Document Document Title
US11172601B2 Component mounter
A component mounter including a mounting head having multiple holding bodies, a revolving mechanism configured to revolve the multiple holding bodies along a revolution trajectory, a rotating mechanism configured to cause the multiple holding bodies to rotate on their axes in synchronism with each other, a detection section configured to detect a component located in one or more component detection positions which are different from the component pickup positions on the revolution trajectory from a side thereof; and a control section. The control section performs component pickup processing for causing the mounting head to cause at least one of the holding bodies located in the component pickup position to pick up and hold the component and holding body revolving processing for causing the revolving mechanism to locate the holding body that does not hold the component.
US11172600B2 Mounting device
A semiconductor mounting device for mounting chip components on a substrate, wherein the device is reduced in size. A semiconductor mounting device 10 comprises: a temporary placement stage 12 on which are loaded a plurality of chip components 30a, 30b, 30c; a conveyance head 14 that conveys the chip components 30a, 30b, 30c to the temporary placement stage 12, and also loads each of the chip components 30a, 30b, 30c on the temporary placement stage 12 so that the relative positions of the plurality of chip components 30a, 30b, 30c reach predetermined positions; a mounting stage 16 that secures a substrate 36 by suction; and a mounting head 18 that suctions the plurality of chip components 30a, 30b, 30c loaded on the temporary placement stage 12, and pressurizes while keeping the relative positions at prescribed positions on the substrate 36 that is secured by suction to the mounting stage 16.
US11172585B1 Magnetic operator interface assembly
A system for connecting and monitoring a magnetic operator interface assembly. The assembly can provide protection of an operator interface by limiting glare, UV damage, and exposure to rain. It can also protect the operator interface from high pressure cleaning equipment. The assembly is removably magnetically mountable to a sealed enclosure without breaching the enclosure's seal. The magnetic operator interface assembly can withstand operational forces, staying at a magnetically fixed position and without becoming accidentally detached. It is also easy to intentionally install and remove. The system may include sensors that can inform a local or remote dashboard about the status of the magnetic operator interface assembly, such as whether it is installed and whether the cover is open or closed. The system may also include a locking system to prevent tampering and limit access to the operator interface.
US11172581B2 Multi-planar circuit board having reduced z-height
Disclosed herein is a multi-planar circuit board, as well as related structures and methods. In an embodiment, a circuit board may include a first surface, a first section having the first surface in a first plane, a second section having the first surface in a second plane, and a third section connecting the first and second sections, where the third section defines a gradient between the first and second planes, and where all sections are sections within a contiguous board. In another embodiment, circuit board may further include a first component having a first thickness coupled on the first face of the first section, and a second component having a second thickness, greater than the first component, coupled on the first face of the second section, where the second section is in a lower plane, and where the overall thickness is the circuit board thickness plus the second thickness.
US11172571B2 Multipiece element storage package and multipiece optical semiconductor device
A multipiece element storage package of the present disclosure includes: a mother substrate which includes first element storage package regions, second element storage package regions, a dummy region, a first surface, and a second surface; a first stem electrode disposed in a part of the dummy region which part is in the first surface; and a second stem electrode disposed on the second surface. The first element storage package regions and the second element storage package regions each include a frame body disposed on the first surface, a first wiring conductor disposed on the first surface, and including one end located inside the frame body and the other end connected to the first stem electrode, and a second wiring conductor including one end which is located on the first surface and inside the frame body and the other end which is connected to the second stem electrode.
US11172561B2 Microwave sensor device, and sensing methods, and lighting system using the sensor device
A microwave sensor device is for detecting activity and for sending and/or receiving a communications signal to/from a second microwave sensor device. A microwave transceiver is used for transmitting a microwave transmit signal and for receiving a microwave receive signal. For motion detection, the microwave receive signal is a reflected version of the microwave transmit signal and the signals are processed to identify first signal characteristics. For communication, the microwave transmit signal is a communications signal for detection at another sensor device. The transmit and microwave receive signals are processed to identify second characteristics. This sensor device detects motion and also transmits and/or receives a communications signal using the same transceiver. In particular, the communications signal is designed to be detected by a remote sensor device in the same way as for motion detection.
US11172560B2 Ophthalmic illumination system with controlled chromaticity
An ophthalmic illumination system includes a broadband light source configured to emit a white laser beam, a first monochromatic light source configured to emit a first monochromatic laser beam having a first central wavelength, optics configured to receive a combined light beam comprising the white laser beam and the monochromatic laser, and a controller comprising a processor and a memory configured to control a chromaticity of the combined light beam by changing an output power of the first monochromatic light source.
US11172555B2 Light emitting apparatus and chromaticity variation correction method
A light emitting apparatus includes a plurality of full-color LED units. Constant current values of the constant current elements are set such that the plurality of full-color LED units come closer to a same chromaticity as compared with a case in which all the constant current elements of all the full-color LED units have a same constant current value. As a result, in at least one of the plurality of full-color LED units, at least one of the plurality of constant current elements is set to a constant current value different from that of the other constant current elements.
US11172549B2 High-productivity hybrid induction heating/welding assembly
In certain embodiments, inductive heating is added to a metal working process, such as a welding process, by an induction heating head. The induction heating head may be adapted specifically for this purpose, and may include one or more coils to direct and place the inductive energy, protective structures, and so forth. Productivity of a welding process may be improved by the application of heat from the induction heating head. The heating is in addition to heat from a welding arc, and may facilitate application of welding wire electrode materials into narrow grooves and gaps, as well as make the processes more amenable to the use of certain compositions of welding wire, shielding gasses, flux materials, and so forth. In addition, distortion and stresses are reduced by the application of the induction heating energy in addition to the welding arc source.
US11172548B2 Cooking apparatus for cooking packaged ingredients
A cooking apparatus for cooking ingredients packaged together in a package is provided. The cooking apparatus includes a cooking device and a barcode reader. The cooking device includes a housing defining a cooking room for accommodating the ingredients therein, a cooking unit for heating contents in the cooking room, and a control module electrically connected to the cooking unit for controlling operation of the cooking unit. The barcode reader is electrically connected to the control module, and scans a barcode on the package representing data related to information about the ingredients, decodes the barcode so as to obtain the data, and transmits the data to the control module that controls operation of the cooking unit based on the information.
US11172546B2 Wireless device adapted to perform wireless communication
A wireless device is a device in a first communication system that uses a first band. A communication interface performs communication by using the first band; A monitoring interface monitors a situation of use of a second band for use by the communication interface and different from the first band, the second band being used in a second communication system different from the first communication system that uses the first band. A controller 18 changes a setting for communication in the communication interface when the situation of use monitored by the monitoring interface changes from non-use to use.
US11172543B2 Device and method of handling physical downlink shared channels in bandwidth parts
A communication device for handling a plurality of PDSCHs in a plurality of BWPs comprises at least one storage device and at least one processing circuit coupled to the at least one storage device. The at least one storage device stores, and the at least one processing circuit is configured to execute instructions of: determining a quasi-colocation (QCL) assumption according to an indication; and receiving at least one PDSCH of a plurality of PDSCHs in a plurality of BWPs in a time interval according to the QCL assumption from a network.
US11172540B2 Communication apparatus, control method of communication apparatus, and storage medium
A communication apparatus includes a registration unit configured to register a slave unit for communication on a wireless network, a receiving unit configured to receive identification information for identifying the slave unit on the wireless network, the identification information being periodically transmitted from the slave unit to the wireless network, a detection unit configured to detect, in a case where the slave unit which is a transmission source of the identification information received by the receiving unit is a slave unit that has been registered for communication by the registration unit, an operation performed on the slave unit without involving the communication apparatus, and an output unit configured to output an alert in a case where the operation is detected by the detection unit.
US11172538B2 Reception apparatus and reception method
In a transmission device, a signal processing circuit generates an aggregate physical layer convergence protocol data unit (A-PPDU) by adding a guard interval to each of a first part of a first physical layer convergence protocol data unit (PPDU) transmitted over each of a first through L'th channel of a predetermined channel bandwidth, where L is an integer of 2 or greater, a second part of the first PPDU transmitted over each of an (L+1)'th through P'th channel, which is a variable channel bandwidth that is N times the predetermined channel bandwidth, where N is an integer of 2 or greater and P is an integer of L+1 or greater, and a second PPDU transmitted over the (L+1)'th through P'th channel. A wireless circuit transmits the A-PPDU.
US11172537B2 Wireless communication method and device
The present disclosure provides a method performed by user equipment (UE), comprising receiving a configuration message, from a base station, the configuration message comprising information of two or more cell groups configured for a Packet Data Convergence Protocol (PDCP) packet duplication function. The method further comprises determining, according to a state of each cell in the two or more cell groups, whether conditions required for activation of the PDCP packet duplication function are satisfied. The method further comprises activation of the PDCP packet duplication function when the required conditions are satisfied. In addition, the present disclosure further provides a method performed by a base station and corresponding user equipment and a corresponding base station.
US11172535B2 Systems and methods for personnel accountability and tracking during public safety incidents
Systems and methods for managing an incident event by a public safety and security organization. The methods comprise: performing Near Field Communication (“NFC”) or Radio Frequency Identification (“RFID”) operations by a Land Mobile Radio (“LMR”) and a field computing device to check-in a field personnel member into an incident event; communicating check-in information to a remote computing device from the field computing device via a packet switched LMR infrastructure or a public network; and using the check-in information by the remote computing device to facilitate management of the incident event by the by public safety and security organization.
US11172533B2 Methods and apparatus to facilitate multi-tasking and smart location selection during connected-mode discontinuous reception mode
Apparatus, methods, and computer-readable media for facilitating multi-tasking and smart location selection during connected-mode discontinuous reception (CDRX) mode are disclosed herein. Example techniques disclosed herein enable a UE to perform multiple tasks during a same SSBS to reduce the number of wake-up SSBSs. For example, disclosed techniques enable a UE to perform RLM tasks and loop tracking tasks during a first SSBS and thereby reduce the number of wake-up SSBSs. In some examples, the UE may also perform the search task or the measurement task during the same first SSBS and, thereby, further reduce the number of wake-up SSBSs. Example techniques disclosed herein may also enable the UE to select which SSBS occurrences to wake-up for during the OFF duration of the CDRX cycle.
US11172530B2 Communication establishment method and terminal
Embodiments of the present invention provide a communication establishment method. The method includes: receiving, by a first terminal, a first broadcast message of a first wireless communications mode sent by a second terminal, where the first broadcast message carries a second wireless communications mode supported by the second terminal and a status and/or supported protocol information of the second wireless communications mode; and determining, by the first terminal based on the second wireless communications mode supported by the second terminal and the status and/or the supported protocol information of the second wireless communications mode, whether to connect to the second terminal.
US11172529B2 Multi-connectivity establishment method, communication system, user equipment and access point
The present invention provides a multi-connectivity establishment method, communication system, user equipment (UE) and access point (AP), the method comprising: a UE setting up a first RRC connection with a CN node via a first AP; the UE, when the first AP transmits to the UE a notification that RAN anchoring function is supported by the first AP and the UE determines to use a second AP to set up a second RRC connection, transmitting a second connection request message to the second AP, wherein, the second connection request message including identifying information of the first AP; and the second AP, according to the second connection request message, transmitting an anchoring request message to the first AP so as to obtain UE context information, and setting up the second RRC connection with the UE according to the UE context information.
US11172527B2 Routing of communications to a device
Using a method of operating a system that includes remote servers, multiple electronic devices, and a wireless portable, the portable wireless device receives notification of an incoming call. The system uses the remote servers and other parts of the system to determine that one of the electronic devices can wirelessly communicate with the portable wireless device, and establishes a wireless connection between the portable wireless device and that device. The system determines whether the user is also located with the portable wireless device and wirelessly connected device and if so, routes incoming call audio to that device. If the system determines that the user is located with a different device, incoming call audio is routed from the portable wireless device to the device near the portable wireless device, and then the call audio is bridged to the device near the user.
US11172525B2 Method and apparatus for transmitting and receiving signal in communication system supporting device to device scheme
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). A method for transmitting a device to device (D2D) discovery signal by a user equipment (UE) in a communication system supporting a D2D scheme is provided. The method includes determining transmission power for D2D discovery signal transmission, and transmitting a D2D discovery signal using the transmission power, wherein the transmission power is determined by considering a cell at which the D2D discovery signal is transmitted.
US11172523B2 Communication apparatus for executing service, control method and storage medium therefor, and communication system
A communication apparatus comprises: a communication unit configured to establish a connection with an external apparatus and communicating data with the external apparatus in order to execute a predetermined service; and a control unit configured to control the communication unit so that the communication apparatus operates as a first role in the case of connecting to a first external apparatus operating as a second role, and so that the communication apparatus operates as the second role in the case of connecting to a second external apparatus operating as the first role, wherein the control unit controls the communication unit so that the communication apparatus operates as the second role to connect to the second external apparatus operating as the first role in between times when the communication apparatus carries out a process for operating as the first role and periodically transmitting a predetermined signal.
US11172522B2 Connection establishment
There is provided a method at a first user equipment, the method comprising: deciding to set up a unicast sidelink, SL, connection with a second user equipment; determining whether or not a radio access network serving the first user equipment or a radio access network serving the second user equipment is able to assist in setting up the unicast SL connection; performing one of the following: upon determining the positive, applying a L1 unicast-based SL connection for setting up the unicast SL connection, upon determining the negative, applying a L1 broadcast-based SL connection for setting up the unicast SL connection; and communicating with the second user equipment over the unicast SL.
US11172520B2 Connection method and device
A connection establishing method and device, including: a wireless access point with tag information and push information to-be-displayed corresponding to the wireless access point are obtained at a user equipment side, the preferred wireless access point being selected by a network device from wireless access point(s) scanned by a user equipment according to received attribute information of wireless access points; when the user equipment is to establish a connection to the preferred wireless access point, the preferred wireless access point is selected based on the tag information, a request for establishing a connection to the target wireless access point is sent to the network device, and the corresponding push information to-be-displayed is displayed, so that the corresponding push information to-be-displayed is displayed during establishment of a connection between the user equipment and the target wireless access point.
US11172518B2 Apparatus and method for controlling slot usage
Provided is slot use control apparatus and method, including an access point (AP) to control a slotted channel access of a station (STA) in a wireless local area network (WLAN) includes generating a synchronization (synch) frame including an identification value indicating an STA allocated to a slot, and broadcasting the generated synch frame when a channel is in an idle state at a start point of the slot.
US11172516B2 Techniques for connection setup of mmWave-based V2X communication systems
Various aspects described herein relate to techniques for connection setup procedures in a wireless communication system (e.g., a vehicle-to-everything (V2X) communication system in millimeter wave). In an aspect, the method includes identifying information for V2X communications, and initiating a random access procedure based on the identified information. The method further includes identifying one or more random access channel (RACH) resources based on the information, identifying one or more RACH response resources based on the one or more RACH resources, and performing directional communications using at least the one or more RACH resources or the one or more RACH response resources.
US11172511B2 Information indication method and apparatus, network device and terminal device
Disclosed are information indication methods and apparatuses, a network device, and a terminal device. In an information indication method, a network device generates first configuration information, and transmits the first configuration information to the terminal device. The first configuration information is adapted to configure a first physical random access channel (PRACH) resource, and includes first indication information indicative of at least one of a target beam or a target cell to be accessed by a terminal device during a random access channel (RACH) procedure initiated with a second PRACH resource.
US11172501B2 Methods and apparatus for signaling offset in a wireless communication system
Methods, systems, and devices for wireless communications are described. Some methods include receiving an indication of a traffic flow to be served by a wireless communication system, determining scheduling information for the traffic flow based on the indication, wherein the scheduling information comprises one or more of a time offset, a reliability, and a minimum throughput of delivery of data traffic for the flow, and transmitting the scheduling information in response to the indication. Some methods include determining delta time offset information relative to one or more existing time offsets of packet arrivals of one or more traffic flows for scheduling transmissions of a first traffic flow in the wireless communication system, and transmitting the delta time offset information to a node of the first traffic flow for scheduling transmissions of the first traffic flow in the wireless communication system. Other aspects and features are also claimed and described.
US11172498B2 Method of generating a communication schedule for nodes in a multi-hop network
A method of generating a communication schedule for a plurality of nodes in a multi-hop network, the plurality of nodes comprising a first node, a second node and a third node, wherein: the second node is a primary parent of the first node and the third node is a secondary parent of the first node. The method comprises requesting, by the first node, a first resource in the communication schedule for communication from the first node to the second node and a second resource in the communication schedule for communication from the first node to the third node. The method further comprises allocating, by at least one of the second or third node, a second set of resources in the communication schedule comprising a third resource in the communication schedule for communication from the first node to the second node and a fourth resource in the communication schedule for communication from the first node to the third node; wherein: at least the third resource does not generate a conflict in the communication schedule.
US11172497B2 Transmission of UL control channels with dynamic structures
A method of a user equipment (UE) for transmitting acknowledgement information. The method comprises receiving a physical downlink control channel conveying a downlink control information (DCI) format, a physical downlink shared channel conveying one or more data transport blocks scheduled by the DCI format, and configuration information for transmission of a physical uplink control channel (PUCCH) conveying acknowledgement information in response to the reception of the one or more data transport blocks; and transmitting the PUCCH in time-frequency resources within a first slot. An index of the first slot is configured by the DCI format. The time-frequency resources within the first slot are configured by the DCI format through a configuration of an index of a first symbol, a number of consecutive slot symbols, and an index of a first frequency resource block.
US11172495B2 Collision handling
In an aspect, a UE determines whether there is an overlap between a first uplink transmission channel allocated for transmission of a first uplink transmission and a second uplink transmission channel allocated for transmission of second uplink transmission. The UE generates a combined uplink transmission payload in response to a determination that there is the overlap, wherein the combined uplink transmission payload includes at least a portion of the first uplink transmission and at least a portion of the second uplink transmission. The UE transmits the combined uplink transmission payload on either the first uplink transmission channel or the second uplink transmission channel. A base station receives the combined uplink transmission payload transmitted by the UE.
US11172492B2 Power saving for pedestrian user equipment in vehicular communications systems
Embodiments are presented herein for adjusting the conduct of routine communications of safety messages in V2X networks in order to conserve resources in participating power-limited devices while satisfying V2X system latency demands. Scheduling (e.g., timing and/or frequency) of safety message communications performed by certain UE devices participating in a V2X network may be dynamically adjusted according to various criteria, such as factors relating to the DRX cycle schedule, motion or mobility, traffic environment, and/or battery or power capabilities of the UE devices, which may conserve UE resources and power consumption. Certain UE devices may efficiently transmit safety messages to the V2X network using one of several proposed RACH-based procedures. In some embodiments, the size of safety message communications may be reduced through various compression techniques, and/or by reducing the amount of contained information, e.g., by omitting certain parameters, which may reduce the resources consumed by performing safety message communications.
US11172489B2 Method and device for relay in UE and base station
A method and apparatus in a user equipment and a base station for narrowband communication based on a cellular network are provided. The user equipment receives first information, and then detects the first wireless signal including at least one of {a first characteristic sequence, a first reference signal, and a second information} in a first time window. The transmitter of the first wireless signal is a second node, and the transmitter of the first information and the second node are non-co-located. The first information determines at least one of {the first time window, a parameter of the first characteristic sequence, a parameter of the first reference signal}. The embodiments save power consumption of the relayed user equipment and ensure that the channel quality of the sidelink is better than the channel quality of the uplink. In addition, the embodiments utilize the first flag bit to reduce the air interface overhead.
US11172486B2 Network node and method in a wireless communications network
A method performed by a network node, for planning radio resources for transmissions is provided. The network node establishes (301) that a wireless device is fixed, wherein fixed comprises always being served by the same one or more access points. The network node obtains (302) a configuration comprising an identity of the wireless device and associated parameters to be used for transmissions between the network node and the wireless device. The parameters comprise an identity of the one or more access points serving the wireless device. The parameters further comprise any one or more out of: Time and periodicity, for transmissions between the network node and the wireless device. Based on the configuration, the network node plans (303) radio resources available in the network node for upcoming transmissions between the network node and any wireless device.
US11172485B2 Group-common control information
Methods, systems, and devices for wireless communications are described. A transmission reception point (TRP) may determine a configuration for downlink transmission of group-common control information associated with a plurality of TRPs. The TRP may identify a set of downlink resources allocated for transmission of the group-common control information. A user equipment (UE) may receive the configuration from at least one TRP of the plurality of TRPs. The UE may monitor downlink resources for reception of the group-common information based on the configuration. The TRP may transmit, and the UE may receive, the group-common control information over the downlink resources. The group-common control information may indicate communication parameters for communications between the UE and at least one TRP.
US11172484B2 Bypassing radar in wide dynamic frequency selection (DFS) channels utilizing puncturing
Bypassing radar in wide Dynamic Frequency Selection (DFS) channels utilizing puncturing may be provided. A first client device may be classified as eligible for puncturing and a second client device may be classified as not eligible for puncturing. Next, it may be determined that a subchannel in a bandwidth range should not be used. Then, in response to determining that the subchannel in the bandwidth range should not be used, the first client device may be steered to a first subset of the bandwidth range and the second client device may be steered to a second subset of the bandwidth range. The second subset of the bandwidth range may be smaller than the first subset of the bandwidth range.
US11172479B2 Integrated circuit for transmitting control information including ACK/NACK resource indicator
A wireless communication terminal capable of increasing the utilization efficiency of ACK/NACK resources and suppressing unnecessary PUSCH band reduction while avoiding ACK/NACK collision. The wireless communication terminal has a configuration provided with: a reception unit for receiving a control signal including ARI via an E-PDCCH set from among one or a plurality of E-PDCCH sets; a control unit for determining an offset value indicated by the ARI on the basis of whether or not a resource region that may be taken by a dynamic ACK/NACK resource corresponding to the E-PDCCH set that has received the control signal and a resource region that may be taken by a dynamic ACK/NACK resource corresponding to another E-PDCCH set overlap, and imparting an offset to the ACK/NACK resource according to the value of the ARI; and a transmission unit for transmitting the ACK/NACK signal using the determined ACK/NACK resource.
US11172472B2 Resource allocation method, device, and storage medium
Provided are a resource allocation method and device, and a storage medium. The method includes: configuring resources for transmission of a physical uplink shared channel of a terminal by means of an uplink resource allocation parameter; and transmitting the uplink resource allocation parameter to the terminal. By means of the method, the device and the storage medium of the present disclosure, a base station configures, through the uplink resource allocation parameter, resources for the transmission of the physical uplink shared channel of the terminal and transmits the uplink resource allocation parameter to the terminal, thus solving the problem in the related art the minimum resource allocation granularity in resource allocation for the PUSCH can only be one physical resource block, and reducing the resource allocation granularity.
US11172471B2 Resource reservation
Apparatuses, methods, and systems are disclosed for resource reservation. One apparatus (200) includes a receiver (212) that receives (802) an indication of resource reservation for uplink communication. The indication is based on information reported from a first remote unit. The apparatus (200) also includes a processor (202) that determines (804) a resource based on the indication. The apparatus (200) includes a transmitter (210) that transmits (806) data on the resource.
US11172465B2 Communication method and apparatus for information transmission in a monitoring occasion for a beam
This application provides an information transmission method and an apparatus and relates to the field of communications technologies, to resolve a problem of power waste caused when a communications device blindly monitors downlink control information in all monitoring occasions. The method includes: determining, by a communications device, information about a target beam; determining a target monitoring occasion based on the information about the target beam and a mapping relationship between information about a beam and a monitoring occasion, where the target monitoring occasion is in a system information window, and the system information window is used for OSI; and monitoring downlink control information in the target monitoring occasion.
US11172459B2 Method for managing session, and SMF node for performing method
Provided is a method for managing a local area data network (LADN) session, as well as a session management function (SMF) node that is capable of performing this method. The method involves determining whether to release or deactivate the LADN session of a terminal based on information received by the SMF from an access and mobility management function (AMF) node. The information includes location information relating to the terminal and information as to whether the terminal is de-registered from a 3GPP access network. If the terminal is instead connected via a non-3GPP access network, the method helps avoid terminal location inaccuracies typically associated with non-3GPP access networks.
US11172451B1 Uplink power control mechanism for dual connectivity networks
Aspects of the subject disclosure may include, for example, a method in which a processing system of a first network element receives information indicating that a user equipment (UE) support dual connectivity with first and second inter-radio access technologies (IRATs). The UE is enabled to communicate with a second network element using the second IRAT. The system provides to the UE uplink power configurations for data transmissions between the UE and the network elements, and performs a closed loop control procedure that includes determining a first transmit power control (TPC) value for first data transmissions from the UE and a second TPC value for second data transmissions from the UE, and adjusting the first TPC value and the second TPC value to allocate UE uplink transmission power between the first IRAT and the second IRAT. Other embodiments are disclosed.
US11172449B2 Communication method and device
A communication method and a device are provided. The method includes: generating, by a first terminal device, first data, where the first data includes second data, the second data includes third data and an identifier of the first terminal device, the second data is data that needs to be reported by the first terminal device to a network device, and the identifier of the first terminal device is used to determine the first terminal device; and sending, by the first terminal device, the first data to a second terminal device when a connection to the network device is not established. Power consumption of the first terminal device can be reduced by using the method and the device in the present disclosure.
US11172448B2 Operation method of communication node for supporting low power mode in wireless LAN
An operation method of a communication node for supporting a low power mode in a wireless LAN is disclosed. A method for operating an access point comprises: a step of transmitting a CTS frame to protect transmission of a wake-up packet, a step of transmitting the wake-up packet to wake up a station including PCR and WURx; and a step of transmitting a data frame to the station. Therefore, the performance of the communication system can be improved.
US11172447B2 Method and apparatus for sending information and channel monitoring processing
Disclosed are a method and apparatus for sending information and channel monitoring processing. The method comprises: when a terminal receives a wake-up signal and is woken up, monitoring, within a time window, a paging channel and/or a control channel in a discontinuous reception or an extended discontinuous reception manner; if the terminal receives a paging message and/or control channel scheduling information within the time window, then processing the paging message and/or processing the control channel scheduling information; and if the terminal does not receive a paging message and/or control channel scheduling information within the time window, then not monitoring the paging channel and/or control channel any more, and continuing to receive a wake-up signal. A base station sends the wake-up signal to the terminal, and sends, within a time window, information over a paging channel and/or a control channel in a discontinuous reception or an extended discontinuous reception manner. By means of the present application, it can be ensured that a terminal saves electricity, and that a service of the terminal can be reached.
US11172436B2 Support of nomadic or fixed users in a mobile network
A method is described for the support of nomadic or fixed users in a mobile network. The mobile network may include a Core Network CN accessed by a Radio Access Network RAN. The mobile network may provide connectivity, referred to as PDN connectivity, between an User Equipment UE and at least one external network, referred to as Packet Data Network PDN, via a selected one of mobile network nodes associated with the PDN and referred to as PDN Gateway PDN GW. The method may include support of a nomadic or fixed user in a mode of operation referred to as non-mobile mode of operation wherein the selected PDN GW, referred to as local PDN GW, is co-located with a RAN node serving the UE, based on knowledge of the user's mobility pattern.
US11172433B2 Network search display method for terminal device, apparatus, and terminal device
A network search display method for a terminal device and the terminal device, where the method includes obtaining, by the terminal device, a network search instruction instructing the terminal device to start searching for a network, searching, by the terminal device, a network frequency band in a first network standard for an available network according to the network search instruction, and displaying, by the terminal device to the user, the available network found in the network frequency band in the first network standard. Hence, the method and the terminal device improve user experience.
US11172431B2 Terminal apparatus and base station apparatus
An object of the present invention is to protect the communication of a legacy terminal while achieving favorable communication by rendering the CCA level of a CCA-variable terminal apparatus variable in an environment, premised on CSMA/CA, where the CCA-variable terminal apparatus and a legacy terminal apparatus coexist. A terminal apparatus for performing wireless communication with a base station apparatus includes: a receiving unit that receives a radio signal transmitted from the base station apparatus; a CCA-variable channel information processing unit that acquires first CCA-variable channel instruction information contained in the radio signal and containing information regarding a range of a CCA level that is available on a certain channel and that is used for clear channel assessment; and a higher layer unit that selects, according to the first CCA-variable channel instruction information, a channel to be used.
US11172430B2 Uplink control channel resource allocation
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may determine a resource allocation, from a resource set, for a response message using a resource allocation selection procedure. In some aspects, the user equipment may transmit the response message using the resource allocation and based at least in part on determining the resource allocation. In some aspects, the user equipment may determine, using an implicit resource mapping procedure and before a radio resource control connection establishment, a resource allocation for a redundancy scheme response message based at least in part on a remaining minimum system information (RMSI) value. Numerous other aspects are provided.
US11172424B2 Connection establishment of a terminal over a relay node in a wireless communication system
A method carried out in a terminal (100) for setting up a connection with a wireless communication network including a network node (10), comprising transmitting terminal preference data (51) to the radio network, said terminal preference data indicating terminal preference to receive one of direct or indirect downlink transmission when the terminal (100) operates over a relay in the uplink; transmitting a service request (54) to the network node (10) over a relay (200); receiving information (57) from the network node (10) indicating direct or indirect downlink data transmission; receiving resource data (58) for a connection configured according to said information.
US11172422B2 Systems and methods for anchor selection in a non-standalone wireless network environment
A system described herein may provide a technique for the intelligent, automated, and dynamic selection of anchor evolved Node Bs (“eNBs”) for Next Generation Node Bs (“gNBs”) in a Non-Standalone (“NSA”) wireless network environment. An eNB may be selected as an anchor eNB based on distance to a particular gNB, and one or more sectors of the anchor eNB may be selected as anchors based on coverage areas associated with the sectors. Sectors of additional eNBs may be identified based on frequent handovers between the identified sectors of the anchor eNB and sectors of the additional eNBs. Selected eNBs and/or sectors may be notified of the designation as an anchor, and may thus provide gNB carrier information to connected User Equipment (“UE”), which may facilitate the connection of such UEs to the gNB.
US11172420B2 Methods and devices for handover in a wireless communication network
Disclosed is a method performed by a network equipment for controlling handover of a User Equipment (UE) from a source network node to a target network node. The method comprises providing, for the UE and for the target network node, information comprising a representation of a UE-specific sequence, where the UE-specific sequence is to be incorporated in a signal, the signal to be transmitted by the target network node to enable the UE to initiate a radio link establishment procedure with the target network node based on a reception of a signal comprising said UE-specific sequence.
US11172417B2 Multiple access configuration information
A wireless device receives from a second base station, a RRC message comprising access information, for a handover to a first cell of a first base station, indicating that a first timing advance of a first beam of the first cell is a timing advance of a first timing advance group of a secondary cell group and that a second timing advance of a second beam of the first cell is a timing advance of a second timing advance group of the secondary cell group. The wireless device selects, as a selected beam, one of the first beam and the second beam. The wireless device transmits transport blocks, via the selected beam of the first cell, using one of: the first timing advance in response to the selected beam being the first beam; and the second timing advance in response to the selected beam being the second beam.
US11172416B2 Method for accessing network by user equipment, and access device
Embodiments of the present disclosure provide a method for accessing a network by a user equipment (UE), and an access device. The method includes: sending, by a source side access device, an access indication message to a UE, where the access indication message is used to instruct the UE to access a target side access device; or sending, by a source side access device, a first notification message to a target side access device, where the first notification message is used to instruct the target side access device to send, to a UE, access information used to instruct the UE to access the target side access device; and in a process in which the UE accesses the target side access device, maintains a connection between the UE and the source side access device.
US11172403B2 Policy provisioning at a user equipment (UE)
Aspects of the disclosure relate to a method of operating a user equipment for wireless communication with a network. In some aspects, the UE establishes a connection to a network and obtains a control plane message from the network. The control plane message may include one or more types of policy information if a size of the one or more types of policy information is less than or equal to a maximum payload size of the control plane message, or information indicating at least a network location from where the one or more types of policy information may be obtained by the UE over a user plane if the size of the one or more types of policy information is greater than the maximum payload size of the control plane message, or a combination thereof. Other aspects, embodiments, and features are also claimed and described.
US11172398B2 Data transmission control method and related product
Disclosed in embodiments of the present application are a data transmission control method and a related product. The method comprises: an SDAP layer entity of a terminal receives an SDAP service data unit (SDU) from an application layer; the SDAP layer entity processes the SDAP SDU to obtain an SDAP protocol data unit (PDU); and the SDAP layer entity sends the SDAP PDU to a lower layer entity. According to a transmission method for an SDAP PDU without carrying RQI, the real-time performance of data processing of an SDAP layer on a terminal side is improved.
US11172397B2 Timing information for multiple periodic traffic streams sharing a same quality of service
Methods, systems, and devices for wireless communications are described. A wireless device, such as a base station, may receive a request to establish a data flow with a user equipment (UE), the data flow being associated with a quality of service (QoS) class, where the UE supports a plurality of traffic streams associated with the QoS class of the data flow, each traffic stream being between a downstream endpoint and an upstream endpoint via both the UE and the first node of the RAN. In some cases, the base station may receive timing information for the data flow via one or more system messages associated with the data flow, where the timing information is based at least in part on the plurality of traffic streams associated with the QoS class of the data flow, and establish the data flow based at least in part on the timing information.
US11172394B2 Method for channel state information CSI measurement, terminal device and network device
Embodiments of the present disclosure provide a method for channel state information CSI measurement, a terminal device and a network device. The method includes: a terminal device assumes that a first channel state information-reference signal (CSI-RS) and a second CSI-RS have a quasi co-location QCL association with respect to a spatial receiving parameter, where the first CSI-RS and the second CSI-RS are respectively a reference signal for channel measurement and a reference signal for interference measurement in a CSI measurement; and the terminal device performs the CSI measurement according to QCL information between the first CSI-RS and the second CSI-RS. The method, terminal device and network device according to the embodiments of the present disclosure are advantageous for improving receiving performance of a UE.
US11172391B2 Methods of multiple SS block transmissions and RRM measurement in a wideband carrier
Aspects of the disclosure provide a method for radio resource management (RRM) measurement. The method can include receiving, by processing circuitry of a user equipment (UE), an RRM measurement configuration from a base station (BS) in a beamformed communication system. The RRM measurement configuration indicates presence of multiple quasi collocated (QCLed) frequency domain multiplexed (FDMed) reference signal (RS) transmissions in a carrier. The method can further includes perform RRM measurement according to the received RRM measurement configuration using one or more of the multiple QCLed FDMed RS transmissions.
US11172390B2 Base station apparatus, terminal apparatus, communication method, and integrated circuit
Provided is a terminal apparatus including: a reception unit configured to: receive first information including at least one first setting, receive second information including at least one second setting, receive third information including at least one third setting, and receive fourth information; a channel state measurement unit configured to measure channel state information; and a transmission unit configured to report the channel state information based on interference that is measured. In the terminal apparatus, the at least one first setting comprises a plurality of first settings for at least one report of the channel state information. Each of the plurality of first settings includes one first index. The at least one second setting comprises a plurality of second settings concerning at least one reference signal for measuring the interference. Each of the plurality of second settings includes one second index. The at least one third setting includes one of the first indices, one of the second indices, and one third index. The fourth information includes information for indicating at least one of the third indices.
US11172389B2 Measurement gap configuration
Apparatus, systems, and methods for measurement gap configuration in communication systems are described.
US11172385B2 Beam recovery procedure
Apparatuses, methods, and systems are disclosed for the handling of beam failure. One apparatus includes a processor and a transceiver that that communicates with a base unit using a first set of beams. The processor detects beam failure for each beam in the first set of beams and initiates both a beam revival procedure and a beam recovery procedure in parallel. The processor terminates the beam recovery procedure in response to successful beam revival and prior to receiving a beam failure recovery response from the base unit. Additionally, the processor re-starts communication with the base unit using the first set of beams in response to successful beam revival.
US11172384B2 Self-calibrating RF network and system and method for use of the same
A self-calibrating RF network and system and method for use of the same are disclosed. In one embodiment, the self-calibrating RF network includes multiple hospitality properties, wherein RF network includes a property server located in communication with a terminal device providing data services through distribution elements to end point devices, such as set-top boxes. Each of the property servers collects RF performance data relative to the terminal device, the distribution elements, and the end point devices. The RF performance data is analyzed by a remote central server that provides RF adjustment data, which is indicative of power and equalization adjustments to the terminal device, power and equalization adjustments to the plurality of distribution elements, and power and ranging adjustments to the plurality of end point devices.
US11172380B2 Systems and methods for real-time adaptive antenna frequency response optimization for multi-carrier wireless systems
Systems, methods, and devices are provided for dynamically determining appropriate antenna tuning states for communication across one or more frequency bands. An electronic device may include a radio frequency system that facilitates wireless transmission and reception of data across multiple frequency bands. The electronic device may include a processor coupled to the radio frequency system. The processor may instruct the radio frequency system to obtain measurements for a candidate tuner state and a tuner state. Further, the processor may instruct the radio frequency system to determine whether the candidate tuner state provides better radio frequency system performance than the tuner state. Additionally, the processor may update the tuning table to reflect that results of which tuner state provides better radio frequency system performance.
US11172376B2 Method and apparatus for selecting and accessing network, and computer storage medium
Disclosed are methods and devices for selecting and accessing a network. In an example, a method includes broadcasting, by a base station, access parameter information, where the access parameter information comprises an offset of a coverage enhancement (CE) level reference signal received power (RSRP) threshold of a cell relative to a minimum reception level threshold for decision of cell residence, and is used for enabling a user equipment (UE) without authorization of CE to determine whether the UE is able to use a network resource of a target cell.
US11172374B1 Systems and methods for building and funding communication networks
Disclosed herein is a next generation communication system comprising a set of network nodes that are interconnected into a wireless mesh network, where a subset of the network nodes in the set are further coupled to a blockchain network that is configured to provide blockchain-based services, such as blockchain-based distributed data storage or a service for blockchain-based digital cryptocurrency mining.
US11172373B2 Centralized control of femto cell operation
Techniques for centralized control of peer-to-peer (P2P) communication and centralized control of femto cell operation are described. For centralized control of P2P communication, a designated network entity (e.g., a base station) may control P2P communication of stations (e.g., UEs) located within its coverage area. The designated network entity may identify a UE located within coverage of a femto cell but unable to access the femto cell due to restricted association. The designated network entity may deactivate the femto cell to allow the UE to communicate with another cell.
US11172372B2 Information transmission method and apparatus
An information transmission method and apparatus, the method including determining, by a first communications apparatus, an area in which a terminal device is located, where the area includes overlapping coverage area between the first communications apparatus and at least one second communications apparatus, and, non-overlapping coverage area between the first communications apparatus and the at least one second communications apparatus, and the first communications apparatus is adjacent to the at least one second communications apparatus, and sending, by the first communications apparatus, information to the terminal device through a first channel if the terminal device is located in the overlapping coverage area, and sending, by the first communications apparatus, information to the terminal device through a second channel if the terminal device is located in the non-overlapping coverage areas.
US11172371B2 IoT goes unlicensed
Machines or networked devices such as internet of things (IoT) devices operate to generate an unlicensed narrowband (U-NB) IoT communication based on time domain multiple carrier aggregation operations with component carriers. These component carriers can comprise a component carrier that is anchored to a long term evolution (LTE) licensed band, or entirely comprise unlicensed carrier components that are unanchored to the LTE component carrier in a standalone configuration. Communication circuitry such as a radio frequency interface can transmit the U-NB IoT communication in standalone communications over a low power IoT network in an unlicensed band.
US11172366B2 Edge-node authentication-data exchange system
A system for exchanging authentication data between edge-nodes is provided. The system may include an edge-node network. The network may include a plurality of edge-nodes. Each edge-node may include a pairing module. Each pairing module may receive an instruction to pair with another edge-node. Each pairing module pair with another edge-node. The pairing module may continually transmit verification communications to other edge-nodes. The pairing module may continually discover responsive communications from other edge-nodes. The pairing module may continually receive responsive verification communications from other edge-nodes. Each edge-node may include an executable module. The executable module may determine occurrence of an event. Upon determination of the occurrence of an event, the executable module may analyze a stored event protocol. The protocol including an algorithm for implementing executables in response to an event. The executable module may determine an executable based on the algorithm, and execute the determined executable.
US11172361B2 System and method of notifying mobile devices to complete transactions
A method including registering an authority device for an account on an auth platform; receiving transaction request from an initiator to the auth platform; messaging the authority device with the transaction request; receiving an authority agent response from the authority device to the auth platform; if the authority agent response confirms the transaction, communicating a confirmed transaction to the initiator; and if the authority agent response denies the transaction, communicating a denied transaction to the initiator.
US11172357B2 Network architecture and security with encrypted client device contexts
In an aspect, a network may support a number of client devices. In such a network, a client device transmits a request to communicate with a network, establishes a security context, and receives one or more encrypted client device contexts from the network. An encrypted client device context enables reconstruction of a context at the network for communication with the client device, where the context includes network state information associated with the client device. The client device transmits a message (e.g., including an uplink data packet) to the network that includes at least one encrypted client device context. Since the network device can reconstruct the context for the client device based on an encrypted client device context, the network device can reduce an amount of the context maintained at the network device in order to support a greater number of client devices.
US11172352B2 Apparatuses, methods, and systems for configuring a trusted java card virtual machine using biometric information
Apparatuses, methods, and systems are provided for securely configuring a Java Card virtual machine operating on a cellular device's application processor. In one embodiment, a connected device with an integrated cellular modem, a virtual universal integrated circuit chip and an integrated fingerprint scanner are used. In another embodiment, the cellular device's built-in camera is used, instead of an integrated fingerprint scanner, to capture the user's facial image.
US11172348B2 Apparatus and method for controlling signal related to external device
A method for controlling a signal related to an external device and an electronic device therefor are provided. The electronic device includes a transceiver, a memory, and at least one processor. The at least one processor is configured to control to receive a broadcasted request signal for registering an external device, from the external device via the transceiver, identify whether a nonaudible frequency signal is received from the external device, and provide a message for registering the external device based on the nonaudible frequency signal being received.
US11172346B2 Mobile-initiated SMS cell broadcast
An alert message may be sent to a limited radius of electronic device users by an authorized user. The authorized user may use a smartphone application or may simply use a standard SMS messaging capability of the ‘electronic device to enter a request that includes at least a radius and message text. A base station or other processing entity may evaluate the authenticity of the request based on known caller ID information, receipt of a user identifier and/or authorization code. When the message is qualified as genuine, a requested radius for broadcasting the message may be used to determine what cell sites need to be included in the message broadcast to reach electronic devices in the requested radius.
US11172341B2 Mobility-aware assignment of computational sub-tasks in a vehicular cloud
The disclosure includes embodiments for a set of connected vehicles to collectively execute tasks which no single vehicle can execute due to computational limitations of the single vehicle. In some embodiments, a method includes determining, for a vehicular micro cloud, a set of computing sub-tasks to be completed. The method includes determining vehicle travel speeds for the members of the vehicular micro cloud. The method includes assigning the computing sub-tasks to the members based on the vehicle travel speeds of the members relative to one another so that the members that the computational sub-tasks are assigned to the members that are either stationary or traveling at the slowest vehicle travel speeds. The computing sub-task is completed by the member to which it is assigned.
US11172340B2 Sidelink transmit profile management for 5G new radio (NR)
Techniques are provided for supporting V2X communications which may be implemented in various apparatuses, methods, and/or articles of manufacture. In certain aspects an extended transmission profile may be determined to support V2X communications via 5G NR RATs between two or more wireless devices. For example, one or more processing units of a wireless device may determine that a NR RAT is requested for a V2X communication based, at least in part, on service information associated with data to be transmitted, determine an extended Tx Profile for the V2X communication, and initiate transmission of at least a portion of the data via the NR RAT using the transceiver based on the extended Tx Profile.
US11172337B2 Reporting terminal capabilities for supporting data service
A method performed by a UE may comprise transmitting capability information to an IMS. The capability information may indicate that the UE supports data transfer via IMS. The UE may transmit data and an XML message, based on capability. The XML message may describe the data transmitted. In some embodiments, the data may be binary data, for example, binary animation data. Other binary types may be supported.
US11172333B2 User location and identity awareness
A location of a computing device may be determined by determining the range of a communication. Several different wireless communication protocols and/or wireless networks (e.g., Bluetooth, Wi-Fi, Cellular, and/or GPS) may be used to determine the user's location. When the user's location is determined, one or more actions (e.g., granting access to content) may be performed based on the user's location.
US11172330B2 Presence detection based on crowd surfing signal strength
A method includes receiving wireless signals from consumer devices that are in communicable range of the merchant device. The wireless signals each include a unique identifier associated with one of the consumer devices. The method further comprises generating signal strength data that includes one signal strength value associated with the unique identifier of each of the wireless signals, storing the signal strength data in a data storage device, analyzing the signal strength data to determine how many of the consumer devices achieved various signal strength levels, determining a threshold signal strength value based on the analysis, determining a consumer device is present within a physical area when a subsequent wireless signal from a subsequent consumer device is greater than the threshold signal strength value.
US11172329B2 Systems and methods for target device prediction
Systems and methods for training prediction models are illustrated. One embodiment includes a method for training a prediction model in a network. The method includes steps for receiving context data for a portable device in a system, wherein the context data includes localization data that describes a location of the portable device, identifying a predicted stationary device from several stationary devices that is predicted based on the context data using a prediction model, receiving input identifying a target stationary device from the several stationary devices, generating training data based on the predicted stationary device and the received input, updating the prediction model based on the generated training data.
US11172322B2 Wireless access authentication based on user location
A wireless service delivery system determines the position of a device requesting the wireless service and delivers a wireless service to the device if the device's position is determined to fall within a predefined region of a space. The wireless service delivery may deliver no service or a lower quality/slower service if the device is determined to fall outside the predefined region of the space. The coordinates of the points along the perimeter of the predefined region are stored in a memory and are optionally established during a setup phase by moving a localization device along the perimeter of the region of the space.
US11172316B2 Wearable electronic device displays a 3D zone from where binaural sound emanates
A portable electronic device (PED) divides an area around a user into a three-dimensional (3D) zone. A wearable electronic device worn on a head of the user displays the 3D zone in response to the wearable electronic device detecting that the user is leaving the zone. The wearable electronic device plays binaural sound that emanates to the user from sound localization points (SLPs) inside the zone.
US11172314B2 Packaging for a MEMS transducer
The application describes a package substrate for a MEMS transducer package having a recessed region formed in an upper surface of the package substrate. The recessed region extends only partially through the package substrate from an opening in the upper surface of the package substrate in a first direction towards the lower surface of the substrate. The recessed region extends only partially through the package substrate from an opening in a side surface of the package substrate in a second direction towards an opposite side surface.
US11172313B2 MEMS microphone and method for sensing temperature
A MEMS microphone integrates a temperature-sensing element in or on the ASIC die of a MEMS microphone to enable an audio mode and a temperature-sensing mode in parallel. The system also permits for a method for easily switching between these two modes and for outputting both digital output signals at the same common output pad, which allows for the use of the footprint of a conventional microphone.
US11172301B2 Electronic furniture systems with integrated internal speakers
An electronic furniture assembly of the present invention comprises: (i) a furniture assembly comprising: (A) a base (e.g., a seat portion), (B) at least one transverse member (e.g., a side, armrest or backrest), and (C) a coupler for selectively coupling the base to the transverse member; (ii) an electrical hub for providing electrical power to the speakers, the hub configured to selectively reside within the furniture assembly; and (iii) a speaker system mounted within one or more portions of the furniture assembly. The speaker system comprises one or more speakers mounted within the base and transverse member, hiding the speakers therein, and saving space within a home or office, using the same footprint for both furniture and speakers, providing a high fidelity surround sound system.
US11172300B2 Sound producing device
A sound producing device includes a first sound producing cell, driven by a first driving signal and configured to produce a first acoustic sound on a first audio band, and a second sound producing cell, driven by a second driving signal and configured to produce a second acoustic sound on a second audio band different from the first audio band. A first membrane of the first sound producing cell and a second membrane of the second sound producing cell are Micro Electro Mechanical System fabricated membranes. The first audio band is upper bounded by a first maximum frequency; the second audio band is upper bounded by a second maximum frequency. A first resonance frequency of the first membrane is higher than the first maximum frequency of the first driving signal. A second resonance frequency of the second membrane is higher than the second maximum frequency of the second driving signal.
US11172299B2 Content rules engines for audio playback devices
Content rules engines for playback devices are disclosed herein. A media playback system receives a first command to form a synchrony group comprising a plurality of playback devices. The system receives a second command for the synchrony group to play back first audio content. In response to the second command, the first audio content is played back via the synchrony group. The system receives (i) second audio content to be played back by one or more of the playback devices of the synchrony group and (ii) content source properties associated with an audio source of the second audio content. The system accesses a rules engine to determine playback restrictions based at least in part on the content source properties. Based at least in part on the playback restrictions, operation of one or more of the playback devices is restricted.
US11172298B2 Systems, methods, and user interfaces for headphone fit adjustment and audio output control
While a first wearable audio output component of a wearable audio output device is in a first position relative to a first ear of a user and a second wearable audio output component of the wearable audio output device is in the first position relative to a second ear, a computer system operates the wearable audio output device in a first mode. While doing so, the computer system detects a change in position of the first component from the first position to a second position; and, in response, while the second component is maintained in the first position, the computer system transitions the wearable audio output device from the first mode to a different, second mode that is a pass-through mode in which audio outputs provided via the wearable audio output device include pass-through audio components that include at least a portion of ambient sound from the physical environment.
US11172293B2 Power efficient context-based audio processing
A low power voice processing system that includes a plurality of non-audio sensors, at least one microphone system, and a plurality of audio modules, at least some of which can be configured in selected modes. A context determination module is connected to the plurality of audio modules, and further connected to receive input from the plurality of non-audio sensors and the at least one microphone system. The context determination module acts to determine use context for the voice processing system and at least in part selects mode operation of at least some of the plurality of audio modules.
US11172291B2 Millimeter wave sensor used to optimize performance of a beamforming microphone array
A method for operating a beamforming microphone array for use in a predetermined area comprising: receiving acoustic audio signals at each of a plurality of microphones, converting the same to an electrical mic audio signal, and outputting each of the plurality of electrical mic audio signals; generating a user location data signal by a wave sensor system, and outputting the user location data signal, wherein the user location data signal includes location information of one or more people within the predetermined area; receiving both the user location data signal and plurality of mic audio signals at an adaptive beamforming device; adapting one or more beams by the adaptive beamforming device based on the user location data signal and plurality of output electrical mic audio signals wherein each of the one or more beams acquires sound from one or more specific locations in the predetermined area; and performing acoustic echo cancellation on each of the one or more beams output from the adaptive beamforming device.
US11172286B2 Earphone cover and earphone having the same
The present invention relates to an earphone cover and an earphone having the same. The earphone cover is used to be placed on the earphone, comprising a sleeve portion and a fixing portion for setting the earphone cover on the earphone. The fixing portion encloses the sleeve portion, and the sleeve portion penetrates the fixing portion. The fixing portion includes a first end portion and a second end portion opposite to the first end portion. When the earphone cover is built in the human ear, the first end portion and the second end portion are in contact with the ear bone to form at least three setting points. Thus, after the earphone cover is set on the earphone, the earphone cover and the ear bone form three fixed points when the earphone is fixed in the ear, then the earphone may be firmly fixed in the ear bone through the three fixed points, and hence is not easy to fall off.
US11172285B1 Processing audio to account for environmental noise
This disclosure describes, in part, techniques to process audio signals to lessen the impact that wind and/or other environmental noise has upon the resulting quality of these audio signals. For example, the techniques may determine a level of wind and/or other noise in an environment and may determine how best to process the signals to lessen the impact of the noise, such that one or more users that hear audio based on output of the signals hear higher-quality audio.
US11172282B2 Earphone and earphone wearing detection method
An earphone has a housing, a sound output hole, a first touch sensor, a second touch, a third touch sensor, and a microprocessor. The microprocessor is coupled to the first touch sensor, the second touch sensor and the third touch sensor for determining whether the earphone is worn on an ear according to the sensing result of the first touch sensor, determining whether the earphone is held in hand according to the sensing result of the second touch sensor, and providing a corresponding control function according to the sensing result of the third touch sensor.
US11172277B2 Speaker unit with microphone
A speaker unit with microphone is provided. The speaker unit includes a housing, a cover, a vibration element and a microphone. The cover is assembled to the housing and forms a chamber with the housing. The cover has at least one audio hole. The vibration element is disposed in the chamber for generating sound toward the cover. The microphone is fixed on the cover and outside the chamber.
US11172276B2 Annular radiation speaker structure
An annular radiation speaker structure includes an external speaker enclosure, an internal speaker enclosure and a speaker unit. The external speaker enclosure has a bottom portion and an outer wall, the outer wall extends upward from a periphery of the bottom portion and jointly defines an outer cavity, an inner wall surface of the outer wall has a supporting portion, a height difference between a top end of the supporting portion and a top end of the outer wall is defined as a built-in height, and the bottom portion forms a sound cone. The internal speaker enclosure has an inner cylinder wall, the inner cylinder wall has an upper opening and a lower opening and defines an inner cavity, and a bottom end of the inner cylinder wall is disposed on the supporting portion and forms a resonant cavity between the supporting portion and the sound cone.
US11172272B2 Determining video highlights and chaptering
Methods, systems, and apparatuses are described for identifying highlights of a content item, and identifying times, within the content item, to indicate as a beginning of a chapter within the content item. A second content item that corresponds to a portion of the first content item may be identified. The portion of the first content item may be determined to be a highlight of the first content item. Shot boundaries of the content item may be determined, and chapter information corresponding to a different version of the content item may be mapped to the content item.
US11172263B2 Systems and methods for playback of content using progress point information
The systems and methods are described herein for playback of content based on progress point information. The systems and methods detect nearby media devices to transmit or request progress point information. Based on the communicated progress point information, the system may generate an option to play back content at a point within the content up to which content was last consumed. When content providers offer different versions of one content item and the user does not select to play back content from the content provider associated with the progress point information, the system determines a proper playback point in other content providers.
US11172259B2 Video surveillance method and system
A video surveillance method comprises displaying a first stream of video data from a first video camera on a display of an operator client. On receipt of a command, prestored alternative camera data is consulted to select a second video camera. A second stream of video data from the second video camera is then displayed on the display. The first and second video cameras have fields of view which overlap.
US11172251B1 Method and apparatus for synthesized video stream
A synthesized, advertisement-based, video stream is generated first by receiving a video stream essentially consisting of a representative image of a person, a video stream comprising a place, and a video stream comprising an advertisement, and then combining the video stream essentially consisting of the representative image of the person with the video stream comprising the place and with the video stream comprising the advertisement into the synthesized, advertisement-based, video stream for transmission to an end-user device via which to display the synthesized, advertisement-based, video stream.
US11172250B2 Reception apparatus, reception method, transmission apparatus and transmission method
The present technology relates to a reception apparatus, a reception method, a transmission apparatus and a transmission method in which NRT service is provided in digital broadcasting using an IP transmission method. There is provided a reception apparatus including: a channel selection control unit that performs a channel selection control of channel-selecting digital broadcasting using the IP transmission method; an acquisition control unit that controls acquisition of an application delivered through broadcasting or communication in the digital broadcasting based on signaling information transmitted at a layer higher than an IP layer in a protocol layer of the IP transmission method; and an application execution unit that executes the application acquired. The present technology is applicable to a television receiver, for example.
US11172248B2 Systems and methods for customizing and compositing a video feed at a client device
An embodiment of a process for providing a customized composite video feed at a client device includes receiving a background video feed from a remote server, receiving (via the communications interface) content associated with one or more user-specific characteristics, and determining one or more data elements based at least in part on the received content. The process includes generating a composite video feed customized to the one or more user-specific characteristics including by matching at least corresponding portions of the one or more data elements to corresponding portions of the background video feed, and displaying the composite video feed on a display device of the client device.
US11172247B2 Method to change the service of a digital television decoder equipped with a plurality of tuners
A method for changing service within a digital television decoder, the digital decoder including a plurality of tuners, each tuner being capable of receiving a stream of signals including data relating to television services, the method including configuring each tuner for receiving a particular service; restoring, on a screen, a first service corresponding to the service for the reception of which a first tuner has been configured; receiving, via the decoder, a first change of service command with a view to displaying a second service for the reception of which a second tuner has been configured; receiving, via the decoder, a second change of service command with a view to displaying a third service for the reception of which a third tuner has been configured; applying a forced delay before displaying the second service and/or the third service.
US11172241B2 Geo, segment, uniques distributed computing system
A distributed computing system is configured to compute operational data for a video advertisement delivery system. Cloud-based resource are used to calculate operational parameters such as geographical data, unique advertisement delivery instances and segments of consumers that received the video advertisements.
US11172232B2 Systems and methods for signaling level information in video coding
A device may be configured to signal level information according to one or more of the techniques described herein.
US11172228B2 Method for producing video coding and programme-product
According to the invention, there are provided sets of contexts specifically adapted to encode special coefficients of a prediction error matrix, on the basis of previously encoded values of level k. Furthermore, the number of values of levels other than 0 is explicitly encoded and numbers of appropriate contexts are selected on the basis of the number of spectral coefficients other than 0.
US11172227B2 Video sending and receiving method, apparatus, and terminal thereof
The video sending method includes: acquiring a video stream to be transmitted; generating consecutive frame groups from the video stream, wherein setting a first frame in the current frame group to be a long-term reference frame that uses a first frame in a previous frame group as a reference during generation of at least one of the current frame group, wherein the long-term reference frame is a predictive coded frame configured to transmit a difference and a motion vector obtained by performing a comparison against the first frame in the previous frame group, the current frame group is a frame group other than the first frame group; and sending the frame groups to a receiving terminal. The video receiving method comprises: receiving the frame groups sent by a sending terminal; and restoring the frame groups to obtain the transmitted video stream.
US11172222B2 Random access in encoded full parallax light field images
Methods and systems for light field image encoding and decoding are disclosed. According to some embodiments, the method receives scene metadata and input light field images associated with a scene. The method further performs a first encoding operation on the scene metadata and the input light field images to generate reference views and reference disparity information. The method further performs a second encoding operation based on the reference views, the reference disparity information, and synthesized residuals to output encoded light field data, where the encoded light field data comprises encoded reference views, encoded reference disparity information, and encoded synthesized residuals. The method further randomly accesses and selects a group of reference views and corresponding disparity information from the encoded light field data based on one or more selected regions of interest. And the method transmits the selected group of reference views, the selected corresponding disparity information, and the encoded synthesized residuals.
US11172221B2 Method and apparatus for intra prediction with multiple weighted references
A method of performing intra prediction for encoding or decoding uses multiple layers of reference samples. The layers are formed into reference arrays that are used by a function, such as a weighted combination, to form a final prediction. The prediction is used in encoding or decoding a block of video data. The weights can be determined in a number of ways, and for a given prediction mode, the same weights, or different weights can be used for all pixels in a target block. If the weights are varied, they can depend on the distance of the target pixel from reference arrays.
US11172215B2 Quantization artifact suppression and signal recovery by the transform domain filtering
An apparatus for decoding video data includes memory and one or more processors implemented in circuitry. The one or more processors are configured to receive a bitstream including encoded video data, decode, from the bitstream, values for one or more syntax elements to generate a residual block for a current block, prediction information for the current block, and transform domain filtering information. The one or more processors are further configured to reconstruct the current block using the prediction information and the residual block to generate a reconstructed block. In response to determining that the transform domain filtering information indicates that transform domain filtering is enabled for the current block, the one or more processors are configured to perform transform domain filtering on the reconstructed block to generate a filtered block.
US11172212B2 Decoder-side refinement tool on/off control
This disclosure describes techniques for enabling very precise on/off control of two or more different decoder-side refinement tools. Rather than merely allowing or enabling these tools for an entire video sequence of video data, this disclosure describes techniques for enabling or disabling different decoder-side refinement tools for subsets (or portions) of a video sequence.
US11172209B2 Analytics-modulated coding of surveillance video
A method and apparatus for encoding surveillance video where one or more regions of interest are identified and the encoding parameter values associated with those regions are specified in accordance with intermediate outputs of a video analytics process. Such an analytics-modulated video compression approach allows the coding process to adapt dynamically based on the content of the surveillance images. In this manner, the fidelity of the region of interest is increased relative to that of a background region such that the coding efficiency is improved, including instances when no target objects appear in the scene. Better compression results can be achieved by assigning different coding priority levels to different types of detected objects.
US11172204B2 Method for encoding and decoding motion information and device for encoding and decoding motion information
A method of decoding motion information according to an embodiment includes: determining a base motion vector of a current block; determining a primary differential motion vector for the current block based on information obtained from a bitstream from among one or more primary differential motion vector candidates classified according to a disparity distance and a disparity direction; and determining a motion vector of the current block by applying the primary differential motion vector to the base motion vector.
US11172203B2 Intra merge prediction
A combined prediction mode for encoding or decoding a pixel block of a video picture is provided. When it is determined that the combined prediction mode is used, a video codec generates an intra predictor for the current block based on a selected intra-prediction mode and a merge-indexed predictor for the current block based on a selected merge candidate from a merge candidates list. The video codec then generates a final predictor for the current block based on the intra predictor and the merge-indexed predictor. The final predictor is then used to encode or decode the current block.
US11172199B2 Cross-component adaptive loop filter
A method, computer program, and computer system is provided for video coding. Video data comprising a chroma component and a luma component is received. Luma samples are extracted from the luma component of the received video data. The chroma component is filtered by a cross-component adaptive loop filter (CC-ALF) based on a location of a chroma sample associated with the chroma component, the extracted luma samples, filter weights associated with the extracted luma samples, and an offset value.
US11172197B2 Most probable mode list generation scheme
A method of signaling an intra prediction mode used to encode a current block in an encoded video bitstream using at least one processor includes determining a plurality of candidate intra prediction modes; generating a most probable mode (MPM) list using the plurality of candidate intra prediction modes; signaling a reference line index indicating a reference line used to encode the current block from among a plurality of reference lines including an adjacent reference line and a plurality of non-adjacent reference lines; and signaling an intra mode index indicating the intra prediction mode, wherein the MPM list is generated based on the reference line used to encode the current block and whether an intra sub-partition (ISP) mode is enabled.
US11172192B2 Identifying defects in optical detector systems based on extent of stray light
Example embodiments relate to identifying defects in optical detector systems based on extent of stray light. An example embodiment includes a method. The method includes capturing, using an optical detector system, an image of a scene that includes a bright object. The method also includes determining a location of the bright object within the image. Further, the method includes determining, based on the location of the bright object within the image, an extent of stray light from the bright object that is represented in the image. In addition, the method includes determining, by comparing the extent of stray light from the bright object that is represented in the image to a predetermined threshold extent of stray light, whether one or more defects are present within the optical detector system. The predetermined threshold extent of stray light corresponds to an expected extent of stray light.
US11172190B2 Stereo weaving for head-tracked autostereoscopic displays
Systems and methods are described for determining a tracked position associated with viewing an emitting interface of a display device, generating, using the tracked position, a first mask representing a first set of values associated with the emitting interface of the display device, generating, using the tracked position, a second mask representing a second set of values associated with the emitting interface of the display device, and generating an output image using the first mask and the second mask.
US11172189B1 User detection for projection-based augmented reality system
In one embodiment, a method includes sending, to an interaction device including a projector and a camera, a media content item and instructions causing the projector to project the media content item on a projectable surface and receiving, from the interaction device, one or more media objects captured by the camera, where one or more of the media objects include images of a user in proximity to the projectable surface. The method includes determining one or more movements of the user based on the one or more of the media objects and updating the media content item based on the determined movements. The method also includes sending, to the interaction device, the updated media content item and instructions causing the projector to project the updated media content item on the projectable surface.
US11172187B2 Information processing apparatus, image generation method, control method, and storage medium
An information processing apparatus for a system generates a virtual viewpoint image based on image data obtained by performing imaging from a plurality of directions using a plurality of cameras. The information processing apparatus includes an obtaining unit configured to obtain a foreground image based on an object region including a predetermined object in a captured image for generating a virtual viewpoint image and a background image based on a region different from the object region in the captured image, wherein the obtained foreground image and the obtained background image having different frame rates, and an output unit configured to output the foreground image and the background image which are obtained by the obtaining unit and which are associated with each other.
US11172185B2 Information processing apparatus, information processing method, video processing system, and storage medium
Time information of an output video and setting information of an imaging apparatus at least a switch time included in the time information are obtained. Setting information of a virtual viewpoint at the switch time included in the time information in which setting information of the virtual viewpoint at the switch time is set based on the obtained setting information of the imaging apparatus is obtained. An image processing apparatus generates a virtual viewpoint video based on the setting information of the virtual viewpoint. The image processing apparatus and a storage apparatus storing the captured video synchronously output frames of the same time based on the time information. The virtual viewpoint video and the captured video received from the image processing apparatus and the storage apparatus are outputted while being switched from one video to another at the switch time.
US11172184B2 Systems and methods for imaging a patient
Systems and methods of imaging include projecting infrared (IR) light from the endoscope toward the at least one anatomical feature (e.g., the exterior of a liver or lung), capturing the IR light, projecting optical light from the endoscope toward a similar portion of the anatomical feature, and capturing the optical light. Once the IR light and the optical light are captured, both are associated with one another to generate an intra-operative 3D image. This projection and capture of IR and optical light may occur at discrete times during the imaging process, or simultaneously.
US11172183B2 Apparatus and method for processing a depth map
An apparatus for processing a depth map comprises a receiver (203) receiving an input depth map. A first processor (205) generates a first processed depth map by processing pixels of the input depth map in a bottom to top direction. The processing of a first pixel comprises determining a depth value for the first pixel for the first processed depth map as the furthest backwards depth value of: a depth value for the first pixel in the input depth map, and a depth value determined in response to depth values in the first processed depth map for a first set of pixels being below the first pixel. The approach may improve the consistency of depth maps, and in particular for depth maps generated by combining different depth cues.
US11172177B2 Projection system
A projection system including at least a light source, at least a dichroic filter element and a light-adjusting diaphragm element is provided. The light source is configured to emit a first color light having a spectrum of a first wavelength range and a second color light having a spectrum of a second wavelength range. The dichroic filter element is configured to reflect or allow the first color light and the second color light to pass through. The light-adjusting diaphragm element has a filter and is located on an optical path generated after the first color light and the second color light are split. The first color light passes through the filter, which blocks at least a part of the energy of the second color light, such that a transmittance of the spectrum of the first wavelength range is greater than that of the spectrum of the second wavelength range.
US11172176B2 Wavelength conversion element, light source device, projector, and method of manufacturing wavelength conversion element
The wavelength conversion element includes a phosphor layer having a plurality of phosphor particles and a binder configured to bind one of the phosphor particles adjacent to each other and another of the phosphor particles adjacent to each other out of the plurality of phosphor particles, and a substrate provided with the phosphor layer, wherein the binder includes glass, and the binder binds a part of a surface of the one of the phosphor particles and a part of a surface of the another of the phosphor particles to each other.
US11172171B1 System and method for managing service and non-service related activities associated with a waste collection, disposal and/or recycling vehicle
Systems and methods are provided for using video/still images captured by continuously recording optical sensors mounted on waste collection vehicles used in in the waste collection, disposal and recycling industry for operational and customer service related purposes. Optical sensors are integrated into the in-cab monitor as well as the onboard computer, digital video recorder and other external devices.
US11172161B2 Display device capable of changing frame rate and operating method thereof
A display device includes a driving controller controlling a data driving circuit and providing a clock signal and a driving voltage in response to an image signal and a control signal received from an external source. The driving controller restores a data enable signal having a display period and a blank period in one frame on the basis of the control signal and sets a voltage level of the driving voltage applied to the gate driving circuit in accordance with a duration of the blank period. During a sequence of frames having a changing frame rate, the driving voltage for each respective frame may be set based on the duration of each respective blank period.
US11172160B2 Method of operating a display device supporting a variable frame mode, and the display device
In a method of operating a display device supporting a variable frame mode, frame data are received during a constant active period of a frame period including the active period and a variable blank period, the received frame data are written to a frame memory in the active period, the received frame data are outputted to a data driver in the active period to display an image based on the received frame data, a time of the variable blank period is counted, and, when the time of the variable blank period reaches a predetermined threshold blank time, the frame data stored in the frame memory are outputted to the data driver in the variable blank period to display an image based on the frame data stored in the frame memory.
US11172158B2 System and method for augmented video production workflow
A system and method that recognizes and highlights objects in a video frame for augmented video production workflow. Ae video production camera is provided to capture a video frame and generate frame data and object data relating to objects within the video frame that are in focus. Moreover, a display device is included that is wearable by the camera operator and includes a camera that captures field of view data that corresponds to a field of view of the camera operator. Furthermore, the display device can compare the video frame data with the field of view data captured by the camera to generate visual indicators for the video frame and the in focus objects. As a result, the display device can provide the camera operator with a field of view having visual indicators of the video frame and the objects that appears as overlays over the operator's field of view.
US11172156B2 Semiconductor device and method of manufacture
An image sensor includes a photosensitive sensor, a floating diffusion node, a reset transistor, and a source follower transistor. The reset transistor comprises a first source/drain coupled to the floating diffusion node and a second source/drain coupled to a first voltage source. The source follower transistor comprises a gate coupled to the floating diffusion node and a first source/drain coupled to the second source/drain of the reset transistor. A first elongated contact contacts the second source/drain of the reset transistor and the first source/drain of the source follower transistor. The first elongated contact has a first dimension in a horizontal cross-section and a second dimension in the horizontal cross-section. The second dimension is perpendicular to the first dimension, and the second dimension is less than the first dimension.
US11172154B2 Image sensor arranged in SPI slave circuit of a serial peripheral interface and pixel array circuit therein
An image sensor for serial peripheral interface (SPI) slave circuit and a pixel array circuit therein are provided. The pixel array includes a plurality of pixel units disposed in an image sensor with the SPI slave circuit. Each pixel unit includes a photo sensor, N storages and at least one transmission circuit, wherein N is a positive integer greater than or equal to two. At least one of the N storages is coupled to the photo sensor, which are connected with each other in serial or parallel, and configured to store charges accumulated by the photo sensor at different exposures. Each transmission circuit is coupled to a corresponding storage, and is controlled by a corresponding transmission control signal to transmit the stored charge of the corresponding storage during a certain time period.
US11172153B2 Pixel circuit
A pixel circuit is disclosed. The pixel circuit includes a photodiode (PD), a transmission circuit, a reset circuit, a signal storage circuit and a buffer circuit. The transmission circuit is coupled between the PD and an ordinary floating diffusion (FD) node. The reset circuit is coupled to the ordinary FD node. The signal storage circuit is coupled to the ordinary FD node. The buffer circuit is coupled to the ordinary FD node. The signal storage circuit may store a PD signal on a specific node having a reduced leakage path in comparison with the ordinary FD node during a holding phase of the pixel circuit, wherein the holding phase is a time interval starting from a first time point at which the PD signal is stored on the specific node and ending at a second time point at which the pixel circuit is selected for performing a read-out operation.
US11172152B2 Imaging device which performs imaging at a high resolution for a pixel row in a state in which motion is detected
Power consumption of an imaging element which outputs only a region of interest (ROI) at high resolution is reduced. In a two-dimensional pixel array in which pixel rows arranged in a predetermined direction are arranged in a direction perpendicular to the predetermined direction, the imaging element performs imaging at high resolution for a first pixel row including a predetermined region and performs imaging at low resolution for a second pixel row other than this. The first image processing unit generates an image of a predetermined region on the basis of an imaging signal of the first pixel row. A pixel adding unit performs an adding process between pixels on the imaging signal of the first pixel row to make resolution the same as resolution of the imaging signal of the second pixel row. The second image processing unit generates an image of an entire region on the basis of the imaging signal of the second pixel row and the imaging signal of the first pixel row subjected to the adding process.
US11172148B2 Methods, systems, and media for generating compressed images
Methods, systems, and media for generating compressed images are provided. In some embodiments, the method comprises: identifying a multi-plane image (MPI) that represents a three-dimensional image; splitting the MPI into a plurality of sub-volumes; calculating, for each sub-volume of the MPI, a depthmap; converting each depthmap to a mesh, wherein each mesh corresponds to a layer of a plurality of layers associated with a multi-depth image (MDI) to be rendered; calculating, for each layer of the plurality of layers, an image that indicates a color and a transmittance of each voxel included in the layer; storing the meshes corresponding to the plurality of layers of the MDI and the images corresponding to the plurality of layers of the MDI as the MDI; and, in response to receiving a request for the three-dimensional image from a user device, transmitting the MDI to the user device, wherein the user device is configured to render the MDI by mapping, for each layer of the MDI, the image corresponding to the layer as a texture on the mesh corresponding to the layer.
US11172141B2 Method and apparatus for composing images of celestial bodies
Disclosed are a method and apparatus for composing a plurality of images of the celestial bodies. The method and apparatus can compose a plurality of images using various pieces of information associated with the plurality of images and a time interval during the plurality of images are taken, such that objects are accurately matched with no afterimage.
US11172138B2 Image capture apparatus capable of performing HDR combination, method of controlling same, and storage medium
An image capture apparatus capable of increasing the width by which the dynamic range is expanded by HDR combination, according to whether a moving object exists or not, while preventing occurrence of ghost artifacts or the like, caused by improper combination. An image capture section performs image capture operations with a plurality of different exposure amounts for each frame to thereby generate a plurality of captured images so as to perform HDR combination. An exposure controller sets the plurality of different exposure amounts for the image capture section. A moving object detection section detects a moving object existing in at least one of the plurality of captured images. The exposure controller adjusts the plurality of different exposure amounts according to whether or not a moving object is detected by the moving object detection section.
US11172135B2 Apparatus and method for processing image
An apparatus according to various embodiments can include: a plurality of cameras including at least one camera having a field of view (FOV) different from the designated FOV; a communication interface; and at least one processor, wherein the at least one processor can be configured to acquire a plurality of images, including at least one image including a scene from the FOV different from the designated FOV, through the plurality of cameras, and transmit information about the plurality of images and information for changing the scene from the FOV included in the at least one image to a scene for the designated FOV to another device through the communication interface so that the other device generates another image on the basis of the plurality of images.
US11172131B1 Optical devices for tilt in camera systems
Aspects of the present disclosure generally relate to optical devices and related methods that facilitate tilt in camera systems, such as tilt of a lens. In one example, an optical device includes a lens, an image sensor disposed below the lens, a plurality of magnets disposed about the lens, and a plurality of: (1) vertical coil structures coiled in one or more vertical planes and (2) horizontal coil structures coiled in one or more horizontal planes. When power is applied, the coil structures can generate magnetic fields that, in the presence of the magnets, cause relative movement of the coil structures and associated structures. The plurality of vertical coil structures are configured to horizontally move the lens. The plurality of horizontal coil structures are configured to tilt the lens when differing electrical power is applied to at least two of the plurality of horizontal coil structures.
US11172130B2 Systems and methods for stabilizing videos
Visual content is captured by an image capture device during a capture duration. The image capture devices experiences change in position during the capture duration. The trajectory of the image capture device is smoothed based on a look ahead of the trajectory. A punchout of the visual content is determined based on the smoothed trajectory. The punchout of the visual content is used to generate stabilized visual content.
US11172123B2 Computer program product for contextual focus/zoom of event celebrities
A contextual zoom control method, system, and computer program product, includes in a single individual capturing mode, performing a camera function to assist the user in performing an image capturing action on an identity that is paired with a highest ranked individual on a ranked list within a set of key individuals attending an event, where the camera function includes at least one of a zoom function and a focus function and where the set of key individuals attending the event are determined by any of data mining a context of the event, a search engine, a social media source, and using natural language processing on a published program of the event.
US11172117B2 Image capture apparatus and system that determines a common delay time with at least one other image capture apparatus based on exposure delay times and communication delay times
An image capture apparatus acquires exposure delay times and communication delay times of respective other image capture apparatuses, the exposure delay times being information of times from when the other image capture apparatuses receive a shooting command until when the other image capture apparatuses start exposure, the communication delay times being information of times required in communication with the other image capture apparatuses, and determines a common delay time based on the acquired communication delay times and exposure delay times of the respective other image capture apparatuses, the common delay time being delay time information that is common to all of the other image capture apparatuses, and upon accepting a shooting instruction, transmits the shooting command including a common timing obtained from the common delay time to the other image capture apparatuses.
US11172114B2 System and method for photography
The present invention is directed to a system for photography comprising a light sensor configured to detect a flash from a strobe light and in response produce a sensor signal; a control unit operably coupled to a camera and a photography platform, the control unit configured to send a command to the camera for triggering the camera and the strobe light, capture a time at which the command is sent, receive the sensor signal from the light sensor, the sensor signal indicative of the flashing of the light source, determine a calibration value based on the difference between the time at which the sensor signal is received by the control unit and the time at which the command is sent to the camera by the control unit, and calibrate itself based on the calibration value.
US11172113B2 Camera system including a proximity sensor and related methods
A camera for capturing an image comprising: an image sensor configured to generate image sensor data in response to received light; a processing resource configured to process the image sensor data to obtain image data and communication data, wherein obtaining the communication data comprises performing a demodulation process in respect of at least part of the image sensor data, wherein the processing resource is further configured to transmit the communication data and the image data to at least one further processing resource.
US11172111B2 Devices and methods for security camera installation planning
A mobile device comprising a housing, a user interface, a camera that provides a camera video stream for display, and a controller configured to display a virtual field of view of a virtual security camera placed at a virtual security camera placement location at a site.
US11172109B2 Light-emitting device and camera
To provide a light-emitting device whose amount of light can be adjusted, or the like. The amount of light emitted from the light-emitting device can be adjusted by controlling the magnitude of the constant current pulse by a control signal. Specifically, the light-emitting device includes a constant current supply configured to be supplied with a control signal and a control pulse signal and configured to supply a constant current pulse; a control device configured to supply the control signal; a driver circuit configured to supply the control pulse signal; and a light-emitting panel configured to be supplied with the constant current pulse. The control signal is a signal for controlling the magnitude of the constant current pulse. The light-emitting panel includes a light-emitting element. The current density of the light-emitting element is greater than or equal to 10 mA/cm2 and less than or equal to 1000 mA/cm2.
US11172106B2 Optical filter assembly for image-capturing device
A removably attachable optical device includes a clamp comprising an upper clamp member and a lower clamp member. When the clamp is mounted on a mobile device, the upper member extends over a device side to enable an orifice formed by the upper clamp member to be positioned over an aperture of the mobile device. An optical element housing has a portion configured to engage the an upper clamp member. A non-uniform optical element is rotatably mounted to the optical element housing. Rotation of the non-uniform optical element causes light passing through the non-uniform optical element as the non-uniform optical element is rotated to be correspondingly altered to create optical effects.
US11172104B2 Camera mount, image-capturing apparatus, and manufacturing method of camera mount
A camera mount consists of at least two layers which are laminated in an optical axis direction of an image-capturing lens. The camera mount is engaged with the image-capturing lens and detachably locks the image-capturing lens to a camera body. The camera mount includes a first mount layer; and a second mount layer, laminated on the first mount layer, made of a metal material and having a plurality of lens attachment claw portions configured to attach the image-capturing lens.
US11172102B2 Imaging apparatuses and enclosures configured for deployment in connection with ceilings and downlight cavities
Imaging apparatuses and enclosures configured for deployment in connection with ceilings and downlight cavities are disclosed. Certain exemplary aspects relate to imaging apparatuses for monitoring, recording or imaging a space such as a room having overhead lighting provided via ceiling structures that may include enclosures and/or downlight fixtures within ceiling cavities, and various imaging apparatuses herein may include an infrared or thermal camera, for example, for imaging within such spaces.
US11172100B2 Image processing apparatus and non-transitory computer readable medium storing program that perform collection of information items based on acquired collection information for each of one or more information items
An image processing apparatus includes an image processing section that performs processing of a job relating to image processing, one or more information processing sections that perform processing on one or more information items as processing targets among information items generated by a device group, a permission acquisition section that acquires a collection permission for each of one or more information items used by the one or more information processing sections, from a manager of the device group or the image processing apparatus, and a collection section that collects the information items used by the one or more information processing sections from devices that generate the information items, under a condition in which acquisition of the collection permission for each of the information items from the manager is completed.
US11172091B2 Photoelectric conversion device, line sensor, image reading device and image forming apparatus
A photoelectric conversion device includes a plurality of pixels configured to output analog voltage signals in response to incident light; an analog memory configured to store the analog voltage signals output from the plurality of pixels; and an analog/digital (A/D) converter configured to perform A/D conversion on the analog voltage signal from the analog memory. The plurality of pixels includes N pixels configured to simultaneously output analog voltage signals to the analog memory. The A/D converter includes (N−1) or less A/D converters configured to perform A/D conversion on the analog voltage signals that have been simultaneously output from the N pixels and stored in the analog memory.
US11172087B2 Multifunction machine, image scanning apparatus, control method for multifunction machine, and computer readable storage medium, that controls conveyance of a document on the basis of the thickness of the document
A control method for a multifunction machine includes detecting placement of a document on a document tray, displaying an object in accordance with document placement detection, storing information indicating the thickness of the document set using the object, conveying the document based on the information, and scanning the conveyed document. The object is displayed in accordance with document placement detection while a function selection screen is displayed, the information is received from a user through the object, and the document is conveyed based on the information in a case where execution of the copy function is commanded through a copy screen displayed after selection of the copy function. Even when a user places a document while a function selection screen is displayed, the thickness of the document can be set with certainty, and the document is scanned based on the set thickness.
US11172084B2 Preview image display apparatus and storage medium
In a preview image display apparatus, a generating section generates preview images. A panel operation controller displays, on a panel, a main preview screen (first preview screen) displaying the preview images and a sub preview screen (second preview screen) displaying the preview images while the main preview screen (first preview screen) and the sub preview screen (second preview screen) are transferred to each other. A system controller instructs the panel operation controller to display alternate transfer between the main preview screen (first preview screen) and the sub preview screen (second preview screen).
US11172083B2 Integrated workflow execution control that switches display to first screen or second screen based on determination criterion
An integrated apparatus includes: an image processing apparatus; an Information Technology (IT) processing apparatus; and a common display operation panel, wherein the integrated apparatus: obtains a workflow that combines a job executed by the image processing apparatus and a job executed by the IT processing apparatus; launches an application and causes each of the image processing apparatus and the IT processing apparatus to execute the job indicated in the workflow; and switches, based on a determination criterion related to a function exhibited by the image processing apparatus, display by the display operation panel at a time when the job indicated in the workflow is executed by the image processing apparatus, to the first screen or the second screen.
US11172081B2 Information processing apparatus, control method, and non-transitory computer-readable storage medium that displays an authentication information input screen after a communication apparatus prints the authentication information
An information processing apparatus confirms whether a communication apparatus has completed output of predetermined information used to execute predetermined processing between the information processing apparatus and the communication apparatus, and causes a display to display a screen used to start the predetermined processing based on confirming that the communication apparatus has completed the output of the predetermined information.
US11172080B2 Peripheral and control method of control component thereof
A peripheral includes a body, an image processing device and a processor. The body includes a sub-housing and a second button. The sub-housing includes a control component. The control component includes a first button disposed on an upper surface of the sub-housing. The second button and the first button are disposed on different adjacent surfaces. The image processing device is disposed above or in the body. The image processing device is disposed above the body. The processor controls a first signal generated by the first button to be the same as a first signal generated by the second button. The sub-housing is disposed on an upper lateral side of the body.
US11172079B2 Maintenance management apparatus, maintenance management system, method of managing maintenance, and recording medium
A maintenance management apparatus for managing maintenance on one or more devices, includes: circuitry to: obtain self-maintenance information indicating time at which self-maintenance has been performed on a device; obtain maintenance information indicating maintenance scheduled to be performed on the device from a memory, the maintenance information including time information indicating scheduled execution time of maintenance; update the time information indicating scheduled execution time of maintenance based on the self-maintenance information; and send a notification for prompting maintenance of the device when the time indicated by the time information having been updated is reached.
US11172078B2 Server, non-transitory computer-readable recording medium storing computer readable instructions for the server, communication device, and communication system
A server may store first device identification information identifying a first device. The server may, in a case where alert information is received, store restriction information in the memory in association with the first device identification information; receive second sending information from the first device; and in a case where the second sending information is received from the first device in a state where the restriction information is not stored in association with the first device identification information, send a second email with a first email address as a destination stored in association with the first device identification information, wherein in a case where the second sending information is received from the first device in a state where the restriction information is stored in association with the first device identification information, the sending of the second email is restricted.
US11172076B1 System and method for remotely printing digital images for pickup at a retail store
The method and system allow a user to launch a client application on an web-enabled device and subsequently to navigate to an image source screen within the client application. After receiving an image source selection from the user, the client application retrieves images from the selected image source. The client application displays the retrieved images available for printing to a user, and in response to receiving a selection of an image, the client application transmits the image to a proprietary server. Moreover, upon receiving print order information, the client application additionally executes a location awareness application that determines a current location of the web-enabled device and subsequently, determines a proximal retail store to the current location of the web-enabled device. Thereafter, the remote printing system creates and transmits a print order that includes the selected image to the retail store for pickup.
US11172073B2 Image processing apparatus, image processing system, and control method of image processing apparatus
An evaluation table includes: a first pixel value set; a second pixel value set next to and having a larger pixel value sum than the first pixel value set; a third pixel value set having a larger pixel value sum than the second pixel value set; a fourth pixel value set next to and having a larger pixel value sum than the third pixel value set; a fifth pixel value set having a larger pixel value sum than the fourth pixel value set; and a sixth pixel value set next to and having a larger sum than the fifth pixel value set. Each of a difference between pixel value sums of the first and second pixel value sets and a difference between pixel value sums of the fifth and sixth pixel value sets is larger than a difference between pixel value sums of the third and fourth pixel value sets.
US11172071B1 Member activity across channels
A computing system of an organization receives data through multiple channels of communication; a programmatic interface for each of the different channel infrastructures may be called to convert data about a user's contact with the system. Contact records for contain data such as a user ID and a channel identifier. An operational database may receive the converted contact records from the devices or software. A transaction application may perform various tasks resulting in the generation of transaction data. A transaction record containing the transaction data may be generated in a message queue or operational database. The interface for the communication channel may convert the transaction data in a message queue, after the transaction data is detected by a listening application that monitors the message queue and logs new transaction data to the operational database.
US11172062B2 Packet identifying method and packet identifying device
A packet identifying method includes: connecting to an IP telephone device under test and querying to a current device information of the IP telephone device under test; determining if there is any instruction set in a database matched with the current device information, wherein the database includes a plurality of instruction sets, and each instruction set corresponds to existing device information of an IP telephone device; and executing a packet identifying procedure by using an executing instruction set.
US11172060B1 Communication device having antenna tuning based on hand position detected by edge display
A communication device, method and computer program product enable improved communication performance by switching or tuning antennas based on detecting touches on edge display(s) of the communication device that has at least one antenna positioned along edges of a housing assembly. A controller monitors edge display(s) of the communication device to determine portions of the edge display(s) that are touched and associates the at least one antenna that is proximate to the portions of the edge display(s) that are touched The controller configures a radio frequency front end of the communication device to switch or tune the at least one antenna in order to provide at least one of: mitigating detrimental effects to antenna performance by the at least one antenna or remaining within regulatory limits for RF transmission exposure.
US11172058B2 Device that is extendable for supporting a smartphone having a video camera or for supporting a video camera
A device for supporting a smartphone having a camera or supporting an action camera has a holder configured for supporting a smartphone having a camera or supporting an action camera, an extendable handle configured to be held by a user, and components for receiving audio signals from an audio signal source and reproducing the received audio signals in the vicinity of the handle.
US11172057B2 Systems and methods for managing devices using dynamically configurable device and protocols definitions
Disclosed are systems, methods, and devices for managing a plurality of remote devices of disparate types. There is maintained an electronic device definition repository comprising: a plurality of semantic model definitions for corresponding devices of the plurality of remote devices. An action request for an action to be performed by one or more selected devices of the plurality of remote devices is received. For each one or more selected devices, the action request is processed including: converting a generic device action and a generic device property to a device-specific action and a device-specific property using the semantic model definition for the selected device; establishing one or more messages for communicating the device-specific action request to a given selected device using the data protocol definition for the selected device; translating the one or more messages of the sequence of messages to an application protocol suitable for communication with the selected device.
US11172053B2 Transfer apparatus, transfer method, and program for transporting data from a single source to sinks with different communication requirements
In one aspect of the present invention, a transfer apparatus includes a reception unit configured to receive a packet from a source which distributes data according to a transmission control protocol (TCP); a storage unit configured to store data included in the received packet in a buffer based on a TCP sequence number of the received packet; a TCP transfer unit configured to transfer the received packet to a first sink which requests distribution according to the TCP; and a UDP transfer unit configured to read the data from the buffer and transfer the read data to a second sink which requests distribution according to a user datagram protocol (UDP).
US11172050B1 Self-configuring adapter
A system and method for mapping an application program interface (API) to a relational schema. In one embodiment, the system samples a first endpoint, the first endpoint exposed via a first application programming interface (API); automatically infers, based on a set of results received from the first endpoint responsive to the sampling and based on a set of inference rules, a first set of data types and a first relational data structure representing data stored by the first endpoint and exposed via the first API; generates a configuration profile based on the first set of inferred data types and the first relational data structure representing the data stored by the first endpoint and exposed via the first API; and obtains, using the configuration profile and via the first application programming interface, data from the first endpoint responsive to a query, the query received in a relational query language.
US11172042B2 Platform-independent application publishing to a front-end interface by encapsulating published content in a web container
Provided are computer-implemented methods and systems for publishing an application to a web container. An example method for publishing an application to a web container may include establishing a channel of communication with a user device associated with an end user. The method may further include embedding a web container into a web portal associated with a plurality of applications. The method may include executing an application in a user session associated with the end user. The method may further include capturing images of a virtual screen associated with the application executed on the application server. After the capture, the method may continue with sending the images to the web container of the web portal running in a web browser of the user device. The web container may publish the images to the web browser to display the application as part of the web portal in the web browser.
US11172032B2 Private service endpoints in isolated virtual networks
A service implemented at a first isolated virtual network of a provider network is added to a database of privately-accessible services. Configuration changes that enable network packets to flow between the first isolated virtual network and a second isolated virtual network without utilizing a network address accessible from the public Internet are implemented. Service requests originating at the second isolated virtual network are transmitted to the first isolated virtual network via private pathways of the provider network. Metrics corresponding to service requests directed from the second isolated network to the service are collected and provided to the respective owners of one or both isolated virtual networks.
US11172028B2 Method and server device for providing internet of things platform service
A method and a server device for providing an IoT platform service are provided. According to at least one aspect of the present disclosure, a method of providing an IoT platform service, which is performed by an IoT platform server apparatus, generates a shadow device corresponding to an IoT device, manages state information of the IoT device through the corresponding shadow device, and registers and administers a specification (i.e., a device descriptor) regarding common features of a plurality of devices.
US11172027B2 System and method for monitoring remote usage of test and measuring instruments
A system for monitoring remote usage of test and measuring instruments is provided. The system comprises a monitoring unit and a plurality of measurement instruments. In this context, each measurement instrument of the plurality of measurement instruments is adapted to record a plurality of events, wherein each event of the plurality of events creates an event identifier and wherein the event identifier is logged in an event log. Additionally, the event identifier triggers a scheduled task which triggers a batch file script on the measurement instrument.
US11172025B2 Server apparatus, odor sensor data analysis method, and computer-readable recording medium
A terminal apparatus 20 includes a sensor data collection unit 21 that collects sensor data from an odor sensor 40 that outputs the sensor data in reaction to a plurality of types of odors, an analyzer acquisition unit 22 that, in the case where an analyzer capable of analyzing a designated odor analysis target is transmitted thereto from a server apparatus 10 that holds a plurality of analyzers for analyzing odor analysis targets by analyzing the sensor data, acquires the analyzer transmitted thereto, an analysis execution unit 23 that executes analysis processing of the designated odor analysis target, by applying the acquired analyzer to the collected sensor data, and an analysis result holding unit 24 that holds information indicating a result of the analysis processing.
US11172024B2 Co-location of storage buckets with containerized applications
A system and method for co-locating a containerized application and an associated cloud storage bucket are provided. In embodiments, a method includes determining, by a computing device, a location of a containerized application in a data storage network; determining, by the computing device, that a cloud storage bucket does not yet exist in a geographic zone associated with the location of the containerized application; selecting, by the computing device, a data storage location for the cloud storage bucket from a plurality of data storage locations in the data storage network based on the geographic zone; and sending, by the computing device, a request to create the cloud storage bucket to the data storage location and causing creation and co-location of the cloud storage bucket within a predetermined distance of the containerized application.
US11172021B2 File objects download and file objects data exchange
A set of computers can be grouped into a first group and second group of computers to receive a file object. The first group of computers are commanded to perform a peer-to-peer download of the file object from a source. The second group of computers are commanded to perform a peer-to-peer download of the file object from a computer in the first group of computers.
US11172020B2 Method and communication device for determining a score relating to a first agent module
A method and a communication device for determining a score relating to a first agent module are described. The communication device receives information relating to at least one request, performed by another agent module separate from the first agent module, for consumption of a capability of the first agent module. The information relating to the at least one request includes information about the capability of the first agent module, information about an intention of the first agent module, and information about a policy for the capability. The communication device calculates the score in relation to the first agent module based on the information relating to the at least one request, wherein the score further is specified with respect to the capability.
US11172015B1 Methods and systems for evergreen link generation and processing
Methods and systems for evergreen link generation and processing. One system includes an electronic processor configured to receive, from a publisher device, a first request for an evergreen link associated with a first target. The electronic processor is also configured to generate the evergreen link for the first target and enable access to the evergreen link by the publisher device. The electronic processor is also configured to receive, from a client device, a second request in response to a selection of the evergreen link. The electronic processor is also configured to determine whether the first target is valid. The electronic processor is also configured to, when the first target is not valid, determine a replacement target and provide, to the client device, the replacement target. The electronic processor is also configured to, when the first target is valid, provide, to the client device, the first target.
US11172014B2 Smart URL integration using serverless service
A cloud-based, integrated business application suite includes an add-in that enables access from a client device to a first server, but not a second server. A user accesses the first server through an interface of the integrated suite to request a webpage which launches a first local instance of a service application. The first local instance of the service application sets up a local storage location and provides this location to a URL that is used to launch a webpage that is a client of the second server. A second local instance of the service application which is aware of the storage location is launched and this instance stores data requested from the second server in the identified local storage location. The stored information is read from the storage location by the first instance of the service application and is provided to the integrated application suite.
US11172011B2 Portioned video streaming concepts
Portion- or tile-based video streaming concepts are described. In one example aspect, a server includes a processor that is configured to provide a manifest file to a client. The manifest file includes first parameter sets each defining one of picture-portion specific adaptation sets of representations. Each first parameter set comprises a quality level for each representation of the picture-portion specific adaptation set defined by the respective first parameter set. The manifest file also includes at least one second parameter set defining a preselection adaptation set which assigns to each of regions of an output picture area one of the picture-portion specific adaptation sets.
US11172008B2 Data annotation as a service for IoT systems
Disclosed herein are a variety of entities, methods, and systems for annotating data in a data stream. Annotation concepts may be applied to individual data items within a stream, data windows within the stream, an entire stream, and/or a portion of a stream that may include several items and windows. Annotation concepts may be based on data received from other entities and may be performed automatically or in response to an annotation request received from an entity.
US11172007B2 Technologies for a seamless data streaming experience
Technologies for seamless data streaming include a control server and one or more client computing devices. A client computing device receives user presence data indicative of whether a user is nearby from one or more sensors. The client computing device may receive user interest data indicative of the user's interest level in the current data stream from one or more sensors. The control server identifies available client computing devices based on the user presence data, selects a target client computing device, and causes the data stream to transition from the current client computing device to the target client computing device. The target client computing device may be selected based on proximity of the user or the user's interest level in the data stream. The volume or balance of the data stream may be adjusted to provide a smooth transition between client computing devices. Other embodiments are described and claimed.
US11172005B2 Method and apparatus for controlled observation point and orientation selection audiovisual content
A method, apparatus and computer program product are provided to provide the rendering of audiovisual content, such as 360-degree virtual reality content, in a manner that allows for control over whether, and to what degree, the content presented to a viewer should take into account the relative positioning of the content with respect to the viewer. In particular, implementations are presented that allow for situational control over the rendering of content based on an initial observation setup associated with a segment or subsegment of content, the orientation of the viewing device, and/or the manner in which the segment or subsegment is accessed by a playback device.
US11172003B1 System and method to control a media client using a message service
A device may generate a registration mapping that associates a client identifier of a media client and a messaging identifier of a user device. The device may store the registration mapping in a registration data structure. The device may receive, via a messaging protocol, a message from the user device. The message may include the message identifier and an input for an application session of the media client. The device may determine, based on the registration data structure including the registration mapping and the message, that the user device is associated with the media client. The device may provide, via the messaging protocol, the message to the media client to permit the application session to operate according to the input.
US11172000B2 Methods and apparatus for facilitating real time multimedia communications
A method (100) for facilitating real time multimedia communications between a constrained device and a multimedia client is disclosed. The method comprises discovering an identity and a multimedia capability of a constrained device (110), 5 receiving, from a multimedia client, a request for multimedia content from the constrained device (120), mapping information from the request to a message format used by the constrained device (130), and forwarding the mapped information to the constrained device (140). Also disclosed is a method (300) performed by a constrained device having a multimedia capability. The method comprises registering 10 an identity of the constrained device and metadata about the multimedia capability of the constrained device with a resource directory (310).
US11171999B2 Methods and apparatus for use of compact concurrent codecs in multimedia communications
Methods and apparatus are disclosed for session initiation in a conference. In one aspect, a method for communicating between multiple parties is disclosed. The method comprises generating, at a first device, a first message for transmission to a second device. The method further comprises receiving, at the first device, a second message for establishing a conference. The second message includes a list of one or more concurrent codec capabilities supported by the second device. The list of one or more concurrent codec capabilities supported by the second device comprises an indication of whether one or more resources usable for one or more concurrent instances of a first listed codec may instead be used for one or more concurrent instances of a second listed codec.
US11171997B2 Handling of an IMS conversational service of a user equipment
A user equipment is connected to a telecommunications network comprising or associated to an IMS network. The user equipment comprises a memory for storing request timer information related to a request timeout time interval. A method for handling an Internet Multimedia Subsystem (IMS) conversational service of the user equipment includes: storing, by the user equipment, the request timer information in the memory of the user equipment; and attempting, by the user equipment, to register to the IMS network and/or to initiate the IMS conversational service while the request timeout time interval has not expired.
US11171994B2 Tag-based security policy creation in a distributed computing environment
Concepts and technologies are disclosed herein for tag-based security policy creation in a distributed computing environment. A security management module can receive an inventory event that relates to instantiation of a service. The security management module can identify the service that was instantiated and obtain a tag set that relates to the service. The tag set can include security tags that include a string that identifies a communications link associated with the entities included in the service that was instantiated. The security management module can identify policy rules associated with the security tags. The policy rules can define security for the service that was instantiated. The security management module can compute a security policy for the service and can provide the security policy to the computing environment for implementation.
US11171993B2 Cross-origin communication in restricted computer environments
This specification discloses techniques for communicating data between a first execution context on a computing system and a second execution context on the computing system. The first execution context can execute content from a first origin, the second execution context can execute content from a second origin that is different from the first origin, and the first execution context and the second execution context can each be restricted from accessing data of the other as a result of a same-origin policy implemented by the computing system. The method can include establishing a bi-directional communication channel between the first execution context and the second execution context.
US11171992B2 System resource management in self-healing networks
The present disclosure provides for system resource management in self-healing networks by grouping End Point Groups (EPGs) into a plurality of policy groups based on shared security policies; identifying a first policy group with a highest resource demand; assigning a first security policy corresponding to the first policy group to a first switch of a plurality of switches; identifying a second plurality of EPGs from the remaining EPGs that were not included in the first policy group; grouping the second plurality of EPGs into a second plurality of policy groups based on shared security policies; identifying a second policy group with a highest resource demand of the second plurality of policy groups; and assigning a second security policy corresponding to the second policy group to a second switch of the plurality of switches.
US11171991B2 Automatically assigning labels to workloads while maintaining security boundaries
In a segmented network environment, a segmentation server assigns labels to workloads to enable the segmentation server to implement a segmentation policy based on label-based rules. A first set of labels associated with one or more label dimensions may be assigned in a secure manner by automatically assigning the labels based on a pairing profile. A second set of labels associated with different label dimensions may be assigned automatically based on workload attributes. An administrator can manage which label dimensions are assigned in a secure way based on the pairing profile and which labels are assigned in an adaptable way based on workload attributes, thereby enabling the administrator to flexibly manage the tradeoff between adaptability and security.
US11171989B1 Secure messaging integration with messaging applications
In an embodiment, a method for secure messaging integration with message apps includes identifying a trigger event within a default messaging channel established between a message aggregator and a messaging application executing at a client device. In response to the trigger event, the method sends to the client device over the default messaging channel, access data usable to access a secure channel established between the message aggregator and the client device. The access data is presented within the messaging application and communications over the secure channel are not visible to the default messaging channel.
US11171983B2 Techniques to provide function-level isolation with capability-based security
Embodiments are directed toward techniques to detect a first function associated with an address space initiating a call instruction to a second function in the address space, the first function to call the second function in a deprivileged mode of operation, and define accessible address ranges for segments of the address space for the second function, each segment to a have a different address range in the address space where the second function is permitted to access in the deprivileged mode of operation, Embodiments include switching to the stack associated with the second address space and the second function, and initiating execution of the second function in the deprivileged mode of operation.
US11171980B2 Contagion risk detection, analysis and protection
A method, system, and computer-usable medium for protecting against contagion-based risk events are disclosed for monitoring behavior of users to construct a contagion network relationship map of connection and influence relationships between different users and then analyzing a received stream of events from the users to identify a critical event performed by a first user having a first risk score so that one or more propagated risk scores can be generated from the first risk score for at least a first connected user based on connection and influence relationships between the first user and the first connected user that are extracted from the contagion network relationship so that an adaptive response may be automatically generated to protect and control against actions by at least the first connected user based on the one or more propagated risk scores.
US11171979B2 Using data science to aid in detection of unauthorized distribution
In one embodiment, a method performed by a system that includes at least one processor, the method comprising: obtaining subscriber data of a plurality of subscribers, wherein said subscriber data comprises at least one of: consumption data relating to subscribed content consumption by said plurality of subscribers, or network data relating to data transmittal via one or more computer networks by the plurality of subscribers; detecting anomalous data by comparing subscriber data of different subscribers in the plurality of subscribers; identifying one or more suspected subscribers out of the plurality of subscribers as being suspected of unauthorized subscribed content distribution, the one of more suspected subscribers being associated with the anomalous data; and providing a respective identity for the one or more suspected subscribers.
US11171977B2 Unsupervised spoofing detection from traffic data in mobile networks
A method for detecting spoofing attacks from network traffic log data is presented. The method includes training a spoofing attack detector with the network traffic log data received from one or more mobile networks by extracting features that are relevant to spoofing attacks for training data, building a first set of vector representations for the network traffic log data, training an anomaly detection model by employing DAGMM, and obtaining learned parameters of DAGMM. The method includes testing the spoofing attack detector with the network traffic log data received from the one or more mobile networks by extracting features that are relevant to spoofing attacks for testing data, building a second set of vector representations for the network traffic log data, obtaining latent representations of the testing data, computing a z-score of the testing data, and creating a spoofing attack alert report listing traffic logs generating z-scores exceeding a predetermined threshold.
US11171974B2 Distributed agent based model for security monitoring and response
An architecture is provided for a widely distributed security system (SDI-SCAM) that protects computers at individual client locations, but which constantly pools and analyzes information gathered from machines across a network in order to quickly detect patterns consistent with intrusion or attack, singular or coordinated. When a novel method of attack has been detected, the system distributes warnings and potential countermeasures to each individual machine on the network. Such a warning may potentially include a probability distribution of the likelihood of an intrusion or attack as well as the relative probabilistic likelihood that such potential intrusion possesses certain characteristics or typologies or even strategic objectives in order to best recommend and/or distribute to each machine the most befitting countermeasure(s) given all presently known particular data and associated predicted probabilistic information regarding the prospective intrusion or attack. If any systems are adversely affected, methods for repairing the damage are shared and redistributed throughout the network.
US11171969B2 Systems and methods for real-time configurable load determination
Systems and methods are described herein generally relating to network security, and in particular, embodiments described generally relate to real-time configurable load determination. For example, a method is disclosed, which calls for receiving a request to perform a security service, performing the security service on data included with the request; calculating a service load associated with and during the performing the security service, and transmitting a response to the request, wherein the response includes the calculated service load.
US11171967B2 E-code multi-imprints
Apparatus and methods for generating a unique token that can be imprinted on a document to attest to the verification of an executor's signature. The apparatus and methods may include a platform that may present a token electronically to the executor via a first electronic channel. The executor may use a registered device to capture a portion of the token, and transmit the portion from the registered device to the platform via a second channel to the platform. The platform may verify that the portion is registered to the executor. The platform may combine the portion with another portion of the token, and imprint the pair of combined portions on the document with another token.
US11171966B2 Permissions-constrained delivery of partial search results for a content management system
User permissions for a search on content managed by a content management system (CMS) can be evaluated in a search engine based on a user identity of a user providing a query input for the query rather than after return of an initial results set to the CMS or some other front-end application. The search engine can constrain possible results returned from a search for the query input using a content index of a plurality of content items maintained in a repository of the content management system. The constraining can include limiting the search engine from adding a content item of the plurality of content items to a permissions-filtered results set unless the evaluating of the user permissions and the search for the query input against the content index do not exclude the content item. Other aspects can support index updating by selective use of a metadata index.
US11171961B2 Secure captive portal remediation
Methods to securely remediate a captive portal are provided. In these methods, a processor of a user device detects a connection, via a network, to a captive portal. Based on the detected connection to the captive portal, the processor launches a dedicated secure web browser, and selectively restricts access of the user device to the network in order to only allow, via the dedicated secure web browser, communications related to remediation with the captive portal.
US11171960B2 Network security management based on collection and cataloging of network-accessible device information
Aspects of the subject disclosure may include, for example, monitoring network messages at a network edge of a service provider network, wherein the network edge is coupled via a network edge device to a local area network comprising a plurality of network-addressable (IoT) devices, wherein the network edge device is in communication with a service provider network via a transmission medium in which electromagnetic waves comprising the network messages propagate along the transmission medium without requiring an electrical return path. A network-addressable device of the plurality of network-addressable devices is detected to obtain a detected network-addressable device according to the monitoring of the network messages. Information obtained from the detected network-addressable device is evaluated to obtain an evaluation result and a listing of the plurality of network-addressable devices is updated based on the evaluation results. Other embodiments are disclosed.
US11171959B2 Selective blocking of network access for third party applications based on file content
A system that implements a software tool for data leak prevention whenever a protected document containing sensitive or encrypted content is opened by a document-management application having capability to directly access an Internet Protocol (IP) network, such as the Internet, without using the HyperText Transfer Protocol (HTTP). The application is selectively blocked from accessing the Internet whenever a protected document is opened by the application. The application may be, for example, the Microsoft® Word or the Adobe® Acrobat® Reader. The software tool restores the network access for the application once the protected document is no longer open in the application. Even though one application is blocked from accessing the IP network, the software tool allows another application to access the network so long as a non-protected document is opened by the other application. Thus, application-specific, selective blocking of network access is accomplished by the software tool based on document content.
US11171958B1 Secure session sharing between computing devices
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for authenticating a first computing device to access a secure account. Receiving a request from a second computing device to be authorized to access the secure account. Providing, to the second computing, first data that represents a first machine-readable code for presentation by the second computing device. Receiving, from the first computing device, second data that represents a second machine-readable code as read by the first computing device. Authorizing the second computing device to access the secure account in response to determining that the second data accurately represents the first machine-readable code as sent to the second computing device.
US11171955B2 Link protection for trusted input/output devices
A system on a chip (SoC) includes memory, a processor coupled to the memory, and link protection circuitry coupled to the memory and the processor. The link protection circuitry includes an SoC encryption engine to receive first data from the memory and a first key, generate, by an SoC encryption counter of the SoC encryption engine, an SoC encryption counter value, encrypt the first data using the SoC encryption counter value and the first key to generate first encrypted data, and cause the first encrypted data to be transmitted to a device including a device decryption counter synchronized with the SoC encryption counter.
US11171953B2 Secret sharing-based onboarding authentication
A technique includes receiving a request from a first electronic device to connect to a network and receiving a first part from the first electronic device. The technique includes regulating onboarding of the first electronic device. Regulating the onboarding includes authenticating the first electronic device. Authenticating the first electronic device includes communicating with a plurality of electronic devices that are connected to the network to receive a set of second secret parts; constructing a first secret from the first secret part and the set of second secret parts; and comparing the first secret to a second secret. Regulating the onboarding of the first electronic device includes allowing the first electronic device to connect to the network based on a result of the comparison.
US11171951B2 Device interface output based on biometric input orientation and captured proximate data
There is provided systems and methods for device interface output based on biometric input orientation and captured proximate data. A user may utilize a device to enter a fingerprint input to perform various device or application functionalities. The user may vary the orientation of the fingerprint to limit user interface data output, change the data that is output, or lock the interface from data output. Fake data may be output in specific instances, such as high risk of data misappropriation. The device may detect the orientation based on changes in the orientation of the grooves and ridges of a fingerprint with respect to an axis of the device, and may also detect additional data to determine what interface output is required. The additional data may include pressure of the fingerprint input and/or voice data. A second device may also provide user biometrics as the additional data.
US11171949B2 Generating authentication information utilizing linear feedback shift registers
An apparatus includes at least one linear feedback shift register and at least one processing device comprising a processor coupled to a memory. The at least one processing device is configured to obtain a given value from the at least one linear feedback shift register, the given value comprising a set of bits representing a current state of the linear feedback shift register. The at least one processing device is also configured to generate authentication information by applying the given value obtained from the at least one linear feedback shift register as input to a pseudorandom function, and to provide the generated authentication information to a validating application.
US11171948B2 Adaptive session lifetime
Session lifetime can be adapted based on session reputation. Session reputation can be computed based on sign-in risk and device risk, among other things. Session lifetime corresponds to a length of time a session is valid and can be determined automatically based on the session reputation. Subsequently, a token can be generated and returned in response to successful authentication that identifies a session and is valid for the determined lifetime.
US11171946B2 Two-level sequence learning for analyzing, metering, generating, and cracking passwords
Managing passwords is provided. A machine training process is performed using a set of existing passwords to train a machine learning component. Members of a set of semantic categories are used to categorize respective passwords in the set of existing passwords. Password strengths corresponding to a set of candidate passwords are evaluated using the machine learning component. A resource is secured with a candidate password having a password strength greater than or equal to a defined password strength threshold level.
US11171945B2 Time-based token trust depreciation
Disclosed herein are system, method, and device embodiments for time-based trust token (TBTT) depreciation. In an example embodiment, a service provider system (e.g., a service provider and API service) may receive a connection request including a demographic attribute associated with a first client account from a partner device, match the demographic attribute to client information associated with the first client account, send the partner device a connection request identifier and a URL including a depreciating token, and authenticate a second client account via a login page associated with the URL. Further, the service provider system may receive a verification request including the connection request identifier and the depreciating token, determine a security context of the depreciating token based on a depreciation function and the verification request, and determine, based on the security context, whether to create a connection between the second client account and partner device within the service provider system.
US11171939B1 Automated device discovery and workflow enrichment
A third-party server, delegated by organizations to manage application environment, may maintain a plurality of guided workflow plans. At least one of the guided workflow plans may include one or more steps associated with setting up an interaction control policy. The third-party server may receive an interaction report associated with the organization. The interaction report may include metadata of one or more devices that interacted with other devices. The third-party server may identify a particular device to which existing interaction control policies of the organization are inapplicable. The third-party server may search for additional out-of-band information of the particular device using the metadata in the interaction report. The third-party server may select an applicable guided workflow plan for setting up an applicable interaction control policy for the particular device. A guided workflow may be presented via a graphical user interface according to the applicable guided workflow plan.
US11171937B2 Continuous guest re-authentication system
Methods and systems for authenticating and continuously re-authenticating users are disclosed. Most software applications executing on mobile devices only require a user to provide identification information (e.g., user ID and password) at the outset of launching the application, and infrequently or never subsequently request user identification information. The methods and systems described herein provide continuous protection of user identities using a combination of touch-based biometric sensor data, motion sensor data, and implicit mobile device data.
US11171926B2 Secure communication between web frames
Communication between web frames increases consistent application of security policies, without reducing security. A proxy receives a first request implicating a first web frame and its URL, potentially issues a sub-request and gets a sub-response, and creates a first response to the first request, including a control frame child creation in frame creation or frame navigation code. The control frame child code only permits setting and retrieving data of a browser store, using postMessage( ) without reference to external resources or external scripts. Safely sharing message data this way between frames allows the proxy to ascertain a policy based on the shared data, so the proxy and browser can apply the policy in reactions to subsequent requests, allows window frames to be associated together in the proxy, allows initialization control, supports reporting, and otherwise enhances browsing without reducing security.
US11171925B2 Evaluating and modifying countermeasures based on aggregate transaction status
Techniques are provided for evaluating and modifying countermeasures based on aggregate transaction status. A first expression pattern is determined that occurs in each of first response messages served by the web server system in response to successful transactions of the transaction type. A second expression pattern is determined that occurs in each of second response messages served by the web server system in response to non-successful transactions of the transaction type requested. Aa status is determined for each of a plurality of transactions of the transaction type based on matching the first expression pattern or the second expression pattern to response messages served by the web server system. Aggregate status information for the transaction type based on the status for the set of operations is updated. Based on a change in the aggregate status information, a set of one or more security countermeasures is updated.
US11171922B2 Method and system for secure data transmission with a VPN box
A VPN box is connected upstream of a field device. The VPN box uses a secret cryptographic key of the field device for authentication when setting up a VPN tunnel and/or when setting up a cryptographically protected communication link.
US11171920B2 Publication of firewall configuration
A novel method for distributing firewall configuration of a software defined data center is provided. The network manager of the data center receives update requests from tenants of the data center and correspondingly generates update fragments and delivers the generated update fragment to local control planes controlling the enforcing devices. Each local control plane in turn integrates the update fragments it receives into its firewall rules table. For each rule and/or section thusly integrated, the local control plane uses the rule or the section's assigned priority number to establish ordering in the firewall rules table of the local control plane.
US11171918B2 Generating location-based addresses for wireless network communication
A system may include a first device that has a first network component and a second device that has a second network component. The second network component may receive a data packet from the first network component based at least in part on a network address, where the network address is generated based at least in part on a location of the first device.
US11171915B2 Server apparatus, client apparatus and method for communication based on network address mutation
Disclosed herein are a server apparatus, a client apparatus, and a method for communication based on network address mutation. The method for communication based on network address mutation, performed by the server apparatus and the client apparatus, includes setting the external address of a network interface for receiving a packet from the client apparatus; setting the internal address of a hidden interface in order to forward the packet received through the network interface to the hidden interface; modifying the external address based on a preset network address mutation rule; and communicating with the client apparatus by forwarding the packet, received from the client apparatus based on the modified external address, to the hidden interface.
US11171911B2 Unified electronic transaction management system
A method and system for managing and automating the transactional processes between organizations that do business together using incompatible preexisting transactional systems. A centralized server manages transactions sent and received between the transactional systems of the organizations, and a software implemented messaging application communicates with the centralized server, both transmitting and receiving transactions from and to the transactional system of each organization, the result of which is improved automation of the transactional processes between organizations that do business together using incompatible preexisting transactional systems.
US11171905B1 Request and delivery of additional data
An example operation may include one or more of monitoring communication between at least one originator device and one recipient device; transmitting a request to the at least one originator device querying if additional data related to the monitored communication is desired; receiving a positive response to the query from the at least one originator device; determining related data pertaining to the monitored communication; and transmitting the related data to the originator user device.
US11171904B1 Message authentication using generative adversarial networks
Authenticating a message by receiving a first message from a source, generating a touch activation matrix from the first message, the touch activation matrix comprising touchscreen data associated with the first message, generating a second message from the touch activation matrix, determining a first legitimacy state by comparing the first message and the second message, determining a second legitimacy state using a discriminator network, determining a categorization for the first message according to the first and second legitimacy states, and sending the categorization for the first message to the source.
US11171903B2 Techniques for intelligent messaging for message syncing
Techniques for intelligent messaging for message syncing are described. An apparatus may comprise a recipient inbound messaging component, a recipient queue management component, a recipient update customization component, and a recipient outbound messaging component. The recipient inbound messaging component may be operative to receive an incoming update at a recipient update queue, the recipient update queue associated with a recipient of the incoming update. The recipient queue management component may be operative to add the incoming update to the recipient update queue and determine a recipient messaging endpoint to receive the incoming update. The recipient update customization component may be operative to retrieve one or more recipient messaging endpoint parameters associated with the recipient messaging endpoint and generate a customized incoming update from the incoming update according to the one or more recipient messaging endpoint parameters. The recipient outbound messaging component may be operative to transmit the customized incoming update to the recipient messaging endpoint. Other embodiments are described and claimed.
US11171899B2 System for delivering notification messages across different notification media
A system for delivering notification messages across different notification media comprises a processor. A processor is configured to provide an indication of a new platform notification channel to one or more platform notification services. The indication is provided to one of the one or more platform notification services through a communication module specific to the one of the one or more platform notification services. The processor is configured to create a mapping from a new universal notification channel to a set of one or more platform notification channel identifiers. Each platform notification channel identifier of the set of platform notification channel identifiers is received from a platform notification service. The processor is configured to provide the set of one or more platform notification channel identifiers to a content provider of the new universal notification channel. The processor is coupled to the memory and is configured to store instructions.
US11171898B2 Extensible framework for reporting automated workflow analytics
A workflow manager can be configured to present a graphical interface to an entity and display a current status of a user population within an active workflow. The workflow manager can identify and monitor individual user actions associated with user paths of the active workflow. The workflow manager can generate user path and workflow analytics that identify the progress of individual users and summarize the overall progress of the user population within the active workflow. The workflow analytics can be generated from event notifications that are emitted by the communications and filters of the active workflow. The graphical interface can be actively updated, in response to the emission of the event notifications, to present the workflow analytics and user population progress to the entity.
US11171897B2 Method and apparatus for composite user interface generation
A method for directing messages between a composite user interface and at least one source application. A message is to be directed to a predetermined set of services, each service executes a command specified by the message and the message comprises details of the predetermined set of services. Each service in the predetermined set of services uses said details to determine whether the message should be sent to another service, and if it is determined that the message should be sent to another service transmits the message to an appropriate service.
US11171892B2 Service assistance and integration
An assistance integrator provides a front-end interface to an enterprise's backend services available to customers. The assistance integrator translates between automated chat conversations with the customers that engage the enterprise over messaging platforms for initiating actions with the backend services during those conversations.
US11171888B2 Packet processing device and packet processing method
A packet processing device includes a memory, and circuitry coupled the memory and configured to perform: sampling received packets at a predetermined interval, detecting a plurality of bursts in which received packets are continuously detected by the sampling, calculating, for each of the plurality of bursts detected, a front edge period based on the received packet detected first among the bursts, calculating, for each of the plurality of bursts detected, a rear edge period based on the received packet detected last among the bursts, deciding the longer period between the front edge period and the rear edge period as a burst period, and controlling transfer of the received packets based on the decided burst period.
US11171887B2 Method and device for synchronization in wireless networks
A method and device are provided for synchronizing data transmission of multicasting/broadcasting services (MBS) by a plurality of Base Stations. Meanwhile, each of the Base Stations receives the MBS data to be transmitted and determines whether any of the MBS data has not been properly received. If so, the respective Base Station may initiate a process to recover the missing MBS data and/or to obtain information regarding the missing data to determine the duration of the time period that would have been required for transmitting the missing MBS. If the missing data has not been timely recovered, the respective Base Station determines a starting point and the duration of a silence period based on the information obtained, and refrains from transmitting signals along a communication channel allocated for transmission of MBS data, during that silence period.
US11171885B2 Providing recommendations for implementing virtual networks
Some embodiments provide a novel method for deploying different virtual networks over several public cloud datacenters for different entities. For each entity, the method (1) identifies a set of public cloud datacenters of one or more public cloud providers to connect a set of machines of the entity, (2) deploys managed forwarding nodes (MFNs) for the entity in the identified set of public cloud datacenters, and then (3) configures the MFNs to implement a virtual network that connects the entity's set of machines across its identified set of public cloud datacenters. In some embodiments, the method identifies the set of public cloud datacenters for an entity by receiving input from the entity's network administrator. In some embodiments, this input specifies the public cloud providers to use and/or the public cloud regions in which the virtual network should be defined. Conjunctively, or alternatively, this input in some embodiments specifies actual public cloud datacenters to use.
US11171882B2 Flexible Clos topology switch
In one embodiment, a computer network system, includes at least one lower tier of lower switches, at least one upper tier of upper switches, and a middle tier of middle switches connected down-tier to ones of the lower switches and up-tier to ones of the upper switches, one of the middle switches including a clos topology arrangement of leaf and spine switches, the leaf switches being connected via K internal network connections to the spine switches, each leaf switch being connected to each spine switch, the leaf switches being connected via N down-tier network connections to ones of the lower switches and via M up-tier network connections to ones of the upper switches, there being more of the N down-tier network connections than there are of the M up-tier network connections, and there being less of the K internal network connections than there are of the N and M connections.
US11171881B2 Multiplexed resource allocation architecture
A device configured to receive a data set and instructions for processing the data set from a network device. The device is further configured to parse the data set into a plurality of data segments to be processed, and generate a plurality of instruction segments from the received instructions. The device is further configured to assign each instruction segment to a resource unit, and to generate control information with instructions for combining processed data segments from the resource units. The device is further configured to receive processed data segments from the resource units, to generate the processed data set, and to output the processed data set to the network device.
US11171875B2 Systems and methods of communications network failure detection and remediation utilizing link probes
Systems and methods for communications network failure detection and remediation utilizing link probes are disclosed. Exemplary methods include: receiving first communications from a first client; authenticating the first user of the first client; creating a registration for the first client in a registration database; establishing a connection to the first client; detecting the connection to the first client has failed, the detecting comprising using a link probe to test connectivity of the first client and utilizing a voting scheme, based on the plurality of connectivity test results, to determine that the connection to the first client has failed; receiving second communications from the second client; authenticating the first user of the second client using the telephone number and the security credential; removing the registration for the first client from the registration database; creating a registration for the second client; and establishing a connection to the second client.
US11171873B2 Method and managing node for managing exchange of packet flow descriptions
A method and a managing node for managing exchange of information relating to Packet Flow Descriptors, PFDs, between an application server and a network exposure node are disclosed. The managing node receives a message comprising a PFD with a PFD identifier, an external application identifier associated with the PFD, a server identifier of the application server, a transaction identifier, and a network exposure identifier identifying an operator network. The managing node stores received information. The managing node selects, based on the network exposure identifier, a network exposure node. When a PFD selection identifier is included in the message, the managing node selects, based on the PFD selection identifier, a further PFD amongst the set of stored PFDs. The managing node also determines an action for the further PFD. The managing node further transmits, towards the network exposure node, the PFD and an indication of the action.
US11171871B2 Relay apparatus
A relay apparatus executes either (i) transmitting a received frame, which is received from a communication line, to a different communication line or (ii) discarding the received frame as a discarded frame, according to a preset filtering rule. The relay apparatus stores discard information indicating information on the discarded frame in a preset discard recording storage when discarding the received frame as the discarded frame.
US11171870B2 Communication failover and load balancing method
A system comprising a communication activity detecting device, a network selector, and a network control memory structure that operate to detect anomalous communication activity and, in response, send a routing control to a location routing number control memory structure to alter a location routing number, which results in communication activity switching from a first network to a second network. A method including receiving a network switch control to switch communication activity from a first network to a second network, selecting the second network from one or more networks to route the communication activity, and sending a routing control to a location routing number control memory structure. The routing control may include instructions to alter a first location routing number to a second location routing number associated with the second network.
US11171869B2 Microburst detection and management
Systems, methods, and apparatuses provide a scalable framework for analyzing queuing and transient congestion in network switches. The system reports which flows contributed to the queue buildup and enables direct per-packet action in the data plane to prevent transient congestion. The system may be configured to analyze queuing in legacy network switches.
US11171868B2 Systems and methods for centrally-assisted distributed hash table
Methods and systems are described managing module for locating a target storage device among a plurality of storage devices connected via a network. A computer implemented method includes sending registration information to a central directory, wherein the registration information includes at least an address of one of the plurality of storage devices, and the central directory stores the registration information in a registry. The method also includes sending a request to the central directory for an address for another one of the plurality of storage devices, receiving the address from the central directory if the address is in the registry, and conducting a successive lookup of a closest known address until the address is located if the address is not in the registry.
US11171866B2 Measuring packet residency and travel time
The disclosure sets forth techniques, devices, systems, and methods for measuring a packet residency time in a network device. In some aspects, a network flow measurement protocol includes data fields in flow data records exported to a traffic collector, including a packet ingress time and a packet egress time. The data fields allow the calculation of the packet residency time within a network device, as well as the time required for the packet to traverse between two network devices in the network. A filter can be installed on one or more network devices in a network. For packets that match the filter criteria, the network device records the times of packet arrival and packet departure, and, in some aspects, a packet residency time of the packet with the network device. The network device exports the flow data record pertaining to this packet to a traffic flow data collector.
US11171863B2 System and method for lag performance improvements
One embodiment can provide for forwarding a packet. During operation, the system can identify a plurality of physical links for forwarding the packet received at a first physical port. In response to determining that one or more physical links within the identified plurality of physical links are coupled to a same line card where the first physical port resides, the system chooses one of the determined physical links coupled to the same line card for forwarding the packet. In response to determining that no physical link within the plurality of physical links is coupled to the same line card, the system chooses one physical link within the plurality of physical links for forwarding the packet.
US11171855B2 Telecommunications network
A method of dimensioning a link in a telecommunications network, and a device for implementing the method, the method including determining, for a first plurality of sets of traffic observations, wherein each set of the first plurality of sets includes a series of traffic observations each indicating the amount of traffic on a link within an observation interval of a particular duration for that set, a peak value of a traffic observation of the series of traffic observations within each set of the first plurality of sets and an average value of the series of traffic observations within each set of the first plurality of sets; calculating a first peak to average ratio for each observation interval duration based on the determined peak and average values within each set of the first plurality of sets; determining a goodness of fit value for a power function of the first peak to average ratio against its respective observation interval duration; selecting a dimensioning interval duration based on the determined goodness of fit value; and estimating a capacity of the link based on the selected dimensioning interval duration.
US11171852B2 Computer system productivity monitoring
Embodiments of the inventive subject matter include a method for optimizing allocation of computers. The method can include gathering, via a plurality of sensors in a plurality of computers, information about devices of the computers. The method can include determining, via at least one of the processors, usage of the computers based on the information. The method can include determining, via at least one of the processors, performance of the computers based on the information. The method can include allocating, via at least one of the processors, certain ones of the computers for different uses based, at least in part, on the performance and usage of the computers.
US11171851B2 Group alert in server systems
A server system having functionality of group alerting is disclosed. Said server system comprises: a plurality of server computers having alert notification capabilities, the plurality of server computers being divided into at least one group; and a management console node managing and monitoring the plurality of server computers; wherein the alert notification is issued by a group of the at least one group of the plurality of server computers when a health problem of a server computer in said group of the at least one group of the plurality of server computers occurs.
US11171846B1 Log throttling
Logging includes accessing a plurality of logs associated with network traffic in a distributed networking environment; selecting a subset of logs among the plurality of logs, wherein a log selection rate is pre-specified; determining weights associated with logs in the subset of logs; and collecting log information, including weight information of logs in the subset of logs relative to the plurality of logs.
US11171844B2 Scalable hierarchical data automation in a network
Techniques for deploying data services in a centrally managed network in a scalable, hierarchical manner are described. An example method generally includes generating a topological description of the centrally managed network, the topological description identifying network entities in the centrally managed network and connections between network entities in the network. A data management hierarchy for the centrally managed network may be generated from the topological description of the centrally managed network, and the data management hierarchy may identify network entities at which data services may be deployed in the centrally managed network. Data services and data rules may be deployed to the identified network entities based on the data management hierarchy, and data may be processed in the centrally managed network through the deployed data services.
US11171841B2 System for propagating a modification of a first service, in a service graph, to a second service
Examples of an apparatus and method for propagating a modification to a service graph are described herein. Relationships between services in the service graph are identified in response to a modification to a service. The relationship is a reference between pairs of services in the service graph. Based on the identified relationships, a modification is propagated.
US11171839B2 Dynamic engine for matching computing devices based on user profiles and machine learning
Aspects of the disclosure relate to transferring data using a dynamic data management system. A computing platform having at least one processor, a memory, and a communication interface may receive, by the at least one processor, via the communication interface, and from a dynamic data management node, at least one organization computing system data file profile and a plurality of client computing device data file profiles. The computing platform may identify, based on the at least one organization computing system data file profile, the plurality of client computing device data file profiles, and a machine learning dataset, a potential match between the at least one organization computing system data file profile and at least one client computing device data file profile. The computing platform may establish a connection with the at least one client computing device and, while the connection is established, transmit a notification which, when processed by the one or more client computing devices, causes the notification to be displayed on the at least one client computing device.
US11171838B2 Inferring radio type from clustering algorithms
Described embodiments provide systems and methods for inferring a network type and network conditions. The system includes a packet capturing engine configured to capture a plurality of network packets from a plurality of TCP network connections. The system includes a packet analyzer configured to analyze the plurality of network packets to generate a plurality of metrics. The system includes a network classifier configured to infer network types of the plurality of TCP connections based on the plurality of metrics and at least one classification model. The system also includes a conditions ranking engine configured to estimate a level of network congestion for each TCP connection based on the plurality of metrics and the network types.
US11171834B1 Distributed virtualized computing infrastructure management
A computing device includes processing circuitry coupled to a memory device, and an orchestration agent configured for execution by the processing circuitry. The orchestration agent is an agent of an orchestrator for a computing infrastructure that includes the computing device, wherein the orchestration agent is configured to: detect configuration events from the computing device to determine local configuration state of the computing device; aggregate the local configuration state from the computing device with configuration state from a network controller to generate aggregated configuration state; and store the aggregated configuration state for application to operation of the computing device.
US11171833B1 Protected reset for network device
For uninterrupted network communications, a method detects a protected reset at a network device. In response to the protected reset, the method maintains communication functions of a communication module. The communication module communicates with other network devices using the communication functions. In response to the protected reset, the method resets the network device without resetting the communication module.
US11171832B2 Dynamic cloud native cluster construction using under-utilized machines
One example method includes connecting to a server component, transmitting, to the server component, information concerning a hardware configuration associated with an asset having a capability that is fully utilized during a first time period and the capability is idle during a second time period, receiving, from the server component, cluster connection information, and using the cluster connection information to temporarily connect the asset to the cluster as a node of the cluster so that the capability is available during idle time to perform a workload of the cluster.
US11171828B2 Method for configuring a terminal
A method is proposed for configuring a terminal by using a server in an IMS communication network. The method includes: receiving an SIP registration message from a terminal, the registration message having at least one parameter relating to the access network, obtaining a configuration from the parameter relating to the access network included in the registration message received, and transmitting to the terminal a response to the registration message, the message having the configuration obtained from the parameter relating to the access network. Correlatively, a method is proposed for obtaining a configuration on a terminal.
US11171826B2 Methods and systems for forming a wireless sensor network
Sensor nodes each equipped with a directional antenna configured to form a set of beams of predefined directions, with respect to a global reference direction, during beam cycles timed according to a global time reference form a sensor network. An electronic compass determines the global reference direction and a Global-Positioning-System (GPS) receiver provides the global time reference. The directional antenna is implemented as a phased-array antenna. During each beam period within a beam cycle, a phased-array controller determines a phase vector as a function of the geometrical arrangement of antenna elements and angular displacement of a reference direction of a node from the global reference direction. The phase vector is supplied to phase shifters coupled to the antenna elements to form a beam of a specified direction. During each beam period, all sensor nodes form beams of a same direction thus guaranteeing inter-nodal communication among neighboring nodes.
US11171824B2 Configuration of computing devices via containers
Configuration of computing devices via containers is disclosed. A container image is accessed from a container image storage. A first container is initiated, into a container environment, from the container image with a first runtime variable. The first runtime variable identifies a first operational script of a first plurality of operational scripts, the first operational script identifying configuration actions to be performed on a plurality of managed computing devices. The container image comprises an execution layer that causes execution of a configurator. The configurator is configured to receive the first runtime variable, access the first operational script of the first plurality of operational scripts identified by the first runtime variable, perform the configuration actions identified in the first operational script on at least some of the plurality of managed computing devices, and communicate, outside of the first container, output results that identify an outcome of the configuration actions.
US11171821B2 Transmission apparatus, transmission method, reception apparatus, and reception method
A transmission apparatus includes a generation circuit that generates a transmission signal in which a plurality of protocol data units in a physical layer are aggregated, an insertion circuit that inserts a preamble into each of a first protocol data unit and a second protocol data unit, where the preamble is used for at least one of synchronization of a transmission channel and estimation of the transmission channel, and a transmission circuit that performs spatial processing on the transmission signal with the preamble inserted and transmits the transmission signal.
US11171819B2 Base station, synchronization signal transmission method, and user equipment terminal, and cell search method
A base station for transmitting a synchronization signal from N transmission antennas (N>=2) in orthogonal frequency division multiple access includes a signal sequence generation unit configured to generate a synchronization signal sequence to be used for the synchronization signal in a frequency domain; a subcarrier mapping unit configured to divide a transmission band of the synchronization signal into K frequency blocks (K>=2) and map the synchronization signal sequence into one or more subcarriers in the K frequency blocks; a precoding unit configured to generate N precoding vectors to be multiplied by the synchronization signal sequence in the frequency domain and multiply the synchronization signal sequence to be transmitted from an n-th antenna (1<=n<=N) by at least an n-th precoding vector; and a transmission unit configured to transmit the synchronization signal from the N transmission antennas.
US11171814B2 Correlation-based channel feedback
This disclosure provides methods, devices and systems for providing channel feedback for multiple spatial streams. In some implementations, the techniques involve generating distinct channel estimates for different respective sets of orthogonal spatial streams. In some implementations, the orthogonality of the different sets of orthogonal spatial streams enables the beamformee to distinguish the spatial streams to provide the separate channel estimates. The beamformee may then determine separate correlations for the different respective sets of spatial streams. In some implementations, the beamformee combines the correlations to determine an average correlation for each of a number of sets of frequency tones. The beamformee may then perform an eigenvalue decomposition on a tone-by-tone basis based on the respective average correlation and the channel estimate obtained for the tone. Because the eigenvalue decomposition may be performed on each of the two sets of spatial streams separately, the complexity involved with performing each eigenvalue decomposition is greatly reduced.
US11171813B2 Blind distributed multi-user MIMO for decoding multiple concurrent wireless transmissions
Techniques for blind distributed multi-user MIMO enable simultaneous decoding of multiple concurrent wireless transmissions without the need for coordination between wireless devices or a measurement phase. Wireless devices are permitted to transmit independently and at arbitrary times. Concurrent transmissions from wireless devices superimpose in the wireless channel and are received at various base stations. The base stations forward received data samples to a central entity (e.g., a cloud computing service), which uses known preambles to reliably estimate CFOs and channels between the transmitting devices and the receiving base stations while simultaneously recovering the data samples of the individual data streams.
US11171810B1 Misconfigured uplink identification
Techniques for detecting misconfiguration of an uplink or an external network device connected with the uplink is disclosed. In an aspect, a Frame Link Module (FLM) in a frame belonging to a group of frames connected in a ring network, may determine that an uplink of the FLM is configured in a management mode. The FLM may determine, based on a system description associated with a Link Layer Discovery Protocol (LLDP) packet, whether the uplink is connected to a network device in an external network. Based on Virtual Local Area Network (VLAN) traffic being dropped, it may be determined that VLAN configuration of one of the uplink and the network device is incompatible for operation in the management mode. The uplink with incompatible VLAN configuration or the uplink connected with a network switch having incompatible VLAN configuration may be removed from a group of uplinks available for selection as an active uplink for the frames.
US11171809B2 Identity-based virtual private network tunneling
Devices, computer-readable media, and methods for routing traffic of a network service via a virtual private network that is configured in accordance with a virtual private network configuration preference of an identified user are described. A method may determine a network service that an endpoint device is attempting to access and may detect an identity of a user of the endpoint device. The processing system may obtain a plurality of virtual private network configuration preferences of the user, each of the plurality of virtual private network configuration preferences matching a virtual private network configuration preference with one or more of a plurality of network services, and route traffic of the endpoint device for the network service via a virtual private network that is configured in accordance with a virtual private network configuration preference of the plurality of virtual private network configuration preferences.
US11171808B2 Switch device, communication control method, and recording medium
A switch device is a switch device that relays data in an in-vehicle network and including a plurality of first communication ports which are connectable to a plurality of functional units in a vehicle, and includes a plurality of first communication circuits disposed corresponding to the first communication ports and capable of communicating with the functional units via the corresponding first communication ports, one or more second communication circuits different from the plurality of first communication circuits, a switching unit capable of switching a connection destination of each of the first communication ports between the corresponding first communication circuit and the second communication circuit, and a control unit that controls the switching unit such that a connection destination of a target port which is the first communication port serving as a target is switched to the second communication circuit when a predetermined condition is satisfied.
US11171806B1 Dynamic quality of service control for automotive ethernet
A system for transferring a frame within an Ethernet network of a vehicle. The system includes an Ethernet switch, first and second feature modules and a NAM. The Ethernet switch includes first and second ports connected respectively to the first and second feature modules. The NAM: receives a priority request message from the second feature module; generates a priority response message indicating information for the second feature module to set a priority level of a frame; and transmits the priority response message to the second feature module. The Ethernet switch: receives the frame from the second feature module at the first port, where the frame has a first bit indicative of the priority level and a second bit indicative of a port of the first feature module; and forwards the frame, based on the first and second bits, to a corresponding one of the queues having the priority level and for transmission to the port of the first feature module.
US11171798B2 Scalable in-network computation for massively-parallel shared-memory processors
A network device configured to perform scalable, in-network computations is described. The network device is configured to process pull requests and/or push requests from a plurality of endpoints connected to the network. A collective communication primitive from a particular endpoint can be received at a network device. The collective communication primitive is associated with a multicast region of a shared global address space and is mapped to a plurality of participating endpoints. The network device is configured to perform an in-network computation based on information received from the participating endpoints before forwarding a response to the collective communication primitive back to one or more of the participating endpoints. The endpoints can inject pull requests (e.g., load commands) and/or push requests (e.g., store commands) into the network. A multicast capability enables tasks, such as a reduction operation, to be offloaded to hardware in the network device.
US11171792B2 Method and system for media, advertising and/or in vehicle content monitoring
A method for reporting in vehicle media consumption and user interaction with a vehicle. The method including receiving raw data of media and vehicle usage of a vehicle by a platform device, the platform device including storage, operation controls, a microprocessor, a memory component, I/O inputs and outputs and an operating system installed and running thereon; processing the raw data to remove at least one obfuscation function to anonymize at least a portion of a personally identifiable information; and producing a report with the processed raw data relating to the user interaction vehicle and the media content.
US11171790B2 Systems and methods for trusted path secure communication
A system for establishing a trusted path for secure communication between client devices and server devices, such as between an account holder and a financial institution, can provide the core security attributes of confidentiality (of the parties), integrity (of the information), anti-replay (protection against replay fraud) and/or anti-tampering (protection against unauthorized changes to information being exchanged and/or modules that generate and communicate such information). A messaging layer implementation in favor of a transport layer implementation can provide a trusted path. This infrastructure features secure cryptographic key storage, and implementation of a trusted path built using the cryptographic infrastructure. The trusted path protects against unauthorized information disclosure, modification, or replays. These services can effectively protect against Man-in-the-Middle, Man-in-the-Application, and other attacks.
US11171789B2 System and method for implementing a resolver service for decentralized identifiers
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for implementing a resolver service. One of the methods includes: obtaining, from a blockchain, event data for a plurality of blockchain transactions associated with a plurality of decentralized identifiers (DIDs); storing the event data in a database; receiving a request for information associated with the event data, wherein the request comprises one or more account identifiers; identifying one or more DIDs respectively corresponding to the one or more account identifiers based on pre-stored mapping relationships between the one or more DIDs and the one or more account identifiers; and providing, from the database, event data for one or more blockchain transactions associated with the identified one or more DIDs.
US11171782B2 Identity and electronic signature verification in blockchain
Disclosed are a system and techniques for identity and electronic signature verification that utilizes blockchain technology. An enterprise system enables computing devices to engage the enterprise and prospective users for the purposes of executing a document or a smart contract. Users may obtain a computer application from an enterprise system and may utilize the computer application to retrieve a document or select a smart contract. The identity of all users who execute the document may be verified based on an authentication by a trusted independent system. Information related to the respective signers, the document or smart contract, and the authentication may be stored as transactions in a blockchain. The transactions may be stored in the blockchain under a user's address, a document or smart contract address, or a digital wallet, if available.
US11171780B2 Systems and methods for operating secure elliptic curve cryptosystems
Various embodiments of the invention implement countermeasures designed to withstand attacks by potential intruders who seek partial or full retrieval of elliptic curve secrets by using Various embodiments of the invention implement countermeasures designed to withstand attacks by potential intruders who seek partial or full retrieval of elliptic curve secrets by using known methods that exploit system vulnerabilities, including elliptic operation differentiation, dummy operation detection, lattice attacks, and first real operation detection. Various embodiments of the invention provide resistance against side-channel attacks, such as simple power analysis, caused by the detectability of scalar values from information leaked during regular operation flow that would otherwise compromise system security. In certain embodiments, system immunity is maintained by performing elliptic scalar operations that use secret-independent operation flow in a secure Elliptic Curve Cryptosystem.
US11171778B2 Key sharing device, key sharing method, and computer readable medium
An objective is to enable conversion of a key sharing scheme having asymmetricity into a key sharing scheme with an authentication function. In a key sharing device, a key selection unit selects, out of two static keys of different classifications, one static key being different from a static key of a key-sharing counterpart. A temporary key generation unit generates a temporary key of the same classification as the static key selected by the key selection unit. A shared key generation unit generates a shared key using the static key selected by the key selection unit and a temporary key generated by the counterpart.
US11171777B2 Wireless communication with non-networked controllers
A computer-implemented method and system for controlling remote access to a computer system is disclosed. A method includes generating a secret value at a first computer system; sharing the secret value with associated computer systems; choosing a time length for validity; computing a derived key based on the secret value; and controlling remote access to the computer system based on the derived key and a unique identifier associated with the first computer system.
US11171775B2 Method and system for device level authentication in electronic transactions
A method for distributing data to a computing device using device level authentication includes: storing, in a memory of a computing device, a single use key encrypted with a first encryption, a server public key, and device data; generating a key pair comprising a device private key and a corresponding device public key; wrapping the device public key using the server public key; transmitting at least the device data, wrapped device public key, and the single use key encrypted with the first encryption to a server; receiving the single use key encrypted with a second encryption from the server; and executing a query on the memory to insert the received single use key encrypted with the second encryption.
US11171772B2 Multi-key encryption and decryption for side channel attack prevention
This disclosure describes systems on a chip (SOCs) that prevent side channel attacks (SCAs). An example SoC includes an encryption engine, a key store, and a security processor. The key store is configured to store a plurality of encryption keys. The encryption engine is configured to encrypt transmit (Tx) channel data using any encryption key of the plurality of encryption keys stored to the key store. The security processor is configured to activate SCA mitigation logic of the SoC based on a determination that the encryption engine encrypts the Tx channel data using a strong key selected from the plurality of encryption keys stored to the key store, and to operate the SCA mitigation logic in a deactivated state based on a determination that the encryption engine encrypts the Tx channel data using a weak key selected from the plurality of encryption keys stored to the key store.
US11171770B2 Data transmission device
A data transmission device of an embodiment includes a buffer, a first determination circuit, a first flip-flop, a second flip-flop, and a second determination circuit. The buffer holds input data of a predetermined bit width. The first determination circuit determines whether or not the input data is held in the buffer. The first flip-flop receives output of the first determination circuit as input and operates at one of a rising edge and a falling edge of a second clock signal which is asynchronous with the first clock signal. The second flip-flop receives output of the first flip-flop as input and operates at another of the rising edge and the falling edge of the second clock signal. The second determination circuit determines an error based on a request signal which is synchronized with the second clock signal and output of the second flip-flop.
US11171769B2 Time synchronization method, apparatus, and system
In various embodiments, a method is provided. In this method, a first signal is received from a master node, and is sampled to obtain a first sample. The first sample is then quantized to obtain a quantized form of the first sample. A first synchronization sequence is detected from the quantized form of the first sample at T2. First information is received from the master node and the first information is used to indicate a moment T1 at which the master node sends the first synchronization sequence. A second synchronization sequence is sent to the master node at T3. Second information received from the master node and the second information is used to indicate a moment T4 at which the master node detects a quantized form of the second synchronization sequence. Time synchronization is performed based on T1, T2, T3, and T4.
US11171768B2 Transmission device, reception device, transmission method, and reception method
A transmission device includes a transmitter configured to output first monitoring signal light regarding monitoring control of the transmission device; and a switch that switches an output destination of the first monitoring signal light output from the transmitter to any one of a first transmission path or a second transmission path, wherein in the first transmission path, a first main signal is transmitted from the transmission device to another transmission device, and in the second transmission path, a second main signal is transmitted from the other transmission device to the transmission device.
US11171766B2 Synchronization of electronic devices
Embodiments of the present disclosure relate to a power supply device, an electronic system and a method. The electronic system comprises an electronic device and the power supply device transmitting synchronization information from a satellite to the electronic system. The power supply device comprises a first modulator configured to receive a signal from a satellite and to generate a first modulated supply voltage, a level pattern of the first modulated supply voltage indicating synchronization information included in the satellite signal; and a first transformer configured to provide the first modulated supply voltage to an electronic device to enable a synchronization between the satellite and the electronic device based on the synchronization information. The electronic device demodulates the first modulated supply voltage to determine the synchronization information for synchronizing with the satellite. By using the embodiments of the disclosure, cost for manufacturing the electronic devices can be significantly reduced.
US11171765B2 System and method for indicating preemption of transmissions
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. In certain configurations, the apparatus may include an eMBB UE. The apparatus may monitor a single preconfigured mini-slot in each of a plurality of slots for a PI. The apparatus may receive the PI in the single preconfigured mini-slot of a first slot of the plurality of slots. In certain aspects, the PI may include a resource index associated with a reduced transmission power by the UE. In certain other aspects, the resource index may include one or more resources in a second slot. The apparatus may transmit at least one packet with the reduced transmission power on the one or more resources in the second slot or refraining from transmitting the at least one packet on the one or more resources in the second slot.
US11171758B2 Code block grouping and feedback that support efficient retransmissions
Methods, systems, and devices for wireless communication are described. A wireless device may transmit feedback, such as hybrid automatic repeat request (HARD) feedback for groups of code blocks rather than for an entire transport block or individual code blocks. The wireless device may transmit an acknowledgement (ACK) or negative-acknowledgement (NACK) to provide feedback for each code block group of a set of code block groups. An ACK may indicate that code blocks in a code block group were successfully decoded, and a NACK may indicate that at least one code block in a code block group was not successfully decoded. Wireless devices may support several techniques for grouping code blocks for feedback reporting to allow for efficient retransmissions and limited overhead. Different grouping schemes may be employed depending on system constraints, device capability, link conditions, or the like.
US11171757B2 ACK/NACK signal processing method and device for uplink multi-user transmission
The present document relates to a method and device for an Access Point (AP) to transmit ACK/NACK signals for MU (Multi-User) transmission data of a plurality of stations (STA) in a wireless LAN (WLAN) system. To this end, the method and device are characterized in that a STA responds to a trigger frame received from an AP, transmits data to the AP through an MU access technique, and sets an ACK policy value for data transmitted on the basis of the trigger frame to another value other than a first ACK policy value requesting an ACK signal transmission on the basis of a block ACK request.
US11171756B2 Adapting guard band between adjacent channels
There is provided a method in a network node, the method comprising: obtaining adjacent channel leakage ratio information on an uplink user equipment, UE, regarding first and second adjacent frequency bands, wherein the network node is configured to communicate in frequency-division duplexing mode with a plurality of UEs, comprising the uplink UE and a downlink UE, the first frequency band configured for uplink communication between the network node and the uplink UE and the second frequency band configured for downlink communication between the network node and the downlink UE; obtaining channel condition information regarding the downlink UE indicating channel condition associated with the first frequency band and channel condition associated with the second frequency band; adapting guard band between the first and second adjacent frequency bands based on the adjacent channel leakage ratio information and the channel condition information.
US11171755B2 Communication method and communications device
The present disclosure relates to communication methods and devices. One example method includes determining that a downlink bandwidth belongs to one of N downlink bandwidth sets, where each downlink bandwidth set of the N downlink bandwidth sets corresponds to one first value and one second value, at least two first values corresponding to at least two downlink bandwidth sets of the N downlink bandwidth sets are different, each downlink bandwidth set of the N downlink bandwidth sets corresponds to a same second value, the second value is a common divisor of N first values corresponding to the N downlink bandwidth sets, determining that a quantity of resource blocks included in a first resource block group is a first value corresponding to the downlink bandwidth set to which the downlink bandwidth belongs, and determining that a quantity of resource blocks included in a precoding resource block group is the second value.
US11171742B2 Multi-label offset lifting method
A method for generating a code, a method for encoding and decoding data, and an encoder and a decoder performing the encoding and decoding are disclosed. In an embodiment, a method for lifting a child code from a base code for encoding and decoding data includes determining a single combination of a circulant size, a lifting function, and a labelled base matrix PCM according to an information length and a code rate using data stored in a lifting table. The lifting table was defined at a code generation stage. The method also includes calculating a plurality of shifts for the child code. Each shift is calculated by applying the lifting function to the labelled base matrix PCM with a defined index using the circulant size and using the derived child PCM to encode or decode data.
US11171738B2 Enhanced automatic identification system
The invention relates to method and apparatus for improving the performance of communication systems using Run length Limited (RLL) messages such as the existing Automatic Identification System (AIS). A binary data sequence is Forward Error Correction (FEC) coded and then the sequence is compensated, for example by bit-erasure, so that either bit-stuffing is not required, or a bit stuffer will not be activated to ensure that the coded sequence meets the RLL requirement. Various embodiments are described to handle different architectures or input points for the FEC encoder and bit erasure module. The bit erasure module may also add dummy bits to ensure a RLL compliant CRC or to selectively add bits to a reserve buffer to compensate for later bit stuffing in a header. Additional RLL training sequences may also be added to assist in, receiver acquisition.
US11171736B2 Ultra-wide band electromagnetic jamming projector
A radio frequency (RF) jamming device includes a differential segmented aperture (DSA), a jammer source outputting a jamming signal at one or more frequencies or frequency bands to be jammed, and RF electronics that amplify and feed the jamming signal to the DSA so as to emit a jamming beam. The DSA includes an array of electrically conductive tapered projections, and the RF electronics comprise power splitters configured to split the jamming signal to aperture pixels of the DSA. The aperture pixels comprise pairs of electrically conductive tapered projections of the array of electrically conductive tapered projections. The RF electronics further comprise pixel power amplifiers, each connected to amplify the jamming signal fed to a single corresponding aperture pixel of the DSA. The RF jamming device may include a rifle-shaped housing, with the DSA mounted at a distal end of the barrel of the rifle-shaped housing.
US11171733B2 Method for operating terminal in wireless communication system and device for supporting same
The present invention provides a method for a terminal operating by means of utilizing a defined synchronization signal in a wireless communication system supporting narrow band-Internet of Things (NB-IoT), and a device for supporting same.
US11171732B2 Ethernet interface and related systems methods and devices
Described is a digital interface and related systems, method and devices. In some embodiments an interface may be an interface between a link layer and a physical transmission medium. The interface may be configured for a bit rate and/or reference clock that limits electromagnetic emissions (EME), for example as compared to a bit rate and/or clock rate specified by interfaces widely used in industry.
US11171720B1 Content and compute delivery platform using satellites
Techniques for using a satellite as a part of a content delivery network are described. For example, in some instances a satellite is to receive a request for a resource hosted by the content delivery network, determine that the request for the resource cannot be served by the satellite, determine a first entity to ask for the resource, send a secondary request for the resource to the determined first entity, receive the resource from the determined first entity, respond, to a user of the content delivery network, to the request using the received resource for the resource, and respond to a subsequent request using the cached received resource.
US11171718B2 Beam super surge methods and apparatus for small geostationary (GEO) communication satellites
Disclosed embodiments relate satellites using a Software-Defined Radio (“SDR”) system. In one example, a geostationary (GEO) satellite includes an antenna system including multiple antennas, each configured to provide a spot beam having an adjustable throughput for a terrestrial coverage area while the antenna is in an active state and the satellite is in orbit above the Earth, a front-end subsystem communicatively coupled to the antenna system having an input side including an input filter and an analog-to-digital converter, and an output side including an output filter and a digital-to-analog converter, and a software defined radio (“SDR”) communicatively coupled to the antenna system via the front-end subsystem. The SDR, in response to a surge modification request, modifies a throughput of each active antenna by increasing or decreasing a share of a satellite power budget allotted to the antenna by deactivating or activating a previously active or previously inactive antenna, respectively.
US11171715B2 Control device, program, control method, and flight vehicle
Provided is a control device that controls flight vehicles having an antenna for forming a cell on the ground to provide a wireless communication service to a user terminal in the cell. The control device includes a replacement control unit that controls replacement of a first flight vehicle covering an object area on the ground by means of a cell with a second flight vehicle. The replacement control unit controls the first flight vehicle and the second flight vehicle such that the second flight vehicle moves to a location corresponding to the location of the first flight vehicle, the second flight vehicle and the first flight vehicle start providing a wireless communication service to a user terminal by Coordinated Multiple Point transmission/reception (CoMP), and then the first flight vehicle stops forming its cell.
US11171713B2 Wireless communication relay system for unmanned vehicles
The present invention relates to a wireless communication relay system for an unmanned vehicle includes a control station providing as a console for an implementation of a remote control; an unmanned mission vehicle operated in a first area and receiving the remote control from the control station through a communication link; and an unmanned relay vehicle operated in a second area and in the communication link between the control station and the unmanned mission vehicle.
US11171709B1 Millimeter wave base station antenna system
A millimeter wave base station antenna system having a multi-port antenna array and a baseband signal processor, the baseband signal processor having an uplink baseband processing unit for generating a first weighting function, and a downlink baseband processing unit for generating a second weighting function; the first weighting function and the second weighting function being used to enhance the desired signal and eliminate the multiuser interference.
US11171705B2 Device and method for detecting beam misalignment in wireless communication system
Disclosed is a fifth generation (5G) or pre-5G communication system for supporting a data transmission rate higher than that of a fourth generation (4G) communication system such as long term evolution (LTE). The purpose of the disclosure is to detect beam misalignment in a wireless communication system, and a terminal operation method comprises the steps of: receiving multiple reference signals for a first period; receiving multiple reference signals for a second period; and determining whether a beam is misaligned, on the basis of a first measurement value set for the multiple reference signals received for the first period and a second measurement value set for the multiple reference signals received for the second period. The study has been performed under the support of the “Government-wide Giga KOREA Business” of the Ministry of Science, ICT and Future Planning.
US11171703B2 Method for reporting channel state in wireless communication system and apparatus therefor
A method for reporting a channel state in a wireless communication system according to an embodiment of the present disclosure, which is performed by a terminal, may comprise the steps of: receiving, from a base station, a channel state information (CSI) request; and reporting, to the base station, CSI corresponding to the CSI request, on the basis of the maximum CSI update capability for a transmission time interval (TTI) length associated with the CSI request, wherein information on the maximum CSI update capability includes the maximum number of CSI processes for the TTI length, which can be simultaneously updated by the terminal.
US11171697B2 Spatial filtering technique
A method of updating spatial filters in a radio network comprising at least two transmit nodes each in radio communication with at least one receive node on a Multiple-Input Multiple-Output (MIMO) radio channel, comprises transmitting, from the respective transmit node, first reference signals precoded by a first spatial filter of the respective transmit node; and receiving, from the receive nodes, second reference signals that are precoded using a second spatial filter of the respective receive node and an error matrix of the respective receive node. The second spatial filter depends on a channel estimate based on the transmitted first reference signals. The error matrix is indicative of an error of the first and second spatial filters in equalizing the MIMO radio channel. The method further comprises recomputing, for each of the at least one receive node in radio communication with the respective transmit node, the error matrix of the respective receive node; and updating the first spatial filter of the respective transmit node using the recomputed error matrix.
US11171694B2 Integrated circuit for scalable beamforming and frequency channelization
A general-purpose integrated circuit capable of scaling to meet the requirements of a beamforming system for a wide range of applications and benefit from economies of scale is disclosed. The integrated circuit includes a delay and phase correcting engine in order to reference the incoming data to a common array center and steering direction. It also includes a frequency channelization engine to perform phase-shift beamforming tasks effectively and/or frequency channelize the output data stream. A flexible reconfigurable routing logic can be included, which allows a multiplicity of operation modes, and generates a multiplicity of linear combinations of the input and internally generated data streams.
US11171688B2 Systems and methods for machine condition monitoring
Systems and methods can include a transponder configured to communicate wirelessly with a receiver and sensor module (RSM), wireless communicate with a high-speed network, and radio-frequency (RF) powering of RSM. The high-speed network can include a wired network such as USB or Ethernet, or wireless network such as a WiFi or cellular network. Additionally or alternatively, an antenna module can be configured to transmit radio-frequency (RF) power to a receiver configured to monitor a condition of a machine.
US11171676B2 Dynamic sensitivity control in a near-field communication receiver
Disclosed is a method for sensitivity control in a near-field communication, NFC, device operating in a receiving mode. The method comprises calculating a threshold value, using a threshold value calculating unit, as a function of a determined current received signal strength indicator, RSSI, value, optionally a determined current gain control, GC, value, and further optionally a so-called margin value that is a product-specific parameter, and applying the calculated threshold value as a threshold parameter to a threshold comparison unit, which is configured to receive, as input. a first time-derivative signal derived from a combined output signal that is determined as a function of a digital I-channel signal output and a digital Q-channel signal output of an I&Q demodulating block, to compare the first time-derivative signal with the applied threshold parameter, and to provide a binary output that is indicative of whether the input first time-derivative signal is greater than the applied threshold parameter or not.
US11171671B2 Reducing vulnerability window in key value storage server without sacrificing usable capacity
According to one general aspect, a system may include a data interface circuit configured to receive data access requests, wherein each data access request is associated with a data set. The system may include a plurality of storage devices each storage device configured to store data, and wherein the plurality of storage devices has an amount of available storage space, an amount of used storage space, and an amount of redundant storage space. The system may include a data management circuit configured to: monitor the amount of available storage space in the in the plurality of storage devices, determine, for one or more data set, a level of redundancy to be associated with the respective data set, generate, for a first data set of the data sets, a redundant data portion to be associated with the first data set, and dynamically adjust the level of redundancy associated with the first data set, based, at least in part, upon the amount of available storage space.
US11171670B2 Parity generation circuits for a plurality of error correction levels, memory controllers, and memory modules including the parity generation circuits
A parity generation logic circuit includes a first parity generation part and a second parity generation part. The first parity generation part is configured to generate a first parity in a first error correction mode having a first error correction capability for original data. The second parity generation part is configured to generate a second parity using the first parity in a second error correction mode having a second error correction capability.
US11171668B2 Encoding data with polar codes for control channels
Various embodiments provide for encoding and decoding control link information with polar codes where the frozen bits of the information block can be set to the device identification number instead of being set to null. The frozen bits can be identified based on the type of polar code being used, and while the non-frozen bits can be coded with the channel state information, the frozen bits can be coded with the device ID. In an example where there are more frozen bits than bits in the device ID, the most reliable of the frozen bits can be coded with the device ID. In another example, the frozen bits can be set to the CRC bits, which can then be masked by the device ID.
US11171663B2 Digital-to-analog converter
A digital-to-analog converter is provided. The digital-to-analog converter includes a first plurality of digital-to-analog converter cells configured to generate a first analog signal. Further, digital-to-analog converter includes a second plurality of digital-to-analog converter cells configured to generate a second analog signal. The first analog signal and the second analog signal form a differential signal pair. Further, the digital-to-analog converter includes a transmission line transformer comprising a first input node coupled to the first plurality of digital-to-analog converter cells, a second input node coupled to the second plurality of digital-to-analog converter cells, and a first output node. The transmission line transformer is configured to present a first impedance at the first and second input nodes and to present a second impedance at the first output node.
US11171662B1 Analog-to-digital conversion circuit with improved linearity
Herein disclosed is an example analog-to-digital converter (ADC) and methods that may be performed by the ADC. The ADC may derive a first code that approximates a combination of an analog input value of the ADC and a dither value for the ADC sampled on a capacitor array. The ADC may further derive a second code to represent a residue of the combination with respect to the first code applied to the capacitor array. The ADC may combine the numerical value of the first code and the numerical value of the second code to produce a combined code applied to the capacitor array for deriving a digital output code. Combining the numerical value of the first code and the numerical value of the second code in the digital domain can provide for greater analog-to-digital (A/D) conversion linearity.
US11171659B1 Techniques for reliable clock speed change and associated circuits and methods
Techniques for reliable clock speed change and associated circuits and methods are disclosed. Internal voltage supplies of semiconductor devices may include oscillators and charge pump circuits. The oscillator may include at least two clock paths for generating clock signals having different clock frequencies, which can be provided to the charge pump circuit. Further, the oscillator may generate a reset signal configured to activate one clock path over the other (e.g., changing clock speeds). In some embodiments, the oscillator includes a flip-flop to align the reset signal with respect to an edge of an input clock signal supplied to the oscillator such that unintentional (undesired, unexpected) features in the output signal of the oscillator can be avoided when the oscillator changes clock speeds.
US11171658B1 Semiconductor integrated circuit, electronic device, and method of detecting frequency
A semiconductor integrated circuit includes: a node to receive a reference clock signal; a voltage-controlled oscillation circuit to generate a clock signal based on a code corresponding to a frequency of the reference clock signal received by the node and on a control voltage; a calibration circuit to generate the code based on the frequency of the reference clock signal and on a frequency of the clock signal, and supply the generated code to the voltage-controlled oscillation circuit; and a phase locked loop circuit to generate the control voltage based on a phase difference of the clock signal with respect to the reference clock signal, and supply the generated control voltage to the voltage-controlled oscillation circuit. The voltage-controlled oscillation circuit is capable of changing the frequency of the clock signal based on the code supplied from the calibration circuit and on the control voltage supplied from the phase locked loop circuit.
US11171655B2 Multi-chip synchronization with applications in multiple-input multiple-output (MIMO) radar systems
An EC platform including a controller to control multiple integrated circuits (ICs) to synchronize an operational internal clock signal of an IC with a master clock signal. The controller generates commands for the IC to measure a phase difference or latency difference between an initial internal clock signal of the IC and an input clock signal to the IC from a parent IC. The controller further receives a difference signal from the IC to indicate the phase or latency difference. The IC includes a measurement circuit to measure the phase or latency difference, and to generate a difference signal to indicate the phase or latency difference. The IC further includes a synchronization clock generator to generate, based on the initial internal clock signal and the difference signal, an operational internal clock signal synchronized with the master clock signal. Other embodiments may also be described and claimed.
US11171653B2 Method for programming a field programmable gate array and network configuration
A method for programming a Field Programmable Gate Array (FPGA) via a network, the network being operated according to a predetermined communications protocol, can include: establishing a communication connection between the FPGA and an external master, setting the FPGA into a programming mode, the master providing an FPGA programming image to the FPGA in a sequence of frames so that the frames can be parsed and enabling the FPGA to write only during receiving the payload section of the frames. The FPGA programming image and parsing the sequence of frames can be performed by a permanently programmed or hardwired logic component. A network, FPGA, and a communication system can be configured to utilize embodiments of the method.
US11171649B1 Static and intermittent dynamic multi-bias core for dual pad voltage level shifter
An output driver in an integrated circuit includes a voltage shifter. The output driver has a low voltage section configured to provide a low voltage signal responsive to an input signal and a high voltage section configured to provide a high voltage signal responsive to the input signal. A first biasing circuit is configured to provide a bias to a first transistor in the high voltage section such that the bias is modified during a transition in the output signal. A second biasing circuit is configured to turn on a second transistor in the high voltage section when the output signal is at a low voltage level. The second transistor is configured to discharge a terminal of the first transistor. The input signal switches between 0 Volts and 0.9 Volts. The output signal switches between 0 Volts and 1.2 Volts or between 0 Volts and 1.8 Volts.
US11171647B2 Integrated electronic circuit
According to one embodiment, an integrated electronic circuit has a switching network configured to receive binary control states, one or more secret-carrying gates, wherein each secret-carrying gate represents Boolean secrets and is configured to receive binary input states and to output one or more Boolean secrets according to a state sequence of the binary input states, and one or more flip-flops configured to store binary output states output by the switching network and to supply binary input states to the one or more secret-carrying gates based on the stored binary output states. The switching network generates the binary output states by combining the binary control states and Boolean secrets output by the one or more secret-carrying gates. The integrated electronic circuit outputs Boolean secrets from the one or more secret-carrying gates and/or the binary output states from the switching network to another integrated electronic circuit.
US11171635B2 Circuits and methods of operating the circuits
Circuits integrating OR logic and level shifting functionality and methods of operating the same are configured to accommodate different applications. One such circuit comprises first and second transistors coupled in parallel defining first and second nodes, the first transistor being responsive to a first input signal and the second transistor being responsive to a second input signal; a first resistor coupled between a power supply terminal of the circuit and the first node; and a second resistor coupled between the second node and a ground terminal of the circuit. The circuit generates an output signal having a voltage level that is lower than a voltage level of each of the first and second input signals.
US11171630B2 Ladder filter, duplexer, and elastic wave filter device
A ladder filter includes series-arm resonators each including an IDT electrode and a reflector, and a parallel-arm resonator. In at least one of the series-arm resonators, where a wavelength that is determined by an electrode finger pitch of the IDT electrode is λ, an electrode finger center-to-center distance between an electrode finger located closest to the reflector among electrode fingers of the IDT electrode and an electrode finger located closest to the IDT electrode among electrode fingers of the reflector is less than about 0.5λ, and an anti-resonant frequency of the at least one of the series-arm resonators is higher than an anti-resonant frequency of at least another one of the series-arm resonators.
US11171625B1 Increasing yield and operating temperature range of transmitters
Examples of increasing yield and operating temperature range of transmitters are disclosed. In one example, a transmitter has an a thin-film bulk acoustic (FBAR) resonator. The transmitter may be a Bluetooth Low Energy (BLE) transmitter. In this example, the FBAR-based BLE transmitter does not require or have a phase locked loop, and does not require or have a crystal reference. The FBAR-based BLE transmitter may have an oscillator with a split capacitor array. The oscillator may be a Pierce oscillator with a split capacitor array. The FBAR-based transmitter and calibration methods described herein provide a greater yield and wider operating range than prior transmitters.
US11171616B2 Multi-branch outphasing system and method
A first branch group circuit includes a first branch circuit receiving a first RF input signal and first control information; and a second branch circuit receiving the first input signal and second control information. Each of the first and second branch circuits includes a power amplifier. The second control information enables the second branch circuit to be switched on or off while the first branch circuit remains on. A second branch group circuit includes: a third branch circuit receiving a second RF input signal and third control information; and a fourth branch circuit receiving the second input signal and fourth control information. Each of the third and fourth branch circuits includes a power amplifier. The fourth control information enables the fourth branch circuit to be switched on or off while the third branch circuit remains on. A combiner combines output signals of the power amplifiers to produce an output signal.
US11171615B2 Power limiter configuration for audio signals
Example embodiments provide a process that includes one or more of receiving an audio signal at a feedback compressor circuit, multiplying the received audio signal with a power feedback signal to create a product audio signal, wherein the feedback signal comprises a low-pass filtered signal, applying a power amplifier to the product audio signal, and providing the amplified product audio signal as an output signal to a speaker.
US11171599B2 Tunable photonic harvesting for solar energy conversion and dynamic shading tolerance
Methods, apparatus and systems for tunable photonic harvesting for solar energy conversion and dynamic shading tolerance are provided herein. An apparatus includes a solar photovoltaic module; a sensor device operative to determine portions of the solar photovoltaic module that are underperforming in relation to separate portions; reflective surfaces of a first type, each physically connected to the solar photovoltaic module at a given angle in relation to the surface of the solar photovoltaic module; and reflective surfaces of a second type, each physically connected to a respective one of the reflective surfaces of the first type; wherein the reflective surfaces of the first type and second type are configurable based on a determination of the underperforming portions of the solar photovoltaic module to collect and distributed direct solar radiation and diffuse solar radiation across the solar photovoltaic module to offset the underperforming portions by a given amount.
US11171598B2 Solar system or photovoltaic system
A solar or photovoltaic system includes a cleaning apparatus for cleaning a surface of the solar or photovoltaic system. The surface to be cleaned is tilted or tiltable respect to the horizontal. The cleaning apparatus is configured to carry out a cleaning process to clean the surface in which at least one cleaning element moves downward over the tilted surface driven by gravity.
US11171585B2 Motor controller
A motor controller used for driving a motor is provided. The motor controller includes a driving circuit, a control unit, an operational amplifier, a comparator, an inverter, a multiplexer, a first resistor, and a second resistor. The first and second resistors are mounted on a printed circuit board. By changing the resistance of the first resistor and the resistance of the second resistor, it is capable of changing the driving direction of the motor.
US11171583B2 Motor control apparatus for detecting rotor positions of a plurality of motors and image forming apparatus
A motor control apparatus includes: an excitation unit configured to excite a plurality of excitation phases of each of a plurality of motors that include first to Nth motors and a control unit configured to control the excitation unit so as to perform detection excitation processing for sequentially exciting the plurality of excitation phases for each excitation cycle during each excitation period, regarding each of the first to Nth motors, and thereby detect rotor positions of the respective first to Nth motors. When detecting rotor positions of the respective first to Nth motors, the control unit delays a start timing of the detection excitation processing of at least one motor out of the first to Nth motors relative to a start timing of the detection excitation processing of another motor by a period shorter than the excitation period.
US11171582B2 Drive device for correcting angular deviation between shafts
A drive device includes a first motor, a second motor, and circuitry. The first motor includes a first rotation detector and is configured to rotate a driven shaft to apply a driving torque to the driven shaft. The second motor includes a second rotation detector and is configured to rotate the driven shaft to reduce backlash between the first motor and the driven shaft. The circuitry is configured to control the first motor and the second motor, based on a detection signal of the second rotation detector.
US11171573B2 Power conversion apparatus and control method of the same
A power conversion apparatus includes: a converter converting AC voltage supplied from an AC power supply via a switch unit, into DC voltage; a smoothing capacitor smoothing the DC voltage output from the converter; a resistor suppressing electric current flowing into the smoothing capacitor; a switch short-circuiting the both ends of the resistor; a filter including reactors and capacitors and that removes noise; and a control unit controlling opening and closing of the switch unit and the switch. The control unit changes the switch unit from the open state to the closed state with the switch in an open state if the voltage across the smoothing capacitor is lower than a voltage threshold, and changes the switch unit from the open state to the closed state with the switch in an closed state if the voltage across the smoothing capacitor is equal to or greater than the voltage threshold.
US11171570B2 High low power converter switches, latch, diode isolated intermediate ground
Methods, systems, and apparatus to facilitate high side control of a switching power converter are disclosed. An example apparatus includes a latch including a first node coupled to a first source of a first switch and an output coupled to a first gate of the first switch; a first diode coupled to the first node and a second node; a second diode coupled to the second node and ground; a second switch coupled to a voltage source and the second node; and a third switch including a third gate coupled to the second switch, a third source coupled to the second node, and a third drain coupled to the latch.
US11171569B2 Wake-up method and wake-up system for battery management system
The present application discloses a wake-up method and wake-up system for a battery management system. The method may include converting, by a conversion unit, a low-voltage power signal detected at a low-voltage input port into a high-voltage wake-up signal, and receiving, by a high-voltage control module, a working voltage provided by a power battery pack under control of the high-voltage wake-up signal; controlling, by the high-voltage control module, the high-voltage transmission module to be turned on, providing the working voltage to a synchronous rectifying module by the turned-on high-voltage transmission module, and converting high-voltage electric energy provided by the power battery pack into low-voltage electric energy; and transmitting, under control of the synchronous rectifying module, the low-voltage electric energy to the low-voltage controller, and waking up the battery management system by the low-voltage controller.
US11171567B1 Power supply device for eliminating ringing effect
A power supply device for eliminating the ringing effect includes a transformer, an output stage circuit, a power switch element, a pulse width modulation integrated circuit, and a control circuit. The transformer includes a main coil, a secondary coil, and an auxiliary coil. A leakage inductor is built in the transformer. The main coil receives an input voltage through the leakage inductor. The secondary coil generates an induced voltage. The output stage circuit generates an output voltage according to the induced voltage. A first parasitic capacitor is built in the power switch element. The control circuit includes an auxiliary inductor coupled to the auxiliary coil. The control circuit monitors the power switch element. If the power switch element is switched from an enable state into a disable state, the control circuit will couple the auxiliary inductor to the main coil and the leakage inductor of the transformer.
US11171565B2 Switched-mode power converter
In an embodiment, A device includes an operational amplifier and a feedback loop. The feedback loop is coupled between a first input of the operational amplifier and an output of the operational amplifier. The feedback loop is controllable according to a saturation of the operational amplifier. In one example, the device is incorporated in a microcontroller.
US11171563B2 Phase regulation in a peak current mode power converter
A power converter circuit that includes a switch node coupled to a regulated power supply node via an inductor may, during a discharge cycle, sink current from the regulated power supply node. A control circuit may generate the rising and falling ramp signals using voltage levels of an input power supply node and the regulated power supply node. The control circuit may also determine a duration of the discharge cycle using results of comparing respective voltage levels of the generated rising and falling ramp signals.
US11171560B2 Switching regulator having low start-up voltage and switch control circuit thereof
A switching regulator having a low start-up voltage includes a power stage and a switch control circuit. The switch control circuit includes a power control switch. The power control switch is formed by a low threshold voltage transistor having a first conductivity type in a semiconductor substrate. The low threshold voltage transistor having the first conductivity type includes a first lightly doped region having a second conductivity type which forms a channel region of the low threshold voltage transistor having the first conductivity type. The semiconductor substrate includes a second lightly doped region having the second conductivity type which is formed by a same manufacturing process as the first lightly doped region having the second conductivity type. The second lightly doped region having the second conductivity type forms adrift region of a high-voltage transistor having the second conductivity type in the semiconductor substrate.
US11171558B2 DC power supply with adaptive controlled preregulator and postregulator
A DC power supply and a method for operating a DC power supply, wherein the DC power supply comprises at least one feedback-controlled preregulator, at least one feedback-controlled postregulator supplied by the feedback-controlled preregulator, output terminals for supplying regulated constant current or regulated constant voltage to a load, and a control unit for controlling at least one of the feedback-controlled preregulator and the feedback-controlled postregulator, and designed for adjusting a voltage offset or a current offset added to a signal in a feedback loop of at least one of the feedback-controlled preregulator and the feedback-controlled postregulator.
US11171556B2 Resonant power converter and method for converting a DC input voltage to AC or DC output voltage
A resonant power converter for converting a DC input voltage to AC or DC output voltage, includes a transistor, and a first inductor connected to an input port for a DC voltage to be converted, the drain being connected to the input port by way of the first inductor, the converter furthermore comprising a first resonant network, connected between the drain of the transistor and ground, the first resonant network being configured so as to extract the fundamental component of a drain-source voltage of the transistor and to phase-shift it by a phase shift angle such that the fundamental component and the drain-source voltage are in phase opposition and thus generate a sinusoidal drive signal.
US11171553B2 High detent torque permanent magnet stepper motor
A stepper motor includes a rotor, a stator, a plurality of stator windings, and a plurality of permanent magnets. The permanent magnets are coupled to the outer surface of the rotor and are spaced apart from the plurality of stator poles, and each permanent magnet is shaped like an arc having an arc length and is circumferentially spaced apart from two adjacent permanent magnets by a spacing angle. In some instance, the arc length of each permanent magnet is equal, and the spacing angles are not all equal. In other instances, the arc length of two or more of the permanent magnets is unequal to the arc lengths of the other permanent magnets, and the spacing angles are not all equal.
US11171552B2 Connecting a short-circuit ring and a cage bar for a squirrel cage
A short-circuit ring for a squirrel cage of a dynamoelectric rotary machine includes at least one indentation and is connectable by means of the indentation to at least one cage bar which projects from a rotor lamination of the dynamoelectric rotary machine.
US11171550B1 Mixed-wave permanent magnet motor
The present invention discloses a new type of mixed-wave permanent magnet motor, which relates to the field of motor technology. It comprises a motor shell, a stator and a rotor, wherein, the stator and the rotor are arranged in the motor shell; the stator comprises a fixed ring and stator iron cores, a plurality of the stator iron cores are distributed on a cover plate in circular mode, and the stator iron cores are wound with magnetic induction lines passing through the coils at both radial sides of stator iron cores; the rotor comprises an outer rotor part and an inner rotor part, and the outer rotor part is arranged outside the cylindrical inner rotor part; a stator zone is formed between the outer rotor part and the inner rotor part; the stator is located within the stator zone of the rotor.
US11171548B2 Conductor shaping apparatus and method
A conductor shaping apparatus rotates one of a first shaping die and a second shaping die about a rotational axis with respect to the other so as to format least one bent portion in a conductor. The conductor shaping apparatus includes a holding section that holds the conductor, a first drive source that applies driving force to the first shaping die and rotates the first shaping die about the rotational axis, a second drive source that applies driving force to the second shaping die and rotates the second shaping die about the rotational axis, and a controller that controls the first and second drive sources so as to rotate one of the first and second shaping dies about the rotational axis with respect to the other and controls the first and second drive sources so as to integrally rotate the first and second shaping dies about the rotational axis.
US11171544B2 Mechanical energy harvesting system for converting kinetic energy of a user having a trunk and limb portions into electricity
A mechanical energy harvesting system includes a base seat unit, a rotating shaft device, and a driving device. The base seat unit includes first and second seat bodies. The rotating shaft device is rotatably mounted to the first seat body. The driving device is disposed on the base seat unit and includes at least one driving unit sleeved on the rotating shaft device for driving the rotating shaft device to rotate and thus generate rotational kinetic energy, and at least one transmission unit connected between the second seat body and the driving unit and configured to drive the rotating shaft device to rotate when the second seat body swings relative to the first seat body, so as to generate the rotational kinetic energy.
US11171543B2 Energy generation from a double wellbore
A device for utilizing groundwater, characterized by an upper well shaft and an upper well water reservoir having a first water level; a lower well shaft and a lower well water reservoir having a second water level; wherein the second water level is lower than the first water level; a water line between the upper well water reservoir and the lower well water reservoir including a first line extending downwardly inside the well shaft of the upper well and into the upper well water reservoir, a second line extending downwardly inside the well shaft of the lower well and into the lower well water reservoir, and a connecting line connecting the first branch line and the second branch line; at least one turbine coupled to the water line; and an electrical generator coupled to the at least one turbine for delivering electric power to the power grid.
US11171541B2 Self-deactivating shut-down switch for a power tool
A power tool is provided including an electric motor, a power terminal receiving electric power form a power supply, an actuator, a power switch circuit disposed between the power terminal and the electric motor, and a controller controlling a switching operation of the power switch circuit. A power contact switch is coupled to the actuator and disposed on a first current path to selectively connect the power switch circuit to the power supply. A solid-state load switch disposed on a second current path from the power terminal to the controller is controllable via output of the power contact switch or a self-activating feedback signal from the controller. A solid-state override switch is provided controllable via a self-deactivating feedback signal from the controller and having an output commonly coupled to the output of the power contact switch to turn off the load switch even when the power contact switch is closed.
US11171540B2 Driving device, component set, and assembly method
A driving device includes a motor unit including a motor, and a speed reducer attached to the motor unit. The speed reducer includes a plurality of gears combined to decelerate an output of the motor, and a gear case configured to support the plurality of gears and attached to the motor unit. The gear case is selected from a plurality of types of gear cases. The plurality of types of gear cases are different from one another in an arrangement of the plurality of gears and a position of an output shaft relative to an input shaft.
US11171539B2 Hoist and method for manufacturing hoist
A hoist is provided with a braking mechanism comprising: a motor cover that is provided with an outer wall which is provided such that the inner diameter of an inner peripheral portion thereof increases with proximity to one side in the axial direction from the other side; a drum member that is provided with an outer peripheral portion which is located radially inward of the inner peripheral portion of the outer wall and which faces the inner peripheral portion; and a brake shoe that is mounted on the outer peripheral portion. The inner peripheral portion is provided with a blast-treated portion which is blast-treated upon impact by media which contains large amounts of sharp edges among media which contains large amounts of sharp edges and media which contains large amounts of non-sharp edges.
US11171536B2 Cover assembly and motor including same
One embodiment relates to a cover assembly and a motor including the same, the cover assembly comprising: a cover body; and a plurality of grooves formed on the upper surface of the cover body so as to guide coils, wherein a hole is formed at one side of the groove so as to penetrate the cover body. Therefore, the motor guides the coils to the outside by using the hole formed in the cover assembly such that assemblability is improved.
US11171535B2 Electric motor and housing with integrated heat exchanger channels
An embodiment of an electric motor assembly includes a stator assembly extending generally along the longitudinal axis and at least partially enclosing a rotor assembly also extending along the longitudinal axis. The rotor assembly includes a rotating portion and one or more sets of rotor windings. The stator assembly includes a stationary housing having at least an inner wall and an outer wall, and one or more sets of stator windings in electromagnetic communication with the one or more sets of rotor windings. A heat exchanger is integrally formed into the housing, and includes a plurality of dividing walls extending between the inner and outer housing walls. The plurality of dividing walls are arranged at least partially circumferentially around the longitudinal axis to define, with the inner and outer walls, a corresponding plurality of integral heat exchanger channels arranged at least partially circumferentially around the one or more sets of stator windings. A plurality of rib turbulators are disposed on at least a channel-facing surface of the inner wall.
US11171533B2 Electric devices, generators, and motors
Simple to manufacture electric generators or motors and methods of manufacturing such are disclosed. Such devices are preferably manufactured from 2-dimensionally cut, flat stock materiel. The generator or motor has two large diameter rotors to enable, for example, useful generation of electricity at low revolutions per minute. The frame of the device includes side walls with castellated stators on the periphery of the walls. Castellated end plates removeably interlock with the stators. The rotors drive magnets past the stators in the frame of the device. In preferred embodiments, rotors are driven by human legs or arms, low speed wind, or water with low or zero water drop distance.
US11171530B2 Stator interconnection device for a rotating electric machine
An interconnection device for a stator winding having connection conductors constructed as annular disks, coaxially stacked, and electrically insulated with respect to one another. Each connection conductor has fastening openings distributed in circumferential direction for fixing the interconnection device to a stator. The connection conductors are stacked such that the fastening openings are positioned to form a fastening passage The connection conductors are axially spaced apart from one another and are overmolded with a plastic to form a metal/plastic composite part. At least two kinds of fastening openings are provided, which form larger fastening openings and smaller fastening openings. A larger fastening opening and a smaller fastening opening are formed at a fastening passage, and an annular space, which extends from a boundary of the larger fastening opening to a boundary of the smaller fastening opening, is filled by the plastic.
US11171529B2 Inserts for carriers for electric machines
A carrier for an electric machine has a first layer and plural first posts extending from the first layer. The first layer defines gaps through the first layer adjacent to the plural first posts. One or more inserts have insert posts configured to be inserted through the gaps to combine with the plural first posts to widen the plural first posts. A carrier may also have a first layer, plural first posts extending from the first layer, the first layer defining gaps through the first layer intermediate between successive posts of the plural posts. One or more inserts have insert posts configured to be inserted through the gaps to form an array of posts in combination with the plural first posts.
US11171528B2 Compressed motor winding
In one possible embodiment, a motor winding is provided having a high density multi-conductor wire bundle with a compacted Litz wire bundle. The compacted Litz wire bundle has a serpentine configuration with a central portion having compacted Litz wire and end turns having non-compacted Litz wire.
US11171527B2 Electric drive motor having permanent magnets pushed radially outwardly by a tensioning device
An electric drive motor includes a stator with pole shoes and at least one electrically actuable stator winding, a permanent-magnet rotor mounted in a rotationally driveable manner in the field of the stator winding defining an annular gap therebetween, a motor shaft, a magnet carrier disposed on the motor shaft and being produced in one piece as an injection-molded part, and a plurality of separate permanent magnets disposed on and distributed over the circumference of the magnet carrier. The permanent magnet rotor has a tensioning or clamping device for pressing the plurality of permanent magnets outwards in radial directions towards against an inner wall of a cavity in an injection mold of the magnet carrier during injection molding of the magnet carrier. A domestic appliance having the electric drive motor is also provided.
US11171526B2 Energy efficient permanent magnet synchronous motor
Various implementations include an electric motor including an annular radial stator, an annular axial stator, and a rotor. The annular radial stator has an opening with an inner surface and distributed windings disposed along at least the inner surface of the opening. The annular axial stator has concentrated windings disposed along at least a first side of the axial stator. The rotor includes two or more magnets. Flux from the two or more magnets interacts with one or both of a magnetic field created by the radial stator windings or axial rotor windings. The rotor is disposed within the radial stator opening and the axes of the axial stator and radial stator are coincident with the rotor axis. The flux interacting with one or both of the radial stator magnetic field or the axial stator magnetic field turns the rotor about the rotor axis.
US11171522B2 Wireless charging efficiency
Methods, systems, and apparatus, including computer programs encoded on computer-storage media, for improving wireless charging. In some implementations, an electronic device determines a power demand of the electronic device. The electronic device includes a wireless power receiver including a wireless power receiving coil configured to receive power through inductive coupling with a wireless charge. The electronic device determines an operating voltage or operating frequency for the wireless charger based on the power demand of the electronic device. The electronic device sends, to the wireless charger, data indicating the operating voltage or operating frequency for the wireless charger.
US11171519B2 Power transmitting and receiving apparatus and method for performing a wireless multi-power transmission
A method and an apparatus for wireless power transmission by a power transmitting apparatus is provided. The method includes transmitting detection power towards a power receiving apparatus, detecting an impedance change made by the power receiving apparatus, transmitting driving power for communication with the power receiving apparatus towards the power receiving apparatus, receiving a search signal from the power receiving apparatus within a preset time, and determining whether the impedance change is within a first acceptable range based on the received search signal.
US11171516B2 Noncontact power supply apparatus
A power receiver device a noncontact power supply apparatus short-circuits a resonance suppressing coil provided so as to be electromagnetically coupled to a receiver coil and notifies a power transmitter device of an output voltage abnormality when a measured value of output voltage becomes equal to or greater than an upper limit threshold, the measured value of output voltage being obtained by rectifying power received via a resonance circuit including a receiver coil configured to receive power from a transmitter coil of the power transmitter device and a resonance capacitor connected in parallel with the receiver coil. Upon receipt of the notification of the output voltage abnormality, the power transmitter device changes at least one of a voltage and switching frequency of AC power applied to the transmitter coil.
US11171515B2 Wireless power transceiver and display apparatus with the same
Provided is a wireless power transceiver including a magnetic body, a solenoid coil wound with respect to the magnetic body, and a dual coil spaced downwardly from the solenoid coil and wound with respect to the magnetic body on opposite sides of the solenoid coil, the dual coil being wound in directions opposite to each other.
US11171508B2 System and method for shared hybrid transfer switch
The present disclosure relates to a shared hybrid transfer switch for transferring power received by a Load from a preferred AC power source to an alternate AC power source, or transferring power being received by the Load from the alternate AC power source to the preferred AC power source. The transfer switch makes use of a solid-state switch configured in communication with first and second pluralities of relay contacts, and also being coupled to the Load, and which receives control signals from a controller. The solid-state switch is controlled such that it is turned on to be in communication with select ones of the first and second pluralities of relay contacts, to provide a path for current flow to the Load from one of the preferred or alternate AC power sources being transitioned to, to carry out a switching transition from one of the preferred or alternate AC power sources to the other.
US11171507B2 Connection of battery system to electrical distribution bus
A backup system for a power supply unit providing power to a load via a distribution bus includes a power source, a network of switching elements coupled between an output terminal of the power source and the distribution bus, diodes coupled in parallel with the switching elements, and a controller configured to selectively activate or deactivate each of the switching elements to enable the power source to power the load via the distribution bus. The switching elements may be transistors, and the diodes may be parasitic body diodes of the transistors. The power source may be a battery, such as a rechargeable battery. An output voltage level from the battery may be regulated by the controller as a function of a number of the activated or deactivated transistors.
US11171506B2 Automatic transfer switch (ATS) bypass switch
An ATS bypass switch includes a draw-out ATS switch; a bypass switch; and a processor structured to automatically control both of the draw-out ATS switch and the bypass switch.
US11171499B2 Device to be charged with multiple charging channels, charging method, and charging control circuit with multiple charging channels
A device to be charged, a charging method, and a charging control circuit are provided. The device to be charged includes multiple cells coupled in series and a conversion circuit. The conversion circuit is configured to receive input voltage from a power supply device, convert the input voltage into charging voltage for the multiple cells and into power supply voltage for a system of the device to be charged, charge the multiple cells according to the charging voltage, and supply power to the system of the device to be charged according to the power supply voltage.
US11171490B2 System and method for low-cost, high-efficiency solar panel power feed
A cascading regulation system connected to a number of serially connected power sources and uses multiple regulators having different cutoff voltages to provide an output for the local power consumption unit. Each of the regulators is connected to a subset of serially connected power sources and so configured that if the voltage generated at the lowest tap is no longer sufficient for a stable supply to the local power consumption unit, the next higher regulator takes over, and the output voltage drops in small steps reflective of that takeover of the next higher tap. When the voltage generated across a subsection grows, a lower connected tap may take over again, producing a slightly higher output voltage for the local power consumption unit. The cutover steps are chosen such that the output voltage range matches the range given as the acceptable input range for the local power consumption unit.
US11171487B2 Voltage control in wind power plants
A control system for controlling the power output of a plurality of renewable energy generators, a power network connecting those generators to a Point of Interconnection (PoI) with which the power network is connected to an external power grid, and measurement means configured to measure electrical parameters associated with the Point of Interconnection, wherein the control system is configured to: operate each renewable energy generator to achieve a respective current level at a terminal of the generator that is equal to a current set point; implement, during a grid fault event, a feedback control routine in which the control system: determines a measured value of an electrical parameter at the Point of Interconnection, determines a target value of the electrical parameter; and modifies the current set point based on the measured value and the target value of the electrical parameter.
US11171484B2 Systems and methods for random-access power management
Systems and methods for distributing electric energy in discrete power packets of finite duration are presented. Systems may include an aggregator for providing power packets to one or more nodes. An aggregator may receive requests for power packets from nodes. In other embodiments, an aggregator may transmit status broadcasts and nodes may receive power packets based on the status broadcasts.
US11171477B2 Turn off circuit for protection switch
A switch circuit includes: a power transistor having a source coupled to a supply terminal, a drain coupled to an output terminal, and a gate; a bipolar transistor having a collector coupled to the supply terminal, an emitter coupled to the gate of the power transistor, and a base; a bias circuit to control an emitter current of the bipolar transistor; and a resistor coupled between the supply terminal and the base. A control circuit receives a current at a current input to turn the bipolar transistor on responsive to a control input being in a first state, and ceases receiving the current at the current input to reduce a gate-source voltage of the power transistor responsive to the control input being in a different second state.
US11171475B2 Fault current sensor for a fault current protection device for monitoring an electrical consumer for a vehicle
A fault current sensor for a fault current protection device for monitoring an electrical consumer for a vehicle is provided. The fault current sensor has a measuring device for measuring a differential current between a first electrical current in an electrical forward conductor, which conducts from a control device for controlling the electrical consumer to the electrical consumer, and a second electrical current in an electrical return conductor, which conducts away from the electrical consumer. The fault current sensor also has a reporting device for reporting a fault current at the control device via the forward conductor depending on a comparison of the measured differential current with a threshold value.
US11171470B1 Non-welded horizontal cable tray redirector
Improved design of cable tray redirector components speeds assembly and connection of cable trays. More efficiently manufactured, universal components needed throughout horizontal redirectors of a specific size and type cable tray run reduce the overall total items and cost of inventory. The improvement is in part the elimination of welding cable redirector components in favor of connecting the components with bolts and nuts in the field. The inventory and shipment of individual parts is substantially more efficient because the new components “nest” efficiently prior to assembly. Moreover, components are designed to minimize the number of bolts and nuts used without jeopardizing strength. The use of bolts and nuts to fasten the components also enables good electrical conductivity for effective electrical grounding of the assembled cable tray system.
US11171468B2 Laser arrangement with irregular emission pattern
A laser arrangement includes a laser array including a multitude of lasers and an optical device configured to provide a defined illumination pattern in a defined field-of-view. The optical device includes a multitude of localized optical structures, each respective localized optical structure being associated with at least one respective laser of the laser array and being arranged to redirect laser light emitted by the at least one respective laser such that laser light emitted by the at least one respective laser appears to be emitted from at least one apparent position of the laser array. The localized optical structures are arranged such that laser light emitted by at least one respective selected laser appears to be emitted from at least two apparent positions of the laser array. The optical device is arranged such that the apparent positions are distributed in an irregular pattern.
US11171467B2 Compact diode laser source
A compact diode laser achieves high-power, short duration output pulses by separating the lasing action from the pulse-generating mechanism. A diode seed source is configured for gain-switching via a variable RF source. A time lens element includes an intensity modulation device, a phase modulation device, and a pulse compressor. The intensity modulation device carves shorter pulses from the long gain-switched seed pulses, the phase modulation device adds chirp, and the pulse compressor compensates for the chirp while producing high-power short-duration output pulses.
US11171463B2 Narrow-linewidth tunable external cavity laser
A narrow-linewidth tunable external cavity laser includes, sequentially arranged along an optical path, a laser gain chip, a collimating lens, a bandpass filter, a tunable filter, and an output cavity surface. The laser gain chip includes a first end surface and a second end surface positioned along the optical path. The first end surface is further away from the collimating lens and is coated with a highly reflective film to form an external cavity with the output cavity surface.
US11171458B2 Contact element, power semiconductor module with a contact element and method for producing a contact element
A method for producing a contact element includes producing a shaped body having a rectangular main body, a current tapping lug, and an intermediate lug, wherein the main body has first and second longitudinal sides opposite one another in a vertical direction and which respectively extend with a first length in a first horizontal direction, wherein the current tapping lug protrudes away from the first longitudinal side in the vertical direction and extends in the first horizontal direction over a second length which is less than the first length, and wherein the intermediate lug protrudes away from the first longitudinal side in the vertical direction and extends in the first horizontal direction over a third length less than the first length. The intermediate lug is bent over such that at least one portion of the lug comes to lie offset parallel to the main body in a second horizontal direction.
US11171456B2 Electrical connector for a multi-wire electrical cable
An electrical connector for a multi-wire electrical cable includes at least two cable-side electrical contact elements, including associated terminals to each of which is to be connected a wire of the electrical cable, and at least two output-side electrical contact elements, from each of which projects an electrical connector element by which an electrical connection is establishable to a mating connector. A carrier body is disposed between the cable-side electrical contact elements and the output-side electrical contact elements. The cable-side electrical contact elements, the output-side electrical contact elements and the carrier body are disposed in a spaced-apart relationship to each other, and the cable-side and output-side contact elements are electrically connected to each other via an electrical device disposed on the carrier body.
US11171455B1 Electrical device
An electrical receptacle including a body having a first cavity and a second cavity, a plurality of first electrical connections in the first cavity and a plurality of second electrical connections in the second cavity, at least one electrical plug sensing device in the first cavity, and wherein electrical continuity to the plurality of first electrical connections from the plurality of second electrical connections only occurs when the at least one electrical plug sensing device senses a presence of an electrical plug in the first cavity.
US11171453B2 Electrical connector with grounding structure and shielding
An electrical connector grounding structure includes an electrically insulative terminal holder block having a rectangular base, a mating structure and a fixing structure, conducting terminals positioned in the rectangular base with contact tips thereof extended to the mating structure and connection tips thereof bonded to a predetermined circuit board, a grounding member having a first contact structure, a positioning structure positioned in the fixing structure and a bonding structure bonded to the circuit board, and a shielding shell covering the electrically insulative terminal holder block and having a second contact structure set in contact with the first contact structure to form a ground loop that guides out electromagnetic waves and crosstalk interference generated during signal transmission.
US11171452B2 Connector
A connector includes a housing fitted into a mating side housing, a locking arm including a locking portion, and a slider. The locking arm is connected to the housing and extends toward a rear end and along a fitting direction into the mating side housing. The locking arm is configured to be restored after bending in a lock release direction and the locking portion is configured to be engaged with an engagement portion of the mating side housing to lock the mating side housing and the housing, when the housing is being fitted into the mating side housing. A slider is slidably attached to the housing between a main locking position on a bending end side of the locking arm and a temporary locking position deviating from the main locking position.
US11171450B2 Method and apparatus for the alignment and locking of removable elements with a connector
An apparatus according to one embodiment includes a landing pad having a mating portion configured to mate with a mating feature of a removable element as the removable element approaches the landing pad in a first direction. The apparatus also includes a mount along which the landing pad is movable in a second direction. A lever is positionable between a disengaged position and an engaged position, the lever being coupled to the landing pad for translating the landing pad along the mount in the second direction during movement thereof from the disengaged position toward the engaged position. The first direction is different than the second direction.
US11171448B2 Charger and charging system
A pedestal type device that functions as anon-limiting example charger comprises a connection portion that is constituted by a connection plug and a cover. The cover is supported so as to be movable up and down through a second hole of a placement portion. Furthermore, a convex portion that is protruded toward a front side is provided in a center of a lower end portion of a rear support portion. Two first projections are formed on an upper surface of the cover, and a first hole is formed between them. The connection plug is supported so as to be movable up and down through a third hole. If the convex portion is fitted into a first concave portion formed in a rear surface of electronic device when the electronic device is placed on the placement portion, the first projections are respectively fitted into two third concave portions formed on an undersurface of the electronic device, whereby the cover is pushed down. Therefore, the connection plug is inserted into the depths of a connector of the electronic device.
US11171447B2 Plug and socket assemblies that operatively associate by way of a safety locking mechanism for facilitating plugging and unplugging of electrical fixtures
Plug and socket assemblies that operatively associate with a safety locking mechanism to enable plugging and unplugging ceiling and wall electrical fixtures safely and conveniently.
US11171445B1 Cable end connector
A cable end connector comprising a plugging member, a plurality of cables, an insulating body, a latch component, a guiding member, and two positioning bumps. The insulating body comprises a plugging surface, a first surface, and a connecting surface. The plugging member protrudes from the plugging surface. One ends of the plurality of cables protrude from the connecting surface. The first surface comprises a latch accommodating groove accommodating the latch component. The guiding member and the two positioning bumps are disposed on the plugging surface and is disposed on a side edge of the plugging surface. The guiding member comprises a limiting notch disposed on one side of the guiding member away from the plugging surface. The preliminary positioning and the secondary guidance positioning can be achieved by providing a limiting notch on the guiding member, which performs the function of limiting after being connected to the board end connector.
US11171440B2 Backing plate for mounting and sealing an electrical connector to an intermediate surface
A backing plate, a corresponding electrical connector for mating with the backing plate, an electrical header, and an assembly thereof are described herein. The backing plate has an inner portion having a first thickness and an outer portion having a second thickness that is greater than the first thickness. The outer portion surrounds a perimeter of the inner portion and forms a cavity within the backing plate for acceptance of the electrical header. The backing plate also contains a connector attachment portion configured to attach the backing plate to the electrical connector and an intermediate surface attachment portion configured to attach the backing plate to the intermediate surface.
US11171438B2 Unitized cable plug array for mobile power generation equipment
A system for coupling plugs and receptacles comprises a deformable base extending along an axis from a first end, through a middle portion and to a second end along a non-linear path, first connectors mounted to the base at different axial positions, a housing extending linearly from a third end to a fourth end, second connectors located on the housing at different linear positions, and a closure mechanism configured to deform the base such that each connector of the first connectors aligns with and is couplable to a corresponding connector of the second connectors. A method for coupling plugs and sockets comprises coupling a first plug extending from a base to a first socket located in a housing, aligning a second plug extending from the base with a second socket located in the housing, and flexing the base to bring the second plug into engagement with the second socket.
US11171430B2 Ice test system and methods
A test system and method for relay connection and testing of a power transmission and distribution grid including a fixed connection block connected to the power transmission and distribution grid, and a mobile plug which connects the fixed connection block or a mobile test block with the relay when the mobile plug is inserted into the fixed connection block or the mobile test block. The mobile test block provides a connection to an external relay testing device when the mobile test plug is inserted into the mobile test block, the fixed connection block provides internal shorting that is activated when the mobile plug is not inserted into the fixed connection block and is deactivated when the mobile plug is inserted into the fixed connection block, and the fixed connection block, mobile plug, and the mobile test block provides an interaction between a power transmission and distribution grid side and a relay side. This allows a quick recovery when relays are damaged in a cyber-attack.
US11171424B2 Solution for beam tilting associated with dual-polarized MM-wave antennas in 5G terminals
A user equipment (UE) and a method of operating the UE. The UE includes a front surface, a rear surface, a transceiver, and a plurality of electromagnetic strips. The front surface includes a display and the rear surface includes a cover. The transceiver is between the display and the cover and is configured to transmit signals supporting vertical polarization and horizontal polarization. The plurality of electromagnetic strips are proximate to the cover and oriented to selectively tilt one of the horizontal polarization or the vertical polarization of the signals.
US11171417B2 Method and apparatus for calibrating antenna
Disclosed in the present application are a method and an apparatus for calibrating an antenna. In the method, in a receiving channel calibration process, first a receiving channel beam weight matrix is initially updated by using a receiving calibration signal from a reference beam direction, i.e., performing initial receiving channel calibration, and then, for different beam direction regions, beam weight vectors corresponding to multiple beam directions within particular beam direction regions are updated.
US11171416B2 Multi-element antenna array with integral comparison circuit for phase and amplitude calibration
Described herein is a calibration circuit for a multiple element antenna with two or more antenna transmit and receive elements. In some examples the multi-element antenna may also include a beamforming network that combine the multiple antenna radiating element inputs and outputs with controlled phase and amplitude relationships such that spatial beams can be formed by varying the phase and amplitudes of two or more signals applied to antenna input ports for the antenna. The calibration circuit of this disclosure may be used to obtain data to determine phase and amplitude offsets induced by the combined transmission elements, and any phase and amplitude offsets induced by the transmitter or receiver circuitry. The determined phase and amplitude offsets may then be removed from received signal measurements and compensated for in transmit signal generation.
US11171404B2 Antenna and window glass for vehicle
An antenna includes a flat conductor, and the flat conductor includes a first slot extending in a first direction, a second slot connected to the first slot and extending in a second direction, a third slot connected to the first slot and including another end that is open through an outer edge of the conductor, the third slot extending to one side of the first slot opposite from the second slot, and a fourth slot connected to the second slot, the fourth slot extending to one side of the second slot opposite from the first slot, wherein the third slot has a wide portion, and the fourth slot has a wide portion, and the outer edge includes an inclined portion inclined with respect to a virtual line that passes through the another end of the third slot and that is perpendicular to a direction in which the third slot extends.
US11171400B2 Loop gap resonators for spin resonance spectroscopy
Improved loop-gap resonators applicable to Electron-Spin Resonance spectroscopy and to quantum computing employ interdigitated capacitor structures to dramatically increase the capacitance of the resonator, along with corresponding decreases in loop size to enable measurements of small-volume samples or individual quantum bits (qubits). The interdigitated-capacitor structures are designed to minimize parasitic inductance.
US11171395B2 Transmission line and air bridge structure
An object is to provide a transmission line having an air bridge structure in which grounding conductors of a transmission line are connected by wiring and which is stable in terms of mechanical strength by lowering an electrostatic capacitance in a region where the wirings connecting the central conductor and the grounding conductor intersect with each other. The transmission line includes a substrate, a first central conductor and a second central conductor that are formed on a surface of the substrate, a third central conductor that has a first erection portion and a second erection portion erected on the surface, and a first grounding conductor and a second grounding conductor. The transmission line further includes a third grounding conductor connecting the first grounding conductor and the second grounding conductor. The third central conductor and the third grounding conductor form an air bridge structure.
US11171392B2 Battery module, and battery pack and automobile comprising same
A battery module, which includes: a plurality of battery cells stacked on one another; and a bus bar assembly electrically connected to electrode leads of the plurality of battery cells, wherein the electrode leads of the plurality of battery cells are bent at least once to secure a predetermined length and are unbent at least partially due to inflation caused by swelling of the plurality of battery cells.
US11171391B2 Battery assembly and method
Assemblies and methods are provided for manufacturing a battery. A number of cells each have tabs for coupling the cell in the battery assembly. A housing has an opening through which each tab extends. The tabs are folded to overlie an outer surface of the housing. A bus bar is disposed on an opposite side of the tabs from the housing, with a coupling joint between the bus bar and the cells. The coupling joint may comprise a weld.
US11171388B2 Method of improving fast-chargeability of a lithium battery
Provided is method of improving fast-chargeability of a lithium secondary battery, wherein the method comprises disposing a lithium ion reservoir between an anode and a porous separator and configured to receive lithium ions from the cathode through the porous separator when the battery is charged and to enable the lithium ions to enter the anode in a time-delayed manner. In some embodiments, the reservoir comprises a conducting porous framework structure having pores and lithium-capturing groups residing in the pores, wherein the lithium-capturing groups are selected from (a) redox forming species that reversibly form a redox pair with a lithium ion; (b) electron-donating groups interspaced between non-electron-donating groups; (c) anions and cations wherein the anions are more mobile than the cations; or (d) chemical reducing groups that partially reduce lithium ions from Li+1 to Li+δ, wherein 0<δ<1.
US11171386B2 Inorganic particles for nonaqueous electrolyte battery
The purpose of the present invention is to provide a nonaqueous electrolyte battery having excellent lifespan characteristics and/or excellent safety, which are essential in practice. The basic inorganic particles for a nonaqueous electrolyte battery according to the present invention include basic inorganic particles, wherein a hydrophilicity parameter A for the basic inorganic particles satisfies the expression: 0.45≤A(BET1/BET2)≤2.0. In the expression, BET1 represents the specific surface area of the basic inorganic particles calculated from an adsorption isotherm which is measured through adsorption of water vapor to the basic inorganic particles by a BET method. BET2 represents the specific surface area of the basic inorganic particles calculated from an adsorption isotherm which is measured through adsorption of nitrogen to the basic inorganic particles by a BET method.
US11171382B2 Electricity storage cell and manufacturing method of electricity storage cell
The electricity storage cell is an electricity storage cell in which battery elements are accommodated inside a cell can and an opening portion on the top of the cell can is sealed by an opening sealing body; inside the cell can, there is an expansion force absorber which is capable of absorbing expansion force of the battery elements by receiving expansion of the battery elements and compressing; the battery elements are disposed between the expansion force absorber and an inner wall surface of the cell can; and the expansion force absorber has a height corresponding to the height of the battery elements, and has a lower rigidity on the opening sealing body side than in a central portion of the height direction of the cell can, or has a smaller thickness on the opening sealing body side than in the central portion of the height direction of the cell can.
US11171381B2 Cell pack and method for producing and method for disassembling the same
A cell pack includes a plurality of unit cells arranged in an arrangement direction and a restraint mechanism for restraining these unit cells. The restraint mechanism includes: a first end plate portion disposed at an end portion in a first direction of the arrangement direction of the plurality of unit cells; a second end plate portion disposed at an end portion in a second direction of the arrangement direction of the plurality of unit cells; and a ring-shaped restraining hoop portion A dimension in the arrangement direction between the first end plate portion and the second end plate portion of the restraining hoop portion is set such that a predetermined restraining pressure is applied in a direction of compressing the plurality of unit cells along the arrangement direction. A method for assembling the cell pack is also provided.
US11171380B2 Binding member, and battery module
A binding member includes a body part extending in stacking direction X of batteries, a supporting part extending in stacking direction X and projecting from the body part, the supporting part supporting a battery stack, and a plurality of pressing parts arranged to have a predetermined interval from the supporting part, the plurality of pressing parts being arranged in the stacking direction and projected from the body part to press the battery stack toward the supporting part. When the body part is divided into two regions that are a supporting part side region and a pressing part side region, a rigidity in the supporting part side region is smaller than a rigidity in the pressing part side region.
US11171373B2 Battery module including Peltier element and compensation element between temperature regulating element and battery cell
A battery module having at least one battery cell is disclosed, in particular a lithium-ion battery cell, comprising a housing, in which the at least one battery cell is accommodated, and a temperature-regulating element, wherein a Peltier element is furthermore arranged between the at least one battery cell and the temperature-regulating element, which Peltier element is thermally conductively connected in each case to the at least one battery cell and the temperature-regulating element, and which Peltier element is furthermore connected to a voltage source in such a way that heat transfer between the at least one battery cell and the temperature-regulating element is able to be formed by means of the Peltier element, wherein a compensation element for homogenizing the temperature, said compensation element being formed from a metallic material, is furthermore arranged between the at least one battery cell and the Peltier element, wherein preferably the at least one battery cell is directly or cohesively connected to the compensation element.
US11171370B2 Aziridino-functional polyether thermally-conductive gap filler
Thermally-conductive gap fillers are described. The gap fillers comprise an aziridino-functional polyether polymer and thermally conductive particles. Initiators suitable for such systems ae also described. Such gap fillers may be used in various applications including the manufacture of battery modules and subunits.
US11171365B2 Capacitor-assisted solid-state battery with quasi-solid-state electrolyte
A capacitor-assisted, solid-state lithium-ion battery is formed by replacing at least one of the electrodes of the battery with a capacitor electrode of suitable particulate composition for the replaced battery particulate anode or cathode material. The solid-state electrodes typically contain quasi-solid-state electrode material and are separated with a layer of quasi-solid-state electrolyte material. In another embodiment the capacitor anode or cathode particles may be mixed with lithium-ion battery anode or cathode particles respectively. Preferably, the battery comprises at least two positively-charged electrodes and two negatively-charged electrodes, and the location, number and compositions of the capacitor material electrode(s) may be selected to provide a desired combination of energy and power.
US11171363B2 Method and device for producing electrode body
There is provided a method for producing an electrode body including a current collection foil, an electrode mixture layer, a heat resistant layer, and a separator layer are laminated in this order. The method includes applying a liquid heat resistant material forming the heat resistant layer to the electrode mixture layer on an electrode plate that is obtained by forming an electrode mixture layer on the current collection foil and disposing the porous separator layer on the liquid heat resistant material before the liquid heat resistant material according to the application is dried after applying the liquid heat resistant material.
US11171362B2 Electrolyte for a metal-ion battery cell with high-capacity, micron-scale, volume-changing anode particles
In an embodiment, a metal-ion battery cell comprises an anode electrode, a cathode electrode, a separator, and electrolyte ionically coupling the anode electrode and the cathode electrode. The anode electrode is a high-capacity electrode (e.g., in the range of about 2 mAh/cm2 to about 10 mAh/cm2). The electrolyte includes a solvent composition, the solvent composition including low-melting point (LMP) solvent(s) in the range from about 10 vol. % to about 80 vol. % of the solvent composition as well as regular-melting point (RMP) solvent(s) in the range from about 20 vol. % to about 90 vol. % of the solvent composition.
US11171361B2 Electrolyte solution for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the same
The present invention provides an electrolyte solution for a non-aqueous electrolyte battery capable of an exerting high average discharge voltage and an excellent low-temperature output characteristic at −30° C. or lower and an excellent cycle characteristic and an excellent storage characteristic at high temperatures of 50° C. or higher, as well as a non-aqueous electrolyte battery containing the same. The present electrolyte solution comprises a non-aqueous solvent, a solute, at least one silane compound represented by the following general formula (1) as a first compound, and a fluorine-containing compound represented by the following general formula (3), for example, as a second compound. Si(R1)a(R2)4-a  (1)
US11171359B2 Sulfur-based composite cathode-separator laminations and battery cells comprising the same
Composite cathode-separator laminations (CSL) include a current collector with sulfur-based host material applied thereto, a coated separator comprising an electrolyte membrane separator with a carbonaceous coating, and a porous, polymer-based interfacial layer (PBIL) forming a binding interface between the carbonaceous coating and the host material. The host material includes less than about 6% polymeric binder, and less than about 40% electrically conductive carbon, with the balance comprising one or more sulfur compounds. The PBIL can have a thickness of less than about 5 μm and a porosity of about 5% to about 40%. The host material can comprise less than about 40% conductive carbon (e.g., graphene) and have a porosity of less than about 40%. The carbonaceous coating (e.g., graphene) can have a thickness of about 1 μm to about 5 μm. The CSL can be disposed with an anode within an electrolyte to form a lithium-sulfur battery cell.
US11171358B2 Garnet materials for Li secondary batteries and methods of making and using garnet materials
Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device. Also, the methods set forth herein disclose novel sintering techniques, e.g., for heating and/or field assisted (FAST) sintering, for solid state energy storage devices and the components thereof.
US11171350B2 Flow battery control method, flow battery control system and flow battery
The control method for a flow battery includes acquiring a current electrolyte capacity decay rate of the flow battery; comparing the current electrolyte capacity decay rate with a first preset decay rate and a second preset decay rate; when the current electrolyte capacity decay rate is greater than the first preset decay rate and less than the second preset decay rate, adjusting a liquid level of positive electrolyte and a liquid level of negative electrolyte, such that a difference between these two liquid levels is less than a preset value, a ratio of the total amount of vanadium in the positive electrolyte to the total amount of vanadium in the negative electrolyte remains in a first preset ratio range, or a ratio of a vanadium ion concentration in the positive electrolyte to a vanadium ion concentration in the negative electrolyte remains in a second preset ratio range.
US11171346B2 Fuel cell system
A fuel cell system includes a gas liquid separator and a valve device. The gas liquid separator separates water from a fuel off gas discharged from a fuel cell stack. The valve device is provided in a discharge channel for discharging water separated from the gas liquid separator. The valve device includes a fluid inlet for guiding fluid at least containing water in the gas liquid separator toward the valve main body. A heating device is provided at an inner hole of the fluid inlet.
US11171345B2 Gas storage system
Among other things, a gas storage system includes a group of capsules and an activation element coupled to the group. The group of capsules are formed within a substrate and contain gas stored at a relatively high pressure compared to atmospheric pressure. The activation element is configured to deliver energy in an amount sufficient to cause at least one of the capsules to release stored gas.
US11171340B2 Unit cell for fuel cell
A unit cell for a fuel cell is provided. The unit cell includes an insert including a Membrane-Electrode Assembly having a first pair of electrode layers formed on a first surface of a polymer electrolyte membrane and a second pair of electrode layers formed on a second surface of the polymer electrolyte membrane, an elastomer frame bonded at a rim of the insert in an outer area of the insert, the elastomer frame having a reaction surface through-hole in which the insert is disposed formed therein and having a plurality of frame manifold through-holes, through which a reactant gas can flow or be discharged, formed at both sides of and spaced apart from the reaction surface through-hole, and a pair of separators, each separator disposed on a respective side of the insert and the elastomer frame.
US11171338B2 Method of manufacturing membrane electrode assembly with minimized interfacial resistance
Disclosed is a method of manufacturing a membrane electrode assembly with minimized interfacial resistance between an electrode and an electrolyte membrane. For instance, a catalyst admixture including a catalyst composite including a catalyst and a first binder, and a second binder may be applied to a porous substrate and the porous substrate may be impregnated with the second binder, thereby minimizing interfacial resistance between the electrode and the electrolyte membrane and reducing a thickness of the electrolyte membrane.
US11171335B2 Fast chargeable carbon anode material with inner channels
To provide an anode material for implementing a lithium-ion battery that is capable of high-speed charging and excellent in cycle characteristics, and has high capacity. The anode material includes a spherical particle of graphite or graphite-carbon composite provided with pores on the surface and inner channels in the core part of the particle, the inner channels being interconnected to the pores.
US11171328B2 Solvent-free electrochemical cells with conductive pressure sensitive adhesives attaching current collectors
Provided are electrochemical cells and methods of manufacturing these cells. An electrochemical cell comprises a positive electrode and an electrolyte layer, printed over the positive electrode. In some examples, each of the positive electrode, electrolyte layer, and negative electrode comprises an ionic liquid enabling ionic transfer. The negative electrode comprises a negative active material layer (e.g., comprising zinc), printed over and directly interfacing the electrolyte layer. The negative electrode also comprises a negative current collector (e.g., copper foil) and a conductive pressure sensitive adhesive layer. The conductive pressure sensitive adhesive layer is disposed between and adhered to, directly interfaces, and provides electronic conductivity between the negative active material layer and the negative current collector. In some examples, the conductive pressure sensitive adhesive layer comprises carbon and/or metal particles (e.g., nickel, copper, indium, and/or silver). Furthermore, the conductive pressure sensitive adhesive layer may comprise an acrylic polymer, encapsulating these particles.
US11171327B2 Positive electrode active material containing lithium composite oxide and covering material and battery
A positive electrode active material includes a lithium composite oxide containing: at least one element selected from the group consisting of fluorine, chlorine, nitrogen, sulfur, bromine, and iodine; and a covering material that covers a surface of the lithium composite oxide. The lithium composite oxide has a crystal structure that belongs to a space group R-3 m. The ratio I(003)/I(104) of a first integrated intensity I(003) of a first peak corresponding to a (003) plane to a second integrated intensity I(104) of a second peak corresponding to a (104) plane in an XRD pattern of the lithium composite oxide satisfies 0.62≤I(003)/I(104) ≤0.90. The covering material has an electron conductivity of 106S/m or less.
US11171314B2 Display panel and display device
Disclosed are a display panel and a display device. The display panel includes a substrate, a first electrode layer located on the substrate, a light emitting layer located on the first electrode layer, a second electrode layer located on the light emitting layer, an optical film layer located on the second electrode layer and configured to improve color offset and extracting light and an anti-reflecting layer located between the second electrode layer and the optical film layer; and the refractive index of the anti-reflecting layer is greater than that of the second electrode layer and is smaller than that of the optical film layer.
US11171313B2 Incoherent thin film encapsulation for display
Display panel stack-up structures are described. In an embodiment, a display panel includes a substrate, a light source, and a multiple layer thin film encapsulation over the light source. In an embodiment, the display panel additionally includes an anti-reflection layer over the light source. In an embodiment, an incoherence layer is located within the thin film encapsulation.
US11171311B2 Display device
A display device capable of reducing a non-display area includes a substrate hole surrounded by light emitting elements, and a moisture penetration preventing layer disposed between an inner dam surrounded by the light emitting elements and the substrate hole. Accordingly, it is possible to prevent damage to light emitting stacks caused by external moisture or oxygen. Since the substrate hole is disposed within an active area, a reduction in non-display area is achieved.
US11171310B2 Package structure having multiple organic layers with evenly distributed liquid crystal molecules. display panel, and display device
A package unit, display panel, and display device are provided. The package unit includes a first organic layer and a package unit disposed over the first organic layer. The first organic layer is disposed over and adjacent to a side of the package structure illuminated by light, and the first organic layer is evenly distributed with liquid crystal molecules of an oriented arrangement to converge light passing through the first organic layer and emit light within a fixed angle range.
US11171308B2 Display device and method for manufacturing the same
A display device comprising: a display panel including: a first area having a first transmittance; and a second area having a second transmittance higher than the first transmittance; and a first module under the second area, wherein the display panel comprises: a base layer; a circuit layer on the base layer; a first pixel electrode electrically connected to the circuit layer and in the first area; a second pixel electrode electrically connected to the circuit layer and in the second area; a first stack structure on the circuit layer and adjacent to the first pixel electrode; and a second stack structure which is on the circuit layer, is adjacent to the second pixel electrode, and is different from the first stack structure.
US11171305B2 Organic light emitting display device
Disclosed is an organic light emitting display device which may improve reliability. The organic light emitting display device includes light emitting elements arranged in an active area, crack prevention layers arranged in a non-active area along the perimeter of the active area, and at least one crack detection line arranged between the active area and the crack prevention layers, and judges whether or not a crack is generated through an output resistance value from the at least one crack detection line and may thus raise yield.
US11171304B2 Flexible substrate, preparation method thereof, and display device
Disclosed are a flexible substrate, a preparation method thereof, and a display device, to improve the encapsulation effect and the product yield. The flexible substrate includes: a base substrate, where the base substrate has a plurality of sub-pixel areas arranged in an array, connection areas each for connecting adjacent sub-pixel areas; and hollow areas among the sub-pixel areas and the connection area; in each sub-pixel area, there are a pixel circuit, an isolation structure surrounding the pixel circuit, and a light-emitting functional layer covering the pixel circuit and the isolation structure; the isolation structure has a hollow pattern at a junction of the sub-pixel area and the connection area; the connection area has a signal line therein, and the signal line is electrically connected with the pixel circuit through the hollow pattern; and the isolation structure has an undercut that interrupts the light-emitting functional layer.
US11171299B2 Quantum dot device and electronic device
A quantum dot device including an anode; a cathode disposed substantially opposite to the anode; a hole injection layer disposed on the anode between the anode and the cathode; a hole transport layer disposed on the hole injection layer between the hole injection layer and the cathode; and a quantum dot layer disposed on the hole transport layer between the hole transport layer and the cathode, wherein the quantum dot layer includes a plurality of quantum dots, wherein the hole transport layer includes a hole transport material and an electron transport material, and wherein a lowest unoccupied molecular orbital (LUMO) energy level of the electron transport material and a lowest unoccupied molecular orbital (LUMO) energy level of the quantum dot layer is about 0.5 electron volts or less.
US11171297B2 Organic-inorganic hybrid perovskite compounds
Photoactive materials comprising organic-inorganic hybrid halide perovskite compounds are provided. Photovoltaic cells and light-emitting devices incorporating the photoactive materials into their light-absorbing and light-emitting layers, respectively, are also provided. The halide perovskites have an amAMX3 perovskite crystal structure, wherein am is an alkyl diamine cation, an aromatic diamine cation, an aromatic azole cation, a cyclic alkyl diamine cation or a hydrazinediium cation; A is a monovalent alkylammonium cation or an alkali metal cation; X is a halide ion or a combination of halide ions; and M is an octahedrally coordinated bivalent metal atom.
US11171296B2 Organometallic compound, organic light-emitting device including the same, and organic light-emitting apparatus including the organic light-emitting device
Provided are an organometallic compound, an organic light-emitting device including the organometallic compound, and an electronic apparatus including the organic light-emitting device. The organic light-emitting device includes: a first electrode; a second electrode facing the first electrode; and an organic layer between the first electrode and the second electrode and including an emission layer, wherein the organic layer comprises at least one of the organometallic compound represented by Formula 1.
US11171290B2 Cross linked surface coating and interfacial layer for a perovskite material photovoltaic device
A photovoltaic device includes a photoactive material comprising a perovskite material and an interfacial layer comprising a cross-linked polymer that comprises a fullerene or fullerene derivative, a cross-linking agent, and one or more polymers selected from the group consisting of polystyrene, [6,6]-phenyl-C61-butyric acid methyl ester, poly(4-vinylphenol), [6,6]-phenyl-C61-butyric acid, and any combination thereof.
US11171289B2 Method for manufacturing organic solar cell and organic solar cell manufactured using same
Provided is a disclosure relating to a method for manufacturing an organic solar cell comprising providing a substrate; forming a first electrode on the substrate; forming a photoactive layer by coating a solution comprising a photoactive material and a solvent on the first electrode; drying the photoactive layer in a closed drying system having a constant volume; and forming a second electrode on the photoactive layer, and an organic solar cell manufactured using the same.
US11171288B2 Mask assembly, deposition apparatus having the same, and method of fabricating display device using the same
A mask assembly may include a frame, first sticks, and masks. The first sticks may extend in a first direction and may be arranged in a second direction. The plurality of masks may be disposed on the frame and the first sticks. The plurality of masks may extend in the second direction and may be arranged in the first direction. Each of the first sticks may have a first edge and a second edge, which are opposite to each other in the second direction. When viewed in a plan view defined by the first and second directions, the first and second edges of an outermost stick of the first sticks may have different shapes, and linear lengths of the first and second edges of the outermost stick may be substantially equal to each other, where the linear lengths are lengths of the first and second edges in a straight state.
US11171287B2 Variable resistance memory device including silicon capping pattern
A variable resistance memory device may include a memory unit including a first electrode disposed on a substrate, a variable resistance pattern disposed on the first electrode and a second electrode disposed on the variable resistance pattern, a selection pattern disposed on the memory unit, and a capping structure covering a sidewall of the selection pattern. The capping structure may include a first capping pattern and a second capping pattern sequentially stacked on at least one sidewall of the selection pattern. The first capping pattern may be silicon pattern, and the second capping pattern may include a nitride.
US11171278B2 Thermoelectric conversion material, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material
A thermoelectric conversion material having a high dimensionless figure of merit ZT includes: a large number of polycrystalline grains which include a skutterudite-type crystal structure containing Yb, Co, and Sb; and an intergranular layer which is between the neighboring polycrystalline grains and includes crystals in which an atomic ratio of O to Yb is more than 0.4 and less than 1.5. A method for manufacturing a thermoelectric conversion material includes: a weighing step; a mixing step; a ribbon preparation step by rapidly cooling and solidifying a melt of the raw materials by using a rapid liquid cooling solidifying method; a first heat treatment step including heat treating in an inert atmosphere with an adjusted oxygen concentration; a second heat treatment step including heat treating in a reducing atmosphere; and manufacturing the thermoelectric conversion material by a pressure sintering step in an inert atmosphere.
US11171276B2 Thin-film thermocouple probe and method of preparing same
A thin-film thermocouple probe includes a columnar substrate, a tungsten-26% rhenium film and an indium oxide (In2O3) film. A side surface of the columnar substrate is provided with a first straight groove and a second straight groove. The tungsten-26% rhenium film is arranged on a front end surface of the columnar substrate and in the first straight groove. The indium oxide film is arranged on the front end surface of the columnar substrate and in the second straight groove. The indium oxide film on the front end surface of the columnar substrate is connected to the tungsten-26% rhenium film on the front end surface of the columnar substrate. A first metal lead wire is connected to the tungsten-26% rhenium film, and a second metal lead wire is connected to the indium oxide film. A method of preparing the thin-film thermocouple probe is provided.
US11171273B2 LED package with integrated features for gas or liquid cooling
A device is provided that comprises a metallic substrate defining a plurality of openings, the openings having a first area. The openings form one or more heat dissipating elements having a second area. The device comprises a plurality of sites on a surface of the one or more heat dissipating elements. Each site is configured to receive a light emitting element. The device comprises a plurality of conductor elements having a third area. The conductor elements are physically separated from the one or more heat dissipating elements by the openings. The conductor elements are configured to enable electrical connections to the light emitting elements and are electrically isolated from the one or more heat dissipating elements.
US11171272B2 Method of producing light source device comprising joining a wiring portion of a light emitting device and a support substrate by a solder member
A method of producing a light source device includes providing a light emitting device having a substrate including a base member that includes a bottom surface and a recess. The substrate further including a wiring portion in the recess. The method further including providing a support substrate having a support base member, a first wiring pattern on a top surface of the support base member and including a joining region, and an insulating region, and applying a solder member such that the solder member on the insulating region has a volume larger than that of the solder member on the joining region. The light emitting device is placed on the support substrate while the solder member is separate from a portion of the wiring portion positioned in the vicinity of the bottom surface and the wiring portion is joined to the joining region.
US11171269B2 Light emitting device
A light emitting device includes a substrate, a light emitting element mounted on the substrate, an uninterrupted annular sealing member installed in such a manner as to surround the light emitting element, a waterproof sheet installed in such a manner as to cover an upper side of the light emitting element and the sealing member, and transmit light emitted from the light emitting element, and an uninterrupted annular cover installed on the waterproof sheet, with a region of the cover being open above the light emitting element. The waterproof sheet is being fixed by sandwiching the waterproof sheet between the sealing member and the cover. A mounting region for the light emitting element on the substrate, which is being laterally surrounded by the sealing member while being covered by the waterproof sheet, is being hermetically sealed.
US11171268B2 Light emitting device and method of manufacturing the same
A light emitting device includes: a support member; a light emitting element mounted on the support member; a wavelength conversion member arranged on or above the light emitting element and that is larger than the light emitting element in a plan view, the wavelength conversion member including: a wavelength conversion portion that is arranged on or above the light emitting element, and a light-transmissive portion; a light reflection member that is spaced away from a side surface of the wavelength conversion member and a side surface the light emitting element and arranged on or above the support member, and surrounds the light-transmissive portion; and a light-transmissive member that is arranged between the light reflection member and the side surface of the light emitting element, and is in contact with a part of the light-transmissive portion of the wavelength conversion member and the side surface of the light emitting element.
US11171267B2 Process for fabricating an optoelectronic device including photoluminescent pads of photoresist
The invention relates to a method for producing an optoelectronic device (1) including a matrix array of light-emitting diodes (4) and a plurality of photoluminescent pads (61, 62, 63 . . . ) that are each located facing at least some of said light-emitting diodes (4), including the following steps: forming said plurality of photoluminescent pads (61, 62, 63 . . . ) by photolithography from at least one photoresist (51, 52, 53 . . . ) containing photoluminescent particles, said photoresist having been deposited beforehand on a supporting surface (3; 3′); forming reflective walls (101, 102, 103 . . . ) covering lateral flanks (81, 82, 83 . . . ) of said photoluminescent pads (61, 62, 63 . . . ) by deposition of at least one thin-layer section (91, 92, 93 . . . ) on the lateral flanks.
US11171262B2 LED module
A LED module, comprising a printed circuit board, wherein the LED module further comprises a plurality of light emitting units provided onto the printed circuit board, wherein each light emitting unit comprises a plurality of white light devices sets and/or a plurality of color light devices sets spaced less than 1 mm between one another.
US11171261B2 Light emitting device
A light emitting device includes: a substrate; a light emitting element disposed on the substrate, the light emitting element having an upper surface and a lateral surface; a reflecting layer located on the upper surface of the light emitting element; a first light-transmissive member having a first surface in contact with the lateral surface of the light emitting element, and a second surface that is inclined toward the substrate in a direction outward from the light emitting element; and a second light-transmissive member in contact with the second surface and covering the light emitting element. A refractive index of the first light-transmissive is smaller than a refractive index of the second light-transmissive member.
US11171259B2 Electrode substrate for transparent light-emitting diode display and method for manufacturing same
An electrode substrate for a transparent light emitting device display containing a transparent substrate; a wire electrode unit, which is provided on the transparent substrate and comprises a metal mesh pattern; and at least one light emitting device mounting unit provided on the transparent substrate, in which both an upper surface and a lateral surface of the metal mesh pattern of the wire electrode unit comprise a darkening layer pattern, and both an upper surface and a lateral surface of the light emitting device mounting unit do not comprise a darkening layer pattern.
US11171255B2 High sensitivity optoelectronic device for detecting chemical species and related manufacturing method
A device for detecting a chemical species including a Geiger mode avalanche photodiode, which comprises a body of semiconductor material delimited by a front surface. The semiconductor body includes: a cathode region having a first type of conductivity, which forms the front surface; and an anode region having a second type of conductivity, which extends within the cathode region starting from the front surface. The detection device further includes: a dielectric region, which extends on the front surface; and a sensitive region, which is arranged on top of the dielectric region and electrically coupled to the anode region and has a resistance that depends upon the concentration of the chemical species.
US11171247B2 Metal oxide thin film transistor and manufacturing method thereof
Disclosed is a metal oxide thin film transistor and a manufacturing method thereof. By disposing a portion of the source and a portion of the drain in the same layer as the first insulating layer, the reflection of the ultraviolet light by the source, the drain and the first insulating layer can be blocked from entering the conductive channel. Therefore, a threshold voltage shift of the metal oxide thin film transistor under irradiation of ultraviolet light to the conductive channel can be prevented, and the threshold voltage stability and display quality are improved.
US11171244B2 Semiconductor structure and manufacturing method thereof
A semiconductor structure disposed on a substrate including a first metal layer disposed on the substrate, a gate insulating layer disposed on the substrate, an oxide semiconductor layer disposed on the gate insulating layer, an etch stopping pattern disposed on the oxide semiconductor layer, and a second metal layer disposed on the etch stopping layer. The first metal layer includes a gate line. The gate insulating layer covers the gate line. Patterning of the oxide semiconductor layer defines an oxide semiconductor pattern. The second metal layer includes a source electrode and a drain electrode electrically connected to the oxide semiconductor pattern. The etch stopping layer is located between the second metal layer and the oxide semiconductor layer. The second metal layer includes a signal line disposed on the etch stopping layer and is electrically connected to the oxide semiconductor pattern. A manufacturing method of the semiconductor structure is also provided.
US11171242B2 Semiconductor device and method for manufacturing semiconductor device
A semiconductor device includes: a semiconductor layer of a first conductivity type formed over a substrate; a plurality of semiconductor nanowires formed of a compound semiconductor of the first conductivity type extending above the semiconductor layer; and a gate electrode formed around the semiconductor nanowires in a connection portion between the semiconductor layer and the semiconductor nanowires.
US11171239B2 Transistor channel passivation with 2D crystalline material
Transistor structures with a channel semiconductor material that is passivated with two-dimensional (2D) crystalline material. The 2D material may comprise a semiconductor having a bandgap offset from a band of the channel semiconductor. The 2D material may be a thin as a few monolayers and have good temperature stability. The 2D material may be a conversion product of a sacrificial precursor material, or of a portion of the channel semiconductor material. The 2D material may comprise one or more metal and a chalcogen. The channel material may be a metal oxide semiconductor suitable for low temperature processing (e.g., IGZO), and the 2D material may also be compatible with low temperature processing (e.g., <450° C.). The 2D material may be a chalcogenide of a metal present in the channel material (e.g., ZnSx or ZnSex) or of a metal absent from the channel material when formed from a sacrificial precursor.
US11171238B2 FinFET device with high-k metal gate stack
Methods are disclosed herein for forming fin-like field effect transistors (FinFETs) that maximize strain in channel regions of the FinFETs. An exemplary method includes forming a fin having a first width over a substrate. The fin includes a first semiconductor material, a second semiconductor material disposed over the first semiconductor material, and a third semiconductor material disposed over the second semiconductor material. A portion of the second semiconductor material is oxidized, thereby forming a second semiconductor oxide material. The third semiconductor material is trimmed to reduce a width of the third semiconductor material from the first width to a second width. The method further includes forming an isolation feature adjacent to the fin. The method further includes forming a gate structure over a portion of the fin, such that the gate structure is disposed between source/drain regions of the fin.
US11171234B2 Semiconductor device
A semiconductor device includes a first transistor disposed in a first region of a semiconductor layer and a second transistor disposed in a second region of the semiconductor layer, and includes, on the surface of the semiconductor layer, first source pads, a first gate pad, second source pads, and a second gate pad. In the plan view of the semiconductor layer, the first and second transistors are aligned in a first direction; the first gate pad is disposed such that none of the first source pads is disposed between the first gate pad and a side parallel to the first direction and located closest to the first gate pad; and the second gate pad is disposed such that none of the second source pads is disposed between the second gate pad and a side parallel to the first direction and located closest to the second gate pad.
US11171232B2 High voltage device and manufacturing method thereof
A high voltage device for use as a lower switch in a power stage of a switching regulator includes at least one lateral diffused metal oxide semiconductor (LDMOS) device and at least one Schottky barrier diode (SBD). The LDMOS device includes: a well, a body region, a gate, a source, and a drain. The SBD includes a Schottky metal layer and a Schottky semiconductor layer. The Schottky metal layer is electrically connected to the source, and the Schottky semiconductor layer is in contact with the well.
US11171229B2 Low switching loss high performance power module
The present disclosure relates to a power module that has a housing with an interior chamber and a plurality of switch modules interconnected to facilitate switching power to a load. Each of the plurality of switch modules comprises at least one transistor and at least one diode mounted within the interior chamber and both the at least one transistor and the at least one diode are majority carrier devices, are formed of a wide bandgap material system, or both. The switching modules may be arranged in virtually any fashion depending on the application. For example, the switching modules may be arranged in a six-pack, full H-bridge, half H-bridge, single switch or the like.
US11171223B2 Method for manufacturing semiconductor device and integrated semiconductor device
A method for manufacturing a semiconductor device and an integrated semiconductor device, said method comprising: providing an epitaxial layer having a first region and a second region, forming, in the first region, at least two second doping-type deep wells, and forming, in the second region, at least two second doping-type deep wells; forming a first dielectric island between the second doping-type deep wells and forming a second dielectric island on the second doping-type deep wells; forming a first doping-type trench on two sides of the first dielectric island in the first region; forming a gate structure on the first dielectric island; and forming a separated first doping-type source region by using the second dielectric island as a mask, the first doping-type trench extending, in the first region, transversally to the first doping-type source region.
US11171219B2 Negative-capacitance and ferroelectric field-effect transistor (NCFET and FE-FET) devices
Negative capacitance field-effect transistor (NCFET) and ferroelectric field-effect transistor (FE-FET) devices and methods of forming are provided. The gate dielectric stack includes a ferroelectric gate dielectric layer. An amorphous high-k dielectric layer and a dopant-source layer are deposited sequentially followed by a post-deposition anneal (PDA). The PDA converts the amorphous high-k layer to a polycrystalline high-k film with crystalline grains stabilized by the dopants in a crystal phase in which the high-k dielectric is a ferroelectric high-k dielectric. After the PDA, the remnant dopant-source layer may be removed. A gate electrode is formed over remnant dopant-source layer (if present) and the polycrystalline high-k film.
US11171216B2 Semiconductor device and control system
According to an embodiment, a semiconductor device includes a first semiconductor layer, a first switching element, a second switching element, and a conductor. The conductor is provided at least in part on the first semiconductor layer and located between the first switching element and the second switching element in a first direction.
US11171215B2 Threshold voltage adjustment using adaptively biased shield plate
An apparatus includes a first lateral diffusion field effect transistor (LDFET) having a first threshold voltage and that includes a first gate electrode, a first drain contact, a first source contact, and a first electrically conductive shield plate separated from the first gate electrode and the first source contact by a first interlayer dielectric. A second LDFET of the apparatus has a second threshold voltage and includes a second gate electrode, a second drain contact, and a second source contact. The second source contact is electrically connected to the first source contact of the first LDFET. A control circuit of the apparatus is electrically coupled to the first electrically conductive shield plate and is configured to apply to the first electrically conductive shield plate a first gate bias voltage of a first level to set the first threshold voltage of the first LDFET to a first desired threshold voltage.
US11171213B2 Gallium-nitride-based module with enhanced electrical performance and process for making the same
The present disclosure relates to a Gallium-Nitride (GaN) based module, which includes a module substrate, a thinned switch die residing over the module substrate, a first mold compound, and a second mold compound. The thinned switch die includes an electrode region, a number of switch interconnects extending from a bottom surface of the electrode region to the module substrate, an aluminium gallium nitride (AlGaN) barrier layer over a top surface of the electrode region, a GaN buffer layer over the AlGaN barrier layer, and a lateral two-dimensional electron gas (2DEG) layer realized at a heterojunction of the AlGaN barrier layer and the GaN buffer layer. The first mold compound resides over the module substrate, surrounds the thinned switch die, and extends above a top surface of the thinned switch die to form an opening over the top surface of the thinned switch die. The second mold compound fills the opening.
US11171210B2 Double mesa heterojunction bipolar transistor
The present disclosure relates to semiconductor structures and, more particularly, to a heterojunction bipolar transistor and methods of manufacture. The structure includes: a sub-collector region; a collector region above the sub-collector region; an intrinsic base region composed of intrinsic base material located above the collector region; an emitter located above and separated from the intrinsic base material; and a raised extrinsic base having a stepped configuration and separated from and self-aligned to the emitter.
US11171202B2 Power semiconductor device having fully depleted channel regions
A power semiconductor device includes a semiconductor body coupled to first and second load terminal structures, an active cell field in the body, and a plurality of first and second cells in the active cell field. Each cell is electrically connected to the first load terminal structure and to a drift region. Each first cell includes a mesa having a port region electrically connected to the first load terminal structure, and a channel region coupled to the drift region. Each second cell includes a mesa having a port region of the opposite conductivity type electrically connected to the first load terminal structure, and a channel region coupled to the drift region. Each mesa is spatially confined in a direction perpendicular to a direction of the load current within the respective mesa, by an insulation structure and has a total extension of less than 100 nm in the direction.
US11171201B2 Semiconductor integrated circuit having a first buried layer and a second buried layer
A semiconductor integrated circuit includes: a semiconductor base body of a first conductivity type; a first well region of a second conductivity type, deposited at an upper portion of the semiconductor base body, to which a first potential is applied; a second well region of the first conductivity type, deposited at an upper portion of the first well region, to which a second potential lower than the first potential is applied; a main electrode region to which the second potential is applied, the main electrode region being deposited at the upper portion of the first well region and away from the second well region; a first buried layer of the second conductivity type buried locally under the second well region; and a second buried layer of the second conductivity type buried locally under the main electrode region and away from the first buried layer.
US11171199B2 Metal-insulator-metal capacitors with high breakdown voltage
The present disclosure relates to an apparatus that includes a bottom electrode and a dielectric structure. The dielectric structure includes a first dielectric layer on the bottom electrode and the first dielectric layer has a first thickness. The apparatus also includes a blocking layer on the first dielectric layer and a second dielectric layer on the blocking layer. The second dielectric layer has a second thickness that is less than the first thickness. The apparatus further includes a top electrode over the dielectric structure.
US11171197B2 Display device
A display device includes a substrate including a first area, a second area, and a bending area. A plurality of first wires are positioned in the first area. A plurality of second wires are positioned in the second area. An insulating layer is positioned in the bending area. A plurality of connecting wires are disposed on the insulating layer. Each of the connecting wires is connected with at least one of the first wires and at least one of the second wires. Each of the connecting wires includes a first portion and a second portion alternatingly arranged along an extending direction of the connecting wires. A width of the first portion is wider than a width of the second portion in a direction perpendicular to the extending direction each of the connecting wires.
US11171187B2 Display device and manufacturing method thereof
A display device may include a substrate, a thin film transistor, a first electrode, a second electrode, and a barrier. The thin film transistor is disposed on the substrate. The first electrode is electrically connected to the thin film transistor. The second electrode overlaps the first electrode. The barrier has a first portion and a second portion. The second portion is disposed between the first portion and the second electrode and is fluorine-doped. A side surface of the first portion is part of a boundary of an opening of the barrier and is hydrophilic. The opening of the barrier is disposed between the first electrode and the second electrode.
US11171186B2 Light-emitting structure of display panel with variable reflectivity units having piezoelectric structures, and control method for the same
The present disclosure provides a light-emitting structure, a display panel, a display device, and a control method for a display panel, so as to solve the problem that the user's eyes cannot clearly see the image displayed by the display panel due to ambient light. The light-emitting structure includes a light-emitting unit and a variable reflectivity unit. The light-emitting unit includes a first electrode, a second electrode and a light-emitting layer in between. The first electrode is a transparent electrode. The variable reflectivity unit includes a piezoelectric structure and a layer of liquid reflective material between the first electrode and the piezoelectric structure. A thickness of the layer of the liquid reflective material filled between the piezoelectric structure and the first electrode is changed by deformation of the piezoelectric structure. The light-emitting structure is used to emit light for displaying the image.
US11171184B2 Display device and method of manufacturing the same
A display device includes: a display panel; a first force sensor disposed below the display panel; a display circuit board attached to a first side of the display panel; and a first flexible circuit board connecting the first force sensor and the display circuit board, wherein the display circuit board and the first flexible circuit board are bent at least once.
US11171183B2 Display panel
A display panel including: a first display substrate and a second display substrate. The second display substrate includes: a base substrate; a light control layer disposed on the base substrate and including a first conversion part configured to convert the first color light into a second color light, a second conversion part configured to convert the first color light into a third color light, and a transmission part configured to transmit the first color light; and a nano particle layer disposed between the base substrate and the light control layer and configured to absorb at least one of a first light having an overlapping wavelength range of a wavelength range of the first color and a wavelength range of the third color and a second light having an overlapping wavelength range of a wavelength range of the second color and a wavelength range of the third color.
US11171178B2 Semiconductor memory device having a variable resistence layer
An electronic device including a semiconductor memory is provided. The semiconductor memory includes: a substrate having a substantially horizontal upper surface; first to Nth layers disposed in horizontal layers on the substrate and spaced apart from each other above the substrate in a vertical direction, wherein each of the first to Nth layers comprises a plurality of conductive lines; an insulating layer disposed to fill spaces between the conductive lines; a hole having sidewalls that extends in the vertical direction through the insulating layer and between the conductive lines to expose, in sidewalls of the hole, conductive lines of the first to Nth layers; a variable resistance layer disposed on sidewalls of the hole; and a conductive pillar disposed to fill the hole in which the variable resistance layer is formed, wherein N is a natural number of two or more.
US11171176B2 Asymmetric selector element for low voltage bipolar memory devices
Embedded non-volatile memory structures having asymmetric selector elements are described. In an example, a memory device includes a word line. An asymmetric selector element is above the word line. The asymmetric selector element includes a first electrode material layer, a selector material layer on the first electrode material layer, and a second electrode material layer on the selector material layer, the second electrode material layer different in composition than the first electrode material layer. A bipolar memory element is above the word line, the bipolar memory element on the asymmetric selector element. A bit line is above the word line.
US11171173B2 Image sensors
Image sensors are provided. Image sensors may include unit pixels arranged in a first direction and a second direction crossing the first direction. Each of the unit pixels may include first and second floating diffusion regions and first and second photo gate electrodes between the first and second floating diffusion regions. The unit pixels may include a first unit pixel, a second unit pixel, and a third unit pixel sequentially arranged. The first floating diffusion region of the second unit pixel may be between the first photo gate electrode of the first unit pixel and the first photo gate electrode of the second unit pixel, and the second floating diffusion region of the second unit pixel may be between the second photo gate electrode of the second unit pixel and the second photo gate electrode of the third unit pixel.
US11171171B2 X-ray detector
Disclosed herein is an apparatus suitable for detecting X-ray. The apparatus may comprise an X-ray absorption layer, an electronics layer and a distribution layer. The X-ray absorption layer may comprise a first plurality of electric contacts and configured to generate electrical signals on the first plurality of electric contacts from X-ray incident on the X-ray absorption layer. The electronics layer may comprise a second plurality of electric contacts and an electronic system, wherein the electric system electrically connects to the second plurality of electric contacts and is configured to process or interpret the electrical signals. The first plurality of electric contacts and the second plurality of electric contacts have different spatial distributions. The distribution layer is configured to electrically connect the first plurality of electric contacts to the second plurality of electric contacts.
US11171170B2 Image sensor package with flexible printed circuits
The present technology relates to a semiconductor device including: a solid-state image sensor having a pixel array unit in which a plurality of pixels each having a photoelectric conversion element is two-dimensionally arranged in a matrix; and a flexible printed circuit having wiring adapted to connect a pad portion provided on an upper surface side to be located on a light receiving surface side of the solid-state image sensor to an external terminal provided on a lower surface side opposite to the upper surface side, in which the flexible printed circuit is arranged along respective surfaces of the solid-state image sensor such that a position of an end portion located on the upper surface side becomes a position different from a position in a space above the light receiving surface.
US11171168B2 Bi-spectral detector
An optical detector that is sensitive in at least two infrared wavelength ranges: first spectral band and second spectral band; and having a set of pixels, comprising: an absorbent structure disposed on a lower face of a substrate and comprising a stack of at least one absorbent layer made of semi-conductor material; the detector further comprising a plurality of dielectric resonators on the upper surface of said substrate forming an upper surface metasurface, the metasurface configured to diffuse, deflect and focus in the pixels of the detector in a resonant manner, when illuminated by the incident light, a first beam having at least one first wavelength included in the first spectral band and a second beam having at least one second wavelength included in the second band, the metasurface also being configured so that said first and second beams are focused on different pixels of the detector.
US11171167B2 Solid-state imaging apparatus and electronic apparatus
There is provided a imaging device including: an N-type region formed for each pixel and configured to perform photoelectric conversion; an inter-pixel light-shielding wall penetrating a semiconductor substrate in a depth direction and formed between N-type regions configured to perform the photoelectric conversion, the N-type regions each being formed for each of pixels adjacent to each other; a P-type layer formed between the N-type region configured to perform the photoelectric conversion and the inter-pixel light-shielding wall; and a P-type region adjacent to the P-type layer and formed between the N-type region and an interface on a side of a light incident surface of the semiconductor substrate.
US11171164B2 Image sensor, image processing method, and electronic device
The present disclosure relates to an image sensor, an image processing method, and an electronic device capable of executing image processing with fewer resources. The image sensor is provided with a pixel region in which pixels each including a photoelectric conversion unit which converts light to a charge and an in-pixel memory unit which holds the charge generated in the photoelectric conversion unit are arranged in a matrix manner, a driving unit which drives to read out a pixel signal from the pixel, and an image processing unit which performs image processing based on a plurality of images read out by a plurality of times of readout from the pixel region according to driving of the driving unit. The present technology may be applied to, for example, an image sensor including a logic circuit.
US11171162B2 Display device having scan lines of different lengths
A display device may include a substrate; a plurality of signal lines on the substrate; a plurality of scan lines on the substrate, the scan lines crossing the signal lines; and a plurality of thin film transistors at crossing positions of the scan lines and the signal lines. The scan lines include some first scan lines and some second scan lines. Each of the second scan lines has an end connected to a load element.
US11171158B2 SOI substrate compatible with the RFSOI and FDSOI technologies
A semiconductor on insulator type substrate, comprising at least: a support layer; a semiconductor surface layer; a buried dielectric layer located between the support layer and the semiconductor surface layer; a trap rich layer located between the buried dielectric layer and the support layer, and comprising at least one polycrystalline semiconductor material and/or a phase change material; in which the trap rich layer comprises at least one first region and at least one second region adjacent to each other in the plane of the trap rich layer, the material of the at least one first region being in an at least partially recrystallized state and having an electrical resistivity less than that of the material in the at least one second region.
US11171156B2 Ferroelectric memory device
According to an embodiment, a memory device includes a first conductive layer extending in a first direction, a second conductive layer extending in the first direction, a third conductive layer extending in a second direction intersecting with the first direction, an insulating layer provided between the first conductive layer and the second conductive layer, and a dielectric layer provided between the first conductive layer and the third conductive layer, and between the insulating layer and the third conductive layer, the dielectric layer having a first thickness thinner than a second thickness, the first thickness being a thickness between the first conductive layer and the third conductive layer, the second thickness being a thickness between the insulating layer and the third conductive layer, and the dielectric layer including an oxide including at least one of hafnium oxide and zirconium oxide.
US11171155B2 Multi-layer semiconductor element, semiconductor device, and electronic device for storage, and method of manufacturing the same
Provided are a semiconductor storage element, a semiconductor device, an electronic device, and a manufacturing method of a semiconductor storage element that enable higher-speed operations. The semiconductor storage element includes: a first semiconductor layer of a first conductivity type; a second semiconductor layer of a second conductivity type that is provided below the first semiconductor layer; a gate electrode provided on the first semiconductor layer; a gate insulator film provided between the first semiconductor layer and the gate electrode; a drain region of the second conductivity type that is provided in the first semiconductor layer on one side of the gate electrode; a source region of the second conductivity type that is provided in the first semiconductor layer on another side facing the one side across the gate electrode; and a bit line configured to electrically connect with both of the source region and the first semiconductor layer.
US11171154B2 Vertical memory devices
Aspects of the disclosure provide a semiconductor device. The semiconductor device includes gate layers and insulating layers that are stacked alternatingly along a direction perpendicular to a substrate of the semiconductor device and form a stack upon the substrate. The semiconductor device includes an array of channel structures that are formed in an array region of the stack. Further, the semiconductor device includes a first staircase formed of a first section of the stack in a connection region upon the substrate, and a second staircase formed of a second section of the stack in the connection region upon the substrate. In addition, the semiconductor device includes a dummy staircase formed of the first section of the stack and disposed between the first staircase and the second staircase in the connection region.
US11171153B2 Integrated assemblies having improved charge migration
Some embodiments include a memory device having a vertical stack of alternating insulative levels and conductive levels. Memory cells are along the conductive levels. The conductive levels have control gate regions which include a first vertical thickness, have routing regions which include a second vertical thickness that is less than the first vertical thickness, and have tapered transition regions between the first vertical thickness and the second vertical thickness. Charge-blocking material is adjacent to the control gate regions. Charge-storage material is adjacent to the charge-blocking material. Dielectric material is adjacent to the charge-storage material. Channel material extends vertically along the vertical stack and is adjacent to the dielectric material. The memory cells include the control gate regions, and include regions of the charge-blocking material, the charge-storage material, the dielectric material and the channel material. Some embodiments include methods of forming integrated assemblies.
US11171152B2 Three-dimensional flash memory device including cell gate patterns having blocking barrier patterns and a method for manufacturing the same
A three-dimensional flash memory device is described that may include a substrate, a plurality of cell gate patterns and a plurality of mold insulating layers alternately stacked on the substrate, and a vertical channel structure in contact with side surfaces of the plurality of cell gate patterns and side surfaces of the plurality of mold insulating layers. Each of the plurality of cell gate patterns may include a cell gate electrode and a blocking barrier pattern adjacently disposed on one side surface of the cell gate electrode. An inner side surface of the blocking barrier pattern may include an upper inner side surface, a middle inner side surface, and a lower inner side surface. The middle inner side surface of the blocking barrier pattern may face the one side surface of the cell gate electrode. The blocking barrier pattern may have a portion protruding toward the cell gate electrode at a connection point between the upper inner side surface of the blocking barrier pattern and the middle inner side surface of the blocking barrier pattern.
US11171151B2 Vertical memory devices and methods of manufacturing the same
A vertical memory device includes first gate electrodes stacked on a cell region of a substrate and spaced apart from each other in a vertical direction substantially perpendicular to an upper surface of the substrate, a channel extending through the first gate electrodes and extending in the vertical direction, a first contact plug structure contacting a corresponding one of the first gate electrodes, extending in the vertical direction, and including a first metal pattern, a first barrier pattern covering a lower surface and a sidewall of the first metal pattern and a first metal silicide pattern covering a lower surface and a sidewall of the first barrier pattern, and a second contact plug structure extending in the vertical direction on a peripheral circuit region of the substrate and including a second metal pattern and a second barrier pattern covering a lower surface and a sidewall of the second metal pattern.
US11171150B2 Three-dimensional memory device containing a channel connection strap and method for making the same
A three-dimensional memory device includes an alternating stack of insulating layers and electrically conductive layers located over a substrate, a memory opening extending through the alternating sack, and a memory opening fill structure located within the memory opening. The memory opening fill structure includes a pedestal channel portion, a memory film overlying the pedestal channel portion, a vertical semiconductor channel located inside the memory film, and a channel connection strap that extends through an opening of the memory film and contacting the pedestal channel portion and the vertical semiconductor channel. The channel connection strap has a topmost surface located below a horizontal plane including a top surface of the vertical semiconductor channel. The channel connection strap portion may be formed by a selective semiconductor growth from physically exposed semiconductor surfaces, and may provide enhanced electrical connection between the pedestal channel portion and the vertical semiconductor channel.
US11171149B2 Semiconductor storage device with three dimensional memory cell array
According to one embodiment, in a semiconductor storage device, the first contact plug electrically connects the third region to the first drive circuit. The second contact plug is provided on one end side of a fourth region in the third direction, the fourth region arranged between the first separation film and the second separation film in the second conductive layer. The second contact plug electrically connects the fourth region to the first drive circuit. The third contact plug is provided on the other end side of the third region in the third direction. The third contact plug electrically connects the third region to the second drive circuit.
US11171146B2 Memory devices and methods of forming memory devices
Some embodiments include an integrated assembly having bottom electrodes coupled with electrical nodes. Each of the bottom electrodes has a first leg electrically coupled with an associated one of the electrical nodes, and has a second leg joining to the first leg. First gaps are between some of the bottom electrodes, and second gaps are between others of the bottom electrodes. The first gaps alternate with the second gaps. Insulative material and conductive-plate-material are within the first gaps. Scaffold structures are within the second gaps and not within the first gaps. Capacitors include the bottom electrodes, regions of the insulative material and regions of the conductive-plate-material. The capacitors may be ferroelectric capacitors or non-ferroelectric capacitors. Some embodiments include methods of forming integrated assemblies.
US11171143B2 Semiconductor structure with dielectric fin in memory cell and method for forming the same
A semiconductor structure is provided. The semiconductor structure includes a first dielectric fin, a first semiconductor fin and a second dielectric fin over a substrate. The first semiconductor fin is between the first dielectric fin and the second dielectric fin. The semiconductor structure also includes a first gate electrode wrapping the first dielectric fin, a channel region of the first semiconductor fin and the second dielectric fin and a first source/drain structure over a source/drain portion of the first semiconductor fin, being in contact with and interposing the first dielectric fin and the second dielectric fin.
US11171138B2 Semiconductor arrangement and method of manufacture
A semiconductor arrangement includes a well region, a transistor over the well region, a conductive line in conductive contact with a first source/drain region of the transistor and having a sidewall in conductive contact with a sidewall of the well region, and a liner layer disposed between the sidewall of the conductive line and the sidewall of the well region. A method includes forming a well region in a semiconductor layer. A first fin and a second fin are formed over the well region. A first spacer is formed on the first fin and a second spacer is formed on the second fin. A portion of the well region positioned between the first spacer and the second spacer is removed to define a trench. A liner layer is formed in the trench, and a conductive line is formed in the trench over the liner layer. The conductive line conductively contacts the well region.
US11171135B2 Semiconductor device
A semiconductor device including a substrate; a first active pattern on the substrate and extending in a first direction, an upper portion of the first active pattern including a first channel pattern; first source/drain patterns in recesses in an upper portion of the first channel pattern; and a gate electrode on the first active pattern and extending in a second direction crossing the first direction, the gate electrode being on a top surface and on a side surface of the at least one first channel pattern, wherein each of the first source/drain patterns includes a first, second, and third semiconductor layer, which are sequentially provided in the recesses, each of the first channel pattern and the third semiconductor layers includes silicon-germanium (SiGe), and the first semiconductor layer has a germanium concentration higher than those of the first channel pattern and the second semiconductor layer.
US11171134B2 Techniques providing metal gate devices with multiple barrier layers
A semiconductor device with a metal gate is disclosed. An exemplary semiconductor device with a metal gate includes a semiconductor substrate, source and drain features on the semiconductor substrate, a gate stack over the semiconductor substrate and disposed between the source and drain features. The gate stack includes a HK dielectric layer formed over the semiconductor substrate, a plurality of barrier layers of a metal compound formed on top of the HK dielectric layer, wherein each of the barrier layers has a different chemical composition; and a stack of metals gate layers deposited over the plurality of barrier layers.
US11171132B2 Bi-directional breakdown silicon controlled rectifiers
The present disclosure relates to semiconductor structures and, more particularly, to bi-directional silicon controlled rectifiers (SCRs) and methods of manufacture. The structure includes: a plurality of diffusion regions; a plurality of p-type (P+) wells adjacent to the diffusion regions, wherein the P+ wells are directly connected; and a plurality of n-type (N+) wells adjacent to the P+ wells.
US11171130B2 Semiconductor devices, semiconductor device packages, electronic systems including same, and related methods
Semiconductor devices and semiconductor device packages may include at least one first semiconductor die supported on a first side of a substrate. The at least one first semiconductor die may include a first active surface. A second semiconductor die may be supported on a second, opposite side of the substrate. The second semiconductor die may include a second active surface located on a side of the second semiconductor die facing the substrate. The second semiconductor die may be configured to have higher median power consumption than the at least one first semiconductor die during operation. An electronic system incorporating a semiconductor device package is disclosed, as are related methods.
US11171124B2 Light-emitting substrate and repair method thereof
A light-emitting substrate and a repair method thereof are provided. The light-emitting substrate includes a substrate, a first conductive line, a second conductive line, a signal line, an insulating layer, first to third light-emitting devices, and a first sub-conductive line. The first and second conductive lines and the signal line are disposed on the substrate. The insulating layer is disposed on the first and second conductive lines. The first to third light-emitting devices are disposed on the substrate. The first light-emitting device is disposed corresponding to the first conductive line. The second light-emitting device is disposed corresponding to the second conductive line. The first to third light-emitting devices are disposed corresponding to the signal line. The first sub-conductive line is disposed on the insulating layer. The first sub-conductive line is overlapped with the first and second conductive lines. The third light-emitting device is disposed corresponding to the first sub-conductive line.
US11171121B2 Semiconductor devices with redistribution structures configured for switchable routing
Semiconductor devices having redistribution structures, and associated systems and methods, are disclosed herein. In one embodiment, a semiconductor package includes a first semiconductor die including a first redistribution structure and a second semiconductor die including a second redistribution structure. The first and second semiconductor dies can be mounted on a package substrate such that the first and second redistribution structures are aligned with each other. In some embodiments, an interconnect structure can be positioned between the first and second semiconductor dies to electrically couple the first and second redistribution structures to each other. The first and second redistribution structures can be configured such that signal routing between the first and second semiconductor dies can be altered based on the location of the interconnect structure.
US11171117B2 Interlayer connection of stacked microelectronic components
Representative techniques and devices including process steps may be employed to form a common interconnection of a multi-die or multi-wafer stack. Each device of the stack includes a conductive pad disposed at a predetermined relative position on a surface of the device. The devices are stacked to vertically align the conductive pads. A through-silicon via is formed that electrically couples the conductive pads of each device of the stack.
US11171114B2 Die stack with cascade and vertical connections
An electronic assembly includes a plurality of electronic die arranged into shingles, each shingle having a multiple offset stacked die coupled by cascading connections. Each shingle is arranged in a stack of shingles with alternate shingles having die stacked in opposite directions and offset in a zigzag manner to facilitate vertical electrical connections from a top of the electronic assembly to a bottom die of each shingle.
US11171112B2 Semiconductor device
Cross talk among wirings formed in an interposer is reduced while increase in a parasitic capacitance among the wirings formed in the interposer is suppressed. A semiconductor device has an interposer including a first wiring layer, a second wiring layer formed above the first wiring layer, and a third wiring layer formed above the second wiring layer. In a plan view, a first signal wiring formed in the first wiring layer and a reference wiring formed in the second wiring layer are distant from each other. Similarly, in a plan view, the reference wiring formed in the second wiring layer and a third signal wiring formed in a third wiring layer are distant from each other.
US11171110B2 Backside metalization with through-wafer-via processing to allow use of high q bondwire inductances
A flip-chip integrated circuit die includes a front side including active circuitry formed therein and a plurality of bond pads in electrical communication with the active circuitry, at least two through-wafer vias extending at least partially though the die and having portions at a rear side of the die, and a bond wire external to the die and electrically coupling the portions of the at least two through-wafer vias at the rear side of the die.
US11171108B2 Semiconductor package and method for manufacturing the same
A semiconductor package includes a first die having a first surface, a first conductive bump over the first surface and having first height and a first width, a second conductive bump over the first surface and having a second height and a second width. The first width is greater than the second width and the first height is substantially identical to the second height. A method for manufacturing the semiconductor package is also provided.
US11171104B2 IC chip package with dummy solder structure under corner, and related method
An IC chip package includes a substrate having a plurality of interconnect metal pads, and a chip having a plurality of interconnect metal pads arranged thereon. An interconnect solder structure electrically connects each of the plurality of interconnect metal pads. The chip is devoid of the interconnect solder structures and interconnect metal pads at one or more corners of the chip. Rather, a dummy solder structure connects the IC chip to the substrate at each of the one or more corners of the IC chip, and the dummy solder structure is directly under at least one side of the IC chip at the one or more corners of the IC chip. The dummy solder structure has a larger volume than a volume of each of the plurality of interconnect solder structures. The dummy solder structure eliminates a chip-underfill interface at corner(s) of the chip where delamination would occur.
US11171103B2 Solder ball dimension management
A solder ball assembly can include a first spring element having a first shape and formed from a first elastic electrically conductive material. The solder ball assembly can also include a second spring element having a second shape and formed from a second elastic electrically conductive material. The second spring element is mechanically attached to the first spring element to form a spring assembly. The solder ball can be configured to enclose the spring assembly.
US11171100B2 Semiconductor device structure with protected bump and method of forming the same
Structures and formation methods of a semiconductor device structure are provided. The method includes forming a seed layer to cover a first passivation layer over a semiconductor substrate. The method also includes forming a metal layer to partially cover the seed layer by using the seed layer as an electrode layer in a first plating process and forming a metal pillar bump over the metal layer by using the seed layer as an electrode layer in a second plating process. In addition, the method includes forming a second passivation layer over the metal layer, wherein the second passivation layer includes a protrusion portion extending from a top surface of the second passivation layer and surrounding the sidewall of the metal pillar bump.
US11171093B2 Semiconductor structure and fabrication method thereof
Semiconductor structures and fabrication methods are provided. An exemplary fabrication method includes providing a wafer having a functional region and a non-functional region surrounding the functional region; forming a first dielectric layer on the wafer; forming a first opening in the first dielectric layer in the non-functional region; and forming a first connection layer in the first opening. The first connection layer closes a top portion of the first opening, and a void is formed in the first connection layer in first opening.
US11171091B2 Semiconductor device having contact plug connected to gate structure on PMOS region
A semiconductor device includes a substrate having a NMOS region and a PMOS region; a gate structure extending along a first direction from the NMOS region to the PMOS region on the substrate; and a first contact plug landing directly on the gate structure closer to the PMOS region from a boundary separating the NMOS region and the PMOS region. Preferably, the semiconductor device further includes a first source/drain region extending along a second direction adjacent to two sides of the gate structure on the NMOS region and a second source/drain region extending along the second direction adjacent to two sides of the gate structure on the PMOS region.
US11171090B2 Semiconductor device and method of manufacture
A method includes forming a device structure, the method including forming a first redistribution structure over and electrically connected to a semiconductor device, forming a molding material surrounding the first redistribution structure and the semiconductor device, forming a second redistribution structure over the molding material and the first redistribution structure, the second redistribution structure electrically connected to the first redistribution structure, attaching an interconnect structure to the second redistribution structure, the interconnect structure including a core substrate, the interconnect structure electrically connected to the second redistribution structure, forming an underfill material on sidewalls of the interconnect structure and between the second redistribution structure and the interconnect structure.
US11171086B2 Semiconductor device
A semiconductor device includes a base member, a multilayer wiring layer, and a first resistive element. The multilayer wiring layer is formed on the base member. The first resistive element is formed in the multilayer wiring layer. The first resistive element includes a first conductive part, a second conductive part and a third conductive part. The second conductive part is formed over the first conductive part. The third conductive part electrically connects the first conductive part and the second conductive part with each other. A length of the third conductive part in a first direction along a surface of the base member is greater than a length of the third conductive part in a second direction along the surface of the base member and perpendicular to the first direction.
US11171082B2 Semiconductor package
A semiconductor package includes: a connection structure including a plurality of insulating layers and redistribution layers respectively disposed on the plurality of insulating layers; a semiconductor chip having connection pads connected to the redistribution layer; an encapsulant encapsulating the semiconductor chip; first and second pads arranged on at least one surface of the connection structure and each having a plurality of through-holes; a surface mount component disposed on the at least one surface of the connection structure and including first and second external electrodes positioned, respectively, in regions of the first and second pads; first and second connection vias arranged in the plurality of insulating layers and connecting the first and second pads to the redistribution layers, respectively; and first and second connection metals connecting the first and second pads and the first and second external electrodes to each other, respectively.
US11171081B2 Wiring substrate, semiconductor package and method of manufacturing wiring substrate
A second wiring layer is connected to a first wiring layer via an insulating layer. The second wiring layer comprises pad structures. Each pad structure includes a first metal layer formed on the insulating layer, a second metal layer formed on the first metal layer, and a third metal layer formed on the second metal layer. The pad structures comprises a first pad structure and a second pad structure. A via-wiring diameter of the first pad structure is different from a via-wiring diameter of the second pad structure. A distance from an upper surface of the insulating layer to an upper surface of the second metal layer of the first pad structure is the same as a distance from the upper surface of the insulating layer to an upper surface of the second metal layer of the second pad structure.
US11171080B2 Wiring substrate
A wiring substrate includes a first insulation layer, an electronic component including a first surface and a second surface which is an opposite surface to the first surface, the electronic component being mounted on the first insulation layer with the first surface facing toward the first insulation layer, and a second insulation layer including a first layer and a second layer. The first layer is formed on the first insulation layer and configured to cover the second surface of the electronic component, and the second layer is stacked on the first layer. The first layer includes therein fillers. At least one of the fillers is in direct contact with the second surface of the electronic component at one side, and is exposed from the first layer and is thus in direct contact with the second layer at the other side.
US11171079B2 Semiconductor device and method of manufacturing semiconductor device
A semiconductor device includes a substrate including wiring at a surface thereof, a semiconductor element on a surface of the substrate, a first solder resist on the wiring, a bonding wire connecting the wiring and the semiconductor element, and a second solder resist. The first solder resist has an opening region at which a part of the wiring is non-covered by the first solder resist, and the bonding wire connects the wiring and the semiconductor element in the opening region. The second solder resist at least partially covers the non-covered part of the wiring in the opening region.
US11171078B2 Semiconductor device and method for manufacturing the same
A semiconductor device includes an insulated circuit board having conductor layers arranged away from each other and bonding materials each provided on the conductor layers; a wiring board having an opposing surface facing the conductor layers and through holes each corresponding to a position of each bonding material; hollow members each having a cylindrical portion and a flanged portion at one end of the cylindrical portion and having a cavity in common with the cylindrical portion, ok cylindrical portions press-fitted into the through holes, and other ends of the cylindrical portions bonded to the conductor layers by the bonding materials; and external connection terminals each inserted into the cavity of each hollow member and bonded to the conductor layers. Each cylindrical portion is inserted into each through hole such that each flanged portion contacts with an upper surface opposed to the opposing surface of the wiring board.
US11171075B2 Stacked microfluidic cooled 3D electronic-photonic integrated circuit
An electronic-photonic integrated-circuit assembly comprises a carrier substrate (310) and one or more integrated-circuit dies (330, 340) bonded to one another so as to form a die stack with exterior surfaces corresponding to an outer surface of a first one of the integrated-circuit dies and to an outer surface of a second one of the integrated-circuit dies, where at least one of the integrated-circuit dies includes one or more integrated photonic devices. One or more channels or passages (320) are formed into the outer surface of the first one of the integrated-circuit dies, and a first surface of the carrier substrate (310) is bonded to the outer surface of the first one of the integrated-circuit dies, thereby enclosing the one or more channels or passages (320), The integrated-circuit dies are electrically connected to each other via electrically conductive through-wafer interconnects or electrically conductive through-wafer vias.
US11171074B2 Heat sink board, manufacturing method thereof, and semiconductor package including the same
A heat sink board according to an embodiment of the present invention includes a heat sink layer, an insulated layer formed on the heat sink layer, and a metal layer formed on the insulated layer, wherein both end parts of the heat sink layer and both end parts of the insulated layer are respectively projected further than the both end parts of the metal layer.
US11171070B2 Component carrier with integrated thermally conductive cooling structures
A component carrier having a stack with at least one electrically insulating layer structure and/or at least one electrically conductive layer structure and an array of exposed highly thermally conductive cooling structures integrally formed with the stack and defining cooling channels in between is disclosed.
US11171069B1 Display module, manufacturing method thereof and electronic device
A display module and a method of manufacturing the display module are provided. The display module comprises a display panel, a driving integrated circuit on the display panel, and a protective tape on the driving integrated circuit. The protective tape includes a second adhesive material on the driving integrated circuit, and an adhesive tape on the second adhesive material. The second adhesive material fills an area between the adhesive tape and the display panel.
US11171065B2 Automated inspection tool
Some embodiments of the present disclosure relate to a processing tool. The tool includes a housing enclosing a processing chamber, and an input/output port configured to pass a wafer through the housing into and out of the processing chamber. A back-side macro-inspection system is arranged within the processing chamber and is configured to image a back side of the wafer. A front-side macro-inspection system is arranged within the processing chamber and is configured to image a front side of the wafer according to a first image resolution. A front-side micro-inspection system is arranged within the processing chamber and is configured to image the front side of the wafer according to a second image resolution which is higher than the first image resolution.
US11171058B2 Self-aligned 3-D epitaxial structures for MOS device fabrication
Techniques are disclosed for customization of fin-based transistor devices to provide a diverse range of channel configurations and/or material systems within the same integrated circuit die. In accordance with one example embodiment, sacrificial fins are removed and replaced with custom semiconductor material of arbitrary composition and strain suitable for a given application. In one such case, each of a first set of the sacrificial fins is recessed or otherwise removed and replaced with a p-type material, and each of a second set of the sacrificial fins is recessed or otherwise removed and replaced with an n-type material. The p-type material can be completely independent of the process for the n-type material, and vice-versa. Numerous other circuit configurations and device variations are enabled using the techniques provided herein.
US11171051B1 Contacts and liners having multi-segmented protective caps
Embodiments of the invention include a method of forming a multi-layer integrated circuit (IC) structure that includes forming a first layer of the multi-layered IC structure, wherein the first layer includes a trench having a liner and a conductive interconnect formed in the trench. The liner is formed such that it is not on a portion of a sidewall of the conductive interconnect. A multi-segmented cap is formed having a first cap segment and a second cap segment. The first cap segment is on a top surface of the conductive interconnect, and a first portion of the second cap segment is on the portion of the sidewall of the conductive interconnect. The second cap segment is on a top surface of the first cap segment.
US11171041B2 Etch damage and ESL free dual damascene metal interconnect
Some embodiments relate to a semiconductor device manufacturing process. In the process, a substrate is provided, and a sacrificial layer is formed over the substrate. An opening is patterned through the sacrificial layer, and the opening is filled with conductive material. The sacrificial layer is removed while the conductive material is left in place. A first dielectric layer is formed along sidewalls of the conductive material that was left in place.
US11171039B2 Composite semiconductor substrate, semiconductor device and method for manufacturing the same
A composite semiconductor substrate includes a semiconductor substrate, an oxygen-doped crystalline semiconductor layer and an insulative layer. The oxygen-doped crystalline semiconductor layer is over the semiconductor substrate, and the oxygen-doped crystalline semiconductor layer includes a crystalline semiconductor material and a plurality of oxygen dopants. The insulative layer is over the oxygen-doped crystalline semiconductor layer.
US11171035B2 Selective etches for reducing cone formation in shallow trench isolations
Techniques of fabricating shallow trench isolation structures that reduce or minimize the number of trench cones during the formation of shallow trenches. The disclosed techniques introduce separate etch steps for etching shallow trenches with small feature dimensions and for etching shallow trenches with large feature dimensions. As an example, the disclosed techniques involve etching a first shallow trench in a first region of a substrate with a first etching parameter, and etching a second shallow trench in a second region of a substrate with a second etching parameter different from the first etching parameter. Among other things, the etching parameter may include an etching selectivity ratio of silicon to an etch retardant that contributes to cone formations. Because of the separate etch steps, the disclosed techniques allow the sidewall slopes between the first and second shallow trenches to be within a few degrees of deviation.