Document Document Title
US11057148B2 Data encoding and decoding
A signal transmitter and a signal receiver for interpreting a received message are provided. The receiver is configured to perform the steps of: decoding a first part of the message using a channel decoding scheme with a predefined set of decoding parameters to form a first data block; and subsequently decoding a second part of the message using the channel decoding scheme with decoding parameters that are at least partially dependent on the content of the first data block.
US11057147B2 Managing upstream transmission in a network
A bandwidth allocation and monitoring method may divide available bandwidth on a shared communication medium into a plurality of discrete tones that can be individually allocated to modems on an as-needed basis. The effective modulation rate that a particular modem can use for each discrete tone can be monitored over time using a schedule of pilot tones transmitted from the modems on different tones at different times. The schedule may define representative pilot tones, in which case effective modulation rates for neighboring tones may be inferred from a determined effective modulation rate of a pilot tone.
US11057146B2 Virtualized sections for sectional control of optical links
Systems and methods are implemented at an Optical Add/Drop Multiplexer (OADM) node using virtual sections to provide sectional control over an optical link over a foreign-controlled optical network. The systems and methods include obtaining and storing a first power spectral density snapshot of an optical link, from an optical spectrum monitor and when the optical link is in a non-fault condition; responsive to detection of a fault on channels traversing the optical link, obtaining a second power spectral density snapshot at a receiving end of the optical link; analyzing the first power spectral density snapshot and the second power spectral density snapshot; and determining the fault is on the optical link based on the analyzing.
US11057143B1 Wavelength division multiplexing (WDM)-based and multipath interferometry based optical ternary content addressable memory (TCAM)
Systems and methods for an optical ternary content addressable memory (TCAM) is provided. In various embodiments, one or more search words can be encoded in a multi-wavelength input signal. Each bit position associated with a set of wavelengths of the input signal, each wavelength corresponding to a logic value. A plurality of copies of the input signal can be coupled to an optical search engine comprising a plurality of rows of stored words. In various embodiments, the search word may be encoded in the amplitude of a single wavelength. Each bit position can be associated with a set input waveguides, and a logic value can be encoded based on whether amplitude of the associated wavelength is detected on a respective input waveguide of the set of waveguides. A mismatch of at least one bit is indicated if light is detected on an output of the optical TCAM.
US11057140B2 Method for transmitting signal, terminal device and network device
Disclosed are a method for transmitting a signal, a terminal device and a network device. The method comprises: a terminal device determining a time domain position, in a first transmission cycle, of a synchronization signal block burst of a cell where the terminal device is located; and the terminal device receiving, according to the time domain position of the synchronization signal block burst in the first transmission cycle, a synchronization signal block sent by a network device. The method, the terminal device and the network device in the embodiments of the prevent application can reduce the computation complexity of the terminal device, reduce the detection time and save on the power consumption.
US11057139B2 Mitigation of inter-base station resynchronization loss in LTE/LTE-A networks with contention-based shared frequency spectrum
Mitigation of inter-base station resynchronization loss in wireless networks including contention-based shared frequency spectrum is discussed. Aspects of such mitigation provide for base stations entering into an idle mode when a transmission opportunity occurs in a radio frame of the next resynchronization occasion. Additional aspects provide for the base station to signal a flexible listen before talk (LBT) frame length to the user equipment (UE), either with or without explicit signaling of the downlink-uplink division. Further aspects provide for the base station to signal a reset indication to UEs that will prompt the UEs to monitor for downlink channel reserving signals prior to the current LBT frame ending by the resynchronization occasion.
US11057137B2 Management system and methods of managing time-division duplex (TDD) transmission over copper
Time division duplex transmission over copper physical channels is managed. In one example, upstream time slots for upstream transmission in a first physical channel are scheduled. Downstream time slots for downstream transmission in a second physical channel are scheduled. Transmission in the upstream time slots is substantially not simultaneous with transmission in the downstream time slots.
US11057136B1 Time correction using extension fields
A network device receives a packet that conforms to a protocol that i) defines a time stamp field, ii) does not define a dedicated field for time correction information, and iii) defines a plurality of general purpose extension fields. The packet includes (i) a time stamp generated by a source node in the time stamp field, and (ii) a time correction value corresponding to multiple ones of the plurality of intermediate nodes, the time correction value being located in one of the general purpose extension fields. The network device identifies (i) a time specified by the time stamp, and (ii) time correction information specified in the one general purpose extension field, and uses the time correction information and the time specified by the time stamp to synchronize a clock maintained by the network device to a clock maintained by the source node.
US11057133B2 Device for receiving signals captured by a satellite antenna
A device for receiving signals captured by a satellite antenna, comprising a front circuit and a digital circuit, the front circuit and the digital circuit being galvanically isolated relative to each other by isolation means, the front circuit comprising a first electric mass, an input port, a universal head power supply component, and an output module of a switched-mode power supply of the universal head power supply component, the digital circuit comprising a second electric ground, an output port, reception components arranged to acquire the input signals, so as to convert them to output signals and to apply the output signals on the output port, an input module of the switched-mode power supply, and a control component arranged to generate control signals intended for the universal head power supply component.
US11057132B2 Caching OTA antenna installation data
Disclosed is an over-the-air (OTA) antenna meter application (“meter app”) that wirelessly connects to an OTA antenna meter (“meter”) installed with an OTA antenna and presents information that facilitates a user in installing the OTA antenna at the premises of a customer. For example, the meter app can help the user in pointing and peaking the OTA antenna for one or more broadcast channels, e.g., those selected by the customer. The meter app can store installation information of the OTA antenna for various installations, which can be used in generating a recommendation of, or predicting, installation information for installing the OTA antenna at a specified address. The predicted installation information can include broadcast channels that would be available for reception at the specified address and their signal strength, a specific location of installation on the premises, or whether a pre-amplifier and/or filter is required.
US11057131B2 Method and apparatus for measuring synchronization signal block
A method for measuring a Synchronization Signal Block (SSB) by a terminal in a wireless communication system. In particular, the method may include: receiving a cell list including information of at least one first cell, first SSB transmission periodicity information for the at least one cell, and second SSB transmission periodicity information for a second cell that is not included in the cell list; measuring Reference Signal Received Power (RSRP) for an SSB of the at least one first cell based on a first SSB measurement window, which is set up by using the first SSB transmission periodicity information; and measuring RSRP for an SSB of the second cell based on a second SSB measurement window, which is set up by using the second SSB transmission periodicity information.
US11057130B2 Automatic signal strength indicator and automatic antenna switch
Systems and methods for controlling a signal amplifier unit configured with an electronic communication device are disclosed. The signal bar level on the electronic communication device is determined, and the signal amplifier unit is turned on based on the determined signal bar level. The signal level of the signal amplifier unit may be measured, and attenuation may be added based on the measured signal level. The measured signal level may be compared to a target level.
US11057125B1 Programmable digital loopback for RF applications
Various approaches to implementing digital loopback in a radio frequency (RF) system are disclosed. An example RF system includes a receiver that includes an ADC and a transmitter that includes a DAC. The apparatus includes multiple digital loopback circuits provided at different points between the digital domain processing of the receiver and the transmitter. Each digital loopback circuit may include a combiner and one or more weighing circuits, which make the circuit programmable. The combiner of a given digital loopback circuit is configured to combine a RX signal and a TX signal at a particular point of the digital domain processing of the receiver and the transmitter where said digital loopback circuit is implemented. The one or more weighting circuits are configured to define the how much of the TX signal and/or RX signal is used for said combination.
US11057122B1 Systems and methods for handgrip and case detection for multi-carrier wireless systems
Systems and methods for multi-carrier frequency grip detection are described. For example, a method may include determining a first signal strength of a first signal received using a first antenna from a source device; determining a second signal strength of a second signal received using a second antenna from the source device; comparing the first signal strength with the second signal strength; and detecting a detuned condition for a device including the first antenna and the second antenna based on the comparison of the first signal strength with the second signal strength.
US11057121B2 Determining a propagation condition of a wireless channel
In some embodiments, a method obtains raw data from one or more packets received over a wireless channel via an antenna. The raw data comprises raw amplitude values and raw phase values. Each raw amplitude value and raw phase value corresponds to a respective OFDM symbol and subcarrier of a respective packet. The method further comprises processing the raw data according to an interference mitigation process and using the resulting calibrated amplitude values and calibrated phase values to determine weighted phase values. Each weighted phase value corresponds to a respective subcarrier. The method determines a phase variance for the antenna based on comparing the plurality of weighted phase values across the plurality of subcarriers. The method determines whether the wireless channel experiences line-of-sight propagation or non-line-of-sight propagation based at least in part on the phase variance.
US11057119B2 Method and system for testing antenna array using middle field antenna pattern
A method is provided for testing an antenna array of a DUT using a probe antenna, the antenna array including multiple antenna elements. The method includes providing a correction table that includes predetermined correction data of differences between far field antenna patterns from different positions in a far field of the antenna array and a middle field antenna pattern from a position in a middle field of the antenna array, where the middle field satisfies near field criteria for the antenna array and satisfies far field criteria for each antenna element in the antenna array; measuring an antenna pattern at a first position in the middle field of the antenna array; retrieving predetermined correction data from the correction table corresponding to a second position located in the far field of the antenna array; and translating the measured antenna pattern to the far field by adding the retrieved predetermined correction data.
US11057117B2 High-bandwidth underwater data communication system
An apparatus is described which uses directly modulated InGaN Light-Emitting Diodes (LEDs) or InGaN lasers as the transmitters for an underwater data-communication device. The receiver uses automatic gain control to facilitate performance of the apparatus over a wide-range of distances and water turbidities.
US11057116B1 Optical orbital angular momentum for remote sensing and communication
An optical orbital angular momentum (OAM) encoding system includes an optical source configured to generate a source light, an optical OAM encoder configured to encode the source light based on OAM modes to generate an encoded light, and an optical unit configured to direct the encoded light to a target.
US11057114B2 Optical loopback circuits for transceivers and related methods
Optical transceivers comprising optical loopback circuits are described. The optical transceiver may comprise a housing, which may host a transmitter, a receiver and the optical loopback circuit. The optical loopback circuit may be configured to route at least a portion of a modulated optical signal from the transmitter to the receiver. The optical loopback circuit may comprise tap couplers and/or optical switches. The optical transceiver may be switched between a normal mode and a calibration mode. The optical transceiver may maintain the same fiber connections even when the optical transceiver is switched from one mode to another. The transmitter, the receiver and the optical loopback circuit may be disposed on a common substrate, or on separate substrates.
US11057113B1 High-speed silicon photonics optical transceivers
One embodiment can provide an optical transceiver based on silicon photonics. The optical transceiver can include an optical transmitter and an optical receiver. The optical transmitter or the optical receiver can include one or more semiconductor optical amplifiers (SOAs) configured to amplify optical signals to be transmitted by the optical transmitter or optical signals received by the optical receiver, respectively, thereby facilitating the optical transceiver to meet an optical power budget requirement of a high-speed optical link.
US11057112B1 Monitor photodiode (MPD) submount for vertical mounting and alignment of monitoring photodiodes
The present disclosure is generally directed to a monitor photodiode (MPD) submount for use in optical transceivers that includes a body with a conductive trace pattern disposed on multiple surfaces of the same to allow for vertical mounting of an associated MPD and simplified electrical interconnection with TOSA circuitry without the necessity of electrical interconnection. The MPD submount includes a body defined by a plurality of sidewalls. At least one surface of the body provides a mounting surface for coupling to and supporting an MPD. The MPD submount further includes a conductive trace pattern that provides at least one conductive path that is disposed on the mounting surface and on at least one adjoining sidewall. The portion of the at least one conductive path disposed on the adjoining sidewall extends substantially transverse relative to the surface defining the transceiver/transmitter substrate when the MPD submount is coupled to the same.
US11057110B2 Optical transmission device and optical transmission method
In order to improve reception sensitivity of a response signal at a terminal station, an optical transmission device includes a reception unit that receives a control signal including a predetermined instruction and a main signal, via an optical transmission path connected to the terminal station, a control unit that performs the predetermined instruction of the received control signal, an extraction unit that extracts light in a band of the control signal, a response signal generation unit that modulates the extracted light in the band of the control signal, and outputs a response signal, and a multiplexing unit that multiplexes and outputs the response signal and the main signal. The control unit controls modulation by the response signal generation unit according to the control signal.
US11057104B2 Information transmission method and apparatus
Example information transmission methods and apparatus are described. In one example method, a first communications device sends indication information to a second communications device, where the indication information is used to indicate a concurrent subframe in which the first communications device and the second communications device perform information transmission. The first communications device sends first information to the second communications device on a first time-frequency resource in the concurrent subframe. The first communications device receives, on a second time-frequency resource in the concurrent subframe, second information sent by the second communications device.
US11057103B2 Method and system of preconditioning transmitted signals
A communication system transmits data signals between communication nodes. A first data signal is transmitted as an electromagnetic wave along a first data transmission path to a receiver using skywave propagation. A second data signal, identical to the first data signal, is transmitted to the receiver along a second data transmission path. The two data signals are compared at the receiver to determine any distortion caused by the skywave propagation. Data regarding the distortion is sent back to the transmitter so that subsequent transmitted data signals may be preconditioned when sent by skywave propagation.
US11057098B2 Methods of antenna system control in massive MIMO systems
A multiple input multiple output (MIMO) antenna system is implemented for communications in a wireless device. Information regarding the environment surrounding the wireless device may be used to determine which of the MIMO antennas are selected such that communications performance is improved. Metrics related to signal transmission and reception by the wireless device may be monitored and used to determine which MIMO antennas are selected. The metrics may be measured by any of the MIMO antennas at any time, including antennas currently engaged or not engaged in active communications. The metrics may be used in lieu of sensors to supplement or replace wireless device functionality otherwise provided by the sensors.
US11057096B2 Method for configuring feedback information to feed explicit channel state information back in wireless communication system
A method and a terminal for transmitting a feedback signal by a terminal in a wireless communication system are provided. The method includes receiving, from a base station, a feedback information configuration; receiving, from the base station, a reference signal; estimating a channel between the base station and the terminal based on the reference signal; configuring channel component information associated with separating each of a plurality of channel elements of the channel according to components of the plurality of channel elements; configuring grouping information associated with grouping the plurality of channel elements; and transmitting feedback information including the configured channel component information and the configured grouping information.
US11057090B2 Method for pairing with external device using beam and electronic device therefor
A method and an apparatus for communicating with an external device using a beam in an electronic device supporting beamforming are provided. The electronic device includes a wireless communication circuitry, an antenna array including a plurality of antenna elements, and at least one processor. The processor may be configured to form and transmit a beam corresponding to a direction of the electronic device based on a start of a service, monitor reception of a response signal corresponding to the beam from an external device, and performs pairing with the external device based on at least a part of the response signal if the response signal is received.
US11057089B2 Multi-beam simultaneous transmissions
Certain aspects of the present disclosure provide techniques for transmitting simultaneous multi-beams on the same wireless resource. One example method includes determining a set of transmission (TX) beams for simultaneous transmissions to or from a user equipment (UE), signaling to the UE an indication of the TX beams, and transmitting simultaneously via the TX beams.
US11057087B2 Mobile object and antenna automatic alignment method and system thereof
A UAV system includes a remote controller including two first antennas and a UAV including two second antennas arranged at two landing stands of the UAV, respectively. The two first antennas and the two second antennas are configured to establish a 2×2 MIMO communication link. The remote controller is configured to transmit current terminal position information of the remote controller to the UAV via the 2×2 MIMO communication link. The UAV determines current remote controller relative position information of the remote controller relative to the UAV according to the current terminal position information and current UAV position information acquired via a position sensor, and controls communication between the UAV and the remote controller according to the current remote controller relative position information.
US11057084B2 Communication apparatus and communication method
Provided are M signal processors that respectively generate modulated signals for M reception apparatuses (where M is an integer equal to 2 or greater), a multiplexing signal processor, and N antenna sections (where N is an integer equal to 1 or greater). When transmitting multiple streams, each of the M signal processors generates two mapped signals, generates first and second precoded signals by precoding the two mapped signals, periodically changes the phase of signal points in the IQ plane with respect to the second precoded signal, outputs the phase-changed signal, and outputs the first precoded signal and the phase-changed second precoded signal as two modulated signals. When transmitting a single stream, each of the M signal processor outputs a single modulated signal. The multiplexing signal processor multiplexes the modulated signals output from the M signal processors, and generates N multiplexed signals. The N antenna sections respectively transmit the N multiplexed signals.
US11057083B1 System and method for dynamic single-radio and dual-radio mode selection for DL MU-MIMO
Systems and methods are provided for optimizing channel bandwidth while increasing downlink multi-user, multiple-input, multiple-output (DL MU-MIMO) gain. Depending on the access point (AP) platform, for example, APs exhibit certain characteristics regarding DL MU-MIMO gain as a function of the number of DL MU-MIMO clients associated to the AP. Accordingly, APs can be configured to operate in accordance with an algorithm that checks the number of DL MU-MIMO capable clients are associated to an AP, and dynamically switch between single- and dual-radio modes of operation to take advantage of those DL MU-MIMO gains.
US11057077B2 Controlled power transmission in radio frequency (RF) device network
In a first radio frequency (RF) device, circuits determine a non-line-of-sight (NLOS) radio path, and select a first plurality of reflector devices associated with the NLOS radio path from a second plurality of reflector devices. The first plurality of reflector devices, are selected based on a first set of criteria, includes an active reflector device and a passive reflector device, and are controlled to transmit a plurality of RF signals to a second RF device based on a second set of criteria. The second RF device is associated with electronic devices. The first RF signal interferes with a second RF signal of the RF signals. A first type of signal associated with the plurality of RF signals is converted to a second type of signal at the second RF device, and the second type of signal is transmitted by the second RF device to the one or more electronic devices.
US11057071B2 Wireless communication apparatus and structure for mounting communication equipment
A mounting base (14) is fixed to an antenna (13) or an antenna bracket (15) for supporting the antenna (13). A baseband unit (11) and an RF unit (12) are fixed to the mounting base (14). The baseband unit (11) fixed to the mounting base (14) is disposed to face a back part (132) of the antenna (13) and to form a space between the back part (132) and the first enclosure (111). The RF unit (12) fixed to the mounting base (14) is disposed in the space formed between the back part (132) of the antenna (13) and the baseband unit (11) and is coupled to a waveguide flange (132) of the antenna (13). Thus, for example, in a configuration of a point-to-point wireless apparatus in which an RF unit and a baseband unit are separated, restrictions on installation space of the apparatus can be facilitated.
US11057063B1 Dual-band digital pre-distortion
A model structure modeling a power amplifier is based on at least a binomial expansion, a first building block, a second building block, and a third building block. The first building block is a first complex sub-band signal with a first delay, the second building block is a multiplication of the first complex sub-band signal with a second delay and a complex conjugate of the first complex sub-band signal with a third delay, and the third building block is a multiplication of a second complex sub-band signal with a fourth delay and a complex conjugate of the second complex sub-band signal with a fifth delay. The sum of the first complex sub-band signal and the second complex sub-band signal is a baseband signal. Terms are obtained by optimizing delay combinations for the model structure. The model structure is used to dual-band digital pre-distortion of the baseband signal.
US11057062B2 System and method for dividing the carrier center frequency of an rf modulated signal by a non-integer divisor
An example method according to some embodiments includes receiving, from a modulator, a phase-modulated carrier output signal having a carrier center frequency that is a non-integer multiple of a desired carrier center frequency; generating, by an injection-locked ring oscillator (ILRO), a plurality of phases of the phase-modulated carrier output signal at a plurality of outputs of the ILRO; generating a decoupled fractional frequency output signal by sequentially selecting, using a multiplexer, successive outputs of the plurality of outputs corresponding to successive phases of the plurality of phases, the decoupled fractional frequency output signal having a center frequency equal to an integer multiple of the desired carrier center frequency; and generating, based on the decoupled fractional frequency output signal, a desired phase-modulated carrier output signal that is decoupled from the modulator, the desired phase-modulated carrier output signal having a generated carrier center frequency equal to the desired carrier center frequency.
US11057059B1 Content aware bit flipping decoder
Examples described herein relate generally to content aware bit flipping decoders. An example device includes a decoder. The decoder is configured to: process one or more flip thresholds based on statistics of data to be decoded; and perform a bit flipping algorithm on the data using the one or more processed flip thresholds. Other examples relate to methods of processing one or more flip thresholds based on statistics of data to be decoded and performing a bit flipping algorithm on the data using the one or more processed flip thresholds.
US11057058B2 Quality of service of an adaptive soft decoder
Disclosed are devices, systems and methods for improving a quality of service of an adaptive soft decoder in a non-volatile memory device. An example method includes selecting, based on current operating conditions of the non-volatile memory device, a first decoder parameter set from an ordered plurality of decoder parameter sets, each decoder parameter set corresponding to a distinct operating condition of the non-volatile memory device and comprising parameters related to a soft decoding operation; performing, based on the first decoder parameter set, the soft decoding operation; upon a determination that the soft decoding operation has succeeded, reordering the ordered plurality of decoder parameter sets to place the first decoder parameter set at a start of the ordered plurality of decoder parameter sets, and otherwise, performing the soft decoding operation based on a second decoder parameter set selected from the ordered plurality of decoder parameter sets.
US11057056B2 Transmitting apparatus and interleaving method thereof
A transmitting apparatus is provided. The transmitting apparatus includes: an encoder configured to generate a Low Density Parity Check (LDPC) codeword by LDPC encoding based on a parity check matrix; an interleaver configured to interleave the LDPC codeword; and a modulator configured to map the interleaved LDPC codeword onto a plurality of modulation symbols, wherein the modulator is configured to map bits included in a predetermined bit group from among a plurality of bit groups constituting the LDPC codeword onto a predetermined bit of each of the modulation symbols.
US11057054B2 Channel coding method and apparatus in communication system
Embodiments of this application provide a method for transmitting encoded information. A communication device obtains K bits of information, and generates a to-be-encoded sequence u1N, wherein N is a length of the sequence. The device encodes the sequence u1N in an encoding process, to obtain an output sequence, and transmits the output sequence. In the sequence u1N, each of the N bits corresponds to a subchannel, and each subchannel has a reliability. The K information bits, a quantity J of first-type auxiliary bits, and a quantity J′ of second-type auxiliary bits are placed in K′=K+J+J′ bit positions of the sequence u1N according to reliabilities of the subchannels. Since the positions of the information bits and the auxiliary bits are pre-determined and not affected by subsequent encoding and rate-matching, overheads of real-time reliability calculation are effectively reduced, time is saved, and delay is reduced.
US11057051B2 Fractally enhanced kernel polar coding
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may construct, for adjusted fractally enhanced kernel (FRANK) polar coding, encoding code for encoding data of an ultra-reliable low latency (URLLC) communication, wherein an information bit assignment to an information bit set associated with the encoding code is performed based at least in part on an adjusted dimensionality factor, wherein the encoding code is all-stage FRANK polar code or partial-stage FRANK polar code, and wherein the encoding code is constructed for code block shortening or code block puncturing. In some aspects, the user equipment may transmit the URLLC communication encoded using the encoding code based at least in part on the information bit assignment to the information bit set. Numerous other aspects are provided.
US11057047B2 Ratiometric gain error calibration schemes for delta-sigma ADCs with capacitive gain input stages
An analog to digital converter (ADC) circuit includes voltage and reference input terminals, a sample circuit, and control logic. The sample circuit includes input and output terminals, and capacitors connected in parallel and arranged between the input and output terminals. The control logic is configured to, in a calibration phase of operation, cause the multiplexer to route the ADC reference input terminal to the sampling voltage input terminal, determine a given gain value, determine a set of the capacitors to be used to achieve the given gain value, successively enable capacitor subsets to sample voltage of the reference input while disabling a remainder of the capacitors until all capacitors have been enabled, determine a resulting output code, and from the output code, determine a gain error of the given gain value of the ADC circuit.
US11057043B2 Background calibration of random chopping non-idealities in data converters
Random chopping is an effective technique for data converters. Random chopping can calibrate offset errors, calibrate offset mismatch in interleaved ADCs, and dither even order harmonics. However, the non-idealities of the (analog) chopper circuit can limit its effectiveness. If left uncorrected, these non-idealities cause severe degradation in the noise floor that defeats the purpose of chopping, and the non-idealities may be substantially worse than the non-idealities that chopping is meant to fix. To address the non-idealities of the random chopper, calibration techniques can be applied, using correlators and calibrations that may already be present for the data converter. Therefore, the cost and digital overhead are negligible. Calibrating the chopper circuit can make the chopping more effective, while relaxing the design constraints imposed on the analog circuitry.
US11057041B1 Self-calibrating single slope analog-to-digital converter
Various embodiments relate to a single slope analog to digital converter (ADC), including: a voltage slope generator configured to generate a voltage slope based upon a fixed current and variable current; an analog comparator configured to compare a voltage to a voltage output from the voltage slope generator; a first register configured to store a first count based upon a reference voltage being input into the analog comparator; a second register configured to store a second count based upon an input voltage being input into the analog comparator, wherein the input voltage is the voltage to be converted to a digital value by the ADC; and a digital to analog converter (DAC) configured to produce a slope trim signal based upon the voltage slope output by the voltage slope generator, the first count, and a count target associated with the voltage reference, wherein the variable current in the voltage slope generator is based upon the slope trim signal.
US11057036B2 Switching operation sensing device that distinguishes touch regions on surface of integrated housing
A switching operation sensing device is provided. The device includes a touch operation unit that is integrally formed with a housing and includes first and second touch members disposed in different regions; an oscillator circuit configured to generate a first oscillation signal including a variable resonant frequency when the first touch member is touched and a second oscillation signal including a variable resonant frequency when the second touch member is touched; and a touch detector circuit configured to detect whether at least one of the first and second touch members has been touched, and distinguish touch regions based on the first oscillation signal and the second oscillation signal.
US11057034B2 Semiconductor relay module
In a semiconductor relay module, inside a package, one of a pair of input parts of a first semiconductor relay is connected to a first input terminal, the other of the pair of input parts of the first semiconductor relay is connected to a second input terminal, one of a pair of input parts of a second semiconductor relay is connected to the second input terminal, the other of the pair of input parts of the second semiconductor relay is connected to the first input terminal, one of a pair of input parts of a third semiconductor relay is connected to a third input terminal, and the other of the pair of input parts of the third semiconductor relay is connected to the first input terminal or the second input terminal.
US11057030B1 Reliability in start up sequence for D-mode power FET driver
Methods and devices to address start up of half-bridge circuits including D-mode power FETs are disclosed. The disclosed devices overcome possible issues of output overload or excess current through gate-source of power FETs during start up. Voltage monitoring is used to address the issue of output overload and pre-charging of coupling capacitors are described as solutions to uncontrolled pre-charging of coupling capacitors. Pre-charging of coupling capacitors are implemented using current sources.
US11057028B2 Double clock architecture for small duty cycle DC-DC converter
A DC-DC converter includes clock generation circuitry generating first and second clock signals that are out of phase, and a control signal generator generating a switching control signal at an edge of the second clock signal based upon a comparison of an error voltage to a summed voltage. Boost circuitry charges an energy storage component during an on-phase and discharges the energy storage component during an off-phase to thereby generate an output voltage. The on-phase and off-phase are set as a function of the switching control signal. Sum voltage generation circuitry generates a ramp voltage in response to an edge of the first clock signal and generates the summed voltage at an edge of the second clock signal. The sum voltage represents a sum of the ramp voltage and a voltage representative of the current flowing in the energy storage component during the on-phase.
US11057027B2 Circuit having a plurality of modes
The present invention provides a circuit having a plurality of modes, wherein the circuit includes a first circuit, a second circuit, a first multiplexer, a second multiplexer and a specific flip-flop. In the operations of the circuit, the first circuit is configured to generate a first signal, the second circuit is configured to generate a second signal, the first multiplexer is configured to output one of the first signal and the second signal according to a mode selection signal, the second multiplexer is configured to output one of a first clock signal and a second clock signal according to the mode selection signal, and the specific flip-flop is configured to sample the first signal or the second signal outputted by the first multiplexer by using the first clock signal or the second clock signal outputted by the second multiplexer to generate an output signal.
US11057026B2 Semi-dynamic flip-flop implemented as multi-height standard cell and method of designing integrated circuit including the same
A semi-dynamic flip-flop includes a semiconductor substrate, first through fourth power rails, and at least one clock gate line. The first through fourth power rails are disposed on the semiconductor substrate, extend in a first direction, and are arranged sequentially in a second direction substantially perpendicular to the first direction. The at least one clock gate line is disposed on the semiconductor substrate, and extends in the second direction to pass through at least two regions among a first region between the first power rail and the second power rail, a second region between the second power rail and the third power rail, and a third region between the third power rail and the fourth power rail. The at least one clock gate line receives an input clock signal.
US11057020B1 Real-time matching of target reactance in non-foster matching network
An apparatus includes a tunable non-Foster matching network having (i) an amplification stage with an amplifier and (ii) a reference reactance coupled in parallel with the amplifier. The non-Foster matching network is configured to provide a negative reactance based on the reference reactance. The amplification stage also includes at least one adjustable circuit element configured to adjust a gain of the amplification stage and thereby adjust the negative reactance. In some cases, the amplification stage may include a common emitter amplification stage having a transistor, and the at least one adjustable circuit element may include an adjustable capacitor and/or multiple adjustable resistors in an emitter circuit of the transistor. In other cases, the amplification stage may include an operational amplifier and multiple resistors configured to set a gain of the operational amplifier, and the at least one adjustable circuit element may include at least one of the resistors.
US11057016B2 Acoustic wave element and acoustic wave device
An acoustic wave element of the present invention includes a substrate; and an IDT electrode on an upper surface of the substrate, including a first bus bar, a second bus bar arranged with a space in a first direction from the first bus bar, a plurality of first electrode fingers connected to the first bus bar, a plurality of second electrode fingers connected to the second bus bar, and a second dummy electrode finger facing a tip end of one of the first electrode fingers through a gap. In at least one of the second electrode fingers, a width in a region on the side closer to the second bus bar than a first virtual line connecting the tip ends of the plurality of first electrode fingers is wider than a width in a region on the side closer to the first bus bar than the first virtual line.
US11057013B2 Two-stage lateral bulk acoustic wave filter
Acoustic wave filter devices are disclosed. A device includes a layer providing or on a topmost layer of an acoustic reflector. The intermediary layer has a first region and a second region. The first region has a first layer thickness and the second region has a second layer thickness different from the first layer thickness. The device includes a first multilayer stack on the first region and a second multilayer stack on the second region of the intermediary layer. Each of the first and the second stacks includes a piezoelectric layer on a counter electrode that is located on the respective region, an input and an output electrode. Application of a radio frequency voltage between the input electrode and the counter electrode layer of the first stack creates acoustic resonance modes in the piezoelectric layer between the input and output electrodes of the first and the second stack.
US11057001B2 Apparatus, system, and method of distributing a reset signal to a plurality of PHY chains
For example, an apparatus may include a Local Oscillator (LO) generator configured to generate a distributed modulated LO signal by modulating an LO signal based on a reset signal; and a plurality of Physical Layer (PHY) chains to receive the distributed modulated LO signal, which is distributed to the plurality of PHY chains by the LO generator, a PHY chain of the plurality of PHY chains including a reset detector configured to detect the reset signal based on the distributed modulated LO signal, and, based on a detection of the reset signal, to reset one or more Radio Frequency (RF) elements of the PHY chain.
US11056999B2 Oscillator and operation method thereof
An oscillator and an operation method thereof are provided. The oscillator includes a current source, a memristor, a switching circuit, and a control circuit. The switching circuit is coupled to the current source and the memristor. The switching circuit is configured to transmit a bias current provided by the current source to the memristor, and determine a flow direction of the bias current in the memristor according to at least one control signal. The control circuit is coupled to the switching circuit to provide the at least one control signal. The control circuit is configured to detect a representative voltage of the memristor. The control circuit changes the at least one control signal according to a relationship between the representative voltage, a first threshold voltage, and a second threshold voltage to change the flow direction of the bias current in the memristor.
US11056996B2 Mechanical solar tracker for energy and shade
In embodiments, a mechanical solar tracker for energy and shade disclosed herein includes a positioning cam comprising one or more paths being configured as a function of a latitude location of the mechanical solar tracker; a sleeve coupled to an adjustment arm, the adjustment arm operable to rotate the sleeve about a vertical axis; a cam follower coupled to the sleeve, the cam follower configured to translate a selected path of the one or more paths as the sleeve rotates about the vertical axis, and a surface coupled to the cam follower. In embodiments, the selected path is configured such that as the sleeve rotates about the vertical axis, the cam follower maintains the surface normal to a vector defined by an azimuth angle and elevation angle, wherein the azimuth angle may be the sun azimuth angle and the elevation angle may be the sun elevation angle.
US11056990B2 Method of operating an electrical generator
A method of operating an electrical generator with a control unit may include: providing an electrical output voltage by rotating a rotor unit relative to a stator unit at a given rotation speed; providing the control unit with a control unit supply voltage; determining a control unit supply voltage value of the control unit supply voltage; providing the rotor unit with a rotor supply voltage; determining a rotation speed of the rotor unit; determining an ambient temperature of the electrical generator; determining a rotor supply voltage value for the determined rotation speed, and the determined ambient temperature and the determined control unit supply voltage value at which the electrical generator may have a maximal permitted thermal load; and operating the electrical generator at the maximal permitted thermal load by at least one of adjusting and controlling the rotor supply voltage of the rotor unit to the determined rotor supply voltage value.
US11056987B2 Motor system
A motor system provided with one motor and two inverters includes a first inverter control unit which changes a frequency of a first carrier wave (first carrier frequency) used for producing a switching signal fora first inverter according to an operating point of the motor; and a second inverter control unit which changes a frequency of a second carrier wave (second carrier frequency) used for producing a switching signal for a second inverter according to an operating point of the motor. The first carrier frequency has a changing characteristic depending on the first inverter control unit and the second carrier frequency has a changing characteristic depending on the second inverter control unit, and the changing characteristics are different from each other to make the first carrier frequency and the second carrier frequency differ from each other at an identical operating point.
US11056985B2 Microelectromechanical system and control method to control a piezoelectric drive based on an admittance or impedance of the piezoelectric drive
A microelectromechanical system includes a piezoelectric drive and a control unit coupled to the piezoelectric drive and designed to control the piezoelectric drive based on a change of the admittance and/or the impedance of the piezoelectric drive.
US11056984B2 Inverter control device
An inverter control device that controls an inverter connected to a direct-current power supply and connected to an alternating-current rotating electrical machine to convert electric power between direct current and alternating current of a plurality of phases, the inverter control device including an electronic control unit that is configured to perform, in a state in which one switching element of a plurality of switching elements included in the inverter has a turn-off failure in which the switching element always goes into an off state, torque reduction control for reducing torque of the rotating electrical machine or deceleration control for outputting torque in a reverse direction from a rotation direction of the rotating electrical machine by performing switching control of the plurality of switching elements.
US11056982B2 Power converter for energy transmission
The invention relates to a modular power converter which is configured from at least one main module to be actively supplied and an arbitrary number of N−1 further modules. All modules are connected to one another in series (for example by modular terminals, where the term modular terminals shall also comprise any other kind of electrical connection, and in particular plug connections). Each module comprises switching devices and at least one energy storage device, as a result of which the individual module is capable of being charged with an adjustable voltage. The switching devices, which are preferably realized by transistors, allow the module to be connected according to an active operation in terms of the series connection or according to a bypass operation in which case the respective module is quasi bridged and therefore cannot contribute to the voltage path of the series connection. The output voltage of the power converter is tapped at the end points of the series connection.
US11056981B2 Method and apparatus for signal extraction with sample and hold and release
For AC-DC conversion, signal is extracted, then sampled and held and released. Extraction element receives AC signal to generate extracted signal, then sample and hold and release element receives the extracted signal to generate DC signal. Extraction and/or sample and hold and release signal processing may use microprocessor or controller programmably to generate the extracted signal and/or DC signal. Extraction is configurable such that AC signal is received at extraction time or temporal window, whereby said extraction element generates the extracted signal having an extraction current or voltage value during at least one extraction time, and preferably said sample and hold and release element generates the DC signal having the same extraction current or voltage value.
US11056979B2 Power conversion apparatus
A control circuit performs at least pulse width modulation control on a first leg and selects to perform pulse width modulation control and pulse frequency modulation control, to perform pulse width modulation control and phase shift modulation control, or to perform pulse width modulation control, pulse frequency modulation control, and phase shift modulation control on a second leg, based on comparison of a voltage conversion ratio between DC voltage of a DC capacitor and output voltage to a load with at least one threshold.
US11056978B2 Controller for a switched mode power supply
A controller for a secondary side of a switched mode power supply. A thermistor and an LED of an optocoupler are connected in parallel with each other between a voltage-supply-pin and a STOP pin of the controller. A reference-source provides a reference-signal between the STOP pin and the voltage-supply-pin. The STOP pin receives a temperature-measurement-signal from the thermistor, wherein the temperature-measurement-signal is representative of the resistance of the thermistor. The controller also includes an OTP-comparator that compares: (i) the temperature-measurement-signal; with (ii) a threshold-level, and provides an OTP-signal that is representative of whether or not the temperature-measurement-signal at the STOP pin crosses the threshold-level; and a switchable-current-source that selectively provides a bias-current to the STOP pin based on the OTP-signal, wherein the bias-current causes the LED to emit a light-signal that is representative of a fault to an associated photo-detector.
US11056977B2 Highly integrated switching power supply and control circuit
A highly integrated switching power supply and a control circuit are provided. The switching power supply includes a transformer, the transformer comprises a primary winding, a secondary winding and an auxiliary winding, and the control circuit includes: a power switch transistor, configured to control disconnection and conduction of the primary winding of the transformer; a primary current sampling module, configured to sample a current of the primary winding to generate a sampling voltage; and a voltage stabilization control module, configured to turn on or turn off the power switch transistor according to an input voltage, an output voltage of the switching power supply system, and the sampling voltage.
US11056974B2 Voltage generation circuit
A voltage generation circuit is disclosed. The circuit includes: a buck circuit and a charge pump circuit; the buck circuit includes a second switching transistor, a second diode for freewheeling and a second inductor for storing energy, wherein a first end of the second switching transistor is connected to an input voltage, a second end is connected to a cathode of the second diode, a control end is connected with a control signal; an anode of the second diode is connected to a ground; a first end of the second inductor is connected to the cathode of the second diode, a second end is connected to a digital voltage output terminal; the cathode of the second diode is connected to the charge pump circuit, voltage on the cathode of the second diode is outputted as an auxiliary voltage for generating a reference voltage after boosted by the charge pump circuit.
US11056971B2 Voltage step-down converter
A DC voltage step-down converter, includes at least one first resistive element in series with a first switch between a first terminal and a second terminal of application of a first DC voltage; and a capacitive element between a third terminal and a fourth terminal for supplying a second DC voltage smaller than the first one, the node between said first resistive element and the first switch being coupled by a diode to said third terminal, said first switch being turned on when the second voltage is greater than a reference voltage of the second voltage.
US11056970B1 Bridgeless step-up and step-down AC-to-DC converter
A bridgeless step-up and step-down AC-to-DC converter is used to convert an AC input power source into a DC output power source. The converter includes a first circuit, a second circuit, a third circuit, a third diode, and a fourth diode. The first circuit has a first end, a second send, and a third end; the first end is coupled to the AC input power source, the second end is coupled to a ground end, and the third end is coupled to the DC output power source. The second circuit has a first end, a second end, and a third end; the first end is coupled to the AC input power source, the second end is coupled to the ground end, and the third end is coupled to the DC output power source.
US11056963B2 Hybrid wound-rotor motor and generator with induction feed and persistent current
A system for operation in a motor mode comprises a cryocooler to cool a superconducting coil of a rotor. The system further comprises a flux pump to provide flux to the superconducting coil to produce-a persistent current. Also, the system comprises a main stator coil. An alternating current within the main stator coil generates a rotating magnetic field, which interacts with the persistent current to generate an electromagnetic torque to rotate the rotor. The system also comprises a control stator coil to generate a current at a non-superconducting coil of the rotor. In one or more embodiments, a magnitude, phase, and/or frequency of the rotating magnetic field of the main stator coil and a magnetic field of the non-superconducting coil is varied in comparison a magnitude, phase, and/or frequency of the rotating magnetic field produced by the main stator coil alone to control a speed of the rotor.
US11056958B2 Rotor and motor having the same
A rotor of an electric motor includes a rotating shaft, a rotor core and a commutator fixed to the rotating shaft, and a first sleeve, a second sleeve and a third sleeve arranged around the rotating shaft. The first sleeve is located on a side of the rotor core away from the commutator and abuts against the rotor core, the second sleeve is located between the rotor core and the commutator, and the third sleeve is located on a side of the commutator away from the rotor core.
US11056957B2 Rotary electric machine equipped with magnetic flux variable mechanism
A rotary electric machine equipped with a magnetic flux variable mechanism includes a case body, a mover moving upon receipt of centrifugal force, a magnetic flux short circuit member, a cam member, and biasing springs. The cam member includes a cam surface so as to face the mover and make contact with the mover, and the cam member converts a radial movement of the mover received by the cam surface into an axial movement of the magnetic flux short circuit member. The biasing springs give a biasing force to the magnetic flux short circuit member in a direction distanced from an axial end surface of the rotor core, so as to determine a position of the magnetic flux short circuit member along the axial direction in a state where the biasing force is balanced with the centrifugal force applied to the mover via the cam member.
US11056955B2 Aircraft turbine with counter-rotating propellers
The invention relates to an aircraft turbine having counter-rotating propellers and a primary drive, the noise development of which is significantly reduced with respect to aircraft turbines which have a primary drive based on the internal combustion principle. The invention relates to an aircraft turbine having counter-rotating propellers and a primary drive, the primary drive of which is based on the electric drive principle.
US11056951B2 Motor cooling device
A motor cooling device includes an annular member that rotates with a shaft of a motor, and an oil catch unit that has a groove-shaped cross-section and is disposed along an outer circumference of the annular member, with a groove of the oil catch unit facing an outer circumferential surface of the annular member. The oil catch unit extends toward a backward side in a rotation direction of the annular member so as to form an arc shape, and includes a closure plate that covers the groove at an end in a circumferential direction located on a forward side in the rotation direction, and an oil spout hole that is bored near the closure plate. The annular member includes a protrusion that is provided on the outer circumferential surface of the annular member and that moves toward the closure plate when the annular member rotates with the shaft.
US11056950B2 Motor
A motor includes a rotary shaft having at least one spray hole for spraying a cooling fluid, a rotor installed on the rotary shaft, and a stator surrounding an outer circumference of the rotor, wherein the rotor includes a plurality of rotor blocks arranged on an outer circumference of the rotary shaft. Each of the rotor blocks may include a magnet installed at a rotor core and a cooling guide may be disposed between a pair of the plurality of rotor blocks and form a spray flow path for guiding a cooling fluid that has passed through the spray hole to be sprayed in a direction toward an inner circumference of the stator.
US11056949B2 Rotating electrical machine
Provided a rotating electrical machine including a rotor; a stator; and a fluid control mechanism has a first member and a second member, and is configured to create a flow of a fluid directed from one side toward the other side in an axial direction of the rotating shaft, on an outer periphery of the rotor. The first member has a portion at which the outside diameter increases gradually from the one side toward the other side, and is configured such that a shape of an outer circumferential surface is continuous with the shape of an outer circumferential surface of an end portion, in an axial direction, of the rotor. The second member is configured such that an inside diameter increases gradually from the one side toward the other side at a portion facing the portion of the first member at which the outside diameter increases gradually.
US11056947B2 Actuator with braking device
In order to increase the operational safety of an actuator (1) including an electric motor (2) and a transmission, preferably a non-self-locking transmission (3), a braking device is provided which allows the controlled, self-actuating displacement, by a retarding brake (5), of an actuating element connected to the actuator (1) via the transmission (3). The actuating element can be held in a fixed position by an additional holding device (6), even if the electric motor (2) fails. The actuator can be used to drive heavy sluice gates, in the event of a power failure, in a controlled free-fall operation at a constant rate of fall, or to hold them in a defined position. The holding device and the retarding brake can be combined in a common housing (11) to form a braking module (12) which can be designed to be used modularly with existing motor actuators and transmissions.
US11056946B2 Bus bar unit and motor
A bus bar unit includes a bus bar holder provided on one side in an axial direction of a stator disposed in an annular shape around a central axis extending in a vertical direction, a bus bar extending along a plane perpendicular to the axial direction and fixed to the bus bar holder, and an external connection terminal connected to the bus bar and extending upward from the bus bar. The bus bar includes a wire and a terminal connector located on one end thereof and connected to the external connection terminal, and a lead wire connector located on the other end thereof and connected to a lead wire extending from the stator. The lead wire connector is U-shaped or substantially U-shaped. The lead wire connector includes a first end located on the external connection terminal side and a second end located on the opposite side of the first end. The second end includes an extension extending in a direction away from an opening of the lead wire connector.
US11056945B2 Stator of rotary electric machine and method of manufacturing the same
A stator of a rotary electric machine in which a power line to be connected to a coil can be fixed stably without requiring an additional part. The stator of a rotary electric machine has a stator core which has a plurality of radially protruded teeth at intervals in a circumferential direction; three-phase coils which are wound around the teeth and which each have a coil end protruding from an axial end face of the stator core; power lines which are respectively connected to three input-side ends of the three-phase coils via a joint part; and a resin mold which integrally fixes the coil end and the joint part.
US11056942B2 Electric machine rotor cooling systems and methods
An electric machine rotor including a shaft, a rotor back assembly surrounding a portion of the shaft, and a plurality of permanent magnets distributed at equal radial distance from the shaft around the rotor back assembly. The electric machine rotor also includes a gap between two adjacent permanent magnets and a thermally conductive material filing the gap. The thermally conductive material is in contact with the rotor back assembly between the two adjacent permanent magnets. The electric machine rotor also includes a heat transfer structure in thermal communication with the thermally conductive material, extending beyond an outer surface of the thermally conductive material to transfer heat away from the electric machine rotor.
US11056941B2 Rotor of rotary electric machine and method for cooling rotary electric machine
A rotor of the rotary electric machine includes a rotor core, and a plurality of permanent magnets disposed in an inner part or an outer circumferential surface of the rotor core in a circumferential direction. In the rotor core, one or more first flow passages through which a cooling liquid flows, the one or more first flow passages extending in an axial direction and communicating with the outside of the rotor, and one or more second flow passages extending radially outward from the first flow passage and having closed distal ends, are formed.
US11056937B2 Rotor core
A rotor core includes: a rotor shaft hole into which a rotor shaft is press-fitted; a first hole group having a plurality of holes; a shaft holding portion; a second hole group having a plurality of holes; a first annular portion; and an electromagnetic portion having a plurality of magnet insertion holes. Each hole of the second hole group is arranged to intersect with an extension line of a rib formed between the adjacent holes of the first hole group. An inner peripheral wall of each hole of the second hole group includes: a first arc point and a second arc point being located on an arc equidistant from a center of the rotor core; and a convex portion having an apex portion on an outer side further than the arc. The apex portion is located between the adjacent holes of the first hole group in the circumferential direction.
US11056936B2 Electric motor and construction methods thereof
An electric machine includes an outer housing and a stator secured to the outer housing and configured to induce an electromagnetic field. The electric machine also includes a rotor configured to output rotational movement in response to the electromagnetic field of the stator. The electric machine further includes at least one retention key configured to cooperate with a retention feature of the stator to engage a channel of the outer hosing to generate a circumferential force to resist movement of the stator relative to the housing.
US11056933B2 Transceiver assembly for free space power transfer and data communication system
A transceiver assembly for a wireless power transfer system includes a transceiver system comprising a photodiode assembly, a voltage converter and a light emitting diode and a photodiode. The photodiode assembly may be configured to receive a high-power laser beam from a transmitter and to convert the high-power laser beam to electrical energy. The voltage converter may be configured to adjust an input impedance based on a voltage measure of the photodiode assembly so as to maximize power transfer from the photodiode assembly to an energy storage device electrically coupled to the voltage converter. The light emitting diode and the photodiode may be configured to enable free space optical communication with the transmitter. The light emitting diode may emit signals indicating a presence and a location of the transceiver to the transmitter at least when the energy storage device requires a charge.
US11056929B2 Systems and methods of object detection in wireless power charging systems
Systems and methods for wireless power transmission based on object identification are provided. A radio frequency wireless power transmitter is in communication with a video camera for capturing image data (e.g., a series of image frames) of at least a portion of a transmission field of the radio frequency wireless power transmitter. One or more processors of the radio frequency wireless power transmitter are configured to (i) detect motion of an object towards the transmission field by applying motion tracking analysis on the series of image frames; and (ii) cause adjustments to transmission of one or more radio frequency power transmission waves by the radio frequency wireless power transmitter to a receiving electronic device based on the motion of the object. The receiving electronic device uses the one or more radio frequency power transmission waves to power or to charge a power source used by the receiving electronic device.
US11056923B2 Wireless charging relay and method
A wireless charging relay, a system, and a method are provided. The wireless charging relay includes processing circuitry. The circuitry is configured to receive power wirelessly. The received power is energy harvested from at least two different input wireless power sources. The circuitry is further configured to convert the received power to an output wireless power. The type of the output wireless power is different from the received power. The wireless charging relay transmits the output wireless power.
US11056921B2 Wireless power transmission system
A wireless power transmission system includes a power transmission device including a plurality of power transmission portions, and a power receiving object including a power receiving portion capable of receiving an electric power wirelessly transmitted from the power transmission portion. Of the plurality of power transmission portions, a specific power transmission portion transmits the electric power to the power receiving portion.
US11056918B2 System for inductive wireless power transfer for portable devices
In one embodiment a wireless power transfer system comprises a transmitter including a power source configured to generate a time-varying current, a first coil configured to receive the first time-varying current from the power source, wherein the time-varying current flows in the first coil in a first direction, a second coil coupled to the first coil in such a way that the time-varying current flows in the second coil in a second direction, wherein the first direction is opposite from the second direction, and an underlying magnetic layer configured to magnetically couple the first coil with the second coil, and a wireless power receiver, a ferrite core and a receiver coil that share a longitudinal axis, and a receive circuit coupled to the receiver coil configured to convert a time varying current induced in the receiver coil into a voltage.
US11056917B2 Power feeding unit, power receiving unit, and feed system
A power feeding unit includes: a power feeding electrode configured to be coupled through an electric field with a power receiving electrode of a power receiving unit; a power feeding section configured to feed the power receiving unit with power through the power feeding electrode; and a power feeding side communication section configured to communicate with the power receiving unit through the power feeding electrode.
US11056909B2 DC UPS architecture and solution
According to one aspect, a DC power supply is provided. The power supply includes a first input configured to be coupled to an AC power source, a second input configured to be coupled to a battery, an output, a transformer, and a controller coupled to the transformer. The transformer includes a first winding configured to be coupled to the first input, a second winding configured to be coupled to the second input, and a third winding configured to be coupled to the output. The controller controls, in a first mode, the first winding to generate, based on power received from the AC power source, a first voltage across the second winding to charge the battery, and a second voltage across the third winding, and control, in a second mode, the second winding to generate, based on power received from the battery, a third voltage across the third winding.
US11056908B2 Uninterruptible power supply systems and methods using isolated interface for variably available power source
An uninterruptible power supply (UPS) system includes a first port configured to be coupled to an AC power source and a second port configured to be coupled to a load. The system also includes a UPS circuit including a first converter circuit coupled to the first port, a second converter circuit coupled to the second port and a DC bus coupling the first converter circuit to the second converter circuit and configured to be coupled to an auxiliary power source and a third converter circuit coupled to the second port and configured to receive power from a variably available power source. The system further includes a control circuit operatively associated with the UPS circuit and the third converter circuit and configured to cooperatively control the UPS circuit and the third converter circuit to selectively transfer power to the load from the AC power source and the variably available power source and from the variably available power source to the AC power source.
US11056903B2 Electronic device including battery and method of controlling charging thereof
An electronic device is provided to include a battery and a processor. The processor is configured to identify whether an external power source for charging the battery is connected, identify a voltage of the battery when connection of the external power source is identified, determine a charge start time based on time when the connection of the external power source is identified, determine a charge end time based on situation information of the electronic device, determine a charge stop time of the battery based on the charge start time, the charge end time and the voltage of the battery when a difference between the charge start time and the charge end time satisfies a designated threshold, and divide a period between the charge start time and the charge end time into a first charge section, a charge stop section and a second charge section based on the charge stop time.
US11056891B2 Battery stack monitoring and balancing circuit
A method and apparatus for battery stack monitoring and balancing. In one embodiment the apparatus includes a first low-pass filter (LPF) coupled between a first terminal and a first input node of a circuit that comprises a plurality of input nodes, wherein the first terminal is configured to be coupled to a positive terminal of a battery cell. A second LPF is coupled between the first terminal and a second input node of the circuit. A first circuit is coupled between the first terminal and a second terminal, wherein the first circuit is configured to transmit current between the first and second terminals when activated, and wherein the second terminal is configured to be coupled to a negative terminal of the battery cell. A second circuit is coupled between the second and third input nodes, wherein the second circuit is configured to activate the first circuit in response to the second circuit receiving a control signal.
US11056890B2 Microgrid control system and method thereof
A microgrid arrangement includes a decentralized microgrid control system, a first microgrid and a second microgrid separated by a microgrid breaker. The first and second microgrids each include a number of assets, each asset being associated with a respective microgrid controller (MGC) of the microgrid control system. The control system can be operated by determining that the microgrid breaker is open, assigning a first MGC in the first microgrid to a first group of MGCs in the first microgrid, broadcasting information from the first MGC to other MGCs in the first group, determining that the microgrid breaker is closed, assigning the first MGC to a second group of MGCs in both the first microgrid and the second microgrid, and broadcasting information from the first MGC to MGCs in the second group.
US11056888B2 Method, apparatus, and computer readable storage medium for electrical islanding detection
The present invention provides method, apparatus, and computer readable storage medium for an electrical islanding detection. The method for electrical islanding detection method includes: receiving a three-phase voltage in an electrical power system; for the three-voltage voltage, calculating a voltage angle sudden-change of each phase, respectively; determining whether an absolute value of the voltage angle sudden-change of each phase is greater than a first angle sudden-change setting value; determining whether directions of the voltage angle sudden-changes of three phase are the same if the absolute value of the voltage angle sudden-change of each phase is greater than the first angle sudden-change setting value; and determining that the electrical islanding appears if the directions of the voltage angle sudden-changes of the three phases are the same.
US11056885B2 Method of providing power support to an electrical power grid
A method of providing power support to an electrical power grid is provided. The power support is provided by an arrangement including a synchronous machine connected to a converter, the converter in turn being connected to the electrical power grid. The method is performed in a control device controlling the arrangement and includes: receiving feedback from one or both of the electrical power grid and the synchronous machine, and controlling the converter such that power support is provided to or absorbed from the electrical power grid by means of the synchronous machine based on the received feedback. A control device, arrangement, computer program and computer program products are also provided.
US11056883B1 System and method for implementing a zero-sequence current filter for a three-phase power system
In a three-phase, four-wire electrical distribution system, a zig-zag transformer and at least one Cascade Multilevel Modular Inverter (CMMI) is coupled between the distribution system and the neutral. A controller modulates the states of the H-bridges in the CMMI to build an AC waveform. The voltage is chosen by the controller in order to control an equivalent impedance that draws an appropriate neutral current through the zig-zag transformer. This neutral current is generally chosen to cancel the neutral current sensed in the line. In other embodiments, the chosen neutral current may be based on a remotely sensed imbalance, rather than on a local value, determined by the power utility as a critical load point in the system. The desired injection current is then translated by the controller into a desired zero-sequence reactive impedance, based on measurement of the local terminal voltage, allowing the controller to regulate the current without generating or consuming real power. In some embodiments, the zig-zag transformer is omitted.
US11056868B2 Monitoring accessory for an electrical apparatus provided with a connection terminal
A monitoring accessory for an electrical apparatus provided with a connection terminal capable of being connected to an electric cable, the monitoring accessory comprising a frame provided with a cooperation system configured to cooperate with the electrical apparatus in a mounted position, a current sensor arranged to measure a current intensity passing through the electric cable, when the electric cable is connected to the connection terminal, the current sensor comprising a measuring portion forming a loop capable of surrounding a section of the electric cable, the measuring portion being provided with a closing system capable of holding the loop in a closed position and forming a passage space for said section of the electric cable inside the loop in the open position.
US11056865B2 Cable tray cable routing system
The present invention is directed to a cable routing system with a bracket that joins adjacent cable trays. The bracket includes a main body having a top edge, a bottom edge, and sides. The top edge includes at least one notch at a center of the main body to retain transverse wires of the adjacent cable trays. The bottom edge includes a spring arm to hold the bracket in place. The bracket is attached to adjacent cable trays with a longitudinal wire of each cable tray positioned between the top edge and the spring arm to secure the bracket to the cable tray.
US11056863B2 Multiple action hoist
A hoist for transferring the ends of power lines between supports at different locations including a pair of hoist mechanisms each having a respective tension line receiving drum and which are simultaneously operable with a single crank arm. Each drum has a respective ratchet mechanism that can be selectively set such that upon pivotable movement of the single crank arm between a first and second positions the ratchet mechanisms (i) simultaneously rotate both the drums in a take up direction for simultaneously winding said tensions lines onto the drums, (ii) simultaneously enable rotation of the drums in a release direction for simultaneously unwinding the tensions lines from the drums, or (iii) rotate one drum in a take-up direction for winding the respective tension line on the one drum while simultaneously enabling rotating the other drum in a release direction for unwinding the tension line from the other drum.
US11056860B2 Bus structure for parallel connected power switches
An apparatus includes a plurality of semiconductor switches. A first bus interconnects first terminals of the semiconductor switches in a first chain and provides a first impedance between the first terminals of switches of the first chain. A second bus interconnects second terminals of the semiconductor switches in a second chain and provides a second impedance greater that the first impedance between the second terminals of the switches of the second chain. The apparatus may be implemented as a laminated bus assembly including respective overlapping conductor plates, wherein the second bus includes a plate having subregions defined by features, such as slots or grooves, that provide the second impedance.
US11056859B2 Spark plug electrode and method for manufacturing this spark plug electrode and spark plug including a spark plug electrode
A spark plug electrode includes an electrode base body made of a first material and an ignition element made of a second material and forming an ignition surface for a spark plug. The electrode base body and the ignition element are integrally joined to each other via a welding seam. A mixing rate for the first or second materials is less than 15 weight percent in a half of the welding seam adjacent to the ignition element. A method for manufacturing a spark plug electrode includes: providing an electrode base body and an ignition element; carrying out a welding process joining the electrode base body and the ignition element while forming a welding seam, where a welding beam guided over the surface of the spark plug electrode by tilting a reflection element, thereby producing a welding seam at a joining point between the electrode base body and the ignition element.
US11056857B2 Laser diode
A laser diode having a semiconductor layer sequence based on a nitride compound semiconductor material includes an n-type cladding layer, a first waveguide layer, a second waveguide layer and an active layer, and a p-type cladding layer including a first partial layer and a second partial layer, wherein the first partial layer includes Alx1Ga1-x1N with 0≤x1≤1 or Alx1Iny1Ga1-x1-y1N with 0≤x1≤1, 0≤y1<1 and x1+y1≤1, the aluminum content x1 decreases in a direction pointing away from the active layer so that the aluminum content has a maximum value x1max and a minimum value x1min
US11056850B2 Systems and methods for providing a soldered interface on a printed circuit board having a blind feature
Systems and methods for providing a soldered interface between a circuit board and a connector pin. The methods comprise: using a jet paste dispenser to apply first solder into a plated contact cavity formed in the circuit board; using a stencil screen printer to apply second solder (a) over the plated contact cavity which was at least partially filled with the first solder by the jet paste dispenser and (b) over at least a portion of a pad surrounding the plated contact cavity; inserting the connector pin in the plated contact cavity such that the connector pin passes through the second solder and extends at least partially through the first solder; and performing a reflow process to heat the first and second solder so as to create a solder joint between the circuit board and the connector pin.
US11056847B2 Fastening clamp
A fastening clamp for fixing a terminal block in a wall opening in a housing wall, having a clamp housing and at least one clamping element. The fastening clamp allows the terminal block to be mounted in and removed from a wall opening in a housing wall with a small width in that the clamping element has a resilient snap arm, having a foot region fastened to the clamp housing and a free end forming a clamping face, the snap arm extending along the side face of the clamp housing so that the clamping face acts on an edge of the wall opening when the fastening clamp is in the mounted state. A blocking element is displaceably mounted on the clamp housing for movement between a first position in which the resilient snap arm can be deflected, and a second position in which the blocking element cannot be deflected.
US11056845B2 Cable with plug, control circuit and substrate
A plug with a cable includes a plug and a cable. The plug is connected to a receptacle to which a secondary cell is connected. The plug includes a housing and a substrate therein. The cable includes a power supply line and a grounding line. The cable has one end connected to the plug and the other end connected to a power supply unit. A switch is mounted on the substrate and provided in series in a power supply interconnection connected to the power supply line. A temperature sensor is mounted on the substrate and disposed near a power supply terminal or a grounding terminal of the plug. A control circuit is mounted on the substrate and configured to interrupt the power supply interconnection by turning off the switch when a temperature detected by the temperature sensor exceeds a predetermined value.
US11056841B2 Selectively plated plastic part
An electrical connector including a housing and electrical conductor plating. The housing includes a first member and a second member. The first member is made of plastic and forms at least one first contact receiving channel therein. The second member is attached around the first member, and the first and second members form at least one second contact receiving channel therebetween. The electrical conductor plating is on the first member. The electrical conductor plating includes at least one first section along the at least one first contact receiving channel and at least one second section along an exterior side of the first member at the at least one second contact receiving channel. The first and second sections of the electrical conductor plating are electrically separate from one another.
US11056839B2 Cable connector assembly and assembling method of the same
A cable connector assembly includes: an electrical connector including a plug and a metal shell disposed outside the plug and the cable; a cable electrically connected with the electrical connector, the cable including plural core wires, an inner shield layer covering the core wires, a metal braided layer covering outside the inner shield layer, and an outer cover layer; and an inner mold integrally formed on the core wire to fix each core wire at a predetermined position.
US11056837B2 Electrical connector equipped with three metal plates joined together
An electrical connector includes an insulative housing, a plurality of contacts assembled in the housing, opposite metal top and bottom shells attached upon opposite top face and bottom face of the housing, and a metallic shielding plate inserted into the housing and between two rows of contacts. The top shell, the bottom shell and the shielding plate have corresponding ears secured together in an intimately sandwiched manner.
US11056834B2 Electricial connector with structure for reducing resonances
An electrical connector includes a housing, a plurality of contacts located in each wall of the housing and having grounding contacts and differential-pair contacts, and a grounding bar. The grounding bar includes a pair of lower spring fingers respectively contacting lower regions of the ground contacts in a transverse direction, and a pair of upper spring fingers respectively contacting upper regions of the ground contacts in the transverse direction, an upper transverse bar linked between the pair of upper spring fingers along a longitudinal direction, a lower transverse bar linked between the pair of lower spring fingers along the longitudinal direction, the pair of upper spring fingers extend upwardly from the lower transverse bar and a transverse base having retaining device attached to a lower portion of the housing. The pair of lower spring fingers upwardly extend from the transverse base.
US11056833B2 Electrical connector and electrical connector assembly
An electrical connector and an electrical connector assembly are disclosed. The electrical connector comprises an insulating housing and a plurality of terminal columns arranged to the insulating housing. Each terminal column comprises a plurality of ground terminals and a plurality of differential signal terminal pairs alternately arranged along a first direction. Each ground terminal has a body portion and two elastic contact portions extending from the body portion and spaced apart from each other. Each signal terminal of each differential signal terminal pair has a body portion and an elastic contact portion extending from the body portion The terminal columns are arranged along a second direction perpendicular to the first direction and are spaced apart from each other, and the differential signal terminal pair of each terminal column corresponds to the ground terminal of the adjacent terminal column in position in the second direction, an orthogonal projection of each differential signal terminal pair of each terminal column along the second direction is positioned within a range which is covered by a width of the corresponding ground terminal of the adjacent terminal column.
US11056825B2 High voltage bus connection insulator
An insulator for a bus connector arrangement including a first layer defining at least one first aperture, a first annular protrusion emanating from the first layer at one first aperture, a second layer defining at least one second aperture configured to align with each of the at least one first apertures, and at least one second annular protrusion emanating from the second layer at each of the at least one second apertures.
US11056824B2 Weather protecting (WP) housing for coaxial cable connectors
A productive housing for a coaxial cable connector comprising an elastomeric housing disposed over and engaging a connector and having a plurality of longitudinal slots formed into the inner mold line (IML) surface of the elastomeric housing. The longitudinal slots function to reduce the surface area of frictional engagement between the intermediate surface and the corresponding peripheral surface of the coaxial cable connector. The longitudinal slots serve as a longitudinal passageway for the movement of trapped air from one IML surface to another so as to prevent the built-up of air and/or inducing a pocket of suction resisting the separation of the housing from the jumper cable.
US11056822B2 Power socket module and plug
A method and apparatus for providing power includes a power socket module having a first conducting layer and a second conducting layer. An insulating layer may be positioned in between the first and second conducting layers. A plug includes a first prong having a first length and second prong having a second length, where the first length is longer than the second length. When the plug is plugged into the power socket module, the first prong electrically couples to the second conducting layer, and the second prong electrically couples to the first conducting layer.
US11056817B2 Electrical connector having positive and negative contacts with structures offset from each other
An electrical connector includes an insulative housing having opposite mating port and mounting port. Plural pairs of contacts are retained in the housing. Each pair of contacts has a first contact blade and a second contact blade. Each of the first contact blade and the second contact blade includes a main body, a contacting section extending into the mating port, and a mounting leg of the main body disposed in the mounting port. Each of the main body of the first contact blade and the main body of the second contact blade forms an embossment abutting against each other so as to electrically unify both the first contact blade and the second contact blade without blocking the space therebetween for enhancing heat dissipation thereof.
US11056811B2 Universal connecting module for electrical connector, and data-transferring device comprising such a module
A module for connecting a cable to an electrical connector. The module comprises connecting pins that are able to establish, as such, a contact between conductive wires of the cable and the tracks of a printed circuit board of the connector. A data-transferring device comprising such a module also is disclosed.
US11056807B2 Float connector for interconnecting printed circuit boards
A float connector for interconnecting printed circuit boards that has a contact assembly including a contacts and a holder and each of the contacts has opposite first and second contact ends for electrically connecting to the boards. A first guide member is slidably and flexibly coupled to the contact assembly and has openings corresponding to the first contact ends. A second guide member is slidably and flexibly coupled to the contact assembly and has openings corresponding to the second contact ends. A biasing member biases the guide members away from one another to an open position. Axial float of the contact assembly is provided between the first and second guide members to compensate for axial misalignment between the first and second printed circuit boards. Radial float of the contact assembly is provided between the first and second guide members to compensate for radial misalignment between the boards.
US11056798B2 Beam adjustable antenna device
A beam adjustable antenna device includes a dual-band antenna, a first reflection unit, and a second reflection unit. The dual-band antenna radiates or receives a signal on a first frequency or a second frequency. The first reflection unit has a plurality of first reflection boards to reflect the signal on the first frequency from the dual-band antenna. The second reflection unit has a plurality of second reflection boards to reflect an signal on the second frequency radiated from the dual-band antenna. The plurality of first and second reflection boards are arranged beside the dual-band antenna, and a plane normal vector of each first and second reflection board is directed to the dual-band antenna. The first reflection unit is closer to the dual-band antenna than the second reflection unit.
US11056790B2 Antenna system and mobile terminal
The present disclosure provides an antenna system, including a mainboard having a system ground, a metal frame disposed around the mainboard and being closed-loop without any breakpoints, a first wire, a second wire, a third wire, a feed terminal, and a ground terminal. The system ground is electrically connected to the metal frame. The first wire is connected to the feed terminal and is opposite to and spaced apart from the metal frame, so that the first wire forms a first antenna unit. The second wire is connected to the ground terminal and is spaced apart from the first wire, and the second wire and the first wire are at least partially opposite, so that the second wire and the first wire are coupled with each other, to form a second antenna unit.
US11056789B2 Dual-band circularly polarized antenna structure
A dual-band circularly polarized antenna structure includes a microstrip line, an antenna unit and a ground. The antenna unit includes a first radiator and a second radiator. The first radiator has a feed-in portion and a first spiral pattern. The first spiral pattern spirals outwardly from a starting point close to the feed-in portion. The second radiator has a first grounding portion and a second spiral pattern. The second spiral pattern spirals outwardly from a starting point close to the first grounding portion in a manner non-overlapping with the first spiral pattern. One of the first and the second radiators has a second grounding portion. The microstrip line and the antenna unit are arranged apart. The feed-in portion of the first radiator of the antenna unit is coupled to the microstrip line. The first and the second grounding portions are coupled to the ground.
US11056787B2 Hybrid antenna
A hybrid antenna used for an electronic device is disclosed. A hybrid antenna comprises: a substrate comprising a first surface and a second surface and having an insulator; a first conductive member disposed on the first surface of the substrate and having a hole formed therein; a second conductive member disposed on a first area of the second surface of the substrate; and a third conductive member disposed on a second area of the second surface of the substrate and connected to a ground of an electronic device, wherein a first portion of the first conductive member operates as a first antenna for receiving a broadband signal and supplying power to the electronic device, and a second portion operates as a second antenna for receiving wireless power and supplying power to the electronic device, wherein a first power feeding unit is formed between the first antenna and second antenna.
US11056786B2 Antenna system and mobile terminal
The present disclosure provides an antenna system including a non-metallic housing. The non-metallic housing includes a top edge portion, a bottom edge portion provided correspondingly to the top edge portion, and a first long side edge portion and a second long side edge portion that connect the top edge portion with the bottom edge portion. The antenna system further includes seven antenna units provided on a periphery of the non-metallic housing. Compared with the related art, the antenna system provided by the present disclosure, by providing seven antenna units on the periphery of the non-metallic housing, achieves 3.3-3.6 GHz-4×4 MIMO, WIFI-2×2 MIMO, GPS, and 2G, 3G and 4G mobile communications.
US11056783B2 Communication device and communication method
Present disclosure relates to a communication device. The communication device includes a body, a directional antenna array and a radiation structure. The directional antenna array is arranged on a first position of the body. The directional antenna array is configured to transmit a radio frequency signal in a first signal area. The directional antenna array has a non-line-of-sight signal blind area with respect to the body. The radiation structure is arranged on a second position of the body. The directional antenna array is configured to transmit the radio frequency signal guided from the directional antenna array to cover a second signal area. The second position is located in the non-line-of-sight signal blind area of the directional antenna array.
US11056782B2 Linked locking mechanism and antenna down-tilt angle control device
A linked locking mechanism and antenna down-tilt angle control device is described. Linked locking mechanism includes: mounting frame with a mounting positions, each mounting position has a mounting through hole and a clamping body. Output assembly includes an output shaft and output gear resiliently disposed on output shaft. One end of output gear has engaging body engaged with clamping body and pressing body provided through mounting through hole. Rotating bracket has pressure bearing surface pressed against pressing body. Arc-shaped embossments are provided on pressure bearing surface. The arc-shaped embossment includes guide end, anti-reverse end, and mating body. When mating body and pressing body abut, and engaging body and clamping body are separated, output gear drives output shaft to rotate. Linked locking mechanism and antenna down-tilt angle control device provide easy positioning and accurate control of down-tilt angle of antenna.
US11056781B2 Antenna and mobile terminal
The application disclose an antenna. The antenna includes a first radiating element, a second radiating element, a third radiating element, and a closed ring, where the first radiating element is connected to a first feed point, the second radiating element is connected to a second feed point, and the third radiating element is connected to a third feed point; the closed ring is configured to be disposed in a clearance area of a ground plate, and configured to connect to the ground plate; the first radiating element, the second radiating element, and the third radiating element are connected by using a microstrip, to form a radiator; the third radiating element is disposed between the first radiating element and the second radiating element.
US11056780B2 Window-mounted antenna unit
An RF antenna system includes a first unit that further includes first attachment means that secures the first unit to a window, and an antenna. The first unit additionally includes an RF transceiver, coupled to the antenna, that receives, via the antenna, incoming RF signals and converts the RF signals to first electrical signals; and first optical means that transmits the first electrical signals as first optical signals through the first surface of the window. The RF antenna system also includes a second unit that includes second attachment means that secures the second unit to the window. The second unit also includes second optical means that receive the first optical signals through the second surface of the window, convert the first optical signals to first digital signals, and transmit the first digital signals to a device connected to the second unit.
US11056778B2 Radio assembly with modularized radios and interconnects
A radio assembly is provided. The radio assembly includes at least one radio module and a radome. The radio module has a heatsink disposed on one side and a radio module base on the other side thereof. The radio module base is disposed between the heatsink and the radome. The heatsink defines a cable channel for routing at least one power cable and at least one data cable.
US11056774B2 Autotune bolus antenna
A variable tuning transceiver sealed in a protective housing, such as a bolus, is adjusted to transmit a near optimally tuned signal at a select frequency while in vivo in an animal. More specifically, the variable tuning transceiver provides a plurality of incident power transmissions over an antenna at a plurality of corresponding different capacitance levels as defined by a variable tuning circuit in the transceiver. A detector circuit, also in the transceiver, detects reflected power for each of the incident power transmissions conditioned at each capacitance level which is affected by the dielectric constant in the animal and any mismatches in the antenna. Each reflected power can then be stored in nontransient memory in the transceiver whereby the microprocessor, also in the transceiver, can select the capacitance level with the lowest reflected power found and therefore the strongest external signal from the capacitance levels sampled. Once selected, transmissions which include data from sensors within and on the animal are transmitted externally to an external receiver.
US11056771B2 Antenna module and electronic device
The present disclosure relates to an antenna module and an electronic device. The antenna module includes: a first dielectric layer; a ground layer arranged on the first dielectric layer, and provided with at least one slot; a second dielectric layer arranged on the ground layer, and provided with an air chamber communicated with the at least one slot; a stacked patch antenna including a first radiation patch and a second radiation patch, the first radiation patch being attached to a side of the second dielectric layer facing away from the ground layer, and the second radiation patch being attached to a side of the second dielectric layer provided with the air chamber; and a feeding unit arranged to a side of the first dielectric layer facing away from the ground layer, and configured to feed the stacked patch antenna by the at least one slot.
US11056768B2 Electronic device comprising antenna
According to various examples, an electronic device comprising: a housing, which is a foldable housing and includes a first housing part including a first surface and a second surface oppositely facing the first surface, a second housing part including a first surface facing the first surface of the first housing part when folded in a first direction, and a second surface facing the second surface of the first housing part when folded in a second direction, and a connection part connecting the first housing part and the second housing part; a communication circuit disposed inside the housing; a first antenna pattern disposed inside the first housing part; a second antenna pattern disposed inside the second housing part; a first display exposed to the first surface of the first housing part; a second display exposed to the first surface of the second housing part; a first conductive member exposed to the second surface of the first housing part, and electrically connected to the first antenna pattern; and a second conductive member exposed to the second surface of the second housing part, and electrically connected to the second antenna pattern, wherein the communication circuit is electrically connected to the first antenna pattern and/or the second antenna pattern, and the first conductive member and the second conductive member can be electrically connected or coupled with each other, when the housing is folded in the second direction.
US11056767B2 Electronic device including antenna using housing thereof
An electronic device includes a first antenna configured to transmit and receive a first signal of a first frequency band, and a housing in which the first antenna is accommodated, wherein the housing includes a first conductor having a first slit that at least partially overlaps the first antenna, wherein the first conductor is formed of a metal and at least a portion of the first slit is filled with a metal oxide. Additionally, the electronic device includes a second conductor configured to transmit and receive a second signal of a second frequency band, and a second slit formed between the first conductor and the second conductor, and wherein the second slit is filled with a material that has an external appearance that is different from that of the second conductor.
US11056763B2 Wireless communication improvements for cooking appliances
A wireless signal repeater includes an interior antenna located in an interior a cooking appliance, and an exterior antenna located outside the cooking appliance. A coupling portion connects the interior antenna to the exterior antenna through a hole in a wall of the cooking appliance for wirelessly retransmitting wireless signals received by the wireless signal repeater. According to another aspect, a cooking appliance includes a cooking chamber for cooking food, and an interior antenna located inside the cooking chamber. An exterior antenna is located on an exterior of the cooking appliance, and a coupling portion is configured to connect the interior antenna with the exterior antenna. According to another aspect, an aperture is located in a cooking chamber and a reflector is mounted over the aperture on an exterior of the cooking appliance and is configured to narrow a radiation pattern for wireless signals transmitted through the aperture.
US11056753B2 Bus bar module
A bus bar module is attached to a battery assembly having a plurality of single cells which are assembled to each other along a first direction. The bus bar module includes a circuit body, a bus bar, and a holder. The circuit body includes a main line that extends in the first direction, a branch line that extends from the main line so as to branch from the main line, and a connection portion provided in a position close to a distal end of the branch line rather than a folded portion of the branch line and configured to be connected to the bus bar.
US11056747B2 Battery module
A battery module includes: a box having an inner cavity; at least two battery unit array structures, each of the at least two battery unit array structures including a plurality of battery units arranged along a length direction; and at least two support components, each of the at least two support components being fixed to a side of one of the at least two battery unit array structures in a height direction. The at least two battery unit array structures are arranged along a width direction and correspond to the at least two support components in one-to-one correspondence. The battery unit array structures and the components are disposed in the inner cavity.
US11056727B2 Modular lithium-ion battery system for fork lifts
Many embodiments involve rechargeable battery assemblies that are forklift-battery-sized but that comprise multiple removable battery modules. The removable battery modules are individually rechargeable and are interchangeable with each other. A housing contains six battery modules installed vertically on the front side of the assembly, with their electrical and data connections occurring within the housing on the rear side. Assemblies will be two sided so that the system has two racks with six modules per rack. The handles of each module are collapsible and on the top edges of the overall assembly so that they are readily accessible during removal. Each battery module has an integrated battery supervisor system (BSS). A Battery Operating System Supervisor (BOSS) module processor serves as a battery management system for the all the battery modules. The BOSS module grants permissions to battery modules to enable them to connect and disconnect from busbars at the appropriate times to prevent electrical issues.
US11056725B2 Electrode and lithium secondary battery comprising same
An electrode and a lithium secondary battery comprising the same, in particularly an electrode comprising an electrode layer, a pre-lithiation prevention layer formed on the electrode layer, and a lithium layer formed on the pre-lithiation prevention layer, which is capable of greatly improving the problem of the reduction of irreversible capacity of a negative electrode while preventing fire caused by a lithiation reaction due to contact between lithium and silicon before assembling a cell, and a lithium secondary battery including the same.
US11056718B2 Sulfide-based solid electrolyte
Provided is a sulfide-based solid electrolyte with high lithium ion conductivity. The sulfide-based solid electrolyte may be a sulfide-based solid electrolyte, wherein the sulfide-based solid electrolyte comprises a lithium (Li) element, a phosphorus (P) element, a sulfur (S) element and a halogen element, and it has a LGPS-type crystal structure, and wherein a ratio (P4d/P2b) between a proportion (P4d) of an area of a peak assigned to phosphorus atoms occupying 4d sites in the crystal structure and a proportion (P2b) of an area of a peak assigned to phosphorus atoms occupying 2b sites in the crystal structure, both of which are peaks observed in a 31P-MAS-NMR spectrum of the sulfide-based solid electrolyte, is 1.77 or more and 2.14 or less.
US11056712B2 Vertical carbon nanotube and lithium ion battery chemistries, articles, architectures and manufacture
Features for rechargeable lithium ion batteries, the batteries optionally employing vertically aligned carbon nanotube scaffolding, are described. Methods of manufacture and a solid polymer electrolyte are described for 3-dimensional battery architectures using the vertically aligned carbon nanotubes. Poly(ethylene)oxide bis(azide) and graphene poly(lactic acid) composite coatings are also described for use in such batteries or others.
US11056711B2 Secondary battery and method of manufacturing therefor
The present invention relates to a secondary battery having the electrode structure and a method of manufacturing therefor, the electrode structure according to an embodiment of the present invention may comprise an electrode assembly including a cathode layer, an anode layer facing the cathode layer, and a separation film disposed between the cathode layer and the anode layer; an exterior body including a upper exterior layer having an outer sealing part of which at least a portion of or whole edges are adhered so as to accommodate the electrode assembly and an electrolyte therein, and a lower exterior layer; a battery penetration part forming openings from the upper exterior layer to the lower exterior layer; and an inner sealing part in which facing portions of the upper exterior layer and the lower exterior layer of external periphery of the battery penetration part are adhered each other.
US11056707B2 Flow batteries having a pressure-balanced electrochemical cell stack and associated methods
The present disclosure is directed to methods for levelizing circulation rates over multiple electrochemical cells of an electrochemical cell stack due to a pressure drop that occurs at an outlet of each electrochemical cell.
US11056702B2 Efficient byproduct harvesting from fuel cells
Fuel cell systems configured for efficient byproduct recovery and reuse are disclosed herein. In one embodiment, a fuel cell system includes a reformer configured to reform a fuel containing methane (CH4) with steam to produce a reformed fuel having methane (CH4), carbon monoxide (CO), and hydrogen (H2). The fuel cell system also includes a fuel cell configured to perform an electrochemical reaction between a first portion of the reformed fuel and oxygen (O2) to produce electricity and an exhaust having carbon dioxide (CO2), water (H2O), and a second portion of the reformed fuel. The fuel cell system further includes an oxygen enricher configured to generate an oxygen enriched gas and a combustion chamber configured to combust the second portion of the reformed fuel with the oxygen enriched gas.
US11056701B2 Fuel cell system
A fuel cell system, including: an electric power generation control unit; an insulation-resistance measurement signal generation unit configured to generate a voltage-divided AC signal obtained by dividing an amplitude of a measurement AC signal; and an insulation resistance measurement unit configured to measure a resistance value of the insulation resistance, in which when the insulation resistance measurement unit detects, in a state where a voltage is maintained during an intermittent operation of the electric power generation control unit, an excessive noise state indicating a change in which a range of fluctuations of the peak value of the voltage-divided AC signal exceeds a predetermined allowable range of fluctuations, the insulation resistance measurement unit instructs the electric power generation control unit to change a fluctuation frequency of an output voltage of the fuel cell from a current frequency and then measures the resistance value of the insulation resistance.
US11056699B2 Fuel cell system
In a fuel cell system, the output from a plurality of fuel cells can reach an output greater than or equal to auxiliary driving power in a short time because the initial supply amount of raw fuel supplied from a raw fuel supply part is greater than or equal to a first supply amount that is a raw fuel supply amount corresponding to the auxiliary driving power. Thus, even if the raw fuel is supplied at the initial supply amount when a power failure has occurred in an electric power system during a startup operation of the fuel cell system, it is possible to supply electric power from the fuel cells to the auxiliary machinery and continue to drive the auxiliary machinery under the control of a startup controller. This suppresses the stop of the fuel cell system under the startup operation.
US11056692B2 Battery electrode, method for making the same and hybrid energy storage device using the same
The present invention relates to a battery electrode. The battery electrode comprises a plurality of carbon nanotubes and a plurality of transition metal oxide nanoparticles. The plurality of transition metal oxide nanoparticles are chemically bonded to the plurality of carbon nanotubes through carbon-oxygen-metal (C—O-M) linkages, wherein the metal being a transition metal element. The present invention also relates a method for making the battery electrode and a hybrid energy storage device using the battery electrode.
US11056689B2 Transition metal cyanide coordination compounds having enhanced reaction potential
A system, method, and articles of manufacture for a surface-modified transition metal cyanide coordination compound (TMCCC) composition, an improved electrode including the composition, and a manufacturing method for the composition represented by AxMnyMkj[Mnm(CN)(6)]z.(Vac)(1−Z).n(CH3OH) wherein A includes one or more alkali metals; and each dopant M may include at least one independently selected alkaline earth metal, a post-transition metal, or a transition metal having an average valence j; including one or more Mn(CN)6 complexes each including an Mn atom; wherein (Vac) identifies a Mn(CN)6 vacancy; wherein each particular Mn(CN)6 complex includes the Mn atom bonded to a plurality of cyanide groups; and wherein CH3OH identifies methyl alcohol; and further including one or more crystal structures of the TMCCC composition.
US11056686B1 Method and system for water soluble weak acidic resins as carbon precursors for silicon-dominant anodes
Systems and methods for water soluble weak acidic resins as carbon precursors for silicon-dominant anodes may include an electrode coating layer on a current collector, where the electrode coating layer is formed from silicon and pyrolyzed water-soluble acidic polyamide imide as a primary resin carbon precursor. The electrode coating layer may include a pyrolyzed water-based acidic polymer solution additive. The polymer solution additive may include one or more of: polyacrylic acid (PAA) solution, poly (maleic acid, methyl methacrylate/methacrylic acid, butadiene/maleic acid) solutions, and water soluble polyacrylic acid. The electrode coating layer may include conductive additives. The current collector may include a metal foil, where the metal current collector includes one or more of a copper, tungsten, stainless steel, and nickel foil in electrical contact with the electrode coating layer. The electrode coating layer may be more than 70% silicon.
US11056680B2 Molten fluid electrode apparatus
A battery includes negative electrode material and positive electrode material where the materials are in a solid phase except for selected portions that are heated to transform the selected portions into a fluid. The fluid portion of negative electrode material is directed to a negative electrode region of a reaction chamber and the fluid portion of positive electrode material is directed to a positive electrode region of the reaction chamber where a solid electrolyte containing ions of the negative electrode separates the positive electrode region from the negative electrode region.
US11056679B2 Positive electrodes with active materials and temporary lithium additives for lithium ion electrochemical cells
Provided are methods of introducing additional lithium ions into lithium-ion electrochemical cells as well as positive electrodes, comprising these additional lithium ions. A method may involve introducing a temporary lithium additive into a positive electrode, such as mixing the additive into slurry used for coating the electrode. The positive electrode also comprises a positive active material, different from the temporary lithium additive and used as a source of primary lithium ions. The positive active material is operable to release and also later to receive lithium ions during cycling. The temporary lithium additive is operable to release additional lithium ions during its decomposition, but not to receive any lithium ions thereafter. The amount of these additional lithium ions may be selected based on expected lithium ion losses in the cell. The temporary lithium additive may decompose when applying a voltage between the electrodes, e.g., during initial cycling.
US11056675B2 Display panel and display device comprising the same
The present disclosure relates to display panels and display devices including the display panel, and more specifically, to display panels including a protective layer, a graphene layer, a pressure sensitive adhesive layer, and a macromolecule film, on one surface of which a nano-pattern is formed, and display devices including the display panel. As results, the display panels and the display devices are provided that have high light extraction efficiency, excellent moisture permeability resistance, and a thin bezel.
US11056669B2 Flip-chip light emitting diode and manufacturing method thereof
A method of manufacturing a flip-chip light emitting diode includes: providing a transparent substrate and a temporary substrate, and bonding the transparent substrate with the temporary substrate; grinding and thinning the transparent substrate; providing a light-emitting epitaxial laminated layer having a first surface and a second surface opposite to each other, and including a first semiconductor layer, an active layer and a second semiconductor layer; forming a transparent bonding medium layer over the first surface of the light-emitting epitaxial laminated layer, and bonding the transparent bonding medium layer with the transparent substrate; defining a first electrode region and a second electrode region over the second surface of the light-emitting epitaxial laminated layer, and manufacturing a first electrode and a second electrode; and removing the temporary substrate.
US11056667B2 Display device
A display device includes: a first base substrate which comprises a plurality of pixels; a pixel electrode on the first base substrate in each of the pixels and comprises a reflective film; an organic layer on the pixel electrode; and a common electrode on the organic layer, wherein the pixel electrode has a reflectance of 80% or more for light in a first wavelength range of 420 nm to 470 nm.
US11056666B2 Display panel, fabricating method thereof, and display device
This application relates to a display panel, a fabricating method thereof, and a display device, the display panel includes a substrate; a first transparent conductive layer disposed on the substrate, material of the first transparent conductive layer is nitrogen oxide; a first reflective layer disposed on the first transparent conductive layer; and a second transparent conductive layer disposed on the first reflective layer, material of the second transparent conductive layer is nitrogen oxide.
US11056665B2 Electroluminescent display device
An electroluminescent display device includes a substrate; an overcoat layer disposed over the substrate; and a light-emitting diode disposed on the overcoat layer, comprising: a first electrode having a plurality of holes exposing a top surface of the overcoat layer, the holes having an inclined wall surface; a light-emitting layer disposed on the first electrode; and a second electrode disposed on the light-emitting layer.
US11056664B2 Organic light-emitting device
An organic light-emitting device includes a first electrode and a second electrode facing the first electrode. An organic layer is disposed between the first electrode and the second electrode. The organic layer includes an emission layer, a first compound and a second compound.
US11056662B2 Organic light-emitting device and display device
The present application discloses an organic light-emitting device and a display device. The organic light-emitting device comprises an anode, a cathode, and a blue light emitting layer, a green light emitting layer and a red light emitting layer between the anode and the cathode, and the blue light emitting layer comprises a blue thermally-activated delayed fluorescent material with a mass percent of 60-80%, the green light emitting layer comprises a green phosphorescent material and/or a green thermally-activated delayed fluorescent material, and the red light emitting layer comprises a red phosphorescent material and/or a red thermally-activated delayed fluorescent material.
US11056661B2 Color conversion layer, manufacturing method thereof, and display panel
The present invention provides a color conversion layer, a manufacturing method of the color conversion layer, and a display panel. The color conversion layer is used in a display panel having a direct surface light source. The color conversion layer includes a quantum dot film and a functional film. The functional film is arranged at one side of the quantum dot film facing the direct surface light source. A light wave emitted by the direct surface light source is transmitted through the functional film into the quantum dot film. A light wave excited by the quantum dot film is reflected into the quantum dot film through the functional film.
US11056659B2 Display panels and display devices
Exemplary embodiments of the present disclosure relate to display panels and display devices. The display panel includes: a base substrate; a display screen body disposed on the base substrate and including a display surface and a back surface, the display screen body being provided with a groove penetrating the display surface and the back surface, and an area of the display surface of the display screen body other than an area of the groove being a display area, a number of data signal wires configured to transmit driving data for pixel units in the display area; a number of power supply wires configured to supply an operating voltage to the pixel units in the display area and connected to a common power bus that surrounds the groove.
US11056656B2 Organoboron complexes and their use in organic electroluminescent devices
The present invention relates to compounds of the formula (1) which are suitable for use in electronic devices, in particular organic electroluminescent devices, and to electronic devices which comprise these compounds.
US11056654B2 Carbazole-based compound and organic light emitting device including the same
A carbazole-based compound and an organic light-emitting device including the carbazole-based compound, the compound being represented by one of the following Formulae 1 to 3:
US11056652B2 Compounds and organic electronic devices
The present invention relates to certain fluorenes, to the use of the compounds in an electronic device, and to an electronic device comprising at least one of these compounds. Furthermore, the present invention relates to a process for the preparation of the compounds and to a formulation and composition comprising one or more of the compounds.
US11056650B2 Film of quantum dot, method for patterning the same and quantum dot light emitting device using the same
The present disclosure provides a quantum dot thin film that is formed by cross-linking ligands of quantum dots with a photo cross-linker containing two or more azide groups. According to still another aspect of the present disclosure, a method for forming a quantum dot pattern includes: forming a quantum dot layer on a substrate by coating the substrate with a solution including quantum dots and a photo cross-linker containing two or more azide groups; placing a mask having a pattern on the quantum dot layer and performing UV exposure on the quantum dot layer; and forming a quantum dot pattern by removing a non-exposed region of the quantum dot layer.
US11056648B1 Semiconductor device including variable resistance element
A semiconductor device including a variable resistance device is provided. A variable resistance element according to one embodiment of the present disclosure includes: an ion-receiving layer having a top, a bottom and a sidewall connecting the top to the bottom; an ion supply layer having an inner sidewall connected to at least a portion of the sidewall of the ion-receiving layer; a gate pattern connected to an outer sidewall of the ion supply layer; and a source pattern connected to one of the top or bottom of the ion-receiving layer, and a drain pattern connected to the other one of the top or bottom of the ion-receiving layer, wherein a resistance of the ion-receiving layer varies depending on an amount of ions supplied from the ion supply layer based on a voltage applied to the gate pattern.
US11056644B2 Phase-change memory cell with vanadium oxide based switching layer
A phase-change memory cell, including, in sequence in the following order: a first electrode layer, a switching layer comprising vanadium oxide (VOx) material, a phase-change material layer, and a second electrode layer, is provided. The switching layer is adapted to control the phase-change material layer to switch between a crystalline state and an amorphous state when a voltage is applied to the first electrode layer and the second electrode layer.
US11056643B2 Magnetic tunnel junction (MTJ) hard mask encapsulation to prevent redeposition
A semiconductor structure and fabrication method of forming a semiconductor structure. In the method there is provided an electrically conductive structure embedded in an interconnect dielectric material layer of a magnetoresistive random access memory device. A conductive landing pad is located on a surface of the electrically conductive structure. A multilayered magnetic tunnel junction (MTJ) structure and an MTJ cap layer is formed on the landing pad. Then there is formed a metal hardmask layer on a surface of said MTJ cap layer, the etch stop layer being subject to lithographic patterning and etching to form a patterned hardmask pillar structure. An encapsulating is performed to encapsulate, using an insulating material film, a top surface and sidewall surfaces of said patterned hardmask layer. Subsequent etch processing forms an MTJ stack having sidewalls aligned to the patterned hardmask without impacting MTJ stack performance.
US11056638B2 Method of manufacturing an inkjet print head and an inkjet print head with induced crystal phase change actuation
A method for manufacturing an inkjet print head includes determining a misfit strain-electric field crystal phase relation for at least one composition of a piezoelectric material; selecting a misfit strain value and a composition of the piezoelectric material based on the determined misfit strain-electric field crystal phase relation for said at least one composition; and based on the selected misfit strain and the selected composition of the piezoelectric material, forming a base layer and an actuator stack on the base layer, the actuator stack including the piezoelectric material, wherein the base layer and the actuator stack have predetermined properties providing the selected misfit strain value and the selected composition. Thus, an inkjet print head having a piezoelectric actuator that is operated on the basis of a crystal phase change is reliably manufacturable.
US11056635B2 Electronic component housing package, electronic device, and electronic module
An electronic component housing package includes: a base section having a mounting section for an electronic component; a projecting part that is positioned on the base section and projects from the base section; a frame part that is positioned on the base section and surrounds the mounting section; a frame-shaped metalized layer that is positioned on the frame part; a plurality of external connection conductors that is positioned opposite the mounting section in the thickness direction; a connection conductor which is positioned on the projecting part and for connecting to the electronic component; and a wiring conductor that is connected to the connection conductor and that is led out to the base section. The thickness of the connection conductor gradually increases toward the wiring conductor.
US11056632B2 Thermoelectric conversion substrate, thermoelectric conversion module and method for producing thermoelectric conversion substrate
A thermoelectric conversion substrate includes an insulating substrate and at least one thermoelectric conversion unit. The insulating substrate has a first surface and a second surface at both sides of the insulating substrate in a thickness direction. The at least one thermoelectric conversion unit is incorporated in the insulating substrate. The at least one thermoelectric conversion unit includes a first thermoelectric member, a second thermoelectric member, and a first electrode disposed on the first surface of the insulating substrate. The first thermoelectric member includes a first tubular member having insulation property and a first semiconductor filled in the first tubular member. The second thermoelectric member includes a second tubular member having insulation property and a second semiconductor filled in the second tubular member. The second semiconductor has carriers different from carriers of the first semiconductor. The first electrode electrically connects the first semiconductor of the first thermoelectric member to the second semiconductor of the second thermoelectric member.
US11056631B2 Thermoelectric conversion module
A thermoelectric conversion module includes: a substrate; a plurality of thermoelectric elements including an N-type element and a P-type element; a bonding layer including silver and disposed between the substrate and the plurality of thermoelectric elements; a first electrode that connects the N-type element with the bonding layer, the first electrode including a first nickel layer and an aluminum layer that is disposed between the first nickel layer and the N-type element; and a second electrode that connects the P-type element with the bonding layer, the second electrode including a second nickel layer.
US11056629B2 Mounting an LED element on a flat carrier
A lighting device and a method of manufacturing a lighting device are described. A lighting device includes a flat carrier that has a front surface and a rear surface opposite the front surface. The flat carrier includes a cutout and multiple carrier-side electrical contacts on the rear surface. A mounting element is provided on the rear surface of the flat carrier and includes multiple mount-side electrical contacts electrically coupled to the multiple carrier-side electrical contacts and an elevated portion projecting into the cutout. Multiple LED elements are provided on the elevated portion of the mounting element and electrically coupled to the mounting element on the same side as the multiple mount-side side electrical contacts. A heat sink element is thermally coupled to the mounting element on a side of said mounting element opposite the flat carrier.
US11056626B2 Micro light emitting device display apparatus and method of fabricating the same
A micro light emitting device display apparatus including a circuit substrate, a plurality of epitaxial structures, a plurality of contact pads and a plurality of light shielding patterns is provided. The plurality of epitaxial structures are dispersedly arranged on the circuit substrate. The plurality of contact pads are disposed between the plurality of epitaxial structures and the circuit substrate. The plurality of epitaxial structures are electrically connected to the circuit substrate via the plurality of contact pads respectively. The plurality of light shielding patterns and the plurality of contact pads are alternately arranged on the circuit substrate, and each of the light shielding patterns is connected between two adjacent contact pads without overlapping with the contact pads and is adapted to block light with a wavelength ranging from 150 nm to 400 nm from penetrating through. A method of fabricating the micro light emitting device display apparatus is also provided.
US11056617B2 Manufacturing method of light-emitting device having a recess defined by a base and lateral surfaces of a first and a second wall
A manufacturing method of a light-emitting device, includes the steps of: preparing a substrate including a base, a first wall formed on an upper surface of the base, and a recess defined by a lateral surface of the first wall as an inside lateral surface and the upper surface of the base as a bottom surface; mounting a light-emitting element on the bottom surface of the recess; disposing a sealing member which covers the light-emitting element and the first wall; forming a groove section extending from an upper surface of the sealing member to the first wall by removing the sealing member on the first wall; disposing a second wall inside the groove section; and cutting the second wall and the substrate at a position including the second wall.
US11056610B2 Method of forming a metal silicide transparent conductive electrode
A method of forming a metal silicide nanowire network that includes multiple metal silicide nanowires fused together in an orderly arrangement on a substrate. The metal silicide nanowire network can be formed by printing a first set of multiple parallel silicon nanowires on the substrate and printing a second set of multiple parallel silicon nanowires over the first set of multiple parallel silicon nanowires such that said first set is perpendicular to said second set. A metal layer can be formed on the silicon nanowires. A silicidation anneal process is performed such that metal silicide nanowires are formed and fused together in an orderly arrangement, forming a grid network. After the silicidation anneal is performed, any unreacted silicon or metal can be selectively removed.
US11056605B2 Detection panel and manufacturing method thereof
A detection panel and a manufacturing method of the same are provided. The detection panel includes: a photosensitive element configured to sense a first light beam incident to the photosensitive element to generate a photosensitive signal; a drive circuit configured to be coupled to the photosensitive element to acquire the photosensitive signal from the photosensitive element, the drive circuit including a switch element; and a reflective grating which is on a side of the drive circuit where the first light beam is incident, and is configured to reflect at least a portion of the first light beam incident toward the switch element.
US11056603B2 Photodetectors with controllable resonant enhancement
Resonant cavity photodetector structures which integrate photodetection and filtering capabilities is described. A resonant cavity photodetector structure generally can comprise a region including a resonator, and an absorption region that can be integrated into a cavity of the resonator. The resonator can perform filtering that is suitable for high-bandwidth optical communications, such as Dense Wavelength Multiplexing (DWDM). In some cases, the resonator is a microring resonator. An absorption region can include a photodiode which performs optical energy detection acting as a photodetector, such as an avalanche photodiode (APD) wherein the photodiode. A coupling distance between the resonator region and the absorption region can be controlled, which allows control of a coupling strength between an optical mode of the resonator and the absorption region such that a quality factor (Q-factor) can be tuned. Thus, by adjusting the Q-factor, the resonant cavity photodetector structure can be tuned to achieve a desirable performance.
US11056602B2 Device, system, and method for selectively tuning nanoparticles with graphene
A graphene device for filtering color, involving a graphene structure responsive to continuous in-situ electrical gate-tuning of a Fermi level thereof and a plurality of nanoparticles disposed in relation to the graphene structure, each portion of the plurality of nanoparticles having a distinct energy bandgap in relation to another portion of the plurality of nanoparticles, and each portion of the plurality of nanoparticles configured to one of activate and deactivate in relation to the distinct energy bandgap and in response to the in-situ electrical gate-tuning of the Fermi level of the graphene structure.
US11056600B2 Photoelectric conversion element, photoelectric conversion element module, electronic device, and power supply module
Provided is a photoelectric conversion element including a first electrode, an electron-transporting layer, a hole-transporting layer, and a second electrode, wherein the hole-transporting layer and the second electrode are in contact with each other, and the hole-transporting layer satisfies the following formula: 0%
US11056599B2 Micro-scale concentrated photovoltaic module
A photovoltaic (“PV”) module may comprise an array of freeform micro-optics and an array of PV cells. The PV module may be a flat panel with a nominal thickness smaller than the length and width of the flat panel. An array of lenses may be embedded in an array substrate. The lenses may be coupled to light pipes. The lenses may concentrate light through the light pipes to multi junction cells. Diffuse light may be transferred through the array substrate to a silicon cell. The lenses and light pipes may be manufactured using a molding and drawing process.
US11056597B2 Photoelectric conversion device, photosensor, power generation device, and photoelectric conversion method
A photoelectric conversion device includes a photoelectric conversion element formed of a polar material and including no p-n junction, and first and second electrodes provided on the photoelectric conversion element and arranged at an interval. Space-inversion symmetry of a structure of the photoelectric conversion element is broken. The first and second electrodes are each formed of a metal material that generates no substantial potential barrier preventing majority carriers for the photoelectric conversion element from moving from the electrode to the photoelectric conversion element. Light incidence on the photoelectric conversion element without voltage application between the first and second electrodes causes electromotive force to be generated between first and second electrodes, and enables electric current to be continuously taken out from the first and second electrodes.
US11056595B2 Semiconductor device and manufacturing method thereof
A semiconductor device includes a substrate, a counter-doping region, and a Schottky barrier diode (SBD) in which a breakdown voltage is improved by using counter doping, and a manufacturing method thereof. A breakdown voltage may be improved by lowering a concentration of impurity on the region and enhancing the characteristics of the semiconductor device including the SBD.
US11056591B2 Epitaxial structures of semiconductor devices that are independent of local pattern density
A method of forming a semiconductor device is provided, which includes providing gate structures over an active region and forming a hard mask segment on the active region positioned between a first gate structure and a second gate structure. Cavities are formed in the active region using the gate structures and the hard mask segment as masking features, wherein each cavity has a width substantially equal to a minimum gate-to-gate spacing of the semiconductor device. Epitaxial material is grown in the cavities to form substantially uniform epitaxial structures in the active region.
US11056586B2 Techniques for fabricating charge balanced (CB) trench-metal-oxide-semiconductor field-effect transistor (MOSFET) devices
A charge balanced (CB) trench-metal-oxide-semiconductor field-effect transistor (MOSFET) device may include a charge balanced (CB) layer defined within a first epitaxial (epi) layer that has a first conductivity type. The CB layer may include charge balanced (CB) regions that has a second conductivity type. The CB trench-MOSFET device may include a device layer defined in a second epi layer and having the first conductivity type, where the device layer is disposed on the CB layer. The device layer may include a source region, a base region, a trench feature, and a shield region having the second conductivity type disposed at a bottom surface of the trench feature. The device layer may also include a charge balanced (CB) bus region having the second conductivity type that extends between and electrically couples the CB regions of the CB layer to at least one region of the device layer having the second conductivity type.
US11056584B2 Semiconductor device
In a semiconductor device having an active region and an inactive region, the active region includes a channel forming layer with a heterojunction structure having first and second semiconductor layers, a gate structure portion having a MOS gate electrode, a source electrode and a drain electrode disposed on the second semiconductor layer with the gate structure portion interposed therebetween, a third semiconductor layer disposed at a position away from the drain electrode between the gate structure portion and the drain electrode and not doped with an impurity, a p-type fourth semiconductor layer disposed on the third semiconductor layer, and a junction gate electrode brought into contact with the fourth semiconductor layer. The junction gate electrode is electrically connected to the source electrode to have a same potential as a potential of the source electrode, and is disposed only in the active region.
US11056581B2 Trench-gate insulated-gate bipolar transistors
In a general aspect, an insulated gate bipolar transistor (IGBT) device can include an active region, an inactive region and a trench extending along a longitudinal axis in the active region. The IGBT device can also include a first mesa defined by a first sidewall of the trench and in parallel with the trench and a second mesa defined by a second sidewall of the trench and in parallel with the trench. The first mesa can include at least one active segment of the IGBT device and the second mesa can include at least one inactive segment of the IGBT device.
US11056577B2 Thin-film transistor and manufacturing method for the same
A thin-film transistor and a manufacturing method for the same are disclosed. The method includes steps of: depositing a first metal layer on a substrate; depositing a semiconductor material layer on the first metal layer, and using a first photolithography process to perform a patterning process to the semiconductor material layer in order to form a semiconductor active layer depositing a second metal layer on the first metal layer and the semiconductor active layer, and using a second photolithography process to perform a patterning process to the first metal layer and the second metal layer in order to obtain a first electrode, a second electrode, and a third electrode, wherein the first electrode and the second electrode are disposed at an interval, the first electrode is disposed on the substrate, the second electrode is disposed between the substrate and the semiconductor active layer, and the third electrode is disposed on the semiconductor active layer, projections of the second electrode and the third electrode on a horizontal plane are overlapped; the first electrode is formed by the first metal layer and the second metal layer. The fabrication of the first electrode, the second electrode, the third electrode, and the active layer can be completed by only two photolithography processes, which reduce process steps and reduce cost.
US11056573B2 Implantation and annealing for semiconductor device
A semiconductor device, and a method of manufacturing, is provided. A dummy gate is formed on a semiconductor substrate. An interlayer dielectric (ILD) is formed over the semiconductor fin. A dopant is implanted into the ILD. The dummy gate is removed and an anneal is performed on the ILD. The implantation and the anneal lead to an enhancement of channel resistance by a reduction in interlayer dielectric thickness and to an enlargement of critical dimensions of a metal gate.
US11056571B2 Memory cells and integrated structures
A memory cell comprises, in the following order, channel material, a charge-passage structure, programmable material, a charge-blocking region, and a control gate. The charge-passage structure comprises a first material closest to the channel material, a third material furthest from the channel material, and a second material between the first material and the third material. The first and third materials comprise SiO2. The second material has a thickness of 0.4 nanometer to 5.0 nanometers and comprises SiOx, where “x” is less than 2.0 and greater than 0. Other embodiments are disclosed.
US11056565B2 Flash memory device and method
Semiconductor devices including non-volatile memory transistors and methods of fabricating the same to improve performance thereof are provided. In one embodiment, the memory transistor comprises an oxide-nitride-oxide (ONO) stack on a surface of a semiconductor substrate, and a high work function gate electrode formed over a surface of the ONO stack. Preferably, the gate electrode comprises a doped polysilicon layer, and the ONO stack comprises multi-layer charge storing layer including at least a substantially trap free bottom oxynitride layer and a charge trapping top oxynitride layer. More preferably, the device also includes a metal oxide semiconductor (MOS) logic transistor formed on the same substrate, the logic transistor including a gate oxide and a high work function gate electrode. In certain embodiments, the dopant is a P+ dopant and the memory transistor comprises N-type (NMOS) silicon-oxide-nitride-oxide-silicon (SONOS) transistor while the logic transistor a P-type (PMOS) transistor. Other embodiments are also disclosed.
US11056563B2 Semiconductor device, semiconductor module, and packaged semiconductor device
A semiconductor device includes a semiconductor substrate including a first conductivity-type impurity, a low-concentration impurity layer including a first conductivity-type impurity having a concentration lower than a concentration of the first conductivity-type impurity in the semiconductor substrate, a backside electrode including a metal material, and first and second transistors in the low-concentration impurity layer. The first transistor includes a first source electrode and a first gate electrode on a surface of the low-concentration impurity layer, the second transistor includes a second source electrode and a second gate electrode on the surface of the low-concentration impurity layer. The semiconductor substrate serves as a common drain region of the transistors. The thickness of the backside electrode ranges from 25 to 35 μm, and the ratio of the thickness of the backside electrode to the thickness of a semiconductor layer including the semiconductor substrate and the low-concentration impurity layer is 0.32 or more.
US11056558B2 Semiconductor device and semiconductor memory device
A semiconductor device according to an embodiment includes a semiconductor layer having a first plane and a second plane opposite to the first plane; a gate electrode; a gate insulating layer provided between the first plane and the gate electrode; and a pair of first p-type impurity regions provided in the semiconductor layer on both sides of the gate electrode, containing boron, carbon, and germanium, having a bond structure of boron and carbon, having a first boron concentration and a first depth in a direction from the first plane toward the second plane, and having a distance between the first p-type impurity regions being a first distance.
US11056557B2 Semiconductor device including a semi-insulating layer contacting a first region at a first surface of a semiconductor layer
A semiconductor device includes a semiconductor layer on a first electrode. The semiconductor layer includes a first region of a first type, a second region of a second type, a third region of the second type, and a fourth region of the first type. The second region is above the first region. The third region surrounds the second region. The fourth region surrounds the third region. The second electrode includes a first portion above the second region and a second portion surrounding the first portion. The third electrode surrounds the second electrode and is electrically connected to the fourth region. The semi-insulating layer is electrically connected to the second electrode and the third electrode. A first end portion of the first insulating layer is above the third region.
US11056556B2 Metal-insulator-metal capacitive structure and methods of fabricating thereof
A method of fabricating a metal-insulator-metal (MIM) capacitor structure includes forming a bottom electrode, forming a first oxide layer adjacent the bottom electrode, and depositing a first high-k dielectric layer over the bottom electrode and the first oxide layer. A middle electrode is then formed over the first high-k dielectric layer and a second oxide layer is formed adjacent the middle electrode. A second high-k dielectric layer may be deposited over the middle electrode and the second oxide layer and a top electrode over the second high-k dielectric layer.
US11056555B2 Semiconductor device having 3D inductor and method of manufacturing the same
A semiconductor device having 3D inductor includes a first transverse inductor, a longitudinal inductor and a second transverse inductor. The first transverse inductor is formed on a first substrate, the second transverse inductor and the longitudinal inductor are formed on a second substrate. The second substrate is bonded to the first substrate to connect the first transverse inductor and the longitudinal inductor such that the first transverse inductor, the longitudinal inductor and the second transverse inductor compose a 3D inductor.
US11056554B2 Display device
A display device including a plurality of light emitting elements including first, second, and third light emitting elements; and a color filter including first, second, and third color filters corresponding to respective first, second, and third light emitting elements, wherein first and second light-shielding members are disposed at a light emission direction, first ends of the first and second color filters overlap with the first light-shielding member in a cross sectional view, a first distance between the first end of the first color filter and a first side surface of the first light-shielding member and a second distance between the first end of the second color filter and a second side surface of the second light-shielding member are different in the cross sectional view, a thickness of the first color filter and a thickness of the second color filter are different.
US11056551B2 Display device
A display device may include a light emitting element, a buffer layer, a gate insulation layer, and a switching element. A refractive index of the gate insulation layer may be equal to a refractive index of the buffer layer. The switching element may be electrically connected to the light emitting element and may include an active layer and a gate electrode. The active layer may be positioned between the buffer layer and the gate insulation layer and may directly contact at least one of the buffer layer and the gate insulation layer. The gate insulation layer may be positioned between the active layer and the gate electrode and may directly contact at least one of the active layer and the gate electrode.
US11056549B2 Active matrix organic light emitting diode panel
The present disclosure provides an active matrix organic light emitting diode panel where a color shift does not occur at an edge of a display area. A color shift does not occur at the edge of the display area in an AMOLED panel proposed by an embodiment of the present disclosure to avoid color shift phenomenon at the edge of a display area. So red, green, and blue (R, G, and B) pixel units that are not arranged in a regular pattern at a non-standard pixel structure and a corresponding anode material layer are in a floating state. So the color shift phenomenon will not occur. When the pixel unit of the non-standard pixel structure receives an image display control signal, the color shift phenomenon may occur due to the inability to correspondingly display a corresponding image corresponding to the image display control signal to display the screen normally.
US11056548B1 Display panel
A display panel is provided. The display panel includes: a flexible substrate including a display area and a non-display area; a thin film transistor layer formed on the flexible substrate; grooves formed in the thin film transistor layer corresponding to the non-display area; a planarization layer and a pixel definition layer disposed on the thin film transistor layer respectively; bumps formed in the non-display area after patterning the planarization layer and the pixel definition layer; and a light emitting layer and a thin film encapsulation layer formed on the planarization layer in order, wherein the thin film encapsulation layer covers the bumps and the grooves.
US11056547B2 Organic light-emitting display device and method of manufacturing the same
An organic light-emitting display device includes: a substrate; a pixel electrode on the substrate; a pixel defining layer having a first opening exposing a center portion of the pixel electrode; a barrier layer on the pixel defining layer; an intermediate layer including a first common layer, a first emissive layer, and a second common layer sequentially arranged on the pixel electrode, the pixel defining layer, and the barrier layer; and a first opposite electrode covering the intermediate layer. The barrier layer has a second opening that is larger than the first opening and has an undercut structure.
US11056546B2 Display device and method of manufacturing display device
A display device includes a display panel and a touch sensor on the display panel. The display panel includes: a base layer; a light emitting element having a first electrode on the base layer; a pixel defining layer including an opening region that exposes a portion of the first electrode of the light emitting element; and an encapsulation layer covering the light emitting element and the pixel defining layer. The touch sensor has: a first conductive pattern on the encapsulation layer; a color filter on the encapsulation layer to cover the first conductive pattern, the color filter including a first region including a lens part and overlaps the opening region of the pixel defining layer and a second region overlaps the pixel defining layer; a second conductive pattern on the second region of the color filter; and a black matrix on the second conductive pattern.
US11056541B2 Organic light-emitting device
An electronic apparatus including a substrate; an organic light-emitting device disposed on the substrate; and a thin film encapsulation portion sealing the organic light-emitting device and including at least one organic film is presented. The organic film includes a cured product of a composition for forming an organic film, the composition including a curable material and an ultraviolet (UV) absorber, wherein the curable material includes at least one selected from an acryl-based material, a methacryl-based material, an acrylate-based material, a methacrylate-based material, a vinyl-based material, an epoxy-based material, a urethane-based material, and a cellulose-based material, and the organic light-emitting device includes a first electrode, a second electrode, an emission layer between the first electrode and the second electrode, and a hole transport region between the first electrode and the emission layer. The emission layer includes a compound shown below, and the hole transport region includes a diamine compound:
US11056533B1 Bipolar junction transistor device with piezoelectric material positioned adjacent thereto
One illustrative device disclosed herein includes a semiconductor substrate, a bipolar junction transistor (BJT) device that comprises a collector, a base and an emitter, at least one piezoelectric structure comprising a piezoelectric material positioned adjacent the BJT device, and at least first and second conductive contact structures that are conductively coupled to the piezoelectric structure.
US11056527B2 Metal oxide interface passivation for photon counting devices
Described herein are photon counting devices comprising direct mode detectors with improved signal to noise ratios which are suitable for use in X-ray imaging devices, and other imaging devices.
US11056520B2 Imaging device and imaging system
An imaging device includes pixels each including a photoelectric converter that generates charges by photoelectric conversion, a first transfer transistor that transfers charges of the photoelectric converter to a first holding portion, a second transfer transistor that transfers charges of the first holding portion to a second holding portion, and an amplifier unit that outputs a signal based on charges held by the second holding portion. The first transfer transistor is configured to form a potential well for the charges between the photoelectric converter and the first holding portion when the first transistor is in an on-state. The maximum charge amount QPD generated by the photoelectric converter during one exposure period, a saturation charge amount QMEM_SAT of the first holding portion, and the maximum charge amount QGS that can be held in the potential well are in a relationship of: QPD
US11056514B2 Manufacturing method for display device
Separation of wirings formed on an organic passivation film is prevented in an organic EL display device or a liquid crystal display device. The organic EL display device includes a TFT formed on a substrate and an organic passivation film formed to cover the TFT. An intermediate film containing SiO or SiN is formed to cover the organic passivation film. An insulation film formed with an organic material is formed on the intermediate film. A reflective electrode is formed on the intermediate film. The reflective electrode is connected to the TFT via a through-hole formed in the organic passivation film and a through-hole formed in the intermediate film.
US11056505B2 Integrated assemblies having one or more modifying substances distributed within semiconductor material, and methods of forming integrated assemblies
Some embodiments include a method of forming an integrated assembly. A stack of alternating first and second materials is formed over a conductive structure. The conductive structure includes a semiconductor-containing material over a metal-containing material. An opening is formed to extend through the stack and through the semiconductor-containing material, to expose the metal-containing material. The semiconductor-containing material is doped with carbon and/or with one or more metals. After the doping of the semiconductor-containing material, the second material of the stack is removed to form voids. Conductive material is formed within the voids. Insulative material is formed within the opening. Some embodiments include integrated assemblies having carbon distributed within at least a portion of a semiconductor material.
US11056499B2 Semiconductor memory device
A semiconductor memory device, with which a manufacturing method is associated, includes a substrate. The semiconductor memory device also includes a source structure disposed on a first region of the substrate, memory cell strings connected to the source structure, and a capacitor structure disposed on a second region of the substrate. The capacitor structure is spaced apart from the source structure in a horizontal direction.
US11056490B2 Process enhancement using double sided epitaxial on substrate
Disclosed examples include semiconductor devices and fabrication methods to fabricate semiconductor wafers and integrated circuits, including forming a first epitaxial semiconductor layer of a first conductivity type on a first side of a semiconductor substrate of the first conductivity type, forming a nitride or oxide protection layer on a top side of the first epitaxial semiconductor layer, forming a second epitaxial semiconductor layer of the first conductivity type on the second side of the semiconductor substrate, and removing the protection layer from the first epitaxial semiconductor layer. The wafer can be used to fabricate an integrated circuit by forming a plurality of transistors at least partially on the first epitaxial semiconductor layer.
US11056487B2 Single diffusion break local interconnect
Certain aspects of the present disclosure generally relate to a single diffusion break having a conductive portion. An example semiconductor device generally includes a first semiconductor region, a second semiconductor region, a dielectric region, and a single diffusion break (SDB). The dielectric region is disposed between the first semiconductor region and the second semiconductor region. The SDB intersects at least one of the first semiconductor region or the second semiconductor region, and the SDB comprises an electrically conductive portion.
US11056474B2 Semiconductor package, semiconductor device and method of forming the same
According to an exemplary embodiment, a semiconductor package is provided. The semiconductor package includes at least one chip, and at least one component adjacent to the at least one chip, wherein the at least one chip and the at least one component are molded in a same molding body.
US11056472B2 Stretchable display device
Provided is a stretchable display device. The stretchable display device includes a plurality of island substrates which defines a plurality of pixels and is spaced apart from each other, a lower substrate disposed below the plurality of island substrates and a connection line which electrically connects pads disposed on adjacent island substrates among the plurality of island substrates, wherein the upper substrate is made of a stretchable polymer material and includes a plurality of upper patterns overlapping an emission area of the plurality of island substrates and a second upper pattern in an area excluding the plurality of first upper patterns, and wherein the second upper pattern further includes a black pigment.
US11056471B2 Semiconductor device and method of manufacture
A semiconductor device and method for providing an enhanced removal of heat from a semiconductor die within an integrated fan out package on package configuration is presented. In an embodiment a metal layer is formed on a backside of the semiconductor die, and the semiconductor die along and through vias are encapsulated. Portions of the metal layer are exposed and a thermal die is connected to remove heat from the semiconductor die.
US11056466B2 Package on package thermal transfer systems and methods
Systems and methods for improving heat distribution and heat removal efficiency in PoP semiconductor packages are provided. A PoP semiconductor package includes a first semiconductor package that is physically, communicably, and conductively coupled to a stacked second semiconductor package. A gap forms between the upper surface of the first semiconductor package and the lower surface of the second semiconductor package. Additionally, interstitial gaps form between each of the PoP semiconductor packages disposed on an organic substrate. A curable fluid material, such as a molding compound, may be flowed both in the interstitial spaces between the PoP semiconductor packages and into the gap between the upper surface of the first semiconductor package and the lower surface of the second semiconductor package.
US11056465B2 Semiconductor package having singular wire bond on bonding pads
Semiconductor packages including active die stacks, and methods of fabricating such semiconductor packages, are described. In an example, a semiconductor package includes an active die having a top surface covered by a molding compound, and a bonding pad attached to only one interconnect wire. A method of fabricating the semiconductor package includes bridging a pair of dies stacks by the interconnect wire, and dividing the interconnect wire to form separate wire segments attached to respective die stacks.
US11056463B2 Arrangement of penetrating electrode interconnections
The present technology relates to a semiconductor apparatus, a production method, and an electronic apparatus that enable semiconductor apparatuses to be laminated and the laminated semiconductor apparatuses to be identified. A semiconductor apparatus that is laminated and integrated with a plurality of semiconductor apparatuses, includes a first penetrating electrode for connecting with the other semiconductor apparatuses and a second penetrating electrode that connects the first penetrating electrode and an internal device, the second penetrating electrode being arranged at a position that differs for each of the laminated semiconductor apparatuses. The second penetrating electrode indicates a lamination position at a time of lamination. An address of each of the laminated semiconductor apparatuses in a lamination direction is identified by writing using external signals after lamination. The present technology is applicable to a memory chip and an FPGA chip.
US11056462B2 Locking dual leadframe for flip chip on leadframe packages
A method of assembling a flip chip on a leadframe package. A locking dual leadframe (LDLF) includes a top metal frame portion including protruding features and a die pad and a bottom metal frame portion having apertures positioned lateral to the die pad. The protruding features and apertures are similarly sized and alignable. A flipped integrated circuit (IC) die having a bottomside and a topside including circuitry connected to bond pads having solder balls on the bond pads is mounted with its topside onto the top metal frame portion. The top metal frame portion is aligned to the bottom metal frame portion so that the protruding features are aligned to the apertures. The bottomside of the IC die is pressed with respect to a top surface of the bottom frame portion, wherein the protruding features penetrate into the apertures.
US11056461B2 Method of manufacturing fan-out wafer level package
Provided is a method of manufacturing a semiconductor package including providing a carrier substrate, providing sacrificial layer on the carrier substrate, the sacrificial layer including a first sacrificial layer and a second sacrificial layer, providing a redistribution wiring layer on the sacrificial layer, providing a plurality of semiconductor chips on the redistribution wiring layer, providing a mold layer provided on the sacrificial layer, the redistribution wiring layer, and the plurality of semiconductor chips, detaching the first sacrificial layer from the second sacrificial layer, and dicing the second sacrificial layer, the redistribution wiring layer, and the mold layer, wherein a diameters of the first sacrificial layer and the second sacrificial layer are respectively less than a diameter of the carrier substrate, and a diameter of the mold layer is greater than the diameter of the redistribution wiring layer and less than the diameter of the first sacrificial layer.
US11056459B2 Chip package structure and method for forming the same
A method for forming a chip package structure is provided. The method includes partially removing a first redistribution layer to form an alignment trench in the first redistribution layer. The alignment trench surrounds a bonding portion of the first redistribution layer. The method includes forming a liquid layer over the bonding portion. The method includes disposing a chip structure over the liquid layer, wherein a first width of the bonding portion is substantially equal to a second width of the chip structure. The method includes evaporating the liquid layer. The chip structure is in direct contact with the bonding portion after the liquid layer is evaporated.
US11056455B2 Negative fillet for mounting an integrated device die to a carrier
In some embodiments, an electronic module is disclosed. The electronic module can include a carrier and an integrated device die having an upper surface, a lower surface, and an outer side edge. The integrated device die can include a first surface recessed from the lower surface and a second surface extending between the lower surface and the first surface. The second surface can be laterally inset from the outer side edge. The electronic module can include a mounting compound comprising a first portion disposed between the lower surface of the integrated device die and the carrier and a second portion disposed along at least a portion of the second surface of the integrated device die.
US11056448B2 Covert gates to protect gate-level semiconductors
Integrated circuit (IC) camouflaging has emerged as a promising solution for protecting semiconductor intellectual property (IP) against reverse engineering. The cell camouflaging covert gate leverages doping and dummy contacts to create camouflaged cells that are indistinguishable from regular standard cells under modern imaging techniques. A comprehensive security analysis of the covert gate shows that it achieves high resiliency against SAT and test-based attacks at very low overheads. Models are derived to characterize the covert cells, and metrics are developed to incorporate them into a gate-level design. Simulation results of overheads and attacks are presented on benchmark circuits.
US11056446B2 Semiconductor package device and semiconductor process
A semiconductor package device includes a wiring structure, a semiconductor chip and an encapsulant. The semiconductor chip is electrically connected to the wiring structure. The encapsulant is disposed on the wiring structure and covers the semiconductor chip. A roughness (Ra) of a surface of the encapsulant is about 5 nm to about 50 nm.
US11056437B2 Panel-level chip device and packaging method thereof
A panel-level chip device and a packaging method for forming the panel-level chip device are provided. The panel-level chip device includes a plurality of first bare chips disposed on a supporting base, and a plurality of first connection pillars. The panel-level chip device also includes a first encapsulation layer, and a first redistribution layer. The first redistribution layer includes a plurality of first redistribution elements and a plurality of second redistribution elements. Further, the panel-level chip device includes a solder ball group including a plurality of first solder balls. First connection pillars having a same electrical signal are electrically connected to each other by a first redistribution element. Each of remaining first connection pillars is electrically connected to one second redistribution element. The one second redistribution element is further electrically connected to a first solder ball of the plurality of first solder balls.
US11056435B2 Semiconductor package with chamfered pads
At least some embodiments of the present disclosure relate to a substrate for packaging a semiconductor device package. The substrate comprises a dielectric layer, a first conductive element adjacent to the dielectric layer, a second conductive element adjacent to the dielectric layer, and a third conductive element adjacent to the dielectric layer. The first conductive element has a first central axis in a first direction and a second central axis in a second direction. The first conductive element comprises a first chamfer and a second chamfer adjacent to the first chamfer. The second conductive element has a first central axis in the first direction and a second central axis in the second direction. The third conductive element has a first central axis in the first direction and a second central axis in the second direction. The first central axes of the first, second, and third conductive elements are substantially parallel to one another in the first direction and are misaligned from one another. The second central axes of the first and second conductive elements are substantially co-linear in the second direction. The second central axis of the third conductive element is substantially parallel to and misaligned from the second central axes of the first and second conductive elements. The first chamfer and the second chamfer are separated by at least one of the first central axis and the second central axis of the first conductive element and are substantially asymmetric.
US11056433B2 Redistribution layer structures for integrated circuit package
A method of forming an integrated circuit (IC) package with improved performance and reliability is disclosed. The method includes forming a singulated IC die, coupling the singulated IC die to a carrier substrate, and forming a routing structure. The singulated IC die has a conductive via and the conductive via has a peripheral edge. The routing structure has a conductive structure coupled to the conductive via. The routing structure further includes a cap region overlapping an area of the conductive via, a routing region having a first width from a top-down view, and an intermediate region having a second width from the top-down view along the peripheral edge of the conductive via. The intermediate region is arranged to couple the cap region to the routing region and the second width is greater than the first width.
US11056429B2 Semiconductor device including a porous dielectric layer, and method of forming the semiconductor device
A semiconductor device includes a porous dielectric layer including a recessed portion, a conductive layer formed in the recessed portion, and a cap layer formed on the porous dielectric layer and on the conductive layer in the recessed portion, an upper surface of the porous dielectric layer being exposed through a gap in the cap layer.
US11056426B2 Metallization interconnect structure formation
Techniques for fabricating a metallic interconnect include forming a first metallization layer that includes a first dielectric layer, a first metallic layer formed in the first dielectric layer and a first capping layer formed on the first dielectric layer and the first metallic layer and forming a second metallization layer that includes a second dielectric layer, a second metallic layer formed in the second dielectric layer and a second capping layer formed on the second dielectric layer and the second metallic layer. A channel is etched in the second capping layer, second dielectric layer, and first capping layer that exposes a portion of the first metallic layer and a portion of the second metallic layer. A metallic interconnect structure is formed in the channel in contact with the exposed portion of the first metallic layer and the exposed portion of the second metallic layer.
US11056425B2 Structural enhancement of Cu nanowires
A structure comprising a first dielectric layer embedded with a first interconnect structure. An insulator layer is disposed on the first dielectric layer. A second dielectric layer is disposed on the insulator layer. A via resides within the second dielectric layer. A second interconnect structure is isolated from the first dielectric layer. A first portion of a bottom surface of the via resides on a top surface of the insulator layer. A second portion of the bottom surface of the via resides on a first portion of a top surface of the first interconnect structure.
US11056423B2 Semiconductor device
A semiconductor device includes a semiconductor chip mounted to a mounting substrate with an interposer interposed therebetween such that a surface of the semiconductor chip on which bumps are formed faces a surface of the mounting substrate. The mounting substrate has a plurality of metal parts formed as terminals on a surface of the mounting substrate and in contact with electrode pads connected to multilayer wiring. The semiconductor chip has a plurality of functional elements formed in an inner layer and a plurality of bumps formed in contact with element wiring lines of the functional elements such that the bumps protrude from the surface of the semiconductor chip. The interposer has a plurality of first recesses formed in the surface of the interposer facing the surface of the semiconductor chip on which the bumps are formed such that the first recesses accommodate only the bumps.
US11056422B2 Semiconductor module
A semiconductor module includes a die pad frame; a semiconductor chip disposed in a chip region on an upper surface of the die pad frame, the semiconductor chip having an upper surface on which a first electrode is disposed and a lower surface on which a second electrode is disposed; a conductive connection member for die pad disposed between the second electrode of the semiconductor chip and the upper surface of the die pad frame, the conductive connection member for die pad electrically connecting the second electrode of the semiconductor chip and the upper surface of the die pad frame; and a sealing resin for sealing the semiconductor chip, the die pad frame, and the conductive connection member for die pad.
US11056419B2 Semiconductor device having backside interconnect structure on through substrate via and method of forming the same
A semiconductor device includes a through-substrate via extending from a frontside to a backside of a semiconductor substrate. The through-substrate via includes a concave or a convex portion adjacent to the backside of the semiconductor substrate. An isolation film is formed on the backside of the semiconductor substrate. A conductive layer includes a first portion formed on the concave or convex portion of the through substrate via and a second portion formed on the isolation film. A passivation layer partially covers the conductive layer.
US11056416B2 Semiconductor device and method of manufacturing the same
A semiconductor device includes a first case part, a second case part coupled to the first case part to provide a case, a semiconductor module disposed within the case closer to the second case part than to the first case part, and a plate interposed between the first case part and the semiconductor module. The plate is a thermal conductor, i.e., is of material having thermal conductivity, to transfer heat generated by the semiconductor module to the case where the heat can dissipate to the outside of the semiconductor device.
US11056414B2 Semiconductor package
A semiconductor package may include a package substrate, an interposer, a logic chip, at least one memory chip and a heat sink. The interposer may be located over an upper surface of the package substrate. The interposer may be electrically connected with the package substrate. The logic chip may be located over an upper surface of the interposer. The logic chip may be electrically connected with the interposer. The memory chip may be located over an upper surface of the interposer. The memory chip may be electrically connected with the interposer and the logic chip. The heat sink may make thermal contact with the upper surface of the logic chip to dissipate heat in the logic chip.
US11056413B2 Combined inductor and heat transfer device
An inductor includes a conductor having a first end and a second end, wherein the first end, the second end, or both ends are configured to be mounted on a substrate and configured to receive a heat flow; and one or more magnetic cores surrounding a first portion of the conductor, the first portion of the conductor being intermediate the first end and the second end of the conductor. A second portion of the conductor not surrounded by the one or more magnetic cores is configured to transfer the heat flow from the conductor.
US11056412B2 Semiconductor package and manufacturing method thereof
A semiconductor package includes an encapsulated semiconductor device, a redistribution structure, and a protection layer. The encapsulated semiconductor device includes a semiconductor device and an encapsulating material encapsulating the semiconductor device. The redistribution structure is disposed on the encapsulated semiconductor device and includes a dielectric layer and a redistribution circuit layer electrically connected to the semiconductor device. The protection layer at least covers the dielectric layer, wherein an oxygen permeability or a water vapor permeability of the protection layer is substantially lower than an oxygen permeability or a vapor permeability of the dielectric layer.
US11056409B2 Composite material and a semiconductor container made of the same
The present invention provides a semiconductor container which is made of composite material. The composite material is selected from a group consisting of a graphene material doped cycloolefin copolymer (COC), a graphene material doped cycloolefin polymer (COP) and a graphene material doped cyclic block copolymer (CBC). The content of the graphene material ranges from 0.6% to 8.0% by weight in each composite material.
US11056408B2 Power semiconductor device with active short circuit failure mode
A power semiconductor device includes a Si chip providing a Si switch and a wide bandgap material chip providing a wide bandgap material switch, wherein the Si switch and the wide bandgap material switch are electrically connected in parallel. A method for controlling a power semiconductor device includes: during a normal operation mode, controlling at least the wide bandgap material switch for switching a current through the power semiconductor device by applying corresponding gate signals to at least the wide bandgap material switch; sensing a failure in the power semiconductor device; and, in the case of a sensed failure, controlling the Si switch by applying a gate signal, such that a current is generated in the Si chip heating the Si chip to a temperature forming a permanent conducting path through the Si chip.
US11056406B2 Stack of multiple deposited semiconductor layers
Embodiments of the present technology may include a method of forming a stack of semiconductor layers. The method may include depositing a first silicon oxide layer on a substrate. The method may also include depositing a first silicon layer on the first silicon oxide layer. The method may include depositing a first silicon nitride layer on the first silicon layer. The method may further include depositing a second silicon layer on the first silicon nitride layer. In addition, the method may include depositing a stress layer on a side of the substrate opposite a side of the substrate with the first silicon oxide layer. The operations may form a structure of semiconductor layers, where the structure includes the first silicon oxide layer, the first silicon layer, the first silicon nitride layer, the second silicon layer, the substrate, and the stress layer. Other methods of reducing stress are described.
US11056404B1 Evaluating a hole formed in an intermediate product
An evaluation system that may include an imager; and a processing circuit. The imager may be configured to obtain an electron image of a hole that is formed by an etch process, the hole exposes at least one layer of a one or more sets of layers, each set of layers comprises layers that differ from each other by their electron yield and belong to an intermediate product. The processing circuit may be configured to evaluate, based on the electron image, whether the hole ended at a target layer of the intermediate product. The intermediate product is manufactured by one or more manufacturing stages of a manufacturing process of a three dimensional NAND memory unit. The hole may exhibit a high aspect ratio, and has a width of a nanometric scale.
US11056401B2 Semiconductor device and method for manufacturing the same
A semiconductor device includes a first source/drain feature adjoining first nanostructures, and a first multilayer work function structure surrounding the first nanostructures. The first multilayer work function structure includes a first middle dielectric layer around the first nanostructures and a first metal layer around and in contact with the first middle dielectric layer. The semiconductor device also includes a second source/drain feature adjoining second nanostructures, and a second multilayer work function structure surrounding the second nanostructures. The second multilayer work function structure includes a second middle dielectric layer around the second nanostructures and a second metal layer around and in contact with the second middle dielectric layer. The first middle dielectric layer and the second middle dielectric layer are made of dielectric materials. The second metal layer and the first metal layer are made of the same metal material.
US11056399B2 Source and drain EPI protective spacer during single diffusion break formation
A method is presented for forming single diffusion break (SDB) without damaging source and drain epitaxial growth regions. The method includes forming the source and drain epitaxial regions between sacrificial gates, the sacrificial gates formed over a plurality of fins, depositing an interlayer dielectric (ILD) over the source and drain epitaxial regions, performing SDB patterning, and removing at least one of the sacrificial gates to expose the plurality of fins. The method further includes recessing the plurality of fins to create a first opening, forming inner spacers within the opening, removing the plurality of fins to create a second opening, dimensions of the second opening defined by the inner spacers, and laterally etching the second opening to increase SDB width.
US11056398B2 Forming interconnect without gate cut isolation blocking opening formation
A method includes forming a gate cut opening by removing a sacrificial material from a portion of a dummy gate in a first dielectric over a substrate. The gate cut opening includes a lower portion in which the sacrificial material was located and an upper portion extending laterally over the first dielectric. Filling the gate cut opening with a second dielectric creates a gate cut isolation. Recessing the second dielectric creates a cap opening in the second dielectric; and filling the cap opening with a third dielectric creates a dielectric cap. The third dielectric is different than the second dielectric, e.g., oxide versus nitride, allowing forming of an interconnect in at least a portion of the third dielectric without the second, harder dielectric acting as an etch stop.
US11056396B1 Gate-all-around devices having gate dielectric layers of varying thicknesses and method of forming the same
A semiconductor device includes a substrate; an I/O device over the substrate; and a core device over the substrate. The I/O device includes a first gate structure having an interfacial layer; a first high-k dielectric stack over the interfacial layer; and a conductive layer over and in physical contact with the first high-k dielectric stack. The core device includes a second gate structure having the interfacial layer; a second high-k dielectric stack over the interfacial layer; and the conductive layer over and in physical contact with the second high-k dielectric stack. The first high-k dielectric stack includes the second high-k dielectric stack and a third dielectric layer.
US11056394B2 Methods for fabricating FinFETs having different fin numbers and corresponding FinFETs thereof
Fin patterning methods disclosed herein achieve advantages of fin cut first techniques and fin cut last techniques while providing different numbers of fins in different IC regions. An exemplary method implements a spacer lithography technique that forms a fin pattern that includes a first fin line and a second fin line in a substrate. The first fin line and the second fin line have a first spacing in a first region corresponding with a single-fin FinFET and a second spacing in a second region corresponding with a multi-fin FinFET. The first spacing is greater than the second spacing, relaxing process margins during a fin cut last process, which partially removes a portion of the second line in the second region to form a dummy fin tip in the second region. Spacing between the dummy fin tip and the first fin in the second region is greater than the second spacing.
US11056393B2 Method for FinFET fabrication and structure thereof
A method for FinFET fabrication includes forming at least three semiconductor fins over a substrate, wherein first, second, and third of the semiconductor fins are lengthwise substantially parallel to each other, spacing between the first and second semiconductor fins is smaller than spacing between the second and third semiconductor fins; depositing a first dielectric layer over top and sidewalls of the semiconductor fins, resulting in a trench between the second and third semiconductor fins, bottom and two opposing sidewalls of the trench being the first dielectric layer; implanting ions into one of the two opposing sidewalls of the trench by a first tilted ion implantation process; implanting ions into another one of the two opposing sidewalls of the trench by a second tilted ion implantation process; depositing a second dielectric layer into the trench, the first and second dielectric layers having different materials; and etching the first dielectric layer.
US11056390B2 Structures and methods for reliable packages
A device and method of forming the device that includes cavities formed in a substrate of a substrate device, the substrate device also including conductive vias formed in the substrate. Chip devices, wafers, and other substrate devices can be mounted to the substrate device. Encapsulation layers and materials may be formed over the substrate device in order to fill the cavities.
US11056387B2 Method for forming three-dimensional integrated wiring structure and semiconductor structure thereof
Embodiments of methods and structures for forming a 3D integrated wiring structure are disclosed. The method can include forming a dielectric layer in a first substrate; forming a semiconductor structure having a first conductive contact over a front side of the first substrate; and forming a second conductive contact at a backside of the first substrate, wherein the second conductive contact extends through a backside of the dielectric layer and connects to a second end of the first conductive contact. The 3D integrated wiring structure can include a first substrate; a dielectric layer in the first substrate; a semiconductor structure over the front side of the first substrate, having a first conductive contact; and a second conductive contact at the backside of the first substrate, and the second conductive contact extends through a backside of the dielectric layer and connects to the second end of the first conductive contact.
US11056383B2 Forming array contacts in semiconductor memories
Array contacts for semiconductor memories may be formed using a first set of parallel stripe masks and subsequently a second set of parallel stripe masks transverse to the first set. For example, one set of masks may be utilized to etch a dielectric layer, to form parallel spaced trenches. Then the trenches may be filled with a sacrificial material. That sacrificial material may then be masked transversely to its length and etched, for example. The resulting openings may be filled with a metal to form array contacts.
US11056382B2 Cavity formation within and under semiconductor devices
Structures with a cavity beneath semiconductor devices and methods associated with forming such substrates. A first semiconductor layer is formed on a first side of a first handle wafer. A device structure is formed that is arranged at least in part in the first semiconductor layer. After forming the device structure, the first handle wafer is thinned from a second side of the first handle wafer opposite to the first side of the first handle wafer in order to form a second semiconductor layer from the first handle wafer. After thinning the first handle wafer, a cavity is formed in the second semiconductor layer. The cavity is arranged in the second semiconductor layer beneath the device structure. A second handle wafer is attached to the second semiconductor layer to close the cavity.
US11056381B2 Method for producing bonded SOI wafer
A method for producing a bonded SOI wafer by bonding a bond wafer and a base wafer, each being formed of a silicon single crystal, together with a silicon oxide film placed therebetween, the method including: preparing, as the base wafer, a silicon single crystal wafer whose resistivity is 100 Ω·cm or more and initial interstitial oxygen concentration is 10 ppma or less; forming, on the front surface of the base wafer, a silicon oxide film by performing, on the base wafer, heat treatment in an oxidizing atmosphere at a temperature of 700° C. or higher and 1000° C. or lower for 5 hours or more; bonding the base wafer and the bond wafer together with the silicon oxide film placed therebetween; and thinning the bonded bond wafer to form an SOI layer.
US11056375B2 Micro LED carrier board
A micro LED carrier board is provided. The micro LED carrier board includes a substrate structure having a first surface and a second surface and having a central region and a peripheral region on the outside of the central region. The micro LED carrier board includes a plurality of micro LED elements forming an array and on the second surface of the substrate structure. The micro LED carrier board includes a patterned structure formed on the first surface and the second surface. The patterned structure has a first pattern density in the central region and a second pattern density in the peripheral region, and the first pattern density is different from the second pattern density.
US11056371B2 Tool and method for cleaning electrostatic chuck
A method includes transmitting a radiation toward an electrostatic chuck, receiving a reflection of the radiation, analyzing the reflection of the radiation, determining whether a particle is present on the electrostatic chuck based on the analyzing the reflection of the radiation, and moving a cleaning tool to a location of the particle on the electrostatic chuck when the determination determines that the particle is present.
US11056368B2 Chip transferring method and the apparatus thereof
A transferring chips method, including providing a plurality of chips on a first load-bearing structure; dividing the first load-bearing structure into a plurality of blocks, and each of the plurality of blocks including multiple chips of the plurality of chips; measuring a characteristic value of each of the plurality of chips; respectively calculating an average characteristic value of each of the plurality of blocks based on the characteristic values of the multiple chips of each of the plurality of blocks; and transferring the multiple chips of at least two blocks of the plurality of blocks with the average characteristic values within the same range to a second load-bearing structure.
US11056363B2 Electromagnetic tool for transferring micro devices and methods of transfer
A method for transferring micro-devices includes providing a device structure on a first layer over a first substrate and positioning an electromagnetic apparatus directly over the device structure. The method further includes activating an electromagnet in the electromagnetic apparatus to generate and confine a magnetic flux into a magnetic structure of the electromagnetic apparatus and magnetically couple the device structure to a surface of the magnetic structure proximal to the device structure. The method further includes lifting and removing the device structure from the first substrate and placing the device structure on a second layer over a second substrate, where the second substrate is separate from the first substrate. The method further includes releasing the device structure from the electromagnet, such that the device structure is decoupled from the electromagnet.
US11056362B2 Wafer heating and holding mechanism and method for rotary table, and wafer rotating and holding device
Provided are a wafer heating and holding mechanism for a rotary table, a wafer heating method for a rotary table, and a wafer rotating and holding device with which a wafer put on a rotary table can be heated while being rotated stably under a state in which an in-plane temperature distribution of the wafer is maintained. The wafer heating and holding mechanism for a rotary table of a wafer rotating and holding device comprises: a rotary shaft; a rotary table placed on an end of the rotary shaft and configured to hold a wafer on an upper surface of the rotary table; a drive motor configured to supply motive power to the rotary shaft; and a heater provided above the rotary table and below the wafer while avoiding contact with the wafer to heat the wafer.
US11056356B1 Fluid viscosity control during wafer bonding
Techniques and mechanisms for bonding a first wafer to a second wafer in the presence of a fluid, the viscosity of which is greater than a viscosity of air at standard ambient temperature and pressure. In an embodiment, a first surface of the first wafer is brought into close proximity to a second surface of the second wafer. The fluid is provided between the first surface and the second surface when a first region of the first surface is made to contact a second region of the second surface to form a bond. The viscosity of the fluid mitigates a rate of propagation of the bond along a wafer surface, which in turn mitigates wafer deformation and/or stress between wafers. In another embodiment, the viscosity of the fluid is changed dynamically while the bond propagates between the first surface and the second surface.
US11056353B2 Method and structure for wet etch utilizing etch protection layer comprising boron and carbon
The disclosure relates generally to the field of processing substrates, for example comprising materials such as quartz, glass or silicon. The disclosure more particular relates to providing wet etch protection layers comprising boron and carbon and etching the substrate in a hydrogen fluoride aqueous solution. One or more of the boron and carbon containing films can have a thickness of at least 5, preferably 10 and, more preferably 30 nm. The method comprises wet etching the substrate in a hydrofluoric acid solution with a hydrogen fluoride concentration of at least 10 wt. % for at least 5 minutes.
US11056352B2 Magnetic slurry for highly efficient CMP
A chemical-mechanical polishing (CMP) system includes a head, a polishing pad, and a magnetic system. The slurry used in the CMP process contains magnetizable abrasives. Application and control of a magnetic field, by the magnetic system, allows precise control over how the magnetizable abrasives in the slurry may be drawn toward the wafer or toward the polishing pad.
US11056351B2 Process monitor for wafer thinning
A system and method for thinning an integrated circuit (IC) wafer. The system includes a support structure to hold the IC wafer and a mechanism to operate on the IC wafer. The support structure includes one or more inductive coils configured to transmit a power signal to the IC wafer and receive a feedback signal from the IC wafer. The system further includes a process controller to control the operation based at least in part on the feedback signal received from the IC wafer.
US11056342B2 Method for silicidation of semiconductor device, and corresponding semiconductor device
A method of fabricating a semiconductor device includes forming a protective layer on a portion of the semiconductor body that is not to be silicided. The protective layer includes a silicon oxide layer and a silicon nitride layer over the silicon oxide layer. At least a portion of the silicon nitride layer of the protective layer is removed. A silicided portion of the semiconductor body is laterally spaced from the protective layer. The siliciding is performed by an ion sputtering in a plasma environment on both the silicided portion of the semiconductor body and the portion of the semiconductor body that is not to be silicided.
US11056341B2 Optical semiconductor element and method of manufacturing the same
A method of manufacturing an optical semiconductor element includes: stacking a plurality of compound semiconductor layers on a first substrate containing a compound semiconductor; dividing the first substrate into small pieces; forming terraces, grooves, walls, and a first mesa for a waveguide on a second substrate containing silicon; jointing at least one small piece to the second substrate after the forming; wet-etching the first substrate so as to expose the compound semiconductor layers after the jointing; and forming a second mesa opposite to the first mesa from the compound semiconductor layers; wherein the grooves are formed on both sides of the first mesa, the terraces are formed on both sides of the first mesa and the grooves, and the walls are arranged in an extending direction of each groove.
US11056340B2 Direct bonding process
A process for attaching a first substrate to a second substrate by direct bonding includes the successive steps of: a) providing the first and second substrates, each comprising a first surface and an opposite second surface, b) bonding the first substrate to the second substrate by direct bonding between the first surfaces of the first and second substrates, step b) being carried out under a first gaseous atmosphere having a first relative humidity level denoted by φ1, and c) applying a thermal annealing treatment to the bonded first and second substrates at a thermal annealing temperature of between 20° C. and 700° C., step c) being carried out under a second gaseous atmosphere having a second humidity level denoted by φ2, satisfying φ2≥φ1.
US11056339B1 Thin film electrode separation method using thermal expansion coefficient
In a thin film electrode separation method using thermal expansion coefficient, a first solution is coated on a substrate. The first solution coated on the substrate is hardened. The substrate is left in a predetermined time, to form a first thin film having a first thermal expansion coefficient on the substrate. A photoresist is coated on the substrate having the thin film formed thereon. The photoresist coated on the substrate is hardened, to form a photoresist film having a second thermal expansion coefficient. A metal and a passivation layer are formed on the photoresist film. The photoresist film is detached from the first thin film, using difference of a thermal expansion coefficient between the photoresist film and the first thin film.
US11056333B2 Spectrometry method and device for detecting ionising radiation for the implementation thereof
Disclosed is a spectrometry method including: for at least one ionizing-radiation energy Ei, obtaining, for each energy Ei, a curve of the number of photons detected, during a measurement interval, as a function of time, by spectrometer; b) for each curve, computing a ratio of the number of photons detected defined and separate time periods to obtain, for each ionizing-radiation energy Ei, a number ai, or for each curve, acquiring one or more fitting parameters PAJi by making a fit to the corresponding curve with a fitting function; and comparing each number ai or each fitting parameter or set of fitting parameters PAJi with reference constants ai or, respectively, with reference fitting parameters PAJi associated with reference energies Ei to determine, for each number ai or each fitting parameter or set of fitting parameters PAJi, reference energy Ei of the ionizing radiation for which the corresponding curve was measured.
US11056332B1 Microfabricated ion trap chip with in situ radio-frequency sensing
A radio-frequency (RF) surface ion trap chip includes an RF electrode and an integrated capacitive voltage divider in which an intermediate voltage node is capacitively connected between the RF electrode and a ground. A sensor output trace is connected to the intermediate voltage node.
US11056327B2 Inorganic and organic mass spectrometry systems and methods of using them
Certain configurations of systems and methods that can detect inorganic ions and organic ions in a sample are described. In some configurations, the system may comprise one, two, three or more mass spectrometer cores. In some instances, the mass spectrometer cores can utilize common components such as gas controllers, processors, power supplies and vacuum pumps. In certain configurations, the systems can be designed to detect both inorganic and organic analytes comprising a mass from about three atomic mass units, four atomic mass units or five atomic mass units up to a mass of about two thousand atomic mass units.
US11056326B2 Sintered non-porous cathode and sputter ion vacuum pump containing the same
The present invention relates to cathodes electrodes compositions suitable to provide a pumping mechanism which exhibits an extremely high pumping speed and capacity of noble gas suitable to be used in several vacuum devices as for example sputter ion vacuum pumping systems comprising them as active element.
US11056325B2 Methods and apparatus for substrate edge uniformity
A movable substrate support with a top surface for holding a substrate, when present, is used in conjunction with a cover ring that is stationary to adjust for a shadow effect to control substrate edge uniformity during deposition processes. The cover ring is held stationary by an electrically isolated spacer that engages with a grounded shield in the process volume of a semiconductor process chamber. A controller adjusts the substrate support in response to deposition material on a top surface of the cover ring to maintain the shadow effect and substrate edge uniformity.
US11056324B2 System and method for particle control in MRAM processing
A system and method for reducing particle contamination on substrates during a deposition process using a particle control system is disclosed here. In one embodiment, a film deposition system includes: a processing chamber sealable to create a pressurized environment and configured to contain a plasma, a target and a substrate in the pressurized environment; and a particle control unit, wherein the particle control unit is configured to provide an external force to each of at least one charged atom and at least one contamination particle in the plasma, wherein the at least one charged atom and the at last one contamination particle are generated by the target when it is in direct contact with the plasma, wherein the external force is configured to direct the at least one charged atom to a top surface of the substrate and to direct the at least one contamination particle away from the top surface of the substrate.
US11056323B2 Sputtering apparatus and method of forming film
A sputtering apparatus is provided with: a vacuum chamber having a target manufactured by sintering raw material powder; a magnet unit having a plurality of magnets disposed on the same surface above the target which is mounted on the vacuum chamber in a non-rotatable manner, in order to cause leakage magnetic field penetrating the target to function in uneven distribution on the sputtering surface; a rotary shaft which is disposed on the center line passing through the center of the target and is coupled to the magnet unit; and a drive motor for driving the rotary shaft to rotate, thereby rotating the magnet unit such that a function region of the leakage magnetic field on the sputtering surface revolves about an imaginary circle with the center of the target serving as the center.
US11056320B2 Substrate treating apparatus, substrate support unit, and substrate treating method
An apparatus comprises a housing having a process space, a support unit supporting the substrate in the process space, a process gas supply unit supplying a process gas into the process space, and a plasma source generating plasma from the process gas. The support unit comprises a support member on which the substrate is placed, a heating member that heats the substrate supported on the support member, and a heat transfer gas supply member that supplies a heat transfer gas to a backside of the substrate. The heating member comprises heaters that heat regions on the substrate on the support member viewed from above. The support member comprises a protrusion that partitions a space between the support member and the backside of the substrate placed on the support member into gas regions, and at least one of heating regions is divided into regions by the protrusion viewed from above.
US11056318B2 Plasma processing apparatus
A plasma processing apparatus includes: a processing container formed by assembling a container upper portion having an upper side wall and a container lower portion having a lower side wall; a stage provided in the container lower portion of the processing container; and a peripheral introduction part configured to be an assembly, configured to be sandwiched between the upper side wall and the lower side wall, and configured to provide a plurality of gas discharge ports arranged in the circumferential direction with respect to an axis passing through a center of the stage, the assembly in which at least two members are assembled, the at least two members forming a gas flow path extending in a circumferential direction with respect to the axis in an interior thereof, in which the peripheral introduction part, the container upper portion and the container lower portion are thermally and electrically connected to each other.
US11056317B2 Microwave plasma source, microwave plasma processing apparatus and plasma processing method
A microwave plasma source that generates a microwave plasma in a processing space in which a target substrate is processed, includes: a microwave generation part for generating microwave; a waveguide through which the microwave generated by the microwave generation part propagates; an antenna part including a slot antenna having a predetermined pattern of slots formed therein and being configured to radiate the microwave propagating through the waveguide into the processing space and a microwave-transmitting plate being made of a dielectric material and being configured to transmit the microwave radiated from the slots therethrough and supply the microwave into the processing space; a temperature detector for detecting a temperature at a predetermined position in a microwave propagation path leading to the slot antenna; and an abnormality detection part for receiving the temperature detected by the temperature detector and detect an abnormality in the microwave propagation path based on the detected temperature.
US11056315B2 Ionization chamber chip for a nano-aperture ion source, method of fabrication thereof, and a proton beam writing system
An ionization chamber chip, a nano-aperture ion source, a proton beam writing system, and a method of fabricating an ionization chamber chip. The method comprises the step of providing a first substrate comprising a first depression formed in a back surface thereof; providing a backing element attached at the back surface of the first substrate such that a chamber is formed comprising at least the first depression; forming a gas inlet in the first substrate in fluid communication with the chamber; and forming a first aperture structure in the first substrate in fluid communication with the chamber.
US11056312B1 Micro stigmator array for multi electron beam system
A system is disclosed. In embodiments, the system includes an electron source and a micro-lens array (MLA) configured to receive one or more primary electron beams from the electron source and split the one or more primary electron beams into a plurality of primary electron beamlets. In embodiments, the system further includes a micro-stigmator array (MSA) including a plurality of dodecapole electrostatic stigmators, wherein the MSA is configured to eliminate at least one of fourth-order focusing aberrations or sixth-order focusing aberrations of the plurality of primary electron beamlets. In embodiments, the system further includes projection optics configured to receive the plurality of primary electron beamlets and focus the plurality of primary electron beamlets onto a surface of a sample.
US11056310B2 Charged-particle beam device
The objective of the present invention is to provide a charged-particle beam device capable of moving a field-of-view to an exact position even when moving the field-of-view above an actual sample. In order to attain this objective, a charged-particle beam device is proposed comprising an objective lens whereby a charged-particle beam is focused and irradiated onto a sample; a field-of-view moving deflector for deflecting the charged-particle beam; and a stage onto which the sample is placed. The charged-particle beam device is equipped with a control device which controls the lens conditions for the objective lens in such a manner that the charged-particle been focuses on the sample which is to be measured; moves the field-of-view via the field-of-view moving deflector while maintaining the lens conditions; acquires a plurality of images at each position among a reference pattern extending in a specified direction; and uses the plurality of acquired images to adjust the signal supplied to the field-of-view moving deflector.
US11056309B2 Method and device for implanting ions in wafers
A method comprising the irradiation of a wafer by an ion beam that passes through an implantation filter, the ion beam being electrostatically deviated in a first direction and a second direction in order to move the ion beam over the wafer, and the implantation filter being moved in the second direction to match the movement of the ion beam.
US11056307B2 Fuse holder, carrier and associated method
A fuse holder for holding a fuse is provided that includes a body, a line side connector supported by the body, and a load side connector supported by the body. The fuse holder also includes a toggle switch supported by the body and capable of toggled engagement in a first position that provides electrical connection. The switch is also capable of toggled engagement in a second position that provides electrical isolation between the line side connector and the load side connector. The fuse holder also includes a fuse carrier. The fuse carrier is supported by the body and adapted for holding the fuse and the fuse carrier is adapted to be removed from the fuse holder. The fuse holder includes a blocking device blocking the toggled engagement of the switch from the second position to the first position when the fuse carrier is not within the fuse holder.
US11056305B2 Relay
A relay includes: a housing, a base plate, and a driving device, connected to the base. At least one stationary contact group is provided on the housing. The stationary contact group includes two stationary contacts insulated from each other. At least one stationary contact in the stationary contact group includes an upper terminal and a lower contact are included. The upper terminal and the lower contact are isolated from each other and electrically connected by a fuse. The base plate is provided in the housing and can switch between on and off positions. The base plate, when being in the on position, contacts the stationary contact group for the electrical conduction of the two stationary contacts in the stationary contact group, and, when being in the off position, is isolated from the stationary contact group for disconnecting the electrical conduction of the two stationary contacts in the stationary contact group.
US11056304B2 Controlling a controllably conductive device based on zero-crossing detection
A load control device may control power delivered to an electrical load from an AC power source. The load control device may include a controllably conductive device adapted to be coupled in series electrical connection between the AC power source and the electrical load, a zero-cross detect circuit configured to generate a zero-cross signal representative of the zero-crossings of an AC voltage. The zero-cross signal may be characterized by pulses occurring in time with the zero-crossings of the AC voltage. The load control device may include a control circuit operatively coupled to the controllably conductive device and the zero cross detect circuit. The control circuit may be configured to identify a rising-edge time and a falling-edge time of one of the pulses of the zero-cross signal, and may control a conductive state of the controllably conductive device based on the rising-edge time and the falling-edge time of the pulse.
US11056303B2 Relay device
A relay device includes a controller, a capacitor included in a charger, and a discharge circuit that discharges electric charge charged to the capacitor. The discharge circuit includes a discharge resistance, a first relay switch connected to the discharge resistance and having a contact point that becomes a closed state by electric conduction to an exciting coil, and a second relay switch connected in parallel to the first relay switch and having a contact point that becomes an open state by electric conduction to an exciting coil. The controller, by mutually switching between a state in which the first relay switch is turned on and the second relay switch is turned off and a state in which the first relay switch is turned off and the second relay switch is turned on, determines abnormality of the first relay switch and the second relay switch.
US11056301B2 Pressure switch
A pressure switch is provided which enables an increased pressure tightness. A pressure switch comprises a diaphragm, a cap to define a storage space for pressure fluid, a plate-shaped stopper configured to limit a position of the diaphragm in the event of pressure variation to define a working position, a coupling section for coupling outer circumferences of the diaphragm, the cap and the stopper to form a diaphragm unit, a ring-shaped member formed with a substantially same diameter as the diaphragm unit, a switch element, and a body (a tubular section of a joint section and a switch holding tube) configured to accommodate the ring-shaped member and the diaphragm unit while clamping an outer circumference section of the diaphragm unit together with the ring-shaped member so that the ring-shaped member comes into pressure contact with the outer circumference section.
US11056298B2 Earthing switch having dynamic braking resistors
An earthing switch circuit is provided and is connected to a direct current (DC) link including a positive terminal and a negative terminal having capacitance or energy storage capability. The earthing switch circuit includes a dynamic braking circuit having a single or plurality of dynamic braking (DB) switches, and at least one dynamic braking (DB) resistor disposed between the plurality of DB switches, and an earthing switch connected between the DB circuit and ground. The at least one DB resistor dissipates energy thermally when performing a dynamic braking operation and simultaneously decreases in-rush current for the earthing switch circuit upon closure of the earthing switch.
US11056294B2 Dial wheel mechanism and control device
A remote controller includes a main body, a dial wheel mechanism arranged at the main body, and a controller configured to obtain rotation angle information of the dial wheel mechanism and control movement of an external device according to the rotation angle information. The dial wheel mechanism includes a support, a positioning member disposed at the support, and a rotating member rotatably disposed at the support. The positioning member includes an elastic arm. The rotating member is configured to rotate relative to the support, causing the elastic arm to abut against the support and to be elastically deformed.
US11056290B2 Method and apparatus for authenticating and detecting circuit breaker integrity
A circuit breaker apparatus may include a housing, a circuit inside the housing for protecting the conductors and the load of the circuit, a display attached to outside of the housing, a controller, and a power control device. The display may be an electronically-alterable display that does not require power in situations other than changing its state. The power control device may provide power to the controller and the display when the apparatus is being tampered with. When the controller is powered, it may cause the power control device to cause the display to change from a state that indicates that the apparatus is authenticated to another state that indicates that the apparatus has been tampered with. The power control device may include a battery and a switch, or a power harvester, which can be configured to provide power to the controller when the apparatus is being tampered with.
US11056287B2 Isodiketopyrrolopyrrole dye and use thereof
The present invention discloses an isodiketopyrrolopyrrole dye and use thereof. A series of pure organic dye based on isodiketopyrrolopyrrole are synthesized in the present invention, using 4,4′-dihexyloxytriphenylamine as an electron donor, isodiketopyrrolopyrrole as a π-bridge, and cyanoacetic acid as an electron acceptor and an anchoring group, and with a alkyl chain introduced on an isodiketopyrrolopyrrole group. The types of dyes have a relatively good light-harvesting performance as well as a relatively large steric hindrance, and they are not easy to gather while being absorbed on a semiconducting film. The pure organic dye with isodiketopyrrolopyrrole as an electronic π-bridge, which is used in a dye-sensitized solar cell, has a good ability of inhibiting the recombination of electrons, and the dye-sensitized solar cells have a high photoelectric conversion efficiency.
US11056285B2 Solid electrolytic capacitor containing an adhesive film
A capacitor comprising a solid electrolytic capacitor element that contains a sintered porous anode body, a dielectric that overlies the anode body, and a solid electrolyte is provided. The solid electrolyte contains an interior conductive polymer layer overlying the dielectric, an adhesive film that overlies the interior conductive polymer layer, which may be formed by sequential vapor deposition. An exterior conductive polymer layer also overlies the adhesive film.
US11056283B2 Multilayer ceramic capacitor and manufacturing method of the same
A multilayer ceramic capacitor includes: a ceramic main body having a structure in which each of a plurality of dielectric layers and each of a plurality of internal electrode layers are alternately stacked and are alternately exposed to two end faces of the ceramic multilayer structure, a main component of the dielectric layers being ceramic; and a pair of external electrodes that are formed from the two end faces to at least one of side faces of the ceramic main body, wherein a relationship of y≤1+1.48x is satisfied when a temperature of the multilayer ceramic capacitor is increased from 190 degrees C. to 260 degrees C., wherein “y” is a total amount of hydrogen gas, water vapor and carbonic acid gas (number of molecules/1015) released from the multilayer ceramic capacitor, wherein a volume of the multilayer ceramic capacitor is “x” (mm3).
US11056275B2 Coil electronic component
A coil electronic component includes a body including ferrite, a coil portion embedded in the body, external electrodes electrically connected to the coil portion, and a magnetic permeability adjusting layer disposed in the body and including ferrite having a Curie temperature lower than that of the ferrite included in the body.
US11056274B2 Thin film type inductor
A thin film type inductor includes a body and external electrodes disposed on an external surface of the body. The body includes a support member and an internal coil supported by the support member, the internal coil includes an upper coil disposed on one surface of the support member and a lower coil disposed on the other surface thereof, and the upper and lower coils are connected to each other by a via electrode. Heights of a plurality of coil patterns arranged along a first virtual line are substantially equal to each other, and heights of a plurality of coil patterns arranged along a second virtual line increase toward the external surface of the body, where the first virtual line radiates from a center of a core of the body toward the via electrode and the second virtual line radiates in the opposite direction.
US11056273B2 Coil component
A coil component has a winding core part, and a plurality of wires that are wound on the winding core part to form a plurality of layers. The wires each include a conductor and a covering film that covers the conductor, an outer diameter of the wire of an n-th layer (“n” is an integer that is two or greater) is smaller than an outer diameter of the wire of an (n−1)th layer, an outer diameter of the conductor of the wire of the n-th layer is equal to an outer diameter of the conductor of the wire of the (n−1)th layer, and a thickness of the covering film of the wire of the n-th layer is smaller than a thickness of the covering film of the wire of the (n−1)th layer.
US11056272B2 Inductor
An inductor includes first and second external electrodes spaced apart from each other, a substrate disposed between the first and second external electrodes and having a first surface and a second surface opposing each other, and a conductive structure electrically connected to the first and second external electrodes. The conductive structure includes a first conductive pattern disposed on the first surface of the substrate, a second conductive pattern disposed on the second surface of the substrate, and at least one reinforcing portion. The first conductive pattern has a first side facing the first external electrode, the second conductive pattern has a second side facing the second external electrode, and the at least one reinforcing portion is electrically connected to at least one of the first and second sides and is interposed between the substrate and at least one of the first and second external electrodes.
US11056268B2 Coil component
A coil component includes a plurality of conductor layers constituted of a first conductor layer to a fourth conductor layer that includes a function layer and a coil layer wound around an axis center; and a covering portion that is formed of an insulative resin, integrally covers the plurality of conductor layers, and is interposed between conductor layers adjacent to each other. The coil layer and the function layer of the plurality of conductor layers have substantially the same shape in a plan view. The fourth conductor layer has a connection conductor layer connecting the coil layer and the function layer to each other. A conductor layer having no connection conductor layer among the plurality of conductor layers has a protrusion portion corresponding to the connection conductor layer at a position overlapping the connection conductor layer in a plan view.
US11056266B2 Filter device and power converter
Provided is a filter device to be connected between an AC power source (1) and a PWM converter (2), which includes a first AC reactor (3), a second AC reactor (4) that is connected between the PWM converter (2) and the first AC reactor (3), a filter capacitor (5) whose one end is connected to a connecting portion (9) between the first AC reactor (3) and the second AC reactor (4), and a housing (15) having a cooling air inlet (16) and a cooling air outlet (17) and containing the first AC reactor (3) and the second AC reactor (4), wherein the first AC reactor (3) is disposed upwind of the second AC reactor (4).
US11056262B2 Inductive element and LC filter
The present disclosure provides an inductive element capable of lowering a Q-value. An inductive element includes a first cover and a second cover covering an annular core, and a first winding and a second winding wound around a region of the core, the first cover and the second cover. The first cover covers a part of an inner circumferential surface of the core, a part of an outer circumferential surface and an end surface on one end side in an axial direction. The second cover covers a part of the inner circumferential surface of the core, a part of the outer circumferential surface an end surface on the other end side in the axial direction.
US11056260B2 Reactor including iron cores and rectifier, LC filter, and motor drive apparatus including the same
A reactor includes a plurality of iron cores and a winding wound on any of the plurality of iron cores; a gap is formed between two iron cores facing against each other; a gap-facing surface of one iron core has an area larger than that of a gap-facing surface of the other iron core.
US11056251B2 Patterning formation method, manufacturing method of electrical devices using the same and vehicular electrical device
Disclosed herein is a patterning formation method including printing on a film base, a manufacturing method of an electrical device using the same, and a vehicular electrical device. More particularly, disclosed herein is a patterning formation method including arranging a poly cyclohexylene dimethylene terephthalate (PCT) film as a base film or as an upper part film such as a coverlay film, and patterning a material such as a metal by a printing method or connecting printing electronic technologies on at least a part of the PCT film. Also disclosed herein is a manufacturing method of an electrical device using the same and a vehicular electrical device.
US11056243B2 Systems and methods for optimizing treatment planning
The present disclosure relates to systems, methods, and computer-readable storage devices for radiotherapy treatment planning. For example, a method may generate a treatment plan for a patient. The method may receive training data reflecting radiotherapy treatment data. The training data may include a feature vector and a target vector. The method may further determine a training model based on the feature vector and the target vector. The method may further receive testing data associated with the patient. The testing data may include a descriptive feature vector. The method may further determine a therapy model based on the descriptive feature vector and the training model. The therapy model may be used to generate the treatment plan.
US11056240B2 Radiation therapy planning using integrated model
System and method for automatically generate therapy plan parameters by use of an integrate model with extended applicable regions. The integrated model integrates multiple predictive models from which a suitable predictive model can be selected automatically to perform prediction for a new patient case. The integrated model may operate to evaluate prediction results generated by each predictive model and the associated prediction reliabilities and selectively output a satisfactory prediction. Alternatively, the integrated model may select a suitable predictive model by a decision hierarchy in which each level corresponds to divisions of a patient data feature set and divisions on a subordinate level are nested with divisions on a superordinate level.
US11056238B1 Personality based wellness coaching
Automated wellness coaching can be based at least in part on personality characteristics of the user. A coaching system, which can include one or more electronic devices that a user might carry or wear during daily activities, can present prompts at selected times to encourage a user to engage in various wellness activities and can measure the user's responsiveness. The content of a prompt, as well as the time, place, and/or manner of presenting the prompt, can be adapted to a personality profile maintained for the user and updated over time as the user interacts with the system. The system may also include capabilities to set specific wellness goals for the user and to prompt the user to actions aimed at the goal; goals can be modified and adapted based on the user's personality profile.
US11056237B2 System and method for determining and indicating value of healthcare
A processor-implemented method for determining and indicating values of medical treatment plans, includes the processor creating value baselines comprising health metric values for approved plans of care; detecting an activity indicating a patient-related event during a visit associated with a patient; generating a health value continuum based on the visit; generating a comparison of the health value continuum to a value baseline; and providing data and instructions to display on a display page, a representation of the health value continuum to value baseline comparison.
US11056235B2 Senior living engagement and care support platforms
Provided herein is an engagement and care support platform (“ECSP”) computer system including at least one processor in communication with at least one memory device for facilitating senior user engagement. The processor is programmed to: (i) register a user through an application, (ii) register a caregiver associated with the user through the application, (iii) generate a senior profile based upon user personal and scheduling data, (iv) build a daily interactive user interface that reflects the senior profile, (v) display the daily interactive user interface at a first client device associated with the user, (vi) cause the first client device to initiate a daily interaction prompt to the user, (vii) determine whether any user interaction was received in response to the daily interaction prompt, and (viii) transmit a daily update message to a second client device associated with the caregiver, including an indication of whether any user interaction was received.
US11056228B2 Method and system for evaluating medical examination results of a patient, computer program and electronically readable storage medium
A method is for evaluating medical examination results of a patient. The method includes providing a medical ontology including multiple medical concepts occurring in image data sets and examination reports of patients; analysing the at least one image data set using at least one first analysis algorithm, the at least one first analysis algorithm being an artificial intelligence algorithm, for detection of medical concepts of the medical ontology, and marking the medical concepts detected in a result data structure referring to the medical ontology; analysing the at least one examination report using at least one second analysis algorithm, the at least one second analysis algorithm being a natural language processing algorithm, for detection of other medical concepts of the medical ontology, and marking the other medical concepts detected in the result data structure; and providing the result data structure to at least one evaluation application processing medical concepts.
US11056224B1 Intermittent fasting assistance terminal and method
The present invention provides an easy-to-use intermittent fasting assistance terminal and method which integrates recording, guidance and supervision functions. The intermittent fasting assistance terminal is connected to a server through a network, and the intermittent fasting assistance terminal includes an input device, a display device, a processor, and a memory storing an intermittent fasting assistance software program. The processor is configured to execute the intermittent fasting assistance software program, respond to gestures received by the input device and generate corresponding interactive interfaces to be displayed in the display device. The input device is used for inputting user basic data into the intermittent fasting assistance software program and receiving operating gestures of a user to the intermittent fasting assistance software program.
US11056222B1 Machine learning systems for predictive modeling and related methods
A machine learning system for training a data model to predict data states in medical orders is described. The machine learning system is configured to train a data model to predict whether a medical order requires prior authorization (“PA”) for medical orders within a medical order data set so that related systems may process incoming medical orders with PA determinations predicted by the data model. The machine learning system includes a first data warehouse system. The first prescription processing system generates a data model of historical orders and payer responses, apply a predictive machine learning model to the data model to generate a trained predictor of whether a medical order requires PA, associated with order data, apply the trained predictor to a plurality of production orders to determine PA for each of the plurality of production orders, and process the plurality of production orders with each associated PA determination.
US11056219B2 System and method for determining and indicating value of healthcare
A computer-implemented method analyzes a medical treatment plan for a patient having a medical condition and determines a value of health care of the plan. The method includes a processor executing instructions to enter the patient into an electronic medical records (EMR) system of a medical facility visited by the patient, assign the patient a diagnosis, recording the medical treatment plan, and generate a portal for accessing and displaying the medical treatment plan. The method further includes a health care value analytics (HVA) server accessing and using historical data, generating a value baseline for approved medical treatments of medical conditions addressed by the medical treatment plan, generating one or more HVA data objects that provide a running comparison of the medical treatment plan and the value baseline, and providing the HVA data objects for display through the portal onto an EMR/HVA access device.
US11056218B2 Identifying personalized time-varying predictive patterns of risk factors
Aspects of the present invention include a method, system and computer program product. The method includes identifying, by a processor, a set of global risk factors for a target event using training patients, and providing, by the processor, a disease progression timeline with defined time stamps by aligning longitudinal data of the training patients based on the defined time stamp of risk targets. The method also includes positioning, by the processor, a target patient at one of the defined time stamps on the disease progression timeline, and identifying, by the processor, at least one of the training patients similar to the target patient with the same one of the defined time stamps on the disease progression timeline. The method further includes calculating, by the processor, a time-varying predictive pattern of at least a portion of the global set of risk factors for the target patient along the disease progression timeline.
US11056215B2 Performing chemical textual analysis to discover dangerous chemical pathways
According to one embodiment, a computer program product for performing chemical textual analysis to discover dangerous chemical pathways includes a computer readable storage medium having program instructions embodied therewith, wherein the computer readable storage medium is not a transitory signal per se, and where the program instructions are executable by a processor to cause the processor to perform a method comprising identifying a textual document, utilizing the processor, determining, utilizing the processor, chemical data within the textual document, performing an analysis of the chemical data, utilizing the processor, and determining whether the chemical data is associated with one or more dangerous characteristics, in response to the analysis.
US11056214B2 Dual sample melting curve cluster and cost analysis
The present invention relates to methods and systems for the analysis of nucleic acids present in biological samples, and more specifically, relates to clustering melt curves derived from high resolution thermal melt analysis performed on a sample of nucleic acids, the resulting clusters being usable, in one embodiment, for analyzing the sequences of nucleic acids and to classify their genotypes that are useful for determining the identity of the genotype of a nucleic acid that is present in a biological sample.
US11056210B1 Electrical circuit comprising a trim circuit
A method of producing an apparatus comprising an electrical circuit that has one or more characteristics that meet a design specification is presented. The method includes designing the electrical circuit with a trim circuit having a trim value that is variable, The electrical circuit is adjustable based on the trim value of the trim circuit. There is encoding of the functional circuit information and/or trim circuit information in a tag, The method has a reading of the functional circuit information and/or the trim circuit information stored in the tag and the determining of the trim value for the trim circuit that results in the characteristic of the electrical circuit meeting the design specification using the functional circuit information and/or the trim circuit information.
US11056206B2 Non-volatile memory with dynamic wear leveling group configuration
A non-volatile storage apparatus includes a set of non-volatile memory cells and one or more control circuits in communication with the set of non-volatile memory cells. The one or more control circuits are configured to group physical addresses of the set of non-volatile memory cells into groups of configurable sizes and to individually apply wear leveling schemes to non-volatile memory cells of a group.
US11056205B1 Memory device and write method thereof
A memory device and a write method thereof are provided. A control circuit performs a first write operation and a first write verification operation on a plurality of memory cells of a non-volatile memory, and after the plurality of memory cells pass the first write verification operation, the control circuit performs a second write verification operation on target memory cells corresponding to at least one target threshold voltage in the plurality of memory cells, and when a failure bit count of the target memory cells is not less than a preset number of bits, the control circuit performs a second write operation and a third write verification operation on the plurality of memory cells.
US11056199B2 Updating corrective read voltage offsets in non-volatile random access memory
A computer-implemented method, according to one approach, includes: using a first calibration scheme to calibrate the given page in the block by calculating a first number of independent read voltage offset values for the given page. An attempt is made to read the calibrated given page, and in response to determining that an error correction code failure occurred when attempting to read the calibrated given page, a second calibration scheme is used to recalibrate the given page in the block. The second calibration scheme is configured to calculate a second number of independent read voltage offset values for the given page. An attempt to read the recalibrated given page is also made. In response to determining that an error correction code failure did occur when attempting to read the recalibrated given page, one or more instructions to relocate data stored in the given page are sent.
US11056198B2 Read disturb scan consolidation
A processing device in a memory system determines that a first metric of a first memory unit on a first plane of a memory device satisfies a first threshold criterion. The processing device further determines whether a second metric of a second memory unit on a second plane of the memory device satisfies a second threshold criterion, wherein the second block is associated with the first block, and wherein the second threshold criterion is lower than the first threshold criterion. Responsive to the second metric satisfying the second threshold criterion, the processing device performs a multi-plane data integrity operation to determine a first reliability statistic for the first memory unit and a second reliability statistic for the second memory unit in parallel.
US11056196B2 Methods of enhancing speed of reading data from memory device
A memory device includes N rows of memory cells and N word lines coupled thereto, respectively. A method of reading data from the memory device includes: applying a first pre-pulse voltage to an nth word line while applying a second pre-pulse voltage to an adjacent word line adjacent to the nth word line, the second pre-pulse voltage exceeding the first pre-pulse voltage, and n being an integer ranging from 1 to N; grounding the nth word line while maintaining the second pre-pulse voltage on the adjacent word line; pulling a voltage on the nth word line towards a start read level; and prior to the voltage on the nth word line reaching the start read level, driving a voltage on the adjacent word line to the first pre-pulse voltage.
US11056195B1 Nonvolatile memory device and related driving method
A driving method of a nonvolatile memory device including multiple memory planes includes following operations: precharging at least one word line and at least one bit line of a first memory plane; if the at least one word line and the at least one bit line of the first memory plane have been precharged for a first time length or to respective voltage thresholds, precharging at least one word line and at least one bit line of a second memory plane; conducting a first data operation to at least one memory cell of the first memory plane disposed at intersections of the at least one word line and the at least one bit line thereof; conducting a second data operation to at least one memory cell of the second memory plane disposed at intersections of the at least one word line and the at least one bit line thereof.
US11056191B2 Nonvolatile memory device having different DQ lines receiving DQ line codes and method of operating nonvolatile memory device using different threshold voltages or error margins
An operation method of a nonvolatile memory device includes receiving a first DQ signal representing a first data bit from an external device through a first DQ line and receiving a second DQ signal representing a second data bit from the external device through a second DQ line, and programming a first memory cell corresponding to the first DQ line and a second memory cell corresponding to the second DQ line such that the first memory cell has any one of an erase state and a first program state based on the first DQ signal and the second memory cell has any one of the erase state and a second program state based on the second DQ signal. A lower limit value of a threshold voltage distribution corresponding to the second program state is higher than a lower limit value of a threshold voltage distribution corresponding to the first program state.
US11056188B2 Three dimensional nonvolatile memory device including channel structure and resistance change memory layer
A nonvolatile memory device includes a substrate, a source electrode structure disposed on the substrate, a channel structure disposed to be contact a sidewall surface of the source electrode structure, a resistance change memory layer disposed on a sidewall surface of the channel structure, a drain electrode structure disposed to contact the resistance change memory layer, a plurality of gate dielectric structures extending in the first direction and disposed to be spaced apart from each other in a second direction, and a plurality of gate electrode structures disposed to extend in the first direction in the plurality of the gate dielectric structure.
US11056182B2 Word line pulse width control circuit in static random access memory
Devices and methods are provided for word line pulse width control for a static random access memory (SRAM) devices. A control circuit includes a first transistor, an inverter coupled to the first transistor, and a second transistor comprising a gate, a first source/drain terminal and a second source/drain terminal. The second transistor is coupled to the inverter. The first source/drain terminal of the second transistor is coupled in series to the first transistor. The second source/drain terminal is coupled to a decoder driver circuit. The second transistor is configured to charge a load of a common decoder line so as to reduce an effective load of the decoder driver circuit.
US11056177B2 Controller, memory system including the same, and method of operating the memory system
A memory system includes a memory device configured to store data through a write operation and output the stored data as read data through a read operation; a buffer memory configured to store the read data output from the memory device; a controller configured to control the memory device such that the memory device performs the read operation in response to a read request received from a host, and to control the buffer memory to store the read data in the buffer memory. When the read request corresponds to an asynchronous read operation, the controller may allocate a partial area of the buffer memory as storage space for the read data after the read operation of the memory device is completed.
US11056174B2 Dynamic random access memory with shaped word-line waveform
A DRAM chip includes a DRAM cell and a first voltage source. The DRAM cell includes an access transistor, and one terminal of the access transistor is coupled to a word line. The first voltage source is selectively coupled to the access transistor via the word line, and generates a first voltage level higher than a sum of a threshold voltage of the access transistor and a voltage level of a signal ONE utilized in the DRAM chip. A whole access cycle includes an access operation period and a restore phase period. When the whole access cycle begins, the one terminal of the access transistor is initially applied by the first voltage level for a first portion of the access operation period and then applied by a second voltage level for a second portion of the access operation period. The second voltage level is lower than the first voltage level.
US11056166B2 Performing a refresh operation based on a characteristic of a memory sub-system
A refresh operation can be performed at a memory sub-system The refresh operation can performed at a current frequency. A write count associated with the memory sub-system can be received. A determination can be made as to whether the write count associated with the memory sub-system satisfies a write count threshold. In response to determining that the write count associated with the memory sub-system satisfies the write count threshold, the refresh operation can be performed at an increased frequency relative to the current frequency.
US11056159B2 Data acquisition method and data acquisition apparatus
A data acquisition method of acquiring and latching data with a timing based on an input signal supplied to an input port, the method including: acquiring and retaining the data with a timing of when an edge of the input signal is detected, and starting a timer; and at the time of expiration of the timer, if the level of the input signal is a first level that is unchanged from start of the timer, latching the retained data and if the level of the input signal is a second level that is changed from the start of the timer, discarding the retained data.
US11056157B2 Wear leveling
An apparatus has a controller and an array of memory cells, including a first section comprising a plurality of rows and a second section comprising a plurality of rows. The controller configured to, in association with wear leveling, transfer data stored in a first row of the first section from the first row to a register, transfer the data from the register to a destination row of the second section while data in a second row of the first section is being sensed.
US11056155B1 Nonvolatile memory devices, systems and methods with switching charge pump architectures
A memory device can include a plurality of banks, each bank including a memory cell array of nonvolatile (NV) memory cells; a plurality of charge pumps, including a first charge pump and second charge pump; and a switch circuit. The switch circuit can be configured to, in a first mode, connect the first charge pump to first circuits of the banks and isolate the second charge pump from the first circuits, and in a second mode, isolate the first charge pump from the first circuits and connect the second charge pump to the first circuits.
US11056151B2 Application tune manifests and tune state recovery
In accordance with one or more aspects, a request to run an application is received. The application has an associated tune manifest that identifies one or more resources that the application may use. The tune manifest is compared to a device resource record, and a check is made, based at least in part on the comparing, whether the one or more resources identified in the tune manifest can be satisfied by the device. If the one or more resources identified in the tune manifest can be satisfied by the device, then the application is run; otherwise, a notification of a conflict between the application and the device is presented. Additionally, when the application exits, a device tune state that identifies a content source to which the device was tuned prior to running the application can be retrieved and the device restored to this device tune state.
US11056148B2 Elastic cloud video editing and multimedia search
Technologies for cloud-based media search and editing include a video editor configured to build a media query and associate the media query with a dynamic content slot of a media program. When generating video output based on the media program, the video editor transmits the media query to a cloud analytics server and receives search results identifying one or more media clips produced by a number of mobile computing devices. The video editor may display a list of clips for selection by the user or may automatically include one of the clips in the output. The cloud analytics server transmits an acceptance policy defining criteria for acceptable media, based on the media query, to the mobile computing devices. The mobile computing devices configure capture settings according to the acceptance policy and may display a user interface to assist the user in capturing acceptable media. Other embodiments are described and claimed.
US11056137B1 Load beam side rail shock contact feature
An approach to a head gimbal assembly (HAG), such as for a hard disk drive, includes a load beam formed with a deck portion and side rail portions extending from each lateral edge of the deck portion, where each side rail portion includes a crash stop structure extending away from and in the thickness direction of the side rail portion. In a configuration in which the side rails extend at an obtuse angle, z-shaped and reverse z-shaped crash stop structures, opposing angled c-shaped notch structures pairs, or opposing half dome shaped dimple pairs, on back-to-back load beams of a heat-assisted magnetic recording (HAMR) head gimbal assembly can elicit mechanical contact between the crash stops in the event of an operational shock event, thereby avoiding mechanical contact between HAMR chip-on-submount assembly (CoSA) laser modules.
US11056133B2 Writer with HMTS (high moment trailing shield) aligned with spin layer
A PMR (perpendicular magnetic recording) write head configured for microwave assisted magnetic recording (MAMR) includes a spin-torque oscillator (STO) and trailing shield formed of high moment magnetic material (HMTS). By patterning the STO and the HMTS in a simultaneous process the HMTS and the STO layer are precisely aligned and have very similar cross-track widths. In addition, the write gap at an off-center location has a thickness that is independent from its center-track thickness and the write gap total width can have a flexible range whose minimum value is the same width as the STO width.
US11056132B2 Multichannel tape head module having thermally settable transducer pitch and method of setting pitch thereof
In one embodiment, an apparatus includes a module having a substrate and a closure, an array of transducers in a thin film structure on the substrate, the array being positioned along a tape bearing surface of the module, and a heating element positioned in the thin film structure and recessed from the tape bearing surface, and a controller electrically coupled to the heating element. The controller is configured to apply a current pulse of size, shape and duration sufficient to induce a permanent expansion of the array of transducers.
US11056130B2 Speech enhancement method and apparatus, device and storage medium
The present disclosure provides a speech enhancement method and apparatus, a device and a storage medium. The method includes: acquiring a first speech signal and a second speech signal; obtaining a signal to noise ratio of the first speech signal; determining, according to the signal to noise ratio of the first speech signal, a fusion coefficient of filtered signals corresponding to the first speech signal and the second speech signal; and performing, according to the fusion coefficient, speech fusion processing on the filtered signals corresponding to the first speech signal and the second speech signal to obtain an enhanced speech signal. Thereby, it is realized that a fusion coefficient of speech signals of a non-air conduction speech sensor and an air conduction speech sensor is adaptively adjusted according to environment noise, thereby improving the signal quality after speech fusion, and improving the effect of speech enhancement.
US11056125B2 Post-quantization gain correction in audio coding
A gain adjustment apparatus for use in decoding of audio that has been encoded with separate gain and shape representations includes an accuracy meter configured to estimate an accuracy measure of the shape representation, and to determine a gain correction based on the estimated accuracy measure. An envelope adjuster further included in the apparatus is configured to adjust the gain representation based on the determined gain correction.
US11056120B2 Segment-based speaker verification using dynamically generated phrases
A method includes obtaining enrollment audio data representing a particular user speaking an enrollment phrase, and in response to receiving a request to verify an identity of an unverified user, prompting the unverified user to speak a verification utterance. The method also includes receiving verification audio data representing the unverified user speaking the verification utterance and determining whether the unverified user speaking the verification phrase includes the particular user who spoke the enrollment phrase based on the enrollment audio data and the verification audio data. The method also includes verifying the identity of the unverified user as the particular user.
US11056117B2 Enhanced voiceprint authentication
The invention relates to a method for enhanced voiceprint authentication. The method includes receiving an utterance from a user, and determining that a portion of the utterance matches a pre-determined keyword. Also, the method includes authenticating the user by comparing the portion of the utterance with a voiceprint that is associated with the pre-determined keyword. Further, the method includes identifying a resource associated with the pre-determined keyword while comparing the portion of the utterance with the voiceprint. Still yet, the method includes accessing the resource in response to authenticating the user based on the comparison.
US11056115B2 Location-based responses to telephone requests
A method for receiving processed information at a remote device is described. The method includes transmitting from the remote device a verbal request to a first information provider and receiving a digital message from the first information provider in response to the transmitted verbal request. The digital message includes a symbolic representation indicator associated with a symbolic representation of the verbal request and data used to control an application. The method also includes transmitting, using the application, the symbolic representation indicator to a second information provider for generating results to be displayed on the remote device.
US11056114B2 Voice response interfacing with multiple smart devices of different types
A computer enabled method of controlling a secondary system with a primary system for taking commands that includes analyzing a historical database to create a probability factor for matching an initial commands to a primary device and a following interaction to generate secondary requests to a second device. The method further includes receiving a user command at the primary device, and determining whether the user command at the primary device matches at least one initial commands having above a threshold value for the probability factor linking the initial command to the primary device to the request the at least one secondary device. The method further includes sending a signal to activate the at least one secondary device to perform the request without requiring an activation command from the user.
US11056113B2 Conversation guidance method of speech recognition system
A conversation guidance method of a speech recognition system may include managing a user domain based on speech recognition function information and situation information corrected from a system mounted on a vehicle, generating a conversation used for speech recognition based on the user domain, and guiding a user with the generated conversation.
US11056109B2 Reference audio extraction device for use with network microphones with acoustic echo cancellation and beamforming
Disclosed is an audio extraction device for use in an audio signal processing system, comprising: an audio transceiver adapted to receive an audio signal; a delay circuit adapted to delay the received audio signal by a first delay period; a first audio transmitter adapted to transmit the delayed version of the received audio signal to a first destination; and a second audio transmitter adapted to transmit the un-delayed version of the received audio signal to a second destination.
US11056108B2 Interactive method and device
An interactive method and a device thereof are provided. The method includes obtaining voice data of the object in response to determining that the object is facing the interactive device and is in the utterance state; and establishing an interaction between the object and the interactive device based on the voice data. The method solves the technical problems in which current interactions need to set up wakeup terms for interactive devices which are prone to false wakeups through the wakeup terms due to an existence of a relatively small number of wakeup terms. The above methods can implement the technical effects of remote interactions without the need of a wakeup term.
US11056107B2 Conversational framework
A computer-implemented conversational system framework to perform tasks associated with a client request. A conversation application executing on a hardware processor provides application workflow orchestration, the conversation application receiving a client request and sending one or more application requests based on the application workflow orchestration. A conversation system executing on a hardware processor provides conversation workflow orchestration, the conversation system receiving the one or more application requests. The conversation application and the conversation system develop dialog context and store the dialog context in a memory device. The conversation application and the conversation system develop the dialog context by invoking at least one micro-service to perform tasks associated with the one or more application requests. The conversation application generates a response to the client request based on the developed dialog context.
US11056106B2 Voice interaction system and information processing apparatus
A system comprises an apparatus having a first voice I/O device; and a voice interface apparatus having a second voice I/O device, and connected to the apparatus by audio connection via short-range wireless communication, wherein the apparatus includes a voice I/O unit that performs voice input and output by using the first voice I/O device or the second voice I/O device; an interaction unit that performs voice interaction with a user; and a process unit that performs a process other than the voice interaction, by using the voice I/O, and the voice I/O unit switches a device used for the voice input and output to the first voice input/output device in a case where the process unit is brought into a first state in which the voice input and output is required when the voice interaction with the user is performed by using the second voice I/O device.
US11056104B2 Closed captioning through language detection
In an approach for acoustic modeling with a language model, a computer isolates an audio stream. The computer identifies one or more language models based at least in part on the isolated audio stream. The computer selects a language model from the identified one or more language models. The computer creates a text based on the selected language model and the isolated audio stream. The computer creates an acoustic model based on the created text. The computer generates a confidence level associated with the created acoustic model. The computer selects a highest ranked language model based at least in part on the generated confidence level.
US11056101B2 End-to-end streaming keyword spotting
A method for training hotword detection includes receiving a training input audio sequence including a sequence of input frames that define a hotword that initiates a wake-up process on a device. The method also includes feeding the training input audio sequence into an encoder and a decoder of a memorized neural network. Each of the encoder and the decoder of the memorized neural network include sequentially-stacked single value decomposition filter (SVDF) layers. The method further includes generating a logit at each of the encoder and the decoder based on the training input audio sequence. For each of the encoder and the decoder, the method includes smoothing each respective logit generated from the training input audio sequence, determining a max pooling loss from a probability distribution based on each respective logit, and optimizing the encoder and the decoder based on all max pooling losses associated with the training input audio sequence.
US11056097B2 Method and system for generating advanced feature discrimination vectors for use in speech recognition
A computer-implemented method of generating advanced feature discrimination vectors (AFDVs) representing sounds forming part of an audio signal input to a device is provided. The method includes taking a plurality of samples of the audio signal, and for each sample of the audio signal taken: performing a signal analysis on the sample to extract one or more high resolution oscillator peaks therefrom; renormalizing the extracted oscillator peaks to eliminate variations in the fundamental frequency and time duration for each sample occurring over the window; normalizing the power of the renormalized extracted oscillator peaks; and forming the renormalized and power normalized extracted oscillator peaks into a respective AFDV for the sample. The method further includes outputting the respective AFDV to a comparison function configured to identify a characteristic of the sample based on a comparison of the respective AFDV with a library of AFDVs associated with known sounds and/or known speakers.
US11056095B2 Active noise reduction earphones
An active noise reducing earphone includes a rigid cup-like shell having an inner surface and an outer surface is provided. The inner surface encompasses a cavity with an opening, and a microphone arrangement is configured to pick up sound with at least one steerable beam-like directivity characteristic, and to provide a first electrical signal that represents the picked-up sound. The earphone further includes an active noise control filter configured to provide, based on the first electrical signal, a second electrical signal, and a speaker disposed in the opening of the cavity and configured to generate sound from the second electrical signal. The active noise control filter has a transfer characteristic that is configured so that noise that travels through the shell from beyond the outer surface to beyond the inner surface is reduced by the sound generated by the speaker.
US11056092B2 Anti-resonant panel and methods of making the same
Example methods, panels, and systems are disclosed for providing noise insulation. Noise insulation may be provided by an anti-resonant panel that includes a base panel including a base panel core material and two base panel face sheets, where each of the two base panel face sheets is adjacent to an opposite side of the base panel core material. The anti-resonant panel further includes at least one stiffener-member positioned along the base panel in a defined area of the base panel, where the defined area is less than a full area of the base panel. The stiffener-member includes a stiffener-member core material and two stiffener-member face sheets the stiffener-member face sheets adjacent to an opposite side of the stiffener-member core material.
US11056090B2 Elastic material for coupling time-varying vibro-acoustic fields propagating through a medium
A device for use in a medium comprising a medium vibro-acoustic impedance. The device includes an elastic material including a plurality of unit cells. The plurality of unit cells includes a first unit cell. The first unit cell includes a first unit-cell joint comprising a first unit-cell joint wall defining a first joint central void, a first unit-cell joint inclusion located in the first joint central void, and at least two first unit-cell arms connected to and extending away from the first unit-cell joint. The elastic material includes an elastic-material vibro-acoustic impedance. The elastic-material vibro-acoustic impedance and the medium vibro-acoustic impedance are sufficiently vibro-acoustically impedance-matched to couple time-varying, propagating vibro-acoustic fields between said elastic material and the medium.
US11056089B2 Circuit board with dielectric surface switch and embedded metamaterials providing increased arc resistance
A PCBA for use in a high-energy broadband electric field includes a low-voltage power supply and alternating conductive and dielectric layers. An outermost one of the conductive layers includes a dielectric surface switch having closely-spaced switch contacts. The first switch contact is connected to the positive terminal and the second switch contact is connected to the negative terminal. Vias connect the conductive layers to the terminals through the respective first and second switch contacts to form power and ground planes. A metamaterial layer of nickel is doped with up to 20 percent phosphorus or chromium by weight, has a uniform thickness of less than 5 μm, is sandwiched between interfacing surfaces of a pair of the conductive and dielectric layers, and evenly coats one of the interfacing surfaces. A sonobuoy system includes the PCBA, e.g., an Electronic Function Select board, a cylindrical housing, and an acoustic array.
US11056087B2 Door stringed instrument mount
A mount for hanging a stringed instrument on commonly used standard doors that does not require the use of nails, bolts or screws driven into the door panel and consists of a supporting member, a U-shaped yoke attached to one end of the supporting member, the other end of the supporting member has a rectangular shape that fits over the door. An intermediary piece is used to attach the U-shaped yoke to the supporting member. An additional angular brace is optionally provided for additional support preventing movement of the guitar during door opening and closing.
US11056086B2 Stringed instrument vibrato tailpiece device and method
Embodiments of the invention are directed to a vibrato tailpiece of a stringed instrument. The present invention provides a mechanism to lower the string plate, fulcrum plate, and vibrato apparatus beneath the base plate and thereby increase the downward pressure of the strings of the stringed instrument against the bridge.
US11056084B1 Pin turning tool kit
An improved piano tuning lever includes a handle with a loop or ring large enough to fit the fingers of a user's hand, thereby providing a grip around the perimeter of the loop or ring which is independent of the axis of the handle. The resulting grip affords improved ergonomics and may lessen stress in the user's wrist and hand when having to conform to various angles of the handle axis as the tuning lever is moved from tuning pin to tuning pin over the course of a piano tuning. The improved handle and loop or ring may be made any size or shape, symmetrical or asymmetrical and with its core being solid, hollow, or filled. Another embodiment of the piano tuning lever includes a spline designed to mate with an inventive piano tuning lever head having complementary splines.
US11056083B2 Display control device and image display method
A display control device outputs an image, which is obtained by processing as input image having been corrected by the correction unit, while correction data is loaded. The display control device outputs the input image, which has been corrected by the correction unit, after completion of loading the correction data.
US11056082B1 Waterfall display for high-speed streaming measurements
The present disclosure pertains to systems and methods for generating a waterfall display to display a stream of high-speed data measurements. In one embodiment, a system may comprise a communication subsystem to receive a stream of high-speed data measurements. A waterfall generation subsystem may receive the stream of high-speed data measurements from the communication subsystem and identify a plurality of changes in the stream of high-speed data. A subset of data measurements may be selected that includes changes in the high-speed data. The changes may be highlighted through a plurality of modifications. A representation of the subset of data measurements in which changes are highlighted may be generated and presented at a rate below a perception threshold of a human operator. A waterfall display subsystem may generate a human-perceptible waterfall display to represent the stream of high-speed data measurements and the plurality of modifications.
US11056081B2 Display panel and display device
A display panel and a display device are provided. The display panel includes at least one first display area, and a second display area located at a periphery of the first display area. The first display area includes a plurality of first repeating sub-areas that can be repeatedly arranged in both a first direction and a second direction. The second display area includes a plurality of second repeating sub-areas that has a same size as the first repeating sub-areas. A number of the pixels disposed within the first repeating sub-areas is less than a number of the pixels disposed within the second repeating sub-areas.
US11056078B2 Multi-screen color correction method and electronic device using the same
A multi-screen color correction method and an electronic device are provided. The multi-screen color correction method is adapted with an electronic device with at least two display panels, and includes the following steps: obtaining image characteristics of test images displayed on the display panels respectively; performing a parameter operation on the image characteristics separately to obtain image correction parameters correspondingly; correcting colors of the display panels respectively according to the image correction parameters; obtaining luminance characteristics of the display panels by calculating based on the image correction parameters; and adjusting the luminance of the display panels according to the luminance characteristics.
US11056077B2 Approach for automatically adjusting display screen setting based on machine learning
The approach for automatically adjusting display setting for a user that uses corrective lens or not is disclosed. The approach determines whether a user is wearing corrective visual lens. If the user is not wearing correct visual lens, then the system measures the ocular features of the user via sensors. The system then transmits data associated with the ocular features to a deep learning server wherein the deep learning server analyzes the data. The server generates a customized display setting based on the analyzed data. The system receives the display setting from the deep learning server and automatically adjusts the display setting on a device of the user based on the received display setting.
US11056071B2 Display device and method of driving the same
A display device according to an embodiment includes a driving unit generating an nth primary gate voltage, an nth secondary gate voltage and a data voltage during a plurality of driving frames; and a display panel storing a threshold voltage using the nth primary gate voltage, the nth secondary gate voltage and the data voltage during the plurality of driving frames and displaying an image using a sum of the data voltage and the threshold voltage during a plurality of staying frames after the plurality of driving frames, wherein a sampling period for storing the threshold voltage of one of the plurality of driving frames is shorter than at least one sampling period of others of the plurality of driving frames.
US11056066B2 White balance method and device for LCD panel
The present invention teaches a white balance method and device for a LCD panel. The method includes the following steps. Step S1 provides a LCD panel, including a mask-joint area and a non-mask-joint area outside the mask-joint area. The mask-joint area includes multiple first color resists arranged in an array, and the non-mask-joint area includes multiple second color resists arranged in an array. The first and second color resists are of different dimensions. Step S2 obtains a first white balance driving table for the mask-joint area and a second white balance driving table for the non-mask-joint area. Step S3 conducts white balance to the mask-joint area and non-mask-joint area using the first and second white balance driving tables, respectively. By applying different white balance driving tables to the mask-joint area and the non-mask-joint area, the white balance effect is improved, and the display quality of the LCD panel is enhanced.
US11056056B2 Pixel unit circuit, method of driving the same, pixel circuit and display device
A pixel unit circuit, a method of driving the same, a pixel circuit and a display device are provided. A pixel unit circuit includes a light-emitting component, a driving transistor, a data writing circuit and a storage capacitor circuit. The data writing circuit is coupled to a data line, a gate line and a gate electrode of the driving transistor, and configured to, under a control of the gate line, enable a connection between the data line and the gate electrode of the driving transistor to be turned on or off. A first end of the storage capacitor circuit is coupled to the gate electrode of the driving transistor, and a second end of the storage capacitor circuit is coupled to a reference voltage input terminal. A second end of the light-emitting component is coupled to a low-level input terminal.
US11056053B2 Display device and method of driving the same
A display device and a method of driving the same. The display device includes a display panel including a plurality of pixels, a degradation compensator configured to output compensation data based on age values of the plurality of pixels and an input grayscale value of input image data, a scan driver configured to supply a scan signal to the display panel, and a data driver configured to supply a data signal corresponding to the compensation data to the display panel. The degradation compensator includes a first compensation unit configured to generate a first compensation grayscale value with reference to the input grayscale value and a first age value, and a second compensation unit configured to generate a second compensation grayscale value with reference to the first compensation grayscale value and the first age value.
US11056052B2 Display device and electronic apparatus
A display device including: a plurality of sub-pixels arranged in a matrix, each including an electro-optical element having a structure in which a display functional layer is sandwiched between an upper electrode and a lower electrode; and an auxiliary interconnect contact in a pixel area in which the plurality of sub-pixels are arranged in a matrix and electrically connecting the upper electrode to an auxiliary interconnect, wherein m (m is an integer equal to or larger than two) sub-pixels adjacent to each other along an arrangement direction of the sub-pixels are regarded as one group, and n (n is a natural number smaller than m) auxiliary interconnect contacts are formed for each group.
US11056050B2 Display unit, image processing unit, and display method for improving image quality
An image processing unit includes: a gain calculating section obtaining, based on first luminance information for each pixel, a first gain, in which the first gain is configured to increase with an increase in pixel luminance value in a range where the pixel luminance value is equal to or larger than a predetermined luminance value, and in which the pixel luminance value is derived from the first luminance information; and a determination section determining, based on the first luminance information and the first gain, second luminance information for each of the pixels.
US11056048B2 Pixel and display device having the same
A pixel includes a light emitting device, a first transistor for controlling an amount of current flowing from a first power source to a second power source via the light emitting device, corresponding to a voltage applied to a first node, a second transistor coupled between a data line and a second node, and including a gate electrode coupled to a first scan line, a third transistor coupled between the second node and a first electrode of the first transistor, and including a gate electrode coupled to a second scan line, a first capacitor coupled between the first power source and the second node, and a second capacitor coupled between the first node and the second node.
US11056046B2 Display device and driving method thereof
A display device includes: a data line; a first scan line configured to sequentially receive a first scan pulse and a second scan pulse, each of which has a turn-on level; an emission line configured to sequentially receive a first emission pulse, a second emission pulse, a third emission pulse, and a fourth emission pulse, each of which has a turn-on level; and a pixel configured to receive the data signal according to the first and second scan pulses, the pixel being further configured to emit light based on the received data signal according to the first to fourth emission pulses, wherein the first emission pulse is generated before the first scan pulse, the second emission pulse and the third emission pulse are generated in a period between the first scan pulse and the second scan pulse, and the fourth emission pulse is generated after the second scan pulse.
US11056045B2 Arrangement for operating radiation emitting devices, method of manufacturing the arrangement and compensation structure
An arrangement for operating radiation emitting devices includes a plurality of radiation emitting devices each having a first capacitance, a driver circuit that supplies the devices with electrical energy, and a compensation structure having a variable second capacitance corresponding to each device and means for adjusting the respective second capacitance, the compensation structure being connected to the device such that a total capacitance assigned to a device and dependent on the first capacitance can be adjusted by the second capacitance.
US11056043B2 Display device
A display device includes pixels coupled to first scan lines, second scan lines, emission control lines, and data lines; a first scan driver to supply a scan signal to each of the first scan lines at a first frequency to drive the display device at a first driving frequency, and to supply the scan signal to each of the first scan lines at a second frequency to drive the display device at a second driving frequency lower than the first driving frequency; a second scan driver to supply a scan signal to each of the second scan lines at the first frequency to drive the display device at the first driving frequency, and to supply the scan signal to each of the second scan lines at the second frequency to drive the display device at the second driving frequency; an emission driver to supply an emission control signal to each of the emission control lines at the first frequency; and a data driver to supply a data signal to each of the data lines in response to the scan signal supplied to each of the first scan lines.
US11056042B1 Systems and methods to reduce visual artifacts in displays
Systems and methods for providing display panels with reduced visual artifacts. A display system is provided that includes a pixel array having a plurality of pixels arranged in rows and columns. The display system receives an image stream that includes a plurality of sets of image data that each represent an image to be sequentially presented by the display system. The data for each frame or set of image data is loaded into the pixel array according to a loading sequence with reduces the visual artifacts perceived by a viewer of the display system. The loading sequence may include an inside-out loading sequence which gives preference to a central region of the pixel array, a speculative preloading sequence which first loads portions of the pixel array with speculative data, or various combinations thereof.
US11056039B2 Signal processing device and image display apparatus including the same
Disclosed is a signal processing device and an image display apparatus including the same. The signal processing device and the image display apparatus comprise: a first reduction unit to receive a image signal and reduce noise of the received image signal, and a second reduction unit to perform grayscale amplification based on the image signal from the first reduction unit, wherein the second reduction unit is configured to perform the grayscale amplification so that upper-limit level of grayscale of the image signal from the first reduction unit is greater than upper-limit level of grayscale of an OSD signal. Accordingly, OSD area may be uniformly displayed regardless of ambient luminance.
US11056037B1 Hybrid pulse width modulation for display device
A display operates a plurality of light emitters using pulse width modulations (PWM). Pixel data for a pixel location may be separated into a first subset of bits and a second subset of bits. The display device turns on first light emitters for first PWM turn-on times in accordance with the first subset of bits within a PWM cycle. The display device turns on second light emitters for PWM on time second PWM turn-on times in accordance with the second subset of bits within the PWM cycle. The current level that drives the first emitters may remain constant during the first turn-on times but may be higher than the current level that drives the second emitters. The first emitters may generate light in accordance with the most significant bits of pixel data while the second emitters may generate light in accordance with the least significant bits of the pixel data.
US11056033B2 Electro-optical apparatus, display control system, display driver, electronic device, and mobile unit
An electro-optical apparatus 300 includes a first electro-optical panel 201 that is a segment panel, a first display driver 101 that drives the first electro-optical panel 201, a second electro-optical panel 202 that is a matrix panel, and is arranged to overlap the first electro-optical panel 201 in planar view of the first electro-optical panel 201, and a second display driver 102 that displays an image on the second electro-optical panel 202 by driving the second electro-optical panel 202. The first electro-optical panel 201 is arranged on the side from which an image is visually recognizable. The second display driver 102 outputs a drive voltage to a segment electrode of the first electro-optical panel 201.
US11056032B2 Scanning display systems with photonic integrated circuits
A display system may display image frames. The system may include multiple sets of laser dies. Each set of laser dies may emit a respective set of beams of light to a photonic integrated circuit. Each set of beams may include light in at least three wavelength ranges that include visible and/or infrared wavelengths. Channels in the photonic integrated circuit may receive the sets of beams with a first pitch and may emit the set of beams with a second pitch that is finer than the first pitch and at a given angular separation to tangential and sagittal axis scanning mirrors.
US11056031B2 Control device, optical scanner, display device, and control method
A control device, which controls a laser scanning display device, includes a laser device, a first current source that generates a first driving current supplied to the laser device, a second current source that generates a second driving current supplied to the laser device, and a controller. The controller controls the first current source to generate the first driving current having a first set current value that is 1/n times a threshold current value at a time when oscillation of the laser device starts, when scanning a non-display area in which no image is displayed, where n is a number greater than 1. The controller controls the second current source to generate the second driving current having a second set current value that is zero or greater and less than 1−1/n times the threshold current value, when scanning the non-display area.
US11056029B1 LED module, display and calibration system with traceability
A LED module applicable to a LED display system includes: an interface circuit, transmitting display data and a control signal between the LED display system and the LED module; a uniform standard conversion circuit, which is coupled to the interface circuit and computes the display data and a calibration parameter pre-stored in the uniform standard conversion circuit to generate and output grayscale data; a display memory storing and outputting the grayscale data; a constant current driving circuit, which is coupled to the display memory and outputs a constant current according to the grayscale data; and a LED lamp generating a light source according to the constant current to display an image.
US11056028B2 Method for detecting luminance uniformity of screen, storage medium, and electronic device
A method for detecting luminance uniformity of a screen, storage medium, and electronic device are provided. The method includes the following steps. At least one pixel on a display panel of a screen is lit. Light intensity of the pixel reflected by a non-opaque cover plate is acquired by a photoelectric sensor of the screen. Whether the pixel is uniformly luminous based on the acquired light intensity is determined. In this solution, by adding a photoelectric sensor to the screen, it is convenient to obtain the light condition of the screen, and then it is convenient to obtain whether the pixel is uniformly luminous.
US11056023B2 Copyright protection based on hidden copyright information
Disclosed herein are methods, systems, and apparatus, including computer programs encoded on computer storage media, for hiding copyright information in printable materials. One of the methods includes generating, by a computing device, a unique identifier (ID) based on copyright information associated with digital content, wherein the copyright information and the digital content are recorded on a blockchain of a blockchain network; determining one or more features associated with one or more printable materials; and converting the unique ID to a digital watermark based on the one or more features, the digital watermark not being apparent to an unaided human eye when printed on the one or more printable materials and enabling retrieval of the copyright information from the blockchain based on the unique ID.
US11056022B1 System, apparatus, and method for creating an interactive augmented reality experience to simulate medical procedures for pediatric disease education
An interactive augmented reality system for simulating medical procedures for pediatric disease education includes a plush toy having one or more patches disposed on a body of the plush toy in one or more corresponding locations each associated with an area of the body of the plush toy that is comparable to an area of a human body. An interactive medical procedure simulation logic section operable within a mobile device causes a particular patch within a series of live images to be scanned, and initiates an interactive augmented reality experience to simulate a medical procedure for pediatric disease education. Comfort is provided to children struggling with a disease. Children learn how to manage their chronic illness by enabling them to practice their medical procedures and receive feedback related to correct and incorrect care. A low-cost disease education delivery mechanism is provided directly to children through game-play.
US11056018B2 System and method for adjusting the correlation between a perspective of an onboard visual display and a current orientation of an inflight aircraft
Methods are provided for adjusting any correlation between a perspective of an onboard visual display and a current orientation of an inflight aircraft. The method comprises determining the current orientation of the inflight aircraft and determining the perspective of the visual display. The visual display is shown to a pilot of the inflight aircraft on a display element located onboard the inflight aircraft. The current orientation of the aircraft is compared with the perspective of the visual display to determine if the perspective of the visual display needs to transition to reflect the current orientation of the aircraft. If the display does need to be changed, a rate of transition of the visual display's perspective is selected based on current aircraft performance parameters. The perspective of the visual display is then transitioned to reflect the current orientation of the aircraft at the selected rate.
US11056015B2 Systems and methods for providing tailored educational materials
Systems and methods are provided herein for selecting and providing educational content to a user. The content may be selected from content pools based on a user's individual characteristics, prior performance, aggregated student performance, and other factors. The system may also record behavioral data associated with the user to refine content selection for subsequent iterations. The system may also predict a student's results and the likelihood of passing or failing.
US11056011B2 Method and electronic device of management of the display of an aircraft flying profile, associated computer program and electronic system
A method for managing the display of a vertical flight profile of an aircraft includes: determining a deviation between a predefined lateral trajectory and the current position of the aircraft projected in the plane of the trajectory; as a function of at least the determined deviation, selecting a display mode of the vertical flight profile from among a first mode and a second mode. When the first mode has been selected, calculating the distance between the orthogonal projection of the current position of the aircraft on the trajectory and the orthogonal projection of the next waypoint on the trajectory, and displaying, in the vertical flight profile, the next waypoint at a distance from the aircraft along a reference axis equal to the distance. When the second mode has been selected, calculating the distance instead from the current position of the aircraft in the plane of the trajectory.
US11056006B2 Device and method for providing state information of an automatic valet parking system
A device is described for providing state information of an automatic valet parking system. The device includes at least one off-board infrastructure component, which is located, in particular fixedly disposed within a parking area assigned to the automatic valet parking system. The infrastructure component is adapted for outputting state information of the automatic valet parking system. Thus, pieces of state information of the automatic valet parking system can be efficiently communicated.
US11056003B1 Occupant facing vehicle display
Aspects of the present disclosure relate to a vehicle for maneuvering an occupant of the vehicle to a destination autonomously as well as providing information about the vehicle and the vehicle's environment for display to the occupant.
US11056001B2 Image generating apparatus, image generating method, and recording medium
An image generating apparatus generates an image to be displayed on a display and includes at least one memory and a control circuit. The control circuit acquires a plurality of camera images captured by a plurality of cameras installed in a vehicle, calculates a distance between one of the cameras and a target to be projected in the camera images, detects a position of a light-transmissive object or a reflective object in the camera images, and generates an image from a point of view that is different from points of view of the plurality of camera images by using the plurality of camera images and the distance, the generated image including a predetermined image that is displayed at the position of the light-transmissive object or the reflective object.
US11055999B2 Vehicle control apparatus, vehicle control method, and storage medium
A vehicle control apparatus is configured to be capable of controlling movement and parking of a vehicle based on an operation from an operation terminal. The vehicle control apparatus comprises a processing unit configured to execute processing in a virtual parking control mode in which a virtual vehicle displayed on a screen is virtually operated by the operation from the operation terminal and processing in a remote parking control mode in which the vehicle is moved to a parking position and parked at the parking position based on the operation from the operation terminal.
US11055998B1 Minimizing traffic signal delays with transports
An example operation includes one or more of receiving, by a first transport, an indication from a traffic signal that the first transport is legally able to move from a stopped disposition, elapsing a period of time between receiving the indication and the first transport did not move during the period of time, and receiving a notification at the end of the period of time, by the first transport, that the first transport ought to move.
US11055996B2 Driving support device and driving support method
A driving support device includes: an intersection information acquiring unit 3 to obtain signal light information about traffic signals installed at one or more intersections ahead of a road along which the vehicle is traveling and to obtain distances to the intersections; a vehicle state detector 4 to detect a position and speed of travel of the vehicle; a signal passableness deciding unit 5 to decide a passable or impassable state of the traffic signals by the vehicle from the signal light information, the distances to the intersections, and the position and speed of travel of the vehicle; and a display controller 7 to display the passable or impassable state of the traffic signals decided by the signal passableness deciding unit 5 by changes of color on the map.
US11055994B2 Information processing device, information processing system, program, and information processing method
An information processing device has an obtaining unit, a controller, and a giving unit. The obtaining unit can obtain vehicle information. The controller creates first warning information when the passability of a road in the vehicle information indicates non-passable. The controller creates recovery information when the passability of the road at the same position in the vehicle information indicates passable, after creation of the first warning information. The giving unit gives the recovery information.
US11055990B1 Apparatus and method for two-way signaling with traffic controllers over a wireless link
Several implementations of an access point, an application server, and instances of an application operating upon a cell phone are disclosed. These implementations support the cell phone and its application traveling on a vehicle, which wirelessly communicates through a wireless router, such as a Bluetooth router with an access point situated in a cabinet to direct a traffic controller driving a traffic light. The wireless router responds to a cell phone initiated by the app, by reporting the location and speed of the vehicle, often further including the vehicle type, such as a bicycle or heavy truck. The traffic controller may lengthen a green light in response to a heavy truck, to reduce wear on roadways. The access point may respond to a bicycle, by confirming its presence to the bicycle driver as well as adjust the traffic controller.
US11055987B2 Animated incoming traffic sign
Systems and methods that provide indications that incoming traffic is present. A display deployed at an intersection is visible to traffic coming from one direction. The display is activated when a sensor senses traffic coming from another direction. The activated display provides a moving or animated display that shows the direction that traffic is coming from.
US11055985B2 Systems and methods for providing remote-control special modes
A receiving device may assign a remote-control device of the receiving device to a special mode by storing an association of an identifier unique to the remote-control device with the particular special mode. The receiving device may receive a command from the remote-control device and determine that there has been a special mode assigned to the remote-control device based on the stored association of the identifier unique to the remote-control device with the particular special mode. The receiving device will then interpret the command received from the remote-control device according to how commands are to be processed in the special mode. The receiving device having the remote-control device assigned to the special mode may cause the receiving device to execute a different command or process than it would have normally performed when receiving such a command from a remote-control device that is not assigned to the special mode.
US11055982B1 Health condition monitoring device
A health condition monitoring device, including a band that is wearable by a user, a monitor control unit disposed on at least a portion of the band to provide health related information to the user, and a fastener assembly disposed on at least a portion of a first end of the band and at least a portion of a second end of the band to connect the first end to the second end.
US11055981B1 Systems and methods for using primary and redundant devices for detecting falls
In some instances, a fall detection system comprising a first fall detection device and a user device is provided. The fall detection device is configured to: detect an occurrence of a fall event associated with an individual based on sensor information from the one or more sensors and a fall detection model; and provide a first indication indicating the occurrence of the fall event. The user device is configured to: receive the first indication; cause display of a prompt requesting user feedback as to whether the individual fell based on the first indication and a second indication from a second fall detection device; provide update information indicating for the first fall detection device to update the fall detection model based on the user feedback; and provide user fall information associated with the occurrence of the fall event based on the user feedback.
US11055978B1 Systems and methods for confirming property services
A system may include a processor. The processor may be configured to receive a first indication indicative of presence of a person arriving at a location associated with a scheduled service. The process may also be configured to determine whether the first indication corresponds to an expected arrival time of the scheduled service. Additionally, the processor may receive activity data in response to determining that the indication corresponds to the expected arrival time. Further, the processor may receive a second indication indicative that the person has completed the scheduled service. Further still, the processor may determine whether the scheduled service is completed based at least in part on the activity data. Even further, the processor may transmit a service confirmation to a computing device associated with a property owner of the location in response to determining that the scheduled service is completed.
US11055975B2 Wireless environmental data capture system and method for mesh networking
A mesh network-based environmental data capture system and method for providing communication between a base system having at least one wireless input capture device ICD(s) and other ICD(s), wherein the ICD(s) are capable of smart cross-communication with each other and remote access to their inputs via a server computer, including the steps of providing this base system; at least one user accessing the ICDs and inputs remotely via a user interface through a remote server computer and/or electronic device communicating with it, for providing a secure surveillance system with extended inputs range and wireless smart cross-communication for monitoring a target environment.
US11055974B2 Physical knowledge action triggers
Methods, systems, and apparatus, for defining and monitoring an event for a physical entity and the performance of an action in response to the occurrence of the event. A method includes receiving data indicating an event for a physical entity, the event specified in part by a physical environment feature for which the occurrence of the event is to be monitored by the data processing apparatus; receiving data indicating an action associated with the event and to be taken in response to the occurrence of the event; monitoring for the occurrence of the event for the physical entity; and in response to the occurrence of the event, causing the action associated with the event to be performed.
US11055973B2 Enhanced emergency detection system
A method includes reading a digital signal from a sensing device in an area of a structure, where the digital signal is configured to be present periodically. A trailing edge of the digital signal is determined. An analog signal from the sensing device is read, where the analog signal includes an output from a sensor included in the sensing device, and where the sensor is configured to detect an aspect of an environment. The analog signal is read after the trailing edge of the digital signal.
US11055971B1 Bendable anti-skimming plate for a card reader
A card reader includes a user-card-insertion slot operatively connected to user-card path. A data-reader is located in an interior of the card reader. A plate is located in the interior of the card reader. The plate is adjacent to the data-reader and interior to the user-card-insertion slot. The plate is configured to block the insertion of a skimming or shimming device and to bend during an attempt to remove the plate from the interior of the card reader. The plate may be configured such that a power connection between the plate and a circuit supplying power to the card reader may be broken during an attempt to remove the plate from the interior of the card reader.
US11055964B2 Interactive event outcome reveal techniques implemented in wager-based video games and non-wager-based video games
Various techniques are disclosed for implementing different types interactive event outcome reveal techniques during play of wager-based games and/or non-wager-based games conducted at an electronic gaming device of a gaming network.
US11055963B2 Casino gaming machines and games having selectably available wagering propositions
A computer-implemented method of operating a regulated gaming machine may comprise providing a game configured to generate a plurality of in-game assets on a display, the in-game assets being configured such that successful player interaction therewith selectively triggers. An opportunity for the player to reconfigure the game in exchange for value from the player may be selectively enabled during game play. When a received player interaction is indicative of the player accepting the provided opportunity, value from the player may be accepted and the game reconfigured by changing one or more of the in-game assets and/or changing what constitutes successful interactions therewith that triggers wagers. Conversely, when the received player interaction is indicative of the player foregoing the provided opportunity, the game is continued and wagers selectively triggered without reconfiguring the game.
US11055962B2 Systems and methods for integrating graphic animation technologies in fantasy sports contest applications
Systems and methods for integrating graphic animation technologies with fantasy sports contest applications are provided. This invention enables a fantasy sports contest application to depict plays in various sporting events using graphic animation. The fantasy sports contest application may combine graphical representation of real-life elements such as, for example, player facial features, with default elements such as, for example, a generic player body, to create realistic graphic video. The fantasy sports contest application may provide links to animated videos for depicting plays on contest screens in which information associated with the plays may be displayed. The fantasy sports contest application may play the animated video for a user in response to the user selecting such a link. In some embodiment of the present invention, the fantasy sports contest application may also customize animated video based on user-supplied setup information. For example, the fantasy sports contest application may provide play information and other related data to allow a user to generate animated videos using the user's own graphics processing equipment and graphics animation program.
US11055961B2 Degressive bonus system
Embodiments of the invention include a mystery degressive bonus system. Instead of a bonus that increases its value as the likelihood of winning the bonus increases, embodiments of the invention disconnect the likelihood of winning a mystery bonus from the amount awarded for triggering the mystery bonus. In some embodiments as the likelihood of winning the mystery bonus increases, the award for winning the mystery bonus decreases. Some embodiments include a minimum value for winning the mystery bonus. Additional embodiments are directed to an indicator system to show to the player a present amount of the mystery bonus award as well as the likelihood of winning the award. Further embodiments include a gaming device that includes a bonus game in which the amount awarded to the player decreases over time.
US11055960B2 Gaming apparatus supporting virtual peripherals and funds transfer
In one embodiment, a peripheral management device may have a controller configured to communicate with a gaming machine and a portable electronic device. The controller may be configured to: (i) receive a peripheral data packet from a gaming machine processor, the peripheral data packet including at least one command; (ii) determine whether to process the peripheral data packet on at least one peripheral device of the gaming machine or at least one virtual peripheral device of the portable electronic device; (iii) generate an instructional data packet for the at least one virtual peripheral device if the peripheral data packet is determined to be processed on the at least one virtual peripheral device; and (iv) transmit the instructional data packet to the portable electronic device.
US11055944B2 Fingerprint sensors and systems incorporating fingerprint sensors
Various embodiments of access control systems and fingerprint sensing systems are disclosed. One or more fingerprints of an authorized person are recorded in a fingerprint database together with a sequence of angular positions. The authorized person may subsequently gain access to a secured item by scanning the authorized person's finger or fingers in accordance with the sequence of angular positions. Various embodiments of fingerprint sensors for determining the angular position of a finger on the sensor are also disclosed.
US11055941B1 System and method of improving security during backup functionality of electronic control key
An electronic control key including security check circuitry used by an inductive system to perform at least one security check to determine whether to enable authorized functions. The inductive system receives power and enables communications via an inductive link for backup operation. The security check circuitry may include battery status circuitry and distance measurement circuitry. The inductive system invokes the distance measurement circuitry to perform a secure distance check when the battery status is good, in which the inductive system enables authorized functions only when the secure distance check passes. The security check circuitry may include a motion detector for performing a motion inquiry. The motion inquiry may include detecting motion of the electronic control key or detecting a predetermined characteristic movement or a programmed motion pattern. The security check circuitry may be a button in which authorized functions are enabled only when the button is pressed.
US11055934B1 Predictive vehicle operating assistance
Described herein are various systems and processes for predictive operating assistance of vehicles. The systems and techniques described herein may be applicable to vehicles such as vehicles operated by a driver, semi-autonomous vehicles, and/or autonomous vehicles. The assistance techniques described herein may be predictive. That is, the techniques allow for the prediction of non-optimal or dangerous operating conditions before the vehicle control is compromised. Accordingly, a warning may be provided and/or operation of the vehicle may be changed based on the predictive assistance determinations. In certain embodiments, the techniques described herein may provide warnings to a driver, may detect faults within the vehicle, may aid in route planning, may detect obstacles proximate to the vehicle, and/or may aid in the operation of the vehicle.
US11055933B2 Method for operating a communication network comprising a plurality of motor vehicles, and motor vehicle
A method for operating a communication network comprising a plurality of motor vehicles, wherein the motor vehicles each have a sensor device having at least one environmental sensor, wherein at least one motor vehicle, when a malfunction of an environmental sensor is found by its sensor device, transmits the status data describing the malfunction and including position data of the motor vehicle to at least one external evaluation device for determining interference area information describing an interference area for environmental sensors of the motor vehicles.
US11055928B2 Augmented reality interface and method of use
A system for providing an augmented reality interface comprising a head mounted display having a wireless data interface, a camera and a display, the head mounted display configured to receive user interface data and to generate a user interface using the display and to receive image data from the camera and to transmit the image data over the wireless data interface to a wireless network. A wireless device configured to generate the wireless network, to transmit the user interface data to the head mounted display, to receive the image data from the head mounted display and to generate modified user interface data as a function of the image data.
US11055927B2 Method for building scene, electronic device and storage medium
A method for building a scene comprising: acquiring a first sequence which includes image difference values of video frames captured in a first time period; acquiring a second sequence which includes posture data of an AR device captured in a second time period; acquiring a plurality of third sequences; determining a target time difference, which includes a time difference corresponding to a third sequence with a maximum similarity to the first sequence; and acquiring video frames and posture data for building a scene according to the target time difference, thereby building an AR scene.
US11055926B2 Method and apparatus for multiple mode interface
A method, system, apparatus, and/or device for executing a translation instruction for a constructive movement. The method, system, apparatus, and/or device may include an input device configured to sense a first constructive movement input representative of a non-translational movement of a body of a user that does not move from a first point to a second point in the physical world environment. The method, system, apparatus, and/or device may include a processing device coupled to the input device, where the processing device is configured to execute a translational instruction associated with the first constructive movement input, execute a first resizing instruction to reduce a size of a portion of the physical world environment as displayed by a head-mounted display by an amount indicated by the first resizing stimulus, receive a second constructive movement input, and execute a second translational instruction associated with the second constructive translational movement input.
US11055925B1 Techniques for placement of extended reality objects relative to physical objects in an extended reality environment
An extended reality (XR) system includes an extended reality application executing on a processor within the XR system. The XR system receives, via a client device, a selection of an extended reality (XR) object located within an XR environment. The XR system receives, via the client device, a request to move the selected XR object within the XR environment. The XR system calculates a first distance between a first feature of the XR object and a first plane associated with a first physical object within the XR environment. The XR system determines that the first distance is within a particular distance. In response to determining that the first distance is within the particular distance, the XR system positions the first feature within the XR environment such that the first feature is coplanar with the first plane.
US11055922B2 Apparatus and associated methods for virtual reality scene capture
A virtual reality visual indicator apparatus comprising a virtual reality image capture device comprising a plurality of cameras configured to capture a respective plurality of images of a scene, the respective plurality of images of the scene configured to be connected at stitching regions to provide a virtual reality image of the scene; and a visual indicator provider configured to transmit, into the scene, a visual indicator at a location of at least one stitching region prior to capture of the respective plurality of images of the scene and provide no visual indicator during capture of the respective plurality of images.
US11055921B2 System and method for dense, large scale scene reconstruction
A system configured to improve the operations associated with generating virtual representations on limited resources of a mobile device. In some cases, the system may utilize viewpoint bundles that include collection of image data with an associated pose in relative physical proximity to each other to render a virtual scene. In other cases, the system may utilize 2.5D manifolds including 2D image data and a weighted depth value to render the 3D environment.
US11055919B2 Managing content in augmented reality
According to an aspect, a method for managing augmented reality (AR) content in an AR environment includes obtaining image data associated with a scene of an AR environment, where the AR environment includes AR content positioned in a coordinate space of the AR environment. The method includes detecting a physical object from the image data, associating the physical object with the AR content, and storing coordinates of the AR content and information indicating that the physical object is associated with the AR content in an AR scene storage for future AR localization.
US11055918B2 Virtual character inter-reality crossover
A method is provided, including the following operations: presenting on a display device a virtual scene including a virtual character, the display device disposed in a local environment; providing a view of the local environment through a head-mounted display, the view through the head-mounted display including the display device and the virtual scene being presented thereon; animating the virtual character to show the virtual character moving from the virtual scene presented on the display device to the local environment as viewed through the head-mounted display, wherein the animating includes transitioning, from rendering the virtual character as part of the virtual scene presented on the display device, to rendering the virtual character as an augmented element in the view of the local environment provided through the head-mounted display.
US11055917B2 Methods and systems for generating a customized view of a real-world scene
An exemplary virtualized projection generation system receives a first frame sequence that includes frames depicting a real-world scene in accordance with a first set of capture parameters associated with a first view of the real-world scene. The virtualized projection generation system identifies a second set of capture parameters distinct from the first set of capture parameters and associated with a second view of the real-world scene distinct from the first view. Based on the first frame sequence, the virtualized projection generation system renders a second frame sequence that includes frames depicting the real-world scene in accordance with the second set of capture parameters associated with the second view of the real-world scene. Corresponding methods and systems are also disclosed.
US11055915B2 Delivering virtualized content
Techniques for delivering virtualized content are disclosed. In some embodiments, source content is virtualized by mapping elements in the source content to existing database objects, and a specification of the virtualized version of the source content is provided to an output device in response to a request from the output device for the source content. In some such cases, a format of the source content, a format of the virtualized version of the source content, and a native format in which the virtualized version of the source content is rendered at the output device all comprise different formats.
US11055911B1 Method of generating surface definitions usable in computer-generated imagery to include procedurally-generated microdetail
A computer-implemented method and system for modeling an outer surface, such as skin. The method includes, under the control of one or more computer systems configured with executable instructions, defining a plurality of microstructures such as microstructures to be displayed in microstructure locations on a geometric model of a character or inanimate object, and generating a volumetric mesh including the plurality of microstructures. The volumetric mesh is configured to be applied to the geometric model as an outer surface (e.g., skin) covering the geometric model.
US11055909B2 Image processing device and image processing method
There is provided an image processing device and an image processing method that make it possible to reduce a processing load in modeling a plurality of 3D objects. A 3D reconstruction device includes a 3D model generator that acquires object spatial information indicating a 3D region of an object for each object, and generates a 3D model of an object for each object space. For example, the present technology is applicable to an image processing device or the like that generates a 3D model.
US11055903B2 Anti-aliasing graphic processing method, system, storage medium and apparatus
The present disclosure provides an edge anti-aliasing graphic processing method, system, storage medium and apparatus. The method includes: obtaining four sampling points by double sampling a pixel horizontally and vertically and performing rasterization to the pixel, determining whether the four sampling points are covered by a triangle; performing a depth value test on the pixel, and determining whether the four sampling points of the pixel are all covered by the triangle; performing final color processing on the pixel, determining whether the four sampling points are covered by the triangle, if the four sampling points are all covered by the triangle, copying a color of the pixel center point to the four sampling points, if not all the four sampling points are covered by the triangle, mixing colors of the four sampling points of the pixel.
US11055894B1 Conversion of object-related traffic sensor information at roadways and intersections for virtual dynamic digital representation of objects
A platform for visualization of traffic information at an observed roadway or traffic intersection converts data collected from sensors for rendering as dynamic animations on a virtual map of the observed roadway or traffic intersection. The platform parses and curates incoming sensor data from either a single or multiple sensors representing one or more objects at the observed roadway or traffic intersection, and translates at least location data of each object for correlation of the object's movement relative to the observed roadway or traffic intersection. The platform then generates dynamic animations of the movement of each object and displays the animations as an overlay on the virtual map.
US11055893B2 Real-time unread indicator
Systems, devices, media, and methods are presented for identifying unread elements and presentation context to generate real-time indicators for the unread elements. The systems and methods receive an indication identifying a member and identify content for presentation to the member. The systems and methods determine one or more presentation parameters for the content and one or more content parameters for the content. The systems and methods generate a content representation of the content for presentation within a user interface based on the presentation parameters and the content parameters, and cause presentation of the content representation at the client device associated with the member.
US11055892B1 Systems and methods for generating a skull surface for computer animation
An animation system wherein a machine learning model is adopted to generate animated facial actions based on parameters obtained from a live actor. Specifically, the anatomical structure such as a facial muscle topology and a skull surface that are specific to the live actor may be used. A skull surface that is specific to a live actor based on facial scans of the live actor and generic tissue depth data. For example, the facial scans of the live actor may provide a skin surface topology of the live actor, based on which the skull surface underneath the skin surface can be derived by “offsetting” the skin surface with corresponding soft tissue depth at different sampled points on the skin surface.
US11055882B2 Systems and methods for image reconstruction
A system includes a storage device storing a set instructions and a processor in communication with the storage device, wherein when executing the set of instructions, the processor is configured to cause the system to obtain raw data. The processor may also be configured to cause the system to determine one or more reconstruction-related algorithms and determine one or more containers for the one or more reconstruction-related algorithms. Each of the one or more containers may correspond to at least one of the one or more reconstruction-related algorithms. The system may also be configured determine a reconstruction flow based on the one or more containers and process the raw data according to the reconstruction flow to generate a target image.
US11055877B2 Image processing device, image processing method, and program storage medium
A gradient calculation unit calculates an image gradient on a pixel-by-pixel basis in each of a plurality of images. A scale search unit calculates a scale score based on degree of spatial frequency components for each pixel in each of the images. A gradient score calculation unit calculates, for each pixel, a gradient score on the basis of the image gradient and the scale score. A gradient finalization unit calculates, using the gradient score and, as a target gradient, an image gradient of each pixel in a combined image. On the basis of the target gradient, a coefficient calculation unit calculates, for each pixel of the combined image, a coefficient of base vectors constituting a preset base vector group in the combined image. A combining unit generates the combined image through linear combination of the base vectors based on the calculated coefficients.
US11055874B2 Image processing for tracking actions of individuals
Cameras capture time-stamped images of predefined areas. Individuals and item are tracked in the images. A time-series set of images are processed to determine actions taken by the individuals with respect to the items or to determine relationships between the individuals to the items.
US11055866B2 System and method for disparity estimation using cameras with different fields of view
An electronic device and method are herein disclosed. The electronic device includes a first camera with a first field of view (FOV), a second camera with a second FOV that is narrower than the first FOV, and a processor configured to capture a first image with the first camera, the first image having a union FOV, capture a second image with the second camera, determine an overlapping FOV between the first image and the second image, generate a disparity estimate based on the overlapping FOV, generate a union FOV disparity estimate, and merge the union FOV disparity estimate with the overlapping FOV disparity estimate.
US11055864B2 Method and apparatus for determining a geographic position of a target object on a street view map
The present invention proposes a method and apparatus for three-dimensional measurement and calculation of the geographic position of a target object based on a street view map. The method comprises, among others: selecting a target object in a street view map at first and then selecting two appropriate viewpoints according to the target object; adjusting the bottom/top of the target object to the central position of the street view map under each viewpoint and obtaining viewpoint parameters from the viewpoints to the bottom/top of the target object; determining two spatial straight lines according to the longitudes and latitudes of the viewpoints and the viewing angles from the viewpoints to the bottom of the target object and calculating the intersection of the two straight lines, which is the longitude and latitude of the target object in the actual geographic space.
US11055862B2 Method, apparatus, and system for generating feature correspondence between image views
An approach is provided for determining a feature correspondence between image views. The approach, for example, involves retrieving a top down image for an area of interest and determining a ground level camera pose path for the area of interest. The approach also involves selecting a portion of the top down image that corresponds to a geographic area within a distance threshold from the ground level camera pose path, and then processing the portion of the top down image to identify a semantic feature. The approach further involves determining a subset of camera poses of the ground level pose path that is within a sphere of visibility of the semantic feature, and retrieving one or more ground level images captured with the subset of camera poses. The approach further involves determining the feature correspondence of the semantic feature between the top down image and the one or more ground level images.
US11055856B2 Method for and apparatus for detecting events
A method for detecting events comprises repeatedly registering a value indicating an amount of data generated by an encoder, which is encoding video from a scene by means of temporal compression, determining if a particular event has occurred in the scene represented by the encoded video by comparing characteristics of the registered values with predetermined characteristics, and generating an event signal in response to an event occurrence being determined.
US11055854B2 Method and system for real-time target tracking based on deep learning
The invention disclosed here relates to a method and system for real-time target tracking based on deep learning. The method for real-time target tracking according to an embodiment is performed by a computing device including a processor, and includes pre-training a target tracking model for detecting a tracking target from an image using pre-inputted training data, receiving an image with a plurality of frames, and detecting the tracking target for each of the plurality of frames by applying the target tracking model to the image. According to an embodiment, there is a remarkable reduction in the time required to detect the target from the image, thereby allowing real-time visual tracking, and improvement of the hierarchical structure and introduction of a new loss function make it possible to achieve more precise localization and distinguish different targets of similar shapes.
US11055852B2 Fast automatic trimap generation and optimization for segmentation refinement
In an exemplary embodiment, the present invention is an apparatus which includes at least one processor, and at least one memory including computer program code. The at least one memory and the computer program code are configured, with the at least one processor, to cause the apparatus to perform obtaining an image for segmentation; forming a trimap of at least a portion of the image, the trimap comprising a three-region map having a definite foreground, a definite background, and an unknown region separating the foreground and the background, said unknown region initially having a preselected width; in a plurality of iterations, changing the width of the unknown region; for each of the plurality of iterations, determining a quality measure; and selecting the width for the unknown region having the best quality measure. The apparatus may also include at least one camera for obtaining the image for segmentation.
US11055850B1 Systems and methods for tooth segmentation
A method and a system for determining an orthodontic treatment for a plurality of teeth of a subject are provided. The method comprises: receiving a 3D representation of a first tooth and a second tooth, adjacent thereto, of the subject, of a plurality of teeth of the subject; obtaining a tooth-gingiva segmentation loop; identifying an outer set of vertices positioned outside the tooth-gingiva segmentation loop and an inner set of vertices positioned inside the tooth-gingiva segmentation loop; determining a shortest path from the outer set of vertices to the inner set of vertices; generating, based on the shortest path, a first interdental loop indicative of an interdental boundary between the first tooth and the second tooth, the first interdental loop intersecting the tooth-gingiva segmentation loop; generating a boundary between the first tooth and the second tooth, the boundary including the tooth-gingiva segmentation loop and the first interdental loop.
US11055841B2 System and method for determining the quality of concrete from construction site images
Systems and methods for determining the quality of concrete from construction site images are provided. For example, image data captured from a construction site using at least one image sensor may be obtained. The image data may be analyzed to identify a region of the image data depicting at least part of an object, where the object is of an object type and made, at least partly, of concrete. The image data may be further analyzed to determine a quality indication associated with the concrete. The object type of the object may be used to select a threshold. The quality indication may be compared with the selected threshold. An indication to a user may be provided to a user based on a result of the comparison of the quality indication with the selected threshold.
US11055839B2 Method for fast judging and optimizing light emitting quality of light guide plate based on image processing technology
The present invention discloses a method for fast judging and optimizing light emitting quality of a light guide plate based on an image processing technology. According to the method, an illuminance diagram of the light guide plate is regarded as a single-color image, illuminance information is converted into a gray level, gray levels of all pixel points are calculated through a gray level histogram, the light outgoing quality of the light guide plate is analyzed according to a discrete degree of the gray levels, positions of the gray levels discrete in distribution in the gray level histogram on the illuminance diagram are found out through programming, a net point filling rate in a corresponding area is directly optimized and is eliminated, and a uniformity degree evaluation formula with a precision P judgment criterion is given. The present invention effectively improves the optimizing efficiency of the light guide plate, and an optimized result is closer to an actual visual effect.
US11055838B2 Systems and methods for detecting anomalies using image based modeling
A method for detecting anomalies in a system. The method includes collecting training data from the system, converting the training data into training images using an image generator, and designating each of the training images as corresponding to events for the system, where the events are at least one of an expected normal event and a non-normal event. The method further includes generating an image recognition model based on the training images and the designations thereof. The method further includes collecting new data from the system, converting the new data into input images, and analyzing the input images using the image recognition model to determine which of the events for the system are represented in the input images, where the anomalies are detected when the input images are determined to at least one of represent a non-normal event and fail to represent an expected normal event.
US11055835B2 Method and device for generating virtual reality data
A method for generating an image of a scene with a corresponding depth map is disclosed herein. The method comprises collecting a plurality of copies of a two-dimensional image of the scene, generating an intermediate image by concatenating the plurality of copies of the two-dimensional image along a first direction, generating an intermediate depth map corresponding to the intermediate image by applying a neural network to the intermediate image, and generating, from the intermediate image and the intermediate depth map, the image of the scene with the corresponding depth map.
US11055832B2 Image banding correction in high dynamic range imaging
Methods, systems, and apparatuses are provide to perform automatic banding correction in captured images. For example, the methods receive from a plurality of sensing elements in a sensor array, first image data captured with a first exposure parameter, and second image data captured with a second exposure parameter. The methods partition first image data and second image data and determine values for each partition. The methods compute banding errors based on the determined values of the partitions for first image data and second image data. The methods also determine a banding error correction to one or more of first image data and second image data based on the banding errors. Further, the methods perform an automatic correction of the banding errors on one or more of first image data and second image based on the banding error correction.
US11055829B2 Picture processing method and apparatus
A type of glasses worn on a human face in a to-be-processed picture is detected, and a lens area of the glasses is determined; and a deformation model of the lens area is determined based on the type of the glasses, where the deformation model is used to indicate deformation caused by the glasses on an image in the lens area, and then the image in the lens area is restored based on the deformation model.
US11055824B2 Hybrid machine learning systems
A machine learning system for processing image data obtained from an image sensor is provided. The system includes a front end comprising one or more hard-coded filters, each of the one or more hard-coded filters being arranged to perform a set task. The system includes a neural network arranged to receive and process output from the front end. The one or more hard-coded filters include one or more hard-coded noise compensation filters that are hard-coded to compensate for a noise profile of the image sensor from which the image data is obtained. A method of processing image data in a machine learning system is also provided. A system for processing image data is provided.
US11055823B2 Image correction device, image correction method, and program
Provided are an image correction device, an image correction method, and a program capable of canceling accumulated error at the time of connection from a wide field-of-view image in which a plurality of partial images are connected. An image correction device includes an image acquisition unit 22 that acquires a combined image including a plurality of partial images obtained by performing division imaging on a rectangular area in a real space using an imaging device 12, an area specifying unit 34 that specifies a correction target area in the combined image corresponding to the rectangular area in the real space, a division unit 36 that divides the correction target area into a plurality of divided areas, and a geometric conversion unit 40 that converts each of the plurality of divided areas into a rectangle.
US11055819B1 DualPath Deep BackProjection Network for super-resolution
Techniques for machine learning-based image super-resolution are described. A Dual Path Deep Back Projection Network can be used to enhance an input image. For example, the model may be trained to perform image super-resolution, remove artifacts, provide filtering or low light enhancement, etc. Classification may be performed on the resulting enhanced images to identify objects represented in the images. The model may be trained using a dataset that includes groups of images: an original image and an enhanced image. The model may use both residual and dense connectivity patterns between each successive back projection blocks to improve construction of a high-resolution output image from a low resolution input image. The enhanced images increase classification accuracy for input images having low image resolution.
US11055818B2 Panorama image alignment method and device based on multipath images, and portable terminal
A panorama image alignment method method comprises: obtaining multipath spherical images; calculating rotation Euler angles between each spherical image and a middle portion, a left portion and a right portion of an adjacent spherical image according to a middle portion, a left portion and a right portion of each spherical image to obtain a first left portion rotation matrix and a second right portion rotation matrix; obtaining a first left panorama image, a first right panorama image, a second left panorama image and a second right panorama image; aligning the second left panorama image to the first left panorama image, obtaining a second left portion rotation matrix by means of calculation, and then obtaining a rotation matrix of a left panorama; aligning the second right panorama image to the first right panorama image, obtaining a second right portion rotation matrix by means of calculation, and obtaining a rotation matrix of a right panorama.
US11055816B2 Image processing device, image processing method, and image processing program
An image processing device according to one embodiment includes an acquisition unit, a generation unit, a calculation unit, and an estimation unit. The acquisition unit acquires an input image. The generation unit generates a plurality of comparison images by compressing a target region being at least part of the input image with each of a plurality of compression levels and expanding the compressed target region to its original size. The calculation unit calculates, for each of the plurality of comparison images, a degradation level of the comparison image with respect to the input image. The estimation unit estimates the blur level of the input image based on a plurality of calculated degradation levels.
US11055814B2 Panoramic video with interest points playback and thumbnail generation method and apparatus
A panoramic video playback method is provided, and the method includes: determining, by a client, that a user chooses to jump to play a video corresponding to a jump time point in a panoramic video; matching, by the client, the time point and a time range of each of at least one interest point included in the panoramic video; determining, by the client, a user's field of view in which an area of the matched interest point in a panoramic area of the panoramic video can be viewed; and obtaining, by the client, a video corresponding to the time point in the panoramic video, and jumping to play the video corresponding to the time point when the user's field of view is used.
US11055805B1 Utilizing dependency between watermark visibility and location of image sample in color space for embedded signal color direction
The present disclosure relates generally to signal encoding for printed objects. One implementation selects an embed direction based on a minimal visibility axis of a 1 JND ellipse at a certain color center. Other technology provided.
US11055800B2 Methods of verifying the onboard presence of a passenger, and related wireless electronic devices
Methods of verifying an onboard presence of a passenger of a transportation vehicle are provided. A method of verifying an onboard presence of a passenger of a transportation vehicle includes generating, via a wireless electronic device of the passenger while on board the transportation vehicle, different first and second data indicating the onboard presence of the passenger. Moreover, the method includes transmitting the different first and second data indicating the onboard presence of the passenger from the wireless electronic device to a server. Related wireless electronic devices, servers, and computer program products are also provided.
US11055799B2 Information processing method and recording medium
An information processing method in an interactive apparatus that questions a user's symptom through interaction with a user includes: outputting first question information of a first type concerning the user's symptom to a display or a speaker connected to the interactive apparatus, receiving first answer information indicating an answer to the question in the first question information from a keyboard, a touch panel, or a microphone connected to the interactive apparatus, outputting second question information of the first type concerning the user's symptom to the display or the speaker when it is determined that the answer in the first answer information does not include a word in a negative expression, and outputting third question information of a second type concerning the user's symptom to the display or the speaker when it is determined that the answer in the first answer information includes the word in the negative expression.
US11055794B1 Methods, systems and computer program products for estimating likelihood of qualifying for benefit
A computer-implemented method for estimating a likelihood of an individual qualifying for a benefit program includes obtaining a profile corresponding to the individual. The method also includes determining respective likelihoods that the profile would satisfy each completeness graph in a set of completeness graphs by running the profile against each completeness graph using an evaluation algorithm. Each completeness graph corresponds to a respective benefit program.
US11055790B2 Systems and methods for providing an indication of local sales tax rates to a user
A sales tax analysis computing device is configured to: (i) build a database table of locality sales tax data, the database table comprising a plurality of sales tax rates, each sales tax rate of the plurality of sales tax rates associated with a particular locality; (ii) receive at least one of a) transaction data and b) a request from a mobile communications device of a user for locality sales tax data; (iii) determine a first locality associated with at least one of a) the transaction data and b) the mobile communications device; (iv) determine, based on the database table, a first sales tax rate associated with the first locality; (v) identify, based on the database table, at least one sales tax rate that is less than the first sales tax rate; (vi) generate a code snippet that includes the identified at least one sales tax rate; and (vii) provide the code snippet to the mobile communications device.
US11055788B1 System and method for automatically creating insurance policy quotes based on received images of vehicle information stickers
A system and method may automatically create auto insurance policy quotes using data obtained by processing an image of a vehicle information sticker. An image of a vehicle information sticker may be received and analyzed using optical character recognition or some other method. The data acquired from the image can be used to identify a particular vehicle, and retrieve data corresponding to the particular vehicle. The customer data, vehicle data, and other data can be used to calculate an insurance policy quote. The created quotes can then be presented to a user for purchase.
US11055787B1 Computer method and system for creating a personalized bundle of computer records
System and method for providing personalized, time-varying layered bundles of computer records to users. The system includes personalized servers, a communications network, user interfaces, and client devices employed by users. The personalized server includes a needs analysis module, a bundle building module, and an bundle generating module. A method of providing personalized bundle of computer records includes receiving a request for a personalized bundle of computer records, and requesting user needs data associated with the client. The method further includes converting the user data into determined needs data, and building a bundle of computer records personalized to the user using the determined needs data, which may include a determined needs timeline. The personalized, time varying bundle of computer records includes a plurality of computer records and plurality of types of bundles of computer records represented in the determined needs data. Following user approval of the personalized, time-varying layered bundle of computer records, the method generates the bundle of computer records based upon bundle generating criteria.
US11055784B1 Transmitting data files with constituents and associated index weights for low-carbon indexes
Computerized systems and methods construct low carbon indexes achieve a target level of tracking error relative to a broad market, Parent Index, while minimizing carbon exposure. The indexes can address two dimensions of carbon exposure—carbon emissions and fossil fuel reserves. By overweighting or selecting companies with low carbon emissions relative to sales and those with low potential carbon emissions per dollar of market capitalization, the indexes can reflect a lower carbon exposure that that of the broad market.
US11055777B2 Identifiable physical form, sales instruments, and information marketplace for commodity trades
Disclosed herein are systems, methods, and computer program products for communicating a first information node between a seller and a buyer of a production share of verifiable physical goods over a central service layer. A second information node is recorded in the data store covering the verifiable physical goods, wherein the second information node is made by a guarantor in communication with the central service layer. An identifier of the second information node is associated with the first information node over the central service layer. Market information regarding the production share is translated from the first information node and the second information node accessed from the data store using the identifier and integrating the market information regarding the production share into adjusted market information, and the market information regarding the production share and the adjusted market information is transmitted to devices connected over the central service layer.
US11055776B2 Multi-disciplinary comprehensive real-time trading signal within a designated time frame
A computer system manages a multi-disciplinary comprehensive real-time trading signal within a designated time frame. A classical computer apparatus includes a processor; a memory; and a media management application that is stored in the memory and executable by the processor; a quantum optimizer in operative communication with the classical computer apparatus, where the quantum optimizer includes a quantum processor; and a quantum memory; where the media management application is configured for transmitting historical media information and historical product information to the quantum optimizer; and where the quantum optimizer is configured for receiving the historical media information and historical product information; and analyzing the historical media information and historical product information to determine one or more indicative attributes that may be indicative of product pricing movement.
US11055772B1 Instant lending decisions
The method and system involves instant loan decisions by generating a risk profile of a small business (SMB). The risk profile is generated based on accounting data and other third party business management application (BMA) data of the SMB. In particular, the accounting data and other third party BMA data are retrieved from a BMA (e.g., accounting application, payroll application, tax preparation application, personnel application, etc.) as a software-as-an-service (SaaS) used by the SMB. Specifically, the risk profile represents the likelihood of the SMB to be delinquent and/or to default on a loan. The risk profile is then provided to a lender for making an expedient lending decision with respect to the SMB. In addition, statistics of lenders' lending decisions based on provided risk profiles are analyzed to generate a correlation. Accordingly, the algorithm(s) used to generate the risk profile from the accounting data and other third party BMA data are adjusted to maximize the correlation.
US11055768B2 Leveraging a social network to search for local inventory
In accordance with one or more embodiments of the present disclosure, a method for leveraging a social network to search for local inventory includes communicating with a first mobile communication device over a network, the first mobile communication device associated with a user, and communicating with a second mobile communication device over the network, the second mobile communication device associated with a social network contact. The method further includes obtaining a geo-location of the second mobile communication device, processing a search request from the first mobile communication device, obtaining a radius of coverage for a merchant, determining whether the geo-location of the second mobile communication device is within the radius of coverage of the merchant, and providing a listing to the first mobile communication device of one or more items for sale by the merchant when the second mobile communication device is within the radius of coverage of the merchant.
US11055767B2 Efficient task completion via intelligent aggregation and analysis of data
In non-limiting examples of the present disclosure, systems, methods and devices for assisting with task completion are provided. A plurality of items may be added to an electronic shopping list, wherein the plurality of items is arranged in a first order in the electronic shopping list. A store that each of the plurality of items is available for purchase at may be identified. An indication that a computing device associated with the electronic shopping list is within a threshold distance of an entrance of the store may be received. A location of each of the plurality of items in the store may be identified. The plurality of items may be arranged in a second order in the electronic shopping list based on the location of each of the plurality of items in the store relative to the entrance of the store.
US11055762B2 Systems and methods for providing customized product recommendations
Systems and methods for providing customized skin care product recommendations. The system utilizes an image capture device and a computing device coupled to the image capture device. The computing device causes the system to analyze a captured image of a user via the by processing the image through a convolutional neural network to determine a skin age of the user. Determining the skin age may include identifying at least one pixel that is indicative of the skin age and utilizing the at least one pixel to create a heat map that identifies a region of the image that contributes to the skin age. The system may be used to determine a target skin age of the user, determine a skin care product for achieving the target skin age, and provide an option for the user to purchase the product.
US11055761B2 Systems and methods for determining dynamic price ranges
This disclosure provides systems and methods of determining price quantiles for associated search queries and displaying said price quantiles when one or more search queries are received. In various embodiments, a search query for an item offered for sale may be received. Search results from a plurality of offered items may be determined based on the search query. The search results may each be associated with a price. The search results may be displayed, and a selection of a search result may be received. The price of the selected search result may be associated with the received search query. Various price quantiles may be determined based on the associated price(s). In addition, the price quantiles may each include prices associated with the search results. The determined price quantiles may then be displayed in response to a second search query determined to be related to the first search query.
US11055751B2 Resource usage control system
Techniques for controlling resource usage in a computing environment are provided. In one technique, a target resource usage for a particular point in time is determined for a content delivery campaign. Determining, for the content delivery campaign, a current resource usage for the particular point in time. Also, a bandwidth associated with the target resource usage at the particular point in time is determined. Based on a difference between the current resource usage and one or more boundaries of the bandwidth, a throttling factor is calculated. Based on the throttling factor, a probability of the content delivery campaign participating in a content item selection event is determined.
US11055746B1 Personalized style advice and sales system and processes for obtaining personalized style advice
An online personalized style advice and sales system for a consumer to contact a personal stylist to find articles of clothing that match an existing article of clothing and processes for obtaining personalized style advice are disclosed. The system includes a website that allows for consumers to contact a personal stylist in order to find perfect or near perfect article of clothing that would match an article of clothing that the consumer already owns or possesses. The consumer sends in a picture of themselves wearing the article of clothing they would like to match and the stylist would then do the search and find choices for the consumer to choose from. The consumer can choose to buy or not. The consumer will have the option to buy or not buy the chosen article of clothing that is picked out for them.
US11055745B2 Linguistic personalization of messages for targeted campaigns
Techniques for linguistic personalization of messages for targeted campaigns are described. In one or more implementations, dependencies between keywords and modifiers are extracted, from one or more segment-specific texts and a product-specific text, to build language models for the one or more segment specific texts and the product specific text. Modifiers with a desired sentiment are extracted from the product specific text and transformation points are identified in a message skeleton. Then one or more of the extracted modifiers are inserted to modify one or more identified keywords in the message skeleton to create a personalized message for a target segment of the targeted marketing campaign.
US11055741B2 Mobile advertisement providing system and method
The present invention relates to a mobile advertisement providing system, and more specifically to technology for a mobile advertisement providing system which includes an information display button and displays content and advertisement information provided onto a current screen in response to the manipulation of the information display button.
US11055736B2 Adaptive advertisement management system and method thereof
A system and method for adaptive advertisement management for the serving of product description pages and an integrated customer user engagement thereof. The system is a cloud-based network containing a campaign database, an adaptive advertisement management, a short message service server, and user mobile and compute devices that transmit a product description page associated with an advertisement campaign embedded with a communication initiator for display on a customer computing device. Taken together or in part, said system optimizes advertising campaigns across multiple platforms, provides strong analytics for all advertising types while allowing users to engage with advertising quickly and easily through various call to action types.
US11055735B2 Creating meta-descriptors of marketing messages to facilitate in delivery performance analysis, delivery performance prediction and offer selection
Various embodiments are directed to assigning offers to marketing deliveries utilizing new features to describe offers in the marketing deliveries. Marketing deliveries can be described at a finer level to thus enhance the effectiveness of building and conducting marketing campaigns. The approaches facilitate matching content to recipients, predicting content performance, and measuring content performance after dispatching a marketing delivery.
US11055733B2 Sales promotion method, apparatus and electronic device
Disclosed herein are methods, systems, and apparatus, including computer programs encoded on computer storage media, for data broadcasting. One of the methods includes: receiving a wakeup message broadcast by a broadcast device in a predetermined range, wherein the wakeup message is configured to waking up a corresponding application installed on a terminal device from a sleep mode; receiving encrypted marketing message from the broadcast device, wherein the encrypted marketing message comprises merchant information and promotional information corresponding to the merchant information; determining that the encrypted marketing message belongs to a predetermined category; sending the encrypted marketing message to a server for verifying authenticity of the encrypted marketing message; and receiving the merchant information and the promotional information from the server when the authenticity of the encrypted marketing message is successfully verified.
US11055729B2 Systems and methods for determining a marketing strategy for an online to offline service
Systems and methods for determining a marketing strategy for an online to offline service are provided. A method may include: obtaining a plurality of historical vectors, determining a first value function according to a first reinforcement learning algorithm based on the plurality of historical vectors, determining a first value under a state of a driver to provide the online to offline service based on the first value function and the plurality of historical vectors, and obtaining a first regression model by training an initial model, wherein the plurality of historical vectors are inputs of the initial model, and the first value under the state is a label of the initial model.
US11055726B2 Integrated fuel tracking method of authentication in a fuel distribution network
A system for tracking fuel in a fuel distribution network is provided. The system includes a plurality of tracking devices disposed at a plurality of fuel transport locations including a supplier fuel storage location, a mobile fuel storage location, a stationary fuel storage location and a vehicle fuel location, wherein each tracking device is configured to read in real time the digital tag by receiving a radiation emission spectrum associated with the fuel identification information as the fuel is transported through the plurality of fuel transfer locations. The digital tag includes information about the fuel.
US11055724B1 System and method for camera registration
A system and method for registration of a remote security camera is described. The system and method include receiving at a default server a message from the security camera upon initial boot up of the security camera, receiving at the default server a message from a customer server, the message requesting that the security camera be registered to a customer. Where the default server sends to the customer server reconfiguration information the reconfiguration information instructing the security camera to connect to the customer server.
US11055723B2 Performing customer segmentation and item categorization
A method implemented via execution of computing instructions configured to run at one or more processors and stored at non-transitory computer-readable media. The method can include receiving a respective weighting vector for each of a plurality of users, applying categorization rules on the respective weighting vectors for the plurality of users to categorize the plurality of users into a plurality of subgroups, generating a profile weighting vector for a first subgroup of the plurality of subgroups, and selecting, for the first subgroup, one or more first items from among a plurality of items in a category of items based at least in part on: (a) profile weights of the profile weighting vector for the first subgroup, and (b) sentiment data for features of the plurality of items. The method additionally can include displaying the one or more first items for the first subgroup of the plurality of subgroups. Other embodiments are disclosed.
US11055719B2 Multi-tenant dispute services
A method for processing disputes in a multi-tenant architecture system includes receiving, at a first service provider, a dispute request from a second service provider that manages entity identities of a plurality of customers. The dispute request indicates a disputed transaction between a customer of the plurality of customers and another entity. The method includes accessing an identity manager to determine a customer representation, the identity manager previously onboarded the plurality of customers as a plurality of customer representations. The identity manager is hosted by the first service provider that manages customer representations corresponding to entity identities of the customers. The dispute request is propagated with the customer representation to a dispute management engine that determines an outcome for the dispute, the determination based on characteristics of the disputed transaction and on characteristics of the customer. The method also includes propagating the determination to the second service provider.
US11055718B2 Methods and systems for allowing an electronic purchase upon completion of an exercise and/or activity goal
Methods and systems are disclosed for allowing an electronic purchase upon completion of an exercise goal and/or a physical activity goal. Exercise and/or physical activity goal criteria can be retrieved for a user. Electronic charge approval criteria can be retrieved for the user, the electronic charge approval criteria based on the exercise and/or physical activity goal criteria. It can be determined whether the exercise and/or physical activity goal criteria has been fulfilled using an electronic measurement system, the electronic measurement system measuring motion data and/or heart rate data for the user. A requested electronic charge can be authorized upon a determination that the electronic charge approval criteria for the user has been fulfilled.
US11055717B2 Below-the-line thresholds tuning with machine learning
Systems, methods, and other embodiments associated with applying machine learning to below-the-line threshold tuning are described. In one embodiment, a method includes selecting a set of sampled events and labeling each event in the set of sampled events as either suspicious or not suspicious. Then, a machine learning model to calculate for a given event a probability that the given event is suspicious is built based on the set of sampled events. The machine learning model is trained, and its calibration validated. Based on probabilities calculated by the machine learning model, a scenario and segment combination to be tuned is determined. A tuned threshold value is generated, and an alerting engine is adjusted with the tuned parameter to reduce errors by the alerting engine in classifying events as not suspicious.
US11055715B2 Settlement method and apparatus
A settlement apparatus includes shielding walls, a shielding door configured to, when closed, enclose an electromagnetic shielding space with the shielding walls for isolating signals inside and outside the electromagnetic shielding space, a reader configured to acquire data in an electronic tag in the electromagnetic shielding space, and a controller configured to control opening or closing of the shielding door, control the reader to acquire data, and settle according to the data.
US11055711B1 Self-service payment card security system
A payment card security system includes a payment card provider account system communicatively coupled to a payment card transaction device and a mobile device. The payment card transaction device sends an indication that a payment card is being used to perform a transaction. The payment card provider account system includes processors that receive the indication that the payment card is being used to perform the transaction from the payment card transaction device. The processors also send a notification indicating that the payment card is being used to perform the transaction. The processors further enable authorization of the transaction via the mobile device. In this manner, the payment card security system may prevent or reduce the occurrence of suspicious transactions as they are occurring, rather than waiting until after they have occurred.
US11055709B2 Recovering encrypted transaction information in blockchain confidential transactions
Implementations of the present disclosure include obtaining a secret key, by a client node, according to a threshold secret sharing scheme agreed to by a number of client nodes; generating one or more commitment values of a confidential transaction of the client node by applying a cryptographic commitment scheme to transaction data; generating encrypted transaction information of the confidential transaction by encrypting the transaction data using the secret key; and transmitting, to a consensus node of a blockchain network, a content of the confidential transaction for execution, wherein the content of the confidential transaction includes: the one or more commitment values; the encrypted transaction information; and one or more zero-knowledge proofs of the transaction data.
US11055708B2 Resource deduction method and apparatus, intelligent terminal, and deduction server
The present disclosure belongs to the field of network technologies, and discloses a resource deduction method and apparatus, an intelligent terminal, and a deduction server. The method includes: sending a rule obtaining request for a deduction rule of a user-specified deduction item to the deduction server; receiving the deduction rule returned by the deduction server; calculating a second resource value that is obtained after applying the deduction rule to a first resource value associated with the user-specified deduction item; and sending a resource transfer request carrying the second resource value to the deduction server. The present disclosure resolves a problem that a merchant needs to manually calculate expense that is obtained after applying the deduction rule to the first resource, and payment efficiency is relatively low. Expense that is obtained after applying the deduction rule to the first resource is automatically calculated by using an intelligent terminal, and payment efficiency is improved.
US11055704B2 Terminal data encryption
A method is disclosed. The method includes generating an initial key after interacting with an access device, storing the initial key at a key storage location, altering the initial key with a public key to form an altered key, and sending the altered key to a server computer along with an identifier for the access device. The altered key is changed to the initial key at the server computer and is stored with the identifier in a database in operative communication with the server computer. The initial keys that are stored at the key storage location and in the database are used to alter and restore transaction data associated with multiple financial transactions that are conducted using the access device.
US11055703B2 Smart contract lifecycle management
In some examples, a first node is able to communicate with one or more second nodes for participating in a consensus system. The first node may receive, from a computing device, a request to execute a first smart contract associated with a first blockchain. The first node may invoke execution of the first smart contract to cause the first smart contract to execute a transaction by reading at least a portion of transaction data from the first blockchain as a transaction result. Further, the first node may check whether a simulation indicator has been set, which indicates that an expiration time of the first smart contract has been reached. Based on determining that the first smart contract has the simulation indicator set, the first node refrains from writing the transaction result to the blockchain as a valid transaction result and sends the transaction result to the computing device.
US11055699B2 Augmented reality card activation
Systems and methods are provided for activating a card using augmented reality. The systems and methods may include capturing a real-time image of the card using a customer device, and extracting card information from the real-time image. The card information may be processed and used by a customer device or a financial provider server to activate the card. The customer device may display interactive graphics overlaid on the real-time card image to guide the customer through the activation process, and to educate the customer about the components of the card and aspects of the financial service associated with the card, such as a credit card service. The customer may interact with the overlaid graphics such as by selecting icons or portions of the card to trigger tutorials or to set preferences related to the card and/or financial service.
US11055693B2 Methods, systems and computer readable media for issuing and redeeming co-branded electronic certificates
The subject matter described herein includes methods, systems, and computer readable media for issuing and redeeming co-branded electronic certificates. In one example, a method includes receiving, via near field communication (NFC), a co-branded electronic certificate and an electronic payment card to conduct a wireless purchase transaction for at least one good or service. The method further includes determining whether qualification information contained in the co-branded electronic certificate matches at least a portion of the account number associated with the electronic payment card used to conduct the wireless purchase transaction. The method also includes applying the co-branded electronic certificate to conduct the purchase transaction if the qualification information matches the at least a portion of the account number.
US11055688B2 Methods, systems, and account settings for payment with a transponder
A payment system is provided comprising a transponder, an associated account with account settings, and transponder reading equipment/systems for electronic toll collection and electronic entry into contests, sweepstakes, games, and/or lotteries. Methods are provided to facilitate use of a transponder, an account, and related transponder reading equipment to simultaneously pay a toll and facilitate purchase of a lottery ticket. An account may be debited for a toll and a contest, game, or lottery entry, and credited if one is won. The payment method and system may be used to purchase goods, such as gasoline, and to simultaneously electronically enter contests, sweepstakes, games, and/or lotteries. The purchase of goods/services with a vehicle-mounted transponder may also employ use of rounding amounts to facilitate the electronic purchase of game or lottery tickets or entry to other contests, games, or sweepstakes, wherein the rounding amounts may aggregate to comprise an award that may be won.
US11055687B2 Smart stager
Embodiments of the present disclosure provide a money transfer network system that improves the performance of money transfer services provided via the money transfer network system and improves the performance of the underlying devices utilized to provide money transfer services. In particular, disclosed embodiments of a money transfer network system provide money transfer services that enable multiple users to engage in money transfer transactions as either a sending party or a receiving party in a manner that is similar to money transfer transactions executed between two users individually. Disclosed embodiments further enable a receiving party to request payment from a sending party, which may include scheduling recurring payments to be made via money transfer transactions.
US11055686B2 S/M for providing, reloading, and redeeming stored value cards used in transit applications
The invention is directed to systems and methods of conducting transactions associated with a transit card. A method of conducting transactions may be conducted between a processor and a transit processor. Steps may include receiving a redemption request and determining if it is a pre-authorization request or a redemption; if the redemption request is a pre-authorization request, determining if the account is authorized for a particular transit type. If the account is authorized, communicating approval to the transit processor. If the account is not authorized communicating denial. If the redemption request is a redemption: determining if account value is sufficient to pay the redemption amount; if not, denying and if so approving the transaction and deducting the amount, and determining if the account value is below a pre-determined threshold for a particular transit types, and if so, updating the status of the account at a data store.
US11055680B1 System and method for managing a network of cash service machines
In a method of processing a cash transaction, a transaction processing system receives an account transaction request identifying a user account and a cash transaction to be carried out using a cash service machine (CSM). A set of CSMs available for processing the account transaction request is determined and a list of available CSMs is transmitted to the requesting user device. A request to process the transaction including an identification of a selected CSM is received the user device or the selected CSM. A unique authentication code is generated and transmitted to the processing requester. The transaction processing system receives from the non-process requester, an authentication request including a purported authentication code. The system then verifies that the purported authentication code matches the unique authentication code. Upon positive verification, the system transmits an instruction to the CSM to carry out a cash exchange according to the requested account transaction.
US11055679B2 Bunch document recycler
A method of processing a mixed bunch of banknotes and checks in a recycling self-service terminal is described. The method comprises: receiving a bunch of documents; recognizing each document from the received bunch; for each banknote recognized from the received bunch, validating the authenticity of that banknote; for each check recognized from the received bunch, extracting financial information from that check; and notifying a customer of the total value of the deposited bunch. A document validator, and a self-service terminal including the document validator, are also described.
US11055677B2 Stablecoin as a medium of exchange on a blockchain-based transaction network
Aspects of this disclosure relate to various systems and methods for use in a regulated industry and using an SEC qualified stablecoin as a store of value and medium of exchange on a blockchain-based transaction network. The system includes a stablecoin blockchain system with a stablecoin blockchain framework, a stablecoin ecosystem, and a stablecoin blockchain transaction network. The stablecoin blockchain system facilitates transactions between stablecoin blockchain participants within the stablecoin ecosystem. The stablecoin ecosystem conducts transactions across a stablecoin blockchain transaction network and a distributed blockchain ledger.
US11055673B2 Merchant data cleansing in clearing record
A network operator intermediates a cashless transaction by sending a payment device issuer an outbound clearing data file enriched with cleansed merchant data. Issuers that choose to participate in the merchant data cleansing service will be provided with the cleansed, and optionally augmented, merchant information. Providing this data to the issuer could be used to help reduce costs associated with “do not recognize” calls by cardholders, disputed charges, and charge-backs. With cleansed data provided in the clearing record, a device holder would be given access to this cleansed information about the merchant where a transaction took place through their statement. The present disclosure also provides for augmenting the clearing record data to include merchant-specific add-on and/or aggregate data not presently included in the transaction clearing record, yet useful to the issuer both in form and content.
US11055672B2 Disposable product quantification and management
Systems and methods for processing signals from sensors associated with disposable products are provided. Signals indicative of disposable product consumption and an available quantity of disposable products can be processed. Data associated with the signals can be communicated to an assessment module. The data can include location information associated with the disposable product consumption and available quantity of disposable products. The assessment module can estimate disposable product usage for different locations based on the data. The assessment module can provide notifications of inventory status for the different locations based on the estimated disposable product usage.
US11055670B1 Systems and methods for generating a travel smartlist
Methods and systems described in this disclosure describe generating a travel smartlist. In some implementations, the system can receive a location of travel and a date associated with the travel. The system can generate objects based on the location of the travel and the date and can organize the objects by categories and timeframes, the timeframes being in relation to the date. The system can cause a graphical user interface to display objects associated with a first category horizontally and display objects associated with a second category horizontally below the objects associated with the first category when a first timeframe is selected.
US11055669B2 Email security analysis
The technology described herein visibly depicts hidden message traits to help users determine whether an email is genuine or deceptive. The hidden message traits are revealed by identifying and changing attributes that keep the hidden traits from being displayed in a rendered message. Spam messages, phishing messages, and messages that include or link to malicious programs (e.g., malware, ransomware) are examples of unwanted messages that can harm a recipient. These messages often rely on deception to get past email filtering systems and to trick a user into acting on content in a message. The deception often involves including hidden traits in a message that fool an automated filtering system. The technology described herein shows the visible traits to a user by including them in the rendered version of the message.
US11055667B2 Internet-based method and apparatus for career and professional development via structured feedback loop
Methods and apparatus for generating feedback, reviewing feedback, and conducting interviews by use of VMocks are provided. A VMock, or Virtual Mock, is a virtual profile of a candidate that includes resume, text, video and a document. VMock profiles may be created that have one or more VMocks. Contacts associated with the VMock profile may be managed. Feedback may be requested from the contacts concerning the one or more VMocks, who may then generate the requested feedback. The feedback may then be reviewed. This feedback process may be performed in the context of interviews for employment opportunities and in other similar situations.
US11055660B2 Product registration apparatus, product registration method, and non-transitory storage medium
According to the invention, there is provided a product registration apparatus including an information acquisition unit that determines a placement position of a product having a placing table surface side to which product information is attached and acquires the product information attached to the product, and an output unit that outputs information indicating at least one of the placement position of the product from which the product information can be acquired and the placement position of the product from which the product information cannot be acquired.
US11055659B2 System and method for automatic product enrollment
A system for automatic product enrollment, includes: multiple visual sensors configured to capture images of a product; multiple scales configured to measure weight distribution of the product; and a computing device in communication with the visual sensors and the scales. The computing device is configured to: determine identification of the product and construct a 3D model of the product using the captured images; retrieve warehouse information of the product based on the identification; and enroll the warehouse information, the 3D model, and the weight distribution of the product into a product database. An automatic product enrollment method using the system.
US11055657B2 Methods and apparatuses for determining real-time location information of RFID devices
An apparatus is described. The apparatus includes an antenna array configured to detect one or more radio frequency signals from one or more radio emitters and an integrated circuit chip coupled to the array of antennas. The integrated circuit chip comprises a first plurality of processing elements configured to determine a location of the one or more emitters based on the one or more radio frequency signals and a second plurality of processing elements configured to process the location information for communication via a cellular network. The apparatus further includes an antenna coupled to the second plurality of processing elements and configured to communicate the processed location information via a cellular network.
US11055656B2 Systems and methods of package container return
A package container includes a body, a cover, a cover lock, a user interface, and an electronic controller. The electronic controller includes a memory and a processor. The processor is configured to store order information in the memory. The order information indicates that the package container is assigned to transport one or more items. The processor is configured to detect, at a first time, that the cover has moved from a closed state to an open state. The processor is also configured to store a trial start time that is based on the first time. The processor is configured to, based at least in part on receiving a return request via the user interface and detecting that the cover is in the closed state, store a second time as a trial end time and send a transportation request to a delivery management server to initiate transportation of the package container.
US11055654B2 Packet delivery management
A computer device and computer automated method for supporting packet delivery. A packet to be delivered has a designated delivery address and recipient. On approach of a delivery vehicle carrying the packet to the delivery address, when a geo-fence close to the delivery address is crossed, it is checked whether it is possible to deliver the packet to the designated delivery address. If it is not possible, then the method selects, conditional on sensing proximity to the designated delivery address with reference to the computing device's current location, from among one or more possible delivery addresses which have been pre-registered by the recipient as local addresses of friends an alternative delivery address at which a friend is currently located with reference to a mobile device registered to that friend. If a suitable friend who is at home is found, then the packet is delivered to the friend. The delivery is then confirmed, notifying the recipient of delivery of the packet to the alternative delivery address.
US11055653B2 System and method of providing informed delivery items using a hybrid-digital mailbox
Systems and methods of creating, managing, and distributing supplemental content associated with items in a distribution network. A physical delivery item can be imaged and associated with additional content generated or associated with the sender of the physical delivery item.
US11055652B1 System for sharing detection logic through a cloud-based exchange platform
Described are platforms, systems, and methods for sharing detection logic through a cloud-based exchange platform. In one aspect, a method comprises receiving detection logic from an enterprise; standardizing the detection logic based on a plurality of security frameworks to define attacks and classify protection techniques; processing the standardized detection logic through a machine-learning model to curate and improve the detection logic, the machine-learning model trained with active telemetry regarding a performance of the detection logic in an operating environment; and providing the standardized detection logic and the active telemetry to an interface.
US11055650B2 Execution systems using unstructured data
Execution systems using unstructured data include a memory, one or more input/output devices, and one or more processors coupled to the memory and the input/output devices. The one or more processors are configured to receive a working document comprising data, receive a workflow described according to a workflow structure, the workflow structure describing sub-processes of the workflow, routings between the sub-processes, actions that make up the sub-processes, and mappings between the data in the working document and the actions, identify a first sub-process to be performed, perform each of one or more first actions associated with the first sub-process, update the data in the working document based on one or more first mappings associated with the one or more first actions, and select a second sub-process to be performed based on the data in the working document and one or more first routings associated with the first sub-process.
US11055645B2 Method and system for optimizing distribution of incentive budget for additional time interval allocation in a multi-week work schedule
A computer-implemented method for optimizing distribution of incentive-budget for additional time interval allocation in a multi-week work schedule is provided herein. The computer-implemented method comprising: (i) training a model to forecast future net staffing; (ii) generating a multi-week work schedule; (iii) using the model to forecast for each time interval a net staffing value; (iv) classifying time intervals as understaffed; (v) displaying the understaffed time intervals to suggest agents to take as additional time interval; (vi) providing a tier incentive structure and an incentive budget to be updated by a user; (vii) training the model to forecast a degree of elasticity of agents demand for each time interval based on historical agents schedule changes; and (viii) calculating a combination of incentives of each tier of the tier incentive structure in the incentive-budget to accommodate understaffed time intervals and maximize agents demand for time intervals based on forecasted degree of elasticity.
US11055644B2 Package delivery sub-route assignments to delivery workers based on expected delivery efficiency
A system for attendance pre-assignment. The system may include a memory storing instructions and at least processor configured to execute the instructions to perform operations. The operations may include retrieving, from a database, a plurality of delivery routes and a plurality of delivery sub-routes, wherein the delivery sub-routes are part of the delivery routes; calculating, based on the retrieval, a number of packages allocated to the delivery routes and the delivery sub-routes; receive data comprising groups of pre-assigned workers available for deliveries, the workers being classified into a plurality of categories; comparing, based on the received groups, the pre-assigned workers against the delivery routes and the delivery sub-routes; assigning, based on the comparison, the packages, the delivery routes, and the delivery sub-routes to the pre-assigned workers; generating a plurality of candidate routes associated with the pre-assigned workers; and calibrating, based on the assignment and the generated candidate routes, the delivery sub-routes.
US11055643B2 System and method for a prescriptive engine
The present disclosure includes a prescriptive engine system and a method of using the prescriptive engine system. The method includes receiving information on actions and receiving information on participants, the information on the participants including first suitability information of at least one participant for at least one of the actions, generating, based on the first suitability information, second suitability information for a set of participants for at least one action, allocating, based on the second suitability information, the at least one action to the set of participants, deploying the at least one action to the set of participants, receiving, after the at least one action has been performed, results of the at least one action for each participant in the set of participants, and updating, based on the received results, the first suitability information of each participant in the set of participants for the at least one action.
US11055640B2 Generating product decisions
The present invention relates to a system and method for generating business decisions. Embodiments of this system and method receive customer transaction data and additional information (cumulatively referred to as ‘modeling data’). This data is utilized to generate a product decision tree which models consumer purchasing decisions as a tree structure. The product decision tree may be utilized by the system to analyze demand for a given leaf (product) in association with other related products. In some embodiments, customers are segmented into groupings of customers who have similar attributes, including similar shopping behaviors. Customer insights are generated for the customer segments. The customer insights and the product decision tree are used to generate business plans, which may then be provided to a store for implementation. These plans may include a product assortment plan, an everyday pricing plan, a promotional plan, and a markdown plan.
US11055638B1 Method for shared vehicle utilization management
System, apparatus, device and methods relating to a telematic vehicle sharing platform ecosystem and a telematic vehicle share I/O expander to automate sharing and management of a vehicle that is shared by more than one operator.
US11055637B2 Information processing apparatus, information processing method and storage medium
An information processing apparatus includes a control circuitry that judges that a mealtime of a user is included between a schedule time of departure of a mobile object that travels while carrying the user and a schedule time of arrival of the mobile object, estimates a location where the mobile object is traveling during the mealtime, and generates search conditions of restaurant search for extracting restaurants located within a first distance from the estimated location where the mobile object is traveling and located a second distance away from at least one of a point of departure and a destination of the mobile object, from restaurant information associated with location information.