optical signal and a second wavelength-multiplex optical signal; an optical add-drop part for outputting at least a third wavelength-multiplex optical signal included in the first wavelength-multiplex optical signal to a second terminal station, and for outputting a fifth wavelength-multiplex optical signal by multiplexing at least a fourth wavelength-multiplex optical signal included in the first wavelength-multiplex optical signal with a wavelength-multiplex optical signal input from the second terminal station; and a first multiplex part for multiplex the second wavelength-multiplex optical signal with the fifth wavelength-multiplex optical signal input from the optical add-drop part and outputting the resulting signal to a third terminal station.
US11336384B2 Synchronization signal measurement method and related device
Transmitting, by the network device, the configuration information to a user equipment, wherein the configuration information is used to instruct the user equipment to use a measurement set to measure a synchronization signal, wherein the measurement set is used by a user equipment in a connected state to measure a synchronization signal, the measurement set is a first synchronization signal block (SS block) set, and the first SS block set includes a number of SS blocks smaller than a number of SS blocks included in a second SS block set which includes an SS block used by the user equipment in an idle state to measure the synchronization signal; or the measurement set is a signal set, and the signal set includes a part of signals in Y SS blocks, and Y is a positive integer.
US11336377B1 Millimeter-wave frequency synthesizer based on microcomb photomixing, and associated methods
A millimeter-wave frequency synthesizer generates a millimeter wave by photomixing two Kerr-soliton microcombs. A single-frequency laser beam is modulated to create first and second pump components having first and second pump frequencies. The first pump component excites a first microresonator to create a first microcomb while the second pump component excites a second microresonator to generate a second microcomb. A pair of comb lines from the two microcombs is detected to generate a low-frequency beat note that is phase-locked by identically tuning the pump frequencies. Another pair of comb lines is detected with a high-speed photodiode to generate the millimeter wave. The frequency of the millimeter wave is based on (i) the difference between the pump frequencies, (ii) the difference between the repetition rates, and (iii) the index of the comb lines that are photomixed to generate the millimeter wave.
US11336375B2 Optical transmission apparatus, optical communication system, and optical signal transmission method
An object is to perform wavelength filtering of an optical signal while preventing filter narrowing in an optical transmission apparatus. A branching unit branches a wavelength-multiplexed optical signal including an optical signal of a first wavelength into two optical signals. A wavelength selection unit blocks an optical signal of a first wavelength band including the first wavelength in the optical signal. A filter unit allows passage of an optical signal of a second wavelength band including the first wavelength in the optical signal. A multiplexing unit multiplexes and the optical signal and an optical signal of a second wavelength. The second wavelength band is wider than the first wavelength band.
US11336372B2 Hybrid data transport for a virtualized distributed antenna system
A system for data transport in a Distributed Antenna System (DAS) includes a plurality of remote Digital Access Units (DAUs) located at a Remote location. The plurality of remote DAUs are coupled to each other and operable to transport digital signals between the plurality of remote DAUs. The system also includes a plurality of central hubs. Each of the plurality of central hubs is in communication with one of the remote DAUs using an electrical communications path. The system further includes a plurality of transmit/receive cells. Each of the plurality of transmit/receive cells includes a plurality of remote hubs. Each of the remote hubs in one of the plurality of transmit/receive cells is in communication with one of the plurality of central hubs using an optical communications path.
US11336371B2 Defocuser for compact free space communication
Methods, devices, and systems are described for free space optical communication. An example device can comprise a defocuser configured to receive an optical signal from a laser and control a beam divergence of the optical signal. The optical signal can comprise a data signal and a beacon signal. The device can comprise a controller configured to cause the defocuser to adjust the beam divergence based on an operational mode of the laser.
US11336370B1 Integrated multi-channel photonics transmitter chip having variable power dividers
An integrated transmitter chip comprising: at least one input port disposed at a first end; a first variable power divider optically connected to a first input port of the at least one input port, the first variable power divider being tunable to a first splitting ratio; a second and a third variable power dividers each optically connected to the first variable power divider, the second and the third variable power dividers being tunable to a second and a third splitting ratios; and a first and a second optical channels being optically branched from the second variable power divider, and a third and a fourth optical channels being optically branched from the third variable power divider; wherein an optical signal being launched into the first input port and having an input power is caused to be split by the first variable power divider into a first and a second optical signals.
US11336365B2 Method for managing the telecommunication data traffic of a very high throughput satellite communication system
A method for managing the telecommunication data traffic of a very high throughput satellite communication system wherein, for each satellite, the management of a so-called n+p site diversity and/or of a load diversity is implemented in a digital transparent processor in the satellite to guarantee the availability of the very high throughput communication system.
US11336362B2 Repeater system and method for high-performance communication
A repeater system includes a first repeater device to receive a first beam of radio frequency (RF) signal from a first network node, and a second repeater device to receive a second beam of RF signal from the first network node. The first repeater device synchronizes and controls the second repeater device to concurrently provide the first beam and the second beam of RF signal to a second network node. A plurality of measurements associated with network nodes and repeater devices is acquired. A plurality of signal parameters is selected at the first and second repeater devices for a first beam and a second beam of RF signal, respectively, such that a cross-leakage of first beam on the second beam of RF signal and vice-versa at the second network node is reduced and the gain and a phase of first beam and the second beam of RF signal is adjusted.
US11336361B2 Millimeter-wave non-line of sight analysis
Reducing the effects of path loss in millimeter wave (mmWave) directional communications by performing channel measurements estimating non-line of sight (NLOS) blockages, to determine angle-of-departure (AoD) and angle-of-arrival (AoA) and gain of identified paths so that directional antennas can be reconfigured to overcome unfavorable propagation conditions and reduce path losses.
US11336358B2 Transmission control method
A transmission control method includes sending, by a terminal, uplink control information (UCI) in a first format of the UCI to a radio access network device, where the UCI includes at least one of measurement result information of beam groups or information of the beam groups. The measurement result information of the beam groups includes a measurement result of a first beam group and an offset of a measurement result of a second beam group relative to the measurement result of the first beam group. The measurement result of the first beam group is a reference measurement result, and the information of the beam groups indicates a beam group corresponding to at least one of the measurement result of the first beam group or the measurement result of the second beam group.
US11336356B2 Uplink control information
Embodiments of the present disclosure relate to methods, devices, apparatuses and computer readable storage media for Uplink Control Information (UCI) design. The method comprises determining, at a terminal device, a matrix comprising a set of non-zero linear combination coefficients for quantizing a channel between the terminal device and a network device, the matrix having spatial components and frequency components; shifting the frequency components of the matrix circularly, such that a target coefficient of the set of non-zero linear combination coefficients is located in a frequency component with a predetermined index of the frequency components in a shifted matrix; generating a first indication indicating the spatial component associated with the target coefficient in the matrix; and transmitting, to the network device, uplink control information comprising the first indication. In this way, a new solution for designing the UCI may reduce the overhead for reporting the parameters in the UCI.
US11336351B2 Method and apparatus for higher rank CSI reporting in advanced wireless communication systems
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method of operating a user equipment (UE) for CSI feedback is provided. The method comprises receiving configuration information for the CSI feedback from a base station (BS) and identifying a number of antenna ports for the CSI feedback. The method comprises, if the number of antenna ports is <16, identifying a first codebook for the CSI feedback corresponding to a rank value of 3 or 4, and, if otherwise, identifying a second codebook for the CSI feedback corresponding to the rank value of 3 or 4. The method comprises generating the CSI feedback using the identified codebook and transmitting the generated CSI feedback to the BS. The first codebook has a structure that partitions the antenna ports into two equal partitions. The second codebook has a structure that partitions the antenna ports into four equal partitions by partitioning each partition into two equal sub-partitions.
US11336345B2 Signal transmission device
A signal transmission device includes a first antenna, a second antenna, a demodulation device, and a fixing member. The first antenna transmits radio waves containing a signal modulated at a first frequency. The second antenna receives the radio waves containing the signal via a medium. The demodulation device demodulates the signal and connected to the second antenna. The fixing member fixes the first antenna and the second antenna to the medium.
US11336343B2 Method and device for performing communication using orthogonal or nonorthogonal code multiple access scheme in wireless communication system
Provided are a method and a device for transmitting uplink data by using a non-orthogonal code multiple access scheme in a wireless communication system. Specifically, a terminal receives information on a terminal-specific codebook from a base station. The terminal-specific codebook is included in a codebook for a predefined multi-dimensional modulation. The terminal performs multi-dimensional modulation-based encoding on an information bit on the basis of the terminal-specific codebook so as to generate a complex vector. The terminal performs DFT on the complex vector on the basis of the terminal-specific codebook so as to generate a frequency signal. The terminal transmits uplink data generated by performing IFFT on the frequency signal.
US11336339B2 Precoding matrix indication method, terminal, and network side device
Provided in the present disclosure are a precoding matrix indication method, a terminal, and a network device, the method includes: receiving, by a terminal, a control signaling transmitted from a network side device, wherein the control signaling includes N bits of precoding information, and the N is a positive integer; determining, by the terminal, a quantity of precoding granules according to a scheduling resource, and determining, by the terminal, bits of the precoding information of each of the precoding granules in the N bits of precoding information according to the quantity of the precoding granules, wherein each of the precoding granules includes at least one subband, and each of the at least one subband includes at least one PRB; and acquiring, by the terminal, a precoding matrix indicated by the bits of the precoding information of each of the precoding granules.
US11336336B2 Methods and apparatuses for dynamic transmit diversity fallback
Systems, methods, apparatuses, and computer program products for dynamic transmit diversity fallback are provided. One method may include configuring a user equipment with a maximum number of multiple-input multiple-output (MIMO) layers used for transmission mode 9 or transmission mode 10 scheduling, and performing, by a network node, at least one of transmission mode 9 or transmission mode 10 scheduling. The configuring may include indicating to the user equipment to use a modified mapping table providing transmit diversity fallback for the at least one of transmission mode 9 or transmission mode 10 scheduling.
US11336333B2 NFC device, reader/writer device and methods for authorizing and performing an update
An NFC device comprises a function unit configured to execute a function based on related command code, a storage unit configured to store the command code, a communication unit configured to communicate with another NFC device, and a processing unit configured, if an update of the command code shall be made by the another NFC device, to calculate a checksum over at least part of the command code, to compare the calculated checksum with a checksum received from the another NFC device and to authorize the update if the received checksum matches the calculated checksum.
US11336330B2 Radio frequency circuit and communication device
A radio frequency circuit includes a first acoustic wave filter that is connected to a common terminal and includes a first acoustic wave resonator, a first LC filter that is connected to the common terminal via the first acoustic wave filter and includes at least one of an inductor or a capacitor, a second acoustic wave filter that is connected to the common terminal and includes a second acoustic wave resonator, and a second LC filter that is connected to the common terminal via the second acoustic wave filter and includes at least one of an inductor or a capacitor.
US11336327B2 Base station coordination for cross-link interference cancelation
Techniques and apparatuses are described for enabling base stations (121, 122) to coordinate for canceling cross-link interference (380). The techniques and apparatuses described herein overcome challenges that a single base station (121) might otherwise face in trying to compensate a reception (131) by the base station (121) for cross-link interference (382) from a transmission (132) by another base station (122). The techniques and apparatuses described herein enable the base stations (121, 122) to form coordination sets to exchange information to enable the base stations (121, 122) to accurately reconstruct cross-link interference (380) and ultimately cancel the cross-link interference (380) to improve link quality.
US11336323B2 Front-end module and communication device
A front-end module includes: a switch module that performs CA for bands A and C and performs non-CA for band B, which is located between these two bands, and that has a common terminal and selection terminals; a duplexer that is connected to the selection terminal and allows band A to pass therethrough; a duplexer that is connected to the selection terminal and allows band C to pass therethrough; an impedance matching network that is connected to the selection terminal; and a reception filter that is connected to the impedance matching network and allows band B to pass therethrough. During CA for bands A and C, a first circuit, which includes the impedance matching network and the reception filter, forms an attenuation pole in the frequency band of band C in the transmission characteristic of a path connecting the duplexer, the common terminal, and the duplexer to each other.
US11336321B1 Transmitter / receiver device
A transmitter/receiver device include an antenna, a voltage source, a radio frequency receiver connected to the antenna and powered by the voltage source, a radio frequency transmitter connected to the antenna and powered by the voltage source, and a switch coupled to the antenna, the receiver and the transmitter and configured to couple/decouple the antenna from the transmitter or from the receiver. The antenna is shared between the transmitter and the receiver. The receiver includes a radio frequency stage that includes an amplifier device having an input coupled to the antenna. The amplifier device includes an amplifier switch configured to connect or disconnect the amplifier device from the voltage source.
US11336319B2 Radiation exposure control for beamforming technologies
A circuit arrangement including one or more processors configured to: detect a presence of one or more human object proximities based on sensor data; identify one or more coverage sectors of one or more antenna arrays, operably coupled to the one or more processors, in response to the detected presence of the one or more human object proximities; determine whether radio waves within the one or more identified coverage sectors satisfy a transmit power criteria; select one or more candidate coverage sectors of the one or more antenna arrays based the one or more identified coverage sectors; and determine at least one radio link quality for the radio waves of the one or more candidate coverage sectors.
US11336316B2 Transmission and/or reception of radio frequency signals
An apparatus comprising: a sampler for over-sampling an input signal to produce a sampled input signal; a delta-sigma modulator for modulating the sampled input signal to produce a modulated signal; and a filter for filtering the modulated signal, the filter comprising: a conductive patch and a ground plane separated by a dielectric wherein the ground plane comprises a band-gap periodic structure.
US11336315B2 Radio-frequency module and communication device
A radio frequency module includes a module board including a first principal surface and a second principal surface on opposite sides of the module board, a transmission power amplifier connected to a transmission path, a first circuit component connected to a reception path, and a control circuit that controls the transmission power amplifier. The control circuit is disposed on the first principal surface, and the first circuit component is disposed on the second principal surface.
US11336312B2 Radio frequency module and communication device
A radio frequency module includes: a switch that includes: a common terminal connected to a first common transmission path; a first selection terminal connected to a first transmission path; and a second selection terminal connected to a second transmission path, and switches between connecting the common terminal to the first selection terminal and to the second selection terminal; a transmission power amplifier disposed on the module board and on first common transmission path; and first circuit components disposed on a reception path. The first transmission path is a path through which a transmission signal of a first communication band is transferred, the second transmission path is a path through which a transmission signal of a second communication band is transferred, the switch is disposed on a first principal surface, and at least one of the first circuit components is disposed on a second principal surface.
US11336308B2 Apparatus and method for determining reflection coefficient of antenna
Disclosed is an electronic device. Other various embodiments as understood from the specification are also possible. The electronic device may include an antenna, a communication module including a transceiver, and a control circuit. The control circuit may be configured to radiate a first signal generated from the transceiver through the antenna, to obtain at least part of a second signal obtained by combining a forward signal delivered from the communication module to the antenna and a reverse signal reflected from the antenna, and to determine a reflection coefficient for the antenna based on at least part of the first signal and at least part of the second signal.
US11336307B2 Memory system that carries out soft bit decoding
A memory system includes a nonvolatile semiconductor memory, and a controller configured to maintain a plurality of log likelihood ratio (LLR) tables for correcting data read from the nonvolatile semiconductor memory, determine an order in which the LLR tables are referred to, based on a physical location of a target unit storage region of a read operation, and carry out correcting of data read from the target unit storage region, using one of the LLR tables selected according to the determined order.
US11336306B2 Decoding apparatus, decoding method, and non-transitory computer readable medium
A decoding apparatus includes a multi-input branch metric calculation unit configured to calculate, by using a branch label corresponding to a path extending toward a state S at a time point N in a trellis diagram and a plurality of reception signal sequences, a branch metric in the state S, a path metric calculation unit configured to calculate a path metric in the state S at the time point N, and a surviving path list memory configured to store path labels corresponding to L path metrics among a plurality of calculated path metrics. The path metric calculation unit generates a path label in the state S at the time point N by combining the branch label with a path label in each of the states at the time point N−1 and the surviving path list memory outputs path labels corresponding to L path metrics.
US11336305B2 Memory system
A memory system, which is connectable to a host, includes a non-volatile memory and a controller configured to store data in the non-volatile memory and in a memory region within the host and read the data from the memory region within the host. The controller includes a first encoding/decoding circuit configured to execute encoding/decoding with a first encoding scheme, a second encoding/decoding circuit configured to execute encoding/decoding with a second encoding scheme having a higher error correcting capability than an error correcting capability of the first encoding scheme, an encoding scheme selecting circuit configured to select an encoding/decoding circuit from the first encoding/decoding circuit and the second encoding/decoding circuit to perform encoding of data to be stored in the memory region, based on information about the data read from the memory region.
US11336302B2 Pipelined forward error correction for vector signaling code channel
Decoding sequentially received vector signaling codewords to obtain sequential sets of data bits, wherein elements of each vector signaling codeword are received in parallel over a plurality of wires, generating an incremental update of a plurality of error correction syndrome values based on each sequential set of data bits according to a check matrix, and upon decoding of a final vector signaling codeword, performing a final incremental update of the plurality of error correction syndrome values and responsively modifying data bits within the sequential sets of data bits by selecting a set of data bits from the sequential sets of data bits according to a symbol position index determined from the plurality of error correction syndrome values, the selected set of data bits altered according to a bit error mask determined from a first error correction syndrome value of the plurality of error correction syndrome values.
US11336297B2 DMA transfer apparatus, method of controlling the same, communication apparatus, method of controlling the same, and non-transitory computer-readable storage medium
A DMA (Direct Memory Access) transfer apparatus acquires information including a transfer source address and a transfer destination address based on a received transfer instruction, selects whether to perform first checksum calculation for data from an area of a memory corresponding to the transfer source address or perform second checksum calculation different from the first checksum calculation, and transfers data obtained via the checksum calculation selected in the selecting to an area of the memory corresponding to the transfer destination address.
US11336286B2 Scalable micro bumps indexing and redundancy scheme for homogeneous configurable integrated circuit dies
A method includes detecting an open in a first IO element of a first bank of IOs and not in a second bank of IOs. The first and second banks of IOs are in a channel of a first die. The method includes shifting a first connection between the first IO element and a first core fabric of the first die to second connection between a second IO element and the first core fabric. The second IO element is in the first bank of IOs. The method includes shifting a third connection between a third IO element and a second core fabric of a second die to fourth connection between a fourth IO element and the second core fabric. The third and fourth IO elements are in a third bank of IOs of the second die. The method includes not shifting connections in the second and fourth banks of IOs.
US11336281B2 Output module for industrial control system
An output module for a PLC includes an output circuit. This output circuit is open or closed selectively between a power supply terminal (to which a power supply voltage is supplied) and an output terminal (connected to a solenoid). The output module includes a control apparatus which controls the operation of the output circuit. The output circuit includes switches connected in series to each other between the power supply terminal and the output terminal, and a current output section which performs an operation of short-circuiting terminals of the switch to pass a predetermined current through a path formed due to the short-circuiting. The control apparatus includes on/off control sections which controls on/off states of the respective switches, and diagnosis sections which perform a diagnosis on presence of a short-circuit fault in the respective switches based on diagnostic signals output from a low-potential terminal of the switches.
US11336273B1 Protection against attacks on integrated circuits using voltage monitoring
An Integrated Circuit (IC) includes functional circuitry and attack-protection circuitry (APC). The functional circuitry is to receive a supply voltage from a power-supply input. The APC is coupled to the power-supply input and includes a front-end circuit and an averaging circuit. The front-end circuit is to compare the supply voltage to a plurality of voltage thresholds, and to output a respective plurality of indications that indicate whether the supply voltage violates the respective voltage thresholds. The averaging circuit is to estimate, for a selected subset of the indications, respective duty-cycles at which the indications in the subset exceed the respective voltage thresholds. The APC is to trigger one or more attack detection events in response to the indications and the duty-cycles.
US11336272B2 Low power single retention pin flip-flop with balloon latch
Systems, apparatuses, and methods for implementing a low-power, single-pin retention flip-flop with a balloon latch are described. A flip-flop is connected to a retention latch to store a value of the flip-flop during a reduced power state. A single retention pin is used to turn on the retention latch. During normal mode, the retention latch is pre-charged and a change in the value stored by the flip-flop does not cause the retention latch to toggle. This helps to reduce the power consumed by the circuit during normal mode (i.e., non-retention mode). When the retention signal becomes active, the retention latch gets triggered and the value stored by the flip-flop is written into the retention latch. Later, if the flip-flop is powered down and then powered back up while the circuit is in retention mode, the value in the retention latch gets written back into the flip-flop.
US11336268B2 Integrated circuit comprising at least one ring oscillator and method for controlling an operation of the oscillator
Integrated circuit, comprising at least one ring oscillator including a succession of inverters looped back to form the ring, the at least one oscillator being intended to operate at a desired output frequency and configured so that the inverter transistors operate in or near their temperature inversion zone.
US11336264B1 Systems and methods for varying an impedance of a cable
A system may include a transmitter, a receiver, a cable coupled between the transmitter and the receiver and having two wires for communicating a differential signal from the transmitter to the receiver, and a direct-current (DC) voltage source coupled to a first wire of the two wires of the cable and configured to apply a variable DC offset voltage to the first wire in order to vary an impedance of the cable as a function of the variable DC offset voltage.
US11336263B2 Negative-resistance circuit and active filter for millimetre wave frequencies
The invention relates to a tunable, silicon-based negative-resistance circuit (10, 30) and to an active filter (50) for E-band frequencies (60 to 90 GHz). A base of a transistor (11) is connected to an on-chip inductive transmission line (13) which has a length of approximately a quarter-wavelength at a frequency of 83.5 GHz. The transmission line connects a DC voltage source (14) to the base terminal of the transistor (11) in order to bias the base. Another DC voltage source (15) is connected to the collector of the transistor (11) to bias the transistor. A capacitor (16) operatively bypasses or decouples the voltage source (15) in order to shunt high frequencies or alternating current (AC) signals to ground. The emitter terminal of the transistor (11) is connected to ground through a resistor (18) to limit the collector current (le). The circuit gives rise to improved quality factor of resonators.
US11336261B2 Multiplexer, high-frequency front end circuit, and communication device
A multiplexer (1) includes a plurality of filters connected to a common terminal (110). The multiplexer (1) includes: a low-frequency filter (11L) that is formed of at least one surface acoustic wave resonator arranged between the common terminal (110) and the input/output terminal (120) and has a first pass band; a high-frequency filter (12H) that is connected between the common terminal (110) and the input/output terminal (130) and has a second pass band located at a higher frequency than the first pass band; and a capacitor (CB1) that is serially arranged in a connection path between the common terminal (110) and the low-frequency filter (11L). The Q value of the capacitor (CB1) in the second pass band is higher than the Q value in the second pass band of a capacitance obtained by treating the at least one surface acoustic wave resonator of the low-frequency filter (11L) as a capacitance.
US11336260B2 Filter module
A filter module includes a filter provided on a path connecting an input/output terminal and an input/output terminal, a filter provided on a path connecting an input/output terminal and an input/output terminal, a switch that switches between electrical connection and electrical disconnection between a wire connected to the input/output terminal and a ground, and a switch that switches between electrical connection and electrical disconnection between a wire connected to the input/output terminal and the ground. When the wire and the ground are electrically connected by the switch, the wire and the ground are electrically disconnected by the switch, and when the wire and the ground are electrically connected by the switch, the wire and the ground are electrically disconnected by the switch.
US11336255B2 Acoustic wave element and method for manufacturing same
An acoustic wave element which can be reduced in size and produced relatively easily, practically used without using harmful substances, and can suppress a surface acoustic wave propagation loss, which has an excellent temperature coefficient of frequency and a velocity dispersion characteristic, and with which an increase in the reflection coefficient of interdigital transducers can be suppressed, and a method for manufacturing the acoustic wave element are provided. The acoustic wave element includes a pair of electrodes provided on both surfaces of a piezoelectric substrate, and a dielectric film provided on a first surface of the piezoelectric substrate so as to cover the electrode. The acoustic wave element alternatively includes interdigital transducers provided on a first surface of the piezoelectric substrate, and a dielectric film provided on the interdigital transducers, a gap between the interdigital transducers, and/or a second surface of the piezoelectric substrate.
US11336254B2 Composite substrate and acoustic wave element using same
A composite substrate 10 includes a first substrate 10 comprised of a piezoelectric single crystal and a second substrate 20 comprised of a silicon single crystal bonded to the first substrate 10. In the second substrate, a planar orientation is (111), and ψ of Euler angles (φ, θ, ψ) is offset from 0°. Due to this, a bulk wave spurious is reduced in a specific frequency band.
US11336252B2 Radio frequency filter, multiplexer, radio frequency front end circuit, and communication apparatus
A filter (10) includes two capacitors (C1a and C1b) that are connected in series on a path connecting an input terminal (101a) and an output terminal (102a), an inductor (L2) that is connected in parallel with a series circuit including the two capacitors (C1a and C1b), and a parallel-arm resonator (P1) that is connected between the ground and a node (N) between the two capacitors (C1a and C1b) on the path.
US11336244B2 Fully differential rail-to-rail output amplifier with inverter-based input pair
A fully differential rail-to-rail-output amplifier includes a differential input inverter pair, folded cascode pair, class AB control pair, and class AB output rail-to-rail pair. A drain associated with the folded cascode pair is operatively coupled to the class AB control pair, and the drain associated with the folded cascode pair is unconnected to the current source associated with the class AB control pair. A method of providing fully differential rail-to-rail-output amplification includes coupling a folded cascode pair operatively to a differential input inverter pair, coupling a drain associated with the folded cascode pair operatively to a class AB control pair, and coupling a class AB output rail-to-rail pair operatively to the class AB control pair.
US11336240B2 Uplink multiple input-multiple output (MIMO) transmitter apparatus using transmit diversity
An uplink multiple input-multiple output (MIMO) transmitter apparatus using transmit diversity uses transmit diversity signals that are modified to create intermediate orthogonal signals. A transceiver circuit in the transmitter apparatus includes a sigma-delta circuit that creates a summed (sigma) signal and a difference (delta) signal from the intermediate orthogonal signals. These new sigma and delta signals are amplified by power amplifiers to a desired output level before having two signals reconstructed from the amplified sigma and amplified delta signals by a second circuit. These reconstructed signals correspond to the two original transmit diversity signals but are at a desired amplified level relative to the two original signals. The reconstructed signals are then transmitted through respective antennas as uplink signals.
US11336237B2 Vector modulator for millimeter wave applications
Examples disclosed herein relate to a vector modulator architecture, having an input splitter network configured to receive a radio frequency (RF) input signal and generate a plurality of quadrature signals at different phases, a variable gain amplifier (VGA) stage coupled to the input splitter network and configured to apply a first gain to one or more of the plurality of quadrature signals, a power combiner coupled to the VGA stage and configured to combine the plurality of quadrature signals into a combined RF signal, and a power amplifier (PA) stage coupled to the power combiner and configured to apply a second gain to the combined RF signal and generate an output RF signal. Other examples disclosed herein relate to an antenna system for autonomous vehicles and a radar system for use in an autonomous driving vehicle.
US11336235B2 Amplifier
An amplifier is configured in such a way that a first capacitor resonates at the frequency of a second harmonic wave included in a signal outputted from an amplifying element, a circuit including a second transmission line, the first capacitor, and a second capacitor resonates at the frequency of a third harmonic wave included in the signal outputted from the amplifying element, and also matches the impedance for a fundamental wave together with an impedance matching circuit.
US11336234B2 Power amplifier circuit
A power amplifier circuit includes a power amplifier that amplifies an input signal and outputs the amplified signal from an output terminal thereof, a first filter circuit that has a frequency characteristic that attenuates an Nth-order harmonic of the amplified signal, N that is an integer greater than or equal to 2, and a second filter circuit that has a frequency characteristic that attenuates the Nth-order harmonic of the amplified signal. The first filter circuit includes a first capacitor and a first inductor. The first capacitor and the first inductor are connected in series between the output terminal and ground. The second filter circuit includes a second capacitor and a second inductor. The second capacitor and the second inductor are connected in series between the output terminal and ground.
US11336230B2 Oscillator circuit with two current supplies
An oscillator circuit comprises a crystal oscillator and an inverter. The input of the inverter is connected to the first terminal of the crystal oscillator and the output of the inverter is connected to the second terminal of the crystal oscillator, oscillator circuit is arranged to operate the inverter in its linear operating region. An amplitude regulator has an input connected to the input of the inverter, arranged to provide a first supply current IAREG to the inverter, where the magnitude of the first supply current is inversely dependent on a magnitude of a voltage at the inverter input. A digital-to-analogue converter is arranged to provide a second supply current IDAC to the inverter having a magnitude determined by a digital signal applied to a digital input of the digital-to-analogue converter.
US11336228B2 High frequency push-push oscillator
A high frequency push-push oscillator is disclosed. The high frequency push-push oscillator includes a resonant circuit, including tank transmission lines or an inductor capacitor (LC) tank circuit, for generating a differential signal having a resonant frequency, and a Gm-core circuit for converting the differential signal to an output signal having an output frequency that is higher than the resonant frequency. The Gm-core circuit includes cross-coupled first and second transistors having first and second gates, drains, and sources, respectively, and first and second gate transmission lines. The first and second drains are in electrical communication with the resonant circuit. The first gate transmission line is joined with the first gate and the resonant circuit and the second gate transmission line is joined with the second gate and the resonant circuit. The Gm-core circuit includes a differential transmission line positioned between the first and second gates of the first and second transistors.
US11336226B2 Compensating temperature null characteristics of self-compensated oscillators
Techniques are described that enables controlling the TNULL characteristic of a self-compensated oscillator by controlling the magnitude and direction of the frequency deviation versus temperature, and thus, compensating the frequency deviation.
US11336223B2 Electrical connection device for a photovoltaic system
The present invention provides a building exterior cladding. The panel includes an upper overlap area, a lower overlap area and a central part, covered by at least one photovoltaic module. A perforation is located in the lower overlap area and traversed by an electrical cable connecting one of two electrical poles of the photovoltaic module to an electrical plug located on the reverse side of the panel in the lower overlap area. An opening is located in the upper overlap area, into which is inserted an electrical junction box connected to another electrical pole of the photovoltaic module by an electrical cable. The junction box includes: a base, a lateral wall, including on its external surface, a peripheral shoulder to hold the box in place in the opening, an access door located on the lateral wall of the junction box, a cable outlet, an internal cavity delimited by the base and the wall, including an electrical terminal with an axis perpendicular to the base, and an electrical switch connecting the electrical terminal to the cable outlet and located facing the access door. The invention further provides an associated electrical junction box and the associated electrical connection assembly.
US11336220B2 Mounting assembly for mounting a solar panel
A mounting assembly for mounting a solar panel to a surface includes a mounting base that is supported on the surface. The mounting base defines an elongated opening that extends along an axis. A module mount can be coupled to the mounting base. The module mount includes a first mount portion that is received within the elongated opening of the mounting base such that the module mount is movable with respect to the mounting base along the axis. A second mount portion is coupled to the solar panel for mounting the solar panel to the surface through the mounting base.
US11336219B2 Monitoring an electrical machine for the presence of a fault
The disclosure relates to an electric machine and in particular to the monitoring of the electric machine for the presence of a fault, (e.g., in the stator windings). A monitoring unit is provided, wherein the monitoring unit measures the multiphase electrical time signals transmitted from or to the machine and with the aid of a Hilbert filter determines substantially in real time the envelopes and the phase positions of the individual phases of the time signal. The envelopes corresponding to the different phases or the corresponding phase positions are compared with one another by way of forming differences and, in the event that one or more of the differences deviate(s) from a specified expectation value, the presence of a fault is inferred. The approach allows significantly increased operational reliability of the electric machine to be achieved in particular.
US11336215B2 Display and rotating method thereof
A display including a supporting stand and a display panel is provided. The supporting stand has a rotating assembly, a drive motor, and a microcontroller. The display panel has a computing device. The drive motor is connected to the rotating assembly for driving the rotating assembly to rotate. The microcontroller is coupled to the drive motor for controlling the drive motor. The display panel is disposed on the rotating assembly. The computing device is coupled to the microcontroller. The computing device is configured to read an image. The computing device transmits a signal to the microcontroller based on an orientation of the image being portrait or landscape so that the microcontroller switches on the drive motor and the rotating assembly drives the display panel to rotate relative to the supporting stand for switching a rotating position of the display panel to a portrait mode or a landscape mode.
US11336211B2 Vibration wave motor and driving apparatus using vibration wave motor
A vibration wave motor includes a vibrator; a first holding member configured to hold the vibrator; a second holding member; an elastic coupling member configured to couple the first holding member and the second holding member to each other; a friction member; and a pressurizing unit, wherein the vibrator and the friction member relatively move due to vibration of the vibrator, wherein the elastic coupling member includes a first coupling portion and a second coupling portion, and wherein one of the first coupling portion and the second coupling portion is arranged on a straight line that is parallel to a direction of the relative movement and passes through a pressurizing gravity center and another of the first coupling portion and the second coupling portion is arranged on a straight line that is orthogonal to the direction of the relative movement and passes through the pressurizing gravity center.
US11336205B1 Inverter for a low frequency amplifier with high drive voltage, high power density, high efficiency, and wide bandwidth operation
A low frequency direct drive amplifier is disclosed which can simultaneously achieve high drive voltages, high power density, high efficiency, and wide bandwidth operation is disclosed. The power circuit structure includes an input DC-DC converter and an output multi-level DC-AC inverter. The input DC-DC converter's circuit topology is commonly referred to as the phase shifted full bridge, which includes input capacitors, a Gallium Nitride (GaN) based full bridge, an isolation transformer, two rectifying diodes, and two series stacked output capacitors. The output DC-AC inverter includes two series stacked input capacitors (same as the input DC-DC converter's output capacitors), four Silicon Carbide (SiC) semiconductors, four Silicon IGBTs, and an output filter. The disclosure's features the combination of the output multi-level DC-AC inverter circuit topology paired with 1.7 kV SiC semiconductors, allowing for a high voltage direct drive design without a low frequency boost transformer.
US11336202B1 Over voltage protection for wireless power receiver circuits
Methods and apparatuses for controlling a rectified voltage outputted by a rectifier circuit is described. In response to an occurrence of an overvoltage condition, an apparatus can regulate a gate-source voltage of a low-side switching element of the rectifier circuit to control the rectified voltage. The apparatus can include an operational amplifier that can compare a reference voltage and with a scaled voltage measured at a node between the low-side switching element and a high-side switching element of the rectifier circuit. The operational amplifier can output a voltage to regulate a gate-source voltage of a low-side switching element. The apparatus can further include a current sensor configured to sense current flowing through the low-side switching element. A power dissipation of the low-side switching element can be controlled based on the current being sensed by the current sensor.
US11336199B2 Load identifying AC power supply with control and methods
An improved AC power supply is described. The supply identifies the load through monitoring the current and voltage wave forms and phase relations with the AC Mains. The comparison is done in conditions where the power to the load is programmably varied through use of a control switch located in the line and neutral between the AC mains and the load. The program of controlling the switch is varied to optimize the ability to distinguish similar load types. The switch can be further used to control power to the load that varies according to a set of rules based upon the identity of the load. In a preferred embodiment, the design enables high efficiency with minimal components that may be fully integrated onto silicon.
US11336198B2 System for generating a power output and corresponding use
The present invention relates to a system for generating a direct current power output from an alternating current (103) in a primary wire (3), wherein the system comprises: at least one core (104) configured to be located around the primary wire (3); at least one secondary winding (22, 24) arranged around the at least one core (104), wherein each winding (22, 24), together with the at least one core (104) and the primary wire (3), forms a current transformer unit, and wherein each secondary winding (22, 24) has a first end and a second end; for each secondary winding (22, 24), a rectifier (10), wherein each rectifier (10) is configured to convert an alternating current to a direct current, and wherein each rectifier (10) comprises two AC connections for alternating current and two DC connections for direct current, wherein the first end and the second end of the secondary winding (22, 24) are connected to the AC connections of the rectifier (10); for each secondary winding (22, 24), a shunting unit arranged and configured to short the ends of the secondary winding (22, 24); and a load element (6), wherein the load element (6) is connected to a DC connection of each rectifier (10). The present invention also relates to a corresponding use.
US11336195B2 Power conversion apparatus that determines, based on a set of data, whether it is operable to perform an output
A power conversion apparatus includes a rectifier to convert AC power into constant-current DC power, a resonant inverter to convert the DC power into AC power to be output to a load, and a control unit to receive settings of an output current value of the inverter, a current-supplying time of the inverter, an operation rate defined by dividing the current-supplying time by a sum of the current-supplying time and a non-current-supplying time, and a resonance frequency of the load. The control unit operates the rectifier and the inverter only when it determines that it is operable to perform an output in accordance with the set conditions, based on data in which the output frequency, the current-supplying time and the operation rate are associated with an allowable output current value of the inverter at a temperature equal to or lower than a maximum operable temperature of a switching device.
US11336192B2 Three-phase power apparatus with bidirectional power conversion
A three-phase power apparatus with bidirectional power conversion applied to charge a battery of an electric vehicle. The three-phase charging apparatus includes an AC-to-DC conversion unit, a first DC bus, a first DC-to-DC conversion unit, a second DC bus, and a second DC-to-DC conversion unit. The first DC bus is coupled to the AC-to-DC conversion unit. The first DC-to-DC conversion unit includes an isolated transformer, a resonant tank, a first bridge arm assembly, and a second bridge arm assembly. The first bridge arm assembly is coupled to the first DC bus and a primary side of the isolated transformer. The second bridge arm assembly is coupled a secondary side of the isolated transformer. The second DC bus is coupled to the second bridge arm assembly. The second DC-to-DC conversion unit is coupled to the second DC bus and the battery.
US11336186B2 Resonant DC-DC voltage converter
The subject matter of the invention is a resonant DC-DC voltage converter, notably for an electric or hybrid vehicle, said converter including n interleaved main resonant circuits, n being a natural integer greater than or equal to two, and in which: the main resonant circuits are connected together at least one neutral point different from a ground of the converter, said neutral point being connected to a ground of the converter by an impedance configured to store energy and to enable zero voltage switching of the switches of the resonant DC-DC converter.
US11336175B2 Charge balanced charge pump control
Operating a charge pump in which switches from a first set of switches couple capacitor terminals to permit charge transfer between them and in which switches from a second set of switches couple capacitor terminals of capacitors to either a high-voltage or a low-voltage terminal includes cycling the switches through a sequence of states, each state defining a corresponding configuration of the switches. At least three of the states define different configurations of the switches. During each of the configurations, charge transfer is permitted between a pair of elements, one of which is a first capacitor and another of which is either a second capacitor or the first terminal.
US11336173B1 Power converter device and driving method
The present disclosure relates to a power converter device including a power factor correction circuit, a resonance converter circuit, and a zero voltage switching circuit. The power factor correction circuit is coupled to the primary side rectifier circuit, and includes a first switching circuit, a first control circuit and a first output circuit. The resonance converter circuit includes a second switching circuit and a second control circuit. The second switching circuit is coupled to the first output circuit, and the second control circuit is coupled to the secondary side rectifier circuit. The zero voltage switching circuit is coupled between the first control circuit and the second control circuit. The zero voltage switching circuit is configured to obtain a switching voltage of a switch element in the second switching circuit, and output an adjustment signal to the first control circuit according to the switching voltage.
US11336169B2 Power conversion device
A power converter includes an arm in which a plurality of converter cells are connected in series, each of the converter cells including at least two switching elements, a power storage element and a pair of output terminals. A control device controls the power converter. The converter cell includes a switch to have the converter cell bypassed. When the control device senses failure of the converter cell, it has the failed converter cell bypassed, estimates an output voltage lost by bypassing the failed converter cell, and has a normal converter cell supply the estimated output voltage of the failed converter cell.
US11336162B2 Spherical brushless direct current machine
A spherical brushless direct current (BLDC) machine includes a first stator, a second stator, and a spherical rotor. The first stator is symmetrically disposed about a first axis and includes a first multi-pole stator core having a first multi-phase winding wound thereon. The second stator is symmetrically disposed about a second axis and includes a second multi-pole stator core having a second multi-phase winding wound thereon. The second stator core is coupled to the first stator core, and the second axis intersects the first axis. The spherical rotor is disposed adjacent to, and is moveable relative to, the first and second stators. The spherical rotor includes a plurality of magnets that emanate a magnetic field, and each magnet has at least one of its magnetic poles facing the first and second stators.
US11336161B2 Rotating electric machine and method of manufacturing same
A rotating electric machine includes a stator core, a stator coil formed of electrical conductors and insulating coats respectively covering the electrical conductors, and an encapsulating resin body. The stator coil has a coil end part protruding from the stator core. The coil end part includes exposed portions of the electrical conductors, which are exposed from the insulating coats, joints formed at the exposed portions, and covered portions of the electrical conductors which are covered with the respective insulating coats and respectively adjoin the exposed portions. The encapsulating resin body has a first part in which the exposed portions of the electrical conductors and the joints are encapsulated, and a second part in which at least part of each of the covered portions of the electrical conductors is encapsulated. A coefficient of linear expansion of the first part is lower than a coefficient of linear expansion of the second part.
US11336160B2 Methods for forming woven undulated coil assemblies
Methods and apparatuses for forming a woven coil assembly (100), the coil assembly having adjacent superimposed linear portions (LI-L6, AL7-ALI2) extending parallel to each other in a first area (Al) of the coil assembly, and adjacent superimposed linear portions (L7-L12, AL13-AL18) extending parallel to each other in a second area (A2) of the coil assembly, wherein a plurality of head portions (T) connect the linear portions of the first area (AI) to the linear portions of the second area (A2).
US11336158B2 Manufacturing method of core of rotating electrical machine, and core of rotating electrical machine
A manufacturing method of a core of a rotating electrical machine includes: a preparation step of preparing a press device; a fixing step of fixing a steel sheet to a shaft member held by the press device by passing the shaft member through a hole provided in the steel sheet and extending in a stacking direction; and a processing step of performing press-working on the steel sheet by the press device in a state where the steel sheet is fixed to the shaft member.
US11336156B2 Power control unit
A power control unit includes a power module, a support block configured to support the power module, an upper case configured to cover the power module from above, and a connection conductor configured to connect an internal power feeding passage on the side of the power module and an external power feeding passage on the side of the motor unit, wherein the connection conductor vertically passes through the support block and includes a connecting fixing section that protrudes upward than the support block and that is connected to the internal power feeding passage by a fastening member, an inclination wall inclined downward toward a side end portion of the upper wall of the upper case is provided on the upper wall of the upper case, and an opening section facing the connecting fixing section of the connection conductor is provided in the inclination wall.
US11336154B2 Stator for an electric motor or generator
A stator for an electric motor or generator, the stator comprising a circumferential support having a plurality of first engagement elements distributed about the circumferential support, a first resiliently deformable element having a first temperature sensing element mounted on the circumferential support, a plurality of teeth for receiving coil windings, wherein each tooth includes a second engagement element to allow engagement with a first engagement element on the circumferential support for allowing each tooth to be mounted on the circumferential support, wherein coil windings on a tooth are arranged to engage with the first temperature sensing element when the tooth is being mounted to the circumferential support with the first resiliently deformable element being arranged to deform upon the coil windings on the tooth engaging with the first temperature sensing element to move the temperature sensing element from a first position to a second position.
US11336153B2 Motor
The present invention may provide a motor including a housing; a stator disposed in the housing; a rotor disposed in the stator; a shaft coupled to the rotor; and a wire assembly connected to the stator, wherein the wire assembly includes a first ground part, the housing includes a body and a bracket including a first fastening hole and disposed on an upper portion of the body, and the bracket includes a third ground part, which is inserted into the first fastening hole and thereby contacts the body, and a second ground part, which is connected to the third ground part and is disposed so as to be exposed to the bottom surface of the bracket and thereby contacts the first ground part.
US11336147B2 Speed reducing device having power source
A speed reducing device includes a motor and a speed reducing mechanism. The speed reducing mechanism includes at least one roller assembly, a cycloid disc, at least one fixing disc and a positioning assembly. The roller assembly is disposed within a rotor portion of the motor. While the roller assembly is rotated with the rotor portion, the roller assembly is eccentrically revolved. The roller assembly includes a wheel disc and at least one roller. The cycloid disc includes a main body and at least one cycloid tooth structure. The cycloid tooth structure is protruded from an outer periphery of the main body and in contact with the corresponding roller. While the roller assembly is eccentrically revolved, the at least one cycloid tooth structure is pushed against the corresponding roller, so that the cycloid disc is correspondingly rotated.
US11336146B2 Motor
A motor includes a rotor including a shaft centered on a vertically extending center axis, a stator radially opposite to the rotor and including coils, a bearing supporting the shaft, and a bus bar assembly on an upper side in an axial direction of the stator. The bus bar assembly includes bus bars including a terminal portion connected to a lead wire drawn out from the coil and a bus bar holder holding the bus bars. The terminal portion includes a slit which extends axially downward and into which the lead wire is fitted. The width of the slit is narrower than the diameter of the lead wire.
US11336145B2 Motor
A motor includes a rotor, a stator, and first bus bars electrically connected to the stator on one axial direction side of the stator. The stator includes a stator core including a core back extending in a circumferential direction, teeth extending radially from the core back, and coils defined by winding a conducting wire, each of which is mounted on the teeth. A first conducting wire and a second conducting wire which are two respective ends of the conducting wire extend to one axial direction side from each of the coils. The first bus bars are neutral point bus bars connecting two or more first conducting wires as neutral points. The second conducting wire is connected to a power supply that supplies power to the stator.
US11336144B2 Motor having terminals with unified shapes for positioning
The present invention may provide a motor including a shaft, a rotor coupled to the shaft, a stator disposed outside the rotor, and a bus bar disposed on the stator, wherein the bus bar includes a terminal connected to a coil of the stator, the terminal includes a first terminal and a second terminal which are separated from each other in a circuit manner, the first terminal includes a first neutral terminal and a plurality of first phase terminals, the second terminal includes a second neutral terminal and a plurality of second phase terminals, first curvature centers of the plurality of first phase terminals are disposed to be different, second curvature centers of the plurality of second phase terminals are disposed to be different, and a position of a curvature center of the first neutral terminal is the same as a position of a curvature center of the second neutral terminal.
US11336141B2 Insulator
Guide portions that guide a winding include a plurality of guide grooves which is provided at each boundary between adjacent wind surfaces, and which is extended in a winding direction of the winding. The plurality of guide grooves is arranged side by side in a radial direction of a stator at an equal pitch. The guide groove provided at an arbitrary boundary among the boundaries is offset in the radial direction relative to the guide groove provided at the adjacent boundary at the opposite side to the winding direction with reference to an orthogonal direction to the radial direction of the motor stator. Respective offset directions and offset amounts of the guide grooves are consistent.
US11336138B2 Hybrid rotor module cooling
An electric machine including a housing, and a stator mounted to the housing. The stator includes a plurality of laminations, a first end turn and a second end turn. A rotor shaft extends through the housing. A hybrid rotor module is coupled to the rotor shaft. The hybrid rotor module includes a clutch basket having a rotor carrier. The clutch basket houses one or more clutch assemblies. A rotor is mounted to the rotor carrier, and one or more openings are formed in the rotor carrier. The one or more openings direct coolant onto at least one of the stator, the first end turn, and the second end turn.
US11336135B2 Motor rotor structure and permanent magnet motor
Disclosed is a motor rotor structure including a rotor core. A plurality of radial slots each are in the rotor core along a circumferential direction, and a first flux barrier slot is provided between every two adjacent radial slots. Two kinds of permanent magnets having different coercivities mounted in each radial slot. The two kinds of permanent magnets having different coercivities are distributed along a radial direction of the rotor core. The two kinds of permanent magnets having different coercivities are both magnetized along a tangential direction of the rotor core. A second flux barrier slot is provided between the two kinds of permanent magnets having different coercivities.
US11336133B2 Stator for an electric motor
A stator (1) for an electric motor has a modular stator body (2) with at least two stator cores (10, 20) arranged axially in series. Each core (10, 20) is form from a plurality of stacked electrical laminations (11, 21). This forms winding poles (16, 26) with radially extending winding webs (17, 27). The stator cores (10, 20) each have a separate overmolding (U1, U2).
US11336132B2 Electric machine with liquid cooled coils and stator core
An electric machine includes a rotor configured to rotate about an axis of rotation, a stator having a stator core and a plurality of teeth annularly arranged on the stator core about the axis of rotation, a plurality of electromagnetic coils, and a base plate. Each coil of the plurality of electromagnetic coils may be mounted on a separate tooth of the plurality of teeth. The base plate may be located adjacent to the plurality of electromagnetic coils and the stator core. The base plate may have a first side and an opposing second side. The first side may be in thermal contact with the plurality of electromagnetic coils and the stator core. A liquid-coolant channel may be defined on the second side of the base plate such that as the coils and the stator core heats during operation, the base plate is configured to transfer the heat to a liquid coolant in the liquid-coolant channel to dissipate heat from the plurality of electromagnetic coils and the stator core.
US11336128B2 System for providing power to a stationary underwater control station
Ultrasonic transmitting elements in an electroacoustical transceiver transmit acoustic energy to an electroacoustical transponder, which includes ultrasonic receiving elements to convert the acoustic energy into electrical power for the purposes of powering one or more sensors that are electrically coupled to the electroacoustical transponder. The electroacoustical transponder transmits data collected by the sensor(s) back to the electroacoustical transceiver wirelessly, such as through impedance modulation or electromagnetic waves. A feedback control loop can be used to adjust system parameters so that the electroacoustical transponder operates at an impedance minimum. An implementation of the system can be used to collect data in a vehicle, such as the tire air pressure. Another implementation of the system can be used to collect data in remote locations, such as in pipes, enclosures, in wells, or in bodies of water.
US11336122B2 Wireless power transmission device and wireless power transmission system
A wireless power transmission device capable of reducing an output power of wireless power receiving device receiving power transmitted from a wireless power transmission device. The wireless power transmission device including: a DC (Direct Current)/DC converter; an inverter configured to convert output voltage of the DC/DC converter into AC voltage having driving frequency; a power transmission coil configured for the AC voltage to be supplied to from the inverter and configured to generate the AC magnetic field; a transmission-side resonance circuit including the power transmission coil; and control circuit configured to increase difference between a driving frequency of the inverter and a resonance frequency of the transmission-side resonance circuit when a predetermined condition is satisfied.
US11336120B2 Wireless power transfer system for elevators with extended range
A wireless power transfer system for wirelessly powering a conveyance apparatus of a conveyance system including: a wireless electrical power transmitter located along a side of the conveyance system in a first location, the side being stationary; and a wireless electrical power receiver located along a surface of the conveyance apparatus opposite the side, the wireless electrical power receiver and the wireless electrical power transmitter being in a facing spaced relationship defining a gap therebetween when the wireless electrical power receiver is located at the first location.
US11336116B2 High precision signal measurement in wireless charging system
A wireless charging system is configured to charge one or more receiver devices simultaneously. The wireless charging system includes multiple coils that may be driven independently based on a feedback system with one or more feedback channels. One of the feedback channels may be a voltage and/or current measurement of coil driving signals from the coils that are indicative of receiver device presences on the wireless charging system. A coil driving signal may be sampled and processed using discrete Fourier transform to determine amplitude and phase information of the signal.
US11336107B2 Information processing device, information processing system, and charging method
[Object] To achieve both prevention of overcharging of the battery and convenience of the user.[Solution] An information processing device includes: a charged capacity detection unit configured to detect a charged capacity of a battery; a charging control unit configured to control a charging circuit; and a specification unit configured to specify when discharge of the battery starts. The charging control unit performs charging suppression control on the charging circuit such that the battery is charged to a preparatorily charged capacity that is lower than a fully charged capacity of the battery, on the basis of the charged capacity detected by the charged capacity detection unit, the charging of the battery stops when the charged capacity of the battery reaches the preparatorily charged capacity, and the charging of the battery restarts from the preparatorily charged capacity before discharge of the battery starts.
US11336104B2 Method of performing a state of health estimation for a rechargeable battery energy storage system
A method can be used to perform a state of health (SoH) estimation for a rechargeable battery energy storage system during operation of the rechargeable battery energy storage system. The rechargeable battery energy storage system includes a plurality of parallel strings that are individually controllable. The method includes selecting at least one string from the plurality of parallel strings, placing the selected at least one string into a SoH calibration mode for performing a SoH calibration while concurrently maintaining at least one other string of the plurality of parallel strings in operative mode, and causing the selected at least one string to return to the operative mode after the SoH calibration has been completed for the selected at least one string.
US11336102B2 Battery supply circuits, devices to be charged, and charging control methods
The present disclosure provides a battery supply circuit, a device to be charged, and a charging control method. The battery supply circuit includes a first cell, a second cell, a switch, a first switching unit and a second switching unit. A first end of the second cell is coupled to a first end of the second switching unit, and a second end of the second cell is coupled to a first end of the switch, a second end of the second switching unit is coupled to a second end of the switch; a first end of the first cell is coupled to the second end of the switch, a second end of the first cell is coupled to a first end of the first switching unit, and a second end of the first switching unit is coupled to the first end of the switch.
US11336101B2 Adaptive fast-charging of multi-pack battery system in a mobile platform having dual charge ports
A system for use with a direct current fast-charging (DCFC) station includes a controller and battery system. The battery system includes first and second battery packs, and first, second, and third switches. The switches have ON/OFF conductive states commanded by the controller to connect the battery packs in a parallel-connected (P-connected) or series-connected (S-connected) configuration. An electric powertrain with one or more electric machines is powered via the battery system. First and second charge ports of the system are connectable to the station via a corresponding charging cable. The first charge port receives a low or high charging voltage from the station. The second charge port receives a low charging voltage. When the station can supply the high charging voltage to the first charge port, the controller establishes the S-connected configuration via the switches, and thereafter charges the battery system solely via the first charge port.
US11336100B2 System and method for balancing state of charge of battery
A system and method for balancing a battery having a plurality of cells connected in series. The system includes a plurality of reactive charge transfer units connected with the plurality of cells, a first control unit and a second control unit. The first control unit is configured to determine a state of charge of the plurality of cells, determine a reference value associated with the battery, identify an overcharged cell or a discharged cell in the battery, and determine a charge differential between state of charge of the overcharged cell or the discharged cell and the reference value associated with the battery. The second control unit is configured to arrange charge transfer between the overcharged cell or the discharged cell, and remaining pack of cells in the battery. The first and the second control units are configured to function iteratively until cell balancing is attained.
US11336099B2 Photovoltaic system and control method therefor
A photovoltaic system and a control method therefor are disclosed. A photovoltaic system according to an embodiment of the present disclosure comprises: a solar cell array for converting solar energy into electric power; a power management device for monitoring the power generation amount of the solar cell array and the reverse power from an external power grid; an energy storage device charged by receiving the electric power produced by the solar cell array or the power of the external power grid; and a power control device for supplying, to the energy storage device, the electric power generated by the solar cell array or the power of the external power grid in response to a valid power command, wherein the power management device generates the valid power command which has different values according to whether the reverse power is generated by the external power grid.
US11336097B2 Wind power generation system with power storage device
A wind power generation system with a power storage device includes a wind power generation system, a power storage device system, and a reactive power controller. The wind power generation system includes a wind power generator, a first power conversion circuit, a first control circuit, a first filter capacitor, and a circuit breaker interposed between the first filter capacitor and a grid connection point. The wind power generation system is configured to output the electric power converted by the first power conversion circuit to an electric power grid via the grid connection point. The power storage device system includes a power storage device, a second power conversion circuit, and a second control circuit that controls the second power conversion circuit to perform load leveling operation. The reactive power controller causes the second power conversion circuit to perform reactive power compensation operation.
US11336094B2 Inverter, power generating system, and method for suppressing harmonic distortion of alternating current system
An inverter includes an inverter circuit; an alternating current filter, where an input port of the alternating current filter is connected to an output port of the inverter circuit; an alternating current electromagnetic interference (EMI) filter; and a first alternating current switch, connected between an output port of the alternating current filter and an input port of the alternating current EMI filter. The first split capacitor is disposed between the first alternating current switch and the input port of the alternating current EMI filter; and when the first alternating current switch is turned off, the first split capacitor is disconnected from the output port of the alternating current filter, and the first split capacitor is connected to a circuit in which an alternating current system connected to the output port of the alternating current EMI filter is located, to suppress harmonic distortion of the alternating current system.
US11336092B2 Multi-objective real-time power flow control method using soft actor-critic
Systems and methods are disclosed for control voltage profiles, line flows and transmission losses of a power grid by forming an autonomous multi-objective control model with one or more neural networks as a Deep Reinforcement Learning (DRL) agent; training the DRL agent to provide data-driven, real-time and autonomous grid control strategies; and coordinating and optimizing power controllers to regulate voltage profiles, line flows and transmission losses in the power grid with a Markov decision process (MDP) operating with reinforcement learning to control problems in dynamic and stochastic environments.
US11336086B2 Current limiting circuit for limiting the magnitude of an alternating current
A current-limiting circuit for limiting the magnitude of an alternating current. The circuit includes a coil unit and a capacitor unit, which are connected electrically in series, and a bypass device for electrically bridging the capacitor unit on occasion of an overcurrent. The bypass device has a first bypass branch and a second bypass branch connected electrically in parallel with the first bypass branch. A third bypass branch is connected electrically in parallel with a second bypass element of the second bypass branch.
US11336083B2 Power converter monitor and method of use
A power converter monitor having built-in fault tolerance and containment including a plurality of voltage inputs operatively connected to a pulse timing device, a respective comparator electrically connected to each of the voltage inputs, an and-gate electrically connected in series to each of the comparators and wherein the pulse timing device is operatively connected by the and-gate and a-not gate to each of the voltage inputs configured to reset a detected voltage output fault and provide a converter inhibit pulse if the voltage output fault is detected.
US11336081B2 Protection circuit for a medium voltage or high voltage transformer
A protection circuit is for a medium voltage or high voltage transformer and includes a sensing device, a measurement device, and a switching device. The sensing device is configured to be connected between a primary winding of a voltage transformer and ground potential. The measurement device is connected to the sensing device and the measurement device is configured to measure at least one parameter sensed by the sensing device. The protection circuit is configured to analyse the measured at least one parameter sensed by the sensing device. The protection circuit is configured to generate a trip signal based on the analysis of the measured at least one parameter sensed by the sensing device. The switching device is configured to receive the generated trip signal and disconnect the voltage transformer from a high voltage potential.
US11336080B1 Slotted grommet
Embodiments of a slotted grommet configured to manage a cable in an electrical cavity are provided. The slotted grommet includes a body structure having a first surface, a second surface opposite to the first surface, and a peripheral surface extending between the first and second surfaces. A first slot is formed in the first surface and extends through the body structure towards the second surface. The first slot defines a chamber having sidewalls in the body structure configured to hold a loop of the cable. The first slot has a first width that is less than a cross-sectional dimension of the cable such that the cable is pinched within the chamber between the first sidewalls to prevent vibration-related chafing of the cable.
US11336078B2 Semiconductor laser diode
A semiconductor laser diode is specified, the semiconductor laser diode includes a semiconductor layer sequence having an active layer which has a main extension plane and which, in operation, is adapted to generate light in an active region and to emit light via a light-outcoupling surface, the active region extending from a rear surface opposite the light-outcoupling surface to the light-outcoupling surface along a longitudinal direction in the main extension plane, the semiconductor layer sequence having a surface region on which a first cladding layer is applied in direct contact, the first cladding layer having a transparent material from a material system different from the semiconductor layer sequence, and the first cladding layer being structured and having a first structure.
US11336076B2 Apparatus for compensating parasitic impedance for integrated circuits
A laser diode driver circuit includes a first pair of contacts and connectors coupled to an anode of the laser diode. An inductance of each of the first pair of contacts and connectors is the same. A second pair of contacts and connectors are coupled to a cathode of the laser diode. An inductance of each of the second pair of contacts and connectors is the same. The laser diode driver circuit also includes current driving circuitry.
US11336075B2 Light emitting device and method of manufacturing light emitting device
A light emitting device comprises: a semiconductor laser element; a base portion comprising: a bottom portion on which the semiconductor laser element is located, and a frame portion comprising a step and surrounding the semiconductor laser element; and a light reflecting member disposed on the bottom portion of the base portion so as to lean against the step, the light reflecting member being configured to reflect light from the semiconductor laser element.
US11336073B2 Brillouin dynamic grating generation using dual-Brillouin-peak optical fiber
Disclosed herein is a method comprising injecting light of a first wavelength λ1 into a wavelength division multiplexer; injecting light of a second wavelength λ2 into the wavelength division multiplexer; combining the light of the first wavelength λ1 and the light of the second wavelength λ2 in the wavelength division multiplexer to produce light of a third wavelength λ3; and reflecting the light of the third wavelength λ3 in a dual-Brillouin peak optical fiber that is in communication with the wavelength divisional multiplexer; wherein the dual-Brillouin peak optical fiber has at least two Brillouin peaks, such that an amplitude A1 of at least one of said Brillouin peaks is within 50% to 150% of an amplitude A2 of another Brillouin peak 0.5A2≤A1≤1.5A2; wherein the dual-Brillouin peak optical fiber generates a Brillouin dynamic grating that reflects an improved back-reflected Brillouin signal of the combined light.
US11336072B2 Semiconductor optical device
A semiconductor optical device includes: a laser for emitting light; a modulator for modulating the light using an electroabsorption effect; a chip capacitor that is electrically connected in parallel to the laser; a chip inductor that is electrically connected in series to the chip capacitor, is electrically connected in series to the laser and the chip capacitor as a whole, and includes a first terminal and a second terminal; a solder or a conductive adhesive that directly bonds the first terminal of the chip inductor and the chip capacitor to each other; an electrical wiring group in which the laser, the modulator, the chip capacitor, and the chip inductor are electrically connected to each other; and a substrate on which the laser, the modulator, the chip capacitor, and the chip inductor are mounted.
US11336068B2 Crimping die device, crimping press and method for creating a crimp connection
A crimping die device (15) for a crimping press which includes a first movable pressing die (20), which is preferably essentially vertically movable, a first drive device (22), and the first drive device (22) comprises a first drive (23) as well as a base structure (17). Furthermore, a wedge flange (30) is present, which is movable and is connected to the first drive (23) of the first drive device (22). The invention furthermore relates to a crimping press with a crimping die device as well as a method for making a crimp connection with a crimping die device in a crimping press.
US11336063B2 Insert for connecting an electric connection to a wall, and protective cap for an insert
The invention relates to an insert for connecting an electric connection to a wall (10), having a pin (1) with a shaft (4), which has a first connection means (5), and an electrically conductive ring (2) with a through-opening (6) for receiving the pin (1), wherein the shaft (4) of the received pin (1) protrudes out of a contact surface (11) of the ring (2). For protection purposes while working, for example while painting, the insert comprises a protective cap (20, 20′) with a holding portion (21, 21′) comprising a second connection means (26), which can be connected to the first connection means (5) of the pin (1), and a flange section (22, 22′) which rests against the contact surface (11) of the ring (2) when the protective cap (20, 20′) is connected.
US11336062B2 Illuminated power strip assembly
An illuminated power strip assembly includes a housing with a top wall having opaque areas and translucent areas. A plurality of power outlets is mounted in the housing. A power cord extends outwardly from the housing and terminates with a male power plug. A power switch is mounted on the housing and is in electrical communication with the power outlets. A plurality of light emitters is mounted in the interior space and is in electrical communication with the power switch. The light emitters selectively emit different colors to be emitted through the translucent areas. A control circuit is electrically coupled to the light emitters and is actuated to select a color emitted by the light emitters.
US11336061B2 Switch construction
A switch assembly includes a switch and a connector. The switch and the connector are configured to interlock, wherein the switch includes a connection extending at least partially along a center axis of the switch, and the connection is configured to receive at least a part of the connector. The connection may include at least one slot and at least one wedge-shaped groove which is extending from the at least one slot and tapered in a direction of the center axis. The connector may include at least one corresponding wedge-shaped protrusion. The at least one corresponding wedge-shaped protrusion may include a resilient contact blade which can interlock with the at least one wedge-shaped groove.
US11336057B2 Electrical connector and electronic device
An electrical connector contains a first contact group arranged on a first contact plane, a second contact group arranged on a second contact plane and a ground plate located on a ground plane. The ground plate is located between horizontally extending portions of the contacts of the first contact group and horizontally extending portions, downwardly extending portions and terminal portions of the contacts of the second contact group in addition to between contacting portions and the horizontally extending portions of the contacts of the first contact group and contacting portions and the horizontally extending portions of the contacts of the second contact group.
US11336055B2 Locking clip for an electrical connector housing
An electrical connector housing is provided with at least one locking clip, which is mounted pivotably via a bearing pin and has a locking region and an actuation region. In order to reversibly lock the electrical connector housing to a mating electrical connector housing, the locking region engages overbearing journals integrally moulded on the mating electrical connector housing. The locking clip has a locking device or means for blocking the pivot movement of the locking clip. In this manner, an accidental release of the plug-in connection can be prevented.
US11336054B2 First housing with two connector ports selectively connected to electrical connector on second housing
A connector device is provided, including a first housing, a circuit assembly, a second housing, and a connector. The circuit assembly is disposed on the first housing, and has a first connecting port and a second connecting port. The second housing is detachably engaged with the first housing. The connector is disposed on the second housing, and has an opening and a terminal. When the first housing is engaged with the second housing and the opening faces the first direction, the terminal is electrically connected to the first connecting port. When the first housing is engaged with the second housing and the opening faces the second direction, the terminal is electrically connected to the second connecting port. The first direction is different from the second direction.
US11336051B1 Header seal for header connector of power connector system
A header connector includes a header housing having a mating end and a mounting end. The mounting end is configured to be mounted to a supporting structure. The header housing has shroud walls forming a header chamber configured to receive a plug connector. The header connector includes a header seal coupled to the header housing having an upper portion with an upper sealing surface and a lower portion with a lower sealing surface. The upper portion extends into the header chamber and the upper sealing surface is configured to interface with the plug connector to form a seal between the header housing and the plug connector. The lower portion extends to the mounting end and the lower sealing surface is configured to interface with the supporting structure to form a seal between the header housing and the supporting structure.
US11336039B2 Connector for printed circuit board and battery system comprising printed circuit board and connector
The present invention relates to a battery system including a battery module configured to include a plurality of rechargeable battery cells, a housing configured to house the battery module, a printed circuit board disposed on the battery module to include a first surface that faces the battery module and a second surface that is opposite to the first surface, and a connector configured to connect the printed circuit board and an external electrical component, wherein the printed circuit board includes a plurality of bent terminal portions disposed on the second surface, and the connector includes a plurality of metal clamps that are respectively connected to the plurality of bent terminal portions of the printed circuit board. In the battery system of the present invention, the connection between the connector and the printed circuit board can be realized without soldering wires.
US11336035B2 Clamping spring for a screwless connection terminal
A clamping spring for a screwless connection terminal for clamping a conductor, has a clamping limb, a contact limb, and a tensioning limb, the tensioning limb being connected to the clamping limb and the contact limb, and the clamping limb and the contact limb being designed as intersecting limbs. In the clamping limb, a clamping opening is provided, through which the contact limb extends, such that the contact limb is in contact with an edge of the clamping opening remote from the tensioning limb in a pretensioned manner and an exposed wire end of a conductor can be clamped with the contact limb onto a contact surface of a contact element of a screwless connection terminal. Furthermore, the clamping limb has a clamping extension having a clamping surface. The clamping extension, starting from the free end of the clamping limb remote from the tensioning limb, initially extends away from the tensioning limb, then extends back in the direction of the tensioning limb in a substantially curved form, and finally is oriented in the direction of the contact limb.
US11336033B2 Socket for shielded connector
The invention concerns a connector-type socket comprising: —a body suitable for being connected via a front face to a complementary plug comprising a plurality of insulation-displacement contacts oriented in the same direction; —a separate connection module comprising a plurality of positions each intended to receive one end of a strand of a cable comprising shielding, the module being arranged in such a way as to be inserted into the body so as to bring each strand against the corresponding insulation-displacement contact; the socket being characterised in that the body comprises two separate parallel plates, each plate comprising a row of contacts, each row of contacts being arranged in a plane (P), the planes (P) containing the rows being separate from and parallel to each other such that all the strands of the cable can be connected in a single movement.
US11336032B2 Reactive array
Methods and apparatus for providing a radiator having an antenna comprising a patch antenna layer and a first ground plane layer, wherein the antenna has a reactive field region of the radiator between the patch antenna layer and the first ground plane layer, and an integrated circuit located in the active region.
US11336018B2 Antenna
An antenna includes: a dielectric layer including a first and second surface placed in layering; a ring-shaped conductor layer formed on the first surface; a first and second feedline that are closer to the first surface than the second, and are formed at positions different from those of the surfaces; a reference potential conductor layer formed on the second surface; and a conductor pin located in the inner diameter of the ring-shaped conductor layer in planar view from the direction of the layering, that is connected to the reference potential conductor layer. In the planar view, the first and second feedlines include portions overlapping with the ring-shaped conductor layer, and the extending directions of the feedlines intersect with each other. The ring-shaped conductor layer is connected to neither the reference potential conductor layer nor the conductor pin, and neither the first nor second feedline is connected to the conductor pin.
US11336016B2 Cavity supported patch antenna
An antenna (100) comprises a cavity (120) formed by a conductive plate (121) in a first horizontal conductive layer (221) of a multi-layer circuit board and a vertical sidewall formed by conductive vias (222) extending from the conductive plate (121). Further, the antenna (100) comprises an antenna patch (130) arranged in the cavity. The antenna patch (130) is formed in a second conductive layer (223) of the multi-layer circuit board and is peripherally surrounded by the vertical sidewall of the cavity (120).
US11336015B2 Antenna boards and communication devices
Disclosed herein are antenna boards, antenna modules, and communication devices. For example, in some embodiments, an antenna board may include: a substrate including an antenna feed structure; an antenna patch, wherein the antenna patch is a millimeter wave antenna patch; and an air cavity between the antenna patch and the substrate.
US11336009B2 Array antenna device and communication device
An array antenna device includes a classifying unit that classifies rotating devices into a plurality of groups with different priorities under the condition that the number of rotating devices included in one group is equal to or less than the number of rotating devices that is calculated by a number-of-drivable-devices calculating unit; and a rotation instructing unit that selects groups in descending order of priority from among the plurality of groups and drives, each time one group is selected, all rotating devices included in the group, and the classifying unit performs the classification in such a manner that, among the rotating devices, a rotating device that rotates an element antenna with a higher importance level is classified into a group with a higher priority.
US11336007B1 Multi-band integrated antenna arrays for vertical lift aircraft
A system of antennas, each having disparity operating frequencies, are incorporated into the same aircraft body panels. HF antennas define loops with large internal areas; additional higher frequency antennas are disposed within that large internal area. The higher frequency antennas are sufficiently different so as to prevent coupling. Antennas operating in the same frequency range, disposed on different parallel surfaces are operated in concert as a steerable array.
US11336006B2 Isolating antenna array component
A communication device includes two antennas operational within a first frequency range in the communication device. An integrated isolating antenna array component is positioned between the two antennas in the communication device to reduce radiofrequency coupling between the two antennas. The integrated isolating antenna array component includes an interconnection substrate and an antenna array adjacent to the interconnection substrate and including one or more radiating elements. The antenna array is configured to drive the one or more radiating elements within a second frequency range in the communication device. The second frequency range is higher than the first frequency range. The integrated isolating antenna array component also includes an isolator affixed to the interconnection substrate and configured to be connected to electrical ground. The isolator is configured to reduce the radiofrequency coupling between the two antennas within the first frequency range.
US11336002B2 Antenna and electronic device including the same
An electronic device is provided. The electronic device includes a housing having an inner space. The electronic device may further include an antenna structure disposed in the inner space of the housing and including a printed circuit board (PCB) having a first board surface facing a first direction, a second board surface facing a second direction opposite to the first direction, and a lateral board surface surrounding a space between the first and second board surfaces, a first antenna array disposed in the space between the first and second board surfaces and forming a beam pattern in a third direction that the lateral board surface faces, and a second antenna array disposed at a position spaced apart from the first antenna array and forming a beam pattern in the first direction.
US11336000B2 Filter antenna
The present invention provides a filter antenna including a first resonant cavity and a second resonant cavity which are stacked from top to bottom and in coupling communication with each other, an antenna unit provided on a side of the first resonant cavity facing away from the second resonant cavity, and a feed structure provided in the second resonant cavity. The present invention integrates a filter with an antenna to ensure the performance of the filter antenna by using a SIW cavity filter, thereby effectively suppressing interference from out-of-band spurious signals. In addition, the stacking structure of the antenna and the filter effectively reduces a volume to achieve miniaturization, and the antenna structure is optimized in a compact environment.
US11335994B2 System and method for dynamic multi-transmit antenna and proximity sensor reconfiguration for a multi-radio-access-technology multi-mode device
An information handling system (IHS) may include a configuration sensor for sensing a physical configuration of the IHS, a first proximity sensor probe for sensing whether a first biological entity element is proximate to a first antenna, a second proximity sensor probe for sensing whether a second biological entity element is proximate to a second antenna, and a third proximity sensor probe for sensing whether a third biological entity element is proximate to a third antenna. The IHS is adapted to reconfigure use of at least two of the first antenna, the second antenna, and the third antenna in response to the sensing of at least one of the first proximity sensor probe, the second proximity sensor probe, and the third proximity sensor.
US11335991B2 Electronic device with radio-frequency module
A radio-frequency device includes a radio-frequency module. The radio-frequency module includes a first substrate, a second substrate, a radio-frequency integrated circuit (RFIC), a front-end integrated circuit (FEIC), and a flexible substrate. The RFIC has at least a portion surrounded by a first core member and is configured to input or output a base signal and a first radio-frequency (RF) signal having a frequency higher than a frequency of the base signal. The FEIC has at least a portion surrounded by a second core member and is configured to input or output the first RF signal and a second RF signal having a power different from a power of the first RF signal. The flexible substrate is configured to connect the first and second substrates to each other, provide a transmission path for the first RF signal, and being more flexible than the first and second substrates.
US11335988B2 Automated feed source changer for a compact test range
A mechanical means for deploying one of two or more feed sources within a test range is presented. The feed source selected for testing is properly positioned for use within the range by rotating one of two or more arms to an upright and locked position. An arm may further include a rotatable antenna wheel with two or more feed sources thereon whereby a selected feed source is rotated into position via the antenna wheel. The antenna wheel includes a center body, feed sources attached to the center body and aligned along a rotational plane, and a shroud disposed about the center body and feed sources. The antenna wheel may include a cooling system for managing heat generated by the feed sources and electronics therefore. In preferred embodiments, the feed source changer is mounted within the range so that a selected feed source communicates an emitted beam onto a reflector which is redirected as a reflected beam toward a device under test. Concealment panel(s) may be positioned adjacent to the feed source changer to minimize electromagnetic reflections therefrom.
US11335984B2 Dielectric waveguide filter
Provided is a dielectric waveguide filter that includes a dielectric main body. A plurality of isolation slots and frequency tuning blind holes are provided in the dielectric main body. At least two port signal transmission holes are further provided in the dielectric main body. The at least two port signal transmission holes and at least part of the plurality of frequency tuning blind holes are disposed on two opposite sides of the dielectric main body. In a thickness direction of the dielectric main body, the at least two port signal transmission holes do not overlap with the at least part of the plurality of frequency tuning blind holes. The dielectric waveguide filter according to embodiments of this disclosure achieves miniaturization while improving out-of-band rejection capability.
US11335980B2 Flexible battery
A flexible battery may include: an electrode assembly having one or more unit cells each of the unit cells including a pair of electrode plates having different polarities, a separator interposed between the respective electrode plates and electrode tabs that protrude from the respective electrode plates; a pair of electrode leads connected to electrode tabs; and a strengthening tab fixed on any one electrode lead connection tab among the electrode tabs.
US11335978B2 Secondary battery and battery module
The disclosure relates to a secondary battery and a battery module. The secondary battery comprises: a case comprising a receiving hole having an opening; a cap assembly sealingly connected with the case to close the opening; an electrode assembly disposed in the receiving hole, wherein the electrode assembly comprises two end surfaces opposite to each other in a first direction perpendicular to an axial direction of the receiving hole and tabs extending from respective end surfaces, and the electrode assembly comprises two or more electrode units which are stacked in the axial direction; and a current collecting unit comprising a first sheet and a first current collecting sheet connected to the first sheet, wherein both the first sheet and the first current collecting sheet extend in the axial direction, and the tab is bent with respect to the first direction and is electrically connected to the first current collecting sheet.
US11335977B1 Inter-cell connection materials
Batteries according to embodiments of the present technology may include a first battery cell including a first current collector. The batteries may include a second battery cell including a second current collector. The second battery cell may be vertically aligned with the first battery cell, and the second current collector may be positioned adjacent the first current collector. The first battery cell and the second battery cell may be electrically coupled together so the first battery cell and the second battery cell transfer current through the cells between the first current collector and the second current collector. The batteries may also include a patterned coupling material disposed between the first battery cell and the second battery cell and joining the first current collector with the second current collector.
US11335975B1 Proton selective membranes based on two dimensional materials
Proton conductive membrane includes a proton selective layer of 80-100% carbon with sp2 hybridization having a thickness of 0.3-100 nm, with 0-20% of hydrogen, oxygen, nitrogen and sp3 carbon; wherein the sp2 carbon is in a form of graphene-like material; the proton selective layer having a plurality of pores formed by any of 7, 8, 9 or 10 sp2 carbon cycles or a combination thereof, with the pores having an effective diameter of up to 0.6 nm; an ionomeric polymer layer on the proton selective layer. Total thickness of the proton conductive membrane is less than 50 microns. The ionomeric polymer is PFSA (perfluorinated sulfonic acid), PVP (polyvinylpyrrolidone) or PVA (poly vinyl alcohol) with iodide or bromide counterion dissolved inside. The graphene-like material is CVD graphene or reduced graphene oxide (rGO). A D to G Raman band ratio of the membrane is more than 0.1.
US11335970B2 Battery pack provided with degassing flow channel
A battery pack includes a pack case configured to accommodate a cell module assembly in an inner space thereof and having an opening formed at one side, and a pack cover having a degassing port communicating with the inner space and configured to cover the opening of the pack case. The cell module assembly includes a cell fixing frame having an upper plate and a lower plate respectively disposed at an upper portion and a lower portion of the cell stack and in surface contact with an upper wall and a lower wall of the pack case. At least one of the upper plate and the lower plate includes at least one gas moving route formed by concavely depressing one surface in contact with the upper wall or the lower wall of the pack case along a path toward the degassing port, and at least one hole.
US11335965B2 Heating device for a prismatic battery cell of a high-voltage battery of a motor vehicle, battery cell, battery module, high-voltage battery and motor vehicle
A heating device for a prismatic battery cell of a high-voltage battery of a motor vehicle includes two sheet-shaped heating elements to be arranged on two opposite lateral outer sides of a cell housing of the battery cell, and two connecting elements to be arranged on a housing cover of the cell housing. The connecting elements are electrically connected to terminals of the two heating elements. The connecting elements are flexibly formed, at least in certain regions, and as a result the heating elements are connected in a hinge-like manner. The heating device can be arranged by arranging the first heating element on the first lateral outer side of the cell housing, swinging the second heating element over the housing cover, and arranging the second heating element on the second lateral outer side on the cell housing.
US11335963B2 Traction battery packs with second tier integrated supporting, thermal, and sealing structures
This disclosure details exemplary battery pack designs, such as those designed for use within electrified vehicles. Exemplary battery packs may include an enclosure assembly and a plurality of battery arrays housed inside the enclosure assembly. The enclosure assembly may include a mid-tray that is configured for supporting, cooling/heating, and sealing second tier battery arrays. The configuration of the mid-tray allows coolant joints to be eliminated inside of the battery pack.
US11335962B2 Electrodes and process for reconditioning contaminated electrode materials for use in batteries
A polymer derived ceramic precursor is selected and mixed with a contaminated recycled electrode material or materials. The mixture is pyrolyzed to form a ceramic or ceramic-carbon composite, reduced to a powder and formed into an electrode of a battery, such as a lithium ion battery.
US11335955B2 Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using same
A non-aqueous electrolyte for a lithium ion secondary battery capable of improving rate characteristics, and the lithium ion secondary battery using the same. The non-aqueous electrolyte for the lithium ion secondary battery includes a carboxylic acid ester and 2.0×10−6 to 3.0×10−3 mol/L of halide ion other than fluoride ion.
US11335953B2 Electrolyte for lithium secondary battery and lithium secondary battery including the same
Provided are an electrolyte for a secondary battery including a lithium salt, a nonaqueous organic solvent, and a difluorophosphite olefin compound, and a lithium secondary battery including the same.
US11335952B2 Lithium battery
A lithium battery includes a cathode including a cathode active material, an anode including an anode active material, and an organic electrolytic solution between the cathode and the anode, wherein the organic electrolytic solution includes a first lithium salt, a second lithium salt, an organic solvent, and a bicyclic sulfate-based compound represented by Formula 1 below: wherein, in Formula 1, each of A1, A2, A3, and A4 is independently a covalent bond, a substituted or unsubstituted C1-C5 alkylene group, a carbonyl group, or a sulfinyl group, in which both A1 and A2 are not a covalent bond and both A3 and A4 are not a covalent bond. The second lithium salt includes at least one selected from LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, Li(FSO2)2N, and LiN(CxF2x+1SO2)(CyF2y+1SO2) where 2≤x≤20 and 2≤y≤20.
US11335949B2 Battery including a sulfide barrier coating
Provided is a lithium-conductive solid-state electrolyte material that comprises a sulfide compound of a composition that does not deviate substantially from a formula of Li9S3N. The compound's conductivity is greater than about 1×10−7 S/cm at about 25° C. and is in contact with a negative electroactive material. Also provided is an electrochemical cell that includes an anode layer, a cathode layer, and the electrolyte layer between the anode and cathode layers. In an example, the material's activation energy can be no greater than about 0.52 eV at about 25° C.
US11335947B2 Polymer electrolyte composition including perfluorinated ionomer and inorganic additive and lithium secondary battery including the same
The present invention relates to a composition for a polymer electrolyte and a lithium secondary battery using the same, and particularly, to a composition for a polymer electrolyte which includes a single ion-conductive polymer including a unit represented by Chemical Formula 1; and at least one additive selected from the group consisting of a ceramic electrolyte and inorganic particles, wherein a weight ratio of the single ion-conductive polymer:the additive(s) is 1:0.1 to 1:9, and a lithium secondary battery which exhibits an improvement in cell performance by including the same.
US11335946B2 Shape-conformable alkali metal-sulfur battery
Provided is an alkali metal-sulfur cell comprising: (a) a quasi-solid cathode containing about 30% to about 95% by volume of a cathode active material (a sulfur-containing material), about 5% to about 40% by volume of a first electrolyte containing an alkali salt dissolved in a solvent and an ion-conducting polymer dissolved, dispersed in or impregnated by a solvent, and about 0.01% to about 30% by volume of a conductive additive wherein the conductive additive, containing conductive filaments, forms a 3D network of electron-conducting pathways such that the quasi-solid electrode has an electrical conductivity from about 10−6 S/cm to about 300 S/cm; (b) an anode; and (c) an ion-conducting membrane or porous separator disposed between the anode and the quasi-solid cathode; wherein the quasi-solid cathode has a thickness from 200 μm to 100 cm and a cathode active material having an active material mass loading greater than 10 mg/cm2.
US11335944B2 Secondary battery charging/discharging device
A charging and discharging apparatus for performing an activation process of a secondary battery including a plurality of compression plates spaced apart from each other by a predetermined distance to form a cell insert space into which a secondary battery cell is inserted, the plurality of compression plates moving to reduce the separated distance to press a body of the secondary battery cell; a slip sheet having a sheet shape and formed to include attachment portions attached to top ends of the compression plates and a folding portion formed by folding a region between the attachment portions to be interposed in the cell insert space; and a slip sheet fixing unit provided to be attached to and detached from the top end of the compression plate in a fitting and releasing manner in a state where the attachment portions of the slip sheet are interposed therein is provided.
US11335940B2 Fuel cell stack
A fuel cell stack includes an endplate assembly having a structural endplate. An insulator plate has a second exterior surface contacting a first interior surface of the structural endplate and a second interior surface on an opposite side of the insulator plate. A third plate has a third exterior surface contacting the second interior surface and a third interior surface on an opposite side of the third plate relative to the insulator plate. The third interior surface and third exterior surface are substantially flat. The second interior surface and the third exterior surface contact each other substantially continuously in a longitudinal direction and a lateral direction, and are flat and substantially parallel to each other. The second exterior surface is contoured such that the second exterior surface is not flat and is substantially non-parallel relative to the third interior surface.
US11335934B2 Assembly comprising a SOEC/SOFC-type solid oxide stack and a clamping system with an integrated gas superheating system
An assembly comprising a SOEC/SOFC-type solid oxide stack, and a clamping system for the stack. The assembly further comprises a system for superheating the gases at the inlet of the stack, comprising: a heating plate integrated within the thickness of at least one of the upper and lower clamping plates of the clamping system; an upper or lower end plate for superheating the gases, comprising a circuit through which the gases to be heated flow; and an inlet duct for the gases to be heated.
US11335931B2 Highly ion-selective composite polymer electrolyte membranes comprising metal-ion blocking layer, redox flow batteries comprising the same, and electrochemical devices comprising the same
Disclosed is a composite polymer electrolyte membrane comprising: a support membrane; a metal ion-blocking layer stacked on the support membrane; a stabilization layer; and a protecting layer, wherein the support membrane includes a cation conductive polymer.
US11335930B2 Fuel cell system and method for operating the same
A fuel cell system includes a fuel feeder that supplies fuel, a fuel cell stack that generates power through an electrochemical reaction using air and a hydrogen-containing gas generated from the fuel, a first temperature sensor that senses the temperature of the fuel cell stack, and a controller. The fuel cell stack has a membrane electrode assembly including an electrolyte membrane through which protons can pass, a cathode on one side of the electrolyte membrane, and an anode on the other side of the electrolyte membrane. The controller defines an upper limit of current output from the fuel cell stack on the basis of the temperature of the fuel cell stack, the supply of the fuel, and the hydrogen consumption of the fuel cell stack associated with internal leakage current and keeps the current output from the fuel cell stack at or below the upper limit.
US11335919B2 Selectively rotated flow field for thermal management in a fuel cell stack
An electrochemical cell stack comprises a plurality of electrochemical cell units, each comprising a cathode, an anode, and an electrolyte, and also comprises a plurality of interconnects. An interconnect is disposed between adjacent electrochemical cell units and defines a longitudinal channel having circumferential corrugations defined therearound. A fuel channel is defined between each anode and a respective adjacent interconnect, the fuel channel having fuel inlet and outlet. An oxidant channel is defined between each cathode and a respective adjacent interconnect, the oxidant channel having an oxidant inlet and outlet. The plurality of electrochemical cell units and interconnects include a first electrochemical cell unit, a first interconnect adjacent the first electrochemical cell unit, a second electrochemical cell unit adjacent the first interconnect, and a second interconnect adjacent the second electrochemical cell unit. The second interconnect is rotationally offset from the first interconnect about a longitudinal axis of the fuel cell stack.
US11335916B2 Liquid reserve batteries for low temperature activation and performance in munitions
A liquid reserve battery including: a collapsible storage unit having a collapsible cavity for storing a liquid electrolyte therein; and a battery cell in communication with an outlet of the collapsible storage unit, the battery cell having gaps dispersed therein. Wherein the collapsible storage unit includes: a top plate having three or more first sides; a bottom plate having three or more second sides, each of the three or more first sides being angularly offset from a corresponding one of the three or more second sides about a central axis, the top plate being linearly offset from the bottom plate in a longitudinal direction along the central axis; and for each of the three of more first sides, first and second triangular sidewalls connecting the top plate bottom plate and each other.
US11335913B2 Method for manufacturing solid oxide cell having three-dimensional ceramic composite interface structure
The present invention presents a method for manufacturing a negative electrode of a solid oxide cell in a three-dimensional structure by using a pressurization process. In addition, the present invention proposes a structure in which the entire interface of a solid oxide cell is manufactured on the manufactured three-dimensional negative electrode substrate, through various deposition methods, in a three-dimensional structure so as to maximize a reaction area.
US11335912B2 Decorative ring
A decorative ring includes a body having a hollow tubular structure and defining a body space. A plurality of electrical energy generating elements is located in the body space and spaced apart from each other. The body space is divided into a plurality of sub-body spaces separated from each other. Each of plurality of electrical energy generating elements includes a first porous electrode, an eggshell membrane, and a second porous electrode stacked on each other in that order. A light emitting element is located on the body and electrically connected to one of the plurality of electrical energy generating elements. A liquid having positive ions and negative ions in the body space.
US11335909B2 Negative electrode active material for electrochemical device, negative electrode including the negative electrode active material and electrochemical device including the same
A negative electrode active material for an electrochemical device which has improved quick charging characteristics. The negative electrode active material includes two types of graphite particles having a different particle diameter and shows a bimodal distribution, wherein the ratio of the average particle diameter (D50) of the first graphite particles to the average particle diameter (D50) of the second graphite particles is larger than 1.7.
US11335907B2 Positive electrode materials having a superior hardness strength
A powderous positive electrode material for a lithium secondary battery has the general formula Li1+x[Ni1−a−b−cMaM′bM″c]1−xO2−z. M is one or more elements of the group Mn, Zr and Ti. M′ is one or more elements of the group Al, B and Co. M″ is a dopant different from M and M′, and x, a, b and c are expressed in mol with −0.02≤x≤0.02, 0≤c≤0.05, 0.10≤(a+b)≤0.65 and 0≤z≤0.05. The material has an unconstrained cumulative volume particle size distribution value (Γ0(D10P=0)), a cumulative volume particle size distribution value after having been pressed at a pressure of 200 MPa (ΓP(D10P=200)) and a cumulative volume particle size distribution value after having been pressed at a pressure of 300 MPa (ΓP(D10P=300)). When ΓP(D10P=200) is compared to Γ0(D10P=0), the relative increase in value is less than 100%. When ΓP(D10P=300) is compared to Γ0(D10P=0), the relative increase in value is less than 120%.
US11335905B2 Negative electrode active material, mixed negative electrode active material, and method of producing negative electrode active material
A negative electrode active material particle including: a silicon compound particle containing a silicon compound that contains oxygen, wherein the silicon compound particle contains a Li compound; and the negative electrode active material particle including aluminum phosphorous composite oxide attached to at least part of the surface, wherein the aluminum phosphorous composite oxide is a composite of P2O5 and Al2O3, and the P2O5 and the Al2O3 are in a mass ratio in a range of 1.2
US11335903B2 Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
Silicon-carbon composite materials and related processes are disclosed that overcome the challenges for providing amorphous nano-sized silicon entrained within porous carbon. Compared to other, inferior materials and processes described in the prior art, the materials and processes disclosed herein find superior utility in various applications, including energy storage devices such as lithium ion batteries.
US11335901B2 Negative active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery including the same
Provided are a negative active material for a lithium secondary battery, a manufacturing method thereof, and a lithium secondary battery including the same, and the present invention may provide a negative active material for a lithium secondary battery including a secondary particle in which a plurality of silicon nanoparticles are aggregated; and a plurality of metal particles distributed in pores in the secondary particle, a manufacturing method thereof, and a lithium secondary battery including the same.
US11335895B2 Micro-capsule type silicon-carbon composite negative electrode material and preparing method and use thereof
The present invention discloses a micro-capsule type silicon-carbon composite negative electrode material, and the negative electrode material comprises a current collector and a silicon-carbon coating layer formed by drying silicon-carbon paste coating the current collector; the silicon-carbon slurry comprises a carbonaceous paste and silicon capsule powder dispersed in the carbonaceous paste; the carbonaceous paste comprises a dispersing agent, and a carbon material, a first conductive agent and a first binder dispersed in the dispersing agent; the silicon capsule powder has micro-capsule structures comprising silicon powder and a second binder coating the surface of the silicon powder and in which the silicon powder is a core and the second binder is an outer shell; and the first binder is different from the second binder. The improved silicon-carbon composite negative electrode material of the present disclosure has excellent effects in cycle performance, coulombic efficiency and rate capability.
US11335892B2 Organic layer deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same
An organic layer deposition apparatus and a method of manufacturing an organic light-emitting display device by using the apparatus. In particular, an organic layer deposition apparatus that is more easily manufactured and is suitable for use in mass production of large substrates while performing high-definition patterning thereon, as well as a method of manufacturing an organic light-emitting display device by using such an apparatus.
US11335889B2 Organic light emitting diode display and method for manufacturing the same
An organic light emitting diode (OLED) display including: a substrate; an organic light emitting diode formed on the substrate; a metal oxide layer formed on the substrate and covering the organic light emitting diode; a first inorganic layer formed on the substrate and covering the organic light emitting diode; a second inorganic layer formed on the first inorganic layer and contacting the first inorganic layer at an edge of the second inorganic layer; an organic layer formed on the second inorganic layer and covering a relatively smaller area than the second inorganic layer; and a third inorganic layer formed on the organic layer, covering a relatively larger area than the organic layer, and contacting the first inorganic layer and the second inorganic layer at an edge of the third inorganic layer.
US11335886B2 Display device and method of manufacturing display device
A display device includes a display panel including a display region, a terminal region provided with a terminal, and a bending region located between the display region and the terminal region and capable of bending, the terminal region being located on a rear surface side opposite to a display surface side with respect to the display region based on the bending region bent and a protective coating provided on the display surface side of the bending region. When a direction in which the display region, the bending region, and the terminal region are arranged is defined as a first direction and a direction crossing the first direction is defined as a second direction, the bending region includes a bank portion located in the second direction with respect to the protective coating, projecting to the display surface side, and extending in the first direction.
US11335884B2 Method for manufacturing display device having flexibility
A display device comprises an organic EL substrate including an organic EL layer formed on a flexible substrate and a first main surface of the flexible substrate; a film covering a display region of the organic EL substrate; and a terminal region arranged at an end portion of the organic EL substrate, and arranged adjacent to and apart from an end portion of the film. The end portion of the film may have a taper region. A thickness of the taper region increases with distance from the terminal region in a cross-sectional view. A width of the taper region may be 0.5 times or more and 1.5 times or less of the film thickness in a plan view.
US11335878B2 Window member for display device, display device, and manufacturing method for display device
A display device includes a display module and a window member disposed on the display module, where the window member includes a base layer and a hard coating layer disposed on the base layer. A moisture absorption ratio of the window member is about 2.2% or greater under a first condition including a first temperature and a first humidity. The first temperature is about 60° C. or greater, and the first humidity is about 70% or greater.
US11335874B2 Quantum dot color filter substrate, fabricating method thereof, and display panel
A quantum dot color filter substrate, a manufacturing method thereof, and a display panel are provided. The quantum dot color filter substrate includes a quantum dot layer and a light-guiding encapsulation film. The quantum dot layer includes a plurality of light-guiding films arranged in an array and a black matrix disposed among the light-guiding films. A plurality of light-guiding grooves are defined on an illuminated surface of each of the light-guiding films. A light-guiding encapsulation film includes a package body disposed on a side of the quantum dot layer adjacent to the light-guiding grooves and a plurality of light-guiding protrusions extending from the package body and filled into the light-guiding grooves.
US11335869B2 Display device and method of manufacturing the display device
A method of manufacturing a display device includes providing an inorganic layer on a carrier substrate, providing a first flexible substrate on the inorganic layer, providing a first shielding layer including a metal on the first flexible substrate, providing a first barrier layer on the first shielding layer, and providing a thin film transistor layer on the first barrier layer. The inorganic layer includes at least one material selected from silicon nitride (SiNx), silicon oxide (SiOx), and silicon oxynitride (SiOxNy), and a thickness of the inorganic layer is in a range from about 10 Å to about 6000 Å.
US11335863B2 Compound, display panel and display apparatus
A compound, having a structure represented by Formula (I), in which L is selected from the group consisting of a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted pyridyl, a substituted or unsubstituted pyrimidinyl, and a substituted or unsubstituted pyrazinyl; and D is an electron donor and is selected from the group consisting of a substituted or unsubstituted phenyl, biphenyl, naphthyl, anthryl, phenanthryl, acenaphthylenyl, pyrenyl, perylenyl, fluorenyl, spirobifluorenyl, chrysenyl, benzophenanthrenyl, benzanthracenyl, fluoranthenyl, picenyl, furyl, benzofuryl, dibenzofuryl, thienyl, benzothienyl, dibenzothiophenyl, phenoxazinyl, phenazinyl, phenothiazinyl, thianthrenyl, carbazolyl, acridinyl, and diarylamino. The compound according to the present disclosure has the TADF property, and the triplet excitons, which are blocked in molecular transition of the conventional fluorescent material, can be used to emit light, thereby improving the efficiency of device.
US11335860B2 Organic electroluminescence device and condensed cyclic compound for organic electroluminescence device
An organic electroluminescence device of an embodiment includes a first electrode and a second electrode facing each other, and at least one organic layer disposed between the first electrode and the second electrode, wherein at least one organic layer includes a condensed cyclic compound represented by Formula 1, thereby showing improved device efficiency and life.
US11335856B2 Display device and fabricating method of the same
A display device includes a display area, a test pad, a plurality of first test transistors, and at least one outline. The display area includes pixels coupled to data lines and scan lines. The test pad receives a test signal. The first test transistors are coupled between the data lines of the display area and the test pad. The at least one outline is coupled between one of the first test transistors and the test pad. The at least one outline is located in a non-display area outside the display area.
US11335855B2 Method for patterning a coating on a surface and device including a patterned coating
An opto-electronic device includes: a first electrode; an organic layer disposed over the first electrode; a nucleation promoting coating disposed over the organic layer; a nucleation inhibiting coating covering a first region of the opto-electronic device; and a conductive coating covering a second region of the opto-electronic device.
US11335853B2 Method of manufacturing OTS device, and OTS device
A method of manufacturing an OTS device of the invention is a method of manufacturing OTS device including a first conductor, an OTS portion made of chalcogenide, and a second conductor which are layered in order and disposed on an insulating substrate. The manufacturing method includes: a step D of forming a resist so as to coat part of an upper surface of the second conductor; a step E of dry etching a region which is not coated with the resist; and a step F of ashing the resist. In the step E, the second conductor, all of the OTS portion, and an upper portion of the first conductor are removed by an etching treatment once in a depth direction of the region.
US11335852B2 Resistive random access memory devices
The present disclosure generally relates to memory devices and methods of forming the same. More particularly, the present disclosure relates to resistive random-access (ReRAM) memory devices. The present disclosure provides a memory device including a dielectric layer having an opening, sidewalls along the opening, a first electrode in the opening, a resistive layer disposed upon the first electrode, an oxygen scavenging layer disposed upon the resistive layer, and a second electrode in contact with the oxygen scavenging layer. The oxygen scavenging layer includes a material that is different from the resistive layer and partially covers the resistive layer. The first electrode is electrically linked to the second electrode by the oxygen scavenging layer and the resistive layer.
US11335850B2 Magnetoresistive random-access memory device including magnetic tunnel junctions
A method of manufacturing a double magnetic tunnel junction device is provided. The method includes forming a first free layer, forming a first tunnel barrier layer on the free layer, forming a reference layer on the first tunnel barrier layer, forming a second tunnel barrier layer on the reference layer, and forming a second free layer on the second tunnel barrier layer. An area of the second free layer is less than an area of the first free layer. Also, the first free layer, the first tunnel barrier layer and the reference layer are a first magnetic tunnel junction, and the reference layer, the second tunnel barrier layer and the second free layer are a second magnetic tunnel junction.
US11335849B2 Magnetic domain wall displacement type magnetic recording element and magnetic recording array
A magnetic domain wall displacement type magnetic recording element which comprises: a first magnetization fixed part which is stacked in a first direction, a magnetic recording layer which includes a magnetic domain wall and extends in a second direction which crosses with the first direction, a non-magnetic layer which is provided between the first magnetization fixed part and the magnetic recording layer, and a first via part which is electrically connected to the magnetic recording layer, wherein at least a part of the first via part is located at a position which is apart from the first magnetization fixed part in the second direction in planar view observed from the first direction, the magnetic recording layer includes a first part which has a position where the first magnetization fixed part overlaps with the magnetic recording layer in planar view observed from the first direction, and a width of the first via part in a third direction which is orthogonal to the second direction is larger than a width of said position of the first part of the magnetic recording layer.
US11335848B2 Production of lead-free piezoceramics in aqueous surroundings
The invention relates to a method for producing ceramics having piezoelectric properties in predominantly aqueous suspending agents.
US11335843B2 Semiconductor device package
A semiconductor device package includes a resin unit having a first through hole and a second through hole, a conductive body disposed on the resin unit and having a cavity that is concave in a first direction from a top surface of the conductive body toward a bottom surface thereof, and a light-emitting device disposed in the cavity, wherein the conductive body includes a first protrusion and a second protrusion, which protrude in the first direction from the bottom surface of the conductive body, and the first protrusion is disposed inside the first through hole, the second protrusion is disposed inside the second through hole, and a top surface of the resin unit is in contact with the bottom surface of the conductive body.
US11335842B2 Chip-scale packaging light-emitting device with electrode polarity identifier and method of manufacturing the same
A chip-scale packaging (CSP) light-emitting device (LED) is provided with an electrode polarity identifier, and includes a light-emitting semiconductor chip and a packaging structure. A first horizontal direction and a perpendicular second horizontal direction are specified on a semiconductor-chip-upper surface. The packaging structure covers the semiconductor-chip-upper surface, a first semiconductor-chip-side surface and a second semiconductor-chip-side surface of the light-emitting semiconductor chip, and includes a first package-side surface and a second package-side surface. A first region is between the first package-side surface and the first semiconductor-chip-side surface, and a second region is between the second package-side surface and the second semiconductor-chip-side surface, wherein an area of the first region is different from an area of the second region. An orientation of the electrode polarity of the CSP LED can be visually identified by recognizing the area difference of the first region and the second region.
US11335838B2 Light emitting apparatus
A light emitting device including a contact layer, a blocking layer over the contact layer, a protection layer adjacent the blocking layer, a light emitter over the blocking layer, and an electrode layer coupled to the light emitter. The electrode layer overlaps the blocking layer and protection layer, and the blocking layer has an electrical conductivity that substantially blocks flow of current from the light emitter in a direction towards the contact layer. In addition, the protection layer may be conductive to allow current to flow to the light emitter or non-conductive to block current from flowing from the light emitter towards the contact layer.
US11335836B2 Micro LED structure and method of manufacturing same
The present invention relates to a micro LED structure and a method of manufacturing the same that facilitate realizing of pixels of the micro LED structure.
US11335835B2 Converter fill for LED array
An optical isolation material may be applied to walls of a first cavity and a second cavity in a wafer mesh. A wavelength converting layer may be deposited into the first cavity to create a first segment and into the second cavity to create a second segment. The first segment may be attached to a first light emitting device to create a first pixel and the second segment to a second light emitting device to create a second pixel. The wafer mesh may be removed.
US11335834B2 Quantum dot films utilizing multi-phase resins
Multi-phase polymer films containing quantum dots (QDs) are described herein. The films have domains of primarily hydrophobic polymer and domains of primarily hydrophilic polymer. QDs, being generally more stable within a hydrophobic matrix, are dispersed primarily within the hydrophobic domains of the films. The hydrophilic domains tend to be effective at excluding oxygen.
US11335833B2 Light-emitting diodes, light-emitting diode arrays and related devices
Light-emitting diodes (LEDs), LED arrays, and related devices are disclosed. An LED device includes a first LED chip and a second LED chip mounted on a submount with a light-altering material in between. The light-altering material may include at least one of a light-reflective material and/or a light-absorbing material. Individual wavelength conversion elements may be arranged on each of the first and second LED chips. The light-altering material may improve the contrast between the first and second LED chips as well as between the individual wavelength conversion elements. LED devices may include submounts in modular configurations where LED chips may be mounted on adjacent submounts to form an LED array. Each LED chip of the LED array may be laterally separated from at least one other LED chip by a same distance and a light-altering material may be arranged around the LED array.
US11335832B2 LED package structure and carrier thereof
An LED package structure and a carrier thereof are provided. The LED package structure includes a carrier, a plurality of LED chips, and an encapsulating colloid. The carrier includes a substrate, a ring-shaped first wall disposed on the substrate, and a ring-shaped second wall stacked on the first wall. A portion of the substrate surrounded by the first wall is defined as a die-bonding region, and the first wall, the second wall, and the die-bonding region jointly define an accommodating space. The LED chips are mounted on the die-bonding region and are arranged in the accommodating space. The encapsulating colloid is filled within the accommodating space, and the LED chips are embedded in the encapsulating colloid.
US11335831B2 Optical device case and optical device
An optical device case (100A) of an embodiment includes: a light-transmitting window member (20A); and a housing (10) which has a space for accommodating a light-receiving element and/or a light-emitting element (OE), wherein the window member (20A) includes a light-transmitting member (22), a polymer film (50) provided on an outer surface of the light-transmitting member (22), the polymer film (50) having a moth-eye structure at its surface, a contact angle of the surface with respect to water being not less than 140°, and a resistance heater (24) provided on an inner surface of the light-transmitting member (22).
US11335830B2 Photo-emission semiconductor device and method of manufacturing same
A photo-emission semiconductor device superior in reliability is provided. The photo-emission semiconductor device includes a semiconductor layer, a light reflection layer provided on the semiconductor layer, and a protective layer formed by electroless plating to cover the light reflection layer. Therefore, even if the whole structure is reduced in size, the protective layer reliably covers the light reflection layer without gap.
US11335826B2 Semiconductor photo-detecting device
A photo-detecting device includes a substrate, a first semiconductor layer, a light-absorbing layer, a second semiconductor layer, a semiconductor contact layer, an insulating layer, and an electrode structure. The second semiconductor layer includes a first region and a second region. The semiconductor contact layer is on the first region. The insulating layer covers the semiconductor contact layer, the first region, and the second region. The electrode structure covers the semiconductor contact layer, the insulating layer, the first region, and the second region.
US11335824B2 Near-infrared photodetector semiconductor device
The near-infrared photodetector semiconductor device comprises a semiconductor layer (1) of a first type of conductivity with a main surface (10), a trench or a plurality of trenches (2) in the semiconductor layer at the main surface, a SiGe alloy layer (3) in the trench or the plurality of trenches, and an electrically conductive filling material of a second type of conductivity in the trench or the plurality of trenches, the second type of conductivity being opposite to the first type of conductivity.
US11335821B2 Low noise silicon germanium image sensor
Low noise silicon-germanium (SiGe) image sensor. In one embodiment, an image sensor includes a plurality of pixels arranged in rows and columns of a pixel array disposed in a semiconductor substrate. The photodiodes of an individual pixel are configured to receive an incoming light through an illuminated surface of the semiconductor substrate. The semiconductor substrate includes a first layer of semiconductor material having silicon (Si); and a second layer of semiconductor material having silicon germanium (Si1-xGex). A concentration x of Ge changes gradually through at least a portion of thickness of the second layer. Each photodiode includes a first doped region extending through the first layer of semiconductor material and the second layer of semiconductor material; and a second doped region extending through the first layer of semiconductor material and the second layer of semiconductor material.
US11335818B2 Solar cell and production method therefor, and solar cell module
A solar cell includes a semiconductor substrate, a first conductive layer, a second conductive layer, a first electrode, a second electrode, and an island-shaped conductive layer. The first conductive layer and the second conductive layer are disposed on one principal surface of the semiconductor substrate. The first electrode is disposed on the first conductive layer and the second electrode is disposed on the second conductive layer. The first electrode and the second electrode are electrically separated, and the island-shaped conductive layer is disposed between the first electrode and the second electrode.
US11335817B2 Composite etch stop layers for sensor devices
A device and method for fabricating the same is disclosed. For example, the device includes a sensor having a front side and a back side, a metal interconnect layer formed on the front side of the sensor, an anti-reflective coating formed on the back side of the sensor, a composite etch stop mask layer formed on the anti-reflective coating wherein the composite etch stop mask layer includes a hydrogen rich layer and a compressive high density layer, and a light filter formed on the composite etch stop mask layer.
US11335814B2 Semiconductor chip
Provided is a semiconductor chip including a nanowire field effect transistor (FET) and having a layout configuration effective for making manufacturing the chip easy. A semiconductor chip includes a first block including a standard cell having a nanowire FET and a second block including a nanowire FET. In the first and second blocks, nanowires extending in an X direction have an arrangement pitch in a Y direction of an integer multiple of a pitch P1. Pads have an arrangement pitch in the X direction of an integer multiple of a pitch P2.
US11335811B2 Semiconductor arrangement comprising buffer layer and semiconductor columns over the buffer layer and formation thereof
A semiconductor arrangement and methods of formation are provided. A semiconductor arrangement includes a semiconductor column on a buffer layer over a substrate. The buffer layer comprises a conductive material. Both a first end of the semiconductor column and a bottom contact are connected to a buffer layer such that the first end of the semiconductor column and the bottom contact are connected to one another through the buffer layer, which reduces a contact resistance between the semiconductor column and the bottom contact. A second end of the semiconductor column is connected to a top contact. In some embodiments, the first end of the semiconductor column corresponds to a source or drain of a transistor and the second end corresponds to the drain or source of the transistor.
US11335809B2 Stacked Gate-All-Around FinFET and method forming the same
A device includes a first semiconductor strip, a first gate dielectric encircling the first semiconductor strip, a second semiconductor strip overlapping the first semiconductor strip, and a second gate dielectric encircling the second semiconductor strip. The first gate dielectric contacts the first gate dielectric. A gate electrode has a portion over the second semiconductor strip, and additional portions on opposite sides of the first and the second semiconductor strips and the first and the second gate dielectrics.
US11335805B2 High voltage switch device
A switch device includes a P-type substrate, a first gate structure, a first N-well, a shallow trench isolation structure, a first P-well, a second gate structure, a first N-type doped region, a second P-well, and a second N-type doped region. The first N-well is formed in the P-type substrate and partly under the first gate structure. The shallow trench isolation structure is formed in the first N-well and under the first gate structure. The first P-well is formed in the P-type substrate and under the first gate structure. The first N-type doped region is formed in the P-type substrate and between the first gate structure and the second gate structure. The second P-well is formed in the P-type substrate and under the second gate structure. The second N-type doped region is formed in the second P-well and partly under the second gate structure.
US11335803B2 Source-down transistor with vertical field plate
The structure of a field-effect transistor with a source-down configuration and process of making the transistor are described in this paper. The transistor is built in a semiconductor chip with a trench extending from top chip surface towards the bottom surface. The trench contains a conductive gate material embedded in a dielectric material in the trench. A conductive field plate is also embedded in the trench and extends from the top surface of the chip towards the bottom surface of the chip and splits the conductive gate electrode into two halves. The conductive field plate penetrates the trench and makes electrical contact with the heavily doped substrate near the bottom surface of the chip.
US11335799B2 Group-III nitride semiconductor device and method for fabricating the same
The present application discloses a group-III nitride semiconductor device, which comprises a substrate, a buffer layer, a semiconductor stack structure, and a passivation film. The buffer layer is disposed on the substrate. The semiconductor stack structure is disposed on the buffer layer and comprises a gate, a source, and a drain. In addition, a gate insulating layer is disposed between the gate and the semiconductor stack structure for forming a HEMT. The passivation film covers the HEMT and includes a plurality of openings corresponding to the gate, the source, and the drain, respectively. The material of the passivation film is silicon oxynitride.
US11335793B2 Vertical tunneling field-effect transistors
Tunneling Field Effect Transistors (TFETs) are promising devices in that they promise significant performance increase and energy consumption decrease due to a steeper subthreshold slope (for example, smaller sub-threshold swing). In various embodiments, vertical fin-based TFETs can be fabricated in trenches, for example, silicon trenches. In another embodiment, vertical TFETs can be used on different material systems acting as a substrate and/or trenches (for example, Si, Ge, III-V semiconductors, GaN, and the like). In one embodiment, the tunneling direction in the channel of the vertical TFET can be perpendicular to the Si substrates. In one embodiment, this can be different than the tunneling direction in the channel of lateral TFETs.
US11335792B2 Semiconductor processing system with in-situ electrical bias and methods thereof
A method of fabricating a semiconductor device includes placing a semiconductor wafer into a processing chamber, the semiconductor wafer including a first conductive layer and a second conductive layer separated by an intermediate layer; applying an electrical bias voltage across the intermediate layer by coupling the first conductive layer to a first potential and coupling the second conductive layer to a second potential; and annealing the semiconductor wafer while applying the electrical bias voltage.
US11335790B2 Ferroelectric memory devices with dual dielectric confinement and methods of forming the same
A semiconductor structure contains a semiconductor channel extending between a source region and a drain region, at least one gate electrode, a ferroelectric material portion located between the semiconductor channel and the at least one gate electrode, a front-side gate dielectric located between the ferroelectric material portion and the semiconductor channel, and a backside gate dielectric located between the ferroelectric material portion and the at least one gate electrode. The front-side gate dielectric and the backside gate dielectric have a dielectric constant greater than 7.9 and a band gap greater than a band gap of the ferroelectric material portion.
US11335786B2 Gate structure in high-κ metal gate technology
Various embodiments of the present disclosure are directed towards a semiconductor device including a gate structure. The semiconductor device further includes a pair of spacer segments on a semiconductor substrate. A high-κ gate dielectric structure overlies the semiconductor substrate. The high-κ gate dielectric structure is laterally between and borders the spacer segments. The gate structure overlies the high-k gate dielectric structure and has a top surface about even with a top surface of the spacer segments. The gate structure includes a metal structure and a gate body layer. The gate body layer has a top surface that is vertically offset from a top surface of the metal structure and further has a lower portion cupped by the metal structure.
US11335784B2 Field plate structure for high voltage device
Various embodiments of the present disclosure are directed towards a method for forming an integrated chip. The method includes forming a source region and a drain region within a substrate. A drift region is formed within the substrate such that the drift region is disposed laterally between the source region and the drain region. A first gate structure is formed over the drift region. An inter-level dielectric (ILD) layer is formed over the first gate structure. The ILD layers is patterned to define a field plate opening. A first field plate layer, a second field plate layer, and a third field plate layer are formed within the field plate opening.
US11335781B2 Vanadium dioxide heterostructures having an isostructural metal-insulator transition
Heterostructures that include a bilayer composed of epitaxial layers of vanadium dioxide having different rutile-to-monoclinic phase transition temperatures are provided. Also provided are electrical switches that incorporate the heterostructures. The bilayers are characterized in that they undergo a single-step, collective, metal-insulator transition at an electronic transition temperature. At temperatures below the electronic transition temperature, the layer of vanadium dioxide having the higher rutile-to-monoclinic phase transition temperature has an insulating monoclinic crystalline phase, which is converted to a metallic monoclinic crystalline phase at temperatures above the electronic transition temperature.
US11335772B2 Semiconductor device and method of manufacturing semiconductor device
Provided is a semiconductor device including a semiconductor substrate doped with impurities, a front surface-side electrode provided on a front surface side of the semiconductor substrate, a back surface-side electrode provided on a back surface side of the semiconductor substrate, wherein the semiconductor substrate has a peak region arranged on the back surface side of the semiconductor substrate and having one or more peaks of impurity concentration, a high concentration region arranged closer to the front surface than the peak region and having a gentler impurity concentration than the one or more peaks, and a low concentration region arranged closer to the front surface than the high concentration region and having a lower impurity concentration than the high concentration region.
US11335771B2 Semiconductor device
A semiconductor device includes first and second electrodes, a semiconductor part therebetween; first and second control electrodes each in a trench at the frontside of the semiconductor part. The semiconductor part includes first to sixth layers. The first and third layers are of a first conductivity type. Other layers are of a second conductivity type. The first layer extends between the first electrode at the backside and the second electrode at the frontside. The second layer is provided between the first layer and the second electrode. The third and fourth layers each are selectively provided between the second layer and the second electrode. The fifth layer is provided between the first layer and the first electrode. The sixth layer is provided between the first layer and the second control electrode. The sixth layer extends along an insulating film between the semiconductor part and the second control electrode.
US11335770B2 Semiconductor isolation structures having different configurations in different device regions and method of forming the same
Provided is a semiconductor isolation structure including: a substrate having a first trench in a first region of the substrate and a second trench in a second region of the substrate; a filling layer is located in the first trench and the second trench; a liner layer on the sidewalls and bottom of the first trench and the second trench; a fixed negative charge layer is located between the filling layer and the liner layer in the first trench and the second trench; and a fixed positive charge layer located between the fixed negative charge layer and the liner layer in the first trench. The liner layer, the fixed positive charge layer, the fixed negative charge layer and the filling layer in the first trench form a first isolation structure. The liner layer, the fixed negative charge layer and the filling layer in the second trench form a second isolation structure.
US11335768B2 Integrated high voltage capacitor
A semiconductor device comprises a semiconductor die and an integrated capacitor formed over the semiconductor die. The integrated capacitor is configured to receive a high voltage signal. A transimpedance amplifier is formed in the semiconductor die. An avalanche photodiode is disposed over or adjacent to the semiconductor die. The integrated capacitor is coupled between the avalanche photodiode and a ground node. A resistor is coupled between a high voltage input and the avalanche photodiode. The resistor is an integrated passive device (IPD) formed over the semiconductor die. A first terminal of the integrated capacitor is coupled to a ground voltage node. A second terminal of the integrated capacitor is coupled to a voltage greater than 20 volts. The integrated capacitor comprises a plurality of interdigitated fingers in one embodiment. In another embodiment, the integrated capacitor comprises a plurality of vertically aligned plates.
US11335765B2 Display panels, display screens, and display terminals
A display panel, a display screen, and a display terminal are provided. The display panel includes a substrate and a plurality of wavy first electrodes disposed on the substrate. The plurality of first electrodes extend in parallel in the same direction and have an interval between adjacent first electrodes. In an extending direction of the first electrode, a width of the first electrode changes continuously or intermittently, and the interval changes continuously or intermittently.
US11335761B2 Display apparatus
A display apparatus includes a substrate, a display unit disposed on the substrate, an insulating layer disposed on the substrate, a power supply wire disposed on the insulating layer outside the display unit, and a cladding layer. The display unit includes a pixel circuit and a display element electrically connected to the pixel circuit. The insulating layer extends from the display unit to an edge of the substrate. The power supply wire is electrically connected to the display element and includes an alignment pattern that exposes at least a portion of the insulating layer. The cladding layer covers an inner surface of the alignment pattern and contacts the at least a portion of the insulating layer.
US11335760B2 Display panel having portion of encapsulation layer located in hollow region that is direct contact with first inorganic layer, manufacturing method thereof, and display device having the same
Display panel, manufacturing method thereof, and display device are provided. As an example, the display panel includes a substrate, a TFT layer formed on the substrate, and an encapsulation layer formed on the TFT layer. The TFT layer includes a thin film transistor with a source electrode, a drain electrode and a gate electrode, and further includes a first metal layer, a first inorganic layer on the first metal layer, and a second metal layer on the first inorganic layer. The second metal layer includes a first region and a second region, a hollowed-out region is formed between the first region and the second region, and the first region and the second region are electrically connected via the first metal layer. A portion of the encapsulation layer that is located in the hollowed-out region is in contact with the first inorganic layer.
US11335756B2 OLED display device and manufacturing method of TFT array substrate
An OLED display device including an OLED pixel driving circuit is provided. A driving thin film transistor in the OLED pixel driving circuit is configured as a double gate oxide thin film transistor, and a switch thin film transistor is configured as a top gate self-aligned oxide thin film transistor. A manufacturing method of a TFT array substrate is also provided, and the TFT array substrate is used for preparing the OLED display device.
US11335755B2 Display apparatus and method of manufacturing the same
A display apparatus includes a pixel electrode and a opposite electrode facing each other; a thin-film transistor connected to the pixel electrode; a contact electrode connected to the opposite electrode and spaced apart from the pixel electrode; an auxiliary electrode connected to the contact electrode and spaced apart from the thin-film transistor; an intermediate layer with which light is emitted, the intermediate layer including: an emission layer, and a first functional layer corresponding to the pixel electrode and the contact electrode, the first functional layer defining an opening portion at which the contact electrode is exposed; and a multi-insulating layer between the thin-film transistor and the pixel electrode, between the auxiliary electrode and the contact electrode, and defining a contact opening at which the auxiliary electrode is connected to the contact electrode, the contact opening corresponding to the opening portion of the intermediate layer.
US11335754B2 Display panel and display device including camera area with light transmission hole
A display panel and a display device thereof are provided. Pixel units of camera areas are removed to form a light transmission hole, and after that, the camera component is disposed below the display panel of the camera area. External light can be incident on the camera component directly, so purpose of photographing is achieved, and the screen-to-body ratio is further increased.
US11335753B2 Display panel and display device having discontinuous organic light-emitting layer
A display panel and a display device are disclosed. The display panel includes an array substrate, an organic light-emitting layer, a thin-film encapsulation layer, and a polarizing film. The array substrate includes at least two inorganic layers disposed on an underlay substrate. In a transparent display region, at least two inorganic layers include at least one first hole. The organic light-emitting layer has faults in a position of the first hole. A transparent sealant is used to cover edges of the faults of the organic light-emitting layer.
US11335752B2 Organic-EL display device with alternately lined source drain electrodes and manufacturing method thereof
This organic-EL display apparatus comprises: a substrate with a drive circuit comprising a thin-film transistor (TFT), a planarizing layer to cover the drive circuit, and an organic light-emitting element formed upon the surface of the planarizing layer facing the opposite direction from the drive circuit. The surface of the planarizing layer has an arithmetic average roughness of 50 nm or less. The TFT comprises a drain electrode, a source electrode, and a semiconductor layer that includes regions to be a channel of TFT and partially overlaps with the source and drain electrodes. Respective parts of a first conductor layer forming the drain electrode and a second conductor layer forming the source electrode are arranged in an alternating manner along a prescribed direction, and the region to be the channel is sandwiched between the part of the first conductor layer and the part of the second conductor layer.
US11335751B2 Display device
A display device includes: a substrate; a data line disposed on the substrate; an another data line disposed on the substrate and adjacent to the data line; a first light emitting diode including a first electrode; and a second light emitting diode including an another first electrode, wherein the first electrode partially overlaps the data line and the another first electrode partially overlaps the another data line.
US11335750B2 Organic light emitting diode (OLED) display panel and OLED display device
The present invention provides an organic light-emitting diode (OLED) display panel and an OLED display device. The OLED display panel comprises a light transmission area and a display area surrounding a periphery of the light transmission area; a concave groove is disposed in the OLED display panel corresponding to the light transmission area, and the concave groove penetrates through at least an encapsulation layer, a light emitting function layer and a part of a thin film transistor (TFT) structure layer; and at least a part of a touch function layer extends from the display area toward the concave groove and covers the concave groove.
US11335748B2 Transparent OLED substrate, display panel and OLED substrate
The present disclosure provides a transparent OLED substrate, a display panel, and an OLED substrate. The transparent OLED substrate includes: a base substrate; a first electrode layer formed over the base substrate; a pixel defining layer formed over the first electrode layer, the pixel defining layer including a plurality of pixel defining holes penetrating the pixel defining layer to the first electrode layer, and an exposed area of the first electrode layer is equal to an area of the pixel defining hole; a light emitting layer formed over the pixel defining layer and including organic light emitting blocks; a second electrode layer formed over the light emitting layer; wherein each of the pixel defining holes corresponds to a plurality of the organic light emitting blocks.
US11335745B2 Display panel comprising blocking structure disposed between display region and bending region
The present invention provides a display panel, and the display panel includes an array substrate, a drain metal layer disposed on the array substrate, a flat layer disposed on the drain metal layer, and a pixel defining layer and light-emitting device layer disposed on the flat layer. The pixel defining layer includes a first pixel defining layer located in a display region of the display panel, and a second pixel defining layer located in an edge region of a side portion of the display region. A packaging layer is disposed on the first pixel defining layer, and a blocking structure is disposed on the second pixel defining layer.
US11335739B2 Display panel and display device
The present disclosure provides a display panel and a display device, comprising: a flexible base substrate comprising a first flexible substrate, a second flexible substrate, and metal signal lines located between the first flexible substrate and the second flexible substrate; a display unit disposed on the flexible base substrate; a touch unit disposed on a light-exiting side of the display unit and covering the display unit; and a processing chip connected to the flexible base substrate for receiving and feeding back signals from the display unit and/or the touch unit. The metal signal lines are electrically connected to the processing chip and the touch unit transmits a touch signal to the metal signal lines through a conductive adhesive. By transmitting the touch signal to the processing chip through the conductive adhesive, the touch unit and the display unit can share one processing chip.
US11335734B2 Organic light emitting diode display device
An organic light emitting diode display device includes a substrate, first and second active patterns, and first and second sub-pixel structures. The substrate has a first sub-pixel circuit region including a first driving transistor region and a second sub-pixel circuit region including a second driving transistor region. The first active pattern is disposed in the first sub-pixel circuit region and has a first bent portion in the first driving transistor region. The second active pattern is disposed in the second sub-pixel circuit region and has a second bent portion in the second driving transistor region. In a direction in a plan surface, the first active pattern has a first recess formed by the first bent portion, and the second active pattern has a second recess formed by the second bent portion. An area of the second recess is less than that of the first recess.
US11335731B1 3D semiconductor device and structure with transistors
A semiconductor device, the device comprising: a plurality of transistors, wherein at least one of said plurality of transistors comprises a first single crystal source, channel, and drain, wherein at least one of said plurality of transistors comprises a second single crystal source, channel, and drain, wherein said second single crystal source, channel, and drain is disposed above said first single crystal source, channel, and drain, wherein at least one of said plurality of transistors comprises a third single crystal source, channel, and drain, wherein said third single crystal source, channel, and drain is disposed above said second single crystal source, channel, and drain, wherein at least one of said plurality of transistors comprises a fourth single crystal source, channel, and drain, and wherein said first single crystal channel is self-aligned to said second single crystal channel being processed following the same lithography step.
US11335727B2 Image sensing device
The image sensing device includes a pixel array including a plurality of unit pixels is arranged in rows and columns. Each of the plurality of unit pixels includes a photoelectric conversion element to generate charge carriers by converting light incident upon the photoelectric conversion element, a plurality of floating diffusion regions spaced apart from the photoelectric conversion element to hold the charge carriers, a plurality of circulation gates located at sides of the photoelectric conversion element in each of a first direction and a second direction perpendicular to the first direction, configured to create an electric field in different regions of the photoelectric conversion element based on circulation control signals, and configured to induce movement of the charge carriers, and a plurality of transfer gates located between the circulation gates, and configured to transfer the charge carriers generated by the photoelectric conversion element to a corresponding floating diffusion region.
US11335715B2 Solid-state imaging unit, method of producing the same, and electronic apparatus
The present technology relates to a solid-state imaging unit that makes it possible to increase the number of terminals, a method of producing the same, and an electronic apparatus. A solid-state imaging unit includes: an image sensor substrate including a light receiving region in which pixels that convert incoming light to an electric signal are arranged in a matrix; a solder ball; a glass substrate opposite the image sensor substrate and the solder ball; and a through electrode that couples a wiring line pattern and the solder ball to each other by penetrating a glass adhesive resin interposed between the wiring line pattern and the solder ball. The solder ball is disposed outside the image sensor substrate in a plane direction. The wiring line pattern being formed on the glass substrate. The present disclosure is applicable, for example, to a package and the like including the image sensor substrate.
US11335713B2 Display device
A display device includes a substrate including a display area and a non-display area, a reference voltage supply line disposed in the non-display area and transmitting a reference voltage, and a driving voltage supply line disposed in the non-display area and transmitting a driving voltage. The reference voltage supply line includes a straight line part extending in a first direction and a curved line part extending from the straight line part to be bent, and the curved line part of the reference voltage supply line is disposed along a periphery of the display area.
US11335711B2 Array substrate, manufacturing method thereof, and display panel
An array substrate, a manufacturing method thereof, and display panel are provided. Gate scanning lines and Light-shielding conductive layer are electrically connected, so that a width of the gate scanning line is substantially unchanged from the conventional technology to ensure an aperture ratio of a display panel. Therefore, an impedance of the wire used to transmit the scanning electrical signal is reduced, so that the display panel driving power consumption is reduced to increase the corresponding speed of pixel charging and discharging.
US11335710B2 Thin film transistor, display panel and preparation method thereof, and display apparatus
A thin film transistor, a display panel and a preparation method thereof and a display apparatus are provided. The thin film transistor includes: a substrate; a gate metal located on a side of the substrate; a gate insulating layer located on a side of the gate metal away from the substrate; an active layer located on a side of the gate insulating layer away from the substrate; a first metal oxide and a second metal oxide which are located on a side of the active layer away from the substrate and are arranged on a same layer; and a source metal and a drain metal which are located on sides of the first metal oxide and the second metal oxide away from the substrate and are arranged in a same layer.
US11335708B2 Display device having a plurality of thin film transistors per pixel
A display device capable of improving image quality is provided. A storage node is provided in each pixel and first data can be held in the storage node. Second data is added to the first data by capacitive coupling, which can be supplied to a display element. Thus, the display device can display a corrected image. A reference potential for the capacitive coupling operation is supplied from a power supply line or the like, and thus the first data and the second data can be supplied from a common signal line.
US11335704B2 Low parasitic capacitance RF transistors
Structures and fabrication methods for transistors having low parasitic capacitance, the transistors including an insulating low dielectric constant first or second handle wafer. In one embodiment, a Single Layer Transfer technique is used to position an insulating LDC handle wafer proximate the metal interconnect layers of an SOI transistor/metal layer stack in lieu of the silicon substrate of conventional designs. In another embodiment, a Double Layer Transfer technique is used to replace the silicon substrate of prior art structures with an insulating LDC substrate. In some embodiments, the insulating LDC handle wafer includes at least one air cavity, which reduces the effective dielectric constant of material surrounding an RF FET. An insulating LDC handle wafer reduces insertion loss and non-linearity, increases isolation, provides for more ideal voltage division of stacked transistors, enables a higher Q factor due to lower coupling losses, and otherwise mitigates various parasitic effects.
US11335703B2 Display panel, method for manufacturing the same, and display device
The present disclosure provides a display panel, a method for manufacturing the same, and a display device. The insulation layer is provided above the first conductive electrodes in the bonding area of the display panel, the insulation layer covers the first conductive electrodes, and the insulation layer is capable of being pierced by ACF particles. When the display panel is bound to an FPC by an ACF, second conductive electrodes on the FPC can be electrically coupled to the first conductive electrodes on the display panel through the ACF particles, thereby achieving the bonding connection between the display panel and the FPC, even if a conductive foreign object falls into the area where the first conductive electrodes are located, short circuit cannot be caused, thereby improving the product yield.
US11335700B2 Block-on-block memory array architecture using bi-directional staircases
A memory device stores data in non-volatile memory. The memory device includes a non-volatile memory array. The memory array includes tiers for accessing data stored in blocks of the memory array, including a block having a left block portion and a right block portion. A first staircase is positioned between the left block portion and the right block portion, and a bottom portion of the first staircase includes steps corresponding to first tiers of the left block portion. A second staircase is positioned between the left block portion and the right block portion, and a top portion of the second staircase includes steps corresponding to second tiers of the right block portion. The steps of the first staircase and the steps of the second staircase descend in opposite directions.
US11335699B2 Semiconductor device and method of manufacturing the same
In one embodiment, a semiconductor device includes a substrate, insulating films and first films alternately stacked on the substrate, at least one of the first films including an electrode layer and a charge storage layer provided on a face of the electrode layer via a first insulator, and a semiconductor layer provided on a face of the charge storage layer via a second insulator. The device further includes at least one of a first portion including nitrogen and provided between the first insulator and the charge storage layer with an air gap provided in the first insulator, a second portion including nitrogen, provided between the charge storage layer and the second insulator, and including a portion protruding toward the charge storage layer, and a third portion including nitrogen and provided between the second insulator and the semiconductor layer with an air gap provided in the first insulator.
US11335697B2 Vertical memory devices having contact plugs vertically extending through plurality of gate electrodes and contacting lower circuit pattern
A vertical memory device includes a lower circuit pattern on a substrate, a plurality of gate electrodes spaced apart from another in a first direction substantially perpendicular to an upper surface of the substrate on the lower circuit pattern, a channel extending through the gate electrodes in the first direction, a memory cell block including a first common source line (CSL) extending in a second direction substantially parallel to the upper surface of the substrate, and a first contact plug connected to the lower circuit pattern and the first CSL and overlapping the first CSL in the first direction.
US11335695B2 Integrated circuit device
An integrated circuit device including a substrate having a cell and interconnection region; and a first stacked structure and a second stacked structure on the first stacked structure, each of the first and second stacked structures including insulating layers and word line structures that are alternately stacked one by one on the substrate in the cell region and the interconnection region, wherein, in the interconnection region the first stacked structure includes a first dummy channel hole penetrating through the first stacked structure, the second stacked structure includes a second dummy channel hole communicatively connected to the first dummy channel hole, the second dummy channel hole penetrating through the second stacked structure, respectively, and a first dummy upper width of an uppermost end of the first dummy channel hole is greater than a second dummy upper width of an uppermost end of the second dummy channel hole.
US11335692B2 Non-volatile flash memory device and a manufacturing method thereof
The present disclosure provides a non-volatile flash memory device and a manufacturing method thereof. The non-volatile flash memory device comprises at least a plurality of memory cells in a memory area. The manufacturing method comprises: providing a substrate, and defining the memory area of the non-volatile flash memory device on the substrate; forming a plurality of stack gates of the plurality of memory cells on a substrate corresponding to the memory area, and the top of each stack gate is a memory control gate of the memory cell; etching the memory control gates to reduce the height of the memory control gates with the fluid photoresist filled among the plurality of stack gates of the plurality of memory cells as a mask; and removing the fluid photoresist.
US11335690B2 Multicolor approach to DRAM STI active cut patterning
Apparatuses and methods to provide a patterned substrate are described. A plurality of patterned and spaced first lines and carbon material lines and formed on the substrate surface by selectively depositing and etching films extending in a first direction and films extending in a second direction that crosses the first direction to pattern the underlying structures.
US11335688B1 Semiconductor structures and preparation methods thereof
In a semiconductor structure preparation method, the trench runs through a well region of a first conductivity type and extends to the substrate below the well region. A heavily doped first electrode layer is formed on the sidewall of the trench. The first electrode layer covers the bottom of the trench and extends into the well region. A capacitor dielectric layer is formed on the surface of the first electrode layer and the sidewall of the trench, and a second electrode layer is formed on the surface of the capacitor dielectric layer to fill the trench. A dielectric layer is formed on the sidewall of the through silicon via, and an interconnect structure is formed on the surface of the dielectric layer to fill the through silicon via.
US11335685B2 Semiconductor memory device
Disclosed are semiconductor memory devices and methods of fabricating the same. The semiconductor memory device comprises a first semiconductor pattern that is on a substrate and that includes a first end and a second end that face each other, a first conductive line that is adjacent to a lateral surface of the first semiconductor pattern between the first and second ends and that is perpendicular to a top surface of the substrate, a second conductive line that is in contact with the first end of the first semiconductor pattern, is spaced part from the first conductive line, and is parallel to the top surface of the substrate, and a data storage pattern in contact with the second end of the first semiconductor pattern. The first conductive line has a protrusion that protrudes adjacent to the lateral surface of the first semiconductor pattern.
US11335680B2 Integrated circuits and method of manufacturing the same
An integrated circuit (IC) device includes first and second fin-type semiconductor active regions on a substrate. A plurality of first semiconductor patterns are provided, which are stacked on the first fin-type active region as a first plurality of spaced-apart channel regions of a first FINFET. A plurality of second semiconductor patterns are provided, which are stacked on the second fin-type active region as a second plurality of spaced-apart channel regions of a second FINFET. A first gate structure is provided on the plurality of first semiconductor patterns. This first gate structure includes a first material region, which at least partially fills spaces between the first plurality of spaced-apart channel regions. A second gate structure is also provided on the plurality of second semiconductor patterns. The second gate structure includes second and third material regions, which at least partially fill spaces between the second plurality of spaced-apart channel regions.
US11335674B2 Diode triggered silicon controlled rectifier (SCR) with hybrid diodes
The present disclosure relates to semiconductor structures and, more particularly, to diode triggered Silicon controlled rectifiers and methods of manufacture. The structure includes a diode string comprising a first type of diodes and a second type of diode in bulk technology in series with the diode string of the first type of diodes.
US11335673B2 Integrated circuits having cross-couple constructs and semiconductor devices including integrated circuits
An integrated circuit may include a first active region and a second active region, and the first and second active regions may extend on a substrate in a first horizontal direction in parallel to each other and have different conductivity types from each other. A first gate line may extend in a second horizontal direction crossing the first horizontal direction, and may form a first transistor with the first active region. The first transistor may include a gate to which a first input signal is applied. The first gate line may include a first partial gate line that overlaps the first active region in a perpendicular direction and that has an end on a region between the first and second active regions.
US11335672B2 Semiconductor structure and manufacturing method thereof
A method of manufacturing a semiconductor structure forming a redistribution layer (RDL); forming a conductive pad over the RDL; performing a first electrical test through the conductive pad; bonding a first die over the RDL by a connector; disposing a first underfill material to surround the connector; performing a second electrical test through the conductive pad; disposing a second die over the first die and the conductive pad; and disposing a second underfill material to surround the second die, wherein the conductive pad is at least partially in contact with the second underfill material, and is protruded from the RDL during the first electrical test and the second electrical test.
US11335668B2 Semiconductor package and method of fabricating the same
The present disclosure relates to a semiconductor package and a manufacturing method thereof. The method includes stacking semiconductor chips using a thermo-compression bonding (TCB) method, where defects are minimized for increased reliability. The semiconductor package includes an interface chip including a first test pad, a bump pad provided inside the first test pad, and a first through silicon via (TSV) provided between the first test pad and the bump pad; at least one memory chip, which is stacked on the interface chip and includes a second test pad, a dummy pad provided inside the second test pad, and a second TSV provided between the second test pad and the dummy pad; and an adhesive layer provided between the interface chip and the at least one memory chip. wherein no bump is provided on the first test pad and the second test pad.
US11335667B2 Stacked semiconductor die assemblies with die substrate extensions
Stacked semiconductor die assemblies with die substrate extensions are disclosed herein. In one embodiment, a semiconductor die assembly can include a package substrate, a first die mounted to the package substrate, and a second die mounted to the first die. The first die includes a first die substrate, and the second die includes a second die substrate attached to the first die substrate. At least one of the first and second dies includes a semiconductor substrate and a die substrate extension adjacent the semiconductor substrate. The die substrate extension comprises a mold material that at least partially defines a planform.
US11335665B2 Microelectronic assemblies
Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a package substrate having a first surface and an opposing second surface, and a die secured to the package substrate, wherein the die has a first surface and an opposing second surface, the die has first conductive contacts at the first surface and second conductive contacts at the second surface, and the first conductive contacts are coupled to conductive pathways in the package substrate by first non-solder interconnects.
US11335663B2 Microelectronic assemblies
Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a package substrate having a first surface and an opposing second surface, and a die secured to the package substrate, wherein the die has a first surface and an opposing second surface, the die has first conductive contacts at the first surface and second conductive contacts at the second surface, and the first conductive contacts are coupled to conductive pathways in the package substrate by first non-solder interconnects.
US11335660B2 Semiconductor module
A semiconductor module includes a first semiconductor element and a second semiconductor element each having an upper-surface electrode and a lower-surface electrode, and being connected in parallel to configure an upper arm, a first conductive layer having a U-shape in planar view, having two end portions, and having an upper surface on which the first semiconductor element and the second semiconductor element are disposed in a mirror image arrangement, a positive electrode terminal having a body part and at least two positive electrode ends branched from the body part, and a negative electrode terminal having a negative electrode end disposed between the positive electrode ends. The positive electrode ends are respectively connected to one of the two end portions of the first conductive layer.
US11335659B2 Semiconductor chip with patterned underbump metallization and polymer film
Various semiconductor chip solder bump and underbump metallization (UBM) structures and methods of making the same are disclosed. In one aspect, a method is provided that includes forming a first underbump metallization layer on a semiconductor chip is provided. The first underbump metallization layer has a hub, a first portion extending laterally from the hub, and a spoke connecting the hub to the first portion. A polymer layer is applied to the first underbump metallization layer. The polymer layer includes a first opening in alignment with the hub and a second opening in alignment with the spoke. A portion of the spoke is removed via the second opening to sever the connection between the hub and the first portion.
US11335654B2 Devices and methods for enhancing insertion loss-performance of an antenna switch
Devices and methods for enhancing insertion loss performance of an antenna switch are disclosed. In one example, a semiconductor device formed to serve as an antenna switch is disclosed. The semiconductor device includes: a substrate, a dielectric layer and a polysilicon region. The substrate includes: an intrinsic substrate; a metal-oxide-semiconductor device extending into the intrinsic substrate; and at least one isolation feature extending into and in contact with the intrinsic substrate. The at least one isolation feature is disposed adjacent to the metal-oxide-semiconductor device.
US11335653B2 Terahertz device
The task of the present invention is to achieve gain enhancement.A terahertz device (10) of the present invention includes a terahertz element (20) generating an electromagnetic wave, a dielectric (50) including a dielectric material and surrounding the terahertz element (20), a gas space (92) including a gas, and a reflecting film (82) serving as a reflecting portion. The reflecting film (82) includes a portion opposing the terahertz element (20) through the dielectric (50) and the gas space (92) and reflecting the electromagnetic wave toward a direction, wherein the electromagnetic wave is generated from the terahertz element (20) and transmitted through the dielectric (50) and the gas space (92). In addition, the refractive index of the dielectric (50) is lower than the refractive index of the terahertz element (20) and is higher than the refractive index of the gas in the gas space (92).
US11335649B2 Low impedance multi-conductor layered bus structure with shielding
Various embodiments of laminated planar bus structures that minimize electromagnetic interference (EMI) and parasitic inductance are described. In one embodiment, a laminated planar bus structure may include a plurality of stacked conductive layers and a plurality of stacked insulation layers. The plurality of stacked conductive layers may include positive and negative conductive layers, and conductive ground layers stacked as outer layers as to enclose vertically the positive and the negative conductive layers. In another embodiment, the laminated planar bus structure may include a middle ground layer stacked in between the positive and the negative conductive layers to provide additional reduction in electric field strength. A laminated planar bus structure that is integrated with other power electronics components is also presented.
US11335648B2 Semiconductor chip fabrication and packaging methods thereof
A method for fabricating a semiconductor structure is provided. The method includes forming a semiconductor chip; providing a printed circuit board; and forming an adhesive layer between a connection surface of the semiconductor chip and the printed circuit board to bond the semiconductor chip with the printed circuit board. The semiconductor chip includes a plurality of cutting tracks intersected with each other to enclose an area having corner regions. The connection surface of the semiconductor chip includes a plurality of conductive bumps and a plurality of first openings are formed in each of the corner regions.
US11335646B2 Substrate structure including embedded semiconductor device and method of manufacturing the same
The present disclosure provides a substrate structure. The substrate structure includes an interconnection structure, a dielectric layer on the interconnection structure, an electronic component embedded in the dielectric layer, and a first conductive via penetrating through the dielectric layer and disposed adjacent to the electronic component. The interconnection structure includes a carrier having a first surface and a second surface opposite to the first surface, a first conductive layer disposed on the first surface of the carrier, and a second conductive layer disposed on the second surface of the carrier. The first conductive via and at least one of the first conductive layer and the second conductive layer define a first shielding structure surrounding the electronic component. A method of manufacturing a substrate structure is also disclosed.
US11335645B2 High-frequency module and manufacturing method thereof
A high-frequency module 1 includes: a substrate 2; a first component 4 mounted on an upper surface 2a of the substrate 2; a second component 5 mounted on a lower surface 2b of the substrate 2; an upper sealing resin layer 6 and a lower sealing resin layer 7; a conductor pin 8; and a shield layer 9. The conductor pin 8 includes a terminal portion 8a exposed from a lower surface 7a of the lower sealing resin layer 7 and connected to a ground electrode of an outer substrate, and a shield connection portion 8b exposed from a side surface 7b of the lower sealing resin layer 7 and connected to the shield layer 9. As a result of the terminal portion 8a of the conductor pin 8 being connected to the ground electrode, the shield layer 9 is connected to a ground potential with the shortest distance therebetween.
US11335643B2 Embedded ball land substrate, semiconductor package, and manufacturing methods
A electronic device includes an embedded ball land substrate and a semiconductor die. The embedded ball land substrate includes a top surface, a bottom surface opposite the top surface, and one or more side surfaces adjacent the top surface and the bottom surface. The embedded ball land substrate further includes a mold layer on the bottom surface, contact pads on the top surface, and ball lands embedded in the mold layer and electrically connected to the contact pads. The semiconductor die includes a first surface, a second surface opposite the first surface, one or more side surfaces adjacent the first surface and the second surface, and attachment structures along the second surface. The semiconductor die is operatively coupled to the contact pads via the attachment structures.
US11335642B2 Microelectronic assemblies
Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a first die comprising a first face and a second face; and a second die, the second die comprising a first face and a second face, wherein the second die further comprises a plurality of first conductive contacts at the first face and a plurality of second conductive contacts at the second face, and the second die is between first-level interconnect contacts of the microelectronic assembly and the first die.
US11335639B2 Method of forming stacked trench contacts and structures formed thereby
Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an ILD disposed on a top surface of a metal gate disposed on the substrate.
US11335634B2 Chip package structure and method for forming the same
A method for forming a chip package structure is provided. The method includes providing a wiring substrate. The method includes sequentially forming a nickel-containing layer and a gold-containing layer over the first pad. The method includes forming a conductive protection layer covering the gold-containing layer over the nickel-containing layer. The method includes bonding a chip to the wiring substrate through a conductive bump and a flux layer surrounding the conductive bump. The conductive bump is between the second pad and the chip. The method includes removing the flux layer while the conductive protection layer covers the nickel-containing layer.
US11335633B2 Circuit module and power supply chip module
Provided is a circuit module including a power supply chip module, a load chip module, and a system board. A power supply output terminal group of the power supply chip module is arranged side by side in a row along a side of the power supply chip module board, the power supply input terminal group of a load chip module includes a specific terminal group arranged in a specific row that is a row along a side of the load chip module board, and a wiring width along an arrangement direction of the power supply output terminal group of a wiring pattern in which the power supply output terminal group is connected to the system board is equal to or more than a wiring width W31 along an arrangement direction of the specific terminal group of the wiring pattern in which the specific terminal group is connected to the system board.
US11335624B2 Print head and liquid discharge apparatus
A liquid discharge apparatus includes a print head discharging a liquid and a control circuit controlling an operation of the print head. the print head includes a connector having a first terminal, a second terminal, a third terminal, and a fourth terminal, a first integrated circuit, a circuit substrate on which the connector and the first integrated circuit are provided and which has first wiring, second wiring, third wiring, fourth wiring, fifth wiring, and sixth wiring, and a first wiring substrate, in which the first wiring electrically couples the first terminal and the first integrated circuit to each other, the fifth wiring electrically couples the first terminal and the first integrated circuit to each other, and the sixth wiring electrically couples the first integrated circuit and the first wiring substrate to each other.
US11335623B2 Method of producing heat-dissipating unit
[Purpose] To provide is a method capable of producing a heat-dissipating unit easily and at low cost.[Solution] The method of producing a heat-dissipating unit 12 includes: inserting pins 17 punched out of a second plate member 22 for pins into a plurality of through-holes 16 formed in a first plate member 20 for a substrate. In the first plate member 20, a plurality of substrate forming portions 25 is provided side by side in the longitudinal direction of the first plate member 20. In the second plate member 22, a plurality of pin punch-out portions 26 is provided side by side in the longitudinal direction of the second plate member 22. The method includes: a step A of forming the through-holes 16 in the substrate forming portion 25 of the first plate member 20; a step B of subjecting the pin punch-out portion 26 of the second plate member 22 to a half-punch out process to form half-punched-out pin forming portions 27 protruding from one surface side of the second plate member 22; a step C of forming the pins 17 by punching out the pin forming portions 27 from the second plate member 22 and simultaneously inserting the pins 17 into the through-holes 16 in the first plate member 20; and a step D of forming a substrate by cutting the substrate forming portion 25 with the pins 17 inserted in the through-holes 16 from the first plate member 20.
US11335619B2 Semiconductor device
A semiconductor device, including: a heat sink which has a mounting surface, a heat radiation surface, a side surface and an engagement part, a semiconductor chip which is mounted on the mounting surface of the heat sink, a lead frame which is engaged with the engagement part of the heat sink, and a mold resin which seals the heat sink, the semiconductor chip and the lead frame, wherein the engagement part of the heat sink is disposed at a place which avoids the mounting surface of the heat sink. The engagement part of the heat sink is a dowel formed in the heat radiation surface of the heat sink. Further, the engagement part of the heat sink is a dowel formed in the side surface of the heat sink.
US11335618B2 Thermals for packages with inductors
An apparatus is provided which comprises: one or more pads comprising metal on a first substrate surface, the one or more pads to couple with contacts of an integrated circuit die, one or more substrate layers comprising dielectric material, one or more conductive contacts on a second substrate surface, opposite the first substrate surface, the one or more conductive contacts to couple with contacts of a printed circuit board, one or more inductors on the one or more substrate layers, the one or more inductors coupled with the one or more conductive contacts and the one or more pads, and highly thermally conductive material between the second substrate surface and a printed circuit board surface, the highly thermally conductive material contacting the one or more inductors. Other embodiments are also disclosed and claimed.
US11335616B2 Substrate integrated inductor with composite magnetic resin layer
A semiconductor package may include a composite magnetic inductor that is formed integral with the semiconductor substrate. The composite magnetic inductor may include a composite magnetic resin layer and a plurality of conductive layers arranged such that the composite magnetic resin layer is interleaved between successive conductive layers. The resultant composite magnetic inductor may be disposed between dielectric layers. A core layer may be disposed proximate the composite magnetic inductor. A build-up layer may be disposed proximate the core layer or proximate the composite magnetic inductor in a coreless semiconductor substrate. A semiconductor die may couple to the build-up layer. The composite magnetic inductor beneficially provides a greater inductance than external inductors coupled to the semiconductor package.
US11335615B2 Wafer accommodation container
Described herein are wafer accommodation containers. A wafer accommodation container (1) includes: a container body having one end that is provided with an opening (11) and another end that is provided with a mount element (12) on which wafers are stacked, the mount element (12) facing the opening (11); a cover (20) to cover the opening (11); and a connection mechanism (30) to detachably connect the container body (10) and the cover (20).
US11335611B2 Semiconductor structure and fabrication method thereof
The embodiments relate to a semiconductor structure and a fabrication method thereof. The fabrication method includes: providing a wafer, in the wafer there being provided with a scribe line, in the scribe line there being provided with a test pad, a first test structure, and a second test structure; the second test structure being positioned below the first test structure, and a transverse pitch between the second test structure and the first test structure being at least equal to a width of the test pad; forming a protective layer on the wafer, the protective layer at least covering the scribe line; and performing exposure and development on the protective layer, such that a thickness of the protective layer remained above the first test structure is greater than that of the protective layer remained above the second test structure.
US11335609B2 Micro detector
A micro detector includes a substrate, a fin structure, a floating gate, a sensing gate, a reading gate and an antenna layer. The fin structure is located on the substrate. The floating gate is located on the substrate, and the floating gate is vertically and crossly arranged with the fin structure. The sensing gate is located at one side of the fin structure. The reading gate is located at the other side of the fin structure. The antenna layer is located on the sensing gate and is connected with the sensing gate. An induced charge is generated when the antenna layer is contacted with an external energy source, and the induced charge is stored in the floating gate.
US11335608B2 Electron beam system for inspection and review of 3D devices
An electron beam system for wafer inspection and review of 3D devices provides a depth of focus up to 20 microns. To inspect and review wafer surfaces or sub-micron-below surface defects with low landing energies in hundreds to thousands of electron Volts, a Wien-filter-free beam splitting optics with three magnetic deflectors can be used with an energy-boosting upper Wehnelt electrode to reduce spherical and chromatic aberration coefficients of the objective lens.
US11335607B2 Apparatus and methods for wafer to wafer bonding
A method includes having a first wafer bonding recipe and a model of a wafer bonding process, the model comprising an input indicative of a physical parameter of a first wafer to be bonded to a second wafer and configured to output a wafer bonding recipe based on the physical parameter of the first wafer; obtaining measurements of the first wafer to obtain the physical parameter of the first wafer; generating, by the model, the first wafer bonding recipe based on the physical parameter of the first wafer; and bonding the first wafer to the second wafer in accordance with the first wafer bonding recipe to produce a first post-bond wafer.
US11335606B2 Power rails for stacked semiconductor device
The present disclosure describes a method to form a stacked semiconductor device with power rails. The method includes forming the stacked semiconductor device on a first surface of a substrate. The stacked semiconductor device includes a first fin structure, an isolation structure on the first fin structure, and a second fin structure above the first fin structure and in contact with the isolation structure. The first fin structure includes a first source/drain (S/D) region, and the second fin structure includes a second S/D region. The method also includes etching a second surface of the substrate and a portion of the first S/D region or the second S/D region to form an opening. The second surface is opposite to the first surface. The method further includes forming a dielectric barrier in the opening and forming an S/D contact in the opening.
US11335603B2 Multi-layered insulating film stack
A method for forming a semiconductor device includes: forming a gate structure over a fin, where the fin protrudes above a substrate; forming an opening in the gate structure; forming a first dielectric layer along sidewalls and a bottom of the opening, where the first dielectric layer is non-conformal, where the first dielectric layer has a first thickness proximate to an upper surface of the gate structure distal from the substrate, and has a second thickness proximate to the bottom of the opening, where the first thickness is larger than the second thickness; and forming a second dielectric layer over the first dielectric layer to fill the opening, where the first dielectric layer is formed of a first dielectric material, and the second dielectric layer is formed of a second dielectric material different from the first dielectric material.
US11335600B2 Integration method for finfet with tightly controlled multiple fin heights
A method including forming a fin of a nonplanar device on a substrate, the fin including a second layer between a first layer and a third layer; replacing the second layer with a dielectric material; and forming a gate stack on a channel region of the fin. An apparatus including a first multigate device on a substrate including a fin including a conducting layer on a dielectric layer, a gate stack disposed on the conducting layer in a channel region of the fin, and a source and a drain formed in the fin, and a second multigate device on the substrate including a fin including a first conducting layer and a second conducting layer separated by a dielectric layer, a gate stack disposed the first conducting layer and the second conducting layer in a channel region of the fin, and a source and a drain formed in the fin.
US11335593B2 Interconnect structure of semiconductor device including barrier layer located entirely in via
Implementations of the present disclosure provide methods for preventing contact damage or oxidation after via/trench opening formation. In one example, the method includes forming an opening in a structure on the substrate to expose a portion of a surface of an electrically conductive feature, and bombarding a surface of a mask layer of the structure using energy species formed from a plasma to release reactive species from the mask layer, wherein the released reactive species form a barrier layer on the exposed surface of the electrically conductive feature.
US11335590B2 Methods for forming elongated contact hole ends
Disclosed is a semiconductor processing approach wherein a wafer twist is employed to increase etch rate, at select locations, along a hole or space end arc. By doing so, a finished hole may more closely resemble the shape of the incoming hole end. In some embodiments, a method may include providing an elongated contact hole formed in a semiconductor device, and etching the elongated contact hole while rotating the semiconductor device, wherein the etching is performed by an ion beam delivered at a non-zero angle relative to a plane defined by the semiconductor device. The elongated contact hole may be defined by a set of sidewalls opposite one another, and a first end and a second end connected to the set of sidewalls, wherein etching the elongated contact hole causes the elongated contact hole to change from an oval shape to a rectangular shape.
US11335587B2 Substrate processing apparatus and substrate processing meihod
A substrate processing apparatus includes a substrate holding unit which holds and rotates a substrate in a horizontal orientation, a substrate heating unit which has a heating surface which faces the substrate, held by the substrate holding unit, from below and overlaps with an outermost periphery of the substrate in top view, and heats the substrate in a state of contacting a lower surface of the substrate, a transferring unit which transfers the substrate between the substrate holding unit and the substrate heating unit, and a processing fluid supplying unit which supplies a processing fluid toward the substrate held by the substrate holding unit.
US11335585B2 Vacuum wafer chuck for manufacturing semiconductor devices
Disclosed is a substrate displacing assembly so as to improve its durability during a semiconductor processing. In one embodiment, a semiconductor manufacturing system, includes, a substrate holder, wherein the substrate holder is configured with a plurality of pins; and a substrate displacing assembly for displacing a substrate on the substrate holder in a first direction perpendicular to the top surface of the substrate holder through the plurality of pins, wherein the substrate displacing assembly comprises a pair of load forks, a coupler and a driving shaft, wherein the pair of load forks comprises a fork region and a base region, wherein the coupler is mechanically coupled to the base region through at least one first joining screw extending in the first direction, wherein the coupler is further mechanically coupled to the driving shaft through a second joining screw extending in the first direction.
US11335583B2 Mass transfer method and device for micro light emitting diode chips
The disclosure provides a mass transfer method and device for micro light emitting diode chips. The method includes the following steps: performing magnetic pole electroplating on the micro light emitting diode chips obtained by peeling off the sapphire substrate to enable corresponding magnetic poles to be generated at corresponding positions of the micro light emitting diode chips; peeling off the transfer substrate, and placing the micro light emitting diode chips obtained by peeling off the transfer substrate in a dispersion liquid to form a solution in which micro light emitting diode chips are dispersed; and the display substrate picks up the micro light emitting diode chips dispersed under the action of the magnetic field force.
US11335582B2 Micro LED display substrate and manufacturing method thereof
The present disclosure relates to a method for manufacturing a micro LED display substrate. The method may include forming an array of micro LEDs on an epitaxial wafer; transferring the array of micro LEDs on the epitaxial wafer to an adhesive layer on a surface of a transfer substrate assembly; and transferring the array of micro LEDs on the surface of the transfer substrate assembly onto corresponding pads on a driving substrate respectively.
US11335581B2 System and method for adhering a semiconductive wafer to an electrostatic carrier by adjusting relative permittivity
A mobile electrostatic carrier (MESC) provides a structural platform to temporarily bond a semiconductive wafer and can be used to transport the semiconductive wafer or be used to perform manufacturing processes on the semiconductive wafer. The MESC uses a plurality of electrostatic field generating (EFG) circuits to generate electrostatic fields across the MESC that allow the MESC to bond to compositional impurities within the semiconductive wafer. A dielectric thin film is superimposed across the bonding surface of MESC in order to adjust the relative permittivity between the semiconductive wafer to the MESC. This adjustment in the relative permittivity allows the MESC to further adhere the semiconductive wafer to the MESC.
US11335580B2 Error measurement device of linear stage and error measurement method of linear stage
An error measurement device and an error measurement method are provided. The optical measurement assembly of the error measurement device includes a light source, an optical lens, and a photoelectric sensor. The light beam emitted by the light source is transmitted to a sensing area on the photoelectric sensor to form a first optical path illuminating on a first light-spot position of the sensing area. The moving stage is moved by a linear displacement, so that the light beam is transmitted to the photoelectric sensor to form a second optical path illuminating on a second light-spot position of the sensing area. The processor calculates a movement error of the moving stage and controls the actuator to drive one or more of the light source, the optical lens, and the photoelectric sensor to perform a relative motion, so that the light beam illuminates on the first light-spot position again.
US11335579B2 Method for manufacturing a semiconductor package and method for testing bonding strength of composite specimen
A method for manufacturing a semiconductor package includes the following steps. A semiconductor process is performed to form an encapsulated semiconductor device, wherein the encapsulated semiconductor device comprises an encapsulating material and a semiconductor device encapsulated by the encapsulating material. A testing apparatus including a holder body, a positioning mechanism and a force applying bar is provided. The encapsulated semiconductor device is clamed by the holder body. A clamping position of the encapsulated semiconductor device is adjusted by the positioning mechanism. The positioning mechanism is removed. A predetermined force is applied to a part of the encapsulated semiconductor device exposed by the holder body by the force applying bar. If the encapsulated semiconductor device is failed by the predetermined force, a process parameter of the semiconductor process is modified to form a modified encapsulated semiconductor device.
US11335578B2 Substrate transfer apparatus and method of measuring positional deviation of substrate
A substrate transfer apparatus of the present invention includes: a robot including a hand configured to hold a substrate, and an arm configured to move the hand; a robot control device configured to set a moving path for the hand and control the arm such that the hand moves on the moving path toward a target position; and a camera disposed so as to be able to capture an image of the substrate held by the hand located at a predetermined confirmation position. The robot control device sets the moving path so as to pass through the confirmation position, obtains an image captured by the camera when the hand is located at the confirmation position, calculates a distance between a predetermined environment and the substrate which are taken in the image, and calculates a positional deviation amount from a reference position of the substrate on the basis of the distance.
US11335577B2 Methods and apparatus to prevent interference between processing chambers
Methods and apparatus to minimize electromagnetic interference between adjacent process chambers of a cluster tool are described. The start time of the subject recipe is controlled based on the electromagnetic process window of the subject process chamber, the electromagnetic window of the first adjacent process chamber and of an optional second adjacent process chamber. The start time of the subject process chamber is controlled to prevent temporal overlap of the electromagnetic window of the subject chamber with the electromagnetic window of an adjacent chamber.
US11335576B2 Method for molding substrate storing container, mold, and substrate storing container
There is provided a method for molding a substrate storing container 1 including a container main body molding step of molding a container main body 2 in a state where a direction P2 perpendicular to a plane P1 passing through the entire periphery of an end edge of an opening circumferential portion 28 of the container main body 2 is inclined in a direction forming a predetermined angle a2, with respect to a horizontal direction L1 which is a movement direction of the movable die M1 with respect to the fixed die M2, and a pullout step of pulling the container main body 2 molded in the mold space M0 out from the movable die M1 by moving the movable die M1 so as to retreat from the fixed die M2.
US11335574B2 Light-irradiation type thermal processing method and thermal processing apparatus
From a stage of preheating by a halogen lamp to irradiation with a flash by a flash lamp, a radiation thermometer is used for measuring the temperature of a back surface of a semiconductor wafer. A increased temperature ΔT is determined by which the back surface of the semiconductor wafer is increased in temperature from the preheating temperature by irradiation with a flash. The specific heat of the semiconductor wafer has a known value. Further, the increased temperature ΔT is proportionate to the magnitude of energy applied to a front surface of the semiconductor wafer by irradiation with a flash. Thus, a front surface attained temperature of the semiconductor wafer can be determined using the increased temperature ΔT of the back surface of the semiconductor wafer during irradiation with a flash.
US11335573B2 Dry etching method and β-diketone-filled container
Disclosed is a dry etching method for etching a metal film on a substrate with an etching gas containing a β-diketone and an additive gas, wherein the metal film contains a metal element capable of forming a complex with the β-diketone; and wherein the amount of water contained in the etching gas is 30 mass ppm or less relative to the amount of the β-diketone. It is preferable that the β-diketone used for the dry etching method is supplied from a β-diketone filled container, wherein the β-diketone filled container has a sealed container body filled with a β-diketone whose water content is 15 mass ppm or less relative to the β-diketone. This etching method enables etching of the metal film while suppressing etching rate variations from the initial stage to the later stage of use of the filled container.
US11335569B2 Conductive wire structure and manufacturing method thereof
A method of manufacturing a conductive wire structure including following steps is provided. A conductive layer is formed on a substrate. A rectangular ring spacer is formed on the conductive layer by a self-aligned double patterning process. A patterned photoresist layer is formed. The patterned photoresist layer exposes a first portion and a second portion of the rectangular ring spacer. The first and second portions are located at two corners on a diagonal of the rectangular ring spacer. The first and second portions are removed by using the patterned photoresist layer as a mask to form a first spacer and a second spacer. The first spacer and the second spacer are L-shaped. The patterned photoresist layer is removed. A pattern of the first spacer and a pattern of the second spacer are transferred to the conductive layer to form an L-shaped first conductive wire and an L-shaped second conductive wire.
US11335564B2 Element chip smoothing method and element chip manufacturing method
An element chip smoothing method including: an element chip preparation step of preparing at least one element chip including a first surface covered with a resin film, a second surface opposite the first surface, and a sidewall connecting the first surface to the second surface and having ruggedness; a sidewall cleaning step of exposing the element chip to a first plasma, to remove deposits adhering to the sidewall, with the resin film allowed to continue to exist; a sidewall oxidation step of exposing the element chip to a second plasma, after the sidewall cleaning step, to oxidize a surface of the sidewall, with the resin film allowed to continue to exist; and a sidewall etching step of exposing the element chip to a third plasma, after the sidewall oxidation step, to etch the sidewall, with the resin film allowed to continue to exist.
US11335561B2 Apparatus for laser irradiation and method for laser irradiation
A laser irradiation apparatus includes: a laser module configured to emit a laser beam; a first optical system configured to scan the laser beam emitted from the laser module along a first direction; an optical element configured to refract the laser beam emitted from the first optical system; and a substrate supporter on which a base substrate to which the laser beam refracted through the optical element reaches is arranged.
US11335547B2 Top down analysis of antibodies in mass spectrometry
A separation device separates an unknown intact mAb or reduced mAb subunits of a known mAb class from a sample. An ion source device ionizes the mAb. A mass spectrometer fragments the ionized mAb using an ECD device and mass analyzes resulting product ions using a mass analyzer, producing one or more product ion spectra. Theoretical product ion peaks are calculated for one or more constant portions of the mAb class. The theoretical product ion peaks are removed from the one or more product ion spectra, producing one or more difference product ion spectra. De novo sequencing is applied to the one or more difference product ion spectra, producing one or more candidate sequences for one or more variable portions of the mAb. A genome database is searched for matches to the one or more candidate sequences, producing one or more matched sequences for the one or more variable portions.
US11335545B2 Ambient ionization mass spectrometry imaging platform for direct mapping from bulk tissue
A method of ion imaging is disclosed that includes automatically sampling a plurality of different locations on a sample using a front device which is arranged and adapted to generate aerosol, smoke or vapour from the sample. Mass spectral data and/or ion mobility data corresponding to each location is obtained and the obtained mass spectral data and/or ion mobility data is used to construct, train or improved a sample classification model.
US11335544B2 Plasma processing apparatus
A plasma processing apparatus includes a balun having a first unbalanced terminal, a second unbalanced terminal, a first balanced terminal, and a second balanced terminal, a grounded vacuum container, a first electrode electrically connected to the first balanced terminal, and a second electrode electrically connected to the second balanced terminal. When Rp represents a resistance component between the first balanced terminal and the second balanced terminal when viewing a side of the first electrode and the second electrode from a side of the first balanced terminal and the second balanced terminal, and X represents an inductance between the first unbalanced terminal and the first balanced terminal, 1.5≤X/Rp≤5000 is satisfied.
US11335542B2 Plasma processing apparatus
A plasma processing apparatus includes: a processing container; a stage provided in the processing container and configured to place a substrate on the stage; a gas introduction part provided in an upper portion of the processing container to face the stage and configured to introduce a processing gas into the processing container; and an annular exhaust path which is provided in an upper portion of a side wall of the processing container, and in which an opening toward a center of the processing container is formed at an inner circumferential side of the exhaust path, wherein the stage and the gas introduction part are respectively connected to high-frequency power supplies for generating plasma of the processing gas, wherein the exhaust path is grounded, wherein the plasma processing apparatus further comprises a grounded plasma distribution adjuster covering the opening, and wherein through-holes are formed in the plasma distribution adjuster.