Document | Document Title |
---|---|
US11229151B2 |
Component mounting machine
A component mounting machine including a head unit that has a head main body configured to hold multiple pickup members each capable of picking up a component at a predetermined interval along a predetermined circumference and to be capable of rotating forward and reverse directions; a moving device configured to move the head unit; a lifting and lowering device configured to lift and lower a pickup member; a component supply device configured to be capable of supplying the component to the pickup member; and a control device configured to control those described above. The control device performs a control such that the pickup members pick up the components supplied by the component supply device, and each component is mounted on a board after a completion of the pickup, while performing an operation of rotating the head main body and an operation of moving the head unit together. |
US11229149B2 |
Electronic coupler removal tool
An electronic coupler removal tool (100) that includes a housing (102), a wall (104), a hook member (106), an electronic coupler-receiving portion (108), and an electronic coupler-release mechanism (202), is provided. The housing includes a first surface (102a), a second surface (102b) and a third surface (102c). The wall extends substantially perpendicularly from the first surface. The hook member extends substantially perpendicularly from the wall and is configured to receive a cable portion (308) coupled to an electronic coupler (300). The hook member, the wall, and the first surface define the electronic coupler-receiving portion that is configured to slidably receive the electronic coupler. The electronic coupler release mechanism includes a plunger rod (204) having a first end (210) and a second end (212) and is movable with respect to the housing (102) to engage a locking tab (306) of the electronic coupler at least partially within the electronic coupler-receiving portion. |
US11229143B2 |
Liquid-cooling heat dissipation system capable of regulating water quality
A liquid-cooling heat dissipation system capable of regulating water quality includes a first liquid inlet, a first liquid outlet, a heat exchange unit, a sensation unit, a water quality regulating unit for containing and releasing an agent and a control unit. The heat exchange unit has a heat exchanger, a first pump and a mating opening connected with the water quality regulating unit. The sensation unit detects the pH value of a first working liquid and transmits a sensation signal to the control unit. The control unit compares the sensation signal with a preset pH value range to generate and transmit a comparison result to an external interface, whereby the water quality regulating unit is manually controlled to release the agent or not. Alternatively, according to the comparison result, the control unit automatically controls the water quality regulating unit to release the agent or not. |
US11229136B2 |
Enclosure cover with an antenna
A cover for a sunken enclosure includes a mounting part for mounting it to a sunken enclosure with which it is used such that the cover is movable between a closed position in which it closes an open top of the enclosure and is substantially level with a surface intersected by the open top, and an open position in which it is displaced from the surface and exposes an internal area of the enclosure, and in which the cover includes an antenna for transmitting and receiving radio waves. |
US11229135B2 |
Multiple function chassis mid-channel
An assembly is disclosed that includes a planar surface, a reconfigurable housing disposed on the planar surface, a hinge assembly coupled to the reconfigurable housing, a door coupled to the hinge assembly, the door having a latch that is configured to secure the door in a closed position against the reconfigurable housing and a seal configured to reduce airflow through the reconfigurable housing. |
US11229131B2 |
Enclosures having an anti-fingerprint surface
Embodiments of an enclosure including a substrate having an anti-fingerprint surface are disclosed. The anti-fingerprint surface may include a textured surface, a coated surface or a coated textured surface that exhibits a low fingerprint visibility, when a fingerprint is applied to the anti-fingerprint surface. In one or more embodiments, the enclosure exhibits any one of the following attributes (1) radio, and microwave frequency transparency, as defined by a loss tangent of less than 0.03 and at a frequency range of between 15 MHz to 3.0 GHz; (2) infrared transparency; (3) a fracture toughness of greater than 0.6 MPa·m1/2; (4) a 4-point bend strength of greater than 350 MPa; (5) a Vickers hardness of at least 450 kgf/mm2 and a Vickers median/radial crack initiation threshold of at least 5 kgf; (6) a Young's Modulus in the range from about 50 GPa to about 100 GPa; and (7) a thermal conductivity of less than 2.0 W/m° C. |
US11229126B2 |
System and method for manufacturing flexible laminated circuit boards
The present invention relates to an improved system and method for manufacturing flexible circuit boards (FSBs) using optical alignment and various bonding systems. The invention provides an improved process to connect together the layers of rigid-flex, flexible, and printed circuit boards while maintaining alignment of the layers prior to and possibly after a lamination step. An optical alignment system is provided, a preferred arrangement is enabled as an automated pinless bonding system (PBS), for securely gripping, aligning, transferring, and clamping, bonding and moving a bonded FSB employing a multi-axis orientation. An alternative manual optical alignment and bonding system is provided. |
US11229124B2 |
Method for forming redistribution layer using photo-sintering
The present invention relates to a method for formation of a redistribution layer using photo-sintering and to the redistribution layer formed by the method. The method for forming a redistribution layer using photo-sintering includes printing, on a substrate, a liquid electrode pattern for a redistribution layer; coating a transparent polymer on the substrate and the pattern; photo-sintering the electrode pattern using photonic energy; and evaporating an organic substance contained in the liquid electrode pattern via the photo-sintering to remove the polymer on a top face of the electrode pattern to form a redistribution layer as the sintered electrode pattern. |
US11229118B2 |
Printed circuit board
A printed circuit board, comprising a flexible insulating layer, a rigid insulating layer laminated on a portion of the flexible insulating layer, and a coverlay disposed on an upper surface of the rigid insulating layer, an upper surface of the flexible insulating layer, and a side surface of the rigid insulating layer positioned between the upper surface of the rigid insulating layer and the upper surface of the flexible insulating layer. |
US11229115B2 |
Wiring board and electronic device
In a multilayer wiring board having through holes used in an electronic device, wiring is efficiently performed at high density while preventing crosstalk of differential signals. A wiring board includes: a plurality of pads arranged linearly at a predetermined pitch; a plurality of through holes arranged in parallel along an arrangement direction of the pads; and a wiring pattern connecting the pad to the through hole. Between the through holes connected to the pads which are connected to the ground via the wiring patterns, two through holes through which each of a pair of differential signals constituting a differential signal pair passes are provided such that a direction of a straight line connecting the two through holes is inclined to the arrangement direction of the pads. |
US11229112B2 |
Extreme ultraviolet light generation apparatus, target control method, and electronic device manufacturing method
An extreme ultraviolet light generation apparatus may include a target supply unit configured to output a target; an actuator configured to change a trajectory of the target; an illumination device configured to illuminate the target; a first trajectory sensor configured to detect the trajectory in a first direction; a second trajectory sensor configured to detect the trajectory in a second direction; and a processor configured, when the trajectory of the target is detected by the first trajectory sensor but is not detected by the second trajectory sensor, to perform a first search and determine whether or not to repeat the first search based on a signal intensity of the first trajectory sensor, the first search including changing the trajectory of the target into a third direction by controlling the actuator, and then determining whether or not the second trajectory sensor is capable of detecting the trajectory of the target. |
US11229103B2 |
Supplemental exterior lighting system for recreational vehicles
Exterior lighting systems are provided for towed vehicles, such as towed RVs, which includes a control module for receiving conventional illumination signals from the towing vehicle through a conventional trailer plug, and supplementing those conventional illumination signals with synchronized supplemental LED lighting. That supplemental lighting can include “constant-on” flashing LEDs indicative of operator intentions in the towing vehicle, either at locations adjacent conventional exterior lighting or other locations on the trailer. The control module can also support supplemental exterior illumination of the RV when the towed vehicle is stationary and in use for camping or advertisement. The control module includes a failsafe mode in the event of a fault in the supplemental lighting (so as to maintain conventional exterior lighting capability), diagnostic LED output for troubleshooting, and an automatic reset feature. |
US11229102B2 |
Lighting device
A lighting device includes light emitting element groups (HSB) including a light emitting element group (HS2) that emits light when being applied with a voltage at a light emission reference voltage (VH2), and a light emitting element group (HS12) that emits light when being applied with a light emission reference voltage (VH12) higher than the light emission reference voltage (VH2), the light emitting element groups (HSB) emitting light when being applied with a voltage equal to or higher than a light emission reference voltage (VHa); a semiconductor chip (IC1) including a light emission control unit (HC1) arranged to perform light emission control to cause light emission of a light emitting element group (HS) if a drive voltage (Vk) is higher than the light emission reference voltage (VHa), and to perform light emission stop control to stop the light emission if the drive voltage (Vk) is lower than the same; and a semiconductor chip (IC2) including a light emission control unit (HC2) arranged to perform light emission control to cause light emission of a light emitting element group (HSa) if the drive voltage (Vk) is higher than the light emission reference voltage (VHa), and to perform light emission stop control to turn off the emitting element group (HSa) if the drive voltage (Vk) is lower than the same. |
US11229101B2 |
LED driver and LED lighting system for use with a high frequency electronic ballast
A retrofit LED driver is for connecting to a high frequency ballast and for driving a LED load. A switch arrangement is used to couple the driver output power to the LED load or isolate the output power from the LED load. Voltage regulation is used when the output power is isolated from the LED load, and current regulation is used when the output power is coupled to the LED load. The voltage regulation is used so as to increase an output impedance as seen from the high frequency ballast by introducing an additional impedance of non-LED light source, when the output power coupled to the LED light source is less than a threshold, for example in deep dimming mode or standby mode instructed by the user. In this way, the effective impedance of the lamp is increased, which enables switching noise to be reduced, meanwhile the overall LED output power is not increased, as desired by the user. |
US11229099B2 |
Systems and methods for dimming control related to TRIAC dimmers associated with LED lighting
System and method for controlling one or more light emitting diodes. For example, the system includes: a voltage detector configured to receive a rectified voltage associated with a TRIAC dimmer and generated by a rectifying bridge and generate a first sensing signal representing the rectified voltage; a distortion detector configured to receive the first sensing signal, determine whether the rectified voltage is distorted or not based at least in part on the first sensing signal, and generate a distortion detection signal indicating whether the rectified voltage is distorted or not; and a phase detector configured to receive the first sensing signal and generate a phase detection signal indicating a detected phase range within which the TRIAC dimmer is in a conduction state based at least in part on the first sensing signal. |
US11229095B2 |
Electromagnetic wave food processing system and methods
Embodiments herein include processing systems for food products and related methods. In an embodiment, a food processing system is included with a continuous processing channel divided into a come-up chamber, a main electromagnetic wave (such as microwave) heating chamber, and a cool-down chamber. The continuous processing channel can define at least two separate portions oriented for vertical product movement. In various embodiments, the come-up chamber, the main electromagnetic wave heating chamber, and the cool-down chamber are at least partially filled with liquid. The system can further include a product conveyor mechanism to convey food products to be processed continuously along a conveyance path passing from the come-up chamber through the main electromagnetic wave heating chamber and to the cool-down chamber. The system can further include an electromagnetic wave energy emitting apparatus configured to emit electromagnetic wave energy into the main heating chamber. Other embodiments are also included herein. |
US11229093B2 |
Cooker
A cooker includes a heating chamber configured to accommodate an object to be heated, a heater configured to heat the object to be heated accommodated in the heating chamber, heating controller (14) configured to control the heater for heating, an image capturing unit configured to capture an image inside the heating chamber, and mark detector (28) configured to detect a specific mark from the image captured by the image capturing unit. Heating controller (14) disallows or allows heating by the heater, based on a result of detection by mark detector (28). |
US11229088B2 |
Base station system
A base station system includes a base station device (1), a wireless transmission device (2) and a data transfer device (3), each of which can be installed outdoors. Enclosures (12, 22 and 32) of the devices (1-3) each provide a degree of protection from water and dust ingress necessary for being installed outdoors. The enclosure (12) of the base station device (1) accommodates electronic equipment (11) functioning as a base station. The enclosure (22) of the wireless transmission device (2) accommodates electronic equipment (21) functioning as a radio station to perform wireless transmission with the other device for connecting the base station device (1) to a mobile backhaul network. The enclosure (32) of the data transfer device (3) accommodates electronic equipment (31) functioning as a router or a switch to transfer data packets or data flames between the base station device (1) and the wireless transmission device (2). This eliminates the need for construction of a building/shelter to install the base station system. |
US11229084B2 |
User equipment, a base station, and methods for a physical uplink control channel on one or more serving cells
A method by a user equipment (UE) is described. The method includes receiving by the RRC entity of the UE, a PUCCH release request from a lower layer of the UE, and applying the default physical channel configuration for a scheduling request configuration for a concerned secondary cell, upon receiving the PUCCH release request from the lower layers of the UE. The PUCCH release request is notified by a Medium Access Control (MAC) entity of the UE in a case that a time alignment timer expires, the time alignment timer is associated with a secondary timing advance group (sTAG) and the concerned secondary cell belongs to the sTAG. |
US11229083B1 |
Systems and methods for user equipment-initiated connection release
Embodiments described herein may provide for the return (e.g., reconnection) of a User Equipment (“UE”) to a first radio access network (“RAN”) to which the UE was connected, after the UE has been redirected to a second RAN based on the occurrence of an event. The event may include a voice call placed by or to the UE. The return of the UE to the first RAN may occur based on a request from the UE, such as a request made via Radio Resource Control (“RRC”) messaging. The UE may make the request upon termination of the voice call. The first RAN may queue downlink data for the UE, received from a core network or some other source, based on receiving the request, in order to allow the UE to be instructed to connect to (e.g., be redirected to) the first RAN. |
US11229079B2 |
Information configuration method and terminal
Embodiments of the present application provide an information configuration method and a terminal. The method includes: a terminal receives first configuration information sent by a target base station, the first configuration information comprising at least one secondary node configuration; if the first configuration information comprises one secondary node configuration, after the terminal receives the first configuration information, the secondary node configuration is in an active state; if the first configuration information comprises multiple secondary node configurations, the terminal selects, on the basis of the cell signal measurement signal in an inactive state, one secondary node configuration from the multiple secondary node configurations, and informs the target base station of the selected secondary node configuration so that the secondary node configuration is in an active state. |
US11229076B2 |
Facilitating a geo-distributed dynamic network system for ubiquitous access to multiple private networks
Facilitating geo-distributed dynamic network system for ubiquitous access to multiple private networks in advanced networks (e.g., 4G, 5G, and beyond) is provided herein. Operations of a method can comprise establishing, by a system comprising a processor, a first communication link between a first network device and group of devices connected via a private network connection. The method also can comprise establishing, by the system, a second communication link between the first network device and a second network device. The second network device can be included in a group of network devices associated with a communication network provider. Further, the second network device can facilitate communication with a communication device. |
US11229075B2 |
Techniques and apparatuses for opportunistically operating a dual receive, dual SIM dual standby (DR-DSDS) device as a dual SIM, dual active (DSDA) device
Certain aspects of the present disclosure generally relate to wireless communications. In some aspects, a wireless communications device may determine that the wireless communications device is hardware capable of supporting DSDA operation, where the wireless communications device is a DR-DSDS wireless communications device that is configured for at least one of UL CA or MIMO operation. In some aspects, the wireless communications device may operate as a DSDA wireless communications device based at least in part on determining that the wireless communications device is hardware capable of supporting DSDA operation. Numerous other aspects are provided. |
US11229072B2 |
User equipment capable of attaching to multiple communication networks
A user equipment is configured to be connected to a first cellular communication network and a second cellular communication network. The user equipment comprises: a communication interface configured to transmit a first message to the second communication network, when the user equipment is connected to the first communication network and is triggered to connect additionally to the second communication network, wherein the first message comprises information about the first communication network. |
US11229071B2 |
Wireless communication between a tool and a controller
A communication method is provided for communicating data between a tool and a controller. The method includes establishing communication between the tool and the controller using a first wireless communication protocol. Once wireless communication has been established, the tool and the controller switch to a new wireless communication protocol that is different from the first protocol. Operational settings are then wirelessly communicated by the controller to the tool using the second protocol. |
US11229068B2 |
Information processing apparatus, control method for information processing apparatus, and control method for communication system
A control method for an information processing apparatus includes transmitting, by a first communication unit, information about an access point to which a second communication unit is connected, to a communication apparatus to which the first communication unit is connected. In a case where the information about the access point to which the second communication unit is connected is received, the communication apparatus connects to and communicates with the access point to which the second communication unit is connected by the second wireless communication method. |
US11229059B2 |
Random access method and base station
Embodiments of this application disclose a random access method. A base station determines that a detected first preamble value is a preamble value from a target terminal. The base station calculates a preamble offset and a time offset of the target terminal. The base station generates at least two random access response messages, where at least one of the at least two random access response messages includes a second preamble value and a second timing advance TA value, and at least one of the at least two random access response messages includes a third preamble value and a third TA value. The base station sends the at least two random access response messages to the target terminal. |
US11229058B2 |
Technique for generating and/or managing RNTIs
A wireless device is provided that is configured to determine a Random Access-Radio Network Temporary Identifier, RA-RNTI, for use in a radio network system. The wireless device comprises a first counter configured to be incremented after a predefined period of time and to be re-set when having reached a predefined first number, wherein the first counter counts a first count; a second counter configured to be incremented when the first counter reaches the predefined first number and to be re-set when having reached a predefined second number, wherein the second counter counts a second count; and a third counter configured to be incremented when the second counter reaches the predefined second number and to be re-set when having reached a predefined third number, wherein the third counter counts a third count. The wireless device is configured to determine an RA-RNTI at least based on the second count and the third count. |
US11229050B2 |
Method and apparatus for frame based equipment operation of NR unlicensed
A method and apparatus in a wireless communication system supporting a semi-static shared spectrum channel access is provided. The method and apparatus comprises: receiving system information carried by downlink channels; identifying a duration of idle period, a fixed frame period, a number of observation slots, and an index; determining a first phase based on a first time period between a starting instance of the idle period and an ending instance of the at least one observation slot, a second phase based on a second time period between the ending instance of the at least one observation slot and an ending instance of the idle period, and a third phase based on a third time period between the ending instance of the idle period and an ending instance of the fixed frame period; and identifying the downlink channels as an idle state in the at least one observation slot. |
US11229049B2 |
Method and apparatus for implementing preamble zone selection
A method and apparatus may include receiving configuration signaling from a network node to use a resource pool. The apparatus transmits using contention-based transmission. The method also includes selecting a preamble zone combination from the resource pool. The method may also include transmitting a preamble to the network node using the selected preamble zone combination. A preamble sequence index is used to identify the user equipment. |
US11229047B2 |
Transport block repetition handling for downlink and uplink transmissions
Methods, systems, and devices for wireless communications are described. In some systems, devices may implement transmission repetitions for transport blocks (TBs) to improve reception reliability. To support low latency, TBs may be transmitted in any transmission time interval (TTI) or mini-slot within a subframe or slot. The systems may implement processes to handle these TB repetitions near slot or subframe boundaries. For example, different resources in time for an initial TB transmission may correspond to different numbers of repetitions to avoid crossing defined boundaries. In some cases, TB transmission parameters, numbers of repetitions, or both may be modified based on a repetition window spanning multiple slots or subframes. A base station may transmit a grant indicating the initial resource in time, and a user equipment (UE) may determine the number of transmission repetitions for a TB based on a proximity of the initial resource in time to a defined boundary. |
US11229044B2 |
Uplink transmission method, and terminal device
Provided in an embodiment of the present invention are an uplink transmission method, and a terminal device capable of realizing uplink transmission at existence of multiple scheduling request (SR) configuration information items. The method includes: a terminal device receiving, from a network device, multiple scheduling request (SR) configuration information items, each SR configuration information item comprising a maximum transmission count of a corresponding SR; and the terminal device performing, according to the multiple SR configuration information items, processing of physical uplink control channel (PUCCH) resources corresponding to the multiple SR configuration information items. |
US11229043B2 |
Communication method and terminal device
Disclosed in the embodiments of the present disclosure are a communication method and a terminal device. The method includes determining, by a terminal device according to a first logical channel with to-be-transmitted data and an available uplink resource of the terminal device, whether to trigger a scheduling request (SR). |
US11229041B2 |
Downlink control information (DCI) transmission method, network device, and user equipment
Embodiments of the present invention disclose a downlink control information (DCI) transmission method, a network device, and user equipment. The method includes the following steps: A network device transmits DCI in a first DCI format; when the DCI is used to schedule a physical downlink shared channel (PDSCH) carrying a multicast traffic channel, the network device indicates, by using a first radio network temporary identifier (RNTI), that the DCI is used to schedule the PDSCH carrying the multicast traffic channel, and that first information is indicated in the DCI and second information is not indicated in the DCI; and when the DCI is used to schedule a user equipment-specific (UE-specific) PDSCH, the network device indicates, by using a second RNTI, that the DCI is used to schedule the UE-specific PDSCH, and that the first information is not indicated in the DCI and the second information is indicated in the DCI. |
US11229040B2 |
Method for terminal for carrying out uplink communication in wireless communication system, and terminal using method
Provided are a method for a terminal for carrying out uplink communication in a wireless communication system, and an apparatus using the method. The method receives an uplink communication-related parameter independently configured for each analog beam, and carries out the uplink communication on the basis of the parameter. If the uplink communication is carried out using a particular analog beam, then an uplink communication-related parameter configured on the particular analog beam is applied to the uplink communication. |
US11229032B2 |
Apparatus, system and method for the transmission of data with different QoS attributes
An apparatus, system and method are provided for transmitting data from logical channel queues over a telecommunications link, each of the logical channel queues capable of being associated with quality of service attributes, the method including determining available resources for transmission over the telecommunications link in a frame; selecting one of the logical channel queues based on a first one of the quality of service attributes; packaging data from the selected one of the logical channel queues until one of: a second one of the quality of service attributes for the selected one of the logical channel queues is satisfied, the available resources are used, or the selected one of the logical channel queues is empty; and repeating the selecting step and the packaging step for remaining ones of the logical channel queues. |
US11229028B2 |
Method and system for radio resource allocation
The present technology provides a computer-implemented method and system for performing frequency selective scheduling between a user equipment (UE) and a base station. The UE selects a sub-band within a predetermined system bandwidth based on observed radio conditions. The UE then communicates the selected sub-band to the base station. The base station then selects a LTE resource block having a frequency range falling within the sub-band. The selected resource block is then used for communication between the base station and the UE. The process may be repeated at a frequency related to the channel coherence. |
US11229026B2 |
Carrier switching method, base station, and user equipment
The present invention discloses a carrier switching method, a base station, and user equipment, where the method includes: determining, according to carrier switching capability information of user equipment UE, a carrier switching policy according to which the UE performs carrier switching; and sending carrier switching indication information to the UE, where the carrier switching indication information is used for indicating the carrier switching policy, so that the UE performs carrier switching according to the carrier switching policy. In the carrier switching method, the base station and the user equipment according to embodiments of the present invention, the UE having no carrier aggregation capability is enabled to dynamically perform switching between at least two carriers, so that quality of service of a service of the UE can be improved, user experience can be improved, and system performance can be improved. |
US11229025B2 |
Uplink allocation on unlicensed spectrum
It is provided a method, comprising checking if an option grant for an uplink transmission is received, wherein the option grant comprises, for a subframe, a first allocation option to start the uplink transmission and a second allocation option to start the uplink transmission, wherein the first allocation option is earlier in the subframe than the second allocation option; deciding if the uplink transmission is allowed at the first allocation option; starting the uplink transmission at the first allocation option if the option grant is received and the uplink transmission is allowed at the first allocation option; deciding if the uplink transmission is allowed at the second allocation option; starting the uplink transmission at the second allocation option if the option grant is received, the uplink transmission is not allowed at the first allocation option, and the uplink transmission is allowed at the second allocation option. |
US11229022B2 |
Determination of physical downlink control channel (PDCCH) assignment in power saving mode
A user equipment (UE), a base station, and a method for receiving physical downlink control channels (PDCCHs). The UE includes a receiver and a processor and is configured to receive a configuration for one or more search space sets (SSS) for reception of PDCCHs. The UE is configured to determine a PDCCH reception occasion according to the configuration of the one or more search space sets. The PDCCH reception occasion is prior to an ON duration of a discontinuous reception (DRX) cycle after a second DRX cycle. The UE is also configured to determine an indication to either receive the PDCCHs when the PDCCH reception occasion does not overlap with an extended Active Time of the second DRX cycle or to suspend reception of the PDCCHs when the PDCCH reception occasion overlaps with the extended Active Time of the second DRX cycle. The UE is also configured to receive the PDCCHs at the PDCCH reception according to the determined indication. |
US11229020B2 |
User terminal and radio communication method
To appropriately control CSI reporting in a case where a configuration different from the configurations in the existing LTE systems is employed for communication, a user terminal includes a receiving section that receives information indicating whether to activate or deactivate channel state information reporting, in at least one of first downlink control information indicating UL transmission specifically to the user terminal, second downlink control information indicating the UL transmission to a plurality of user terminals, and MAC control information, and a control section that controls reporting of channel state information, based on the information indicating whether to activate or deactivate the channel state information reporting. |
US11229019B2 |
Wireless communication method, network device and terminal device
A wireless communication method, a network device and a terminal device are provided. The method comprises: transmitting a first control channel in a first period of time, wherein the first control channel carries scheduling information of a first data channel; receiving or transmitting the first data channel in a second period of time according to the scheduling information of the first data channel; transmitting a second control channel in a frequency division multiplexing manner with the first data channel at part time of the second period of time, wherein a data channel scheduled by the second control channel does not include the first data channel, and a starting position of the part time is not earlier than an ending position of the first period of time. |
US11229018B2 |
PUCCH for MTC devices
Methods, systems, and devices are described for wireless communication at a device. A wireless device may be configured with a transmission time interval (TTI) bundling parameter. The device may then identify one or more resources for an uplink (UL) control channel based on the TTI bundling parameter (e.g., using either an implicit or an explicit indication from another wireless node such as a serving cell of a base station) and transmit the UL control channel using the identified resources. The device may also identify a downlink control information (DCI) format based on the TTI bundling parameter. For example, a resource allocation granularity level may be associated with the bundling parameter, and the length of a DCI field may depend on the resource allocation granularity level. |
US11229014B2 |
Methods and apparatuses for transmitting control information
Embodiments of the present disclosure relate to methods and devices for transmitting control information. In example embodiments, a method implemented in a network device is provided. According to the method, a first configuration for transmitting first control information from the first network device to a terminal device is determined based on a first control resource set (CORESET). The first configuration being different from a second configuration for transmitting second control information from a second network device to the terminal device and the second configuration being determined based on a second CORESET. The first control information is transmitted to the terminal device based on the first configuration. |
US11229005B2 |
Method and device for determining paging location or camping location
The embodiments of the present disclosure provide a method and a device for determining paging location or camping location. The method includes: determining information of a first location on which the UE camps or receives a paging message, wherein the information of the first location indicates a location of a bandwidth part (BWP) or a beam; and camping on or receiving the paging message on a corresponding BWP or beam according to the information of the first location. |
US11229004B1 |
System and method of access point name (APN) dynamic mapping
A method of data communication service to a wireless communication device, comprising receiving a first communication session initiation message by a communication gateway from a wireless communication device, wherein the first communication session initiation message provides no access point name (APN) or provides a default APN, based on the first communication session initiation message providing no APN or providing a default APN, sending the first communication session initiation message by the communication gateway to an APN allocation server, parsing the first communication session initiation message by the APN allocation server to determine a destination identity of the first communication session initiation message and to determine an identity of the wireless communication device, looking up a communication policy by the APN allocation server, looking up by the APN allocation server an APN associated with the communication policy, sending the APN by the APN allocation server to the wireless communication device. |
US11229002B2 |
Ranging with a mobile cellular device
Systems and methods for using ranging signals with cellular devices. The ranging signals may utilize ranging slots and resources at least partially allocated by a cellular network. The resources may include frequencies used for uplink or downlink communications between the cellular network and the cellular devices. Alternatively, the resources may include frequencies outside of a spectrum used for communication between the cellular network and the cellular devices. |
US11228995B2 |
Distributed synchronization mechanism
Aspects of the present disclosure provide synchronization techniques for user equipment (UEs) that may be otherwise unable to support sidelink communication a synchronized UE and may have also lost global navigation satellite system (GNSS) and/or Evolved Node Base Stations (eNBs) as a synchronization source. In such instance, the unsynchronized UE may utilize reference signals (RS) from the data packets received from other UEs to track the timing and perform autonomous timing adjustments based thereon for synchronized packet transmission or reception. |
US11228992B2 |
Uplink transmissions without timing synchronization in wireless communication
Aspects of the present disclosure provide methods, apparatuses, and embodiments for transmitting time critical uplink (UL) control information (e.g., beam failure indication, buffer status report, and scheduling request) without first obtaining UL timing synchronization with a network. Therefore, UL communication latency may be reduced by removing the signaling overhead involved in performing a full random access procedure to obtain UL synchronization prior to UL transmission. |
US11228986B2 |
Method for controlling heat generation in electronic device, electronic device and storage medium for the same
An electronic device includes a plurality of antenna modules, a first communication circuit communicating in a first communication scheme via at least one antenna module The electronic device also includes a second communication circuit communicating in a second communication scheme. The electronic device further includes a temperature sensor, a processor and a memory storing instructions. The instructions are configured to, when executed, enable the at least one processor to detect a temperature associated with the antenna module or the first communication circuit while communicating via the first communication circuit, identify a first control step among a plurality of control steps based on an operation type of the electronic device and the at least one temperature detected, and limit at least some operations on at least one of the at least one antenna module or the first communication circuit, corresponding to the identified first control step. |
US11228984B2 |
Signaling of full power uplink MIMO capability
According to some embodiments, a method performed by a wireless device for transmitting on a plurality of antennas comprises signaling, to a network node, a wireless device power transmission capability. The wireless device power transmission capability identifies a power ratio value of a plurality of power ratio values that the wireless device supports for transmission of a physical uplink channel. Each value of the plurality of power ratio values corresponds to a transmission power capability and to a number of antenna ports. A power ratio refers to a ratio relative to a maximum power the wireless device is rated to transmit. The method further comprises transmitting a physical uplink channel using the number of antenna ports with a power scaled at least by the power ratio value. |
US11228981B2 |
Method for transitioning a device controller comprised in an electronic device, and an electronic device
The present invention relates to a method for controlling a device controller of an electronic device comprising a fingerprint sensor to transition from an at least partly active mode to an at least partly in-active mode. The fingerprint sensor itself is used for determining a presence of a finger on the fingerprint sensor, wherein a device controller is maintained in an at least partly active mode if a finger is detected on the fingerprint sensor. The present invention also relates to an electronic device comprising a fingerprint sensor and a device controller. |
US11228980B2 |
Terminal device and method for transmitting uplink data
As uplink data can be transmitted without delay even in a situation where DRX related to battery consumption reduction is being operated, in the same manner as when DRX is not operated, the present invention proposes a terminal device and an uplink data transmission technology, which not only can achieve battery consumption reduction, but also can process, without delay, various low latency services to be newly provided in 5G. |
US11228979B2 |
Method and apparatus for reducing power consumption with wake-up mechanism in mobile communications
Various solutions for reducing power consumption with wake-up mechanism with respect to user equipment and network apparatus in mobile communications are described. An apparatus may receive a configuration to monitor a wake-up indication (WUI) on predetermined occasions. The apparatus may monitor the WUI according to the configuration. The apparatus may determine whether the WUI is received. The apparatus may monitor a physical downlink control channel (PDCCH) in an event that the WUI is received. |
US11228977B2 |
Methods and apparatuses for monitoring a radio link
A base station can enable a terminal in a communication system to monitor a radio link between the terminal and the base station. The base station can transmit a first message to the terminal. The terminal configured to not communicate data with the base station via the radio link during an inactive phase. The first message setting a threshold value for comparison of the threshold value with a duration of the inactive phase. |
US11228976B2 |
Power saving for new radio carrier aggregation
Various solutions for power saving for New Radio (NR) carrier aggregation in mobile communications are described. An apparatus receives, from a wireless network, a trigger signal. The apparatus switches between a first bandwidth part (BWP) and a second BWP of at least two BWPs for a secondary cell (SCell) in response to receiving the trigger signal. No physical downlink control channel (PDCCH) monitoring is configured for the first BWP while PDCCH monitoring is configured for the second BWP. |
US11228973B2 |
Wireless sensing network communication method
A wireless sensing network communication method is disclosed in which, describes a gateway device and backup gateway devices in a wireless sensing network communicate in a subscribe-publish-based scheme. The gateway device subscribes to a device capability event. The gateway device subscribes to a network disconnection event. When network disconnection occurs, the gateway device publishes a network disconnection event. The backup gateway devices receive notification of the network disconnection event and publish device capability events in response. The gateway device selects a backup gateway device as a primary gateway in the wireless sensing network fulfill failover purpose. |
US11228970B2 |
Method for transmitting and receiving signals in proximity network and electronic device thereof
An electronic device is provided for use in a NAN cluster. The electronic device includes Wi-Fi communication circuitry; a memory that stores instructions; and a processor that executes the instructions to, while the electronic device operates as a master of the NAN cluster based on a first master preference, control the Wi-Fi communication circuitry to transmit discovery signals outside of discovery windows (DWs), based on a determination that a state of the processor is switched from a wake-up state to a sleep state, change control information for the NAN cluster, wherein the changed control information for the NAN cluster includes data regarding a second master preference that is distinct from the first master preference, and provide the changed control information to the Wi-Fi communication circuitry. The Wi-Fi communication circuitry, while the processor is switched to the sleep state, transmits the changed control information for the NAN cluster. |
US11228969B2 |
Method for accessing wireless local area network, terminal device, and network device
Provided are a method for accessing a wireless local area network, a terminal device and a network device, which are applied in a fifth-generation (5G) communication system using 5G mobile communication technologies. The method comprises: a terminal device receives first radio resource control (RRC) signaling sent by the network device, the first RRC signaling comprising first information that is determined by the network device and that is used for accessing a wireless local area network by the terminal device; and the terminal device accesses the wireless local area network according to the first information. |
US11228966B2 |
Requesting resource allocation in a wireless backhaul network
Methods, systems, and devices for wireless communication are described. A first wireless node may establish a wireless connection between the first wireless node and a second wireless node in a wireless backhaul communications network. The first wireless node may identify, at the first wireless node, a need for additional resources for wireless communications with a third wireless node. The first wireless node may transmit a request message to the second wireless node indicating that resources are requested at the first wireless node. The first wireless node may receive an indication of one or more available resources from the second wireless node. The first wireless node may select one or more of the available resources for wireless communications with the third wireless node. |
US11228964B2 |
Synchronization signal transmission and reception for radio system
An access node comprises node processor circuitry and a node transmitter. The node processor circuitry is configured to generate plural types of synchronization signal blocks for at least partially interspersed transmission over a radio interface. Each synchronization signal block type comprises a unique combination of differing types of information. The node transmitter circuitry configured to at least partially intersperse transmission of the plural types of synchronization signal blocks over the radio interface to at least one wireless terminal. The wireless terminal comprises a terminal receiver and terminal processor circuitry. The terminal receiver is configured to receive, in at least partially interspersed manner, synchronization signal blocks of differing types over a radio interface from an access node. The terminal processor circuitry is configured determine to which of plural types of synchronization signal blocks a received synchronization signal block belongs. |
US11228963B2 |
Multi-link communication
This disclosure provides systems, methods, and apparatuses for associating a wireless communication device such as a wireless station (STA) of a STA multi-link device (MLD) with an access point (AP) MLD that includes a first AP associated with a first communication link of the AP MLD and includes one or more secondary APs associated with one or more respective secondary communication links of the first AP MLD. The AP MLD transmits a frame including an advertising information element carrying discovery information for the first AP of the AP MLD, including a first portion carrying discovery information for each secondary AP of the one or more secondary APs of the AP MLD, and including a second portion carrying common attributes of the one or more secondary APs of the AP MLD. |
US11228959B2 |
Aggregated handover in integrated small cell and WiFi networks
Mechanisms for efficient inter-system or inter-RAT handover for the case when large numbers of devices need to perform a handover within a short time interval or even simultaneously are described. These mechanisms can include an aggregated Handover Procedure. An Aggregated Handover procedure can be enabled by a UE and can be indicated to the network entities by “Aggregated Handover Indication”. The detection of target (H)eNB or WLAN can be triggered by user, GPS location, boarding time, or a travel or eTicket application etc. The UEs requesting Aggregated Handover within a time interval, i.e. Handover Window, can be processed with aggregated messages by the core network entities. |
US11228958B2 |
Techniques for transmission of recommended bit rate queries
Certain aspects of the present disclosure provide techniques transmitting a recommended bit rate query. A method that may be performed by a user equipment (UE) generally includes participating in a voice call with a base station using a channel and a bit rate for the voice call, measuring one or more channel quality metrics for the channel during the voice call, determining whether to transmit a query message to the base station to request a change in the bit rate based, at least in part, on the measured one or more channel quality metrics, at least one of a handover indication received from the base station or a change mode request received from the base station, and a prohibit timer, and taking one or more actions based on the determination. |
US11228950B2 |
Service redirection method and apparatus
A redirection method and apparatus in which a first network device receives a service request from a terminal device, where the request is used to request a service related to a first edge APP; and when the first edge APP is unavailable and a second edge APP is available, redirects the service request to the second edge APP, where the first edge APP and the second APP respectively correspond to a first DNAI and a second DNAI. The first DNAI represents a deployment location of the first edge APP, the second DNAI represents a deployment location of the second edge APP, the deployment locations represented by the first DNAI and the second DNAI meet a preset condition, and the second edge APP is in edge APPs corresponding to the second DNAI, and has a sane service provider and function as the first edge APP. |
US11228947B2 |
Network slice deployment method and related device
A network slice deployment method is provided. Under the method, a network device receives a first request message instructing to deploy a target network slice for providing a target service to the terminal device, from a terminal device. The network device sends a second request message to the management function entity for indicating the target network slice information. The network device receives a second response message indicating that the target network slice has been completely deployed. |
US11228946B2 |
Communication method and device
A communication method and a communication device are provided. The method includes: establishing a scenario and determining a task of the scenario, where a plurality of communication systems exist in the scenario, and the task is completed via at least one communication service; selecting at least one communication system for the task from the plurality of communication systems; and controlling the at least one communication system to transmit the communication service required by the task. |
US11228943B2 |
Signaling transmission method and apparatus, base station, and terminal
Disclosed are a signaling transmission method and apparatus, base station and terminal. The signaling transmission method includes: a base station determines a manner for a terminal transmitting signaling data on a signaling radio bearer; and the base station transmits instruction information for instructing the terminal whether to transmit the signaling data on the signaling radio bearer in a separate transmitting manner to the terminal. |
US11228942B2 |
Scheduling data traffic in wireless time sensitive networks
Systems and methods for scheduling data traffic in a wireless time sensitive network (TSN). A computer configured to synchronize clocks of all nodes with a common clock in the TSN. Obtain data traffic information for the TSN using a network scheduler to establish routing paths. Determine routing paths using the obtained data traffic information and stored routing information via a memory. Compute a link communication delay for each link of the one or more relay nodes connecting a source node to a destination node of the TSN for each TSN stream using a network scheduler. Determine interfering links for each wireless link using the network scheduler. Determining a scheduling period using the network scheduler. Determine optimal scheduling using an optimal scheduling module. Generate the gate control list for each egress port of the wired node and the wireless transmitter of the TSN, and begin transmission of the data. |
US11228939B2 |
Wireless channel and/or band arbitration
A computer implemented method for managing wireless bands and/or wireless channels comprises receiving information on connected local devices for a plurality of wireless routers, wherein the plurality of wireless routers are using a same wireless band and/or wireless channel, and wherein each connected local device for which information is received utilizes one or more of the plurality of wireless routers for a network connection. The method further comprises calculating, for each of the plurality of wireless routers, a congestion quotient from the received information on the connected local devices, wherein the congestion quotient defines a likelihood of destructive interference at each respective wireless router. The method further comprises determining changes in wireless band and/or wireless channel for one or more wireless routers of the plurality of wireless routers, wherein the changes lower the respective congestion quotients for each of the respective one or more wireless routers. |
US11228935B2 |
Power saving for channel state information reference signal reception
A base station and mobile device (UE) may coordinate transmission of reference signals and reception of corresponding channel state information (CSI) reports. If a periodic reference signal is scheduled for transmission outside the on-duration period of the UE, even if the reference signal corresponds to a periodic CSI report scheduled to be transmitted by the UE during the on-duration period, the base station may not transmit the periodic reference signal, thereby allowing the UE not to prematurely exit a low-power state. The base station may instead transmit an aperiodic reference signal at a specified point in time later than the scheduled transmission of the periodic reference signal. The UE may receive the aperiodic reference signal and either transmit the periodic CSI report or an aperiodic CSI report in response, depending on how close to the start of the on-duration period the transmission of the periodic CSI report is scheduled. |
US11228934B2 |
Method and apparatus for updating list of cells to be measured in reselection of cell in idle mode in next-generation wireless communication system
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. In addition, a method of operating a terminal in a wireless communication system includes: receiving idle-mode measurement configuration from a base station; in response to the terminal entering an idle mode, performing idle-mode measurement, based on the measurement configuration; in response to the terminal entering a connected mode, producing a measurement result, based on the result of performing the measurement; and reporting the measurement result to the base station, wherein another measurement result for a carrier frequency, which does not support subcarrier spacing (SCS) supported by the terminal, among the carrier frequencies included a carrier frequency list included in the measurement configuration is not reported. |
US11228932B2 |
Radio link monitoring without always-on reference signals
Methods, systems, and devices for wireless communication are described. A discontinuous reception (DRX) periodicity may be configured to enable monitoring of a reference signal (RS) for RLM procedures. For example, a transmitting device may configure a DRX periodicity for an RS, where the configured DRX periodicity may include a periodicity of discrete transmissions of the RS or a periodicity of a transmission window in which the RS is located. Accordingly, a receiving device may identify the DRX periodicity and monitor radio link quality using the RS based on the DRX periodicity. In some examples, the RS may be transmitted independent of control channel transmissions, and the transmitting device may configure one or more control resource sets for the RS. |
US11228931B2 |
On-demand physical layer reporting by a UE
Methods, systems, and devices for wireless communications are described. A first base station may transmit a request for a user equipment (UE) to provide a physical layer report for a second base station. The second base station may be a base station of a dual connectivity configuration, a deactivated base station of the carrier aggregation configuration, or a non-serving base station of the UE. The UE may measure transmissions of the second base station and generate, at the physical layer of the UE, a physical layer report based on the measurements. The UE may transmit the physical layer report to the first base station. |
US11228928B2 |
Test system as well as a method of testing a device under test
A test system for testing a device under test comprises a testing device and a device under test. A beam control channel is established between the device under test and the testing device, via which a respective beam of the device under test to be applied is controlled such that beamforming of the device under test is carried out in the testing device. The testing device applies a transposed combined channel matrix, wherein the transposed combined channel matrix encompasses a transposed beamforming matrix of the device under test, a transposed channel matrix and a transposed beamforming matrix of an entity emulated by the testing device. Further, a method of testing a device under test is described. |
US11228921B2 |
Apparatus and methods for radio frequency signal boosters
Provided herein are apparatus and methods for radio frequency (RF) signal boosters. In certain implementations, a multi-band signal booster is provided for boosting the uplink and downlink channels of at least a first frequency band and a second frequency band. In certain configurations, the downlink channels of the first and second channels are adjacent, and the signal booster includes a first amplification path for boosting the uplink channel of the first frequency band, a second amplification path for boosting the uplink channel of the second frequency band, and a third amplification path for boosting both downlink channels of the first and second frequency bands. |
US11228915B2 |
Distributed SON energy saving management in heterogeneous networks
Embodiments of the present disclosure are directed to a distributed method and system for independent activation and deactivation of small cells. The method and system consider network traffic at multiple nodes instead of only considering the small cell's own traffic, and may be implemented using existing X2 messages. |
US11228910B2 |
Mobile communication device and method of determining security status thereof
A mobile communication device comprising a microphone; a display; a computer storage configured to store an operating system, a messaging application, and one or more other software applications; and a processor configured to execute the messaging application. The messaging application is configured to check for conditions including a status of the operating system and for presence of test-keys; presence of software applications that allow access to the mobile communication device in root mode thereof; and/or an ability to perform operations on behalf of a root user; wherein if the mobile communication device is considered compromised, a visual warning message is displayed on the display. |
US11228906B2 |
Customer communication system
A system for automatic authentication of service requests includes authentication of a remote access device. This authentication may be accomplished automatically prior to text or audio communication between a customer and a service agent. In some embodiments, authentication is accomplished automatically by authentication of the remote access device or accomplished by asking the customer questions. A single authentication of the remote access device may be used to authenticate a service request transferred between service agents. The authentication of the remote device may include, for example, use of a personal identification number, a fingerprint, a photograph, and/or a hardware identifier. |
US11228905B2 |
Security implementation method, related apparatus, and system
A security implementation method, a related apparatus, and a system, where the method includes receiving, by a first network element, a request for handing over a user equipment from a source access network device to a target access network device to perform communication. The method further includes: obtaining, by the first network element, a security key, where the security key is used for protecting the communication between the user equipment and the target access network device after the user equipment is handed over from the source access network device to the target access network device; and sending, by the first network element, the security key to the target access network device. |
US11228902B2 |
Systems and methods for performing carrier aggregation in sidelink communications
Systems and methods for performing carrier aggregation in wireless sidelink communications are disclosed herein. In one embodiment, a method performed by a first node is disclosed. The method comprises: obtaining configuration information related to sidelink data transmission between the first node and at least one second node, wherein the configuration information comprises one or more rules related to carrier aggregation for the sidelink data transmission, wherein the one or more rules comprise information related to a reliability level associated with the sidelink data transmission; and transmitting the sidelink data to the at least one second node on a plurality of carriers based on the configuration information. |
US11228896B2 |
Authorization of roaming for new radio subscribers via an alternative radio access technology
A roaming platform is disclosed herein. The roaming platform may receive, via a first communication protocol, an authentication request associated with a user equipment (UE), wherein the UE is subscribed to communicate via a first radio access technology of a home network, and wherein the authentication request is associated with enabling the UE to communicate via a visitor network that utilizes a second radio access technology. The roaming platform may identify an identifier associated with the UE in the authentication request. The roaming platform may determine, based on the identifier, a serving component of the home network that is configured to serve the UE. The roaming platform may obtain, from the serving component, authentication information associated with the UE, wherein the authentication information is obtained via a second communication protocol. The roaming platform may provide, based on the authentication information, an authentication response to the authentication request. |
US11228895B2 |
Method for determining movement state of UE, UE and computer storage medium
Disclosed are a method for determining the mobility state of user equipment (UE), UE and a computer storage medium. The method comprises: when a UE enters a connected state for a short time, keeping maintaining a movement state evaluation variable, and determining a movement state thereof based on the movement state evaluation variable. |
US11228891B2 |
Systems and methods for emergency medical communications
Described herein are systems, devices, methods, and media for connecting a user for providing emergency response assistance to victims and emergency service providers. In some embodiments, a method for automatically populating an incident report includes the steps of: generating a victim code for display at a first electronic device; receiving an emergency data request comprising the victim code from a second electronic device associated with an emergency service provider (ESP) personnel; gathering emergency data associated with the victim code; transmitting the emergency data associated with the victim code to the second electronic device associated with the ESP personnel; and automatically populating, at the second electronic device associated with the ESP personnel, one or more fields of an incident report using the emergency data associated with the victim code. |
US11228888B2 |
Bluetooth low energy (BLE) pre-check in
One or more Bluetooth® low energy (BLE) beacons in communication with a remote server that provides check in capabilities and payment capabilities may be installed at a location. The BLE beacons may connect with a user's mobile device when the user enters the location and allow the user to check in to the location and authorize payments to be made at the location. Once the user is checked in to the location, the user may be provided with additional functionality, benefits, offers, and applications related to the location and facilitated by the check in. Further, the user may be pre-checked in into a next location when the user is at a current location. |
US11228881B2 |
Method and apparatus for provisioning V2X services
A base station apparatus (130, 220) in a network (410) transmits V2X support information indicating that a V2X service is supported by the network (410). In response to receiving V2X support information, a radio terminal (100, 120) transmits, to the network (410), V2X terminal information indicating that the radio terminal (100, 120) is interested in the V2X service. The network (410) transmits V2X configuration to the radio terminal (100, 120) in response to receiving the V2X terminal information transmitted from the radio terminal (100, 120). The radio terminal (100, 120) receives the V2X configuration and performs V2X communication in accordance with the V2X configuration. It is thus, for example, possible to contribute to achievement of a procedure for performing provisioning for the V2X service on the radio terminal that intends to use the V2X service. |
US11228877B2 |
Electronic net for security during transportation and weaving method therefor
The present invention provides an electronic net for security during transportation, whereas the net body of electronic net is knitted with a braided wire which has a conductive wire inside, or even it is formed by multiple subnets and the conductive wires between subnets are connected in series. Both metal ends of conductive wire of the net body are connected to electronic lock. If the conductive wire in the braided wire is disconnected due to the damage of net body, the electronic lock rapidly detect the error. Even though the disconnected conductive wire is reconnected again, the error record in the electronic lock cannot be eliminated. Therefore, once the goods finish the X-ray security check, it is covered with the electronic net and locked to the bottom plate with fixing belt, and then identify it with the strap before transportation. And the staff needs to check the electronic lock if there is any error signal and observe the identifiers of the straps if they are consistent with the record and damaged or not As above to complete the inspection of the security problems in transportation. The process is simple and reduces the security loopholes caused by negligence. |
US11228876B2 |
Determining which floors that devices are located on in a structure
A device receives sensor data for a group of user equipment (UE) that are located within or on a structure. The device determines, based on a set of measured barometric pressures identified by the sensor data, a set of relative altitudes that identify altitudes of the group of UEs relative to each other. The device determines, based on at least a portion of the sensor data and relative altitude data that identifies the set of relative altitudes, and for each UE of the group of UEs, a floor on which the UE is located. The device causes, based on determining respective floors on which the UEs of the group of UEs are located, a data structure to store a mapping of each UE to the respective floors. The device performs one or more actions based on the mapping. |
US11228873B1 |
Complex computing network for improving establishment and streaming of audio communication among mobile computing devices and for handling dropping or adding of users during an audio conversation on a mobile application
Systems, methods, and computer program products are provided for improving establishment and streaming of audio communication among mobile computing devices and for handling dropping or adding of users during an audio conversation. For example, a method comprises: establishing, on a mobile application, an audio conversation among at least a first user and a second user; streaming the audio conversation to a third user who accesses the mobile application on a mobile device; transmitting to the mobile device for visual display, during the audio conversation, on the user interface of the mobile application on the mobile device, a visual representation of the first user and the second user; determining the second user drops out of the audio conversation; and adding a new user to the audio conversation. |
US11228872B2 |
Interoperability device for interconnecting several communication networks, associated system and method
An interoperability device to interconnect at least two communication networks, each including at least one local server defining and managing at least one local communication group including a plurality of local user equipment, the pluralities of user equipment having no user equipment in common, the interoperability device including s multimedia group management module, configured to: define a global communication group comprising the two local communication groups, generate and distribute an encryption key of the global communication group to the first and to the second local server, and a communication services management module configured to: manage the floor control seizure during each group communication within the global communication group and apply a network policy comprising communication rules defined by configuration. |
US11228869B2 |
Roadway communication system with multicast
Techniques for providing cooperative communication via multicast communications are disclosed. An example apparatus comprises a memory and processing circuitry coupled to the memory. The processing circuitry is configured to generate a multicast group address based, at least in part, on a geographical region of the apparatus, and broadcast the multicast group address to allow cooperative communication enabled devices to join a multicast group corresponding to the multicast group address. The apparatus is also configured to receive requests from the cooperative communication enabled devices to join the multicast group. The apparatus is also configured to transmit messages to the multicast group via multicast communications. |
US11228861B2 |
Emergency alert systems with customized alerts
Aspects discussed herein relate to providing alerts to a community of devices located in or near a geographic area such as a building or property. The alerts override any alert-inhibiting state of the mobile device to deliver audio, visual, and/or haptic alerts in emergency situations. The communication and emergency alert system may be used to communicate with many different communities of people. Moreover, certain individuals may be members of more than one community at the same time, and the communities themselves may change over time based both on the user's preferences and on their physical locations. Users may set their own preferences for how alerts are provided, such as customizing the visual and/or audible notifications provided for an alert. |
US11228859B2 |
Location history access for lost tracking device
In one embodiment, a method includes receiving, by a tracking server, a first tracking signal associated with a tracking device from a computing device. The first tracking signal is associated with a first location. The method includes receiving a second tracking signal associated with the tracking device from a computing device. The second tracking signal is associated with a second location. The method includes determining, based at least in part on the first tracking signal and the second tracking signal that a tracking device status associated with the tracking device has changed. The method includes providing, to a computing device, at least the first location and the second location, wherein the computing device is configured to display at least the first location and the second location via an interactive interface configured to enable a user to trace locations associated with the tracking device. |
US11228857B2 |
Dynamic customization of head related transfer functions for presentation of audio content
A system for dynamically updating a head-related transfer function (HRTF) model that is customized to a user. The system receives one or more images of the user captured by one or more imaging devices. The system determines a pose of the user using the one or more captured images. The pose of the user includes a head-torso orientation of the user. The system updates a HRTF model for the user based on the determined pose including the head-torso orientation. The system generates one or more sound filters using the updated HRTF model and applies the one or more sound filters to audio content to generate spatialized audio content. The system provides the spatialized audio content to the user. |
US11228856B2 |
Method and apparatus for screen related adaptation of a higher-order ambisonics audio signal
A method for generating loudspeaker signals associated with a target screen size is disclosed. The method includes receiving a bit stream containing encoded higher order ambisonics signals, the encoded higher order ambisonics signals describing a sound field associated with a production screen size. The method further includes decoding the encoded higher order ambisonics signals to obtain a first set of decoded higher order ambisonics signals representing dominant components of the sound field and a second set of decoded higher order ambisonics signals representing ambient components of the sound field. The method also includes combining the first set of decoded higher order ambisonics signals and the second set of decoded higher order ambisonics signals to produce a combined set of decoded higher order ambisonics signals. |
US11228847B2 |
Microphone and methods of assembling microphones
A microphone can include a cover having a series of slits and a nest. The nest can be configured to receive a first diaphragm, a second diaphragm, and a PCB in a stacked arrangement, such that the PCB is positioned between the first diaphragm and the second diaphragm. Also, the first diaphragm can define a first plane, the second diaphragm can define a second plane, and the PCB can define a third plane and the first plane, the second plane, and the third plane can extend parallel to one another. The cover can also include slits having a first length and a second length, and the first length can be greater than the second length. The slits can extend both radially and axially. |
US11228846B2 |
Sensor assembly for electronic device
Aspects of the subject technology relate to low noise microphone assemblies for electronic devices. A microphone assembly may include components for sensing sound, mounted on a substrate, under a cover disposed on the substrate. The components may receive sound through an opening in the substrate. The microphone assembly may include an interposer on the substrate. The interposer includes one or more contacts on a surface that is spatially separated from the surface of the substrate, in a direction perpendicular to the surface of the substrate. A first side of the substrate may be mounted to an inner surface of a housing of the electronic device. The components, the cover, and the interposer may be mounted to an opposing second side of the substrate. A flexible printed circuit may be coupled to the contacts on the surface of the interposer, and mechanically attached to a surface of the cover. |
US11228842B2 |
Electronic device and control method thereof
An electronic device is provided, including a display screen; actuators configured to drive the display screen to vibrate; and a controller configured to control at least one of the actuators to operate and drive the display screen to produce a sound through vibration. |
US11228826B2 |
Display apparatus
The present disclosure relates to a display apparatus, especially having a display panel generating sounds. A display apparatus according to the present disclosure includes: a display module; a back cover at a rear surface of the display module; a compartment provided inside the back cover; a fixing element provided inside the compartment; a sound generating unit inserted into the compartment and installed by the fixing element; and an adhesive element attaching an upper surface of the sound generating unit and the rear surface of the display module. |
US11228825B1 |
Sound system
A sound system is shown in the form of a speaker with or without a speaker box. A front member may be used with an elongate open portion with a top end and a bottom end and a speaker support with the speaker mounted to the speaker support. The speaker support may be coupled to the front member with a front of the speaker facing the front member and the front of the speaker substantially aligned with the bottom end of the elongate open portion. The bottom end of the elongate open portion may be positioned adjacent to a lower portion of the back of the torso of a user and the top end of the open portion is positioned higher near the back of the torso of the user. This combination may be used in a backpack, a chair or any other similar device. |
US11228824B1 |
Voice activated device with integrated heatsink and speaker
Systems, methods, and computer-readable media are disclosed for voice activated devices with integrated heatsinks and speakers. In one embodiment, an example device may include a light ring, a first light emitting diode, a heatsink having a first side and a second side, and a speaker assembly coupled to the first side of the heatsink assembly. The heatsink and the speaker assembly together may form a first sealed cavity. The device may include a reflector component coupled to the second side and configured to direct light towards the light ring. The reflector component may optionally include a substantially linear member and a bent member. |
US11228823B2 |
Optical receiver
An optical receiver is disclosed, including an optoelectronic detector, a transimpedance amplification (TIA) circuit, a single-ended-to-differential converter, an I/O interface, and a controller. The optoelectronic detector, having bandwidth lower than required system transmission bandwidth, converts an optical signal into a current signal. The TIA circuit compensate gain for the received current signal based on a received control signal, to obtain a voltage signal, where a frequency response value of the current signal within first bandwidth is greater than that within the bandwidth of the optoelectronic detector, and any frequency in the first bandwidth is not lower than an upper cut-off frequency of the optoelectronic detector. The single-ended-to-differential converter converts the voltage signal into a differential voltage signal. The I/O interface outputs the differential voltage signal. The controller generates the control signal based on the differential voltage signal. The optical receiver disclosed can reduce costs while ensuring signal quality. |
US11228819B1 |
Easy access patch panel
Technology allowing for easy access to connectors in a patch panel. In one of the configurations a patch panel includes at least one patch panel subassembly, each patch panel subassembly including at least one mounting plate and a plurality of port assemblies, the at least one mounting plate being configured to accommodate the port assemblies so that each port assembly can individually translate along a direction parallel to a surface of the mounting plate and can rotate about an axis perpendicular to the surface of the mounting plate. |
US11228818B2 |
Telecommunications panel with patching device installation features
A telecommunications panel has various features for removably mounting patching devices to the panel. The telecommunications panel includes mounting flanges and ramp elements for facilitating mounting and removal of patching devices. The ramp element is associated with a receptacle opening of the panel and configured to contact a flexible latch of the patching device and depress the flexible latch as the patching device is received in the receptacle opening. |
US11228817B2 |
Crowd-sourced program boundaries
Systems, apparatuses, and methods are described for determining boundaries within a content asset. A server may collect user interaction data for one or more content assets. Using the user interaction data, the server may determine commercial breaks or scene changes for the content asset. The server may apply best fit curves to the user interaction data, and determine commercial breaks or scene changes based on the best fit curves. |
US11228815B2 |
Display apparatus and operation method of the same
Provided is an artificial intelligence (AI) system for providing functions similar to the human brain, such as recognition, determination, etc., using a machine learning algorithm, e.g., deep learning, and an application thereof. A method includes establishing communication with a first device located in an available zone, the available zone being a range in which content is viewable; receiving a communication signal from a second device; receiving, from the first device, connection information of the first device and the second device connected to the first device; and identifying whether the second device is located in the available zone based on the communication signal received from the second device and the connection information of the first device and the second device. |
US11228811B2 |
Virtual prop allocation method, server, client, and storage medium
A server may divide a map into a grid comprising a plurality of cells, each of the cells corresponding to different geographic areas represented on the map. The server may determine geographic locations for a plurality of virtual props, respectively. The server may determine cells for the virtual props based on the geographic locations for placement of the virtual props. The server may obtain a current geographic location of a client. The server may identify a cell of the grid corresponding to the current geographic location of the client. The server may determine the identified cell is associated a virtual prop included in the virtual props. The server may allocate in response to the identified cell being associated with the virtual prop, the virtual prop to the client. The client receive prompt information indicative of the virtual prop being allocated to the client. |
US11228810B1 |
System, method, and program product for interactively prompting user decisions
The present disclosure relates to a computer-implemented process for evaluating user activity, user preference, and/or user habit via one or more personal devices and providing precisely timed and situationally targeted content recommendations. It is an object of the present disclosure to provide a technological solution to the long felt need in small scale content recommendation systems caused by the technical problem of generating situationally targeted and user preference targeted content recommendations for users of an interactive electronic system. |
US11228809B2 |
Delivery of different services through different client devices
A system that handles delivery of service(s) through a client device, includes an interactive service provider, a video service provider, and a client device. The interactive service provider inserts at least one of digital watermarks and digital fingerprints in non-programming media content. The video service provider transmits a media stream of the media content that includes programming media content and the non-programming media content. The client device detects at least one of the inserted digital watermarks and the digital fingerprints in the playback duration of the media content and renders overlay graphics on the media content. The client device activates at least one of input devices paired with the client device and the rendered overlay graphics. The client device further receives trigger responses over activated overlay graphics and displays an interactive view to enable delivery of service(s) in response to the trigger responses. |
US11228808B2 |
Delivery of different services through different client devices
A system that handles delivery of a service through a client device or a secondary device paired with the client device, includes an interactive service provider and the client device. The interactive service provider inserts at least one of digital watermarks, fingerprints, and trigger identifiers at event opportunities in media content. The client device detects at least one of the inserted digital watermarks, the digital fingerprints, and the inserted trigger identifiers in the media content. The client device further renders overlay graphics on the media content and activates at least one of input devices in vicinity of the client device or the rendered overlay graphics. The client device receives trigger responses over an activated overlay graphic, via the activated input devices. The client device further displays an interactive view on the client device, to enable delivery of services in response to the received trigger responses. |
US11228805B2 |
Customized commercial metrics and presentation via integrated virtual environment devices
A method of providing customized commercial content to a user includes providing first commercial content to a user, determining, using an integrated virtual environment device, whether the user substantially viewed the first commercial content, and providing second commercial content to the user based on the first commercial content and whether the user substantially viewed the first commercial content. |
US11228801B2 |
Method and apparatus for providing multi-view streaming service
The disclosure relates to a method and apparatus for providing a multi-view streaming service having at least two screens. According to an embodiment, the multi-view streaming service providing apparatus includes a first screen control module, a second screen control module, and a playback control module. The first screen control module supports playback processing of a first MPEG media transport (MMT) streaming data for a first screen. The second screen control module supports playback processing of a second MMT streaming data for a second screen. The playback control module identifies playback time information inserted in each media processing unit (MPU) of the first and second streaming data in response to a request for multi-view streaming playback, and controls the first and second screen control modules to synchronize and play the respective MPUs of the first and second streaming data in accordance with the identified playback time information. |
US11228800B2 |
Video player synchronization for a streaming video system
Systems, devices and processes are provided to facilitate the streaming of video content. In general, the systems, devices and processes facilitate the synchronized streaming of video content to a plurality of video player devices. Specifically, the systems, devices and processes provide for the synchronized streaming of video content to a plurality of video player devices while also providing the ability selectively restrict timing adjustments. For example, the timing adjustments in one or more of the video player devices can be selectively prevented from occurring at certain times to comply with content-based or other such restrictions. As one example, the systems, devices and processes can be used to prevent timing adjustments from being made in one or more video player devices during the displaying of commercials and/or certain live content on the video player devices. |
US11228799B2 |
Methods and systems for content synchronization
Methods and systems are described for content synchronization. A computing device may receive video content and audio content. The computing device may determine an error associated with a video content output time or an audio content output time. |
US11228797B2 |
Electronic apparatus and method of controlling the same
An electronic apparatus is provided. The electronic apparatus includes a signal receiver configured to receive a first wireless signal; a signal transmitter configured to output a second wireless signal; and a processor configured to: identify an external apparatus based on an input key indicated by the first wireless signal as the first wireless signal is repeatedly received through the signal receiver; identify the second wireless signal based on the input key and the external apparatus; and control the signal transmitter to repeatedly output the second wireless signal while the first wireless signal is repeatedly received. Each of the first wireless signal and the second wireless signal alternately comprises a signal section corresponding to the input key and an idle section, and the processor is further configured to control the signal transmitter to output the second wireless signal during the idle section of the first wireless signal. |
US11228796B2 |
Pattern addressing for session-based dash operations
A method of session-based DASH operations can include receiving a media presentation description (MPD) referencing a session-based description (SBD) and indicating a key name during a media access session. The SBD includes a first repeating pattern element that includes a first sequence of timed key values of the key name. The first repeating pattern element indicates that the first sequence of the timed key values of the key name is repeated along a timeline or an orderline. A first key value of the key name corresponding to a timing or a segment number of a current segment of a sequence of segments can be determined based on the first repeating pattern element in the SBD. A request for the current segment can be transmitted to a media content server. The request includes a pair of the key name and the first key value. |
US11228795B1 |
System methodology for building deterministic household objects without third party
In an anonymous matching system, a demand-side service platform (DSP) may select segments to populate a target audience. A data warehouse platform and a multichannel video programming distributor (MVPD) platform ingest address lists, eliminate personally identifiable information (PII) from the address lists, and process the de-identified addresses to generate deterministic unique anonymous household identifiers (UHIDs). Households may be selected, for example, at the DSP's direction, to form a query request without exposing the PII. In response to the query request, the MVPD platform determines a matching UHID and includes a matching household attribute, such as an IP address or the like, in a query response without exposing the PII. |
US11228790B2 |
Providing time slice video
A time slice video providing server includes a video transmission unit configured to transmit, to a user device, any video requested to be played from among multiple videos recorded by multiple cameras; a request unit configured to receive, from the user device, a request to generate a time slice video of a subject shown in the transmitted video; a coordinate extraction unit configured to extract center coordinates of the selected subject based on coordinate information of the subject and positional relationship information of the multiple cameras; a field of view selection unit configured to select a field of views for the multiple videos based on the extracted center coordinates; a field of view correction unit configured to correct each of the selected field of views based on a positional relationship between each of the selected field of views and a video region shown in a corresponding one of the multiple videos; and a time slice video providing unit configured to extract images from the respective multiple videos according to the corrected field of views, generate a time slice video using the extracted images, and provide the generated time slice video to the user device. |
US11228788B2 |
In-loop filter apparatus and method for video coding
The disclosure relates to an in-loop filter apparatus for video coding, which is configured for processing a reconstructed frame corresponding to a current frame for generation of a filtered reconstructed frame, wherein the reconstructed frame comprises a plurality of pixels, each pixel being associated with a pixel value. The in-loop filter apparatus comprises a processing unit configured to: partition the reconstructed frame into a plurality of overlapping and/or non-overlapping 2D pixel blocks; generate for each 2D pixel block a 2D spectrum by applying a 2D transform to the 2D pixel block, wherein the 2D spectrum comprises a plurality of spectral components; generate for each 2D pixel block a filtered 2D spectrum by multiplying each spectral component with a respective gain coefficient, wherein the respective gain coefficient depends on the respective spectral component and/or one or more neighboring spectral components of the respective spectral component and one or more filtering parameters; generate for each 2D pixel block a filtered 2D pixel block by applying an inverse 2D transform to the filtered 2D spectrum; and generate the filtered reconstructed frame on the basis of the plurality of filtered 2D pixel blocks. |
US11228781B2 |
Methods and apparatus for maximizing codec bandwidth in video applications
Methods and apparatus for processing of video content to optimize codec bandwidth. In one embodiment, the method includes capturing panoramic imaging content (e.g., a 360° panorama), mapping the panoramic imaging content into an equi-angular cubemap (EAC) format, and splitting the EAC format into segments for transmission to maximize codec bandwidth. In one exemplary embodiment, the EAC segments are transmitted at a different frame rate than the subsequent display rate of the panoramic imaging content. For example, the mapping and frame rate may be chosen to enable the rendering of 8K, 360-degree content at 24 fps, using commodity encoder hardware and software that nominally supports 4K content at 60 fps. |
US11228778B2 |
Method and device for encoding and decoding image
An image decoding method according to the present invention includes reconstructing a residual block by inverse-quantizing and inverse-transforming an entropy-decoded residual block, generating a prediction block by performing intra prediction on a current block, and reconstructing an picture by adding the reconstructed residual block to the prediction block, wherein generating the prediction block includes generating a final prediction value of a prediction target pixel included in the current block based on a first prediction value of the prediction target pixel and a final correction value calculated by performing an arithmetic right shift on a two's complementary integer representation for an initial correction value of the prediction target pixel by a binary digit of 1. Accordingly, upon image encoding/decoding, computation complexity may be reduced. |
US11228774B1 |
Scalable video coding techniques
Techniques to enable virtual reality content to be delivered using a video codec that operates according to a scalable video encoding standard. Base layer frames for the different views of the virtual reality content are downloaded by a client device. The views are prioritized using a prediction model that assigns priorities based on the likelihood that a corresponding view will be selected within a particular period of time. Enhancement layer frames are then selected and downloaded based on the priorities. |
US11228765B2 |
Image coding apparatus for coding tile boundaries
Circuity for executing operations is provided. The operations obtain pieces of coded data that is included in a bitstream and generated by coding tiles. The pieces of coded data are decoded to generate image data of the tiles. When the pieces of coded data are obtained, tile boundary independence information is further obtained, which indicates whether each of boundaries between the tiles is one of a first boundary and a second boundary. When the pieces of coded data are decoded, image data of a first tile is generated by decoding a first code string included in first coded data with reference to decoding information of an already-decoded tile when the tile boundary independence information indicates the first boundary, and by decoding the first code string without referring to the decoding information of the already-decoded tile when the tile boundary independence information indicates the second boundary. |
US11228761B2 |
Border handling for extended quadtree partitions
A method for video bitstream processing, comprising: determining that a first portion of a data unit of the video bitstream exceeds beyond one or multiple borders of a second portion of the data unit of the video bitstream; and performing at least one of: extended quad tree (EQT) partitioning, flexible tree (FT) partitioning, or generalized triple tree (GTT) partitioning of the first portion of the data unit based on the determination that the first portion exceeds beyond the border. |
US11228760B2 |
Position dependent storage of motion information
Devices, systems and methods for digital video coding, which include geometric partitioning, are described. An exemplary method for video processing includes making a decision, based on a priority rule, regarding an order of insertion of motion candidates into a motion candidate list for a conversion between a current block of video and a bitstream representation of the video, wherein the current block is coded using a geometry partition mode; and performing, based on the decision and the motion candidate list, the conversion. |
US11228758B2 |
Imaging method and device
An imaging method and device, the method comprising: acquiring, at a specified imaging time, a pulse sequence in a time period before the specified imaging time, with regard to each pixel of a plurality of pixels; calculating a pixel value of the pixel according to the pulse sequence; obtaining a display image at the specified imaging time according to a space arrangement of the pixels, in accordance with pixel values of the plurality of pixels at the specified imaging time. |
US11228755B2 |
Method and apparatus for processing intra-prediction-based video signal
According to the present invention, provided is a method of processing a video signal, the method including: obtaining a transform coefficient of a current block from a bitstream according to a predetermined scanning order; determining an intra prediction mode of the current block on the basis of the transform coefficient; and performing intra prediction on the current block using the intra prediction mode and a neighboring sample adjacent to the current block. |
US11228754B2 |
Hybrid graphics and pixel domain architecture for 360 degree video
In a method and apparatus for processing video data, one or more processors are configured to encode a portion of stored video data in a pixel domain to generate pixel domain video data, a first graphics processing unit is configured to process the video data in a graphics domain to generate graphics domain video data, and an interface transmits the graphics domain video data and the pixel domain video data. One or more processors are configured to parse the video data into a graphics stream and an audio-video stream and decode the video data, a sensor senses movement adaptations of a user, and a second graphics processing unit is configured to generate a canvas on a spherical surface with texture information received from the graphics stream, and render a field of view based on the sensed movement adaptations of the user. |
US11228752B2 |
Device and method for displaying three-dimensional (3D) image
A display device may include a panel including a plurality of pixels and an optical layer. The display device may include a processor configured to generate an image of the panel based on a location relationship between the pixels and the optical elements so that a plurality of rays corresponding to the image propagate evenly at a viewing distance. The location relationship is based on an optical parameter of the optical layer. |
US11228751B1 |
Generating an image-based identifier for a stretch wrapped loaded pallet based on images captured in association with application of stretch wrap to the loaded pallet
Methods, apparatus, systems, and computer-readable media are provided that relate to using one or more vision sensors to capture images of a loaded pallet in association with application of stretch wrap to the loaded pallet by an automated pallet wrapping machine. The images are used to generate an image-based identifier for the loaded pallet that is then used for pallet identification by mobile robots and/or other automated agents in a warehouse or other environment. In some implementations, the images are captured by the vision sensor when the pallet is in the wrapping area of the automated pallet wrapping machine and while the vision sensor and/or the pallet are rotating. In some implementations, the image-based identifier may be assigned to pallet attributes and/or a de-palletizing scheme of the loaded pallet. |
US11228749B2 |
Systems, methods and apparatus for compressing video content
Apparatus and methods for characterizing panoramic content, such as by a wide field of view and large image size. In one implementation, a panoramic image may be mapped to a cube or any other projection e.g icosahedron or octahedron. The disclosure exploits content continuity between facets, such as in the case of encoding/decoding cube-projected images. One facet may be encoded/decoded independently from other facets to obtain a seed facet. One or more transformed versions of the seed facet may be obtained; e.g., one corresponding to a 90° counterclockwise rotation, another to a 90° clockwise rotation, and one to an 180° rotation. Transformed versions may be used to form an augmented image. The remaining facets of the cube may be encoded using transformed versions within the augmented image. Continuity between transformed facets in the top row of the augmented image and facets in the middle row of the augmented image may be utilized for motion or intra prediction, and to obtain greater encoding performance compared to encoding facets independently. |
US11228745B2 |
Display apparatus and method of correcting image distortion therefor
A display apparatus including first and second displays or projectors that display first and second images for first and second eyes, respectively; first and second portions facing first and second eyes, respectively, first and second portions having first (F-F′) and second (S-S′) optical axes, respectively; means for tracking positions and orientations of first and second eyes relative to corresponding optical axes, respectively; and processor. The processor or external processor obtains current relative positions and orientations of both eyes; determines first and second transformations for first and second input image frames, respectively, given transformation being applied to correct apparent per-pixel distortions produced when given input image frame is displayed; and applies first and second transformations to generate first and second distortion-corrected image frames, respectively, wherein processor renders first and second distortion-corrected image frames. |
US11228740B2 |
System and method for displaying high quality images in a dual modulation projection system
A novel high efficiency image projection system includes a beam-steering modulator, an amplitude modulator, and a controller. In a particular embodiment the controller generates beam-steering drive values from image data and uses the beam-steering drive values to drive the beam-steering modulator. Additionally, the controller utilizes the beam-steering drive values to generate a lightfield simulation of a lightfield projected onto the amplitude modulator by the beam-steering modulator. The controller utilizes the lightfield simulation to generate amplitude drive values for driving the amplitude modulator in order to project a high quality version of the image described by the image data. |
US11228739B2 |
Garage door communication systems and methods
A security system can include an electronic doorbell comprising a first camera configurable to capture an image of a first zone, a button configurable to enable a visitor to sound an electronic chime, and a first microphone configurable to capture sounds. The security system can also include an electronic garage door controller communicatively coupled to the electronic doorbell, the electronic garage door controller comprising a second camera configurable to capture an image of a second zone, and a second microphone configurable to capture sounds. The security system can also include a remote computing device communicatively coupled to at least one of the electronic doorbell and the electronic garage door controller. The remote computing device can be configurable to display at least one of the image of the first zone and the image of the second zone. |
US11228738B2 |
Head-mountable augmented vision system for displaying thermal images
The invention concerns an augmented vision system (1) comprising: a displaying device (3) comprising: a fixing element (31) for coupling the displaying device (3) to a head-mountable component (90) configured to be positioned in front of a 5 face (102) of a user (100), and a display body (32) being coupled to said fixing element (31) by means of a pivoting link (321, 322, 323) providing a rotation of the display body with respect to the fixing element around a rotational axis (38); the display body (32) comprising 10 a display (33) configured to display thermal data and/or images provided by a thermal sensing device (2); and a first surface portion (325) configured to enter in contact with a forehead of a user, when said head-mountable component (90) is positioned in front of the face of the user, so as to rotate the display 15 body (32) to a predefined angular positioning (381) around the rotational axis (38). |
US11228737B2 |
Output control apparatus, display terminal, remote control system, control method, and non-transitory computer-readable medium
An output control apparatus is communicable with a communication apparatus through a communication network. The communication apparatus includes a first image capturing device configured to capture a subject at a remote site to acquire a first image and a second image capturing device configure to capture a part of the subject to acquire a second image. The output control apparatus includes circuitry to: receive the first image transmitted from the communication apparatus; output the received first image so as to be displayed on a display; receive, from the communication apparatus, the second image acquired by capturing a part of the subject corresponding to a display position of the first image displayed on the display; output the received second image so as to be displayed on the display; and control the display to display the first image and the second image that are output. |
US11228736B2 |
Guardian system in a network to improve situational awareness at an incident
A process for improving situational awareness at an incident scene includes first receiving audio or video of a user and detecting, in one or both of the audio and video, an instruction directed to another user. A compliance metric associated with the instruction is then accessed and one or more available second cameras having a field of view that incorporates a current location of the another user are identified. One or more video streams from the second cameras are received that include the another user. An action of the another user is identified from the video streams and is correlated with the compliance metric to determine a level of compliance of the another user with the instruction. In response to determining, as a function of the correlating, that the level of compliance falls below a threshold level of compliance, a computing device taking a responsive noncompliance action. |
US11228734B2 |
Single casing advanced driver assistance system
The present invention provides a vehicle mountable universal driver assistance device. This device includes a housing unit encasing a common module on which are mounted a first camera module, a second camera module, different from the first camera module, and a ranging module. The common module may be moved along an axis to adjust the viewing angle of the first camera, second camera and ranging module. The device can be mounted on windshield of any vehicle and can be calibrated accordingly. The warning from the warning display device is based on the detection of the misalignment of the common module. |
US11228733B2 |
Surveillance system and associated methods of use
A remote observation or surveillance device for simultaneous 360 degree imaging comprising a housing defining an internal chamber wherein each side wall includes a viewing window, a means for mounting having a slot, configuration of slots, track or combination thereof, a plurality of camera mounting brackets slidably and/or adjustably affixed to the mounting means through the slot or track, each bracket being adjustably affixed to a camera, wherein the cameras are configured to provide simultaneous 360 degree live or recorded imaging. The cameras can be configured to provide any combination of viewing angles and degrees of magnification or zoom. The device may also comprise a processor or server in operable communication with the cameras, which is configured to control the cameras and/or store and archive video, imaging, and/or audio data. |
US11228732B2 |
System for connecting a computer with a video conference endsystem
Embodiments can include a system for connecting a computer with a video conference endsystem. The system can comprise a first device for connecting to a computer; and a second device for connecting to a video conference endsystem. The system can be configured to provide a bidirectional channel between the first device and the second device such that, in use, the first device is connected to a computer and the second device is connected to the video conference endsystem to provide a bidirectional channel between the computer and the video conference endsystem. |
US11228731B1 |
Artificial intelligence communication assistance in audio-visual composition
In embodiments of the present invention improved capabilities are described for artificial intelligence communication assistance for aiding in the audio-visual composition of electronic communications. |
US11228730B2 |
Display system, display method, and display apparatus
A display system includes a conversion apparatus converting video luminance including a luminance value in a first luminance range and a display apparatus connected thereto and displaying the video. The conversion apparatus includes a first acquisition unit, a first luminance converter, a second luminance converter, a quantization converter, and an output unit outputting a third luminance signal to the display apparatus. The display apparatus includes: a second acquisition unit acquiring the third luminance signal and setting information indicating display settings recommended to the display apparatus in display of the video; a display setting unit setting the display apparatus, using the setting information; a third luminance converter converting a third code value indicated by the third luminance signal into a second luminance value compatible with a second luminance range, using the setting information; and a display controller displaying the video on the display apparatus based on the second luminance value. |
US11228725B2 |
Photosensor
A photosensor including: a first electrode; a second electrode; a photoelectric conversion layer between the first electrode and the second electrode; a first charge blocking layer between the first electrode and the photoelectric conversion layer; a second charge blocking layer between the second electrode and the photoelectric conversion layer; a voltage supply circuit supplying a voltage to the second electrode such that an electric field directed from the second electrode toward the first electrode is generated in the photoelectric conversion layer; and a transistor. The first charge blocking layer suppresses movement of holes from the photoelectric conversion layer to the first electrode and movement of electrons from the first electrode to the photoelectric conversion layer, and the second charge blocking layer suppresses movement of electrons from the photoelectric conversion layer to the second electrode and movement of holes from the second electrode to the photoelectric conversion layer. |
US11228724B2 |
Image processing apparatus, image processing method, and computer-readable recording medium for interpolating pixel value of determined defective pixel to be corrected
An image processing apparatus including a processor including hardware, the processor being configured to: detect a defective pixel from among the multiple pixels; calculate a level of a pixel value of the defective pixel; compare the calculated level of the pixel value of the defective pixel with a threshold to determine whether a defective pixel that is stored in a storage is to be corrected, the threshold being determined based on a brightness that is calculated from pixel values close to a defective pixel and on any one of an exposure time of image data corresponding to a defective pixel on which a determination is to be made, a value of gain, and variation in pixel value among pixels surrounding the defective pixel on which a determination is to be made; and interpolate the pixel value of the determined defective pixel that is to be corrected. |
US11228723B2 |
Pixel correction
A method and apparatus for image processing, the method comprising obtaining input image data comprising a plurality of pixel intensity values representing a respective plurality of pixel locations, obtaining pixel location data identifying one or more pixel locations represented by compromised pixel intensity values, generating interpolated image data comprising improved pixel intensity values, storing improved image data comprising at least the interpolated image data, and detecting one or more further compromised pixel intensity values based on the improved image data. |
US11228716B2 |
Vision based boundary setting and calibration of a camera
A camera system includes a camera, a processor, and a memory. In response to a first commissioning signal, the camera system records a first image comprising a token in a first position. In response to a second commissioning signal, the camera system records a second image comprising the token in a second position. In response to a third commissioning signal, the camera system records a third image comprising the token in a third position. The camera system computes a field of interest boundary for a visual field of the camera system based on the first position, the second position, and the third position. |
US11228715B2 |
Video surveillance system and video surveillance method
A video surveillance system includes: a detection unit that detects a predetermined event on the basis of an image captured by a first imaging apparatus; and a control unit that controls a second imaging apparatus such that the second imaging apparatus captures an image of a predetermined position after the detection of the predetermined event. |
US11228714B2 |
Camera module
A camera module includes a movable member, a holder, a fixing frame, a movable frame, and a first support frame. The movable member includes a lens module. The holder is coupled to the movable member and includes a magnet member. The fixing frame is configured to accommodate the holder and includes a coil member configured to face the magnet member. The movable frame is mounted on the holder and includes a pivot portion. The first support frame is configured to surround an upper surface portion of the pivot portion and a second support frame is configured to surround a lower surface portion of the pivot portion. The first support frame and the second support frame are respectively mounted on the fixing frame, and the movable frame is rotatably disposed around the pivot portion. |
US11228709B2 |
Constructing images of users' faces by stitching non-overlapping images
An apparatus includes a support, a first camera, and second camera, and a processor. The support is configured to be mounted to a head of a user. The first camera is mounted on the support and positioned to capture a first image of a face of the user. The second camera is mounted on the support and positioned to capture a second image of the face of the user that is non-overlapping with the first image. The processor is mounted to the support and programmed to stitch the first image and the second image together to construct an image of the face of the user. |
US11228707B1 |
Scene capture for reconstruction of obscured views
An imagery processing system determines alternative pixel color values for pixels of captured imagery where the alternative pixel color values are obtained from alternative sources. A main imagery capture device, such as a camera, captures main imagery such as still images and/or video sequences, of a live action scene. Alternative devices capture imagery of the live action scene, in some spectra and form, and that alternative imagery is processed to provide user-selectable alternatives for pixel ranges from the main imagery. |
US11228705B2 |
Imaging device, imaging system, and imaging method which manage a moving image captured by a lensless imaging device in a state in which the capacity of the moving image is reduced
An imaging device includes a modulator, a first grating pattern constituted by a plurality of lines, and a second grating pattern having a phase deviating from a phase of the first grating pattern, and modulates light intensity. The imaging device receives a first image signal output by the first grating pattern and a second image signal output by the second grating pattern, calculates difference data and a range of a difference between the first image signal and the second image signal, generates and sets a data conversion parameter at a regular interval from the difference data that is continuously input on the basis of the range of the difference and the difference data, generates compression image data by using the difference data and the data conversion parameter, compresses the generated compression image data, and includes information indicating the range of the difference into the compressed data. |
US11228704B2 |
Apparatus and method of image capture
An image capturing apparatus comprises a capture unit (101) for capturing images of a scene. A tracker (103) dynamically determines poses of the capture unit and a pose processor (105) determines a current pose of the capture unit (101) relative to a set of desired capture poses. The pose may include a position and orientation of the capture unit (101). A display controller (107) is coupled to the pose processor (105) and is arranged to control a display to present a current capture pose indication, the current capture pose indication comprising an indication of a position of the current pose of the capture unit (101) relative to the set of desired capture poses in a direction outside an image plane of capture unit (101). In some embodiments, the set of desired capture poses may be adaptively updated in response to data captured for the scene. |
US11228702B1 |
Stabilization of face in video
Placement of a face depicted within a video may be determined. One or more stabilization options for the video may be obtained. Stabilization option(s) may include angle stabilization option, a position stabilization option, and/or a size stabilization option. The video may be stabilized based on the placement of the face and the stabilization option(s). |
US11228701B2 |
Image capturing apparatus
An image capturing apparatus capable of interchanging a lens unit includes a processing unit configured to perform image correction processing based on data acquired by an acquisition unit. In the image capturing apparatus, the acquired data includes information of a first shooting condition, configured in a discrete manner, information of a plurality of second shooting conditions provided for each information of the first shooting condition, and correction information corresponding to a combination of the information of the first shooting condition and the information of the second shooting condition. |
US11228700B2 |
Vehicle vision system camera with adaptive field of view
A vision system for a vehicle includes a camera configured to be disposed at a vehicle so as to have a field of view exterior of the vehicle. The camera includes a wide angle lens providing a field of view of the camera and the camera captures an image data set representative of the field of view of the camera. An image processor may process image data captured by the camera and may process a sub-set of the image data set representative of a sub-portion of the field of view of said camera that is less than the field of view of the camera. A display may display images derived from the sub-set of the image data set representative of the sub-portion of the field of view of the camera. The sub-set of the image data set for processing or display is determined based on steering of the vehicle. |
US11228699B2 |
Systems and methods for determining a minimum resolvable distance of an imaging system
A method of characterizing an imaging system includes generating a plurality of point spread function (“PSF”) samples using the imaging system, each PSF sample representing a response of an imaging system to a point illumination source, each PSF sample comprising one or more pixel values. The method also includes co-registering the pixel values contained in each of the plurality of PSF samples to form an oversampled point spread function (“PSF”) population; resampling the oversampled PSF population to uniform spacing to form a PSF image; slicing the PSF image in an evaluation direction to form a slice of the PSF image; and evaluating the slice to determine a value of a resolution metric of the imaging system that is specific to the evaluation direction. |
US11228695B2 |
Camera enclosures and end effectors
Various embodiments of enclosures for machine-vision cameras are disclosed. The enclosures are designed to fit\hug the camera to be as small as physically possible, and also integrate other features such as better cabling, IP-67 compliance, and end-effectors. Further, the embodiments herein have also integrated a way to mount extra lights as part of the design. The embodiments herein accommodate the specific need of the particular application. The embodiments herein can accommodate numerous shapes and sizes of cameras, including square, cylindrical, or cubical cameras, and encompass either rectangular or round enclosures. |
US11228690B2 |
Image reading apparatus and method of calculating medium inclination in image reading apparatus
An image reading apparatus has: electrodes that come into contact with a medium during transport; charge detection circuits, each of which corresponds to one of the electrodes; a reader, and a controller. The controller executes inclination inference processing for calculating the inclination of the medium with respect to a transport path as an inferred inclination value according to a signal from each charge detection circuit, inclination detection processing for deriving the inclination of the medium with respect to the transport path as a detected inclination value according to the result of reading by the reader, and correction value deriving processing for storing a correction value based on the difference between the detected inclination value and the inferred inclination value in a storage section. In inclination inference processing with the correction value stored in the storage section, the inferred inclination value is calculated in consideration of the correction value. |
US11228687B2 |
Image processing system that computerizes document, control method thereof, and storage medium
Coordinated colors are used to make it easy for a user to grasp with which text block within a preview pane a setting item within a property pane is associated. By using a color allocated to a setting item displayed in the property pane, at least a part of a display field corresponding to the setting item is colored. Then, in a case where a user selects one of text blocks in a scanned image preview-displayed in the preview pane in the state where one of setting items is selected in the property pane, the text block is colored by using a color allocated to the setting item in the selected state. |
US11228683B2 |
Supporting conversations between customers and customer service agents
The present disclosure describes various methods, computer-readable media, and apparatuses for supporting automation of customer service. The automation of customer service may be based on support for automation of conversations between customers and customer service agents. The automation of customer service based on support for automation of conversations between customers and customer service agents may be based on use of images provided by the customers to control the conversations between customers and customer service agents. The support for automation of conversations between customers and customer service agents based on use of images provided by the customers may include processing the images to obtain information for the conversations between the customers and the customer service agents and controlling the conversations between the customers and the customer service agents based on the information for the conversations between the customers and the customer service agents. |
US11228682B2 |
Technologies for incorporating an augmented voice communication into a communication routing configuration
A method for incorporating an augmented voice communication into a communication routing configuration of a contact center system according to an embodiment includes selecting a vocal avatar, wherein the vocal avatar includes phonetic characteristics having first values, receiving a text communication and input user parameters from an input user, generating the augmented voice communication based on the text communication and the input user parameters, wherein the augmented voice communication includes phonetic characteristics having second values, wherein the first values of the phonetic characteristics of the vocal avatar are different from the second values of the phonetic characteristics of the augmented voice communication, and incorporating the augmented voice communication into the communication routing configuration of the contact center system. |
US11228681B1 |
Systems for summarizing contact center calls and methods of using same
A method for creating a textual summary of a call includes transcribing speech to text in real time using a speech-to-text generating unit configured for execution upon one or more data processors, automatically matching, in real-time, text to predetermined intents and extracted entities using an intent recognizing unit for execution upon the one or more data processors, automatically mapping the predetermined intents and extracted entities into a call summary using one or more mapping functions, and displaying the call summary using an agent user interface for execution upon the one or more data processors. A contact center call summarization system may include a contact center communication device, a speech-to-text generating unit, an intent recognizing unit, and an agent user interface. |
US11228679B2 |
Browser and phone integration
A system integrating a web browser and telephone is provided. A user enters, and the web browser receives, an input specifying a request to receive an audio output from the telephone. The web browser generates an audio stream which is communicated to the WebRTC gateway. The WebRTC gateway converts the audio stream from a first format into a second format. The WebRTC gateway communicates the converted audio stream to the SIP gateway, which forwards the audio stream to the telephone switch along with information identifying the telephone number to which the audio stream is directed. The telephone switch communicates the audio stream to the telephone where the audio stream is converted to be played using the speaker of the telephone. |
US11228678B2 |
Systems and methods for providing caller identification over a public switched telephone network
A system and method of providing caller identification (ID) over a public switched telephone network (PSTN). For outbound calls, the system and method enable a caller to provide a caller ID that differs from the native caller ID of their mobile phone. The system and method enable multiple phones tied to a single account to display the same caller ID for outbound calls. For forwarded inbound calls, such as calls being forwarded from an office, the system and method inform the recipient of the identification of the call as well as that the call is being forwarded. The system and method enable the recipient to have calls forwarded from more than one number and identify the identity of the caller as well as the specific number the call is being forwarded from. |
US11228677B1 |
Systems and methods for authenticating a caller
Methods and systems described in this disclosure receive a call from a caller, generate a first session through a first channel associated with the caller when the call is received and then send a request for authentication credentials to a device associated with the caller. In some embodiments, sending the request for authentication credentials generates a second session through a second channel associated with the caller. The caller can be authenticated to the first session using communication received during the second session through the second channel. |
US11228676B1 |
System and method for providing telephone event data
A system and method for providing telephone event data are described. The system comprises a communications module; a processor coupled to the communications module; and a memory coupled to the processor, the memory storing processor-executable instructions which, when executed by the processor, configure the processor to receive, via the communications module and from a telco server, telephone event data; translate at least a portion of the telephone event data into a format compliant with a particular application executing on a computing device; and send, via the communications module and to the computing device executing the particular application, the translated portion of the telephone event data. |
US11228672B2 |
Security system for inmate wireless devices
A layered security suite is disclosed wherein multiple security barriers that prevent the unsanctioned use of a mobile device issued by a controlled-environment facility. The security barriers are implemented along multiple points within the communication path between the mobile device with outside networks, including on the mobile device, on wireless access points that serve data traffic for the mobile device, and a firewall device that monitors all data coming to and from the wireless access points. The barriers on the mobile device prevent the user from performing unsanctioned application and settings changes, including both software and hardware components, while the barrier on the wireless access point detects and prevents unauthorized connections between mobile devices and unsanctioned wireless access points. The firewall device discards packets with unsanctioned internet addresses. The layers work in concert to prevent all manner of tampering with the mobile device by members of the controlled-environment facility. |
US11228670B2 |
Wireless communication device and wireless communication method
A wireless communication device includes: a power storage element configured to store an electric power generated by a power generation element; and a processor configured to: calculate a power storage speed of the power storage element from a temporal change in a voltage of the power storage element; estimate a power generation amount of the power generation element based on a power consumption corresponding to a setting of wireless communication, and the power storage speed; and perform the setting of wireless communication according to the estimated power generation amount. |
US11228669B2 |
Electronic device for controlling application according to folding angle and method thereof
An electronic device includes a foldable housing including a first surface and a second surface opposite to the first surface, a first display arranged on the first surface and configured to be flexible, a second display arranged in at least a partial area of the second surface, and a processor arranged inside the foldable housing. The processor detects that the foldable housing is unfolded to a first angle from a fully folded state, displays a first GUI associated with a first application on at least a partial area of the display, detects that the foldable housing is unfolded to a second angle greater than the first angle, displays a second GUI associated with a second application, and executes the second application when the foldable housing is folded back into the fully folded state. |
US11228668B2 |
Efficient packet processing for express data paths
A first filter specifying handling of one or more network packets received via a network is identified. A first set of access bounds to be used by a network interface card (NIC) to synchronize the one or more network packets received via the network is determined in view of the first filter. The first set of access bounds are provided to a driver of the NIC. |
US11228666B2 |
System providing faster and more efficient data communication
A system designed for increasing network communication speed for users, while lowering network congestion for content owners and ISPs. The system employs network elements including an acceleration server, clients, agents, and peers, where communication requests generated by applications are intercepted by the client on the same machine. The IP address of the server in the communication request is transmitted to the acceleration server, which provides a list of agents to use for this IP address. The communication request is sent to the agents. One or more of the agents respond with a list of peers that have previously seen some or all of the content which is the response to this request (after checking whether this data is still valid). The client then downloads the data from these peers in parts and in parallel, thereby speeding up the Web transfer, releasing congestion from the Web by fetching the information from multiple sources, and relieving traffic from Web servers by offloading the data transfers from them to nearby peers. |
US11228665B2 |
Server, electronic device and data management method
A server for managing data, according to various embodiments, may comprise: communication circuitry for receiving a data request from at least one electronic device; a cache for storing a plurality of update data according to an update time; and a processor for, when the data request is received from the electronic device, searching the cache for update data for a first period starting from a previous data request time to the time of receiving the data request, and transmitting at least one updated data of the first period to the electronic device. |
US11228663B2 |
Controlling content distribution
A computer-implemented method for controlling content distribution includes forwarding information associated with a user to a device operated by the user, the information being configured for use in selecting content from any of multiple content providers for a content distribution to the user. The method includes receiving, in response to the information, an edit of the information forwarded from the device. The edit identifies a first content provider and including a first modification of the content distribution regarding the first content provider. The method includes storing the edit in association with the information such that the first modification is taken into account in the content distribution. The method can be implemented using a computer program product tangibly embodied in a computer-readable storage medium. |
US11228662B2 |
Methods, systems, and apparatus for presenting participant information associated with a media stream
Various embodiments of systems, apparatus, and/or methods are described for selectively obscuring a rendering of a media stream. In one implementation, the method includes receiving a media stream with a receiving device, receiving event data associated with the media stream, generating identification data based at least in part on the event data, presenting the media stream and identification data on a presentation device, receiving at least one participant selection from a user interface device, retrieving participant information based on the at least one participant selection, and presenting the participant information on the presentation device. |
US11228660B2 |
Systems and methods for webpage personalization
A system can include one or more processing modules and one or more non-transitory computer-readable media storing computing instructions configured to run on the one or more processing modules and perform receiving, from an electronic device, a search query from a user of a plurality of users; processing first data; and facilitating displaying a set of items. Processing the first data can comprise determining one or more keywords by capturing the one or more keywords during a time window; creating a feature set of second data associated with at least a portion of the plurality of users; determining a set of items of the item set as being based at least in part on an item vector representation and a keyword vector representation; determining a respective purchase probability associated with each item of the set of items of the item set; ranking the set of items. |
US11228654B2 |
Tracking device, tracking method, and tracking system
A tracking device includes an interface connectable to cameras, each acquiring an image and determining an object location within the image, a distance therefrom, and a time; a memory storing first coordinates indicating a camera location with respect to a reference point in a facility, and a first direction towards which each camera faces; and a processor, upon receipt of the location, the distance, and the time, calculating a second direction from the camera to the object, calculating second coordinates indicating an object location with respect to the camera location, calculating and storing with the time third coordinates indicating an object location with respect to the reference point. When locations calculated from the images acquired by the first and second cameras are associated with the same time, the processor calculates a distance therebetween, and when the distance falls within a predetermined range, recalculates the object location based on the locations. |
US11228651B2 |
Path validation and performance assurance for distributed network endpoints
Techniques for network validation are provided. A first request is received at a first manager component, from a first client. The first client and the first manager component are on a first node of a plurality of nodes, and the first request specifies a desired network service. A first network service endpoint that is capable of providing the desired network service is identified, where the first network service endpoint is on a second node of the plurality of nodes. A connection is established between a first validation agent on the first node and a second validation agent on the second node. Finally, upon determining that the connection between the first and second validation agents satisfies predefined criteria, a connection is established between the first client and the first network service endpoint. |
US11228649B2 |
System for manufacturing molded product and apparatus for taking out molded product
There are provided a molded product manufacturing system that can be easily adapted to IoT and an apparatus for taking out a molded product that can promote adaptation of the molded product manufacturing system to IoT. A molded product manufacturing system includes an injection molding machine, an apparatus for taking out a molded product, and one or more peripheral devices arranged around the apparatus to operate together during operation of the apparatus. The apparatus includes a communication unit operable to transmit internal data to an external server via a communication network. The communication unit of the apparatus transmits external data, which is output from the one or more peripheral devices, to external servers together with information on a die. |
US11228648B2 |
Internet of things (IOT) platform for device configuration management and support
Techniques for management of Internet of Things (IOT) devices are disclosed. IOT devices may be manufactured with a pre-installed software development kit (SDK) (e.g., in firmware or other storage). At initial startup time (e.g., after device placement), IOT devices may execute the firmware code as provided by the SDK to connect to a corporate network or other network-based control environment, such as a cloud-based service provider infrastructure. Once connected, IOT devices may participate in enterprise computing applications as a consumer or provider of information. Updates to IOT devices and their SDKs may be periodically provided. Virtual IOT devices may be used as placeholders or emulators for unavailable or future IOT devices, such that enterprise applications may be configured and executed without an actual physical IOT device in existence. Virtual IOT devices may also be used to assist with overall device provisioning. |
US11228640B2 |
Cross device application discovery and control
Systems and methods cross device application discovery and/or control. Cross device application discovery and/or control can provide for simple detection and activation of applications on remote devices. Cross device application discovery and/or control can provide for the control of remote applications in a master and slave configuration. Responsive to an activation message, an application can execute a task in an application, the task being displayed on a target device. Responsive to an activation message, an application can execute a task in an application on a target device, a task context data for the task being streamed to the source device for presentation on a display. Cross device application discovery and/or control can be enabled on a single operating system, or across a plurality of operating systems. |
US11228634B2 |
Management system, remote device management system, display control method, and recording medium
A management system, a remote device management system, and a display control method. The management system acquires positioning information indicating a location of a mediating apparatus, stores the acquired positioning information in association with device identification information for identifying a device communicable with the mediating apparatus corresponding to the positioning information, receives device status information indicating status of the device from the mediating apparatus, and displays on a display, a first management image including map information depicting an area including the location corresponding to the positioning information and a device identification image indicating the device status information related to the device corresponding to the device identification information associated with the positioning information at a location indicated by the stored positioning information corresponding to the map information. |
US11228633B1 |
Determining profile signatures associated with sets
Described are systems and methods for establishing and generating collections of sets that contain object identifiers based on user provided annotations for the object identifiers. A set may include one or more object identifiers and each object identifier may include one or more user provided annotations. Annotations from all object identifiers within a set are processed to form a set profile signature representative of the set. The set profile signatures are then compared between different sets to identify similar sets. Similar sets are included in a collection. Utilizing set profile signatures for a set formed based on user provided annotations provides useful relationships between sets that might otherwise not exist. |
US11228627B1 |
Updating user-specific application instances based on collaborative object activity
Updating user-specific instances of a second application for individual users of a group based on a data file for the second application being shared via a collaboration object that corresponds to the group within a first application. The instances of the second application present each individual user with their own custom user experience that is configured to provide access to specific content based on object permissions data. An application extension is executable, by the first application, to extend content editing functionalities of the second application into the collaboration object. Responsive to specific content being associated with the collaboration object via the application extension, each of the instances of the second application may be automatically updated to provide direct access to the specific content. Thus, each user within the group defined for collaboration object can access the data file via the collaboration object and their own instance of the second application. |
US11228624B1 |
Overlay data during communications session
A system may overlay real-time data and other data (e.g., measurement data, sensor data, etc.) over image data during a communication session. For example, the system may perform media processing on image data being sent between devices in order to overlay the real-time data and other information received from input devices (e.g., sensors, diagnostic devices, connected health devices, etc.) on top of image data during the communication session. For example, a patient may video conference with a doctor and real-time diagnostic information from a device attached to the patient (e.g., wearable device or other input device) may be overlaid on the video to display relevant information during the video conference. |
US11228621B2 |
Services-based architecture for IMS
In a system and a method for providing communication within IP Multimedia Subsystem (IMS) using a connectionless communication protocol, an IMS access layer, an IMS service layer, a common service utilities layer, a unified data repository layer, and an IMS network repository function (NRF) are provided. The IMS access layer terminates incoming communication that uses connection-oriented communication protocol. The IMS service layer is operatively connected to the IMS access layer and includes at least one micro-service implementing IMS service. The common service utilities layer is operatively connected to the IMS service layer and includes at least one utility accessible to the at least one micro-service. The unified data repository layer is operatively connected to, and accessible by, the common service utilities layer, the IMS service layer and the IMS access layer. The IMS NRF enables a network function (NF) or the micro-service to discover another NF or micro-service. |
US11228620B2 |
Data processing systems for data-transfer risk identification, cross-border visualization generation, and related methods
In particular embodiments, a Cross-Border Visualization Generation System is configured to: (1) identify one or more data assets associated with a particular entity; (2) analyze the one or more data assets to identify one or more data elements stored in the identified one or more data assets; (3) define a plurality of physical locations and identify, for each of the identified one or more data assets, a respective particular physical location of the plurality of physical locations; (4) analyze the identified one or more data elements to determine one or more data transfers between the one or more data systems in different particular physical locations; (5) determine one or more regulations that relate to the one or more data transfers; and (6) generate a visual representation of the one or more data transfers based at least in part on the one or more regulations. |
US11228619B2 |
Security threat management framework
A method, apparatus and computer program product for managing security threats to a distributed network. A set of events are aggregated from a plurality of event sources in the network for each of a set of security threats to the network. A magnitude of a characteristic of each of the set of security threats is determined. Each of the set of security threats is represented as a three dimensional graphical object in a three dimensional (3D) representation of the network according to the respective magnitude of the characteristic. A security action is taken based on the determined magnitude of one of the set of security threats. |
US11228618B2 |
Seamless multi-vendor support for change of authorization through radius and other protocols
A process, system, and non-transient computer readable medium that provides device automation support for the dynamic activation, authentication, and accounting of network access and network access devices while enabling seamless multi-vendor support for change of authorization through multiple network protocols. The process, system, and non-transient computer readable media also provides security threat remediation that can be automated at the device, network access, traffic inspection, and/or threat protection level by taking action on a device by triggering actions in a bidirectional manner. |
US11228614B1 |
Automated management of security operations centers
Disclosed are various embodiments providing automated management of security operations centers. In one embodiment, a correlation and decision engine correlates event data generated by a plurality of monitoring services with a plurality of alerts generated by a plurality of threat intelligence services. The engine then adjusts at least one rule of one or more threat intelligence services with respect to at least one event based at least in part on a corresponding frequency of at least one of the plurality of alerts meeting a threshold, where the adjusted alert(s) are associated with the event(s). |
US11228613B2 |
Adaptive adjustment using sensor data and distributed data
An aspect includes querying, by a processor, a plurality of model data from a distributed data source based at least in part on one or more user characteristics. A plurality of sensor data is gathered associated with a condition of a user. A policy is generated including an end goal and one or more sub-goals based at least in part on the model data and the sensor data. The policy is iteratively adapted based at least in part on one or more detected changes in the sensor data collected over a period of time to adjust at least one of the one or more sub-goals. The policy and the one or more sub-goals are provided to the user. |
US11228612B2 |
Identifying cyber adversary behavior
Identifying cyber adversary behavior on a computer network is provided. Individual security events are received from multiple threat intelligence data sources. A security incident corresponding to an attack on at least one element of the computer network, the security incident being described by the individual security events received from the multiple threat intelligence data sources, is matched to a defined cyber adversary objective in a structured framework of a plurality of defined cyber adversary objectives and a related technique associated with the defined cyber adversary objective used by a cyber adversary in the attack. A set of mitigation actions is performed on the computer network based on matching the security incident corresponding to the attack on the computer network to the defined cyber adversary objective and the related technique. |
US11228609B1 |
Methods for managing HTTP requests using extended SYN cookie and devices thereof
Methods, non-transitory computer readable media, network traffic manager apparatuses, and systems that assist with managing hypertext transfer protocol (HTTP) requests using extended SYN cookie includes establishing a network connection with a client without allocating a plurality of computing resources to the established network connection, in response to aa request to establish a connection from a client. Presence of a digital signature in a first data packet comprising a request for a webpage is determined. The digital signature is compared to a plurality of stored signatures to determine when the client is a nefarious computing device when the determination indicates that the received request includes the signature. The established network connection is terminated with the client without allocating the plurality of computing resources when the comparison indicates the client is the nefarious computing device. |
US11228608B2 |
Vector-based anomaly detection
A hybrid-fabric apparatus comprises a black box memory configured to store a plurality of behavior metrics and an anomaly agent coupled to the black box. The anomaly agent determines a baseline vector corresponding to nominal behavior of the fabric, wherein the baseline vector comprises at least two different behavior metrics that are correlated with each other. The anomaly agent disaggregates anomaly detection criteria into a plurality of anomaly criterion to be distributed among network nodes in the fabric, the anomaly detection criteria characterizing a variation from the baseline vector, and each of the plurality of anomaly criterion comprising a function of a measured vector of behavior metrics. The variation can be calculated based on a variation function applied to a vector of measured behavior metrics having elements corresponding to member elements of the baseline vector. Anomaly criterion statuses calculated by at least some of the plurality of network nodes are aggregated to detect anomalous behavior. Each anomaly criterion status can be calculated by a network node as a function of the network node's anomaly criterion and a measured vector of the at least two different behavior metrics. |
US11228601B2 |
Surveillance-based relay attack prevention
In one embodiment, an apparatus comprises an antenna to receive one or more radio signals, wherein the antenna is associated with a proximity-based access portal. The apparatus further comprises a processor to: detect, based on the one or more radio signals, an access request from a first device, wherein the access request comprises a request to access the proximity-based access portal using an access token associated with an authorized device; determine, based on the one or more radio signals, that the first device is within a particular proximity of the proximity-based access portal; obtain a first motion history associated with movement detected near the proximity-based access portal; obtain a second motion history associated with movement detected by the authorized device; and determine, based on the first motion history and the second motion history, whether the movement detected near the proximity-based access portal matches the movement detected by the authorized device. |
US11228600B2 |
Car sharing system
The car sharing system includes a car share device and an encryption code updating unit. The car share device is configured to perform wireless communicate with a mobile terminal that is operable as a vehicle key. The encryption code updating unit updates a first encryption code, which was used during a previous connection of the mobile terminal and the car share device, to a second encryption code, which differs from the first encryption code, when the mobile terminal and the car share device are reconnected. |
US11228599B2 |
Verification of credential reset
Methods and systems are provided for restoring access for user accounts when suspicious activity is detected. The methods and systems identify any potential suspicious activity or potential misuse associated with a user account. The user account has account privileges associated with a network service. The methods and systems sends a notification to a network application to indicate that account privileges associated with the user account are limited. In response to the notification, a series of tasks to restore access to the user account may be performed. |
US11228597B2 |
Providing control to tenants over user access of content hosted in cloud infrastructures
An aspect of the present disclosure provides control to tenants over user access of content hosted in cloud infrastructures. In one embodiment, a host node (of a cloud infrastructure) accepts a content item in encrypted form and an associated set of attributes from a tenant, and hosts the content item in encrypted form. Upon receiving a request from a user to access the content item, the node determines a set of attributes associated with the request, the determined set including at least one attribute originating at another host node of the cloud infrastructure. If the determined set of attributes matches the associated set of attributes, the node decrypts the content item to generate the content item in decrypted form and then provides access to the content item in decrypted form to the user as a response to the request. |
US11228594B2 |
Automatic reduction of permissions for client applications
A least-privilege permission or permissions is automatically assigned to a client application in order to ensure that the client application is able to perform the bare minimum actions on a resource. The client application accesses the protected resource using a web API. The determination of the least-privilege permission(s) is based on actions previously performed on the resource by the client application. The identity provider monitors the actions performed on a resource by the client application and determines the bare minimum permission needed for the client application. |
US11228593B2 |
Session security splitting and application profiler
Intelligent methods of providing online security against hackers, which prevents the hackers from obtaining unauthorized access to secure resources. A first application session established between a first client and a first application of a first host device is detected. The first application is associated with a first plurality of security time limits. A duration of the first application session established between the first client and the first application is monitored. One or more first security actions are executed against the first application session responsive to the duration of the first application session reaching a security time limit of the first plurality of security time limits. One or more second security actions are executed against the first application session responsive to the duration of the first application session reaching another security time limit of the first plurality of security time limits. |
US11228591B2 |
Correlating mobile device and app usage with cloud service usage to provide security
Techniques to provide secure access to a cloud service are disclosed. In various embodiments, enterprise mobility management (EMM) data associated with a set of enterprise users of mobile devices associated with an enterprise is received. Cloud service data associated with use of a cloud service of the cloud service provider by users associated with the enterprise is received and correlated with the EMM data. Usage of the cloud service by said users associated with the enterprise is analyzed, including one or both of access of the cloud service using one or more unmanaged devices and access of the cloud service using one or more unmanaged mobile apps. |
US11228590B2 |
Data processing method and apparatus based on mobile application entrance and system
A data processing method is performed at a computer system managing application programming interfaces (APIs) and mobile application entrances. An API invocation request initiated by an application system is received by the computer system, permission information corresponding to the application system is obtained according to an identifier of the mobile application entrance and an application system identifier that are carried in the API invocation request, then authentication is performed on the API invocation request according to the permission information and first authentication information carried in the API invocation request, and the application system is allowed to invoke an API for data processing when the authentication succeeds, so that internal data corruption caused due to that each application system at a mobile application entrance randomly invoke the API is avoided, thereby implementing uniform management on the internal data, greatly strengthening data security, and facilitating API interface expansion. |
US11228589B2 |
System and method for efficient and secure communications between devices
This document describes a system and method for a device to communicate efficiently and securely with another device by utilizing two different types of schemes for the generation of data to be transmitted and the handling of received data. |
US11228581B2 |
Secure delayed FIDO authentication
Systems and methods for authenticating a user of a mobile electronic device to use a FIDO (fast identification online) compliant application in the device are provided. These entail receiving a user authentication input at the mobile electronic device and caching the authentication input. While the authentication input remains cached, the user is authenticated to use the mobile electronic device via the authentication input. The mobile electronic device is then unlocked and the FIDO compliant application is opened. Secure delayed FIDO authentication is then executed by providing the cached authentication input to the FIDO compliant application to open an authenticated session of the user on the FIDO compliant application. |
US11228580B2 |
Two-factor device authentication
Implementations of the subject technology provide for performing, by a device, a request for obtaining information related to a phone authentication certificate (PAC) that was generated for the device, the PAC authenticating that a particular phone number is associated with the device, the request including packets of data. The subject technology receives the information related to the PAC, the information including an indication that the PAC was generated for the device. The subject technology sends, from the device, a request for validating the PAC to a remote server based at least in part on the information related to the PAC. Further, the subject technology receives a confirmation of validating the PAC from the remote server based at least in part on the information related to the PAC. |
US11228579B2 |
Passing authentication information via parameters
Systems and methods for passing account authentication information via parameters. A server can provide, to a client device, an account parameter derived from an account credential used to authenticate a first application to insert into a link. The link can include an address referencing a second application. The account parameter can be passed from the first application to the second application responsive to an interaction on the link. The server can receive from the second application of the client device, subsequent to passing the account parameter from the first application to the second application, a request to authenticate the second application including the account parameter. The server can authenticate the client device for the second application using the account parameter. The server can transmit, responsive to authenticating the client device for the second application, an authentication indication to the second application of the client device. |
US11228574B2 |
System for managing remote software applications
The disclosure describes systems, methods and devices relating to a sign-on and management hub or service for users of multiple internal, external or Software-as-a-Service (SaaS) software applications (Apps), with options for centralized management and sharing of accounts without needing to provide login credentials to individual users. |
US11228571B2 |
Policy-based topic-level encryption for message queues
A targeted, topic-based encryption in a publish-subscribe message queue. Topic-based encryption driven by encryption policies for both storing and receiving messages uses activity tracking and logging to ensure confidentiality of certain topics associated with stored encrypted messages. Authentication of both publisher and consumer ensure encryption and decryption keys are used in confidence. |
US11228569B2 |
Secure tunneling for connected application security
A computing platform of a vehicle may receive a request, from a mobile application accessing a secure vehicle function, to create a secure tunnel between the computing platform and the mobile device; retrieve an application certificate from the mobile application; and validate the creation of the secure tunnel using the application certificate and a module certificate from a local policy table of the computing platform. A mobile device, connected to a computing platform of a vehicle may execute a mobile application requiring a secure vehicle function; send a request to create a secure tunnel with the computing platform responsive to access of by the mobile application of the secure vehicle function; and send to the computing platform an application certificate corresponding to the mobile application to validate creation of the secure tunnel. |
US11228567B2 |
System and method for receiver to anonymous donor communication
An automated system comprising a processor and a database are described. The processor executes communication software reading: at least one image corresponding to an identifier of a blood product from a donor; and at least one database storing at least one communication from a receiver of the blood product. The communication software executed by the processor determines an intermediary from the identifier and contacts the intermediary to obtain contact information of the donor. |
US11228558B2 |
Method and apparatus for isolating transverse communication between terminal devices in intranet
Provided are a method and an apparatus for isolating transverse communication between terminal devices in an intranet. The method includes: when receiving an ARP (Address Resolution Protocol) packet, an access device in the intranet determines whether to perform a first transverse isolation operation for the ARP packet based on a pre-stored first transverse isolation policy; and when receiving a packet, a gateway device in the intranet determines whether to perform a second transverse isolation operation for the packet according to a pre-stored second transverse isolation policy. |
US11228556B2 |
Electronic device, server, and control method and location information providing method for the electronic device
A first electronic device of the present invention comprises at least one communication circuitry, at least one display, at least one memory configured to store instructions, and at least one processor operatively coupled with the at least one communication circuitry and the at least one display. The processor is configured to (1) access to a first server for a navigation service through an application for the navigation service linked with a first account for accessing to a second server, (2) receive a user input through the application, (3) transmit, via the first server to a second electronic device of a second user that is authenticated through the application linked with a second account for accessing to the second server, a message, (4) periodically transmit, via the first server to the second electronic device, information, and (5) display a positional relationship between the two electronic devices over an electronic map. |
US11228551B1 |
Multiple gateway message exchange
Systems and methods are provided for exchanging messages between gateways. The systems and methods include operations for: storing, in a first gateway located in a first geographical region of a plurality of geographical regions, data that associates a plurality of users with the plurality of geographical regions; receiving, by the first gateway, a message directed to a given user of the plurality of users; determining, based on the data, that a second geographical region of the plurality of geographical regions is associated with the given user; and transmitting, by the first gateway, the message to a second gateway located in the second geographical region. |
US11228549B2 |
Mobile device sending format translation based on message receiver's environment
At a sending electronic device, from a remote location, an indication is received of an environment at a receiving mobile electronic device to which the sending electronic device is to send a message. It is determined how to send the message from the sending electronic device to the receiving mobile electronic device, based on the indication of the environment at the receiving mobile electronic device. The message is sent from the sending electronic device to the receiving mobile electronic device in accordance with the determining step. |
US11228548B2 |
Actionable data embedded into emails for automating actions of an email client
A system in which existing email protocols are leveraged to exchange information between two or more client devices. An email includes an embedded serialized object that comprises instructions to inform one or more behaviors of an email client application performed upon receiving the email or at a later time. |
US11228547B2 |
RNA targeting methods and compositions
Provided herein are CRISPR/Cas methods and compositions for targeting RNA molecules, which can be used to detect, edit, or modify a target RNA. |
US11228544B2 |
Adapting communications according to audience profile from social media
Techniques relate to adapting communications. A computer system receives initial content and event constraints related to a to-be-delivered communication and extracts information for recipients designated to receive the to-be-delivered communication. The computer system determines content utility values for topics of the initial content for each of the recipients, the content utility values for each of the topics being based on the information for each of the recipients. The computer system determines total content utility values for each of the topics in the initial content and selects elements of the to-be-delivered communication from a database based at least in part on the total content utility values for the topics and the event constraints. |
US11228542B2 |
Systems and methods for communication channel recommendations using machine learning
Example implementations are directed to a method of controlling contributions to a communication stream. An example implementation includes detecting a request from a user to add a data item to a communication stream of a channel, analyzing the data item in view of the communication stream to determine a relevancy score for the data item; and providing a control interface for the request based on the relevancy score of the data item. For example, the control interface can include an audience report, a notification, a previous post link, an alternative channel recommendation, a private message invitation, or a proceed to post command. |
US11228541B1 |
Computer service for help desk ticket creation and resolution in a communication platform
Embodiments include a computer implemented method for automatically identifying an issue from a help message received via a chat interface and generating a response for responding to the help message. The method can include receiving one or more response templates that each include a reference to a resource associated with a help topic. The method can also include receiving, from a second user, a help request via the chat interface of a help channel. In response to receiving the help request the method can include parsing the help request to identify a help topic, generating a help desk ticket associated with the help request and generating a response message that includes an information resource associated with the help topic, and sending the response message to the user. In response to the user viewing the information resource and selecting a user interface element, the method can include automatically closing the help desk ticket. |
US11228538B2 |
Apparatus and method for low latency switching
A method of data switching. Data is received by at least one input port of a crosspoint switch. The crosspoint switch configurably casts the data to at least one output port of the crosspoint switch. Each output port of the crosspoint switch is connected to a respective input of a logic function device such as an FPGA. The logic function device applies a logic function to data received from each output port of the crosspoint switch, such as address filtering or multiplexing, and outputs processed data to one or more respective logic function device output interfaces. Also, a method of switching involving circuit switching received data to an output while also copying the data to a higher layer function. |
US11228536B2 |
Usage of QUIC spin bit in wireless networks
Various aspects include methods for QUIC packet processing. Various embodiments may include a processor of a computing device determining a round trip time (RTT) for a QUIC flow based at least in part on a spin bit value of a QUIC packet of the QUIC flow, determining a bandwidth-delay (BW-delay) product for the QUIC flow based at least in part on the determined RTT for the QUIC flow, and controlling processing of QUIC packets for the QUIC flow based at least in part on the determined BW-delay product. |
US11228534B2 |
Congestion control method, network device, and network interface controller
This application provides a congestion control method, a network device, and a network interface controller. In the congestion control method performed by a first intermediate device, the first intermediate device receives a first data packet sent by a sending device, sends the first data packet to a receiving device along a first path, receives a first acknowledgment packet that is sent by the receiving device and that is used for acknowledging the first data packet, and determines a congestion degree of the first path based on a congestion mark in the first acknowledgment packet. The first intermediate device changes a window value and sends the changed first acknowledgment packet to the sending device. According to a solution provided in this application, a speed of transmitting a data packet is adjusted based on a congestion degree of a communication path and a quantity of bytes of the data packet. |
US11228531B2 |
Filtering and classifying multicast network traffic
Described herein are systems and methods to filter and classify multicast network traffic. In one example, a first computing node may receive a multicast communication from a second computing node and register a for a flow associated with the multicast communication, wherein the context includes at least the multicast port associated with the multicast communication. The first computing node further identifies an outbound communication destined for the second computing node and determines that addressing attributes in the outbound communication match the context for the flow. Once it is determined that the attributes match the context for the flow, the first computing node associates the outbound communication with the flow. |
US11228527B2 |
Load balancing between edge systems in a high availability edge system pair
The technology disclosed herein enables load balancing between a pair of virtual edge systems configured for high availability at an edge of a local network environment. In a particular embodiment, a method provides assigning a virtual network address to the pair of virtual edge systems. The method further provides generating state information used by one or more stateful functions of a first virtual edge system of the pair of virtual edge systems and transferring the state information to a second virtual edge system of the pair of virtual edge systems. Also, the method provides directing a first portion of network traffic to the first virtual edge system and a second portion of the network traffic to the second virtual edge system. The network traffic comprises packets addressed with the virtual network address. |
US11228523B2 |
Infrastructure link path arrangement determination method and system
A computer-implemented method and system for determining a path arrangement of an infrastructure link. The method includes receiving one or more inputs each indicative of a constraint; and processing the one or more inputs and a set of data based on a path arrangement determination model. The set of data includes data representing one or more factors affecting the path arrangement. The method also includes determining, based on the processing, the path arrangement of the infrastructure link. |
US11228518B2 |
Systems and methods for extended support of deprecated products
Method and systems support management of deprecated components within a system of IHSs (Information Handling Systems), such as within a datacenter. Upon receiving notification of a deprecated component, instances of the deprecated component are identified within the datacenter. Usage information is collected for the deprecated component by remote access capabilities of the IHSs and by management capabilities of chassis in which the IHSs may be housed. Based on the collected usage information, usages are determined for individual features of the deprecated component. Even though a component has been deprecated, some features of the component may still be supported. Such supported features of the deprecated components are identified. Licenses may be provided for use of features that are that are supported and that are actually utilized, as determined from the usage information. |
US11228516B1 |
Edge computing management using multiple latency options
Technology is described for edge computing management with multiple latency options. An application orchestration service may identify service distribution zones of a service provider environment that provide a connection between a mobile network and computing resources capable of executing portions of distributed applications used by devices connected to the mobile network. The application orchestration service may determine whether a network path latency between the devices and the computing resources satisfy latency constraints for the portions of the distributed applications. The application orchestration service may orchestrate which computing resources in the service distribution zones handle application processing by the portions of the distributed applications for the devices connected to the mobile network. |
US11228513B2 |
Traffic measurement method, device, and system
One example packet processing device includes a buffer, and the packet processing device obtains a to-be-measured packet. In response to determining that occupied storage space in the buffer is less than a preset threshold, the packet processing device reads the to-be-measured information from the buffer, and modifies, based on the to-be-measured information and a first algorithm, a pieces of data in first measurement data corresponding to the to-be-measured packet, where a is a positive integer. In response to determining that occupied storage space in the buffer is greater than or equal to a preset threshold, the packet processing device modifies, based on to-be-measured information and a second algorithm, w pieces of data in second measurement data corresponding to the to-be-measured packet, where w is a positive integer, and w is less than a. |
US11228510B2 |
Distributed workload reassignment following communication failure
A generation identifier is employed with various systems and methods in order to identify situations where a workload has been reassigned to a new node and where a workload is still being processed by an old node during a failure between nodes. A master node may assign a workload to a worker node. The worker node sends a request to access target data. The request may be associated with a generation identifier and workload identifier that identifies the node and workload. At some point, a failure occurs between the master node and worker node. The master node reassigns the workload to another worker node. The new worker node accesses the target data with a different generation identifier, indicating to the storage system that the workload has been reassigned. The old worker node receives an indication from the storage system that the workload has been reassigned and stops processing the workload. |
US11228506B2 |
Systems and methods for detecting anomalies in performance indicators of network devices
Systems and methods are provided for detecting an anomaly in a performance indicator associated with a network device. One method may include: generating a plurality of hints; identifying a subset of hints from the plurality of hints, where each hint in the subset is associated with an open alert and has a same severity level as the associated open alert; querying in bulk from a time series data store a set of historical data; processing the set of historical data and the remaining hints that are not in the subset of hints to form processed data; determining whether the processed data exceeds a threshold parameter associated with the performance indicator; and performing an alert action in bulk based on the processed data exceeding the threshold parameter of the performance indicator. |
US11228503B2 |
Methods and systems for generation and adaptation of network baselines
Systems, methods, apparatuses, and computer program products for the generation and adaptation of network baselines are provided. One method may include generating predicted values for one or more network metrics over a future time period, generating a baseline for the network metric(s) using the predicted values and/or historic data, evaluating the network metric(s) to detect changes in network conditions using at least one time series analysis technique, and adapting the baseline to the detected changes in network conditions using historic data, machine learning and/or a time series analysis technique. |
US11228502B2 |
Aggregation platform, requirement owner, and methods thereof
The present disclosure relates to aggregation platforms and requirement owners. One example aggregation platform is configured to receive a request from a requirement owner, where the received request comprises a request for an aggregation platform data model (APDM); determine an APDM based on the received request, where the determined APDM comprises at least one relationship between at least one model and at least one associated model repository, transmit the determined APDM to the requirement owner, receive an aggregation requirement (AR) from the requirement owner, where the received AR comprises at least one model identifier and at least one associated model repository identifier, and generate a deployment template (DP) based on the received AR. |
US11228501B2 |
Apparatus and method for object classification based on imagery
Aspects of the subject disclosure may include, for example, identifying a first object included in at least one image in accordance with an execution of an image processing algorithm, analyzing a plurality of parameters in accordance with at least one model responsive to the identifying of the first object included in the at least one image, wherein each parameter of the plurality of parameters is associated with the first object or a second object, selecting one of the first object or the second object for receiving at least one communication network resource responsive to the analyzing of the plurality of parameters, wherein the selecting results in a selected object, and presenting the selected object on a presentation device. Other embodiments are disclosed. |
US11228499B1 |
Control network planning
Example implementations described herein generate plans for the deployment of functions involving the distribution function and the allocation of network resources based on the requirements of the distributed functions on the control system and the network information constituting the control system. Example implementations involve gathering requirements of the distributed functions constituting the distributed control system, information of the network, and information of the plurality of communication devices, and generating a plan for deployment of the distributed functions to corresponding ones of the plurality of communications devices and allocation of network resources to the corresponding ones of the plurality of communication devices based on the gathered requirements and the information of the network. |
US11228497B2 |
Topology based management with stage and version policies
In one implementation, a method for topology based management with stage and version policies can include associating a topology of an application under development, determining a number of policies, wherein the number of policies include stage and version policies that define a number of available infrastructures for a given stage and version of the application, associating the number of policies to a number of nodes of the topology, and provisioning the topology with the associated number of policies. |
US11228495B2 |
Bundling of wired and wireless interfaces in a redundant interface of a high-availability cluster
A system may include a first node in a high-availability cluster; a second node in the high-availability cluster; a redundant interface between a network device and both the first node and the second node, wherein the redundant interface is associated with a redundancy group that designates one of the first node or the second node as a primary node in the high-availability cluster and that designates the other of the first node or the second node as a backup node in the high-availability cluster; a wireless interface of the first node, wherein the wireless interface is included in the redundant interface; and a wired interface of the second node, wherein the wired interface is included in the redundant interface. |
US11228490B1 |
Storage management for configuration discovery data
An initial set of one or more data stores is selected for storing configuration data of a first client of a configuration discovery service. Configuration data for various items of the client's computing environment are stored at the initial set for a first time period. A configuration item, whose records were being stored at a first data store, is identified as a candidate for a data store change. Storing of at least some configuration data of the item at a different data store is initiated. |
US11228489B2 |
System and methods for auto-tuning big data workloads on cloud platforms
The invention is generally directed to systems and methods of automatically tuning big data workloads across various cloud platforms, the system being in communication with a cloud platform and a user, the cloud platform including data storage and a data engine. The system may include: a system information module in communication with the cloud platform; a static tuner in communication with the system information module; a cloud tuner in communication with the static tuner and the user; and an automation module in communication with the cloud tuner. Methods may include extracting information impacting or associated with the performance of the big data workload from the cloud platform; determining recommendations based at least in part on the information extracted; iterating through different hardware configurations to determine optimal hardware and data engine configuration; and applying the determined configuration to the data engine. |
US11228487B2 |
Search space configuration for power efficient reception
In an access network, a base station may aggregate data packets for a user equipment (UE) into transport blocks and configure a control channel to allow the UE to sleep between control channel monitoring occasions to save power. Such data aggregation, however, may be subject to changes in traffic load and/or link quality that may result in a too low data rate or too frequent monitoring. A base station that receives data to transmit to the UE and aggregates the data according to configured control configuration parameters of the UE may determine that a link quality or a traffic load for the UE has changed. The base station may reconfigure the control channel configuration parameters of the UE based on at least one of the link quality or the traffic load in order to obtain a data rate that satisfy the traffic load for the UE. |
US11228481B2 |
Method for communicating and debugging across IoT systems
Described herein are systems and methods for communication in an IoT system. The systems and method utilize a single grammar to communicate data from controller to sensor and points in between. In one embodiment, the systems and method are utilized in a debug mode, where the grammar is in a human-readable format. In a further embodiment, the human-readable grammar is a markup language, composed of tags and metadata. |
US11228478B1 |
Systems and methods for calibration of in-phase/quadrature (I/Q) modulators
A wireless transceiver system includes a transmitter and a receiver. The transmitter includes a digital processor and a self-correction modulator coupled to the digital processor, wherein based upon a calibration correction assessment of an in-phase (I) signal and a quadrature (Q) signal received from the digital processor, the self-correction modulator generates a calibrated modulated signal. The self-correction modulator includes a core modulator and a calibration correction unit. The calibration correction unit is configured to correct an output of the core modulator based upon the calibration correction assessment. The calibration correction unit includes a calibration processing unit and a calibration modulator, wherein the calibration processing unit provides correction quantities that are used to program the calibration modulator to provide the self-corrected modulated signal. |
US11228474B2 |
High spectral efficiency data communications system
A method of recovering information encoded by a modulated sinusoidal waveform having first, second, third and fourth data notches at respective phase angles, where a power of the modulated sinusoidal waveform is reduced relative to a power of an unmodulated sinusoidal waveform within selected ones of the first, second, third and fourth data notches so as to encode input digital data. The method includes receiving the modulated sinusoidal waveform and generating digital values representing the modulated sinusoidal waveform. A digital representation of the unmodulated sinusoidal waveform is subtracted from the digital values in order to generate a received digital data sequence, which includes digital data notch values representative of the amplitude of the modulated sinusoidal waveform within the first, second, third and fourth data notches. The input digital data is then estimated based upon the digital data notch values. |
US11228473B2 |
Signal generation using low peak-to-average power ratio base sequences
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may determine a UE. The apparatus may generate a reference signal using a base sequence obtained from a table, the table including a plurality of base sequences that each have a peak-to-average-power ratio (PAPR) metric below a threshold. Then, the apparatus transmits the reference signal to a base station. The reference signal may be multiplexed with a data transmission. |
US11228471B2 |
Matched-filter radio receiver
A digital radio receiver has a matched filter bank of filter modules for receiving phase- or frequency-modulated radio signals. Each module cross-correlates a sampled signal with a respective multi-symbol filter sequence, using a plurality of samples in each symbol period. The matched filter bank calculates first values (zn(1)), for respective symbol periods, of a cross-correlation of the sampled signal with a first complex exponential function defined at sample points over one symbol period, and calculates second values (zn(−1)), for the respective symbol periods, of a cross-correlation of the sampled signal with a second, different, complex exponential function. A set of the filter modules cross-correlates the sampled signal with their respective filter sequences using an algorithm that takes, as input, the first values (zn(1)) for symbol periods at which the respective filter sequence has a first value, and the second values (zn(−1)) for symbol periods at which the filter sequence has a second, different, value. |
US11228470B2 |
Continuous time linear equalization circuit
A continuous time linear equalization (CTLE) circuit is disclosed. The CTLE circuit includes a passive CTLE circuit and an active CTLE circuit. The active CTLE circuit includes a differential transistor pair and the output of the passive CTLE is configured to drive gates or bases of the differential transistor pair. |
US11228461B2 |
Methods for indicating and determination large-scale channel parameter, base station and terminal device
The present disclosure provides an indication method, including: determining first transmission resources related to a transmission channel for a large-scale channel parameter or a group of large-scale channel parameters, and transmitting configuration information about the first transmission resources to a terminal device via first signaling, the first transmission resources being transmission resources for K downlink reference signals, K being a positive integer; and selecting second transmission resources from the first transmission resources in accordance with a transmission parameter used by the transmission channel, and transmitting indication information about the second transmission resources to the terminal device via second signaling, the second transmission resources being transmission resources for L downlink reference signals, L being a positive integer, and K being greater than or equal to L. |
US11228459B2 |
Anycast address configuration for extended local area networks
Anycast address configuration on thousands of VXLANs (Virtual eXtensible LANs) or other types of extended LANs can be performed automatically. If an anycast address is configured on one VXLAN gateway or VTEP (Virtual Tunnel End Point), the VTEP sends the anycast address to other VTEPs, possibly together with a VXLAN identifier (e.g. Virtual Network Identifier, or VNI), and the other VTEPs automatically configure the anycast address on their interfaces in the VXLAN. If a VTEP receives conflicting anycast addresses, the VTEP resolves the conflict to select an anycast address according to a predefined rule. All VTEPs may use the same conflict resolution rule, so the same anycast address is installed at each VTEP despite the conflict. Other features are also provided. |
US11228457B2 |
Priority-arbitrated access to a set of one or more computational engines
The present invention discloses a method for managing priority-arbitrated access to a set of one or more computational engines of a physical computing device. The method includes providing a multiplexer module and a network bus in the physical computing device, wherein the multiplexer module is connected to the network bus. The method further includes receiving, by the multiplexer module, a first data processing request from a driver and inferring, by the multiplexer module, a first priority class from the first data processing request according to at least one property of the first data processing request. The method further includes manipulating, by the multiplexer module, a priority according to which the physical computing device handles data associated with the first data processing request in relation to data associated with other data processing requests, wherein the priority is determined by the first priority class. |
US11228455B2 |
Network device and method for forwarding multi-cast messages in a network
The invention regards the forwarding of multicast messages in a network system. A network router according to the present invention comprises a memory in which configuration data is stored. The configuration data define at least one route along which a multicast message is to be forwarded. If the forwarding of a multicast message is allowed in principle by such specified route, it is additionally checked if from the downlink side of the network router, multicast listener information was received. Only if both conditions are fulfilled, the multicast message will be forwarded along the specified route. |
US11228450B2 |
Method and apparatus for performing multi-party secure computing based-on issuing certificate
Disclosed herein are methods, systems, and apparatus, including computer programs encoded on computer storage media, for providing certifications. One of the methods includes: receiving, from a computing unit, a certificate request, wherein the computing unit comprises at least one processor and a memory communicably coupled to the at least one processor, wherein the memory stores programming instructions associated with a computing task executable by the at least one processor, and wherein the certificate request comprises a group of identifiers of a group of computing tasks and authentication information that comprises a hash value of the programming instructions; authenticating the computing unit based on the authentication information; in response to the computing unit is authenticated, determining, based on the hash value, that a computing task is included in the group of computing tasks; obtaining a certificate chain and a private key pre-generated for the group of identifiers; and sending a certificate report to the computing unit. |
US11228447B2 |
Secure dynamic threshold signature scheme employing trusted hardware
Embodiments of the invention provide enhanced security solutions which are enforced through the use of cryptographic techniques. It is suited for, but not limited to, use with blockchain technologies such as the Bitcoin blockchain. Methods and devices for generating an elliptic curve digital signature algorithm signature (r, w) are described. In one embodiment, a method includes: i) forming, by a node, a signing group with other nodes; ii) obtaining, by the node, based on a secure random number: a) a multiplicative inverse of the secure random number; and b) the first signature component, r, wherein the first signature component is determined based on the secure random number and an elliptic curve generator point; iii) determining, by the node, a partial signature based on a private secret share, the multiplicative inverse of the secure random number and the first signature component; iv) receiving, by the node, partial signatures from other nodes of the signing group; and v) generating, by the node, the second signature component, w, based on determined and received partial signatures. |
US11228445B2 |
File validation using a blockchain
Disclosed are various embodiments for validating documents using a blockchain data. Multiple documents can be included in the validation process using a merge and hash process and a summary terms document. Validation can be performed by hashing and merging operations, followed by comparing hash values. |
US11228443B2 |
Using memory as a block in a block chain
The present disclosure includes apparatuses, methods, and systems for using memory as a block in a block chain. An embodiment includes a memory, and circuitry configured to generate a block in a block chain for validating data stored in the memory, wherein the block includes a cryptographic hash of a previous block in the block chain and a cryptographic hash of the data stored in the memory, and the block has a digital signature associated therewith that indicates the block is included in the block chain. |
US11228442B2 |
Authentication method, authentication apparatus, and authentication system
An authentication method, an authentication apparatus, and an authentication system for the communications field are described. The authentication includes receiving, by a communications network element, a request from a user equipment (UE) comprising a first identifier that is an international mobile subscriber identity (IMSI). The communication network element, in response to the request, sends the first identifier to a home subscriber server. The communications network element, upon authenticating the UE successfully, sends a second identifier to a key management center (KMS) to facilitate the KMS generating a subscriber private key corresponding to the second identifier and sending the subscriber private key to the communications network element. The communications network element thereafter sends the subscriber private key to the UE. |
US11228437B1 |
Methods for secure access to protected content in a content management system
A method performed by a content management system (CMS) and an edge node of a content delivery network is provided. A server secret is shared between the CMS and the edge node, and CMS uses the server secret to generate a signing key which includes a signing secret generated using the server secret. The signing key is transmitted to a client system. The client system receives a request for a content asset from a user device. The client system uses the signing key to generate a signed URL for the content asset, and the user device is redirected to the signed URL. The edge node validates the signed URL using the server secret to rederive the signing secret based on the signed URL. Responsive to successful validation of the signed URL by the edge node, then the content asset is provided from the edge node to the user device. |
US11228434B2 |
Data-at-rest encryption and key management in unreliably connected environments
Techniques are disclosed for securing data-at-rest at an internet-of-things (IoT) site with an unreliable or intermittent connectivity to the key manager operating at a corporate data center. The IoT site deploys one or more IoT devices/endpoints that generate IoT data according to the requirements of the site. The IoT data generated by these devices is collected/aggregated by one or more gateway devices. The gateways encrypt their data-at-rest gathered from the IoT devices using cryptographic keys. In the absence of a reliable connection to a backend corporate key manager, the design employs LAN key managers deployed locally at the IoT site. The gateways obtain keys from the LAN key managers to encrypt the IoT data before storing it in their local storage. The LAN key managers may periodically download keys from the corporate key manager or generate their own keys and then later synchronize with the corporate key manager. |
US11228432B2 |
Quantum-resistant cryptoprocessing
A logic circuit for quantum-resistant cryptoprocessing. The logic circuit includes a first plurality of multiplexers, a second plurality of multiplexers, a plurality of AND gates, a third plurality of multiplexers, a plurality of shift registers, a plurality of inverters, a fourth plurality of multiplexers, a plurality of adders, a plurality of XOR gates, a fifth plurality of multiplexers, and a plurality of parallel outputs. |
US11228425B2 |
Data storage method, data query method and apparatuses
A data storage method comprises receiving, from a first blockchain node associated with a blockchain, a query for encrypted data stored in the blockchain, wherein the encrypted data is shared by a second blockchain node; determining, through one or more smart contracts, whether the first blockchain node has a permission to decrypt the encrypted data; if the first blockchain node has the permission: sending the encrypted data to an encryption device to decrypt the encrypted data and return data obtained from the decryption to the first blockchain node; determining, through the smart contracts, a reward value to be added to an account of the second blockchain node; and sending a node identifier of the second blockchain node and the reward value to blockchain nodes of the blockchain, enabling each of the blockchain nodes to store the node identifier and the reward value in the blockchain. |
US11228421B1 |
Secure secrets to mitigate against attacks on cryptographic systems
Secure secrets can be used, in one embodiment, to generate a master key. In one embodiment, a first secret value, generated and stored in a first secure element, can be used with a user's credential (e.g., a user's passcode) to generate, through a first key derivation function, a second secret value. A master key can then be generated through a second key derivation function based on the second secret value and a derived or stored secret such as a device's unique identifier. |
US11228419B2 |
System and method for date-stamping an event detected in an automotive vehicle
A method is for date-stamping an event detected in an automotive vehicle including a plurality of sensors each comprising a relative internal clock and an electronic control unit including an absolute internal clock. The method includes, at each period, resetting the whole set of relative internal clocks of the sensors to zero, storing the absolute time of resetting to zero of the absolute clock at each reset to zero, detecting an event, receiving, at each detected event, a sensor relative time originating from the sensor's relative clock associated with the detected event, and calculating a sensor absolute time as a function of the sensor relative time of the internal clock of a sensor associated with the detected event and of the time of resetting to zero stored by a storage module in the electronic control unit at each reset to zero, defining a reference relative time. |
US11228418B2 |
Real-time eye diagram optimization in a high speed IO receiver
A example receiver includes analog circuitry configured to equalize and amplify an input signal and provide an analog signal as output; clock data recovery (CDR) circuitry configured to recover data clocks and edge clocks from the analog signal; a plurality of eye height optimization circuits, each of the plurality of eye height optimization circuits configured to, based on a respective data pattern of a plurality of data patterns, sample the analog signal based on the data clocks and the edge clocks, feed back first information to the analog circuitry for adjusting the eye amplitude, and feed back second information to the CDR circuitry for adjusting the data clocks; and an eye width optimization circuit configured to receive data and edge samples from the plurality of eye height optimization circuits, feed back third information to the CDR circuitry to adjust the edge clocks, and feed back fourth information to the analog circuitry to adjust the equalization. |
US11228417B2 |
Data sampling circuit
Various embodiments provide a data sampling circuit comprising a first sampling module configured to respond to a signal from the data signal terminal and a signal from the reference signal terminal and to act on the first node and the second node; a second sampling module configured to respond to the signal from the first node and the signal from the second node and to act on the third node and the fourth node; a latch module configured to input a high level to the first output terminal and input a low level to the second output terminal; and an offset compensation module connected in parallel to the second sampling module and configured to compensate an offset voltage of the second sampling module. |
US11228416B1 |
Clock calibration for data serializer
Various embodiments provide for calibrating one or more clock signals for a serializer, which can be used with a circuit for data communications, such as serializer/deserializer (SerDes) communications. In particular, for a serializer operating based on a plurality of clock signals, some embodiments provide for calibration of one or more of the plurality of clock signals by adjusting a duty cycle of one or more clock signals, a delay of one or more clock signals, or both. |
US11228413B2 |
Method for controlling frequency band for communication and electronic device thereof
An operation method of an electronic device includes determining whether a first communication module based on a first radio access technology (RAT) and a second communication module based on a second RAT operate in a connected state; determining whether a combination of a first band used by the first communication module and a second band used by the second communication module is a combination causing interference; and if the combination of the first band and the second band is a combination causing interference, transmitting a signal requesting to change one of the first band or the second band. The interference is caused by at least one transmission signal of the first RAT or at least one other signal derived from the at least one transmission signal. |
US11228408B2 |
Wireless communication device
According to one embodiment, a wireless communication device includes a receiver, a controller and a transmitter. The receiver receives a terminal identifier of a first terminal being a target for downlink frequency multiplexing transmission from another wireless communication device, and receives information identifying, of a plurality of frequency components, a first frequency component allocated to the first terminal. The controller selects, of a plurality second terminals belonging to the wireless communication device, a second terminal having a terminal identifier same as that of the first terminal and allocates the first frequency component to the selected second terminal. The transmitter transmits a header at a band including the plurality of frequency components, the header including the terminal identifier of the selected second terminal in a first field corresponding to the first frequency component, and transmits a first frame addressed to the selected second terminal via the first frequency component. |
US11228403B2 |
Jitter self-test using timestamps
A method for estimating jitter of a clock signal includes generating a phase-adjusted clock signal based on an input clock signal and a feedback clock signal using a frequency-divided clock signal. The method generating N digital time codes for each phase adjustment of P phase adjustments of the phase-adjusted clock signal using a reference clock signal. Each digital time code of the N digital time codes corresponds to a first edge of a clock signal based on the frequency-divided clock signal. P is a first integer greater than zero and N is a second integer greater than zero. The method includes generating a jitter indicator based on an expected period of the clock signal and the N digital time codes for each phase adjustment of the P phase adjustments. |
US11228402B2 |
Techniques for informing communications networks of desired packet transport treatment
A method is described and in one embodiment includes receiving at a first node in a communications network a Session Traversal Utilities for Network Address Translation (“STUN”) message associated with a first flow, wherein the STUN message comprises a flow attribute including corresponding to the first flow; analyzing the flow attribute at the first node; setting policy corresponding to the first flow in the network based on the analyzing, wherein setting the policy includes using the flow attribute of the STUN message to configure a network path for the first flow in the communications network; and forwarding the STUN message to a next network node. |
US11228396B2 |
Probabilistic amplitude shaping
This disclosure provides methods, devices and systems for encoding data in wireless communications. Some implementations more specifically relate to performing a first encoding operation on data bits of a code block to shape the amplitudes of the resultant symbols such that the amplitudes have a non-uniform distribution. In some aspects, the probabilities associated with the respective amplitudes generally increase with decreasing amplitude. For example, the non-uniform distribution of the amplitudes of the symbols may be approximately Gaussian. In some aspects, the first encoding operation is or includes a prefix encoding operation having an effective coding rate greater than 0.94 but less than 1. The first encoding operation is followed by a second encoding operation that also adds redundancy but does not alter the data bits themselves. In some aspects, the second encoding operation is or includes a low-density parity-check (LDPC) encoding operation associated with a coding rate greater than 5/6. |
US11228387B2 |
Time synchronization method and device
A time synchronization method and a device, where the method includes generating, by a first device, a first time synchronization frame according to a first coding scheme, where the first time synchronization frame includes a first frame header and a first time of day (TOD), the first frame header carries an identifier of the first coding scheme, and the first coding scheme defines a boundary of the first time synchronization frame and a location of the first TOD in the first time synchronization frame, and sending, by the first device, the first time synchronization frame to a second device using a first single line to trigger the second device to identify the first time synchronization frame according to the identifier of the first coding scheme, to obtain the first TOD from the first time synchronization frame, and to trace a time of the first device according to the first TOD. |
US11228382B2 |
Controlling the channel occupancy measurement quality
Methods and devices for controlling channel occupancy measurement quality are disclosed. A wireless device is configured for carrier aggregation under operation with frame structure type 3. The wireless device is configured to obtain a channel occupancy threshold, obtain a set of received signal strength indication, RSSI, samples on a carrier frequency and obtain a quality criterion for a channel occupancy measurement. The quality criterion defines a quality of an RSSI sample based on whether a value of the RSSI sample is within a range of a value of the channel occupancy threshold. The wireless device is further configured to determine the channel occupancy measurement for the carrier frequency based on the obtained channel occupancy threshold, the quality criterion and at least one RSSI sample of the set of RSSI samples, and perform at least one task based on the channel occupancy measurement. |
US11228381B2 |
Channel sounding using carrier aggregation
An example method may include a processing system of a channel sounding receiver having a processor receiving from a base station, at a location, a channel sounding waveform via a plurality of carriers, sampling the channel sounding waveform via the plurality of carriers to generate a plurality of per-carrier time domain sample sets, and processing the plurality of per-carrier time domain sample sets via a plurality of discrete Fourier transform modules to provide a plurality of per-carrier frequency domain sample sets. The method may further include the processing system aligning the plurality of per-carrier frequency domain sample sets in gain and phase to provide a combined frequency domain sample set and measuring a channel property at the location based upon the combined frequency domain sample set. |
US11228379B1 |
Radio signal processing network model search
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training and deploying machine-learned communication. One of the methods includes: receiving an RF signal at a signal processing system for training a machine-learning network; providing the RF signal through the machine-learning network; producing an output from the machine-learning network; measuring a distance metric between the signal processing model output and a reference model output; determining modifications to the machine-learning network to reduce the distance metric between the output and the reference model output; and in response to reducing the distance metric to a value that is less than or equal to a threshold value, determining a score of the trained machine-learning network using one or more other RF signals and one or more other corresponding reference model outputs, the score indicating an a performance metric of the trained machine-learning network to perform the desired RF function. |
US11228378B2 |
Method and system for estimating a transmission direction of a transmitter
The present disclosure relates to a method of estimating a transmission direction of a transmitter. The method comprises: performing a first measurement by means of a measurement system, thereby obtaining a first measurement value of a first transmitter; performing a second measurement by means of the measurement system, thereby obtaining a second measurement value of a second transmitter; obtaining position information of the first transmitter and the second transmitter; determining a position of the measurement system; and taking the first measurement value, the second measurement value, the position information as well as the position of the measurement system into account in order to estimate the transmission direction of the first transmitter. In addition, a system for estimating a transmission direction of a transmitter is described. |
US11228374B2 |
Method and system for a distributed optical transmitter with local domain splitting
Methods and systems for a distributed optical transmitter with local domain splitting are disclosed and may include, in an optical modulator integrated in a silicon photonics chip: receiving electrical signals, communicating the electrical signals to domain splitters along a length of waveguides of the optical modulator via one or more delay lines, and generating electrical signals in voltage domains utilizing the domain splitters for modulating the optical signals in the waveguides of the optical modulator by driving diodes with the electrical signals generated in the voltage domains. The delay lines may comprise one delay element per domain splitter, or may comprise a delay element per domain splitter for a first subset of the domain splitters and more than one delay element per domain splitter for a second subset of the domain splitters. |
US11228373B1 |
Optical grooming interconnection network
A system, apparatus, and method for an optical grooming network; wherein a set of switches form an optical grooming interconnection system where each switch is communicatively coupled to each other switch; a set of clients; where each switch of the set of switches is communicatively coupled to a client of the clients; wherein each client receiver is enabled to communicate through the set of switches to any client or modem; and a set of coherent optical modems; wherein each coherent optical modem is communicatively coupled to a switch of the set of switches; wherein each client of the clients is able to communicate through the set of switches to every coherent optical modem of the set of coherent optical modems, and each coherent optical modem in the set of coherent optical modems can communicate to every coherent optical modem of the set of coherent optical modems. |
US11228368B1 |
Characterization of inter-channel crosstalk in an optical network
An optical communications network comprises optical data links comprising data channels. A time-domain sampled waveform of a selected data channel is obtained. The Fourier transform is applied to the time-domain sampled waveform of the selected data channel to generate a frequency-domain waveform of the selected data channel. Time-domain sampled waveforms of the selected data channel's neighboring data channels are obtained. The Fourier transform is applied to the time-domain sampled waveforms of the neighboring data channels to generate frequency-domain waveforms of the neighboring data channels. The noise-to-signal ratio is calculated based on the frequency-domain waveforms. Based on the calculated noise-to-signal ratio, an optical signal to noise ratio (OSNR) penalty is estimated. A notification is generated when the OSNR penalty exceeds a predetermined threshold. |
US11228367B2 |
Communication device and communication method
A communication device used in an optical communication system, the communication device includes a mode change over device configured to switch between a learning mode for learning a normal state of an optical transmission path before operation and a monitoring mode for monitoring a state of the optical transmission path during operation, an anomaly detector configured to detect an anomaly of the optical transmission path using a prediction model determined by the learning mode when the monitoring mode is selected, and a data writer configured to extract waveform data including information related to the anomaly to output the extracted waveform data to an outside when the anomaly is detected. |
US11228358B2 |
Signal transmission method, terminal device and network device
Disclosed are a signal transmission method, a terminal device and a network device. The method comprises: receiving beam indication information sent by a network device, wherein the beam indication information is used to indicate whether beams for transmitting N signals are the same, and N is an integer greater than 1; and according to the beam indication information, transmitting the N signals with the network device. By means of the method, the terminal device and the network device in the embodiments of the present invention, signal transmission is carried out depending on whether a plurality of signals are transmitted using the same beam, determined according to beam indication information, so that the terminal device and the network device can determine respective optimal beams for transmitting or receiving signal, thereby improving the performance of subsequent signal detection. |
US11228357B2 |
Transmissions between a baseband unit and a radio unit of transformed signals in a beam space
There is provided a method for exchanging spatial information of signals received from a User Equipment (UE) between a radio unit and a baseband unit. The method comprises: determining a channel estimate based on signals received from a User Equipment (UE); selecting a spatial transformation to be applied to the received signals, based on the channel estimate; and sending a set of signals transformed by the selected transformation to a baseband unit. A radio unit for implementing this method is also provided. |
US11228355B2 |
Methods of energy optimization for multi-antenna systems
The solution presented herein improves the power consumption of an antenna array, such as used in beamforming systems, based on the antenna weights of the one or more antenna elements of the subarrays of the antenna array. To that end, a transmitter node comprising the antenna array determines whether the antenna weights of each subarray satisfy a threshold condition. If the weights satisfy the threshold condition, the transmitter node disables the corresponding power amplifier. |
US11228350B2 |
Beam-based detection for interference mitigation
Methods, systems, and devices for wireless communications are described. The method includes receiving a transmission parameter of a second wireless network, scanning, based on the transmission parameter, for transmission activity of the second wireless network using a set of beams generated in accordance with a beamforming codebook, and opportunistically communicating with a second wireless device of the first wireless network using the beamforming codebook based on the scanning. |
US11228349B2 |
User equipment assisted inter-sector interference avoidance
Certain aspects of the present disclosure provide techniques for reducing inter-sector interference. A method generally includes transmitting, in a multi-user multiple-input and multiple-output (MU-MIMO) mode, first beamformed transmissions using a first beam to a first user equipment (UE) in a first sector and second beamformed transmissions using a second beam to a second UE in a second sector, wherein the BS is configured to control a plurality of sectors comprising the first sector and the second sector, receiving, from the first UE, a feedback report indicating inter-sector interference encountered by the first UE in the first sector due to the second beamformed transmissions, and taking one or more actions based on the feedback report to reduce the inter-sector interference encountered by the first UE in the first sector. |
US11228347B2 |
User equipment assisted multiple-input multiple-output downlink configuration
Aspects of this disclosure relate to user equipment assisted multiple-input multiple-output (MIMO) downlink configuration. Features are described for a user equipment determination of a desired transmission mode and/or active set of serving nodes for wireless communication service(s). The user equipment may submit a request for the desired mode and/or nodes to a network controller such as a baseband unit. The user equipment may subsequently receive a configuration for the requested wireless communication service(s). |
US11228345B1 |
Electronic devices having differential-fed near-field communications antennas
A device with near-field communications (NFC) capabilities is provided. A housing may include first and second segments and a support plate separated from the segments by a slot. A first inductor may be coupled between the first segment and the plate. A second inductor may be coupled between the second segment and the plate. A transceiver may have a first signal terminal coupled to the first segment over a first path and a second signal terminal coupled to the second segment over a second path. The transceiver may convey differential signals in an NFC band over a loop path for an NFC antenna that includes the first conductive path, the first segment, the first inductor, a portion of the plate between the first and second inductors, the second inductor, the second segment, and the second conductive path. This may optimize wireless performance and volume for the NFC antenna. |
US11228344B2 |
Low power mode card detection
A circuit includes an in-phase/quadrature down converter configured to be coupled to an antenna of a first NFC (near field communication) device. DC cancellation circuitry is coupled at outputs of the converter. Detection circuitry is configured to analyze DC signals output by the DC cancellation circuits to detect the presence of a second NFC device. |
US11228343B2 |
Circuit for wireless data transfer comprising temperature regulation
A circuit for an NFC chip is described herein. According to one exemplary configuration, the circuit comprises an antenna for near field communication, an antenna resonant circuit which has an adjustable resonant frequency, a temperature sensor and a controller circuit coupled to the temperature sensor. The controller circuit is designed to change the resonant frequency of the antenna resonant circuit according to a temperature sensor signal provided by the temperature sensor. |
US11228341B2 |
Aircraft data transmission modules
Provided are methods and systems for terrestrial data transmission between aircrafts and external networks, such as airline and/or airport computer systems. When an aircraft is parked at the gate, the aircraft is connected to and powered by an electrical cable, such as a stinger cable. This cable may be also be used for wired data transmission between the aircraft and the gate using broadband over power line (BPL) technology. The gate and the aircraft are each equipped with a BPL module. The aircraft may include other communication modules, such as a Wi-Fi module, a cellular module, and/or an Ethernet module. These other modules can be also used for data transmission in addition to or instead of communication through the BPL module. A communication link manager may be used to select one or more communication modules depending on availability of communication links, costs, speed, and other parameters. |
US11228340B1 |
Ethernet link transmit power method based on network provided alien crosstalk feedback
A method of operation on an Ethernet network having multiple Ethernet links interconnected via a network device. The method includes detecting installation of a new Ethernet link in the Ethernet network utilizing the network device. A link training process is then initiated for the new Ethernet link. The link training process includes transmitting training data at a first transmit power level and first data rate to a link partner during a data transfer interval. Network feedback information is then accessed, including performance metrics associated with the multiple Ethernet links during the training data transfer interval. The first data rate and/or first transmit power level are then adjusted to an adjusted second data rate and/or second transmit power level based on the network feedback information. |
US11228339B2 |
Comprehensive system design to address the needs for virtual segmentation of the coaxial cable plant
Methods and devices for dynamically designated first and second subsets of a plurality of frequency channels as upstream and downstream channels, respectively, for performing wired communications using virtual segmentation between a network controller and an endpoint device. performing virtual segmentation to service an endpoint device. Communications are performed between the network controller and the endpoint device through a wired communication medium using the upstream and downstream channels. The first subset and second subsets of the plurality of channels are designated as upstream channels and downstream channels, respectively, based at least in part on one or both of upstream and downstream channel demand and channel availability. |
US11228333B1 |
Protective cell phone case with retractable tether
A protective cell phone case with retractable tether disposed to secure a cell phone to a user and prevent impact of the cell phone with a ground surface should a user inadvertently drop the cell phone during use, or otherwise while porting said cell phone, wherein a retractable tether member secures endwise to a user and forcibly retracts into a discoid housing exteriorly disposed upon a base whenever tension upon the tether member is released, whereby a cell phone is secured about a user and maintained proximal and suspendable thereto to prevent impact of a falling cell phone with the ground, as desired. |
US11228331B2 |
Low-power double-quadrature receiver
A low-power double-quadrature receiver is disclosed. The double-quadrature receiver includes a quadrature signal generator configured to generate a first quadrature signal and a second quadrature signal based on each component of a differential input signal, and a switching stage configured to perform down-conversion on the first quadrature signal and the second quadrature signal. |
US11228330B2 |
Distribution of clipping noise between bands
A method comprising: obtaining a first radio signal and a second radio signal, determining a first envelope signal based on the first radio signal and a second envelope signal based on the second radio signal, determining a preview envelope signal based on the first envelope signal and the second envelope signal, determining a common clipping gain signal based on the preview envelope signal, determining a first clipping gain signal based on the common clipping gain signal and a first weighing factor, determining a second clipping gain signal based on the common clipping gain signal and a second weighing factor, performing a first crest factor reduction for the first radio signal utilizing the first clipping gain signal, and performing a second crest factor reduction for the second radio signal utilizing the second clipping gain signal. |
US11228325B2 |
Multiband receivers for millimeter wave devices
We disclose multiband receivers for millimeter-wave devices, which may have reduced size and/or reduced power consumption. One multiband receiver comprises a first band path comprising a first passive mixer configured to receive a first input RF signal having a first frequency and to be driven by a first local oscillator signal having a frequency about ⅔ the first frequency; a second band path comprising a second passive mixer configured to receive a second input RF signal having a second frequency and to be driven by a second local oscillator signal having a frequency about ⅔ the second frequency; and a base band path comprising a third passive mixer configured to receive intermediate RF signals during a duty cycle and to be driven by a third local oscillator signal having a frequency about ⅓ the first frequency or about ⅓ the second frequency during the duty cycle. |
US11228324B2 |
Special node (constituent code) processing for fast/simplified polar successive cancellation list (SCL) decoder
An apparatus and a method for constituent code processing in polar successive cancellation list (SCL) decoding and a method thereof. The apparatus includes a processor configured to determine a number of r candidate paths, wherein r is an integer; determine path metrics PMtj of a codeword j for each candidate path t; and select r most probable paths based on the path metrics PMtj. The method includes determining q indicies min1, min2, . . . , minq of least reliable bits in the constituent code, wherein q is a number; determining a number of r candidate paths, wherein r is an integer; determining path metrics PMtj of a codeword j for each candidate path t; and selecting r most probable paths based on the path metrics PMtj. |
US11228322B2 |
Rebalancing in a geographically diverse storage system employing erasure coding
Rebalancing as a result of re-encoding a code chunk in response to scaling out of a geographically diverse storage system employing erasure coding technology is disclosed. After a scaling out event, a new erasure coding scheme can be selected. An old coding chunk generated according to an old erasure coding scheme can be re-encoded into a new coding chunk according to the new erasure coding scheme and based on a data chunk not previously protected by the old coding chunk. The re-encoding can be selected to diversify distribution of chunks, resulting in rebalancing occurring as part of re-encoding. In an embodiment, the new coding chunk can be generated in a new zone from the scaling out event. In another embodiment, the data chunk can be moved to the new zone from the scaling out event. |
US11228320B2 |
Information processing device, information processing method, and computer readable medium
A checksum negotiation unit selects as a candidate polynomial, a candidate for a generator polynomial to be used in communication between a safety master device and a safety slave device from a plurality of polynomials. A communication cycle verification unit determines whether or not a calculation using the candidate polynomial is completed in each of the safety master device and the safety slave device by a predetermined deadline. The communication cycle verification unit designates the candidate polynomial as the generator polynomial when it is determined that the calculation using the candidate polynomial is completed in each of the safety master device and the safety slave device by the deadline. |
US11228319B1 |
Phase locked loop with phase error signal used to control effective impedance
Phase-locked loop circuitry to generate an output signal, the phase-locked loop circuitry comprising oscillator circuitry, switched resistor loop filter, coupled to the input of the oscillator circuitry (which, in one embodiment, includes a voltage-controlled oscillator), including a switched resistor network including at least one resistor and at least one capacitor, wherein an effective resistance of the switched resistor network is responsive to and increases as a function of one or more pulsing properties of a control signal (wherein pulse width and frequency (or period) are pulsing properties of the control signal), phase detector circuitry, having an output which is coupled to the switched resistor loop filter, to generate the control signal (which may be periodic or non-periodic). The phase-locked loop circuitry may also include frequency detection circuitry to provide a lock condition of the phase-locked loop circuitry. |
US11228318B1 |
Bandwidth adjustability in an FMCW PLL system
Exemplary aspects of the present disclosure involve a system and related method of PLL circuitry in a chirp signaling FMCW system having a variable PLL bandwidth (BW). To adjust the BW, the PLL circuitry may provide for variable capacitance in the circuitry. This capacitance change may allow for a bandwidth for one slope, as used for the acquisition period. The capacitance may then be adjusted to allow for a different bandwidth for another slope which is used to reset the circuitry in preparation for another frequency sweep. Adjusting the PLL BW, via variable capacitance, may be used to mitigate phase noise which can adversely the PLL. |
US11228306B2 |
Power switch over-power protection
An over-power protection circuit for a MOSFET includes an over-current protection circuit and a current limit setting circuit, and an over-power protection circuit configured to continuously monitor a voltage across the MOSFET being protected to prevent over-power conditions, and to dynamically determine a maximum current limit based on the monitored voltage and a pre-set maximum power limit. |
US11228299B2 |
Piezoelectric thin film resonator with insertion film, filter, and multiplexer
A piezoelectric thin film resonator includes: a substrate; a piezoelectric film located on the substrate; a lower electrode and an upper electrode facing each other across at least a part of the piezoelectric film; and an insertion film that is inserted between the lower electrode and the upper electrode, is located in an outer peripheral region within a resonance region where the lower electrode and the upper electrode face each other across the piezoelectric film, is located in a region that is located outside the resonance region and surrounds the resonance region, is not located in a center region of the resonance region, and includes a first part, which is located in the resonance region and has a first film thickness, and a second part, which is located outside the resonance region and has a second film thickness, the first film thickness being less than the second film thickness. |
US11228297B2 |
Elastic wave device
An elastic wave device includes an elastic wave element mounted on a mounting substrate, with the elastic wave element being sealed by a sealing resin layer. The elastic wave element is bonded to electrode lands on the mounting substrate using bumps. Recessed portions are provided on a surface of the sealing resin layer on a side opposite to the side facing the mounting substrate. A ratio D/H between a depth of the recessed portions, and a distance of a portion of the sealing resin layer from the surface to a second main surface of a piezoelectric substrate, is no less than about 1/3. |
US11228291B2 |
Chopper amplifiers with multiple sensing points for correcting input offset
Chopper amplifiers with multiple sensing points for correcting input offset are disclosed herein. In certain embodiments, a chopper amplifier includes chopper amplifier circuitry including an input chopping circuit, an amplification circuit, and an output chopping circuit electrically connected in a cascade along a signal path. The chopper amplifier further incudes a multi-point sensed offset correction circuit that generates an input offset compensation signal based on sensing a signal level of the signal path at multiple signal points. Furthermore, the multi-point sensed offset correction circuit injects the input offset compensation signal into the signal path to thereby compensate for input offset voltage of the amplification circuit while suppressing output chopping ripple from arising. |
US11228286B2 |
Linear amplifier
A linear amplifier outputs differential signals corresponding to differential signals input to a first signal input terminal and a second signal input terminal, and includes a first resistor, a second resistor, a third resistor, a fourth resistor, a first capacitor, a second capacitor, a third transistor, a fourth transistor, a differential amplifier, and a signal processing circuit. The signal processing circuit includes a first transistor and a second transistor, and includes a resistor as a common voltage output part that outputs a common voltage. The differential amplifier receives the common voltage and a reference voltage, and applies a voltage corresponding to the voltage difference between the common voltage and the reference voltage to the control terminals of the transistors. |
US11228283B2 |
Negative impedance circuit for reducing amplifier noise
A circuit includes a first operational amplifier having an inverting input and a non-inverting input, and a negative resistance circuit connected to the inverting input of the operational amplifier. The negative resistance circuit includes a second operational amplifier, a current source controlled by the second operational amplifier, and a cross-coupled transistor circuit having at least one transistor biased by a current produced by the current source. |
US11228280B1 |
Microelectromechanical system resonator-based oscillator
A device includes a MEMS resonator and oscillator circuit coupled to the MEMS resonator. The circuit includes a first transistor having a first control terminal and first and second current terminals, and a second transistor having a second control terminal and third and fourth current terminals. The circuit includes a resonator coupling network configured to inductively couple MEMS resonator terminals to the first and third current terminals, and to couple the first and third current terminals. The circuit includes a control terminal coupling network configured to couple the first and second control terminals, and to reduce a voltage swing at the first and second control terminals relative to a voltage swing at the first and third current terminals. The circuit includes a second terminal coupling network configured to couple the second and fourth current terminals. A second terminal coupling network resonant frequency is approximately that of MEMS resonator. |
US11228279B2 |
Oscillator circuits and methods for realignment of an oscillator circuit
Oscillators and methods for realignment of an oscillator are provided. An oscillator includes an inductor having first and second terminals and a capacitor electrically coupled in parallel to the inductor at the first and second terminals. A first transistor of a first conductivity type is electrically coupled to the first terminal and a voltage source. The first transistor includes a gate configured to receive a first realignment signal. When the first realignment signal is in a realignment state, the first transistor is turned on and a voltage of the first terminal is increased from a low level to a high level in order to align a phase of a waveform of the oscillator. |
US11228270B2 |
Drive apparatus for rotating electric machine
A drive apparatus is provided for driving a multi-phase rotating electric machine. The rotating electric machine includes a plurality of winding groups for respective phases. The drive apparatus includes a first inverter connected with start terminals of the winding groups of the rotating electric machine, a second inverter connected with intermediate terminals of the winding groups, and an energization controller configured to selectively perform energization of the winding groups by the first inverter and energization of the winding groups by the second inverter. Each of the first and second inverters includes a plurality of switch pairs respectively corresponding to the winding groups and each consisting of an upper-arm switch and a lower-arm switch that are connected in series with each other. Moreover, each of the upper-arm and lower-arm switches of the first inverter is configured to have bidirectionally-conducting and bidirectionally-blocking functions. |
US11228267B2 |
Electric drive device
The disclosure relates to an electrical drive device having: an inverter including an inverter unit for each phase; a control unit configured to control the inverter units by application of vector control; and a rotating electrical machine having a stator that includes a plurality of phase windings connected to the inverter units. Each of the phase windings includes a first part-winding and an electrically isolated second part-winding. The inverter units include a first phase module and a second phase module. The phase modules deliver the electrical phase assigned to the respective inverter unit in a separate and a mutually electrically isolated manner. The first part-winding is electrically connected to the first phase module and the second part-winding is electrically connected to the second phase module. |
US11228264B2 |
Method of determining the position of a freely rotating rotor in a permanent magnet motor, and a control ciruit and a system therefor
A control circuit, a system and a method 200 of determining a position of a rotor in a permanent magnet motor PM1 in a state when the rotor is freely rotating, the motor being connected to a direct voltage link 101 via an inverter circuit 102, wherein the inverter circuit is operable for connecting windings of a stator of said motor to the direct voltage link, the method comprising the following a step a) short circuiting 201 the windings of the stator of said permanent magnet motor, a step b) measuring 202 a back electromotive force EMF of the short-circuited windings of the stator; and a step c) determining 203 the position of the rotor by means of the measured back EMF. |
US11228262B2 |
Motor driver control system for controlling more than one motor
A motor driver control system is configured for connection to a plurality of motors, the motor control system includes a motor driver command module, and the motor driver command module is configured to: access information related to one or more operating metrics of the plurality of motors; analyze the information to determine whether a maintenance condition exists in any of the plurality of motors; and if a maintenance condition exists in any of the plurality of motors: prevent electrical power from reaching any of the plurality of motors, identify which one or more of the plurality of motors has the maintenance condition, disconnect the one or more identified motors from the motor driver control system, and restore electrical power to all of the plurality of motors other than the identified motors after disconnecting the one or more identified motors. |
US11228261B2 |
Motor driving control apparatus and motor driving control method
A motor driving control apparatus according to an embodiment includes an interphase short-circuiting unit that is connected to at least two-phase coils of the three-phase coils, and that short-circuits at least a pair of coils among three pairs that are different combinations of two coils of the three-phase coils, in response to a short-circuiting signal; a short-circuiting signal output unit that is connected between the coil and the interphase short-circuiting unit, and that outputs a short-circuiting signal to the interphase short-circuiting unit when an input of the brake control signal is received; and a protecting operation unit that stops the interphase short-circuiting unit short-circuiting the coils, based on a voltage condition of a one-phase coil of the three-phase coils. |
US11228255B2 |
Rectifier assembly
A rectifier assembly (20) for rectifying an AC voltage into a DC voltage has at least one first terminal (21, 22, 23), a second terminal (24) and an intermediate circuit (50). The first terminal (21, 22, 23) is connected via a circuit (31, 32, 33) to a neutral point (40), and the second terminal (24) is connected to the neutral point (40). The circuit arrangement (31, 32, 33) has a first branch (81) and a second branch (82) connected in parallel with the first branch (81). Both branches (81, 82) comprise a changeover arrangement (92, 93) and a coil (91, 94) connected in series with the changeover arrangement. The coil (91) in the first branch (81) is on the side of the changeover arrangement (92) averted from the neutral point (40), and the coil (94) in the second branch (82) is on the side facing the neutral point (40). |
US11228250B2 |
Flyback power switch structure for bridgeless rectifier
A flyback power switch structure for bridgeless rectifier includes a main transformer, a primary side circuit, a secondary side circuit, and a feedback control circuit. The main transformer includes a primary coil and a secondary coil. The primary side circuit is connected to the input AC power supply and the primary coil of main transformer, and is provided with a first switch component, a second switch component, a third switch component, and a fourth switch component. The secondary side circuit is connected to the secondary coil of said main transformer, generating an output voltage. The feedback control circuit is connected to the secondary side circuit and the first, second, third and fourth switch components of primary side circuit, comparing phase signals according to the feedback signals and the first and second terminal voltages of an input AC power supply to control the actuation of the first, second, third and fourth switch components. |
US11228247B2 |
Parallel power supply device
A parallel power supply device according to the present invention includes: a plurality of DC/DC converters connected in parallel to perform power conversion between a DC power supply and a common load; a voltage detector to detect a voltage of the common load; and a plurality of control circuits each to control a corresponding one of the plurality of DC/DC converters, wherein during parallel operation of the plurality of DC/DC converters, the plurality of control circuits control the plurality of DC/DC converters by proportional control using a same target voltage value and a same proportional gain, based on a voltage value of the common load detected by the voltage detector. Therefore, in the parallel power supply device in which the plurality of DC/DC converters are connected in parallel, the individual DC/DC converters can supply electric power to the load independently and equally. |
US11228246B1 |
Three-phase AC to DC isolated power conversion with power factor correction
An isolated, power factor corrected, converter, for operation from a three-phase AC source, comprises three power processors, each power processor connected to one of the three phases. Each power processor comprises a cascade of a first and a second power conversion stage. At least one of the first and second power converters in each power processor is configured to provide galvanic isolation through a DC Transformer between the power processor input and output. At least one of the first and second power converters in each power processor is configured to provide power factor correction at the AC source. Substantially all of the bulk energy storage and low frequency filtering is provided by storage elements at the output of the power system. Low voltage semiconductor devices may be cascaded to implement low output capacitance high voltage switches in a multi-cell resonant converter for high voltage applications. |
US11228242B2 |
Power converter and method for driving an electronic switch
A method for operating an electronic switch in a power converter and a control circuit for operating an electronic switch in a power converter are disclosed. The method includes: driving an electronic switch coupled to an inductor in a power converter in successive drive cycles each including an on-time and an off-time, wherein the off-time includes a demagnetization time period in which the inductor is demagnetized and a delay time, and wherein an end of the delay time is dependent on the occurrence of a predefined number of signal pulses of a pulse signal. The pulse signal includes a first portion that represents local minima of a voltage across the switch and, a second portion that includes signal pulses obtained by timely extrapolating the pulse signal of the first portion. |
US11228239B2 |
Discharge of an AC capacitor using totem-pole power factor correction (PFC) circuitry
An AC capacitor is coupled to a totem-pole type PFC circuit. In response to detection of a power input disconnection, the PFC circuit is controlled to discharge the AC capacitor. The PFC circuit includes a resistor and a first MOSFET and a second MOSFET coupled in series between DC output nodes with a common node coupled to the AC capacitor. When the disconnection event is detected, one of the first and second MOSFETs is turned on to discharge the AC capacitor with a current flowing through the resistor and the turned on MOSFET. Furthermore, a thyristor may be simultaneously turned on, with the discharge current flowing through a series coupling of the MOSFET, resistor and thyristor. Disconnection is detected by detecting a zero-crossing failure of an AC power input voltage or lack of input voltage decrease or input current increase in response to MOSFET turn on for a DC input. |
US11228237B2 |
Switching power supply and start-up improvements thereof
The present invention is directed toward a switching power supply and improvements thereof. In accordance with an embodiment, a switching power supply is provided. The switching power supply comprises: a first power supply stage that forms an intermediate regulated voltage; and a second power supply stage configured to accept the intermediate regulated voltage and configured to form a regulated output voltage, wherein the intermediate voltage is set to an initial target level upon start-up of the power supply and wherein the intermediate regulated voltage is set to a second target level during steady-state operation of the power supply. |
US11228234B2 |
Power converter arrangement attenuation element for electrical ringing
A power converter arrangement includes a semiconductor switch system with a controllable switch. A capacitor unit includes a capacitor having a capacitance value, the capacitor unit being operatively connected to the semiconductor switch system. A conductor arrangement includes a conductor adapted to conduct an electric current between the capacitor unit and the semiconductor switch system. The conductor has a resistance and an inductance. A resonant circuit is formed by the resistance, the inductance and the capacitance, and the power converter arrangement includes at least one attenuating element for attenuating an electrical ringing in the resonant circuit. The attenuating element is conductively isolated from the resonant circuit. The attenuating element includes ferromagnetic material, and the attenuating element is magnetically coupled to the conductor such that variations in the electric current intensity of the conductor induces eddy currents within the attenuating element. |
US11228232B2 |
Displacement devices and methods for fabrication, use and control of same
Displacement devices comprise a stator and a moveable stage. The stator comprises a plurality of coils shaped to provide pluralities of generally linearly elongated coil traces in one or more layers. Layers of coils may overlap in the Z-direction. The moveable stage comprises a plurality of magnet arrays. Each magnet array may comprise a plurality of magnetization segments generally linearly elongated in a corresponding direction. Each magnetization segment has a magnetization direction generally orthogonal to the direction in which it is elongated and at least two of the magnetization directions are different from one another. One or more amplifiers may be connected to selectively drive current in the coil traces and to thereby effect relative movement between the stator and the moveable stage. |
US11228231B2 |
Electrical machine and methods of assembling the same
A fluid circulating assembly having a rotation axis is provided. The fluid circulating assembly includes a fan impeller including an inlet ring and a rear plate that together define a central fan chamber. The fluid circulating assembly also includes an electrical machine having a rotor assembly, a stator assembly, and at least one bearing assembly. The rotor assembly is coupled to the rear plate such that the electrical machine is located entirely outside the central fan chamber. The rotor assembly includes a hub portion having a radially inner wall that at least partially defines a central opening extending entirely through the electrical machine and oriented about the rotation axis such that the central opening does not include a shaft extending therethrough. |
US11228230B2 |
Motor
This motor includes a yoke housing, a brush holder, a housing case and a circuit board. The brush holder holds a power supply brush and power supply terminals. The housing case has a board containing recess into which front end portions of the power supply terminals are inserted. The circuit board has terminals which are electrically connected to the power supply terminals within the board containing recess. The power supply terminals have terminal connection parts which linearly extend and are arranged in the board containing recess. The terminals are fork terminals which are electrically connected to the terminal connection parts. With respect to the terminal connection parts, portions closer to the base ends than terminal connected positions, where the terminals are connected, are covered by noise reduction member for reducing noise. |
US11228228B2 |
Electrical machine and maintenance methods thereof
In a first aspect, a method of performing maintenance operations in an electrical machine is provided. The method comprises positioning the rotor in a first position; disconnecting electrical windings, removing one or more segments of an electrical conductor ring and positioning the rotor in a second position without connecting the removed segments of the electrical conductor ring. In a further aspect, a method of operating an electrical machine is also provided. In yet a further aspect, it is provided an electrical machine comprising an electrical conductor ring having a releasable segment. |
US11228225B2 |
Electric motor assembly for railway drive
An electric motor assembly for railway drive. The motor assembly comprises: an electric drive motor; a ventilation and cooling device for ventilating and cooling the electric drive motor through cooling air; and a draining device to drain the ventilation and cooling air flow. The draining device is provided with a silencer device for the cooling air flow. The silencer device comprise at least one straight channel to reduce the turbulent flow into a substantially laminar flow of the out-flowing ventilation and cooling air. Furthermore, the draining device comprises a scroll, which consists of two separate arched channels in order to avoid the formation of stationary vortices. The two arched channels communicate with one another, from the fluidic point of view, only in a common outlet area for the ventilation and cooling air. |
US11228220B2 |
Bus-bar unit and motor
A bus-bar unit includes bus-bars and a bus-bar holder supporting the bus-bars. Each bus-bar includes first and second bus-bar pieces. The first bus-bar piece includes a coil wire connection portion connected to a coil wire drawn from the stator and a first joint terminal joined to the second bus-bar piece. The second bus-bar piece includes an external connection terminal connected to an external apparatus and a second joint terminal joined to the first bus-bar piece. At least a portion of the first bus-bar pieces is embedded in the bus-bar holder. The first joint terminal includes a joint surface which faces and is joined to the second joint terminal and an opposite surface facing a side opposite to the joint surface. The joint surface and the opposite surface of the first joint terminal are exposed from the bus-bar holder. |
US11228215B2 |
System of a conductor disposed within an insulator
A method includes forming one or more cores, wherein each of the one or more cores has a cross section corresponding to a conductor to be subsequently formed, forming an insulator around the one or more cores, removing the one or more cores to expose one or more recesses within the insulator, and forming one or more conductors in at least one of the one or more recesses of the insulator such that the cross sections of the one or more conductors conform to an interior surface of the one or more recesses in the insulator. |
US11228210B2 |
Multi-coil wireless power transmitter
A system and method of transmitting power according to some embodiments includes sequentially pinging each of a plurality of transmit coils to locate a receiver; determining one or more active coils from the plurality of transmit coils based on the location of the receiver; activating the one or more active coils in a full-bridge mode to transfer power to the receiver; determining a base efficiency based on the one or more active coils; monitoring non-active ones of the plurality of transmit coils; determining if the receiver has moved based on the monitoring; if the receiver has moved to a new position, determining secondary coils according to the new position, and transitioning power to provide power from a new active coil configuration. |
US11228205B2 |
Wireless power transfer method, apparatus and system
A wireless power transmitter which performs communication with one or more wireless power receivers, includes a power converter including at least one coil configured to convert current into magnetic field, and a power transmission controller configured to communicate with a wireless power receiver based on a frame, wherein the frame includes a sync pattern and a plurality of slots which have different slot numbers respectively, wherein the sync pattern indicates a first slot as allocated to the wireless power receiver, wherein the power transmission controller receives a first packet from the wireless power receiver in the first slot having a first slot number, and receives a second packet from the wireless power receiver in a second slot having a second slot number, and wherein the second packet includes an information field indicating the first slot number. |
US11228202B2 |
Synchronized standby startup of power supplies with current injection
A system including multiple power supplies is provided. Each of the power supplies is configured to provide a standby power to a management unit in the system through a standby output and a main power through a main output, when an input power signal has been received for the system. The system also includes a resistor configured to receive a standby signal from each of the power supplies to raise a signal voltage, wherein the standby signal is a pre-selected current. The system also includes a controller in each of the power supplies, the controller configured to raise the signal voltage to the specified value when the signal voltage is greater than a threshold, and to enable the standby power from a respective power supply to reach the management unit when the signal voltage is within the specified value. A method to use the above system for a synchronized power supply to a management unit is also provided. |
US11228199B2 |
Wireless charging device and wireless charging system
A wireless charging device is configured to charge a terminal and includes a first transmitting coil and a second transmitting coil. The first transmitting coil and the second transmitting coil are in a layered distribution, and the second transmitting coil is movable between a first position and a second position along a direction perpendicular to a central axis of the second transmitting coil. When the second transmitting coil is located at the first position, an orthographic projection of the second transmitting coil on a preset plane partially coincides with an orthographic projection of the first transmitting coil on the preset plane, where the preset plane is perpendicular to the central axis. When the second transmitting coil is located at the second position, the orthographic projection of the second transmitting coil on the preset plane does not coincide with the orthographic projection of the first transmitting coil on the preset plane. |
US11228195B2 |
Lithium ion devices, operated with set operative capacity
Systems and methods are provided for operating lithium ion devices by setting an operative capacity below a rated capacity value of the lithium ion device, and operating the lithium ion device at the set operative capacity by decreasing a lower voltage cutoff value during discharging and/or by increasing an upper voltage cutoff level during charging—to support operation at the set operative capacity. The systems and methods may utilize residual lithium in device components such as anodes, cathodes, electrolyte etc. or combinations thereof, and/or external lithiation to increase the cycling lifetime of the lithium ion devices, to adapt to user preferences and expected use profiles, and to simplify device status indications to the user. Advantageously, relatively simple circuitry is required to implement the provided methods and systems, and achieve customizable operation of the lithium ion devices. |
US11228193B2 |
Serial SOC testing for improved fast-charge algorithm
An automatically generated and customized fast charging process results in reduced degradation in the battery cell. An algorithm for a particular battery cell profile is automatically generated and customized to minimize degradation due to fast charging for that particular batch. To generate the custom algorithm, battery cell information is retrieved for a profile of a battery, wherein each battery profile may have a particular manufacturer, model, type, electrode batch, and potentially other specific identification information. Each battery cell is charged from a particular SOC level and at a selected C-rate, and then discharged. During discharge, the battery cell is monitored for detection of lithium plating or other undesirable effects. A lookup table is automatically generated from the battery cell information, and can be provided to devices and/or battery management systems. The BMS then uses the lookup table to apply a charging process that is customized to the on-board battery. |
US11228186B2 |
Charger having failure detection function and failure detection method
A charger includes: a power supply device for charging a secondary battery; a power supply path that includes a first switch and a second switch, and supplies electric power from the power supply device to the secondary battery; a discharge circuit that includes a first resistor and a third switch, has one end connected to a connection point between the first switch and the second switch, and has the other end connected to a ground line; a short-circuit preventing circuit that includes a second resistor and a fourth switch, and is connected in parallel to the first switch; and a control device that controls open-close of each switch and acquires a voltage value VP, wherein the control device detects a failure of each switch on a condition where the voltage value VP is different between a normal state and a failure state, in a combination of open-close control for each switch. |
US11228181B2 |
Method for controlling the power of a system, and device for controlling the power of a system
A method for controlling the power of a system, and a device for controlling the power of a system, the system having an electric energy source, electric consumers, an energy storage, an inverter, and a charge controller, the system being connected via an interconnected power sensor to the in particular public AC electric power supply, and the power sensor may be used for ascertaining the power withdrawn by the system from the in particular public AC electric power supply, or for ascertaining a corresponding quantity, such as the active power withdrawn from the in particular public AC electric power supply, the sensor signal being transmitted to a controller which regulates the power withdrawn from the in particular public AC electric power supply toward zero by appropriate actuation of the inverter and the charge controller. |
US11228179B2 |
Decomposition-coordination voltage control method for wind power to be transmitted to nearby area via flexible DC
The present disclosure proposes a decomposition-coordination voltage control method for wind power to be transmitted to a nearby area via flexible DC. The method includes: initializing parameters; sending the parameters to wind power farms; for each of the wind power farms, establishing a voltage control optimization sub-model; solving the voltage control optimization sub-model to obtain a first optimal result; for the control center, establishing a voltage control optimization main model; solving the voltage control optimization main model to obtain a second optimal result; calculating a determination index based on the first optimal result and the second optimal result; and determining whether the determination index is convergent to an admissible value, if no, updating the parameters and returning to establishing the voltage control optimization sub-model. |
US11228178B2 |
Photovoltaic power plant system
A photovoltaic power plant system for power generation, comprising one or more photovoltaic clusters and one or more modular multilevel converters. Each photovoltaic cluster includes a number of photovoltaic strings connected to one or more MPPT DC/DC, converters connected to a common LVDC, bus. Each photovoltaic cluster includes a DC/DC converter including an input connected to the LVDC bus, and an output connected to a MVDC collection grid. Each of the one or more modular multilevel converters includes an input connected to the one or more photovoltaic clusters via the MVDC collection grid and an output connected to a transmission grid. |
US11228177B2 |
Power control system
A power control system is disposed in a predetermined area. The power control system includes a server, a smart gateway device, a power detection device, a smart meter, a first power control device, a power generation device, a second power control device, a plurality of electronic devices, and a power storage device. The power detection device detects a value of a supply current per second of the first power of the first power control device. The power detection device detects a value of a used current per second of the second power of the second power control device. The power detection device provides a current difference between the value of the supply current and the value of the used current to the first power control device and the smart gateway device. The first power control device adjusts the first power at least based on the current difference. |
US11228173B2 |
Limiter circuit
A switch element is arranged between an input terminal and an output terminal. A signal from the input terminal is distributed by a capacitative element and supplied to the cathode side of a diode. An inductor is connected to the cathode side of the diode, and a smoothing circuit including a capacitative element and a resistor is connected to the anode side. The switch element has a control terminal connected to the anode of the diode, and turns off a path between the input terminal and the output terminal when a voltage is applied to the control terminal. |
US11228172B2 |
Electrical contact thermal sensing system and method
A thermal sensing system includes an electrical contact, a sensing element, and at least one position sensor. The electrical contact releasably connects to a mating contact for establishing a conductive path across a mating interface. The electrical contact defines a channel therein that extends from an opening along an outer surface of the electrical contact. The sensing element is at least partially outside of the channel and is configured to move relative to the electrical contact from a first position to a second position based on a temperature increase within the channel that exceeds a designated threshold temperature. The at least one position sensor is spaced apart from the electrical contact and is configured to detect a position change of the sensing element from the first position to the second position, indicating that the temperature within the channel exceeds the designated threshold temperature. |
US11228169B1 |
Combined high and low voltage protection circuit for half-bridge converter
A power converter and method for providing surge protection to the power converter is provided herein. An over voltage protection portion of a protection circuit is coupled between the rail voltage and ground reference of the power converter, and senses a first magnitude of the rail voltage. An under voltage protection portion of the protection circuit is coupled to a controller of the power converter and further between the rail voltage and the ground reference, and senses a second magnitude of the rail voltage to be transmitted to the controller. A regulator block is coupled between the over voltage protection portion and the under voltage protection portion, and is configured to compare the first magnitude of the rail voltage to a reference voltage of the regulator block, and to short circuit the under voltage protection portion when the first magnitude of the rail voltage is greater than the reference voltage. |
US11228168B2 |
Arc fault circuit interrupter (AFCI) with arc signature detection
In one example, an arc fault circuit interrupter (AFCI) is provided. The AFCI may include a plurality of current arc signature detection blocks configured to output a plurality of corresponding current arc signatures, and a processor. The processor may be configured to receive each of the plurality of current arc signature from each of plurality of current arc signature detection blocks, respectively, and generate a first trigger signal. The processor may be further configured to assess each of the current arc signatures, determine whether an arc fault exists based on the assessment, and generate the first trigger signal if an arc fault is determined to exist. A method for detecting an arc fault is also provided. |
US11228163B2 |
Integrated systems facilitating wire and cable installations
Pulling eyes are provided with integrated wiring systems suitable for installing conductors or cables. The pulling eyes may include body portions that define interior cavities that are sized to snugly engage outside portions of the conductors or cables. The body portions are sized to be deformably crimped onto the outside portions of the conductors or cables. The pulling eyes may also include head portions joined to the body portions, with the head portions defining apertures for receiving a strength member for installing the conductors or cables. These apertures place the interior cavities in communication with the exteriors of the pulling eyes. |
US11228159B2 |
Semiconductor laser device
A semiconductor laser device includes first heat radiator (10) having first flow path (11) and second flow path (12) inside to allow a flow of a refrigerant and second heat radiator (20) put in contact with an upper surface of the first heat radiator. The first flow path and the second flow path are independent of each other. The second heat radiator includes an insulating member that internally has third flow path (23) communicating with first flow path (11). The semiconductor laser device further includes lower electrode block (60) disposed on a portion of an upper surface of the second heat radiator, submount (30) being made of a conductive material and being disposed on a remainder of the upper surface of second heat radiator (20), semiconductor laser element (40) disposed on an upper surface of submount (30), and upper electrode block (61) disposed such that submount (30) and semiconductor laser element (40) are clamped between the upper electrode block and second heat radiator (20). Second flow path (12) is formed below a zone for the disposition of lower electrode block (60). |
US11228156B2 |
Laser system and extreme ultraviolet light generation system
A laser system according to the present disclosure includes: a laser apparatus configured to emit a laser beam; a transmission optical system disposed on a path between the laser apparatus and a target supplied into an EUV chamber in which EUV light is generated; a reflection optical system configured to reflect, toward the target, the laser beam from the transmission optical system; a first sensor configured to detect the laser beam traveling from the laser apparatus toward the reflection optical system; a second sensor configured to detect return light of the laser beam reflected by the reflection optical system and traveling backward to the laser apparatus; and a control unit configured to determine that the reflection optical system is damaged when no anomaly of the laser beam is detected and a light amount of the return light exceeds a predetermined light amount value. |
US11228153B2 |
Pulse slicer in laser systems
An apparatus (such as a laser-based system) and method for providing optical pulses in a broad range of pulse widths and pulse energies uses a pulse slicer which is configured to slice a predefined portion having a desired pulse width of each of the one or more output optical pulses from a laser oscillator, in which timings of a rising edge and a falling edge of each sliced optical pulse relative to a time instance of a maximum of the corresponding each of the one or more output optical pulses from the laser oscillator, are chosen at least to maximize amplification efficiency of the optical amplifier, which may be located after the pulse slicer, and to provide the one or more amplified output optical pulses each having the desired pulse energy and pulse width. |
US11228146B2 |
Power plug
The present invention provides an electrical connector, cables, an insulation sleeve, a latch member, and a fastener. One end of the electrical connector is provided with a coupling portion, and wiring holes are defined on the other end of the electrical connector opposite to the coupling portion. The cables are inserted in the wiring holes respectively. The insulation sleeve covers the junction of the electrical connector and each of the cables, and the coupling portion protrudes out of the insulation sleeve. The latch member is disposed corresponding to one side of the electrical connector. The fastener is disposed corresponding to the other side of the electrical connector. |
US11228135B2 |
Connector for displayed mobile device
A connector for a displayed mobile device that is connected to a mobile device displayed in a store to supply power to the mobile device is proposed. More particularly, the connector for a displayed mobile device is usable for various types of mobile device. The connector includes: a charging cable having an insertion block, a connection terminal, and a screw hole; and a holder casing having a body, a support plate, and a long hole; and a fixing bolt fixing the insertion block of the charging cable to the body of the holder casing by being tightened and coupled to the screw hole after passing through the long hole. Therefore, an interval between the connection terminal and the support plate is adjustable. |
US11228134B2 |
Cover member for cable connector, cable connector device using the same, and cable connector device assembling method
A cover member includes a first cover part and a second cover part. The first cover part includes: a mount surface on which a main body of a cable connector is mounted; a periphery wall which is provided to lie substantially along an outer edge of the main body of the cable connector mounted on the mount surface and which is raised from the mount surface toward a side on which the first cover part is combined with the second cover part; a cable outlet and a connection port; an engaging portion that engages with a predetermined portion of the second cover part; and a pair of raised portions raised from the mount surface toward the side on which the first cover part is combined with the second cover part, the pair of raised portions being provided at positions which sandwich a cable extending out from the main body of the cable connector mounted on the mount surface and which are at or near the cable outlet. |
US11228132B2 |
Single pair ethernet field terminable connector
A communications connector has a middle barrel, top sled, and bottom sled. The top sled has a top wire opening and a top insulation displacement contact (IDC) hole with the top IDC hole providing access to a wire inserted into the top wire opening. The top sled has a top IDC channel containing a top IDC. The bottom sled has a bottom wire opening and a bottom IDC hole with the bottom IDC hole providing access to a wire inserted into the bottom wire opening. The bottom sled also has a bottom IDC channel with a bottom IDC. The top and bottom sleds are can be fitted together and inserted into the middle barrel with the top IDC engaging a wire inserted into the bottom wire opening through the bottom IDC hole and the bottom IDC engaging a wire inserted into the top wire opening through the top IDC hole. |
US11228129B2 |
Electrical coupling for a camera device
An electrical coupling transfers electrical signals between a camera head and a cable and comprises a first part associated with the camera head and a second part associated with the cable and connectable to the first part. The coupling establishes contact between connectors of the first and second parts. The first part comprises a first connection position for reception of the second part, and a second connection position for reception of the second part. The connectors of the first and second parts comprise dot shaped connectors and elongated connectors. One of the first and second parts comprise the dot shaped connectors, and the other one comprises the elongated connectors. Each dot shaped connector is associated with one of the elongated connectors, and the connectors are arranged such that each dot shaped connector connects with an associated elongated connector in both the first connection position and the second connection position. |
US11228128B2 |
Spring electrode
The object is to provide a technology that can prevent a spring electrode from being dissolved and broken upon a short circuit in a semiconductor chip. A spring electrode includes a main body. The main body is a tubular conductor, and varies in diameter in a longitudinal direction so that a side surface has bellows. Since the main body of the spring electrode does not include an edge portion, the local concentration of a short-circuit current that flows through the spring electrode upon a short circuit in a semiconductor chip can be reduced. This can prevent the spring electrode from being dissolved and broken. |
US11228124B1 |
Connecting a component to a substrate by adhesion to an oxidized solder surface
In some embodiments, connecting a component to a substrate by adhesion to an oxidized solder surface includes: forming one or more conductive solder connections between the component and one or more conductive portions of the substrate; adhering the component to an oxidized surface of a solder portion applied to the substrate. |
US11228122B2 |
Electrical conduction structure for shielding and an electronic device using the same
A first sheet metal is provided with slits. Elastic pieces having flat shapes are each formed between the slits adjacent to each other, and both ends of each of the elastic pieces are connected with both ends of an adjacent one of the elastic pieces. A second sheet metal is provided with protrusions each of which is protruded toward a corresponding one of the elastic pieces. |
US11228119B2 |
Phased array antenna system including amplitude tapering system
A phased array antenna system comprises a feeding network which includes power combiners/dividers and an amplitude tapering system. The phased array antenna system comprises a plurality of antenna elements coupled to the feeding network. The amplitude tapering system is configured to generate amplitude coefficients and apply an amplitude tapering function on a transmitted or received radio frequency signal. The amplitude tapering function comprises a combination of a least two disparate amplitude tapering functions. |
US11228114B2 |
Antenna enhancing holding structure for an internet-of-things (IoT) device
The disclosed embodiments include a monitoring system. The monitoring system includes a wireless device and a holding structure. The wireless device includes communications circuitry that enables wireless communications of data obtained locally by the wireless device, and an antenna coupled to the communications circuitry and configured to radiate signals including information indicative of the obtained data. The holding structure includes an engagement member configured to detachably engage the wireless device, an attachment member configured to detachably attach the engaged wireless device to a surface of an object monitored by the wireless device, and an antenna enhancing structure disposed inside the holding structure and configured to mitigate interference by the surface of the object on the signals radiated by the antenna. |
US11228108B2 |
Multiband circularly polarised antenna
The present invention provides a circularly polarised, CP, antenna device for multiband GNSS. It comprises a spiral antenna and a high impedance surface, HIS, comprising a conductive layer comprising a first region and a separate second region, and a ground plane. The first region of the conductive layer is provided with at least one resonant element of a first resonant frequency and the second region of the conductive layer is provided with at least one resonant element of a second resonant frequency. |
US11228107B2 |
Antenna substrate
An antenna substrate includes a body including an insulating material, a plurality of wiring layers stacked with each other in a first vertical direction in the body, and a plurality of first antenna layers stacked with each other in a third horizontal direction in the body. Each of the plurality of first antenna layers includes a plurality of conductive structures, each having a length in a second horizontal direction greater than a length in the third horizontal direction perpendicular to the second horizontal direction, that are stacked in the first vertical direction. |
US11228106B2 |
Electronic component, antenna and RF tag
The present invention relates to an electronic component, and also relates to an antenna for information communication using a magnetic field component, which is capable of satisfying both of downsizing and improvement in communication sensitivity. The electronic component of the present invention comprises a ferrite core and a coil, in which a ferrite constituting the ferrite core has a spinel structure and comprises Fe, Ni, Zn, Cu and Co as constitutional metal elements, and when contents of the respective constitutional metal elements in the ferrite are calculated in terms of Fe2O3, NiO, ZnO, CuO and CoO, contents of Fe2O3, NiO, ZnO, CuO and CoO in the ferrite are 46 to 50 mol %, 20 to 27 mol %, 15 to 22 mol %, 9 to 11 mol % and 0.01 to 1.0 mol %, respectively, based on a total content of Fe2O3, NiO, ZnO, CuO and CoO. |
US11228104B2 |
Calibration device and calibration method of array antenna, array antenna, and program storage medium
A calibration device of an array antenna is for a transmission means including a plurality of antenna elements and transmission signal processing systems corresponding to the plurality of antenna elements, in which an antenna element transmission signal is calibrated for amplitude and phase differences and a time difference for each of the antenna elements on the basis of a transmission signal calibrating value, the transmission means being for generating a plurality of transmission radio waves applied with amplitude and phase differences and a time difference corresponding to each of the plurality of antenna elements and emitting the transmission radio waves from the respective antenna elements, the calibration device including: a multicarrier calibration signal generating means for generating a plurality of calibration signals based on, in correspondence, a plurality of subcarriers including a first frequency unit of a subcarrier to which a subcarrier symbol is assigned and a second frequency unit not assigned a subcarrier symbol, the plurality of calibration signals being different for each of the plurality of antenna elements; injection means for injecting a plurality of calibration signals generated by the multicarrier calibration signal generating means into the transmission means in one-to-one correspondence to the transmission signal processing systems of the plurality of antenna elements; extraction means for extracting calibration signals processed by the transmission signal processing systems of the plurality of antenna elements; a demultiplexing means for demultiplexing the calibration signals, for the respective antenna elements, extracted by the extraction means into a frequency unit of an assigned subcarrier and a frequency unit not assigned as a subcarrier; and a calibration processing means for obtaining a calibration value for calibrating the amplitude and phase differences and the time difference between the transmission signal processing systems of the plurality of antenna elements using the signals demultiplexed by the demultiplexing means, and providing the transmission signal calibrating value based on the obtained calibration value to the transmission means. |
US11228103B2 |
Waveguide feed substrate and manufacturing method thereof, and antenna system and manufacturing method thereof
A waveguide feed substrate and a manufacturing method thereof, and an antenna system and a manufacturing method thereof are provided. The waveguide feed substrate comprises: a first base substrate provided with a receiving groove; and a waveguide feeder embedded in the receiving groove and provided with a first side disposed at a bottom of the receiving groove, a second side disposed opposite to the first side, a third side disposed on a first side wall of the receiving cell, and a fourth side disposed on a second side wall of the receiving cell; wherein an opening is disposed in the second side, and an upper surface of the second side is flush with an upper surface of the first base substrate. |
US11228099B2 |
Omnidirectional antenna and electronic device
The present invention provides an omnidirectional antenna and an electronic device. The omnidirectional antenna includes a dielectric substrate, a first metal sheet and a second metal sheet that are printed on a surface of the dielectric substrate, wherein the first metal sheet is rectangular, the second metal sheet is in a strip shape with one wide end and one narrow end, the first metal sheet and the second metal sheet are arranged in a coaxial manner and spaced one another, and the wide end of the second metal sheet is close to the first metal sheet. |
US11228096B2 |
Position detecting device including antenna function and display device
A position detecting device including an antenna function includes a plurality of first position detection electrodes, a plurality of second position detection electrodes, a position detection circuit, a plurality of first antenna electrodes disposed adjacent to the plurality of first position detection electrodes and separated by first spaces, a plurality of second antenna electrodes disposed adjacent to the plurality of second position detection electrodes and separated by second spaces, and an antenna circuit configured to perform wireless communication by energizing the plurality of first antenna electrodes and the plurality of second antenna electrodes and using magnetic fields generated in the first spaces and the second spaces. |
US11228082B2 |
Wireless communication antenna structure for both heat dissipation and radiation
The present disclosure provides a wireless communication antenna structure for both heat dissipation and radiation which includes: an inside helical pattern including an inside start end and an inside tail end; an outside helical pattern including an outside start end and an outside tail end; a heat dissipating/radiating metal layer including one side metal region and the other side metal region; and a plurality of via holes respectively connecting, up and down, the inside tail end and the one side metal region, and the outside start end and the other side metal region, so that the inside helical pattern, the heat dissipating/radiating metal layer and the outside helical pattern are connected in sequence to be a helical type. The present disclosure also implements heat dissipation of various components inside a portable terminal while implementing better near field wireless communication. |
US11228081B1 |
Solar-powered satellite dish heater
The solar-powered satellite dish heater is configured for use with a satellite dish. The satellite dish is an antenna that is configured to receive radio frequency transmissions from a satellite. The solar-powered satellite dish heater is a heating device that prevents an accumulation of ice from inhibiting the satellite dish from receiving the radio frequency transmissions from the satellite. The solar-powered satellite dish heater comprises the satellite dish and a heating structure. The heating structure generates heat that is transferred to the satellite dish such that any ice that has accumulated on the satellite dish will melt. |
US11228078B2 |
Electrical plug connector
An apparatus includes an electrical connector. The electrical connector is configured to electrically couple a signal transmission line to another signal transmission line. The electrical connector includes a first electrical conductor and a second electrical conductor. The first electrical conductor is disposed around a center axis. The first electrical conductor is disposed azimuthally symmetric around the center axis. The second electrical conductor is disposed around the center axis and around the first electrical conductor. The second electrical conductor is disposed azimuthally symmetric around the center axis. Faces on opposing ends of the electrical connector along the center axis are configured to mate the signal transmission line and the second electrical conductor in a first plane and the other signal transmission line and the second electrical conductor in a second plane. |
US11228076B2 |
Multilayer circuit board comprising serially connected signal lines and stubs disposed in different layers of the multilayer circuit board
The present disclosure relates to an interposer (120), which is a circuit board that has a multilayer structure and that establishes a connection between layers using a via conductor. The interposer (120) includes first and second transmission lines that are connected in series and a first stub and a second stub that are respectively connected to the first transmission line and the second transmission line. The first and second stubs are formed by wiring lines provided in respective different layers, and a second transmission line (123), which connects the first stub to the second stub, includes a via conductor and a wiring line provided in the layer where the second stub (124) is formed. |
US11228071B2 |
Battery cell for electric vehicle battery pack
A battery cell of a battery pack to power an electric vehicle can include a housing to at least partially enclose an electrode assembly is provided. The battery cell can include a vent plate coupled with the housing via a glass weld at a lateral end of the battery cell. The vent plate can include a scoring pattern to cause the vent plate to rupture in response to a threshold pressure. A first end of a polymer tab can be electrically coupled with the vent plate at an area within a scored region defined by the scoring pattern. A second end of the polymer tab can be electrically coupled with an electrode assembly. The polymer tab can melt in response to either a threshold temperature or a threshold current within the battery cell. |
US11228065B1 |
Recombination systems for aqueous batteries
A secondary battery recombination system includes catalyst and hydrophobic gas diffusion layers defining an electrode that recombines hydrogen and oxygen into water, and a scaffold encapsulating and in non-bonded contact with the electrode. The electrode may be carbon cloth, carbon felt, carbon foam, or carbon paper. The scaffold may be expanded metal or perforated foil. |
US11228064B2 |
Battery module and battery unit having a sensor device mounted thereon
A battery module includes: a cell laminated body; a first and a second end plates which are provided at both end portions of the cell laminated body; and a sensor device which is mounted on a mounting surface and detects the voltage of each cell in the cell laminated body. The sensor device includes: a sensor device body; and a sensor fixing portion which is fixed to the first end plate by a fastening member. In the perpendicular direction, an end surface of the fastening member is located to be lower than or equal to an end surface of the sensor device body, the mounting surface of the cell laminated body is located to be lower than a bottom surface of the sensor fixing portion, and an end surface of the first end plate is located to be lower than the mounting surface of the cell laminated body. |
US11228063B2 |
Battery pack for diagnosing fault of charging contactor
A battery pack including first and second battery contactors respectively having first ends electrically connected to positive and negative electrode terminals of a battery; first and second charging contactors respectively having first ends electrically connected to second ends of the first and second battery contactors; a second power connector of a charger having first and second output terminals respectively electrically connected to the first and second input terminals being connected to the first power connector; and a control unit configured to, when a charging voltage is not applied from a power source of the charger to the battery pack between the first output terminal and the second output terminal, control at least one of the first charging contactor and the second charging contactor to change between a turn-on state and a turn-off state to diagnose a fault of each of the first charging contactor and the second charging contactor. |
US11228059B2 |
Battery with multiple sets of output terminals and adjustable capacity
A battery control system includes a battery comprising: first and second terminals; third and fourth terminals; a plurality of individually housed batteries; and a plurality of switches configured to connect ones of the batteries to and from ones of the first, second, third, and fourth terminals. A mode module is configured to set a mode of operation based on at least one of a plurality of present operating parameters. A switch control module is configured to control the plurality of switches based on the mode of operation. |
US11228057B2 |
Compounds based on an element from the boron group, and use thereof in electrolyte compositions
Compounds based on an element from Groupe IIIA (column 13) of the periodic table of the elements, such as boron, aluminum, gallium or indium, are here described, as well as their processes of preparation and their use as salts and/or additives, for instance, in combination with other salts in electrolyte compositions for electrochemical cells, inter alia, in electrolyte compositions in the presence of a liquid solvent and/or a solvating polymer, the electrolyte being in liquid, gel or solid form. |
US11228056B2 |
Process for making solid electrolyte thin films for lithium ion batteries
A process for fabrication of a battery that includes providing a colloidal suspension of particles conducting lithium ions and providing two conducting substrates as battery current collectors, at least one surface of the conducting substrates being at least partially coated with one of a cathode film and an anode film, and depositing an electrolyte film by electrophoresis, from a suspension of electrolyte material particles, on at least one of said anode film, said cathode film and said conducting substrates. |
US11228055B2 |
In situ current collector
Electrochemical cells comprising electrodes comprising lithium (e.g., in the form of a solid solution with non-lithium metals), from which in situ current collectors may be formed, are generally described. |
US11228051B2 |
Electrochemical cell and method of using same
A novel electrochemical cell is disclosed in multiple embodiments. The instant invention relates to an electrochemical cell design. In one embodiment, the cell design can electrolyze water into pressurized hydrogen using low-cost materials. In another embodiment, the cell design can convert hydrogen and oxygen into electricity. In another embodiment, the cell design can electrolyze water into hydrogen and oxygen for storage, then later convert the stored hydrogen and oxygen back into electricity and water. In some embodiments, the cell operates with a wide internal pressure differential. |
US11228050B2 |
Multi-metallic electro-catalyst for alkaline exchange membrane fuel cells and method of making same
Some aspects of the invention may be directed to a catalyst layer for anodes of Alkaline Exchange Membrane Fuel Cells (AEMFC). Such catalyst layer may include catalyst nanoparticles and an ionomer. Each catalyst nanoparticle may include one or more nanoparticles of catalytically active metal supported on at least one nanoparticle of crystalline RuO2. The diameter of the at least one nanoparticle of the crystalline RuO2 may be about order of magnitude larger than the diameter of the one or more nanoparticles of catalytically active metal. |
US11228048B2 |
Air supply control method and control system for fuel cell
An air supply control method of a fuel cell is provided. The method includes adjusting an opening of a pressure control valve in accordance with an opening map stored in advance. The pressure control valve is disposed at an outlet of a fuel cell of an air supply line for supplying air to the fuel cell and discharging air and adjusts air pressure in the air supply line. The method further includes determining whether an air pressure state of the air supply line is normal after adjusting the opening of the pressure control valve and operating the pressure control valve at a predetermined opening in response determining that the air pressure state of the air supply line is abnormal. |
US11228040B2 |
Gas distributor plate for a fuel cell and/or electrolyzer
The invention relates to a gas distributor plate for a fuel cell, comprising a first distribution structure for distributing a fuel to a first electrode and a second distribution structure (60) for distributing an oxidation agent to a second electrode. According to the invention, there is at least one wire element (80) in at least one of the distribution structures (60). The invention further relates to a fuel cell, which comprises at least one membrane electrode unit having a first electrode and a second electrode, which are separated from each other by a membrane, and at least one gas distribution plate according to the invention. |
US11228039B2 |
Chromate based ceramic anode materials for solid oxide fuel cells
The disclosure relates to solid oxide fuel cell (SOFC) anode materials that comprise various compositions of chromate based oxide materials. These materials offer high conductivity achievable at intermediate and low temperatures and can be used to prepare the anode layer of a SOFC. A method of making a low- or intermediate-temperature SOFC having an anode layer comprising a chromate based oxide material is also provided. |
US11228038B2 |
Electrode materials and processes for their preparation
This application describes an electrode material comprising particles of an electrochemically active material dispersed in a polymer binder, where the polymer binder is an acidic polymer or a mixture comprising a binder soluble in an aqueous solvent or a non-aqueous solvent (e.g. NMP) and an acidic polymer. The application also further relates to processes for the preparation of the electrode material and electrodes containing the material, as well as to the electrochemical cells and their use. |
US11228034B2 |
Positive active material for rechargeable lithium battery and rechargeable lithium battery
A positive active material for a rechargeable lithium battery includes a lithium nickel composite oxide having an I(003)/I(104) ratio of greater than or equal to about 0.92 and less than or equal to about 1.02 in X-ray diffraction, wherein the I(003)/I(104) ratio is a ratio of a diffraction peak intensity I(003) of a (003) phase and a diffraction peak intensity I(104) of a (104) phase. The lithium nickel composite oxide includes lithium and a nickel-containing metal, and nickel is present in an amount of greater than or equal to about 80 atm % based on the total atom amount of the nickel-containing metal. A rechargeable lithium battery includes the positive active material. |
US11228033B2 |
Cathode active material, and battery using the same
Provided is a cathode active material comprising a lithium composite oxide and a covering material which covers a surface of the lithium composite oxide. The lithium composite oxide is a multi-phase mixture including a first phase having a crystal structure which belongs to a monoclinic crystal; a second phase having a crystal structure which belongs to a hexagonal crystal; and a third phase having a crystal structure which belongs to a cubical crystal. The lithium composite oxide has an integral intensity ratio I(18°-20°)/I(43°-46°) of not less than 0.05 and not more than 0.99, where the integral intensity I(α°-β°) is an integral intensity of a peak which is a maximum peak present within a range of a diffraction angle 2θ of not less than α° and not more than β° in an X-ray diffraction pattern of the lithium composite oxide. The covering material has an electronic conductivity of not more than 106 S/m. |
US11228032B1 |
Secondary electrode including styrene-butadiene rubber
An electrochemical component has a green secondary electrode including a conductive substrate, homogeneous pre-synthesized calcium zincate in direct contact with the conductive substrate, and a combination of styrene-butadiene rubber and sintered polytetrafluoroethylene binding the conductive substrate and calcium zincate together. |
US11228030B2 |
Solution and method for producing the same, and a method for producing active material for secondary battery
There is provided a solution containing lithium and at least one of a niobium complex and a titanium complex, excellent in storage stability, and suitable for forming a coating layer capable of improving battery characteristics of an active material, and a related technique, which is the solution containing lithium, at least one of a niobium complex and a titanium complex, and ammonia, wherein an amount of the ammonia in the solution is 0.2 mass % or less. |
US11228029B2 |
Method for producing lithium metal negative electrode structure and lithium metal negative electrode structure
A method for producing a lithium metal negative electrode structure including the steps of: (a) forming a lithium metal layer on a portion of one side or both sides of a current collector, wherein a non-coated portion of the current collector, on which a tab will be formed, is included on one side of the current collector, and wherein a stepped part is present between the non-coated portion of the current collector and the coated portion of the lithium metal layer; (b) coating and curing a photocurable material, or attaching an insulating tape, onto the stepped part between the non-coated portion of the current collector and the coated portion of the lithium metal layer; and (c) punching the result of step (b) into a unit electrode to produce the lithium metal negative electrode structure. |
US11228027B2 |
Positive electrode active material for alkaline secondary battery and alkaline secondary battery including the positive electrode active material
A nickel-hydrogen secondary battery includes an electrode group comprising a separator, a positive electrode, and a negative electrode, and the positive electrode contains a positive electrode active material including a base particle comprising a nickel hydroxide particle containing Mn in solid solution and a conductive layer comprising a Co compound and covering the surface of the base particle, wherein the X-ray absorption edge energy of Mn detected within 6500 to 6600 eV by measurement with an XAFS method is 6548 eV or higher. |
US11228025B2 |
Anode for secondary battery, secondary battery, battery pack, electric motor vehicle, power storage system, electric tool, and electronic device
A secondary battery includes a cathode, an anode, and an electrolytic solution, in which the anode includes a plurality of first anode active material particles, a plurality of second anode active material particles, a first anode binder, and a second anode binder. The plurality of first anode active material particles include carbon, and an R value of the plurality of first anode active material particles is from 0.35 to 0.45, and a median diameter of the plurality of first anode active material particles is from 5 μm to 14.5 μm. The plurality of second anode active material particles include carbon, and the R value of the plurality of second anode active material particles is from 0.1 to 0.25, and a median diameter of the plurality of second anode active material particles is from 15 μm to 25 μm. |
US11228021B2 |
Display panel and device including protruding end overlapping ends of organic layer and polarizing plate
A display device includes a display panel including a first area and a second area, a first end of the display panel being in the first area and a second end of the display panel being in the second area, wherein the second area extends away from the first area in a first direction, and the second end of the display panel protrudes from the first end of the display panel 1 in a second direction perpendicular to the first direction. a polarizing plate on the display panel, a first end of the polarizing plate being located in the first area overlapping the first end of the display panel in a plan view and an organic layer on the display panel in the second area, the organic layer extending away from the polarizing plate in the second direction, an end of the organic layer overlapping the second end of the display panel in a plan view. |
US11228020B2 |
Display back plate and display device
The present disclosure relates to a display back plate and a display device. The display back plate includes a display area and a non-display area surrounding the display area, wherein the non-display area is provided with at least one circle of first cofferdam surrounding the display area, a first thin film encapsulation layer is arranged on the first cofferdam, and the non-display area is provided with a fan-out area, a second cofferdam is arranged on one side of the first cofferdam close to the fan-out area, the second cofferdam is provided with a first bonding pattern including a plurality of protrusions, and the first thin film encapsulation layer at least partially covers the protrusions. |
US11228016B2 |
Display device and method for fabricating the same
A display device includes a window and a display panel coupled to a bottom surface of the window. The display panel has a substantially regular tetragonal shape or a substantially rectangular shape in a plan view, and the window includes a base member and a bezel layer on a bottom surface of the base member. Between one and three light-transmissive main alignment marks and a transmission area having a different shape than that of the display panel are defined in the bezel layer, and each of the main alignment marks is arranged at a position corresponding to a vertex of the display panel or at a position corresponding to a vertex of an imaginary regular tetragon or of an imaginary rectangle that has the same center point as the display panel and that is larger than the display panel. |
US11228015B2 |
Display screens and display devices with thin film encapsulation structures
The present application relates to a display screen and a display device. The display screen includes: a substrate; a display device disposed on the substrate, the display device including several film layers; and a thin film encapsulation structure disposed on a side of the display device away from the substrate, the thin film encapsulation structure including a first encapsulation film disposed on the display device, and a first atomic layer deposition film disposed on the first encapsulation film; wherein a thermal expansion coefficient of the first encapsulation film is between a thermal expansion coefficient of the film layer immediately adjacent to the first encapsulation film on the display unit and a thermal expansion coefficient of the first atomic layer deposition film. |
US11228013B2 |
Anisotropic nanorod-applied light-emitting diode and light-emitting device including the same
The present disclosure relates to a light-emitting diode including a first electrode and a second electrode facing each other; an electron transfer layer between the first electrode and the second electrode; and a light emitting material between the first electrode and the second electrode, wherein the electron transfer layer consists of anisotropic nanorods, and the long axes of the anisotropic nanorods are arranged at an angle of about 20 degrees to about 90 degrees with respect to an interface with an adjacent layer into which electrons are injected. |
US11228010B2 |
Organic electroluminescent materials and devices
An OLED is disclosed whose emissive layer has a first host and an emitter, where the emitter is a phosphorescent metal complex or a delayed fluorescent emitter, where EH1T, the T1 triplet energy of the first host, is higher than EET, the T1 triplet energy of the emitter, where EET is at least 2.50 eV, where the LUMO energy of the first host is higher than the HOMO energy of the emitter, where the absolute value of the difference between the HOMO energy of the emitter and the LUMO energy of the first host is ΔE1, where a≤ΔE1−EET≤b; and where a≥0.05 eV, and b≤0.60 eV. |
US11228006B2 |
Organic light-emitting diode display substrate, manufacturing method thereof, packaging structure and display device
An OLED display substrate, a manufacturing method thereof, a packaging structure and a display device are provided. The OLED display substrate includes a display region, a barrier structure arranged at a periphery of the OLED display substrate, and a cathode lapping region arranged between the display region and the barrier structure. The OLED display substrate has an uneven surface at the cathode lapping region. |
US11228004B2 |
Organic electroluminescent materials and devices
A compound comprising a ligand LA coordinated to a metal M wherein ring A, ring T, and ring W are independently selected from a 5-membered or 6-membered heterocyclic or carbocyclic ring, and the ring W is fused to the ring T. The metal compounds having a ligand LA can be found in an OLED that includes an organic layer positioned between an anode and a cathode where the organic layer comprises a metal compound above having a ligand LA disclosed herein. We also describe a consumer product comprising the OLED. |
US11228003B2 |
Organic electroluminescent materials and devices
A compound having a formula M(LA)(LB)(LC) is described. In formula M(LA)(LB)(LC), ligands LA and LB are each a mono-anionic bidentate ligand coordinated to metal M forming a 5-member cyclometalated ring and ligands LA and LB are covalently linked by a linking group. There is at least one loop of M-LA-linking group-LB-M having only arylene or heteroarylene groups in the loop other than M. In the compound, each ring in the linking group is part of a backbone of the loop; and either (i) the loop comprises a specific DBX moiety and the linking group comprises two or more arylene or heteroarylene groups, or (ii) the linking group comprises three or more arylene or heteroarylene groups. Formulations, OLEDs, and consumer product containing the compound are also disclosed. |
US11228001B2 |
Hetero-cyclic compound and organic light emitting device comprising the same
Disclosed are a heterocyclic compound represented by Formula 1 and an organic light emitting device using the same. The heterocyclic compound is used as a material for hole injection layer, hole transport layer, hole injection and transport layer, light emission layer, electron transport layer, or electron injection layer of the organic light emitting device and provides improved efficiency, low driving voltage, and improved lifetime characteristic. |
US11227999B2 |
Array substrate having a layer of magnetic material, display panel having the same and manufacturing method the same thereof
The present disclosure is related to a method of manufacturing an array substrate. The method of manufacturing an array substrate may include forming an auxiliary cathode on a base substrate, forming a layer of magnetic material on a first surface of the auxiliary cathode, forming an emission layer in a display area of the array substrate, a part of the emission layer on the layer of the magnetic material on the first surface of the auxiliary cathode, and removing the part of the emission layer and the layer of magnetic material from the first surface of the auxiliary cathode. |
US11227998B2 |
Organic light-emitting display apparatus and method of manufacturing the same
An organic light-emitting display apparatus including a first electrode disposed on a substrate; a pixel defining layer covering an edge of the first electrode; a layer disposed on the pixel defining layer, the layer including a fluoropolymer and contacting a top surface of the first electrode; a first organic functional layer including a first light emitting layer, the first organic functional layer having a lower surface contacting the top surface of the first electrode; and a second electrode disposed on the first organic functional layer. |
US11227997B1 |
Planar resistive random-access memory (RRAM) device with a shared top electrode
Embodiments of the present invention are directed to forming a planar Resistive Random Access Memory (RRAM) device with a shared top electrode. In a non-limiting embodiment of the invention, a first trench having a first width and a second trench having a second width less than the first width are formed in a dielectric layer. A bottom liner is formed on sidewalls of the first trench. The bottom liner pinches off the second trench. A top liner is formed on sidewalls of the bottom liner in the first trench. The top liner is formed such that a portion of the bottom liner at a bottommost region of the first trench remains exposed. The exposed portion of the bottom liner is removed, and a memory cell material is formed in the first trench. |
US11227996B2 |
Artificial neural networks (ANN) including a resistive element based on doped semiconductor elements
A resistive element in an artificial neural network, the resistive element includes a Silicon-on-insulator (SOI) substrate, and a Silicon layer formed on the Silicon-on-insulator substrate. The Silicon layer includes dopants derived from a thin film dopant layer, and the thin film dopant layer includes a programmed amount of dopant including at least one of Boron and Phosphorus. |
US11227992B2 |
Memory cell
A phase-change memory cell is formed by a heater, a crystalline layer disposed above the heater, and an insulating region surrounding sidewalls of the crystalline layer. The phase-change memory cell supports programming with a least three distinct data levels based on a selective amorphization of the crystalline layer. |
US11227990B2 |
Magnetic memory structure
A magnetic memory structure is provided. The magnetic memory structure includes a magnetic tunneling junction (MTJ) layer and a heavy-metal layer. The MTJ layer includes a pinned-layer, a barrier-layer formed under the pinned-layer and a free-layer formed under the barrier-layer. The heavy-metal layer is formed under the free-layer. The barrier-layer has a first upper surface, the pinned-layer has a lower surface, and area of the first upper surface is larger than area of the lower surface. |
US11227988B1 |
Fast-rate thermoelectric device
A fast-rate thermoelectric device control system includes a fast-rate thermoelectric device, a sensor, and a controller. The fast-rate thermoelectric device includes a thermoelectric actuator array disposed on a wafer, and the thermoelectric actuator array includes a thin-film thermoelectric (TFTE) actuator that generates a heating and/or a cooling effect in response to an electrical current. The sensor is configured to measure a temperature associated with the heating or cooling effect and output a feedback signal indicative of the measured temperature. The controller is in communication with the fast-rate thermoelectric device and the sensor, and is configured to control the electrical current based on the feedback signal. |
US11227987B2 |
Heat conversion device
A heat conversion device according to an embodiment of the present invention comprises: a plurality of P-type thermoelectric legs and a plurality of N-type thermoelectric legs which are electrically connected and arranged in an array; an insulating part disposed on one surface of the plurality of P-type thermoelectric legs and the plurality of N-type thermoelectric legs; a heat sink disposed on the insulating part; a fan disposed spaced a predetermined distance from the heat sink; and a plurality of fastening members having moduli of elasticity of 1*103 kgf/cm2 to 30*103 kgf/cm2 and fixing the heat sink and the fan. Each one of the fastening members comprises: a shaft part; a first fixed part which is disposed at one end of the shaft part and fixed to the heat sink; a second fixed part which protrudes from an outer circumferential surface of the shaft part and is fixed to the fan; and a separating part which protrudes from the outer circumferential surface of the shaft part and is disposed between the heat sink and the fan to separate the heat sink and the fan, wherein the width of the second fixed part increases toward the first fixed part, and the shaft part, the first fixed part, the second fixed part, and the separating part are integrally formed. |
US11227984B2 |
Display device having a plurality of main pads, a plurality of redundant pads, and a light-emitting device in a display area
A display device is provided. The display device includes a substrate, a plurality of signal lines disposed on the substrate, and a plurality of display units disposed on the substrate. At least one of the signal lines includes a main line, a plurality of first branch lines electrically connected to the main line, and a plurality of second branch lines electrically connected to the main line. At least one of the display units includes a plurality of main pads, a plurality of redundant pads, and a light-emitting device electrically connected to the main pads. At least one of the main pads is electrically connected to at least one first branch line, and at least one of the redundant pads is electrically connected to at least one second branch line. |
US11227982B2 |
Deep molded reflector cup used as complete LED package
An LED package creates a narrow beam in a very compact package without use of a lens. A plastic is molded around a metal lead frame (12, 14) to form a molded cup (26), where the cup has parabolic walls extending from a bottom area of the cup to a top thereof. The lead frame forms a first set of electrodes exposed at the bottom area of the cup for electrically contacting a set of LED die electrodes (18, 20). The lead frame also forms a second set of electrodes outside of the cup for connection to a power supply. A reflective metal (28) is then deposited on the curved walls of the cup. An LED die (16) is mounted at the bottom area of the cup and electrically connected to the first set of electrodes. The cup is then partially filled with an encapsulant (64) containing a phosphor (66). |
US11227980B2 |
Display device
A display device includes: a substrate; a plurality of pixels on the substrate, and each of the pixels including first to third sub-pixels each including at least one light emitting diode configured to emit light; and a color conversion layer including first to third color conversion patterns respectively corresponding to the first to third sub-pixels, each of the first to third color conversion patterns configured to transmit the light or convert the light into light of a different color. The light emitting diode of each of the first to third sub-pixels is coupled to a first electrode and a second electrode. At least one of the first to third color conversion patterns includes a perovskite compound. |
US11227979B2 |
Light-emitting device
A light-emitting device includes a substrate comprising a base member, a first wiring, a second wiring, and a via hole; at least one light-emitting element electrically connected to and disposed on the first wiring; and a covering member having light reflectivity and covering a lateral surface of the light-emitting element and a front surface of the substrate. The base member defines a plurality of depressed portions separated from the via hole in a front view and opening on a back surface and a bottom surface of the base member. The substrate includes a third wiring covering at least one of inner walls of the plurality of depressed portions and electrically connected to the second wiring. A depth of each of the plurality of depressed portions defined from the back surface toward the front surface is larger on a bottom surface side than on an upper surface side of the base member. |
US11227978B2 |
Semiconductor device and package structure
A semiconductor device and a package structure are provided. The semiconductor device includes a substrate, a light-emitting structure, a first semiconductor layer, a second semiconductor layer and a first electrode. The light-emitting structure is on the substrate. The first semiconductor layer is on the light-emitting structure. The second semiconductor layer is between the first semiconductor layer and the light-emitting structure. The first electrode is on the second semiconductor layer. At least a portion of the first electrode is separated from the first semiconductor layer. |
US11227974B2 |
Nitride semiconductor light-emitting element and production method for nitride semiconductor light-emitting element
A nitride semiconductor light-emitting element includes an n-type cladding layer including n-type AlGaN having a first Al composition ratio, a barrier layer including AlGaN that is located on the n-type cladding layer side in a multiple quantum well layer and has a second Al composition ratio greater than the first Al composition ratio, and a graded layer that is located between the n-type cladding layer and the barrier layer and has a third Al composition ratio that is between the first Al composition ratio and the second Al composition ratio, wherein the third Al composition ratio of the graded layer increases at a predetermined increase rate from the first Al composition ratio toward the second Al composition ratio. |
US11227969B2 |
Marking method
A marking method for applying a unique identification to each individual solar cell stack of a semiconductor wafer, at least comprising the steps: Providing a semiconductor wafer having an upper side and an underside, which comprises a Ge substrate forming the underside; and generating an identification with a unique topography by means of laser ablation, using a first laser, on a surface area of the underside of each solar cell stack of the semiconductor wafer, the surface area being formed in each case by the Ge substrate or by an insulating layer covering the Ge substrate. |
US11227968B2 |
Method for improved manufacturing of a photodiode-based optical sensor and associated device
A process for fabricating a hybrid optical detector, includes the steps of: assembling, via an assembly layer, on the one hand an absorbing structure and on the other hand a read-out circuit, locally etching, through the absorbing structure, the assembly layer and the read-out circuit up to the contacts, so as to form electrical via-holes, depositing a protective layer on the walls of the via-holes, producing a doped region of a second doping type different from the first doping type by diffusing a dopant into the absorbing structure through the protective layer, the region extending annularly around the via-holes so as to form a diode, depositing a metallization layer on the walls of the via-holes allowing the doped region to be electrically connected to the contact. |
US11227959B2 |
Method for detecting and converting infrared electromagnetic radiation
A method for detecting infrared electromagnetic radiation and for converting same into an electrical signal, an optoelectronic component, in particular an organic infrared detector for (near) infrared detection, and use thereof for detecting an electromagnetic signal in the wavelength range of 780 nm to 10 μm, are provided. |
US11227958B2 |
Circular grating structure for photonic device
An integrated circuit includes a photodetector. The photodetector includes a circular optical grating formed in an annular trench in a semiconductor substrate. The circular optical grating includes dielectric fins and photosensitive fins positioned in the annular trench. The circular optical grating is configured to receive incident light and to direct the incident light around the annular trench through the dielectric fins and the photosensitive fins until the light is absorbed by one of the photosensitive fins. |
US11227957B1 |
Protective component
Provide is a protective component, including a tubular sidewall being elastic and encloses to form a through hole for receiving the wire box connector; a limiting portion provided on an inner wall surface of the tubular sidewall and configured to clamp a recess on the wire box connector; and a tubular protective portion being elastic and is connected to the tubular sidewall to cover an end portion of the tubular sidewall. The protective component of the present disclosure may prevent the protective component from falling off from a wire box connector after mounting to improve mounting efficiency of the wire box connector and may reduce micro-cracks caused by colliding with a solar cell module. |
US11227956B2 |
Nanosheet field-effect transistor device and method of forming
A semiconductor device includes: a fin protruding above a substrate; source/drain regions over the fin; nanosheets between the source/drain regions, where the nanosheets comprise a first semiconductor material; inner spacers between the nanosheets and at opposite ends of the nanosheets, where there is an air gap between each of the inner spacers and a respective source/drain region of the source/drain regions; and a gate structure over the fin and between the source/drain regions. |
US11227948B2 |
Lateral double-diffused metal oxide semiconductor component and manufacturing method therefor
A lateral double-diffused metal oxide semiconductor component and a manufacturing method therefor. The lateral double-diffused metal oxide semiconductor component comprises: a semiconductor substrate, the semiconductor substrate being provided thereon with a drift area; the drift area being provided therein with a trap area and a drain area, the trap area being provided therein with an active area and a channel; the drift area being provided therein with a deep trench isolation structure arranged between the trap area and the drain area, and the deep trench isolation structure being provided at the bottom thereof with alternately arranged first p-type injection areas and first n-type injection areas. |
US11227944B2 |
HEMT and method of fabricating the same
A high electron mobility transistor includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer. The composition of the first III-V compound layer and the second III-V compound layer are different from each other. A shallow recess, a first deep recess and a second deep recess are disposed in the second III-V compound layer. The first deep recess and the second deep recess are respectively disposed at two sides of the shallow recess. The source electrode fills in the first deep recess and contacts the top surface of the first III-V compound layer. A drain electrode fills in the second deep recess and contacts the top surface of the first III-V compound layer. The shape of the source electrode and the shape of the drain electrode are different from each other. A gate electrode is disposed directly on the shallow recess. |
US11227942B2 |
Semiconductor device, method for manufacturing the same, power circuit, and computer
A semiconductor device according to an embodiment includes a nitride semiconductor layer; an insulating layer; a first region disposed between the nitride semiconductor layer and the insulating layer and containing at least one element of hydrogen and deuterium; and a second region disposed in the nitride semiconductor layer, adjacent to the first region, and containing fluorine. |
US11227940B2 |
Fin field-effect transistor device and method of forming the same
A method of forming a semiconductor device includes removing a dummy gate from over a semiconductor fin; depositing a glue layer and a fill metal over the semiconductor fin; and simultaneously etching the glue layer and the fill metal with a wet etching solution, the wet etching solution etching the glue layer at a faster rate than the fill metal and reshaping the fill metal. |
US11227938B2 |
Thin film transistor structure, manufacturing method thereof, and display device
Provided are a thin film transistor structure, a manufacturing method thereof, and a display device. The method comprises: providing a substrate (10), and sequentially forming a gate (20), a gate insulating layer (30), an active layer (40), a doped layer (50), a source (610), a drain (620) and a channel region (70) on the substrate (10); placing the channel region (70) in a preset gas atmosphere for heating treatment; wherein, the channel region (70) is placed in a nitrogen atmosphere to heat for a first preset time, in a mixed atmosphere of nitrogen and ammonia to heat for a second preset time, in an ammonia atmosphere to heat for a third preset time; or first heating the channel region (70) for a fourth preset time, finally placing in the ammonia atmosphere to heat for a fifth preset time. |
US11227937B2 |
Uniform interfacial layer on vertical fin sidewalls of vertical transport field-effect transistors
A method of forming a semiconductor structure includes patterning a hard mask layer over a top surface of a substrate. The method also includes forming a first portion of one or more vertical fins below the patterned hard mask layer. The method further includes forming a top spacer on sidewalls of the hard mask layer and the first portion of the one or more vertical fins. The method further includes forming a second portion of the one or more vertical fins in the substrate below the top spacer and trimming sidewalls of the second portion of the one or more vertical fins. The method further includes forming an interfacial layer on the trimmed sidewalls of the second portion of the one or more vertical fins. The one or more vertical fins provide one or more vertical transport channels for one or more vertical transport field-effect transistors. |
US11227935B2 |
Gate structure and methods thereof
A method and structure providing a high-voltage transistor (HVT) including a gate dielectric, where at least part of the gate dielectric is provided within a trench disposed within a substrate. In some aspects, a gate oxide thickness may be controlled by way of a trench depth. By providing the HVT with a gate dielectric formed within a trench, embodiments of the present disclosure provide for the top gate stack surface of the HVT and the top gate stack surface of a low-voltage transistor (LVT), formed on the same substrate, to be substantially co-planar with each other, while providing a thick gate oxide for the HVTs. Further, because the top gate stack surface of HVT and the top gate stack surface of the LVT are substantially co-planar with each other, over polishing of the HVT gate stack can be avoided. |
US11227929B2 |
Metal gate structure
A method includes forming a trench over a substrate, wherein the trench is surrounded by gate spacers and an inter-layer dielectric layer, depositing a dielectric layer on a bottom and along sidewalls of the trench, depositing a metal layer over the dielectric layer, depositing a protection layer over the metal layer, wherein the protection layer has an uneven thickness, applying an etch-back process to the protection layer and the metal layer, wherein as a result of applying the etch-back process, a portion of the metal layer has been removed and at least a portion of the protection layer remains at the bottom of the trench and removing the protection layer from the trench. |
US11227924B2 |
Dual bit memory device with triple gate structure
A memory device is provided. The device comprises a semiconductor fin with a first gate and a second gate disposed over the semiconductor fin. A third gate is positioned over the semiconductor fin and a lower portion of the third gate is disposed between the first and second gates. |
US11227923B2 |
Wrap around contact process margin improvement with early contact cut
A method is presented for forming a wrap around contact. The method includes forming a p-type epitaxial region and an n-type epitaxial region over a substrate, forming a dielectric pillar between the p-type epitaxial region and the n-type epitaxial region, depositing sacrificial liners around both the p-type epitaxial region and the n-type epitaxial region, and depositing an inter-layer dielectric (ILD). The method further includes forming trenches in the ILD extending into the sacrificial liners, wherein the trenches are vertically aligned with the p-type epitaxial region and the n-type epitaxial region, removing the sacrificial liners to define irregular-shaped openings exposing the p-type epitaxial region and the n-type epitaxial region, and filling the irregular-shaped openings with a conductive material defining the wrap around contact. |
US11227921B2 |
Laterally-diffused metal-oxide semiconductor transistor and method therefor
A transistor includes a trench formed in a semiconductor substrate with the trench having a first sidewall and a second sidewall. A gate region includes a conductive material filled in the trench. A drift region having a first conductivity type is formed in the semiconductor substrate adjacent to the second sidewall. A drain region is formed in the drift region and separated from the second sidewall by a first distance. A dielectric layer is formed at the top surface of the semiconductor substrate covering the gate region and the drift region between the second sidewall and the drain region. A field plate is formed over the dielectric layer and isolated from the conductive material and the drift region by way of the dielectric layer. |
US11227920B2 |
Semiconductor device, and method of manufacturing the semiconductor device
A semiconductor device having a large storage capacity per unit area is provided. The semiconductor device includes a memory transistor. The memory transistor includes a conductor including an opening, a first insulator provided in contact with an inner side of the opening, a second insulator provided in contact with an inner side of the first insulator, a third insulator provided in contact with an inner side of the second insulator, a first oxide provided in contact with an inner side of the third insulator, and a second oxide provided in contact with an inner side of the first oxide. An energy gap of the second oxide is narrower than an energy gap of the first oxide. |
US11227919B2 |
Field-effect-transistors
A field-effect-transistor includes forming a fin structure on a substrate, a gate structure formed across each fin structure and covering a portion of top and sidewall surfaces of the fin structure, a first doped layer, made of a first semiconductor material and doped with first doping ions, in each fin structure on one side of the corresponding gate structure, and a second doped layer, made of a second semiconductor material, doped with second doping ions, and having doping properties different from the first doped layer, in each fin structure on another side of the corresponding gate structure. |
US11227918B2 |
Melt anneal source and drain regions
A method includes forming a gate stack on a first portion of a semiconductor substrate, removing a second portion of the semiconductor substrate on a side of the gate stack to form a recess, growing a semiconductor region starting from the recess, implanting the semiconductor region with an impurity, and performing a melt anneal on the semiconductor region. At least a portion of the semiconductor region is molten during the melt anneal. |
US11227917B1 |
Nano-sheet-based devices with asymmetric source and drain configurations
A device includes a semiconductor substrate, a source feature and a drain feature over the semiconductor substrate, a stack of semiconductor layers interposed between the source feature and the drain feature, a gate portion, and an inner spacer of a dielectric material. The gate portion is between two vertically adjacent layers of the stack of semiconductor layers and between the source feature and the drain feature. Moreover, the gate portion has a first sidewall surface and a second sidewall surface opposing the first sidewall surface. The inner spacer is on the first sidewall surface and between the gate portion and the drain feature. The second sidewall surface is in direct contact with the source feature. |
US11227914B2 |
Semiconductor device
A semiconductor device includes a substrate having a first region and a second region, first and second nanowires disposed sequentially on the substrate in the first region, and extending respectively in a first direction, third and fourth nanowires disposed sequentially on the substrate in the second region, and extending respectively in the first direction, a first inner spacer between the first nanowire and the second nanowire, and including hydrogen of a first hydrogen mole fraction, and a second inner spacer between the third nanowire and the fourth nanowire, and including hydrogen of a second hydrogen mole fraction that is greater than the first hydrogen mole fraction. |
US11227913B2 |
Semiconductor device and method of manufacturing the same
A second source portion having an impurity concentration lower than that of a first source portion, both forming a source region, includes a first sub-portion having a depth from a bottom surface of the first source portion down to a second height higher than a first height, and a second sub-portion having an upper surface in contact with a part of a bottom surface of the first sub-portion, one side surface in a second direction perpendicular to a first direction in contact with an outer side surface of the trench, another side surface in the second direction, both side surfaces in the first direction, and a bottom surface in contact with the base layer, and having a depth from a bottom surface of the first sub-portion up to at least the first height. |
US11227908B2 |
Flexible organic light-emitting diode substrate and manufacturing method thereof
A flexible organic light-emitting diode (OLED) display substrate and manufacturing method using the same are provided. The flexible OLED display substrate includes a display region, a non-display region, and a bending region connected to the display region and the non-display region. The bending region is provided with multiple liquid conductive wires spaced from each other. Each liquid conductive wire includes a conductive flow channel disposed in the bending region and a pair of metal wire portions connected to two ends of the conductive flow channel. A packaging layer is arranged on each conductive flow channel to store a liquid conductive material. The liquid conductive material is sealed in each conductive flow channel. Therefore, the liquid conductive wires can greatly improve the production yield of the bending region, and overcome a problem that a conventional bending region is prone to break during a bending process. |
US11227906B2 |
Display device
A display device includes a base layer on which a display area and a non-display area are defined, a circuit layer including a first power electrode and driving circuits, which are disposed in the non-display area, a first planarization layer in which a first opening through which the first power electrode is exposed is defined and which covers the driving circuits, a second power electrode disposed on the first planarization layer to contact the first power electrode that is exposed through the first opening and overlapping at least a portion of the driving circuits, and a second planarization layer disposed on the first planarization layer to cover a portion of the second power electrode and having a groove part in an area overlapping the first planarization layer and the second power electrode in a plan view. |
US11227903B2 |
Organic light emitting display device having a reflective barrier and method of manufacturing the same
Disclosed are an organic light emitting display device to improve optical efficiency and prevent deterioration in reliability of thin film transistors, and a method of manufacturing the same. The organic light emitting display device includes a mirror wall which is disposed on a substrate such that the mirror wall surrounds a light emitting area of each sub-pixel where a light emitting element is disposed, thus preventing total reflection of light produced in the light emitting element and improving optical efficiency by reflecting light travelling toward a non-emitting area to be directed to the light emitting area. |
US11227900B2 |
Display device with dummy metallic pattern
A display device includes: a substrate including a display area, a peripheral area, a pad area, and a bending area disposed between the display area and the pad area, wherein the peripheral area is disposed outside the display area, and the pad area is disposed in the peripheral area; a plurality of metallic wirings positioned on the substrate and in the bending area; a first organic insulating layer and a second organic insulating layer stacked on the plurality of metallic wirings in the bending area; and a first dummy metallic pattern disposed between the first organic insulating layer and the second organic insulating layer. |
US11227898B2 |
Display apparatus
A display apparatus includes: a first substrate having a front surface and a rear surface; a first display layer disposed on the front surface of the first substrate, the first display layer configured to emit light in a front direction; a second display layer disposed on the rear surface of the first substrate, the second display layer configured to emit light in a rear direction; and a pressure sensor disposed on the rear surface of the first substrate, the pressure sensor configured to sense a pressure of a touch of a user. |
US11227895B2 |
Reimaging in a lidar system
A light detection and ranging (LIDAR) system is provided that includes an optical a scanning mirror to steer a laser beam emitted from the tip of an optical fiber to scan a scene, and collect light incident upon any objects in the scene that is returned to the fiber tip. The LIDAR system further includes a re-imaging lens located between the optical fiber and scanning mirror, and an optic located between the scanning mirror and the scene. The re-imaging lens focuses the laser beam emitted from the optical fiber on or close to the first scanning mirror's center of rotation and thereby re-image the fiber tip at or close to the center of rotation, from which the laser beam is reflected as a divergent laser beam. And the optic is configured to collimate or focus the divergent laser beam from the first scanning mirror that is launched toward the scene. |
US11227888B2 |
Imaging device, apparatus and method for producing the same and electronic apparatus
Solid-state imaging devices, methods to produce the solid-state imaging devices, and electronic apparatuses including the solid-state imaging devices, where the solid-state imaging devices include a semiconductor substrate including a light receiving surface; a plurality of photoelectric conversion parts provided within the semiconductor substrate; and a plurality of reflection portions provided in the semiconductor substrate on a side of the photoelectric conversion parts that is opposite from the light receiving surface; where each of the reflection portions includes a reflection plate and a plurality of metal wirings, and where the plurality of metal wirings are disposed in a same layer of the semiconductor substrate as the reflection plate. |
US11227887B2 |
Semiconductor device structure and manufacturing process thereof
A semiconductor device structure for sensing an incident light includes a substrate, a passivation layer and a wiring structure. The substrate has a device embedded therein. The passivation layer is disposed on the substrate, where the passivation layer has a first side and a second side opposite to the first side, the first side of the passivation layer includes microstructures disposed on the substrate, and the second side of the passivation layer is a continuous flat plane, wherein each of the microstructures has a cross-section in a shape of a triangle, trapezoid or arc. The wiring structure is disposed on the substrate, where the writing structure includes at least one contact and metal interconnection patterns respectively formed in different dielectric layers, and the at least one contact and the metal interconnection patterns are electrically connected, where the substrate is located between the passivation layer and the wiring structure. |
US11227886B2 |
Mechanisms for forming image sensor device
An image sensor device is provided. The image sensor device includes a semiconductor substrate and a light sensing region in the semiconductor substrate. The image sensor device also includes a dielectric layer over the semiconductor substrate and a filter partially surrounded by the dielectric layer. The filter has a protruding portion protruding from a bottom surface of the dielectric layer. The image sensor device further includes a shielding layer between the dielectric layer and the semiconductor substrate and surrounding the protruding portion of the filter. In addition, the image sensor device includes a reflective element between the shielding layer and an edge of the light sensing region. |
US11227882B2 |
Thin film transistor, method for fabricating the same, display substrate, and display device
A thin film transistor, a method for fabricating the same, a display substrate, and a display device are disclosed. The thin film transistor includes a gate, a source, a drain, and an active layer. Forming the active layer includes: forming a pattern comprising a thermal insulation layer; forming a pattern comprising an amorphous silicon layer on the thermal insulation layer, wherein the pattern comprising the amorphous silicon layer includes a first portion on the thermal insulation layer and a second portion extending beyond the thermal insulation layer; and treating the pattern comprising the amorphous silicon layer with a laser annealing process, so that the amorphous silicon layer grows grain in a direction from the second portion to the first portion to form the active layer from polycrystalline silicon. |
US11227878B2 |
Display panel, manufacturing method for the display panel, and display device
A display panel and a manufacturing method thereof and a display device using the same are provided. The display panel includes a display region and a non-display region. The display panel includes a substrate, a plurality of thin film transistors (TFTs) and a planarization layer sequentially stacked and at least one buffer unit disposed between the planarization layer and the substrate, wherein the buffer unit is located outside the TFT. The buffer unit is positioned in the display region and used for buffering stress of the display panel during bending. |
US11227877B2 |
Array substrates and manufacturing methods thereof and display screens
An array substrate includes a display region and a non-display region located outside the display region. The non-display region includes a flexible underlay and an inorganic film layer. A surface of the flexible underlay is provided with a number of slots thereon. The plurality of slots including a pair of adjacent slots. A region positioned between the adjacent slots on the flexible underlay is a trace region. The inorganic film layer includes a first inorganic film layer formed in the trace region and a second inorganic film layer formed on a bottom wall of the slots. The first inorganic film layer and the second inorganic film layer are divided by sidewalls of the slots. A peripheral metal trace is formed on the surface of the first inorganic film layer. |
US11227876B2 |
Substrate and electrophoretic device
A substrate includes a base material having an insulating property, a pixel electrode provided on one surface side of the base material, a pixel transistor provided between the base material and the pixel electrode, a first reflective film provided between the pixel transistor and the pixel electrode, and a common electrode provided between the pixel transistor and the first reflective film. The first reflective film has a first through-hole, the common electrode has a second through-hole, and a drain of the pixel transistor is coupled to the pixel electrode through the first through-hole and the second through-hole. |
US11227874B2 |
Photosensitive element having substantially flat interface between electrode and photosensitive layer and manufacturing method thereof
A photosensitive element and a manufacturing method thereof are provided. The manufacturing method of the photosensitive element includes successively depositing a second conductive layer, a photosensitive material layer, and a first top electrode material layer on a substrate; forming a first patterned photoresist layer on the first top electrode material layer; patterning the first top electrode material layer by using the first patterned photoresist layer as a mask to form a first top electrode; removing the first patterned photoresist layer; patterning the photosensitive material layer by using the first top electrode as a mask to form a photosensitive layer; forming an insulation layer having an opening on the first top electrode; and forming a second top electrode on the insulation layer, and the second top electrode is electrically connected to the first top electrode via the opening. |
US11227870B2 |
Semiconductor memory device and method for fabricating the same
A semiconductor memory device includes a third insulating pattern and a first insulating pattern on a substrate, the third insulating pattern and the first insulating pattern being spaced apart from each other in a first direction that is perpendicular to the substrate such that a bottom surface of the third insulating pattern and a top surface of the first insulating pattern face each other, a gate electrode between the bottom surface of the third insulating pattern and the top surface of the first insulating pattern, and including a first side extending between the bottom surface of the third insulating pattern and the top surface of the first insulating pattern, and a second insulating pattern that protrudes from the first side of the gate electrode by a second width in a second direction, the second direction being different from the first direction. |
US11227869B1 |
Memory array structures for capacitive sense NAND memory
Arrays of memory cells a plurality of sense lines each having a respective plurality of pass gates connected in series between a second data line and a source, and having a respective subset of unit column structures capacitively coupled to first channels of its respective plurality of pass gates, wherein, for each sense line of the plurality of sense lines, each unit column structure of its respective subset of unit column structures is connected to a respective first data line of a respective subset of first data lines. |
US11227868B2 |
Semiconductor device including an anti-fuse and method for fabricating the same
A semiconductor device includes a trench formed in a substrate; an active region defined in the substrate by the trench; a trench-based dielectric material formed in the trench, and including a rupture portion contacting an edge of the active region; a first conductive plug formed on the trench-based dielectric material so as to contact the rupture portion; and a gate structure including a gate dielectric layer formed on the active region and a gate electrode formed on the gate dielectric layer. |
US11227867B2 |
Method and device for finFET SRAM
A method for manufacturing a semiconductor device includes providing a substrate structure including a substrate, an interlayer dielectric layer, multiple trenches in the interlayer dielectric layer including first, second, third trenches for forming respective gate structures of first, second, and third transistors, forming an interface layer on the bottom of the trenches; forming a high-k dielectric layer on the interface layer and sidewalls of the trenches; forming a first PMOS work function adjustment layer on the high-k dielectric layer of the third trench; forming a second PMOS work function adjustment layer in the trenches after forming the first PMOS work function adjustment layer; forming an NMOS work function layer in the trenches after forming the second PMOS work function adjustment layer; and forming a barrier layer in the trenches after forming the NMOS work function layer and a metal gate layer on the barrier layer. |
US11227866B2 |
Semiconductor device including capacitor and method of forming the same
A semiconductor device includes a substrate, a lower electrode provided over the substrate, a capacitive insulating film, and an upper electrode provided over the lower electrode, wherein the lower electrode has an upper portion and a lower portion, and at a boundary between the upper portion and the lower portion, the diameter of the upper portion is smaller than the diameter of the lower portion. |
US11227863B2 |
Gate isolation in non-planar transistors
An embodiment includes an apparatus comprising: first and second semiconductor fins that are parallel to each other; a first gate, on the first fin, including a first gate portion between the first and second fins; a second gate, on the second fin, including a second gate portion between the first and second fins; a first oxide layer extending along a first face of the first gate portion, a second oxide layer extending along a second face of the second gate portion, and a third oxide layer connecting the first and second oxide layers to each other; and an insulation material between the first and second gate portions; wherein the first, second, and third oxide layers each include an oxide material and the insulation material does not include the oxide material. Other embodiments are described herein. |
US11227860B2 |
Memory device
A memory device includes a memory cell chip, a peripheral circuit chip, and a routing wire. The memory cell chip includes a memory cell array disposed on a first substrate, and a first metal pad on a first uppermost metal layer. The peripheral circuit chip includes circuit devices disposed on a second substrate, and a second metal pad on a second uppermost metal layer of the peripheral circuit chip. The memory cell chip and the peripheral circuit chip are vertically connected to each other by the first metal pad and the second metal pad in a bonding area. The routing wire is electrically connected to the peripheral circuit and is disposed in the first uppermost metal layer or the second uppermost metal layer and is disposed in a non-bonding area in which the memory cell chip and the peripheral circuit chip are not electrically connected to each other. |
US11227859B2 |
Stacked package with electrical connections created using high throughput additive manufacturing
A device package and a method of forming the device package are described. The device package includes one or more dies disposed on a first substrate. The device packages further includes one or more interconnects vertically disposed on the first substrate, and a mold layer disposed over and around the first die, the one or more interconnects, and the first substrate. The device package has a second die disposed on a second substrate, wherein the first substrate is electrically coupled to the second substrate with the one or more interconnects, and wherein the one or more interconnects are directly disposed on at least one of a top surface of the first substrate and a bottom surface of the second substrate without an adhesive layer. The device package may include one or more interconnects having one or more different thicknesses or heights at different locations on the first substrate. |
US11227855B2 |
Semiconductor package
A semiconductor package includes a first package substrate, a first semiconductor chip on the first package substrate, a plurality of first chip connection units to connect the first package substrate to the first semiconductor chip, an interposer on the first semiconductor chip, the interposer having a width greater than a width of the first semiconductor chip in a direction parallel to an upper surface of the first package substrate, and an upper filling layer including a center portion and an outer portion, the center portion being between the first semiconductor chip and the interposer, and the outer portion surrounding the center portion and having a thickness greater than a thickness of the center portion in a direction perpendicular to the upper surface of the first package substrate. |
US11227845B2 |
Power module and method of manufacturing same
A power module includes a substrate having a dielectric layer, a first power semiconductor device disposed on an upper part of the substrate, and a second power semiconductor device disposed on a lower part of the substrate. |
US11227841B2 |
Stiffener build-up layer package
To maintain the integrity of electrical contacts at a build-up layer of a chip package, while reducing electrical interference caused by a chip connected to the build-up layer, the chip package can include a stiffener formed from an electrically conductive material and positioned between the chip and the build-up layer. The chip can electrically connect to the build-up layer through electrical connections that extend through the stiffener. Compared with a stiffener that extends only over a single chip of the chip package, the present stiffener can help prevent warpage or other mechanical deformities that can degrade electrical contacts away from the chip at the build-up layer. Compared with a stiffener that extends only over an area away from the chip, such as a peripheral area, the present stiffener can help reduce electrical interference in an area of the build-up layer near the chip. |
US11227840B2 |
Electronic module having improved shield performance
A module includes a substrate having a main surface, a first component mounted on the main surface, and a first wire group constituted of three or more wires in parallel with each other that are bonded to the main surface so as to straddle the first component while extending in a first direction. When sections are defined along a second direction perpendicular to the first direction, the first wire group includes a first section in which a distance between wires adjacent to each other is a first length and a second section in which a distance between wires adjacent to each other is a second length longer than the first length. |
US11227839B2 |
Display substrate motherboard and method for manufacturing the same
The disclosure relates to the field of display technology. A display substrate motherboard and a method for manufacturing the same are disclosed. In the technical solution provided by the embodiments of the disclosure, by providing via holes formed in the film, instead of small area island-like film patterns, as stitch marks of the display substrate motherboard, a possibility of stitch mark peeling is reduced, thereby further ensuring a reliability and yield of product. |
US11227838B2 |
Logic drive based on multichip package comprising standard commodity FPGA IC chip with cooperating or supporting circuits
A multichip package includes: a chip package comprising a first IC chip, a polymer layer in a space beyond and extending from a sidewall of the first IC chip, a through package via in the polymer layer, an interconnection scheme under the first IC chip, polymer layer and through package via, and a metal bump under the interconnection scheme and at a bottom of the chip package, wherein the first IC chip comprises memory cells for storing data therein associated with resulting values for a look-up table (LUT) and a selection circuit comprising a first input data set for a logic operation and a second input data set associated with the data stored in the memory cells, wherein the selection circuit selects, in accordance with the first input data set, data from the second input data set as an output data for the logic operation; and a second IC chip over the chip package, wherein the second IC chip couples to the first IC chip through, in sequence, the through package via and interconnection scheme, wherein the second IC chip comprises a hard macro having an input data associated with the output data for the logic operation. |
US11227835B2 |
Semiconductor package
A semiconductor package includes a frame having first and second surfaces opposite to each other, having first and second through holes, and including a wiring structure connecting the first and second surfaces, a connection structure disposed on the first surface of the frame and having a redistribution layer connected to the wiring structure, a first semiconductor chip having a first surface having a first pad connected to the redistribution layer and a second surface opposite to the first surface and having a second pad, a second semiconductor chip having an active surface having a connection pad connected to the redistribution layer and an inactive surface opposite to the active surface, an encapsulant encapsulating the first and second semiconductor chips, and a wiring layer connected to the second pad of the first semiconductor chip and the wiring structure. |
US11227832B2 |
Semiconductor memory device having a memory cell and semiconductor layer
According to one embodiment, a semiconductor memory device includes: a first semiconductor layer including first to third portions which are arranged along a first direction and differ in position from one another in a second direction; a conductive layer including a fourth portion extending in the second direction and a fifth portion extending in the first direction; a first insulating layer between the fourth portion and the first semiconductor layer and between the fifth portion and the first semiconductor layer; a first contact plug coupled to the fourth portion; a second contact plug coupled to the first semiconductor layer in a region where the first insulating layer is formed; a first interconnect; and a first memory cell apart from the fifth portion in the first direction and storing information between the semiconductor layer and the first interconnect. |
US11227830B2 |
Conductive features having varying resistance
Methods to form vertically conducting and laterally conducting low-cost resistor structures utilizing dual-resistivity conductive materials are provided. The dual-resistivity conductive materials are deposited in openings in a dielectric layer using a single deposition process step. A high-resistivity β-phase of tungsten is stabilized by pre-treating portions of the dielectric material with impurities. The portions of the dielectric material in which impurities are incorporated encompass regions laterally adjacent to where high-resistivity β-W is desired. During a subsequent tungsten deposition step the impurities may out-diffuse and get incorporated in the tungsten, thereby stabilizing the metal in the high-resistivity β-W phase. The β-W converts to a low-resistivity α-phase of tungsten in the regions not pre-treated with impurities. |
US11227827B2 |
Semiconductor device
A semiconductor device includes a semiconductor element, a first lead including a mounting portion for the semiconductor element and a first terminal portion connected to the mounting portion, and a sealing resin covering the semiconductor element and a portion of the first lead. The mounting portion has a mounting-portion front surface and a mounting-portion back surface opposite to each other in a thickness direction, with the semiconductor element mounted on the mounting-portion front surface. The sealing resin includes a resin front surface, a resin back surface and a resin side surface connecting the resin front surface and the resin back surface. The mounting-portion back surface of the first lead is flush with the resin back surface. The first terminal portion includes a first-terminal-portion back surface exposed from the resin back surface, in a manner such that the first-terminal-portion back surface extends to the resin side surface. |
US11227826B2 |
Semiconductor device having chip stacked and molded
A semiconductor device includes an insulating layer, a conductive member provided inside the insulating layer, a chip disposed on a first surface of the insulating layer and connected to the conductive member, and an electrode connected to the conductive member via a barrier layer. A resistivity of the barrier layer is higher than a resistivity of the conductive member. At least a portion of the electrode protrudes from a second surface of the insulating layer. |
US11227820B2 |
Through hole side wettable flank
This disclosure relates to a flank wettable semiconductor device, having: a lead frame including a plurality of leads with a lead end portion and a semiconductor die mounted on the lead frame. The lead end portion comprises a recess portion having a height that corresponds to a thickness of the lead end portion, and a plate member mounted on the leadframe at the lead end portion. |
US11227818B2 |
Stacked dies electrically connected to a package substrate by lead terminals
An embodiment related to a stacked package is disclosed. The stacked package includes a conductive gang with gang legs electrically coupling a second component stacked over a first die to a package substrate. The first die is mounted over a die attach region of the package substrate and electrically coupled to the package substrate. |
US11227814B2 |
Three-dimensional semiconductor package with partially overlapping chips and manufacturing method thereof
The present application provides a semiconductor package and a manufacturing method thereof. The semiconductor package includes a first device, first electrical connectors, a second device and second electrical connectors. The first device is attached to a package substrate. An active side of the first device die faces toward the package substrate. The first electrical connectors connect the active side of the first device die to the package substrate. The second device die is stacked over the first device die. An active side of the second device die faces toward the package substrate. A portion of the active side of the second device die is outside an area that overlaps the first device die. The second electrical connectors connect the portion of the active side of the second device die to the package substrate. |
US11227811B2 |
Heat radiating member and electrical junction box
A heat radiating member and an electrical junction box are provided that have a simple configuration and are capable of quickly radiating heat generated by a semiconductor device. A support member, which receives heat from a substrate portion having a mounting face on which a semiconductor device is mounted, via an opposing plate portion opposing the mounting face, and radiates the received heat, includes a recessed portion formed in the opposing plate portion, at a position corresponding to the semiconductor device. The recessed portion has a wall thickness that is greater than that of another portion of the opposing plate portion. |
US11227808B2 |
Power module and method for fabricating the same, and power conversion device
A power module which inhibits disjoin between a sealing resin and an adhesive. The power module includes: an insulative substrate having a semiconductor element mounted on the top surface; a base plate joined to the rear surface of the insulative substrate; a case member with the base plate, that surrounds the insulative substrate, the case member having a bottom surface whose inner periphery portion side being in contact with a top surface of the base plate, the bottom surface being provided with an angled surface whose distance to the top surface of the base plate increases toward an outer periphery side of the base plate; an adhesive member filled between the base plate and the angled surface to adhere the base plate and the case member; and a filling member filled in a region bounded by the base plate and the case member. |
US11227803B2 |
Semiconductor structure and fabrication method
Semiconductor structures and fabrication methods are provided. An exemplary fabrication method includes providing a base substrate having an opening and forming a first gate layer in the opening. The first gate layer closes a top of the opening and includes a void. The method also includes forming a second gate layer on the first gate layer. An atomic radius of a material of the second gate layer is smaller than gaps among the atoms of the material of the first gate layer. Further, the method includes performing a thermal annealing process to cause atoms of the material of the second layer to pass through the first gate layer to fill the void. |
US11227797B2 |
Film deposition using enhanced diffusion process
Embodiments described herein relate to methods of seam-free gapfilling and seam healing that can be carried out using a chamber operable to maintain a supra-atmospheric pressure (e.g., a pressure greater than atmospheric pressure). One embodiment includes positioning a substrate having one or more features formed in a surface of the substrate in a process chamber and exposing the one or more features of the substrate to at least one precursor at a pressure of about 1 bar or greater. Another embodiment includes positioning a substrate having one or more features formed in a surface of the substrate in a process chamber. Each of the one or more features has seams of a material. The seams of the material are exposed to at least one precursor at a pressure of about 1 bar or greater. |
US11227796B2 |
Enhancement of iso-via reliability
A semiconductor structure and a process for forming a semiconductor structure. There is a back end of the line wiring layer which includes a wiring line, a multilayer cap layer and an ILD layer. A metal-filled via extends through the ILD layer and partially through the cap layer to make contact with the wiring line. There is a reliability enhancement material formed in one of the layers of the cap layer. The reliability enhancement material surrounds the metal-filled via only in the cap layer to make a bottom of the metal-filled via that contacts the wiring line be under compressive stress, wherein the compressive reliability enhancement material has different physical properties than the cap layer. |
US11227795B2 |
Integrated circuit package and method
In an embodiment, a method includes: dispensing a first dielectric layer around and on a first metallization pattern, the first dielectric layer including a photoinsensitive molding compound; planarizing the first dielectric layer such that surfaces of the first dielectric layer and the first metallization pattern are planar; forming a second metallization pattern on the first dielectric layer and the first metallization pattern; dispensing a second dielectric layer around the second metallization pattern and on the first dielectric layer, the second dielectric layer including a photosensitive molding compound; patterning the second dielectric layer with openings exposing portions of the second metallization pattern; and forming a third metallization pattern on the second dielectric layer and in the openings extending through the second dielectric layer, the third metallization pattern coupled to the portions of the second metallization pattern exposed by the openings. |
US11227792B2 |
Interconnect structures including self aligned vias
Back end of line metallization structures and methods for fabricating self-aligned vias. The structures generally include a first interconnect structure disposed above a substrate. The first interconnect structure includes a metal line formed in a first interlayer dielectric. A second interconnect structure overlies the first interconnect structure. The second interconnect structure includes a second cap layer on the first interlayer dielectric, a second interlayer dielectric thereon, and at least one self-aligned via in the second interlayer dielectric conductively coupled to at least a portion of the metal line of the first interconnect structure, wherein any misalignment of the at least one self-aligned via results in the at least one self-aligned via landing on both the metal line of the first interconnect structure and the second cap layer. The second cap layer is an insulating material. |
US11227790B1 |
Managing trench depth in integrated systems
One or more photonic structures are formed within one or more layers over a surface of a substrate, and multiple trenches are formed through the one or more layers housing devices coupled to one or more of the photonic structures. The trenches may include: a first trench that has a bottom surface within the substrate that has a first surface topology characterized by a first surface roughness at a first depth within the substrate relative to the surface of the substrate, and a second trench that has a bottom surface within the substrate that has a second surface topology characterized by a second surface roughness at a second depth within the substrate relative to the surface of the substrate. The first surface roughness may be greater than the second surface roughness, and the second depth may be greater than the first depth. |
US11227787B2 |
Transfer support and transfer module
A transfer support adapted to contact a plurality of elements is provided. The transfer support has a first surface, a second surface opposite to the first surface, a recess located on the second surface, a plurality of platforms protruded from the first surface, a plurality of supporting pillars distributed in the recess and a plurality of through holes. The platforms have carry surfaces adapted to contact the plurality of elements. The through holes extend from the carry surfaces of the platforms to the recess, and two of the adjacent supporting pillars are spaced apart from each other to form an air passage. In addition, a transfer module is also provided. |
US11227783B2 |
Transfer device
A transfer device includes a first parallel four-joint link mechanism in which base end portions of a pair of first links are rotatably connected to a first link base and distal end portions of the first links are rotatably connected to an intermediate link base, a second parallel four-joint link mechanism in which base end portions of a pair of second links are rotatably connected to the intermediate link base and distal end portions of the second links are rotatably connected to a second link base, and a belt transmission mechanism including a pair of first pulleys respectively connected to the first links, a second pulley connected to one of the second links, and a belt provided around the first pulleys and the second pulley. The belt transmission mechanism transmits a rotational driving force such that the first links and the second links rotate in opposite directions to each other. |
US11227780B2 |
System and method for operating the same
A system is disclosed herein. The system includes a tank, a tube, a cooler, and a concentration meter. The tank is configured to contain first liquid. The tube is coupled to the tank and configured to convey the first liquid from the tank. The cooler covers the tube to cool the first liquid conveyed by the tube. The concentration meter is configured to measure a concentration of the first liquid cooled by the cooler. |
US11227775B2 |
Method of fabricating carrier for wafer level package by using lead frame
According to an embodiment of the disclosure, a method of fabricating a carrier for a wafer level package (WLP) by using a lead frame, wherein the lead frame is fabricated by forming a trench and a post by performing first half etching on an upper surface of a base substrate comprising a conductive material, filling the first-half-etched surface with resin of an insulating material, removing the resin exposed to outside of the trench so that an upper surface of the trench and an upper surface of the resin are at a same level, and performing second half etching on a lower surface of the base substrate, in which a memory chip is attached to the lower surface of the base substrate. |
US11227769B2 |
Method for fabricating semiconductor device
A method for fabricating semiconductor device includes the steps of: forming a gate structure on a substrate; forming an interlayer dielectric (ILD) layer around the gate structure; performing a replacement metal gate (RMG) process to transform the gate structure into a metal gate; forming an inter-metal dielectric (IMD) layer on the metal gate; forming a metal interconnection in the IMD layer; and performing a high pressure anneal (HPA) process for improving work function variation of the metal gate. |
US11227768B2 |
Method for selective incorporation of dopant atoms in a semiconductive surface
The present disclosure is directed to a methodology for embedding a deterministic number of dopant atoms in a surface portion of a group IV semiconductor lattice. The methodology comprises the steps of: forming one or more lithographic sites on the surface portion; dosing, at a temperature below 100 K, the surface portion using a gas with molecules comprising the dopant atom and hydrogen atoms in a manner such that, a portion of the molecules bonds to the surface portion; and incorporating one or more dopant atoms in a respective lithographic site by transferring an amount of energy to the dopant atoms. The number of dopant atoms incorporated in a lithographic site is deterministic and related to the size of the lithographic site. |
US11227767B2 |
Critical dimension trimming method designed to minimize line width roughness and line edge roughness
A substrate is provided with a patterned layer over a stack of one or more processing layers. The processing layers include at least one patterned layer and one etch target layer. CD trimming between the CD of the patterned layer and the CD of the etch target layer may be achieved after the pattern is transferred to the etch target layer. After the etch target layer is patterned, a plasma free gas phase etch process may be used to trim the CD of the etch target layer to finely tune the CD. In an alternate embodiment, plasma etch trim processes may be used in combination with the gas phase etch process. In such an embodiment, partial CD trimming may be achieved via the plasma etching of the various process layers and then additional CD trimming may be achieved by subjecting the etch target layer to the plasma free gas phase etch after the desired pattern has been formed in the etch target layer. |
US11227764B2 |
Laser irradiation method and laser irradiation apparatus
A laser irradiation method includes a first scanning wherein a laser beam is scanned in a first region having a width in the X direction and a length in the Y direction by moving a laser irradiation area on the surface of the substrate along the Y direction using a spot laser beam, and a second scanning wherein laser beam is scanned in a second region having a width in the X direction and a length in the Y direction by moving a laser irradiation area on the surface of the substrate along the Y direction using the spot laser beam. A center of the second region is spaced apart from a center of the first region in the X direction. |
US11227760B2 |
Wafer thinning method and wafer structure
A wafer thinning method and a wafer structure are provided. In the wafer thinning method, a to-be-thinned wafer is provided, and the to-be-thinned wafer is grinded on a rear surface of the to-be-thinned wafer. Then, a first planarization process is performed on a rear surface of the grinded wafer to restore surface flatness of the grinded wafer, and a second planarization process is performed on a rear surface of the wafer obtained after the first planarization process is performed until a target thinned thickness is reached. |
US11227759B2 |
Ion trap array for high throughput charge detection mass spectrometry
An electrostatic linear ion trap (ELIT) array includes multiple elongated charge detection cylinders arranged end-to-end and each defining an axial passageway extending centrally therethrough, a plurality of ion mirror structures each defining a pair of axially aligned cavities and an axial passageway extending centrally therethrough, wherein a different ion mirror structure is disposed between opposing ends of each cylinder, and front and rear ion mirrors each defining at least one cavity and an axial passageway extending centrally therethrough, the front ion mirror positioned at one end of the arrangement of charge detection cylinders and the rear ion mirror positioned at an opposite end of the arrangement of charge detection cylinders, wherein the axial passageways of the charge detection cylinders, the ion mirror structures, the front ion mirror and the rear ion mirror are coaxial to define a longitudinal axis passing centrally through the ELIT array. In a second aspect, an ELIT array comprises a plurality of non-coaxial ELIT regions, wherein ions are selectively guided into each of the ELIT regions. |
US11227752B2 |
Composition analysis technology of ultramicro volume liquid by laser ablation plasma mass spectrometry
The present invention relates to a composition analysis technology of ultramicro-volume liquid by laser ablation plasma mass spectrometry. Using a pipette gun to extract the liquid to be detected in a low-temperature environment, dropping the liquid into a dropping pit in a dropping plate, the liquid level is slightly higher than an overflow table in the dropping plate; dropping different liquid samples into different dropping pits by the same method; gradually covering the dropping pit with an analysis film having an area 1.5 times larger than that of the dropping plate from one side of the dropping plate, tightly adhering the thin film onto the dropping plate by using a transparent adhesive tape, the thin film is in close contact with the liquid level; placing the dropping plate covered by the thin film in a LA-ICPMS universal solid sample chamber, and then setting parameters for ablation. |
US11227751B1 |
Plasma chamber target for reducing defects in workpiece during dielectric sputtering
Methods and apparatus for plasma chamber target for reducing defects in workpiece during dielectric sputtering are provided. For example, a dielectric sputter deposition target can comprise a dielectric compound having a predefined average grain size ranging from approximately 65 μm to 500 μm, wherein the dielectric compound is at least one of magnesium oxide or aluminum oxide. |
US11227750B2 |
Substrate processing apparatus
There is provided a technique that include: a process chamber including a plasma generation space and a process space; a coil electrode arranged around the plasma generation space; a substrate mounting table on which a substrate to be processed in the process space is mounted; an elevator configured to move the substrate mounting table in the process chamber; and a controller configured to control the elevator to vary a distance between the substrate and an end portion of the coil electrode according to process distribution information on the substrate. |
US11227749B2 |
3D printed plasma arrestor for an electrostatic chuck
A method for manufacturing an arrestor for an electrostatic chuck includes printing first layers of an arrestor for an electrostatic chuck using a 3-D printer and an electrically non-conductive material. The first layers of the arrestor at least partially define a first opening to a gas flow channel. The method includes printing intermediate layers of the arrestor using the 3-D printer and the electrically non-conductive material. The intermediate layers of the arrestor at least partially define the gas flow channel. The method includes printing second layers of the arrestor using the 3-D printer and the electrically non-conductive material. The second layers of the arrestor at least partially define a second opening of the gas flow channel. At least one of the first opening, the second opening and/or the gas flow channel of the arrestor is arranged to prevent a direct line of sight between the first opening and the second opening of the arrestor. |
US11227748B2 |
Plasma treatment device and structure of reaction vessel for plasma treatment
The present invention improves the in-plane uniformity of films formed via a plasma treatment. It is provided a plasma treatment device comprising: an electrode plate arranged in a reaction vessel; a counter electrode arranged parallel so as to opposite to the electrode plate in the reaction vessel; a transmission plate to supply frequency power to the electrode plate from outside of the reaction vessel, the transmission plate being connected from non-opposite side not opposing to the counter electrode of the electrode plate; and an insulator with a container shape, the insulator being arranged in the reaction vessel and storing the electrode plate therein; wherein the non-opposite side of the electrode plate closely contacts to an inner bottom surface of the insulator with the container shape, wherein a side surface of the electrode plate closely contacts to an inner side surface of the insulator with the container shape, and wherein a hole edge portion of the insulator with the container shape is formed so as to protrude toward a counter electrode side. |
US11227744B2 |
Multi-beam writing method and multi-beam writing apparatus
In one embodiment, a multi-beam writing method includes forming a beam array of a multi-beam, assigning sub-beam arrays to each of a plurality of sub-stripe regions, the sub-stripe regions being obtained by dividing a region on the substrate, and the sub-beam arrays being obtained by dividing the beam array, calculating an irradiation time modulation rate being used for each beam belonging to each of the sub-beam arrays, calculating a weight for each of the sub-beam arrays based on the irradiation time modulation rate for each of the beams belonging to a group of the sub-beam arrays, and assigning the calculated weight to the sub-beam array, and performing multiple writing on each of the sub-stripe regions by performing writing on each of the sub-stripe regions with the sub-beam arrays, based on the weight assigned to the sub-beam array and the irradiation time modulation rate of the beam belonging to the sub-beam array. |
US11227743B2 |
Accurate wavelength calibration in cathodoluminescence SEM
A scanning electron microscope having a spectrometer with a sensor having a plurality of pixels, wherein the spectrometer directs different wavelengths of collected light onto different pixels. An optical model is formed and an error function is minimized to find values for the model, such that wavelength detection may be corrected using the model. The model can correct for errors generated by effects such as the motion of the electron beam over the specimen, aberrations introduced by optical elements, and imperfections of the optical elements. A correction function may also be employed to account for effects not captured by the optical model. |
US11227733B2 |
Switch
A switch includes: a tank; a fixed contact and a reciprocally movable contact provided inside the tank; an opening/closing shaft that rotates to thereby move the movable contact; a jack base fixed to the outer side of the tank; a torsion bar that stores a force to rotate the opening/closing shaft so as to move the movable contact in a direction away from the fixed contact; and an opening/closing lever detachably attached to the opening/closing shaft. The jack base has a first penetrating portion formed therethrough and facing the opening/closing lever. The opening/closing lever has a second penetrating portion formed therethrough and facing the jack base. The switch further includes: a bolt inserted through the first penetrating portion and the second penetrating portion; and a nut attached to a portion of the bolt, the portion of the bolt extending out of the first penetrating portion and the second penetrating portion. |
US11227730B2 |
Modular structure for safety switches for access control
A modular structure for safety switches for controlling access for machines and industrial plants comprises a casing (2) housing switching means for controlling one or more circuits of the machine or plant, drive means adapted to interact with the switching means upon the opening/closing of the access, an auxiliary module (3-3v) housing at least one control (4i-4v) adapted to be manually operated to operate on the switching means and/or the drive means and comprising a box hollow body (5) having at least one opening (6) for inserting the control (4i-4v) provided with first means for removably connecting the control (4i-4v), the latter being selected within a series of controls (4i-4v) having functions different from each other and each provided with a fastening rod (7i-7v) adapted to be inserted in the opening (6) of the box body (5) and provided with second connecting means complementary to the first connecting means. |
US11227728B2 |
Transfer switch contactor mechanism
An automatic transfer switch includes a motor and a drive shaft rotatable by the motor. The automatic transfer switch includes a gear rotatable by the drive shaft. The automatic transfer switch includes a pin attached to, and movable with, the gear. The pin is offset from the central axis of the gear. The automatic transfer switch includes a bracket rotatable around the central axis of the gear and connected to an output shaft. The bracket is rotatable separately from the gear. Upon rotation of the bracket, the output shaft rotates. The bracket has at least a first source position and a second source position and the first and second source positions are different. The automatic transfer switch includes a module connected to the output shaft. The module includes at least one movable electrical contact which moves upon rotation of the output shaft. |
US11227711B2 |
Fluid flow control valve with swiveled and compensated stroke
A fluid flow control valve with swiveled & compensated stroke (100) comprising a solenoid coil assembly (60), a permanent magnet (181), a bridge mounted solenoid assembly (120), a compensated swivel fulcrum (150), a counterweight arrangement (160), and a base unit arrangement (180), wherein a slender cylindrical rod (70) of the compensated swiveled fulcrum (150) is non-rotatably trapped in a fulcrum receptacle (33) of a bridge (30), a compensating spring (85) continuously presses a pair of the plurality of spherical balls (80) against a conical surface (72) of the lender cylindrical rod (70), the bridge mounted solenoid assembly (120) swivels around an axis (121), an electric supply impressed at the electrical terminals of the solenoid coil assembly (60) generates a magnetic field and the solenoid coil assembly (60) moves in an arc (61), the swiveled valve with the compensated precision stroke (100) is mountable in any orientation. Such a valve is a small pre-stage valve with a sub-millimeter stroke, to a big valve of high energy. |
US11227698B2 |
Method for identifying the unit causing a raw water leak in a condenser of a thermal power plant
The present invention relates to a method for identifying the unit causing a raw water leak in a condenser of a thermal power plant consisting of n units. |
US11227695B2 |
Core catcher and boiling water nuclear plant using the same
According to an embodiment, a core catcher has: a main body including: a distributor arranged on a part of a base mat in the lower dry well, a basin arranged on the distributor, cooling channels arranged on a lower surface of the basin connected to the distributor and extending in radial directions, and a riser connected to the cooling channels and extending upward; a lid connected to an upper end of the riser and covering the main body; a cooling water injection pipe open, at one end, to the suppression pool, connected at another end to the distributor; and chimney pipes connected, at one end, to the riser, another end being located above the upper end of the riser and submerged and open in the pool water. |