Document | Document Title |
---|---|
US11011983B2 |
Method of adjusting a pulse width modulation signal
A method can be used for regulating a pulse-width modulation signal that is driving a voltage-buck switched-mode voltage regulator. The method includes comparing an input voltage of the switched-mode voltage regulator with a threshold voltage. The frequency of the pulse-width modulation signal is decreased when the input voltage is lower than the threshold voltage. The frequency is not decreased when the input voltage is not lower than the threshold voltage. |
US11011978B2 |
High efficiency hybrid power converter apparatus
An apparatus includes: a switched capacitor (SC) converter to generate a first voltage based on a voltage source; and a direct current-to-direct current (DC-DC) converter to generate a second voltage based on the voltage source of the apparatus. A difference between the first voltage and the second voltage corresponds to an output voltage. |
US11011975B2 |
Boost power factor correction conversion
In an example, a system comprises a boost power factor correction (PFC) converter including a thermistor, an inductor, and a transistor coupled to a common node. The system also comprises a PFC controller coupled to the common node. The PFC controller includes a comparator coupled to a threshold voltage source and to a non-control terminal of the transistor; a first flip-flop coupled to the comparator and to a control terminal of the transistor; a zero current detector coupled to the inductor; a timer coupled to the comparator and to the zero current detector; a second flip-flop coupled to the timer and to the control terminal of the transistor; an AND gate coupled to the first and second flip-flops; a third flip-flop coupled to the second flip-flop and to the control terminal of the transistor; and a fourth flip-flop coupled to the AND gate and to the control terminal of the transistor. |
US11011968B2 |
System for generating electrical energy by efficient movement of a specialized inductive medium
A system for generating electrical energy by efficient movement of a specialized inductive medium that fulfills a need for new sources of electricity. The system for generating electrical energy by efficient movement of a specialized inductive medium includes an evacuated tube serving as a cathode disposed on a pipe, the evacuated tube contains a plurality of emulsified copper, the emulsified copper serves as the specialized inductive medium. The overall system includes a gear pump that moves the emulsified copper at high speed through the pipe where it is influenced by the magnet and the electric current is induced in the high-speed emulsified copper. |
US11011966B2 |
Electric machine systems
An electric machine system disclosed herein comprises first and second electric machines configured to drive a load. The first electric machine has a plurality of first rotors. The second electric machine has a plurality of second rotors. At least one of the second rotors is indexed relative to a respective one of the first rotors to, in use, provide a torque phase offset between the first and second electric machines. A shaft is coupled to the load and connects the respective one of the first rotors with the at least one of the second rotors. The respective one of the first rotors is coaxial with and axially spaced apart from the at least one of the second rotors. |
US11011965B2 |
Permanent magnet synchronous motor
A permanent magnet synchronous motor includes a stator, a rotor rotatable relative to the stator, and a magnetic structure with a low coercive force magnet and a high coercive force magnet that are arranged magnetically in series with respect to each other to define a pole-pair of the permanent magnet synchronous motor. A magnetization level of the low coercive force magnet is changeable by a stator current pulse such that a stator magnetomotive force at a rated current is equal to or larger than a product of a magnetic field strength for fully magnetizing the low coercive force magnet and a thickness of the low coercive force magnet. |
US11011964B2 |
Cage induction motor
A cage induction motor includes a rotor core that is rotatable about a central axis, and a shaft to which the rotor core is fixed. The rotor core includes an annular yoke and a plurality of spokes. The yoke supports at least one conductor. The plurality of spokes are arranged apart from one another in a circumferential direction of the yoke, are provided between the yoke and the shaft, and support the yoke. |
US11011963B2 |
Apparatus and method for assembling a motor rotor
Methods and apparatus are disclosed for assembling a motor rotor. The apparatus includes a rotor fixing module, a conductive bar driving module, a plurality of conductive bars and a pump module. The rotor fixing module supports and holds the rotor. The conductive bar driving module has a plurality of assembling slots. When the pumping module is attached to the conductive bar driving module and each of the conductive bars seals the assembling slots, the pumping module and the assembling slots cooperatively form a sealed chamber, and the pumping module vacuums the sealed chamber to generate a suction force on each of the conductive bars, and the suction force further drives the conductive bars into the assembling slots. The method is for assembling the rotor by utilizing the same procedure mentioned above. |
US11011962B2 |
Dual-pole electromagnetically-driven focusing system of micromotor
A dual pole electromagnetically-driven focusing system of a micromotor includes a movable base having an elastic support system on upper and lower sides thereof and an outside configuration in a parallelepiped form having four side surfaces. Two loop coils are respectively fixed to two opposite side surfaces of the slidable base. Two dual-pole magnets are respectively arranged beside the two loop coils in a manner of being opposite to each other in respect of magnetism so that the two loop coils, upon energized, generate acting forces in opposite direction with respect to the two dual-pole magnets. A circuit device is arranged on one side surfaces of the movable base between the two loop coils. Three successive side surfaces of the movable base that are respectively provided with a combination of loop coil and dual-pole magnet, the circuit device, another combination of loop coil and dual-pole magnet, form a U-shaped structure. |
US11011960B2 |
Wound rotor motor for vehicle
A wound rotor motor is provided, in which a rotary shaft is arranged in the vertical direction, to immerse lower coil portions of a stator and a rotor in cooling oil, thereby improving the cooling effect beyond that of a conventional configuration, in which lower coil portions are partially immersed, and consequently decreasing the capacity of an oil pump. A wound rotor motor is provided, in which a rotary shaft is arranged in the vertical direction and has therein a flow passage, through which cooling oil moves up from the region below the rotor and is sprayed to the region above the rotor by centrifugal force generated by rotation of the rotor, thereby enhancing the motor-cooling effect, decreasing the frictional loss of the rotor due to the cooling oil, and consequently improving the operational efficiency of the motor. |
US11011954B2 |
Motor driving unit
Provided is a motor driving unit (1) capable of achieving space saving of a motor room and cost reduction of a vehicle. The motor driving unit (1) includes a motor (10), an inverter (50) that controls driving of the motor (10), and a transaxle (30). The inverter (50) is disposed at a position facing the second gear (32) in the transaxle (30) in a Z-axis direction of the motor (10), and a flow channel of refrigerant arranged inside the inverter (50) is partitioned off from an internal space of the motor (10) by a single barrier. |
US11011950B2 |
Motor that includes a yoke having a flange portion
The present invention may provide a rotor comprising: a rotating shaft; a yoke surrounding the rotating shaft; and a magnet coupling to the outer side of the yoke, wherein the yoke comprises a flange part, wherein the flange part comprises a groove, and the magnet comprises a protrusion that is inserted in the groove. |
US11011948B2 |
Rotor, method for producing a rotor, reluctance machine, and working machine
Various embodiments may include a rotor for a reluctance machine comprising: an essentially disc-shaped rotor body mounted on a rotor axis running through a rotor center point; and an alternating sequence of barrier regions and pole regions arrayed along a circumferential direction of the rotor body. Each barrier region includes a multiplicity of magnetic flux barriers spatially and materially separated without overlap. Within at least one barrier region, at least one magnetic flux barrier is arranged with a q axis and/or a figure axis rotated with respect to a q axis and/or figure axis of another magnetic flux barrier of the same barrier region. |
US11011946B2 |
Wireless power transmitter and wireless power receiver, and operation methods therefor
A method for controlling a wireless power transmitter for charging a wireless power receiver may comprise the operations of: transmitting power for charging; receiving a first PRU dynamic signal indicating completion of charging, from the wireless power receiver, applying a beacon for detecting the wireless power receiver on the basis of a load change to a resonance circuit of the wireless power transmitter; receiving, from the wireless power receiver, a first advertisement signal including information indicating that charging is not requested; and ignoring the advertisement signal and maintaining application of the beacon. |
US11011930B2 |
Energy receiver, detection method, power transmission system, detection device, and energy transmitter
An energy receiver including a power receiver coil configured to wirelessly receive power transmitted from a power transmitter; a detection section configured to detect a foreign object; and a power storage section configured to supply power to the detection section during detection of the foreign object. |
US11011929B2 |
Wireless power transmission using transmitters operating at different frequencies
Systems and methods for orientation-independent, wireless charging of devices is provided. The methods disclosed herein comprise transmitters operating at different frequencies, which collectively generate a rotating magnetic field. |
US11011928B2 |
Bus transfer for a flight test system
A power conditioning unit includes unit a rectifier having an input terminal coupled to a power transfer unit output terminal and a regulator having an input terminal coupled to an output terminal of the rectifier. The power conditioning unit also includes an energy buffer coupled to an output terminal of the regulator. The power conditioning unit includes an inverter having an input terminal coupled to the energy buffer and having an output terminal configured to couple to a load. |
US11011923B2 |
UAV having electric-field actuated generator for powering electrical load within vicinity of powerlines
A UAV in which electric power is generated for an electric load from differentials in electric field strengths within a vicinity of powerlines includes: a plurality of electrodes separated and electrically insulated from one another for enabling differentials in voltage resulting from differentials in electric field strength experienced thereat; and electrical components electrically connected therewith and configurable to establish one or more electric circuits whereby voltage differentials causes a current to flow through the established electric circuit for powering an electric load. Preferably, the UAV includes a control assembly having one or more voltage-detector components configured to detect relative voltages of the electrodes; and a processor enabled to configure—based on the detected voltages and based on voltage and electric current specifications for powering the electric load—one or more of the electrical components to establish an electric circuit for powering the electric load. |
US11011921B2 |
Inductive charger with rotatable magnetic mount
A magnetic mount for an electronic device with an inductive charging receiver and one or more engagement points. The mount has a static inductive charging head with an inductive coil delivering a charging current to the electronic device with the inductive charging receiver being in axial alignment with the inductive coil. A back plate with a circular frame is in rotating engagement with the static inductive charging head. The back plate also include one or more magnet support arms on which permanent magnets are mounted to magnetically couple with the one or more engagement points on the electronic device. |
US11011909B1 |
Feedforward dynamic and distributed energy storage system
A system and method for energy distribution leveraging dynamic feedforward allocation of distributed energy storage using multiple energy distribution pathways to maximize load-balancing to accelerate return on investment, reduce system energy consumption, and maximize utilization of existing energy infrastructure particularly for modular construction. |
US11011905B2 |
Fall-off protection and reverse-connection protection system and method for connecting clamp of automobile starting power supply
A fall-off protection and reverse-connection protection system and method for a connecting clamp of an automobile starting power supply. The system has an internal battery, a switching circuit, an access device, a connecting clamp, an MCU control circuit, a voltage division circuit for external battery detection, an output connecting clamp current detection circuit and an anti-reverse-connection protection circuit. In the method, voltage conditions of an external power supply can be effectively detected and different operating actions are taken based on the voltage conditions of the external power supply, thus ensuring normal startup. |
US11011901B2 |
Snap-on screwless wall plate assembly
A wall cover plate is provided for connecting directly to an electrical wiring device without the use of the base plate or adapter plate. The wall plate can have a connector such as a hook and/or prong that engages the housing for the mounting strap of the electrical wiring device. The electrical wiring device can include a removable connector attached to the mounting strap where the connector has at least one edge or coupling member for coupling with a faceplate. The faceplate can have an inner edge with a rib or series of teeth for connecting with the mounting strap or the removable connector by an interference fit. |
US11011893B2 |
Seismic support structure
Embodiments of the disclosure can include systems and methods for providing a seismic support structure for electrical equipment, including low voltage or high voltage electrical equipment and power transmission equipment, to be supported above a surface, such as the ground or a foundation. |
US11011889B2 |
Manufacturable multi-emitter laser diode
A multi-emitter laser diode device includes a carrier chip singulated from a carrier wafer. The carrier chip has a length and a width, and the width defines a first pitch. The device also includes a plurality of epitaxial mesa dice regions transferred to the carrier chip from a substrate and attached to the carrier chip at a bond region. Each of the epitaxial mesa dice regions is arranged on the carrier chip in a substantially parallel configuration and positioned at a second pitch defining the distance between adjacent epitaxial mesa dice regions. Each of the plurality of epitaxial mesa dice regions includes epitaxial material, which includes an n-type cladding region, an active region having at least one active layer region, and a p-type cladding region. The device also includes one or more laser diode stripe regions, each of which has a pair of facets forming a cavity region. |
US11011888B2 |
Light-emitting device and light-emitting apparatus
A light-emitting device according to an embodiment of the present disclosure includes a laminate. The laminate includes an active layer, a first semiconductor layer, and a second semiconductor layer. The first semiconductor layer and the second semiconductor layer sandwich the active layer in between. The light-emitting device further includes a current confining layer, a concave-shaped first reflecting mirror provided on side of the first semiconductor layer, and a second reflecting mirror provided on side of the second semiconductor layer. The current confining layer has an opening. The first reflecting mirror and the second reflecting mirror sandwich the laminate and the opening in between. The light-emitting device further includes a first reflecting layer and a phosphor layer. The first reflecting layer is disposed at a position opposed to the first reflecting mirror with a predetermined gap in between. The phosphor layer is disposed between the first reflecting mirror and the first reflecting layer, and performs wavelength conversion on light leaking from the first reflecting mirror. |
US11011887B2 |
Semiconductor laser diode
A semiconductor laser diode is disclosed. In an embodiment a semiconductor laser diode includes a semiconductor layer sequence including an active layer having a main extension plane, configured to generate light in an active region during operation and configured to radiate the light via a light-outcoupling surface, wherein the active region extends from a rear surface opposite the light-outcoupling surface to the light-outcoupling surface along a longitudinal direction in the main extension plane and a continuous contact structure directly disposed on a surface of the semiconductor layer sequence, wherein the contact structure comprises in at least a first contact region a first electrical contact material in direct contact with the surface region and in at least a second contact region a second electrical contact material in direct contact with the surface region, and wherein the first and second contact regions adjoin one another. |
US11011884B1 |
Systems and methods for designing optical devices having mode selective facets
Methods for designing a mode-selective optical device including one or more optical interfaces defining an optical cavity include: defining a loss function within a simulation space encompassing the optical device, the loss function corresponding to an electromagnetic field having an operative wavelength within the optical device resulting from an interaction between an input electromagnetic field at the operative wavelength and the one or more optical interfaces of the optical device; defining an initial structure for each of the one or more optical interfaces, each initial structure being defined using a plurality of voxels; determining values for at least one structural parameter and/or at least one functional parameter of the one or more optical interfaces by solving Maxwell's equations; and defining a final structure of the one or more optical interfaces based on the values for the one or more structural and/or functional parameters. |
US11011875B1 |
Electrical cable braid positioning clip
A cable assembly and method for terminating an end of a cable. The cable assembly includes a ferrule secured to a cable jacket at the end of the cable. The cable also has a braided shield which extends from the end of the cable to the portion of the inner connector positioned in the ferrule. A transition zone is provided between the end of the cable and an end of a portion of an inner connector positioned in the ferrule. A braid positioning clip engages the braided shield in the transition zone to maintain a relationship of the braided shield to the signal conductors to minimize the degradation of the electrical performance of the cable. |
US11011871B2 |
Connector for different connection types
A connector is provided with a locking portion having hook portions extending in the first direction, arranged at intervals around the first direction, and capable of being resilient deformation in a second direction intersecting the first direction and away from the connector main body, and a holding portion having a tubular shape encircling the locking portion around the first direction and having a screw groove portion provided on an inner peripheral surface at an end portion in the first direction and adjacent to a connection portion. The holding portion is moveable between a holding position where the holding portion holds the locking portion locked to a to-be-locked portion of a first mating connector, a hold releasing position where the holding portion releases the holding of the locking portion, and a fitting position where the screw groove portion is fitted to a screw thread portion of a second mating connector. |
US11011870B2 |
First connector, second connector and electrical connector assembly
The present disclosure provides a first connector, a second connector and a connector assembly having the first connector and the second connector. The first connector comprises an insulating base, two first conductive members fixed on the insulating base, a first magnetic attraction ring sheathing the insulating base, and a switch assembly fixed in the insulating base. The second connector comprises an insulating body, two second conductive members fixed on the insulating body, a second magnetic attraction ring sheathing an outer circumference of the insulating body, and a cover further sheathing an outer circumference of the second magnetic attraction ring. The first connector and the second connector can achieve a function of 360 degree mating and charging. The first connector integrates charging function and switch function which can save one connector, save space and cost in a small electronic device, facilitates miniaturization of the electronic device. |
US11011866B2 |
Electric connector and manufacturing method thereof
In an electrical connector, a connecting portion has a first resin holding a lower contact with respect to an intermediate ground plate and a second resin holding an upper contact with respect to the intermediate ground plate and separate from the first resin. Also provided is a third resin covering the first resin and the second resin and separate from the first resin and the second resin. When the electrical connector is manufactured, deflection can be suppressed based on division into a step of forming the first resin and a step of forming the second resin and by means of a mold suppressing deflection of the upper contact and the lower contact. |
US11011865B2 |
Connector
It is aimed to provide a connector capable of reducing the number of components. A connector (100) includes a plurality of terminal fittings (50) having wires (90) connected to rear end parts, and a dielectric (20) for accommodating the plurality of terminal fittings (50) with the wires (90) drawn out rearward. The dielectric (20) includes a holding member (30) having a plurality of terminal accommodation chambers (34) separated in two upper and lower stages and laterally arranged in parallel, upper and lower surfaces of the holding member (30) being formed with openings (35) enabling the terminal fittings (50) to be mounted into the terminal accommodation chambers (34), and a front member (40) integrally formed with a pair of upper and lower closing portions (41, 41) for individually closing the openings (35) on an upper surface side and the openings (35) on a lower surface side, the front member (40) being assembled with the holding member (30) from front. |
US11011863B2 |
Electrical connector
An electrical connector including an insulating body, a plurality of terminals, and at least one grounding member is provided. The terminals and the grounding member are disposed in the insulating body. At least one grounding terminal among the terminals and the grounding member next to the grounding terminal form an integrally-molded structure. A portion of the grounding terminal and a portion of the grounding member are misaligned from each other along an arrangement direction of the terminals. |
US11011860B1 |
Plug terminal block structure
A plug terminal block structure for plugging a wire includes an insulated base, a conductive spring plate and a metal terminal. The insulated base has a cavity and a wire inlet for inserting and connecting the wire. The wire inlet has a wire arm and an embedded slot. A fixed portion is formed in the cavity. The conductive spring plate is installed in the cavity and has a clamping arm formed in the wire inlet. The metal terminal includes a riser, and a pin connected to the riser and embedded into the embedded slot and formed on a side of clamping arm. Both of the riser and wire arm are stopped at the conductive spring plate and a side of the wire. Therefore, the wire will not be exposed, and the conductive spring plate can be limited stably in the cavity to improve the safety of use. |
US11011852B2 |
Antenna system
A reconfigurable modular antenna system includes a first module comprising at least a first part of a first antenna system, and a second replaceable module comprising at least a second part of a first antenna system and a part of a second antenna system. An interconnect is disposed between the first module and the second replaceable module and couples the first part of the first antenna system to the second part of the first antenna system to form the first antenna system. The first antenna system is configured to operate in a first frequency band and the second antenna system is configured to operate in a second frequency band, different to the first frequency band. |
US11011851B2 |
Multi-antenna system
A multi-antenna system includes an antenna part and a cable part. The antenna part includes comprising antenna lines forming antenna elements. The cable part includes a feeding lines for the antenna elements. Both the antenna part and the cable part are implemented using a flexible printed circuit board. The antenna part includes a single conductor layer area. The cable part includes a three conductor layer area. |
US11011849B2 |
Antenna structure
An antenna structure includes a radiation metal element, a first feeding metal element, a second feeding metal element, a metal loop, a ground metal element, a first dielectric layer, a second dielectric layer, and a via metal element. The radiation metal element has a first slot, a second slot, a third slot, and a fourth slot, which surround a first opening, a second opening, a third opening, and a fourth opening. The first feeding metal element extends into the first opening. The second feeding metal element extends into the second opening. The first dielectric layer is disposed between the radiation metal element and the metal loop. The second dielectric layer is disposed between the metal loop and the ground metal element. The via metal element couples a first connection point on the radiation metal element to a second connection point on the ground metal element. |
US11011847B2 |
Multi-antenna structure with two radiating antennas with one antenna fed from the other antenna
A multi-antenna structure includes a monopole-like or loop-like antenna structure with an antenna feed configured to connect to electrical circuitry; and a slot-like antenna structure adjacent to the monopole-like or loop-like antenna structure and capacitively fed by the monopole-like or loop-like antenna structure, wherein the monopole-like or loop-like antenna structure and the slot-like antenna structure operate as a combined antenna with extended bandwidth relative to operation individually. The monopole-like or loop-like antenna structure can include a horizontal member and a plurality of vertical members connected to the horizontal member. The slot-like antenna structure can include two parallel horizontal members separated by a slot and a vertical member at one end of the slot connected to each of the two parallel horizontal members separated and another end of the slot is open. |
US11011837B2 |
Communications terminal
A communications terminal includes a multiple-input multiple-output antenna system. The multiple-input multiple-output antenna system includes a first antenna module, a second antenna module, and a first ground structure. The first antenna module includes a first radiator configured to form a first MIMO antenna and a second radiator configured to form a GPS antenna, and a first slit is provided between the first radiator and the second radiator. The second antenna module includes a third radiator configured to form a low frequency antenna and a fourth radiator configured to form a second MIMO antenna. The second radiator is connected to the third radiator. One end of the first ground structure is connected to the second radiator or the third radiator, and another end is connected to a ground plane of the communications terminal. |
US11011833B2 |
Antenna structure and electronic device
An antenna structure includes a signal source, four transmission lines, and four radiation elements. The radiation elements are coupled through the transmission lines to the signal source, respectively. Each of the radiation elements includes a loop structure, a first connection element, and a second connection element. The loop structure has a first inner edge and a second inner edge which are opposite to each other. A looped region is formed between the first inner edge and the second inner edge. The looped region has first and second sides. The first connection element extends across the first side of the looped region. The first connection element is coupled between the first inner edge and the second inner edge. The second connection element extends across the second side of the looped region. The second connection element is coupled between the first inner edge and the second inner edge. |
US11011832B2 |
Radio wave transparent cover
A radio wave transparent cover is arranged in front of a radio wave radar device with a space in between in a radio wave emitting direction of the radio wave radar device such that radio waves emitted from the radio wave radar device pass through the inside of the radio wave transparent cover. A formation area, which includes the entire radio wave transparent area on the back side of the cover, is formed by an embossed uneven surface having an embossing depth of a range of 5 μm to 200 μm, inclusive. |
US11011830B2 |
Wireless communication system within an external enclosure for attachment to a vehicle
Disclosed herein are systems for routing wireless communications. Some systems may include an apparatus comprising an enclosure configured to attach to an external portion of an aircraft and which may contain: a wireless communications device, and an antenna in communication with the wireless communications device and configured to send or receive signals to and/or from aircraft. |
US11011827B2 |
Antenna boards and communication devices
Disclosed herein are antenna boards, antenna modules, and communication devices. For example, in some embodiments, an antenna board may include: an antenna feed substrate including an antenna feed structure, wherein the antenna feed substrate includes a ground plane, the antenna feed structure includes a first portion perpendicular to the ground plane and a second portion parallel to the ground plane, and the first portion is electrically coupled between the second portion and the first portion; and a millimeter wave antenna patch. |
US11011826B2 |
Near-field electromagnetic induction (NFEMI) device
Example of a near-field electromagnetic induction (NFEMI) device, including: an NFEMI antenna, having a first conductive plate, a coil, a first signal feed connection, and a second signal feed connection; wherein the coil is configured to generate or respond to a magnetic field and is coupled to the first and second signal feed connections; wherein the first conductive plate is coupled to the first signal feed connection; and an electrical apparatus, having a ground plane, a first capacitor and a second capacitor; wherein the electrical apparatus is coupled to the first and second signal feed connections; wherein the first capacitor is coupled between the first signal feed connection and the ground plane; wherein the second capacitor is coupled between the second signal feed connection and the ground plane; and wherein the first conductive plate in combination with the ground plane is configured to generate or respond to an electrical field. |
US11011823B2 |
Automation field device
A field device of automation technology, including: an at least partially metal housing having at least one housing opening; a field device electronics arranged within the housing; a cable gland, which is located in the housing opening, wherein at least one cable extends through the cable gland into the housing and is connected with the field device electronics such that wired communication can occur via the cable with the field device electronics; and an antenna for transmitting and/or receiving electromagnetic waves having at least one determined wavelength, wherein the antenna is situated in the cable gland such that the antenna at least partially surrounds the cable, and wherein the antenna is connected with the field device electronics via a coaxial cable such that wireless communication can occur via the antenna with the field device electronics. |
US11011821B2 |
Deployable conical space antenna and associated methods
An outer space deployable antenna may include a ground plane and a flexible antenna coupled to the ground plane and moveable between a flat stored configuration and a conical deployed configuration. The flexible antenna may include a dielectric layer and a plurality of antenna arms. The flexible antenna may have a circular shape with a circular sector notch in the flat stored configuration that closes in the conical deployed configuration. |
US11011818B1 |
Transformer having series and parallel connected transmission lines
First ends of a plurality of sub-networks of an exemplary transmission-line network are connected together electrically in series. First ends of a plurality of transmission lines of one subnetwork are connected together in parallel and second ends are connected together in series. The one sub-network has a first-end impedance value that is different than a second-end impedance value. The second-end impedance value of the one sub-network is different than a second-end impedance value of another sub-network. A respective transmission line connects each sub-network to a common circuit node and a respective resistor interconnects each adjacent pair of the second ends of the sub-networks. |
US11011813B2 |
Power amplifier with shielded transmission lines
A power amplifier module includes a first phase shifter, a second phase shifter, and an electromagnetic shield. The first phase shifter includes a first transmission line assembly to shift a first amplified signal by a first phase angle. The second phase shifter includes a second transmission line assembly to shift a second amplified signal by a second phase angle. The electromagnetic shield is arranged to shield the first transmission line assembly from the second transmission line assembly. The power amplifier module may have, for example, Doherty amplifier configuration. |
US11011812B2 |
Secondary battery
A secondary battery includes a diaphragm which is disposed on a current path between a current collector plate connected to a wound electrode group in a battery container and an external terminal, deforms when an internal pressure of the battery container increases, and breaks the current path. The diaphragm has a convex portion which protrudes to the current collector plate. The current collector plate has a through-hole into which the convex portion is inserted. An inner wall portion of the through-hole and a side wall portion of the convex portion facing each other are welded. |
US11011810B2 |
Stacked battery
Disclosed is a stacked battery that can flow a larger rounding current in a short-circuit current shunt part than in an electric element when a short circuit occurs in the short-circuit current shunt part and the electric element in nailing, the stacked battery in which an electrical resistance of a current collector tab of the short-circuit current shunt part is smaller than an electrical resistance of a current collector tab of the electric element. |
US11011807B2 |
Battery and frame for mechanically coupling electrode tab to electrode lead in battery
A coupling frame includes a support body configured to contact at least one of the electrode tab and the electrode lead; a first perforating portion bent from one end of the support body; and a second perforating portion bent from the other end of the support body. The first and second perforating portions are inserted into the electrode tab and the electrode lead to pass through first and second points of a contact surface between the electrode tab and the electrode lead. |
US11011806B2 |
Cylindrical battery
A cylindrical battery with an electrode body in which a negative electrode plate and a positive electrode plate connected to a plurality of positive electrode leads are rolled with a separator interposed therebetween, a first insulating plate disposed on the electrode body, a current-collection plate disposed on the first insulating plate, a second insulating plate disposed in contact with an opposite surface of the current-collection plate that opposes the first insulating plate, a sealing body, and an outer jacket can, wherein the first insulating plate has at least one through hole, the first positive electrode lead passes through the through hole and between the first insulating plate and the second insulating plate, is bent from the outer-circumference portion of the current-collection plate onto the current-collection plate and the second insulating plate is provided with a recessed portion to house the first positive electrode lead. |
US11011802B2 |
Battery module with short-circuit unit, and battery pack and vehicle including same
A battery module including a first bus bar electrically connected to a first electrode lead of a first battery cell; a second bus bar electrically connected to a second electrode lead of a second battery cell; a short-circuit unit moving toward the first bus bar and the second bus bar by receiving an expansive force due to a volume increase of at least one of the first battery cell and the second battery cell to electrically connect the first bus bar to the second bus bar to generate a short circuit; and a cartridge accommodating or supporting at least a portion of the first electrode lead, the second electrode lead, the first bus bar, the second bus bar and the short-circuit unit. |
US11011799B2 |
Battery pack
A battery pack is disclosed. The battery pack includes one or more battery assemblies and a circuit board connected to the battery assemblies. The battery assembly includes first and second battery cells having the predetermined surfaces overlaid on each other. The first and second battery cells each have battery elements accommodated in a container thereof, and cathode terminals and anode terminals are provided at a same height as the predetermined surfaces at a same side. The cathode terminal and anode terminal of the first battery cell are adjacent respectively to the cathode terminal and anode terminal of the second battery cell. |
US11011798B2 |
Energy storage device
An energy storage device includes: an electrode assembly; a case for accommodating the electrode assembly; a spacer interposed between the case and the electrode assembly; and a strip-like member being brought into contact with each of a side surface of the spacer and a side surface of the electrode assembly and fixing the spacer and the electrode assembly to each other. A portion of the spacer with which the strip-like member is brought into contact is wholly formed of a recessed portion. |
US11011797B2 |
Electrode assembly and battery
Embodiments of the present application provide an electrode assembly including a first electrode plate, a second electrode plate and a separator between the first electrode plate and the second electrode plate. The separator includes an extension portion extending to the outside of the first electrode plate and the second electrode plate in a length direction of the electrode assembly. The extension portion is provided with a glue layer including a first bonding portion extending in a width direction of the electrode assembly. The first bonding portion is parallel to the width direction. Embodiments of the present application further provide a battery. The electrode assembly and battery provided in the present application will at least reduce the risk of short circuit of the electrode assembly. |
US11011794B2 |
Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
Provided is a composition for a non-aqueous secondary battery functional layer capable of forming a functional layer that can provide a battery member such as an electrode or a separator with both excellent blocking resistance and excellent process adhesiveness. The composition for a functional layer contains a particulate polymer A. The particulate polymer A has a core-shell structure including a core portion and a shell portion that at least partially covers an outer surface of the core portion. The core portion is formed from a polymer having a glass-transition temperature of higher than 25° C. and lower than 80° C. The shell portion is formed from a polymer having a glass-transition temperature of −80° C. to 25° C. The proportion constituted by the core portion among the total of the core portion and the shell portion is 30 mass % to 80 mass %. |
US11011793B2 |
Protection of an electrical energy accumulation device
The protection of an electrical energy accumulation device from electromagnetic attacks is provided. The electrical energy accumulation device comprises a housing made of an electrically conductive material, at least one electrical energy storage cell that is arranged in the housing and two terminals that are arranged through the housing, the terminals being electrically insulated from the housing, the terminals allowing electrical energy to be transferred between the at least one storage cell and the exterior of the device. The device further comprises, inside the housing, a specific component exhibiting an impedance having at least one resistive component that is higher than 1 ohm, which component is configured to dissipate the energy of electromagnetic interference attempting to penetrate the housing through at least one of the terminals. |
US11011791B2 |
Method for producing an electrically driven vehicle
A method for producing an electrically driveable vehicle which has a sealed space for accommodating a high-voltage (HV) energy storage. A body structure delimits the space for accommodating the HV energy storage at least in an upward direction and which sealingly closes off the space at least in the upward direction and which has attachment points for the direct or indirect connection of at least one energy storage module. At least one energy storage module is connected to the body structure. A space for accommodating the HV energy storage is open at least in partial regions. An installation protection structure delimits the space for accommodating the HV energy storage in the downward direction and which sealingly closes off the space at least in the downward direction. The body structure is connected to the installation protection structure, whereby the space for accommodating the HV energy storage is sealingly closed. |
US11011788B2 |
Standby state maintaining device
A standby state maintaining device includes a secondary battery provided separately from a vehicle battery, a temperature sensor for the secondary battery, and a controller having a first operation mode of, in a state in which a starting switch of a vehicle is off, maintaining a power saving standby state of a vehicle-mounted information apparatus by selectively using either the secondary battery or the vehicle battery in accordance with a detected value provided by the temperature sensor. |
US11011785B2 |
Electricity storage device testing method and electricity storage device manufacturing method
Provided is an electricity storage device testing method including: building a closed circuit by connecting an external power source to a charged electricity storage device such that the direction of voltage of the external power source is opposite from that of the electricity storage device; measuring a circuit current while applying to the closed circuit a voltage in an opposite direction from a voltage of the electricity storage device by the external power source; calculating a voltage to be output by the external power source, based on the value of the circuit current measured and a resistance value of the closed circuit. The output voltage of the external power source is changed according to a result of the calculation. A time interval at which the calculation is set to be shorter at an early stage and longer at a late stage of the measuring. |
US11011778B2 |
Solid-state electrolyte and all-solid-state battery
A solid-state electrolyte having a garnet-type crystal structure represented by the formula (Li7−ax+yAx)La3(Zr2−yBy)O12, where A is at least one element selected from Mg, Zn, Al, Ga, and Sc, a is a valence of A, B is at least one element selected from Al, Ga, Sc, Yb, Dy, and Y, x is more than 0 and less than 1.0, y is more than 0 and less than 1.0, and 7−ax+y is more than 5.5 and less than 7.0). |
US11011777B2 |
Nitrogen-doped sulfide-based solid electrolyte for all-solid batteries
The present invention relates to a nitrogen-doped sulfide-based solid electrolyte for all-solid batteries. The a nitrogen-doped sulfide-based solid electrolyte for all-solid batteries includes a compound with an argyrodite-type crystal structure represented by the following Formula 1: LiaPSbNcXd [Formula 1] wherein 6≤a≤7, 3 |
US11011771B2 |
Fuel cell vehicle
A fuel cell vehicle includes: a stack case accommodating a fuel cell stack; and a PCU that is disposed to face the stack case and is coupled to the stack case via bus bars. A through-hole is formed in a top plate of the stack case facing the PCU. The PCU is also coupled and fixed to a vehicle body via a coupling member. |
US11011770B2 |
Fuel cell module and fuel cell system
A fuel cell module includes a plurality of power generation cells. Each of the power generation cells includes an electrolyte electrode assembly for performing power generation by utilizing a fuel gas and an oxygen-containing gas. The plurality of power generation cells are stacked together in a circle, and a tightening load is applied to the plurality of power generation cells in a circumferential direction. Each of the plurality of power generation cells has a V-shape, and a peak of the V-shape is oriented to the center of the fuel cell module. |
US11011769B2 |
Fuel cell catalyst layer, membrane electrode assembly, and fuel cell
Provided is a fuel cell catalyst layer including: a fibrous carbon material; catalyst particles; a particulate carbon material; and a proton-conductive resin, wherein a region A including at least the fibrous carbon material in a state of an agglomerated body and a region B including at least the catalyst particles, the particulate carbon material, and the proton-conductive resin are formed, the region A being disposed in an island form in the region B. |
US11011754B2 |
Binder composition for non-aqueous secondary battery functional layer, composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, battery member for non-aqueous secondary battery, and non-aqueous secondary battery
Provided is a binder composition for a non-aqueous secondary battery functional layer that enables production of a composition for a non-aqueous secondary battery functional layer that has excellent stability and can cause a non-aqueous secondary battery to display excellent cycle characteristics. The binder composition contains a water-soluble polymer and water. The water-soluble polymer has a contact angle with water of at least 40° and not more than 80° and has a degree of swelling in electrolyte solution of more than a factor of 1.0 and not more than a factor of 3.0. |
US11011753B2 |
Lithium-ion secondary battery and method of producing the same
A lithium-ion secondary battery includes at least a negative electrode, a positive electrode, and an electrolyte. The negative electrode includes at least a negative electrode active material and a polymer binder. The negative electrode active material includes at least a graphitic material and a silicon oxide material. The amount of acidic functional groups per unit surface area of graphitic material is not lower than 0.017 mmol/m2 and not higher than 0.086 mmol/m2. A polymer binder contains a carboxy group. Polymer binder has a main chain with a length not smaller than 0.53 μm and not greater than 2.13 μm. |
US11011742B2 |
Silicon embedded copper anodes and battery cells incorporating the same
Anodes, and battery cells utilizing the same, include silicon particles embedded within a copper matrix, wherein the anode includes 40 at. % to 75 at. % silicon. The anode can include about 21 at. % to about 67 at. % silicon particles. The copper matrix can include pure copper and/or one or more copper-silicon intermetallic phases. The copper matrix can further include one or more of nickel, gold, silver, beryllium, and zinc. The silicon particles embedded in the copper matrix can have an average particle diameter less than 10 μm. The non-surfacial silicon particles embedded in the copper matrix can be at least 99 at. % pure. The anode can be a woven mesh of ribbons or a planar sheet. |
US11011741B2 |
Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
A positive electrode active material for lithium secondary batteries, includes: a lithium composite metal compound containing secondary particles formed by aggregation of primary particles; and a lithium-containing tungsten oxide, in which the lithium-containing tungsten oxide is present at least in interparticle spaces of the primary particles, and in a pore distribution of the positive electrode active material for lithium secondary batteries measured by a mercury intrusion method, a surface area of pores having a pore diameter in a range of 10 nm or more to 200 nm or less is 0.4 m2/g or more and 3.0 m2/g or less. |
US11011739B1 |
Electroactive polymer devices, systems, and methods
An electroactive device may include a primary electrode, a secondary electrode overlapping at least a portion of the primary electrode, and a tertiary electrode overlapping at least a portion of the secondary electrode. The electroactive device may also include (i) a first electroactive polymer element including a first elastomer material disposed between and abutting the primary electrode and the secondary electrode, and (ii) a second electroactive polymer element including a second elastomer material disposed between and abutting the secondary electrode and the tertiary electrode. Various other devices, methods, and systems are also disclosed. |
US11011737B2 |
System and method of fabricating an electrochemical device
A solventless system for fabricating electrodes includes a mechanism for feeding a substrate through the system, a first application region comprised of a first device for applying a first layer to the substrate, wherein the first layer is comprised of an active material mixture and a binder, and the binder includes at least one of a thermoplastic material and a thermoset material, and the system includes a first heater positioned to heat the first layer. |
US11011731B2 |
Film for preventing humidity from percolation and method for manufacturing the same
The present inventive concept provides a moisture prevention film including: a first moisture prevention film; a second moisture prevention film formed on the first moisture prevention film; and a third moisture prevention film formed on the second moisture prevention film, wherein a concentration of oxygen (O) of the second moisture prevention film is higher than a concentration of oxygen of each of the first moisture prevention film and the third moisture prevention film, a method of manufacturing the moisture prevention film, and an organic light emitting device including the moisture prevention film. |
US11011729B2 |
Display module and method of manufacturing same
A display module and a manufacturing thereof are provided. The display module includes a display panel, a first back plate, a second back plate and support layer and a fixing layer. The fixing layer includes a body and at least one protrusion. The display panel includes a first region, a second region and a bending region. At least one via hole is defined in the second back plate and the second region. The second region is bent to a predetermined position on the second back plate with the at least one protrusion fittingly engaged in the at least one via hole. |
US11011727B2 |
Display device and method of manufacturing the same
A display device and a method of manufacturing a display device are provided. A display device includes: a window; a first pattern on a portion of the window; a second pattern on at least a portion of the first pattern and having a higher surface free energy than the first pattern; an adhesive layer on the window, at least a portion of the adhesive layer being on the second pattern to be in contact with a surface of the second pattern; and a display panel on the adhesive layer. |
US11011726B2 |
Bendable backplate structure and display device
A bendable backplate structure is configured to support a display panel and includes a supporting plate including at least a shaft channel extending to opposite sides of the supporting plate. A surface of the supporting plate is attached with the display panel. A bendable module disposed in the shaft channel includes a flexible covering portion and at least a magnet accommodated in and along the covering portion. The backplate structure and the display panel are foldable through the bendable module in a direction toward the display panel. |
US11011721B2 |
Electroluminescent display device
An electroluminescence display device, including a first electrode and a second electrode facing each other; a quantum dot emission layer disposed between the first electrode and the second electrode, the quantum dot emission layer including a plurality of quantum dots and not including cadmium, wherein the quantum dot emission layer includes a red emission layer disposed in a red pixel, a green emission layer disposed in a green pixel, and a blue emission layer disposed in a blue pixel, wherein the device has color reproducibility according to a DCI standard of greater than or equal to about 89%. |
US11011718B2 |
Solar cell and method for manufacturing solar cell
A solar cell includes elements, a connecting portion, and a transparent portion. The elements include first and second elements arrayed in a first direction. The transparent portion is located between the connecting portion and the second element. Each of the elements includes first and second electrode layers and a semiconductor layer interposed between the first and second electrode layers. Between the first element and the second element, their first electrode layers sandwich a first gap and their second electrode layers sandwich a second gap shifted in the first direction from the first gap. The connecting portion electrically connects the second electrode layer of the first element to the first electrode layer of the second element. The transparent portion is located between the second electrode layer of the first element and the first electrode layer of the second element at a position shifted in the first direction from the connecting portion. |
US11011715B2 |
Display panel and display device
A display panel includes a thin film encapsulation layer which has a stack of layers: an organic encapsulation layer and an inorganic encapsulation layer covering the organic encapsulation layer; an inorganic insulation layer; also first touch electrodes; and first bridge structures. First and second recessed structures that are connected to each other are formed in the inorganic encapsulation layer and the inorganic insulation layer in one arrangement, or the first and second recessed structures are provided in the inorganic insulation layer in another arrangement. The first touch electrode and the first bridge structure are located in the first recessed structure and the second recessed structure, or the first bridge structure and the first touch electrode are located in the first recessed structure and the second recessed structure. The first touch electrode serves as a touch driving electrode or touch sensing electrode, and two first touch electrodes are electrically connected to each other through one first bridge structure. |
US11011714B2 |
Flexible organic electroluminescence device (OLED) display panel and manufacturing method thereof
A flexible OLED display panel and a manufacturing method for a flexible OLED display panel are provided. A through hole defined in a flexible substrate is filled with a transparent layer such that the flexible OLED display panel looks as an integral structure visually and more conforms to visual effect of full screens. |
US11011706B2 |
Organic semiconductor element, organic semiconductor composition, organic semiconductor film, method of manufacturing organic semiconductor film, and polymer using the same
Provided are an organic thin film transistor element comprising an organic semiconductor layer containing a specific polymer which has a repeating unit including a structure represented by a specific formula, an organic semiconductor film suitable as the organic semiconductor layer and a method of manufacturing the same, and a polymer and a composition suitable as a constituent material of the organic semiconductor film. |
US11011704B2 |
Forming RRAM cell structure with filament confinement
A memory device with crossbar array structure includes two sets of parallel bottom electrodes positioned on a substrate. The lower bottom electrodes are located at a lower position relative to higher bottom electrodes. The device includes a first set of corner tips of the lower bottom electrodes, and a second set of corner tips at a top of the higher bottom electrodes. The device also includes a set of parallel top electrodes intersecting the two sets of parallel bottom electrodes. A dielectric is formed as a resistive random-access memory (RRAM) cell under each intersection of each top electrode and each of bottom electrode. The device further includes one set of contacts at one end of an array that contacts the lower bottom electrodes and another set of contacts at the other end of the array that contacts the higher bottom electrodes. |
US11011702B2 |
Memory devices and methods for forming the same
A memory device includes a first electrode, a resistive switching layer, a cap layer, a protective layer, and a second electrode. The resistive switching layer is disposed over the first electrode. The cap layer is disposed over the resistive switching layer, wherein the bottom surface of the cap layer is smaller than the top surface of the resistive switching layer. The protective layer is disposed over the resistive switching layer and surrounds the cap layer. At least a portion of the second electrode is disposed over the cap layer and covers the protective layer. |
US11011696B1 |
Piezoelectric power generator
In accordance with the present application, a high-density, low-impedance piezoelectric power generator is provided. In an example embodiment, the piezoelectric power generator has a plurality of piezoelectric elements arranged in a first predefined pattern; a plurality of actuators arranged in a second predefined pattern operably positioned to excite one or more of the plurality of the piezoelectric elements simultaneously within at least a first subset; and an electrical conduction system connected to sum the electrical power produced by the simultaneously excited piezoelectric elements within the first subset and for conducting an electrical current. |
US11011687B1 |
Micro light emitting diode with remnants of fabrication substrate for structural support
A light emitting diode (LED) device includes a semiconductor layer and one or more portions of a wafer on which the semiconductor layer was formed, the other portions of the wafer having been removed by an etching process. The semiconductor layer has a front surface that includes a light emitting area. The remnants of the wafer on which the semiconductor layer are disposed on the front surface of the semiconductor layer and define a trench. The trench is positioned such that the light emitting area emits light into the trench. The remnants of the wafer make the LED device more robust and the trench may reduce crosstalk with adjacent LED devices. |
US11011686B2 |
Semiconductor light emitting device
Semiconductor light emitting device includes: substrate including main and back surfaces, first and second side surfaces, and bottom and top surfaces, wherein main surface includes first to fourth sides; first main surface electrode on main surface and including first base portion contacting the sides of the main surface, and die pad connected to first base portion; second main surface electrode disposed on the main surface and including second base portion contacting first and third sides of the main surface, and wire pad connected to second base portion; semiconductor light emitting element including first electrode pad and mounted on die pad; wire connecting first electrode pad and wire pad; first insulating film covering portion between first base portion and die pad; second insulating film covering portion between second base portion and wire pad and having end portions contacting main surface; and light-transmitting sealing resin. |
US11011684B2 |
Light emitting device
A light emitting device includes a light emitting element having a peak emission wavelength of 410 nm to 440 nm and a phosphor member. The phosphor member includes a first phosphor having a peak emission wavelength of 430 nm to 500 nm and containing an alkaline-earth phosphate, a second phosphor having a peak emission wavelength of 440 nm to 550 nm and containing at least one of an alkaline-earth aluminate and a silicate containing Ca, Mg, and Cl, a third phosphor having a peak emission wavelength of 500 nm to 600 nm and containing a rare-earth aluminate, a fourth phosphor having a peak emission wavelength of 610 nm to 650 nm and containing a silicon nitride containing Al and at least one of Sr and Ca, and a fifth phosphor having a peak emission wavelength of 650 nm to 670 nm and containing a fluorogermanate. |
US11011679B2 |
Optoelectronic device and method for manufacturing the same
An optoelectronic device, comprising a first semiconductor layer comprising four boundaries comprising two longer sides and two shorter sides; a second semiconductor layer formed on the first semiconductor layer; and a plurality of first conductive type electrodes formed on the first semiconductor layer, wherein one first part of the plurality of first conductive type electrodes is formed on a corner constituted by one of the two longer sides and one of the two shorter sides, and wherein one fourth part of the plurality of first conductive type electrodes is formed along the one of the two longer sides, the one fourth part of the plurality of first conductive type electrodes comprises a head portion and a tail portion, the head portion comprises a width larger than that of the tail portion. |
US11011674B2 |
Multi-layered tunnel junction structure, light emitting device having the same, and production method of such device
A multi-layered tunnel junction structure adapted to be disposed between two light emitting structures includes an n-type doped insulation layer, as well as an n-type heavily doped layer, a metal atom layer, a p-type heavily doped layer, and a p-type doped insulation layer which are disposed on the n-type doped insulation layer in such sequential order. A light emitting device having the multi-layered tunnel junction structure and a production method of such light emitting device are also disclosed. |
US11011673B2 |
Quantum dot device and display device
A quantum dot device including a first electrode and a second electrode facing each other, a quantum dot layer disposed between the first electrode and the second electrode and an electron auxiliary layer disposed between the quantum dot layer and the second electrode, wherein the electron auxiliary layer includes an electron-transporting material represented by Chemical Formula 1 and an electron-controlling material capable of decreasing electron mobility of the electron auxiliary layer, and a display device. Zn1-xMxO Chemical Formula 1 In Chemical Formula 1, M and x are the same as described in the detailed description. |
US11011667B2 |
Display panel with photo sensor and display device using the same
A display panel comprises a plurality of pixels into which pixel data of an input image is written; a plurality of data lines connected to the plurality of pixels; a plurality of photo sensors configured to sense light; a plurality of read-out lines connected to the plurality of photo sensors; and a plurality of gate lines connected to the pixels and the photo sensors, wherein the plurality of photo sensors comprises at least one first photo sensor to which a first bias voltage is supplied and at least one second photo sensor to which a second bias voltage different from the first bias voltage is supplied. |
US11011663B2 |
Semiconductor element for oscillating or detecting terahertz wave and manufacturing method of semiconductor element
A semiconductor element which oscillates or detects a terahertz wave, the semiconductor element comprising: a first electrode; a semiconductor layer having a gain of the terahertz wave; a second electrode which forms a mesa structure together with the semiconductor layer; a third electrode; a fourth electrode; a first dielectric layer which is in contact with the third electrode and which surrounds the mesa structure; and a second dielectric layer which is arranged between the first electrode and the fourth electrode, which surrounds the third electrode, and which is made of a different material from the first dielectric layer, wherein the first electrode, the semiconductor layer, the second electrode, the third electrode, and the fourth electrode are stacked in this order from a side of the substrate in a direction perpendicular to the substrate, and a predetermined mathematical expression is satisfied. |
US11011657B2 |
Colored solar panels and structures comprising the same
A colored solar module includes a light incident side, a backside, and a photovoltaic cell positioned between the light incident side and the backside. A color layer extends across the light incident side of the colored solar module. The color layer includes a clear paint and a plurality of opaque reflecting pigments disposed within the clear paint. The composition of the opaque reflecting pigments in the color layer is between about 0.25 weight percent (wt %) and about 5.0 wt % and a comparative solar cell efficiencyof the colored solar module is equal to or greater than 70 %. A color difference between a first portion of the color layer positioned directly over the photovoltaic cell and a second portion of the color layer not positioned directly over the photovoltaic cell as measured in CIELAB color space is less than about 5.0. |
US11011655B2 |
Three-dimensional conductive electrode for solar cell
A photovoltaic device and method include forming a plurality of pillar structures in a substrate, forming a first electrode layer on the pillar structures and forming a continuous photovoltaic stack including an N-type layer, a P-type layer and an intrinsic layer on the first electrode. A second electrode layer is deposited over the photovoltaic stack such that gaps or fissures occur in the second electrode layer between the pillar structures. The second electrode layer is wet etched to open up the gaps or fissures and reduce the second electrode layer to form a three-dimensional electrode of substantially uniform thickness over the photovoltaic stack. |
US11011652B2 |
Semiconductor device and manufacturing method thereof
Provided are a transistor which has electrical characteristics requisite for its purpose and uses an oxide semiconductor layer and a semiconductor device including the transistor. In the bottom-gate transistor in which at least a gate electrode layer, a gate insulating film, and the semiconductor layer are stacked in this order, an oxide semiconductor stacked layer including at least two oxide semiconductor layers whose energy gaps are different from each other is used as the semiconductor layer. Oxygen and/or a dopant may be added to the oxide semiconductor stacked layer. |
US11011651B2 |
Tight pitch stack nanowire isolation
Embodiments of the present invention include a tight pitch stack nanowire semiconductor device. The semiconductor device includes an active region including a blanket dielectric nanosheet. Further included are at least one fin formed on the blanket dielectric nanosheet. There is at least one gate structure formed over the at least one fin in the active region such that the blanket dielectric nanosheet forms an insulating layer between each of the at least one fin and the at least one gate structure, and a substrate such that each of the at least one fin and each of the at least one dummy gate are electrically isolated. |
US11011645B2 |
Thin film transistor and manufacturing method thereof, array substrate and display device
The present disclosure discloses a thin film transistor and a manufacturing method thereof, an array substrate and a display device, and belongs to the field of semiconductor display technology. The active layer of the thin film transistor is made of a CIGS material. By manufacturing the active layer of the thin film transistor with the CIGS material, and the crystal defects of the CIGS are less than LTPS and IGZO, the mobility of the thin film transistor is higher, and the switching speed of the thin film transistor is faster, thereby being advantageous to further improve the resolution of the display device. |
US11011643B2 |
Nanosheet FET including encapsulated all-around source/drain contact
A semiconductor device includes a semiconductor wafer having one or more suspended nanosheet extending between first and second source/drain regions. A gate structure wraps around the nanosheet stack to define a channel region located between the source/drain regions. The semiconductor device further includes a first all-around source/drain contact formed in the first source/drain region and a second all-around source/drain contact formed in the second source/drain region. The first and second all-around source/drain contacts each include a source/drain epitaxy structure and an electrically conductive external portion that encapsulates the source/drain epitaxy structure. |
US11011636B2 |
Fin field effect transistor (FinFET) device structure with hard mask layer over gate structure and method for forming the same
A method for forming a FinFET device structure is provided. The method for forming a FinFET device structure includes forming a fin structure over a substrate, and forming a source/drain (S/D) structure over the fin structure. The method for forming a FinFET device structure also includes forming an inter-layer dielectric (ILD) structure covering the S/D structure, and forming a gate structure over the fin structure and adjacent to the S/D structure. The method for forming a FinFET device structure further includes forming a first hard mask layer over the gate structure, and forming a second hard mask layer over the first hard mask layer. In addition, the method for forming a FinFET device structure includes etching the ILD structure to form an opening exposing the S/D structure. The opening and a recess in the second hard mask layer are formed simultaneously. |
US11011635B2 |
Method of forming conformal epitaxial semiconductor cladding material over a fin field effect transistor (FINFET) device
The present disclosure generally relates to devices having conformal semiconductor cladding materials, and methods of forming the same. The cladding material is a silicon germanium epitaxial material. The cladding material is capable of being deposited to a thickness which is less than cladding materials formed by conventional deposition/etch techniques. |
US11011631B2 |
Silicon carbide semiconductor device
A silicon carbide substrate has at least one of a first structure and a second structure. The first structure is such that a first impurity region is in contact with a second impurity region, a third impurity region is separated from a fourth impurity region by a second drift region, and the second impurity region has a width greater than a width of the fourth impurity region in a direction parallel to a first main surface. The second structure is such that the first impurity region is separated from the second impurity region by a first drift region, the third impurity region is in contact with the fourth impurity region, and the fourth impurity region has a width greater than a width of the second impurity region in the direction parallel to the first main surface. |
US11011630B2 |
Semiconductor wafer
A semiconductor wafer is provided, which has a silicon wafer, a reaction suppressing layer, a stress generating layer and an active layer, the silicon wafer, the reaction suppressing layer, the stress generating layer and the active layer being disposed in an order of the silicon wafer, the reaction suppressing layer, the stress generating layer and the active layer, where the reaction suppressing layer is a nitride crystal layer that suppresses reaction between silicon atoms and group-III atoms, the stress generating layer is a nitride crystal layer that generates compressive stress, the active layer is a nitride crystal layer in which an electronic device is formed, and the semiconductor wafer further has, between the silicon wafer and the reaction suppressing layer, a SiAlN layer having silicon atoms, aluminum atoms and nitrogen atoms as main constituent atoms. |
US11011625B2 |
Liner for a bi-layer gate helmet and the fabrication thereof
A semiconductor device includes a semiconductor layer. A gate structure is disposed over the semiconductor layer. A spacer is disposed on a sidewall of the gate structure. A height of the spacer is greater than a height of the gate structure. A liner is disposed on the gate structure and on the spacer. The spacer and the liner have different material compositions. |
US11011618B2 |
Circuit devices with gate seals
Various examples of a circuit device that includes gate stacks and gate seals are disclosed herein. In an example, a substrate is received that has a fin extending from the substrate. A placeholder gate is formed on the fin, and first and second gate seals are formed on sides of the placeholder gate. The placeholder gate is selectively removed to form a recess between side surfaces of the first gate seal and the second gate seal. A functional gate is formed within the recess and between the side surfaces of the first gate seal and the second gate seal. |
US11011617B2 |
Formation of a partial air-gap spacer
A method is presented for reducing parasitic capacitance. The method includes forming multi-layer spacers between source/drain regions, forming a dielectric liner over the multi-layer spacers and the source/drain regions, forming gate structures adjacent the multi-layer spacers, forming a self-aligned contact cap over the gate structures, and removing a sacrificial layer of each of the multi-layer spacers to form air-gaps between the gate structures and the source/drain regions. |
US11011614B2 |
High electron mobility transistor (HEMT) device and method of forming same
A high electron mobility transistor (HEMT) device and a method of forming the same are provided. The method includes forming a first III-V compound layer over a substrate. A second III-V compound layer is formed over the first III-V compound layer. The second III-V compound layer has a greater band gap than the first III-V compound layer. A third III-V compound layer is formed over the second III-V compound layer. The third III-V compound layer and the first III-V compound layer comprise a same III-V compound. A passivation layer is formed along a topmost surface and sidewalls of the third III-V compound layer. A fourth III-V compound layer is formed over the second III-V compound layer. The fourth III-V compound layer has a greater band gap than the first III-V compound layer. |
US11011606B2 |
Semiconductor component having a SiC semiconductor body and method for producing a semiconductor component
A silicon carbide substrate has a trench extending from a main surface of the silicon carbide substrate into the silicon carbide substrate. The trench has a trench width at a trench bottom. A shielding region is formed in the silicon carbide substrate. The shielding region extends along the trench bottom. In at least one doping plane extending approximately parallel to the trench bottom, a dopant concentration in the shielding region over a lateral first width deviates by not more than 10% from a maximum value of the dopant concentration. The first width is less than the trench width and is at least 30% of the trench width. |
US11011600B2 |
Semiconductor structure having integrated inductor therein
A semiconductor structure includes: a substrate; a first passivation layer over the substrate; a second passivation layer over the first passivation layer; and a magnetic core in the second passivation layer; wherein the magnetic core includes a first magnetic material layer and a second magnetic material layer over the first magnetic material layer, the first magnetic material layer and the second magnetic material layer are separated by a high resistance isolation layer, and the high resistance isolation layer has a resistivity greater than about 1.3 ohm-cm. |
US11011598B2 |
Spliced unit and spliced panel
A spliced unit including a substrate, a circuit unit, and light-emitting units is provided. The substrate includes a first part having a first bottom surface and a first top surface opposite to the first bottom surface, and a second part having a second bottom surface and a second top surface opposite to the second bottom surface. There is a height difference between the first bottom surface of the first part and the second bottom surface of the second part. The circuit unit is disposed on the first top surface. The light-emitting units are disposed in the second part of the substrate. In a direction of a normal line perpendicular to the substrate, the first part of the substrate and the second part of the substrate are not overlapped, and the circuit unit and the light-emitting units are not overlapped. A spliced panel including the spliced units is also provided. |
US11011597B2 |
Display device having a compensation transistor with a second region having greater electrical resistance than a first region
A display device includes scan lines for scan signals, data lines for data voltages, and pixels connected to the scan and data lines, where each of the pixels includes a first transistor configured to control a driving current which flows from a first electrode to a second electrode according to a voltage applied to a gate electrode, a light-emitting element connected to the second electrode and configured to emit light according to the driving current, and a third transistor electrically connected between the gate electrode and the second electrode, the third transistor includes an active layer including a first region connected to the second electrode of the first transistor, a second region connected to the gate electrode of the first transistor, and a channel region between the first region and the second region, and electrical resistance of the second region is greater than electrical resistance of the first region. |
US11011592B2 |
Light emitting display apparatus
Disclosed is a light emitting display apparatus. The light emitting display apparatus includes a substrate including a display area including a plurality of pixel areas and a non-display area surrounding the display area, first to nth gate lines passing through the display area of the substrate, first to mth data lines passing through the display area of the substrate, first to mth pixel driving power lines passing through the display area of the substrate, a plurality of pixels provided in at least one pixel area of the substrate and connected to an adjacent gate line, an adjacent data line, and an adjacent pixel driving power line, and at least one data buffer chip provided in the display area of the substrate and connected to a corresponding data line of the first to mth data lines. Accordingly, a constant data voltage charging rate of each of the pixels is maintained regardless of a distance between a data driving circuit and each of the pixels. |
US11011590B2 |
Display device having a groove in a blocking region and an auxiliary pattern overlapping the groove
A display device includes a substrate including a display area and a non-display area adjacent to the display area. The non-display area includes a blocking region. An organic layer is disposed on the substrate. An emission layer is disposed in the display area of the substrate. An auxiliary pattern is disposed in the blocking region of the non-display area of the substrate. A thin film encapsulation layer is disposed on the substrate and overlaps the emission layer and the blocking region. The organic layer has a groove penetrating an entire thickness of the organic layer in the blocking region. The auxiliary pattern overlaps the groove. The auxiliary pattern includes a same material as a gate electrode disposed in the display area of the substrate. |
US11011589B2 |
Display apparatus and method of manufacturing the same
A display apparatus including a display substrate, a light-emitting device on the display substrate, an encapsulation substrate on the light-emitting device and bonded to the display substrate, and a diffraction-grating layer on a top surface of the encapsulation substrate, wherein the diffraction-grating layer includes a plurality of diffraction patterns spaced apart from one another by a predetermined distance, and each of the plurality of diffraction patterns has a stacked structure of a lower layer and an upper layer, wherein the lower and upper layers include different materials. |
US11011580B2 |
Memory device
According to one embodiment, a memory device includes a first interconnect group, a second interconnect group, and a memory cell. In the first interconnect group, first interconnects are stacked. The first interconnect group includes first regions in which the first interconnects are formed along a first direction, and a second region in which first contact plugs are formed on the first interconnects. In the second region, the first interconnect group includes a step portion. Heights of adjacent terraces of the step portion are different from each other by the two or more first interconnects. |
US11011579B2 |
Cross-point memory and methods for fabrication of same
The disclosed technology relates generally to integrated circuit devices, and in particular to cross-point memory arrays and methods for fabricating the same. In one aspect, a memory device of the memory array comprises a substrate and a memory cell stack formed between and electrically connected to first and second conductive lines. The memory cell stack comprises a first memory element over the substrate and a second memory element formed over the first element, wherein one of the first and second memory elements comprises a storage element and the other of the first and second memory elements comprises a selector element. The memory cell stack additionally comprises a first pair of sidewalls opposing each other and a second pair of sidewalls opposing each other and intersecting the first pair of sidewalls. The memory device additionally comprises first protective dielectric insulating materials formed on a lower portion of the first pair of sidewalls and an isolation dielectric formed on the first protective dielectric insulating material and further formed on an upper portion of the first pair of sidewalls. |
US11011578B2 |
Resistive memory device
A resistive memory device including: first conductive lines extending in a first direction; second conductive lines extending in a second direction crossing the first direction; and memory cells connected to the first conductive lines and the second conductive lines, wherein the memory cells include: a first memory cell including a first resistive memory layer and a first heating electrode layer, the first heating electrode layer includes a first contact surface in contact with the first resistive memory layer and the first contact surface has a first contact resistance; and a second memory cell including a second resistive memory layer and a second heating electrode layer, the second heating electrode layer includes a second contact surface in contact with the second resistive memory layer and the second contact surface has a second contact resistance different from the first contact resistance. |
US11011577B2 |
One-time programmable memory using gate-all-around structures
An One-Time Programmable (OTP) memory is built in at least one of nano-wire structures. The OTP memory has a plurality of OTP cells. At least one of the OTP cells can have at least one resistive element and at least one nano-wires. The at least one resistive element can be built by an extended source/drain or a MOS gate. The at least one nano-wires can be built on an isolated structure that has at least one MOS gate dividing nano-wires into at least one first active region and a second active region. The first active region can be doped with a first type of dopant and the second active region can be doped with a first or second type of dopant. The OTP element can be coupled to the first active region with the other end coupled to a first supply voltage line. The second active region can be coupled to a second voltage supply line and the MOS gate is coupled to a third voltage supply line. A plurality of address lines can be decoded into a plurality of wordlines coupled to the second or third voltage supply lines. Another plurality of address lines can be decoded into a plurality of bitlines coupled to the first supply voltage lines. By selecting the proper address lines, a target OTP cell can be selected for programming into another logic state or for reading of its logic state. |
US11011576B2 |
Resistive random access memory device
A memory device includes: a first conductor extending in parallel with a first axis; a first selector material comprising a first portion that extends along a first sidewall of the first conductor; a second selector material comprising a first portion that extends along the first sidewall of the first conductor; a first variable resistive material comprising a portion that extends along the first sidewall of the first conductor; and a second conductor extending in parallel with a second axis substantially perpendicular to the first axis, wherein the first portion of the first selector material, the first portion of the second selector material, and the portion of the first variable resistive material are arranged along a first direction in parallel with a third axis substantially perpendicular to the first axis and second axis. |
US11011575B2 |
Circuit selector of embedded magnetoresistive random access memory
A circuit selector of embedded magnetoresistive random access memory (EMRAM) includes a transistor comprising a source/drain terminal coupled to a first magnetic tunneling junction (MTJ) and a second MTJ, a gate terminal, and a drain/source terminal coupled to a voltage source. Preferably, the first MTJ includes a first free layer, a first barrier layer, and a first pinned layer, in which the first free layer is coupled to the source/drain terminal and the first pinned layer is coupled to a first circuit. The second MTJ includes a second free layer, a second barrier layer, and a second pinned layer, in which the second pinned layer is coupled to the source/drain terminal and the second free layer is coupled to a second circuit. |
US11011573B2 |
Radiation-emitting component
A radiation-emitting component includes a semiconductor layer sequence including first and second semiconductor layers, and an active region and is arranged between the first and second semiconductor layers, first and second electrodes electrically connect to the first and second semiconductor layers, a semiconductor layer sequence generates electromagnetic radiation depending on a current flow between the first and second electrodes, a driver field-effect transistor includes at least one driver gate and at least one driver channel, the second electrode and the driver channel electrode separately electrically connect to the driver channel and the driver gate electrode electrically connects to the driver gate, and the driver field-effect transistor is configured to control a current flow between the driver channel electrode and the second electrode through the driver channel and thereby the current flow between the first and second electrodes, depending on a voltage applied to the driver gate electrode. |
US11011568B2 |
Semiconductor structure, back-side illuminated image sensor and method for manufacturing the same
A semiconductor structure includes: a semiconductor substrate arranged over a back end of line (BEOL) metallization stack, and including a scribe line opening; a conductive pad having an upper surface that is substantially flush with an upper surface of the semiconductor substrate, the conductive pad including an upper conductive region and a lower conductive region, the upper conductive region being confined to the scribe line opening substantially from the upper surface of the semiconductor substrate to a bottom of the scribe line opening, and the lower conductive region protruding downward from the upper conductive region, through the BEOL metallization stack; a passivation layer arranged over the semiconductor substrate; and an array of pixel sensors arranged in the semiconductor substrate adjacent to the conductive pad. |
US11011567B2 |
Structure and method for 3D image sensor
An image sensor structure that includes a first semiconductor substrate having a plurality of imaging sensors; a first interconnect structure formed on the first semiconductor substrate; a second semiconductor substrate having a logic circuit; a second interconnect structure formed on the second semiconductor substrate, wherein the first and the second semiconductor substrates are bonded together in a configuration that the first and second interconnect structures are sandwiched between the first and second semiconductor substrates; and a backside deep contact (BDCT) feature extended from the first interconnect structure to the second interconnect structure, thereby electrically coupling the logic circuit to the image sensors. |
US11011565B2 |
Solid-state image pickup apparatus and image pickup system
An apparatus according to the present invention in which a first substrate including a photoelectric conversion element and a gate electrode of a transistor, and a second substrate including a peripheral circuit portion are placed upon each other. The first substrate does not include a high-melting-metal compound layer, and the second substrate includes a high-melting-metal compound layer. |
US11011562B2 |
Image sensor
An image sensor includes a substrate having a photoelectric conversion element therein, a first via extending into a first surface of the substrate such that a first upper surface of the first via is exposed adjacent the first surface of the substrate, a second upper surface of the first via extending away from the first surface of the substrate, first to third insulating films sequentially stacked on the first surface of the substrate, and a contact extending through the first to third insulating films and into the second upper surface of the first via. The contact includes a first portion within the first via, a second portion in the first insulating film, a third portion in the second insulating film, and a fourth portion in the third insulating film. |
US11011559B2 |
Image sensors
Image sensors are provided. The image sensors may include a substrate including first, second, third and fourth regions, a first photoelectric conversion element in the first region, a second photoelectric conversion element in the second region, a third photoelectric conversion element in the third region, a fourth photoelectric conversion element in the fourth region, a first microlens at least partially overlapping both the first and second photoelectric conversion elements, and a second microlens at least partially overlapping both the third and fourth photoelectric conversion elements. The image sensors may also include a floating diffusion region and first, second and third pixel transistors configured to perform different functions from each other. Each of the first, second and third pixel transistors may be disposed in at least one of first, second, third and fourth pixel regions. The first pixel transistor may include multiple first pixel transistors. |
US11011555B2 |
Fabricating integrated light-emitting pixel arrays for displays
Methods of fabricating integrated active-matrix light emitting pixel array based displays are provided. The methods include: forming an array of light emitting elements on a first side of a substrate, forming an array of active-matrix light emitting pixels using the array of light emitting elements, each pixel including at least one light emitting element and at least one non-volatile memory coupled to the at least one light-emitting element, forming conductive interconnects penetrating through the substrate from a second side of the substrate to the first side, and forming one or more integrated circuits on the second side, the one or more integrated circuits being conductively coupled to the array of active-matrix light-emitting pixels through the conductive interconnects. The methods can further include forming an array of active-matrix multi-color display pixels by using the array of active-matrix light emitting pixels. |
US11011554B2 |
Array substrate, method for fabricating the same, and display panel
Embodiments of the present disclosure provide an array substrate, a method for fabricating the same, and a display panel. The array substrate comprises a substrate, first signal lines and touch electrode signal lines the substrate. The touch electrode signal lines intersect with the first signal lines. Each of the touch electrode signal lines includes a plurality of first sub-signal lines and a plurality of second sub-signal lines. The first sub-signal lines are arranged in a same layer as and insulated from the first signal line. Each of the second sub-signal lines run across one of the first signal lines and are electrically connected with the first sub-signal lines adjacent to said second sub-signal line through vias. The first sub-signal lines are arranged in a layer different from the second sub-signal lines. |
US11011552B2 |
Method for manufacturing a display substrate comprising interconnected first and second wirings
Display substrates and display devices with reduced electrical resistance are disclosed. One inventive aspect includes a switching device, a first wiring and a second wiring. The switching device includes a first semiconductor layer, first and second gate insulation layers, a source electrode and a drain electrode. The source and drain electrodes are formed to electrically connect, through the first and second gate insulation layers, to the first semiconductor layer. The second wiring is formed on the second gate insulation layer and electrically connected to the first wiring. |
US11011548B2 |
Electronic device and method of manufacturing the same
An electronic device includes a plurality of layers formed on a silicon-on-insulator (SOI) substrate. The SOI substrate includes a support substrate, a buried insulating layer formed on the support substrate, and a silicon layer formed on the buried insulating layer. A membrane structure of the electronic device includes the plurality of layers, the buried insulating later and the silicon layer but does not include the support substrate. A passivation film covers an upper surface and a side surface of the membrane structure. |
US11011547B2 |
Method for forming a microelectronic device
A method for forming an electronic device comprising a first transistor and a second transistor, from a stack of layers comprising an isolating layer surmounted on an active layer made of a semi-conductive material, the method comprising at least the following steps: Forming an isolating trench to define, in the active layer, at least one first active region and at least one second active region, said isolating trench protruding with respect to the active layer of the second active region; Forming a masking layer without covering the active layer of the second active region and without covering a portion of the isolating trench; Etching: of a portion of the thickness of the active layer of the second active region, and of at least one portion of the thickness of said portion of the isolating trench. |
US11011545B2 |
Semiconductor device including standard cells
A semiconductor device includes a plurality of standard cells. The plurality of standard cells include a first group of standard cells arranged in a first row extending in a row direction and a second group of standard cells arranged in a second row extending in the row direction. The first group of standard cells and the second group of standard cells are arranged in a column direction. A cell height of the first group of standard cells in the column direction is different from a cell height of the second group of standard cells in the column direction. |
US11011544B2 |
Staggered word line architecture for reduced disturb in 3-dimensional NOR memory arrays
A staggered memory cell architecture staggers memory cells on opposite sides of a shared bit line preserves memory cell density, while increasing the distance between such memory cells, thereby reducing the possibility of a disturb. In one implementation, the memory cells along a first side of a shared bit line are connected to a set of global word lines provided underneath the memory structure, while the memory cells on the other side of the shared bit line—which are staggered relative to the memory cells on the first side—are connected to global word lines above the memory structure. |
US11011543B2 |
Semiconductor devices
Provided are a semiconductor device, a method of manufacturing the semiconductor device, and an electronic system adopting the same. The semiconductor device includes a semiconductor pattern, which is disposed on a semiconductor substrate and has an opening. The semiconductor pattern includes a first impurity region having a first conductivity type and a second impurity region having a second conductivity type different from the first conductivity type. A peripheral transistor is disposed between the semiconductor substrate and the semiconductor pattern. A first peripheral interconnection structure is disposed between the semiconductor substrate and the semiconductor pattern. The first peripheral interconnection structure is electrically connected to the peripheral transistor. Cell gate conductive patterns are disposed on the semiconductor pattern. Cell vertical structures are disposed to pass through the cell gate conductive patterns and to be connected to the semiconductor pattern. Cell bit line contact plugs are disposed on the cell vertical structures. A bit line is disposed on the cell bit line contact plugs. A peripheral bit line contact structure is disposed between the bit line and the first peripheral interconnection structure. The peripheral bit line contact structure crosses the opening of the semiconductor pattern. |
US11011542B2 |
Semiconductor device and method for manufacturing semiconductor device
A semiconductor device with a large storage capacity per unit area is provided. The semiconductor device includes a first insulator including a first opening, a first conductor that is over the first insulator and includes a second opening, a second insulator that is over the first insulator and includes a third opening, and an oxide penetrating the first opening, the second opening, and the third opening. The oxide includes a first region at least in the first opening, a second region at least in the second opening, and a third region at least in the third opening. The resistances of the first region and the third region are lower than the resistance of the second region. |
US11011539B2 |
Multi-stack three-dimensional memory devices and methods for forming the same
Embodiments of three-dimensional (3D) memory devices and methods for forming the 3D memory devices are disclosed. In an example, a 3D memory device includes a substrate, a first single-crystal silicon layer above the substrate, a first memory stack above the first single-crystal silicon layer, a first channel structure extending vertically through the first memory stack, and a first interconnect layer above the first memory stack. The first memory stack includes a first plurality of interleaved conductor layers and dielectric layers. The first channel structure includes a first lower plug extending into the first single-crystal silicon layer and including single-crystal silicon. The first interconnect layer includes a first bit line electrically connected to the first channel structure. |
US11011538B2 |
Transistors and arrays of elevationally-extending strings of memory cells
A transistor comprises channel material having first and second opposing sides. A gate is on the first side of the channel material and a gate insulator is between the gate and the channel material. A first insulating material has first and second opposing sides, with the first side being adjacent the second side of the channel material. A second insulating material of different composition from that of the first insulating material is adjacent the second side of the first insulating material. The second insulating material has at least one of (a), (b), and (c), where, (a): lower oxygen diffusivity than the first material, (b): net positive charge, and (c): at least two times greater shear strength than the first material. In some embodiments, an array of elevationally-extending strings of memory cells comprises such transistors. Other embodiments, including method, are disclosed. |
US11011537B2 |
Vertical interconnect methods for stacked device architectures using direct self assembly with high operational parallelization and improved scalability
An apparatus including an array of at least two vertically stacked layers of integrated circuit device components separated by a dielectric layer on a substrate, wherein each of the at least two vertically stacked layers includes a laterally disposed contact point; and an electrically conductive interconnection coupled to a lateral edge of the contact point of each of the at least two vertically stacked layers and bridging the dielectric layer. A method including forming an array of at least two vertically stacked layers of integrated circuit device components separated by a dielectric layer on a substrate, forming a trench that exposes a lateral contact point of each of the at least two vertically stacked layers; depositing a polymer in the trench, wherein the polymer preferentially aligns to a material of the lateral contact point and bridges the dielectric layer; and modifying or replacing the polymer with an electrically conductive material. |
US11011536B2 |
Vertical memory device
A vertical memory device includes gate electrodes spaced apart from each other in a first direction. Each of the gate electrodes extends in a second direction. Insulation patterns extend in the second direction between adjacent gate electrodes. A channel structure extends in the first direction. The channel structure extends through at least a portion of the gate electrode structure and at least a portion of the insulation pattern structure. The gate electrode structure includes at least one first gate electrode and a plurality of second gate electrodes sequentially stacked in the first direction on the substrate. Lower and upper surfaces of a first insulation pattern are bent away from the upper surface of the substrate along the first direction. A sidewall connecting the lower and upper surfaces of the first insulation pattern is slanted with respect to the upper surface of the substrate. |
US11011533B2 |
Memory structure and programing and reading methods thereof
A memory structure including a first select transistor, a first floating gate transistor, a second select transistor, a second floating gate transistor, and a seventh doped region is provided. The first select transistor includes a select gate, a first doped region, and a second doped region. The first floating gate transistor includes a floating gate, the second doped region, and a third doped region. The second select transistor includes the select gate, a fourth doped region, and a fifth doped region. The second floating gate transistor includes the floating gate, the fifth doped region, and a sixth doped region. A gate width of the floating gate in the second floating gate transistor is greater than a gate width of the floating gate in the first floating gate transistor. The floating gate covers at least a portion of the seventh doped region. |
US11011532B2 |
Floating gate nonvolatile semiconductor memory device
According to one embodiment, a nonvolatile semiconductor memory device includes a plurality of U-shaped memory strings, each of the plurality of U-shaped memory strings including a first columnar body, a second columnar body, and a conductive connection body. The conductive connection body connects the first columnar body and the second columnar body. A plurality of first memory cells are connected in series in the first columnar body and are composed of a plurality of first conductive layers, a first inter-gate insulating film, a plurality of first floating electrodes, a first tunnel insulating film, and a first memory channel layer. The plurality of first floating electrodes are separated from the plurality of first conductive layers by the first inter-gate insulating film. A plurality of second memory cells are connected in series in the second columnar body, similarly to the plurality of first memory cells. |
US11011524B2 |
Semiconductor arrangement with capacitor
A semiconductor arrangement includes a logic region and a memory region. The memory region has an active region that includes a semiconductor device. The memory region also has a capacitor within one or more dielectric layers over the active region, where the capacitor is over the semiconductor device. The semiconductor arrangement also includes a protective ring within at least one of the logic region or the memory region and that separates the logic region from the memory region. The capacitor has a first electrode, a second electrode and an insulating layer between the first electrode and the second electrode, where the first electrode is substantially larger than other portions of the capacitor. |
US11011523B2 |
Column formation using sacrificial material
Methods, apparatuses, and systems related to forming a capacitor column using a sacrificial material are described. An example method includes patterning a surface of a semiconductor substrate having: a first silicate material over the substrate, a first nitride material over the first silicate material, a sacrificial material over the first nitride material, a second silicate material over the sacrificial material, and a second nitride material over the second silicate material. The method further includes forming a column of capacitor material in an opening through the first silicate material, the first nitride material, the sacrificial material, the second silicate material, and the second nitride material. The method further includes removing the sacrificial material. |
US11011521B2 |
Semiconductor structure patterning
Methods, apparatuses, and systems related to removing a hard mask are described. An example method includes patterning a silicon hard mask on a semiconductor structure having a first silicate material on a working surface. The method further includes forming a first nitride material on the first silicate material. The method further includes forming a second silicate material on the first nitride material. The method further includes forming a second nitride material on the second silicate material. The method further includes an opening through the semiconductor structure using the patterned hard mask to form a pillar support. The method further includes forming a silicon liner material on the semiconductor structure. The method further includes removing the silicon liner material using a wet etch process. |
US11011519B2 |
Semiconductor device including gate structure having device isolation film
A semiconductor device and a method for fabricating the same, the device including an active pattern extending in a first direction on a substrate; a field insulating film surrounding a part of the active pattern; a first gate structure extending in a second direction on the active pattern and the field insulating film, a second gate structure spaced apart from the first gate structure and extending in the second direction on the active pattern and the field insulating film; and a first device isolation film between the first and second gate structure, wherein a side wall of the first gate structure facing the first device isolation film includes an inclined surface having an acute angle with respect to an upper surface of the active pattern, and a lowermost surface of the first device isolation film is lower than or substantially coplanar with an uppermost surface of the field insulating film. |
US11011516B2 |
Integrated circuit device and method of manufacturing the same
An integrated circuit (IC) device includes a first and a second fin-type active region protruding from a first region and a second region, respectively, of a substrate, a first and a second gate line, and a first and a second source/drain region. The first fin-type active region has a first top surface and a first recess has a first depth from the first top surface. The first source/drain region fills the first recess and has a first width. The second fin-type active region has a second top surface and a second recess has a second depth from the second top surface. The second depth is greater than the first depth. The second source/drain region fills the second recess and has a second width. The second width is greater than the first width. |
US11011515B2 |
Normally off III nitride transistor
A semiconductor device containing an enhancement mode GaN FET on a III-N layer stack includes a low-doped GaN layer, a barrier layer including aluminum over the low-doped GaN layer, a stressor layer including indium over the barrier layer, and a cap layer including aluminum over the stressor layer. A gate recess extends through the cap layer and the stressor layer, but not through the barrier layer. The semiconductor device is formed by forming the barrier layer with a high temperature MOCVD process, forming the stressor layer with a low temperature MOCVD process and forming the cap layer with a low temperature MOCVD process. The gate recess is formed by a two-step etch process including a first etch step to remove the cap layer, and a second etch step to remove the stressor layer. |
US11011514B2 |
Doping and fabrication of diamond and C-BN based device structures
Certain embodiments include a cubic boron nitride (c-BN) device. The c-BN device includes a n/n+ Schottky diode and a n/p/n+ bipolar structure. The n/n+ Schottky diode and the /p/n+ bipolar structure are on a single-crystal diamond platform. |
US11011513B2 |
Integrating a junction field effect transistor into a vertical field effect transistor
Embodiments of the invention include first and second devices formed on a substrate. The first device includes a bottom source or drain (S/D) region, a plurality of fins formed on portions of the bottom S/D region, a bottom spacer formed on the bottom S/D region, a dielectric layer, a gate, a top S/D region formed on each fin of a plurality of fins, and one or more contacts. The dielectric layer is disposed between the gate and the fin of the plurality of fins. The second device includes a bottom doped region, a channel formed the bottom doped region, a sidewall doped region of the channel, a gate coupled to the sidewall doped region, a top doped region, and one or more contacts. A junction is formed between the channel and the sidewall doped region. The cap layer is formed on the gate and the top doped region. |
US11011512B2 |
Semiconductor device including a nitride layer
A semiconductor device, comprising a nitride semiconductor layer, a switching element, and a driving transistor; the switching element comprises: a first portion of a first electrode formed on the nitride semiconductor layer; a second electrode formed on the nitride semiconductor layer; and a first control electrode formed on the nitride semiconductor layer and located between the first portion of the first electrode and the second electrode; the driving transistor comprises: a second portion of the first electrode formed on the nitride semiconductor layer and connecting the first portions of the adjacent first electrodes to each other; a third electrode formed on the nitride semiconductor layer and transmitting a signal to the first control electrode; and a second control electrode formed on the nitride semiconductor layer and located between the second portion of the first electrode and the third electrode. Therefore, when the switching element is turned off, it can be kept in an off state even if a drain voltage applied to the switching element is subjected to a variation or the like. |
US11011511B2 |
Electrostatic discharge protection devices
An ESD protection device includes a substrate having an active fin extending in a first direction, a plurality of gate structures extending in a second direction at a given angle with respect to the first direction and partially covering the active fin, an epitaxial layer in a recess on a portion of the active fin between the gate structures, an impurity region under the epitaxial layer, and a contact plug contacting the epitaxial layer. A central portion of the impurity region is thicker than an edge portion of the impurity region, in the first direction. The contact plug lies over the central portion of the impurity region. |
US11011510B2 |
Breakdown uniformity for ESD protection device
An electronic device includes an ESD protection device with implanted regions that extend around a finger shape with a straight portion and elongated turn portions, and contacts that extend only in the straight portion, where the turn portions include elongated lightly doped implanted regions to mitigate turn on of a curvature PNP transistor for uniform device breakdown performance. Adjacent finger structures are spaced apart from one another to mitigate thermal transfer between device fingers. |
US11011508B2 |
Dielectric spaced diode
An electronic device, e.g. an integrated circuit, is formed on a P-type lightly-doped semiconductor substrate having an N-type buried layer. First and second N-wells extend from a surface of the substrate to the buried layer. A first NSD region is located within the first N-well, and a second NSD region is located within the second N-well. A PSD region extends from the substrate surface into the substrate and is located between the first and second NSD regions. A P-type lightly-doped portion of the substrate is located between the N-well and the substrate surface and between the PSD region and the first and second NSD regions. |
US11011507B1 |
3D semiconductor device and structure
A 3D semiconductor device, the device including: a first die comprising first transistors and a first interconnect; and a second die comprising second transistors and a second interconnect, wherein said first die is overlaid by said second die, wherein said first die has a first die area and said second die has a second die area, wherein said first die area is at least 10% larger than said second die area, wherein said second die is pretested, wherein said second die is bonded to said first die, wherein said bonded comprises metal to metal bonding, wherein said first die comprises at least two first alignment marks positioned close to a first die edge of said first die, and wherein said second die comprises at least two second alignment marks positioned close to a second die edge of said second die. |
US11011504B2 |
Optoelectronic semiconductor chip and method of producing an optoelectronic semiconductor chip
An optoelectronic semiconductor chip includes a semiconductor body including a first semiconductor region and a second semiconductor region, a recess extending through the first semiconductor region, the recess having a bottom surface, where the second semiconductor region is exposed, and a blocking element arranged on the bottom surface, wherein the at least one recess has a first width and a second width parallel to the main extension plane of the semiconductor body, and the first width is smaller than the second width. |
US11011494B2 |
Layer structures for making direct metal-to-metal bonds at low temperatures in microelectronics
Layer structures for making direct metal-to-metal bonds at low temperatures and shorter annealing durations in microelectronics are provided. Example bonding interface structures enable direct metal-to-metal bonding of interconnects at low annealing temperatures of 150° C. or below, and at a lower energy budget. The example structures provide a precise metal recess distance for conductive pads and vias being bonded that can be achieved in high volume manufacturing. The example structures provide a vertical stack of conductive layers under the bonding interface, with geometries and thermal expansion features designed to vertically expand the stack at lower temperatures over the precise recess distance to make the direct metal-to-metal bonds. Further enhancements, such as surface nanotexture and copper crystal plane selection, can further actuate the direct metal-to-metal bonding at lowered annealing temperatures and shorter annealing durations. |
US11011492B2 |
Ultrasonic transducer systems including tuned resonators, equipment including such systems, and methods of providing the same
An ultrasonic transducer system is provided. The ultrasonic transducer system includes: a transducer mounting structure; a transducer, including at least one mounting flange for coupling the transducer to the transducer mounting structure; and a tuned resonator having a desired resonant frequency, the tuned resonator being integrated with at least one of the transducer mounting structure and the at least one mounting flange. |
US11011491B2 |
Semiconductor device packages and methods of manufacturing the same
A semiconductor device package includes a connection structure having a first portion and a second portion extending from the first portion, the second portion having a width less than the first portion; and a dielectric layer surrounding the connection structure, wherein the dielectric layer and the second portion of the connection structure defines a space. |
US11011486B1 |
Bonded semiconductor structure and method for forming the same
A semiconductor structure is disclosed, including a substrate, an insulating layer on the substrate, a barrier layer on the insulating layer, a bonding dielectric layer on the barrier layer, and a bonding pad extending through the insulating layer, the barrier layer and the bonding dielectric layer. A top surface of the bonding pad exposed from the bonding dielectric layer for bonding to another bonding pad on another substrate. A liner on a bottom surface of the bonding pad directly contacts the substrate. |
US11011483B2 |
Nickel alloy for semiconductor packaging
A packaged semiconductor die includes a semiconductor die coupled to a die pad. The semiconductor die has a front side containing copper leads, a copper seed layer coupled to the copper leads, and a nickel alloy coating coupled to the copper seed layer. The nickel alloy includes tungsten and cerium (NiWCe). The packaged semiconductor die may also include wire bonds coupled between leads of a lead frame and the copper leads of the semiconductor die. In addition, the packaged semiconductor die may be encapsulated in molding compound. A method for fabricating a packaged semiconductor die. The method includes forming a copper seed layer over the copper leads of the semiconductor die. In addition, the method includes coating the copper seed layer with a nickel alloy. The method also includes singulating the semiconductor wafer to create individual semiconductor die and placing the semiconductor die onto a die pad of a lead frame. In addition the method includes wire bonding the leads of a lead frame to the copper leads of the semiconductor die and then encapsulating the die in molding compound. |
US11011482B2 |
Fan-out semiconductor package
A semiconductor package includes a semiconductor chip, an encapsulant, and an interconnection member. The semiconductor chip has connection pads. The encapsulant encapsulates a portion of the semiconductor chip. The interconnection member includes a first insulating layer disposed on the encapsulant and a portion of the semiconductor chip, a redistribution layer disposed on the first insulating layer, and a second insulating layer disposed on the first insulating layer and the redistribution layer. The redistribution layer is electrically connected to the connection pads of the semiconductor chip, and a thickness of the second insulating layer is greater than a thickness of the first insulating layer. |
US11011480B2 |
Semiconductor device having a flat region with an outer peripheral shape including chamfer portions
Provided is a semiconductor device capable of improving relative accuracy of semiconductor elements and a yield of a semiconductor integrated circuit device. The semiconductor device includes a flat region formed on a surface of a semiconductor substrate, and having an outer peripheral shape formed by regional sides and regional chamfer portions; an outer peripheral region surrounding the flat region, and having a uniform height different from a height of the flat region; a plurality of semiconductor elements having similar shapes or the same shape, and formed on the flat region; and a wiring metal connecting the plurality of semiconductor elements via contact holes formed in a second insulating film on the semiconductor elements. |
US11011476B2 |
Lead frame surface finishing
The present disclosure is directed to a lead frame design that includes a copper alloy base material coated with an electroplated copper layer, a precious metal, and an adhesion promotion compound. The layers compensate for scratches or surface irregularities in the base material while promoting adhesion from the lead frame to the conductive connectors, and to the encapsulant by coupling them to different layers of a multilayer coating on the lead frame. The first layer of the multilayer coating is a soft electroplated copper to smooth the surface of the base material. The second layer of the multilayer coating is a thin precious metal to facilitate a mechanical coupling between leads of the lead frame and conductive connectors. The third layer of the multilayer coating is the adhesion promotion compound for facilitating a mechanical coupling to an encapsulant around the lead frame. |
US11011474B2 |
Electromagnetic wave attenuator and electronic device
According to one embodiment, an electromagnetic wave attenuator includes a plurality of magnetic layers, and a plurality of nonmagnetic layers. The plurality of nonmagnetic layers is conductive. A direction from one of the plurality of magnetic layers toward an other one of the plurality of magnetic layers is aligned with a first direction. One of the plurality of nonmagnetic layers is between the one of the plurality of magnetic layers and the other one of the plurality of magnetic layers. A first thickness along the first direction of the one of the plurality of magnetic layers is not less than ½ times a second thickness along the first direction of the one of the plurality of nonmagnetic layers. |
US11011473B2 |
Semiconductor package
Disclosed is a semiconductor package comprising a substrate, a semiconductor chip on the substrate, a molding layer on the substrate covering the semiconductor chip, and a shield layer on the molding layer. The shield layer includes a polymer in which a plurality of conductive structures and a plurality of nano-structures are distributed wherein at least some of the conductive structures are connected to one another. |
US11011472B2 |
Self-aligned register structure for base polysilicon and preparation method thereof
The present invention discloses a self-aligned register structure for base polysilicon and a preparation method thereof. The self-aligned register structure comprises a silicon substrate having a partially oxidized region of SiO2 medium, a SiO2 medium protective layer is arranged at a center above the silicon substrate, base polysilicon layers are located at left and right sides of the SiO2 medium protective layer, the adjacent base polysilicon layers are symmetrical to the SiO2 medium protective layer at equal spacing, and the spacing is equal to a thickness of the base polysilicon layer. The self-aligned register structure for base polysilicon of the present invention meets an extremely high register requirement, guarantees the uniformity of electric parameters of devices, and eliminates physical or chemical damage to an intrinsic region when etching a surface of the silicon substrate during the forming of the base polysilicon, thus reducing the capacitance and enhancing the product yield; and meanwhile, the preparation method is simple, convenient, low in cost, and short in time. |
US11011470B1 |
Microelectronic package with mold-integrated components
Embodiments may relate to a microelectronic package that includes a substrate with an overmold material. The microelectronic package may include a die in the overmold material, and an inactive side of the die may be coupled with a face of the substrate. A through-mold via (TMV) may be present in the overmold material. The TMV may be communicatively coupled with the substrate, and an active side of the die may be communicatively coupled with the TMV by a trace in the overmold material. Other embodiments may be described or claimed. |
US11011465B2 |
Single crystal silicon carbide substrate, method of manufacturing single crystal silicon carbide substrate, and semiconductor laser
A single crystal silicon carbide substrate includes a substrate of a single crystal silicon carbide; a first wiring film and a second wiring film disposed on one side of the substrate and having therebetween an interstice which is formed continuously without being broken from a first end of the one side to a second end of the one side; and an insulating portion disposed in the interstice between the first wiring film and the second wiring film and including a surface texture of the one side exposed by removing using dry etching a surface contaminated layer which is contaminated by at least one of iron, aluminum, chromium, or nickel adhered thereto. |
US11011464B2 |
Package structures and method of forming the same
An embodiment is a method including forming a first package. The forming the first package includes forming a through via adjacent a first die, at least laterally encapsulating the first die and the through via with an encapsulant, and forming a first redistribution structure over the first die, the through via, and the encapsulant. The forming the first redistribution structure including forming a first via on the through via, and forming a first metallization pattern on the first via, at least one sidewall of the first metallization pattern directly overlying the through via. |
US11011463B2 |
Dielectric helmet-based approaches for back end of line (BEOL) interconnect fabrication and structures resulting therefrom
Dielectric helmet-based approaches for back end of line (BEOL) interconnect fabrication, and the resulting structures, are described. In an example, a semiconductor structure includes a substrate. A plurality of alternating first and second conductive line types is disposed along a same direction of a back end of line (BEOL) metallization layer disposed in an inter-layer dielectric (ILD) layer disposed above the substrate. A dielectric layer is disposed on an uppermost surface of the first conductive line types but not along sidewalls of the first conductive line types, and is disposed along sidewalls of the second conductive line types but not on an uppermost surface of the second conductive line types. |
US11011462B2 |
Method for forming fuse pad and bond pad of integrated circuit
The present disclosure relates to a semiconductor device. A fuse layer is arranged within a first dielectric layer. A bond pad is arranged on the first dielectric layer. A second dielectric layer is arranged along sidewall and upper surfaces of the bond pad. A passivation layer is arranged over the first and second dielectric layers, and the passivation layer having a bond pad opening overlying the bond pad and a fuse opening overlying the fuse layer. The bond pad has a bottom surface that is co-planar with a bottom surface of the passivation layer. |
US11011458B2 |
Circuit board structure and manufacturing method thereof
A method of manufacturing circuit board structure includes forming a sacrificial layer having first openings on a substrate; forming a metal layer on the sacrificial layer; forming a patterned photoresist layer having second openings over the sacrificial layer, in which the second openings are connected to the first openings and expose a portion of the metal layer; forming a first circuit layer filling the second openings and the first openings; forming a first dielectric layer over the sacrificial layer and covering the metal layer, in which the first dielectric layer has third openings exposing the first circuit layer; forming a second circuit layer filling the third openings and covering a portion of the first dielectric layer; removing the substrate to expose the sacrificial layer, a portion of the metal layer and a portion of the first circuit layer; and removing the sacrificial layer and the metal layer. |
US11011457B2 |
Wiring substrate
A wiring substrate includes a first insulation layer containing insulating resin, a first through hole passing through the first insulation layer is the thickness direction, a pad formed within the first through hole, a second insulation layer containing insulating resin and laminated on a first surface of the first insulation layer, and a first wiring layer provided on the second insulation layer and connecting to the pad. A connecting surface of the pad that connects the first wiring layer includes a curved surface that curves in a protruding shape toward the first surface of the first insulation layer. |
US11011455B2 |
Electronic package structure with improved board level reliability
A method for providing an electronic package structure includes providing a substrate having a die pad having a die pad top surface and an opposing die pad bottom surface, leads laterally spaced apart from the die pad, and a substrate encapsulant interposed between the die pad and the leads and includes a substrate top surface and an opposing substrate bottom surface. The substrate encapsulant is provided such that the die pad and the leads protrude outward from the substrate bottom surface. The method includes providing an electronic device having opposing major surfaces and a pair of opposing outer edges. The method includes connecting the electronic device to the substrate such that one major surface of the electronic device is spaced apart from the die pad top surface and upper surfaces of the leads, and the outer edges overlap an opposing pair of the leads. |
US11011454B2 |
Power module apparatus, cooling structure, and electric vehicle or hybrid electric vehicle
A power module apparatus includes a power module having a package configured to seal a perimeter of a semiconductor device, and a heat radiator bonded to one surface of the package; a cooling device comprising a coolant passage through which coolant water flows, in which the heat radiator is attached to an opening provided on a way of the coolant passage, wherein the heat radiator of the power module is attached to the opening of the cooling device so that a height (ha) and a height (hb) are substantially identical to each other. The power module in which the heat radiator is attached to the opening formed at the upper surface portion of the cooling device can also be efficiently cooled, and thereby it becomes possible to reduce degradation due to overheating. |
US11011449B1 |
Apparatus and method for dissipating heat in multiple semiconductor device modules
A semiconductor memory system having a plurality of semiconductor memory modules that are spaced apart from each other by a gap. The system includes a heat dissipation assembly having a thermally conductive base portion configured to transfer heat away from the memory devices. The heat dissipation assembly including at least one cooling unit extending from the base portion. The at least one cooling unit having a wall with an exterior surface and a cavity. The cooling unit is configured to fit in the gap between adjacent memory modules such that a portion of the exterior surface on a first side of the cooling unit is coupled to one of the first memory devices and another portion of the exterior surface on a second side of the cooling unit is coupled to one of the second memory devices across the gap. |
US11011446B2 |
Semiconductor device and method of making a semiconductor device
A semiconductor device and a method of making the same. The device includes a semiconductor substrate having a major surface, a backside and side surfaces extending between the major surface and the backside. The semiconductor device also includes at least one metal layer extending across the backside of the substrate. A peripheral part of the at least one metal layer located at the edge of the substrate between the backside and at least one of the side surfaces extends towards a plane containing the major surface. This can prevent burrs located at the peripheral part of the at least one metal layer interfering with the mounting of the backside of the substrate on the surface of a carrier. |
US11011440B2 |
Semiconductor element bonding body, semiconductor device, and method of manufacturing semiconductor element bonding body
A semiconductor element bonding body including: a substrate, in which a concave portion is formed; and a semiconductor element placed in the concave portion to be mounted to the substrate. A portion of the substrate in which the concave portion is formed is made of Cu. The concave portion has a perimeter portion in which a level difference is formed, and the level difference has a height d of 20 μm or more and less than 50 μm. The concave portion has a bottom surface having a flatness degree of λ/8.7 μm or more and λ/1.2 μm or less when a wavelength λ of a laser is 632.8 nm. A metal film is formed on the semiconductor element, and the bottom surface of the concave portion and the metal film are bonded directly to each other. |
US11011439B2 |
Pre-molded substrate, method of manufacturing pre-molded substrate, and hollow type semiconductor device
A hollow type semiconductor device has a pre-molded substrate (15) in which an element mounting portion, top surfaces of inner leads (2), and a top surface of frame-shaped wiring (7) are exposed on a first surface of a resin sealing body (6), and back surfaces of outer leads (3) and a back surface of a first frame-shaped wall (8) are exposed on a back surface of the resin sealing body (6). A hollow sealing body (14) including a second frame-shaped wall (9) and a sealing plate (4) is provided on the pre-molded substrate (15). The second frame-shaped wall (9) and the sealing plate (4) enclose a hollow portion (13) in which a semiconductor element (1) is kept. |
US11011438B2 |
Display device
A display device is disclosed. In one aspect, the display device includes a display area configured to display an image, a peripheral area neighboring the display area, and at least one test element group (TEG) including a test thin film transistor (TFT) formed in the peripheral area and a plurality of test pads electrically connected to the test TFT. The display device also includes first to third dummy circuits separated from the test TFT, each of the first to third dummy circuits including a plurality of first dummy semiconductor layers and a plurality of first dummy gate electrodes overlapping at least a portion of the first dummy semiconductor layers in the depth dimension of the display device. |
US11011437B2 |
Method and apparatus for determining width-to-length ratio of channel region of thin film transistor
The present disclosure provides a method for determining a width-to-length ratio of a channel region of a thin film transistor (TFT). The method includes: S1, setting an initial width-to-length ratio of the channel region; S2, manufacturing a TFT by using a mask plate according to the initial width-to-length ratio; S3, testing the TFT manufactured according to the initial width-to-length ratio; S4, determining whether or not the test result satisfies a predetermined condition, performing S5 if the test result satisfies the predetermined condition, and performing S6 if the test result does not satisfy the predetermined condition; S5, determining the initial width-to-length ratio as the width-to-length ratio of the channel region of the TFT; S6, changing the value of the initial width-to-length ratio, adjusting a position of the mask plate according to the changed initial width-to-length ratio, and performing S2 to S4 again. |
US11011436B2 |
Substrate processing apparatus, control method of substrate processing apparatus and substrate processing system
Whether a film on a peripheral portion of a substrate is appropriately removed is rapidly determined without depending on a kind of the film on the peripheral portion to be removed. An acquisition process S502 of acquiring information upon the kind of the film of the substrate; a selection process S503 of selecting a measurement setting corresponding to the acquired kind of the film from a table for measurement settings previously stored in a storage unit; a control process S504 of controlling an imaging unit 270 to image the peripheral portion of the substrate by using the measurement setting selected in the selection process are provided. |
US11011432B2 |
Vertical silicon/silicon-germanium transistors with multiple threshold voltages
A method of forming vertical fin field effect transistors, including, forming a silicon-germanium cap layer on a substrate, forming at least four vertical fins and silicon-germanium caps from the silicon-germanium cap layer and the substrate, where at least two of the at least four vertical fins is in a first subset and at least two of the at least four vertical fins is in a second subset, forming a silicon-germanium doping layer on the plurality of vertical fins and silicon-germanium caps, removing the silicon-germanium doping layer from the at least two of the at least four vertical fins in the second subset, and removing the silicon-germanium cap from at least one of the at least two vertical fins in the first subset, and at least one of the at least two vertical fins in the second subset. |
US11011424B2 |
Hybrid wafer dicing approach using a spatially multi-focused laser beam laser scribing process and plasma etch process
Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The mask is then patterned with a spatially multi-focused laser beam laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then plasma etched through the gaps in the patterned mask to singulate the integrated circuits. |
US11011420B2 |
Conductive interconnect structures incorporating negative thermal expansion materials and associated systems, devices, and methods
Semiconductor devices having interconnects incorporating negative expansion (NTE) materials are disclosed herein. In one embodiment a semiconductor device includes a substrate having an opening that extends at least partially through the substrate. A conductive material having a positive coefficient of thermal expansion (CTE) partially fills the opening. A negative thermal expansion (NTE) having a negative CTE also partially fills the opening. In one embodiment, the conductive material includes copper and the NTE material includes zirconium tungstate. |
US11011415B2 |
Airgap vias in electrical interconnects
Multiple interconnect structures with reduced TDDB susceptibility and reduced stray capacitance are disclosed. The structures have one or more pairs of layers (an upper and a lower layer) that form layered pairs in the structure. In each of the upper and lower layers, dielectric material separates an upper pair of interconnects from a lower pair of interconnects or from other conductive material. Pairs of vias pass through the dielectric and mechanically and electrically connect the respective sides of the upper and lower sides of the interconnect. A gap of air separates all or part of the pair of vias and the electrical paths the vias are within. In alternative embodiments, the airgap may extend to the bottom of the vias, below the tops of the lower pair of interconnects, or deeper into the lower layer. Alternative process methods are disclosed for making the different embodiments of the structures. |
US11011414B2 |
Multi-barrier deposition for air gap formation
A method includes forming a first conductive line and a second conductive line in a dielectric layer, etching a portion of the dielectric layer to form a trench between the first conductive line and the second conductive line, and forming a first etch stop layer. The first etch stop layer extends into the trench. A second etch stop layer is formed over the first etch stop layer. The second etch stop layer extends into the trench, and the second etch stop layer is more conformal than the first etch stop layer. A dielectric material is filled into the trench and over the second etch stop layer. An air gap is formed in the dielectric material. |
US11011413B2 |
Interconnect structures and methods of forming the same
Embodiments described herein relate generally to one or more methods for forming an interconnect structure, such as a dual damascene interconnect structure comprising a conductive line and a conductive via, and structures formed thereby. In some embodiments, an interconnect opening is formed through one or more dielectric layers over a semiconductor substrate. The interconnect opening has a via opening and a trench over the via opening. A conductive via is formed in the via opening. A nucleation enhancement treatment is performed on one or more exposed dielectric surfaces of the trench. A conductive line is formed in the trench on the one or more exposed dielectric surfaces of the trench and on the conductive via. |
US11011412B2 |
Semiconductor structure and method for the forming same
A semiconductor structure and a method for forming same are provided. In one form, a forming method includes: providing a base, where a core layer is formed on the base, a hard mask layer is formed on the core layer, and a first mask opening is formed in the hard mask layer; forming a first mask trench in the core layer exposed from the first mask opening, the first mask trench including a plurality of mask sub-trenches along an extending direction, where the mask sub-trenches are isolated from each other using the core layer exposed from the first mask opening; forming a first spacer on a side wall of the mask sub-trench; removing a core layer of a region in which the first mask opening is located, and forming, at a position corresponding to the core layer, a second mask trench enclosed by the first spacer and the base, the second mask trench and the first mask trench being isolated from each other using the first spacer; and forming a second spacer on a side wall of the second mask trench, where both the first spacer and the base, and the second spacer and the base, enclose a first target trench. The first spacer and the second spacer whose side walls contact with each other are used as a cutting member, alleviating rounding of a head of the first target trench. |
US11011409B2 |
Devices with backside metal structures and methods of formation thereof
A semiconductor device includes a first epitaxial layer, a second epitaxial layer disposed below the first epitaxial layer, a conductive layer disposed below and directly contacting the second epitaxial layer, and a plurality of spacers disposed between the second epitaxial layer and the conductive layer. The conductive layer includes a metal. The plurality of spacers include a bulk semiconductor material. |
US11011407B2 |
Wafer processing method using a ring frame and a polyolefin sheet
A wafer processing method includes a polyolefin sheet providing step of positioning a wafer in an inside opening of a ring frame and providing a polyolefin sheet on a back side of the wafer and on a back side of the ring frame, a uniting step of heating the polyolefin sheet as applying a pressure to the polyolefin sheet to thereby unite the wafer and the ring frame through the polyolefin sheet by thermocompression bonding, a dividing step of applying a laser beam to the wafer to form division grooves in the wafer, thereby dividing the wafer into individual device chips, and a pickup step of heating the polyolefin sheet in each region of the polyolefin sheet corresponding to each device chip, pushing up each device chip from the polyolefin sheet side to pick up each device chip from the polyolefin sheet. |
US11011403B2 |
Transport container automatic clamping mechanism
An automatic clamping mechanism capable of automatically securing and releasing a wafer transport container to or from a manufacturing apparatus and having a small height dimension is provided at low cost. A wafer transport container is placed on a container placing table. A semiconductor wafer is loaded into the manufacturing apparatus main body from a wafer loading port while being placed on a container base part of the wafer transport container. An automatic clamping mechanism generates a press force component in a vertical direction at the wafer transport container and secures the wafer transport container to the container placing table by bringing claw parts of a plurality of clamping claws into contact with an inclined contact surface provided on a container lid part of the wafer transport container and pressing the inclined contact surface in a substantially horizontal direction. |
US11011402B2 |
Transport system of semiconductor fabrication facility, associated movable container and method
A transport system of a semiconductor fabrication facility, including: a rail for carrying vehicle, a sensor installed on the rail, a controller and a power panel. The sensor is arranged to determine a zone and send a quantity information in response to a quantity of vehicles in the zone. The controller is arranged to send an output signal in accordance with the quantity information. The power panel is arranged to adjust a current in accordance with the output signal, wherein the current is output to a cable extending along the rail. |
US11011401B2 |
Modular pressurized workstation
In an embodiment, a system, includes: a first pressurized load port interfaced with a workstation body; a second pressurized load port interfaced with the workstation body; the workstation body maintained at a set pressure level, wherein the workstation body comprises an internal material handling system configured to move a semiconductor workpiece within the workstation body between the first and second pressurized load ports at the set pressure level; a first modular tool interfaced with the first pressurized load port, wherein the first modular tool is configured to process the semiconductor workpiece; and a second modular tool interfaced with the second pressurized load port, wherein the second modular tool is configured to inspect the semiconductor workpiece processed by the first modular tool. |
US11011398B2 |
Fume determination method, substrate processing method, and substrate processing equipment
In equipment that supplies a processing liquid on a top surface of a substrate while holding the substrate horizontally in a chamber a generation status of fumes is determined. Specifically, an image of a predetermined imaging area in the chamber is captured. Then, the generation status of fumes in the chamber is determined based on luminance values of the captured image acquired by the capturing of an image. Accordingly, it is possible to quantitatively determine whether a generation status of fumes in a chamber is normal. |
US11011397B2 |
Wafer soak temperature readback and control via thermocouple embedded end effector for semiconductor processing equipment
A workpiece processing system and method provides an end effector coupled to a workpiece transfer apparatus. The end effector has support members for selectively contacting and supporting a workpiece. One or more temperature sensors are coupled to the support members and are configured to contact a backside of the workpiece to measure and define one or more measured temperatures of the workpiece. A heated chuck has a support surface at a predetermined temperature, and is configured to radiate heat from the support surface. A controller control the workpiece transfer apparatus to selectively support the workpiece at a predetermined distance from the support surface of the heated chuck to radiatively heat the workpiece, and to selectively transfer the workpiece from the end effector to the support surface of the heated chuck based, at least in part, on the one or more measured temperatures. |
US11011396B2 |
Customized smart devices and touchscreen devices and cleanspace manufacturing methods to make them
The present invention provides various aspects for processing multiple types of substrates within cleanspace fabricators or for processing multiple or single types of substrates in multiple types of cleanspace environments. In some embodiments, a collocated composite cleanspace fabricator may be capable of processing semiconductor devices into integrated circuits and then performing assembly operations to result in product in packaged form. Customized smart devices, smart phones and touchscreen devices may be fabricated in examples of a cleanspace fabricator. In some examples, the smart devices, smart phones and touchscreen devices may have two touchscreens on opposite sides of the device along with hardware based encryption. |
US11011394B2 |
System and method for annealing die and wafer
A method for annealing a semiconductor die is provided. Information regarding layout of the semiconductor die is received. At least one annealing orbit on the semiconductor die is obtained according to the received information. An alignment procedure is performed on a plurality of alignment marks of the semiconductor die according to the received information. The semiconductor die is positioned according to the alignment marks. A laser beam with a first laser parameter is projected onto the positioned semiconductor die along the annealing orbit, so as to anneal a first portion of the positioned semiconductor die covered by the annealing orbit. The positioned semiconductor die is partially covered by the annealing orbit. |
US11011389B2 |
Additively manufactured flexible interposer
A semiconductor device assembly and method of providing a semiconductor device assembly. The method includes providing a flexible interposer, providing a first redistribution layer on the flexible interposer, and providing a second redistribution layer on a portion of the first redistribution layer. The second redistribution layer is provided by additive manufacturing. The first redistribution layer may be deposited in a clean room environment. The first redistribution layer may be deposited via chemical deposition or physical deposition. A semiconductor device is attached to the first redistribution layer. The flexible interposer may be attached to a board with the semiconductor device being electrically connected to the board via the first redistribution layer, the flexible interposer, and the second redistribution layer. The flexible interposer may be attached to a flexible hybrid electronic (FHE) board. The flexible nature of the flexible interposer and/or the FHE board may redistribute stress on the semiconductor device assembly. |
US11011388B2 |
Plasma apparatus for high aspect ratio selective lateral etch using cyclic passivation and etching
Methods and apparatus for laterally etching unwanted material from the sidewalls of a recessed feature are described herein. In various embodiments, the method involves etching a portion of the sidewalls, depositing a protective film over a portion of the sidewalls, and cycling the etching and deposition operations until the unwanted material is removed from the entire depth of the recessed feature. Each etching and deposition operation may target a particular depth along the sidewalls of the feature. In some cases, the unwanted material is removed from the bottom of the feature up, and in other cases the unwanted material is removed from the top of the feature down. Some combination of these may also be used. |
US11011386B2 |
Etching method and plasma treatment device
According to an exemplary embodiment, a method includes preparing a workpiece including a silicon film and a mask provided on the silicon film, etching the silicon film using the mask by plasma of a gas containing a first halogen atom, modifying a surface of the silicon film into an oxide layer by plasma of a gas containing an oxygen atom, a hydrogen atom, and a second halogen atom, the oxide layer including a first region extending along a side wall surface of the mask and a second region extending on the silicon film, etching the oxide layer to remove the second region while leaving the first region, and etching the silicon film using the mask and the oxide layer including the first region by plasma of a gas containing a third halogen atom. |
US11011382B2 |
Fin profile improvement for high performance transistor
A finFET semiconductor device and method for fabricating such a device are presented. The semiconductor device includes a first fin formed in a first semiconducting layer, a second fin formed in a second semiconductor layer, and an insulating layer disposed between the first fin and the second fin. The first fin, the second fin, and the insulating layer form a stacked structure above a substrate. Sidewalls of the first fin are substantially more vertical than sidewalls of the second fin. |
US11011381B2 |
Patterning platinum by alloying and etching platinum alloy
There is provided a method of patterning platinum on a substrate. A platinum layer is deposited on the substrate, and a patterned photoresist layer is formed over the platinum layer leaving partly exposed regions of the platinum layer. An aluminum layer is deposited over the partly exposed regions of the platinum layer. An alloy is formed of aluminum with platinum from the partly exposed regions. The platinum aluminum alloy is etched away leaving a remaining portion of the platinum layer to form a patterned platinum layer on the substrate. In an embodiment, a thin hard mask layer is deposited on the platinum layer on the semiconductor substrate before the patterned photoresist layer is formed. |
US11011380B2 |
High-electron-mobility transistor and manufacturing method thereof
Some embodiments of the present disclosure provide a semiconductor device. The semiconductor device includes a semiconductive substrate. A donor-supply layer is over the semiconductive substrate. The donor-supply layer includes a top surface. A gate structure, a drain, and a source are over the donor-supply layer. A passivation layer covers conformably over the gate structure and the donor-supply layer. A gate electrode is over the gate structure. A field plate is disposed on the passivation layer between the gate electrode and the drain. The field plate includes a bottom edge. The gate electrode having a first edge in proximity to the field plate, the field plate comprising a second edge facing the first edge, a horizontal distance between the first edge and the second edge is in a range of from about 0.05 to about 0.5 micrometers. |
US11011369B2 |
Carbon film forming method, carbon film forming apparatus, and storage medium
There is provided a method of forming a carbon film on a workpiece, which includes: loading the workpiece into a process chamber; supplying a gas containing a boron-containing gas into the process chamber to form a seed layer composed of a boron-based thin film on a surface of the workpiece; and subsequently, supplying a hydrocarbon-based carbon source gas and a pyrolysis temperature lowering gas containing a halogen element and which lowers a pyrolysis temperature of the hydrocarbon-based carbon source gas into the process chamber, heating the hydrocarbon-based carbon source gas to a temperature lower than the pyrolysis temperature to pyrolyze the hydrocarbon-based carbon source gas, and forming the carbon film on the workpiece by a thermal CVD. |
US11011366B2 |
Broadband ultraviolet illumination sources
A broadband ultraviolet illumination source for a characterization system is disclosed. The broadband ultraviolet illumination source includes an enclosure having one or more walls, the enclosure configured to contain a gas, and a plasma discharge device based on a graphene-dielectric-semiconductor (GOS) planar-type structure. The GOS structure includes a silicon substrate having a top surface, a dielectric layer disposed on the top surface of the silicon substrate, and at least one layer of graphene disposed on a top surface of the dielectric layer. A metal contact may be formed on the top surface of the graphene layer. The GOS structure has several advantages for use in an illumination source, such as low operating voltage (below 50 V), planar surface electron emission, and compatibility with standard semiconductor processes. The broadband ultraviolet illumination source further includes electrodes placed inside the enclosure or magnets placed outside the enclosure to increase the current density. |
US11011362B2 |
Fast continuous SRM acquisitions with or without ion trapping
A mass spectrometer includes an ion source, an ion guide, a first gate, first and second mass filters, a fragmentation cell, a detector, and a controller. The ion source is configured to produce an ion beam from a sample. The first and second mass filters are configured to selectively transmit ions within a mass-to-charge range and reject ions outside of the mass-to-charge range. The detector is configured to measure the intensity of the transmitted ion beam. The controller is configured to close the first ion gate to prevent ions from entering the first mass filter, switch a first quadrupole voltage of the first mass filter to a voltage of a first transition, and open the first ion gate to allow ions to enter the first mass filter, the opening offset from the switching by at least the time required to adjust the voltage of the first mass filter. |
US11011360B2 |
Analyzer apparatus and control method
An analyzer apparatus includes: an ionization unit that ionizes molecules to analyze; a filter unit that forms a field for selectively passing ions generated by the ionization unit; a detector unit that detects ions that have passed through the filter unit; an ion drive circuitry that electrically drives the ionization unit; a field drive circuitry that electrically drives the filter unit; and a control unit that controls outputs of the ion drive circuitry and the field drive circuitry, wherein the control unit controls the ion drive circuitry to ramp up and down a filament voltage supplied to a filament of the ionization unit when the analyzer apparatus starts and stops. |
US11011359B2 |
Techniques for processing of mass spectral data
Techniques for performing data acquisition and analysis are described. A multi-mode acquisition strategy may be performed which iteratively selects mass isolation windows of different sizes in different scan cycles to acquire experimental data. The mass isolation windows selected may provide for acquiring elevated energy scan data for a defined set of m/z values. Single scan data analysis may be performed. Data analysis may include forming precursor charge clusters, chaining precursor charge clusters having the same mass to charge ratio to form peaks profiles, and using criteria to align precursor and product ions of the experimental data. Unsupervised and supervised clustering may be performed using a database and composite ion spectra formed from experimental data. Also described are a small molecule acquisition enhancement and additional techniques applicable for biopharmaceutical and other applications. |
US11011358B2 |
Electron multiplier having resistance value variation suppression and stablization
The present embodiment relates to an electron multiplier having a structure configured to suppress and stabilize a variation of a resistance value in a wider temperature range. In the electron multiplier, a resistance layer sandwiched between a substrate and a secondary electron emitting layer formed of an insulating material includes a metal layer in which a plurality of metal particles formed of a metal material whose resistance value has a positive temperature characteristic are two-dimensionally arranged on a layer formation surface, which is coincident with or substantially parallel to a channel formation surface of the substrate, in the state of being adjacent to each other with a part of the first insulating material interposed therebetween, the metal layer having a thickness set to 5 to 40 angstroms. |
US11011357B2 |
Methods and apparatus for multi-cathode substrate processing
Methods and apparatus for processing substrates with a multi-cathode chamber. The multi-cathode chamber includes a shield with a plurality of holes and a plurality of shunts. The shield is rotatable to orient the holes and shunts with a plurality of cathodes located above the shield. The shunts interact with magnets from the cathodes to prevent interference during processing. The shield can be raised and lowered to adjust gapping between a target of a cathode and a hole to provide a dark space during processing. |
US11011356B2 |
Sputtering target with backside cooling grooves
Implementations of the present disclosure relate to a sputtering target for a sputtering chamber used to process a substrate. In one implementation, a sputtering target for a sputtering chamber is provided. The sputtering target comprises a sputtering plate with a backside surface having radially inner, middle and outer regions and an annular-shaped backing plate mounted to the sputtering plate. The backside surface has a plurality of circular grooves which are spaced apart from one another and at least one arcuate channel cutting through the circular grooves and extending from the radially inner region to the radially outer region of sputtering plate. The annular-shaped backing plate defines an open annulus exposing the backside surface of the sputtering plate. |
US11011355B2 |
Temperature-tuned substrate support for substrate processing systems
A system for controlling a temperature of a substrate during treatment in a substrate processing system includes a substrate support defining a center zone and a radially-outer zone. The substrate is arranged over both the center zone and the radially-outer zone during treatment. A first heater is configured to heat the center zone. A second heater is configured to heat the radially-outer zone. A first heat sink has one end in thermal communication with the center zone. A second heat sink has one end in thermal communication with the radially-outer zone. A temperature difference between the center zone and the radially-outer zone is greater than 10° C. during the treatment. |
US11011353B2 |
Systems and methods for performing edge ring characterization
A substrate support in a substrate processing system includes an inner portion arranged to support a substrate, an edge ring surrounding the inner portion, and a controller. The controller at least one of raises the edge ring to selectively cause the edge ring to engage the substrate and lowers the inner portion to selectively cause the edge ring to engage the substrate. The controller determines when the edge ring engages the substrate and calculates at least one characteristic of the substrate processing system based on the determination of when the edge ring engages the substrate. |
US11011348B2 |
Scanning electron microscope and sample observation method using scanning electron microscope
Provided is a scanning electron microscope. The scanning electron microscope is capable of removing a charge generated on a side wall of a deep hole or groove, and inspects and measures a bottom portion of the deep hole or groove with high accuracy. Therefore, in the scanning electron microscope that includes an electron source 201 that emits a primary electron, a sample stage 213 on which a sample is placed, a deflector 207 that causes the sample to be scanned with the primary electron, an objective lens 203 that focuses the primary electron on the sample, and a detector 206 that detects a secondary electron generated by irradiating the sample with the primary electron, a potential applied to the sample stage is controlled to have a negative polarity with respect to a potential applied to the objective lens during a first period in which the sample is irradiated with the primary electron, and the potential applied to the sample stage is controlled to have a positive polarity with respect to the potential applied to the objective lens during a second period in which the sample is not irradiated with the primary electron. |
US11011347B2 |
Plasma processing apparatus
A plasma processing apparatus includes an external circuit electrically connected through a line to an electrical component in a processing chamber and a filter provided on the line to attenuate or block noise introduced into the line from the electrical component toward the external circuit. The filter includes a coil having constant diameter and coil length; a tubular outer conductor accommodating the coil and forming a distributed constant line in which parallel resonance occurs at multiple frequencies in combination with the coil; and a movable member for changing each winding gap of the coil and provided in an effective section where a specific one or a plurality of parallel resonance frequencies is shifted to a higher frequency side or a lower frequency side in frequency-impedance characteristics of the filter by changing the winding gap of the coil in the effective section in a longitudinal direction of the coil. |
US11011346B2 |
Electron beam device and image processing method
To acquire a correction image by performing a sub-pixel shift process for shifting an image using a pixel interpolation filter by a pixel shift amount between pixels and a frequency correction process for correcting a frequency characteristic of the image after shifted. |
US11011336B2 |
Direct-acting electromagnetic trip device
A direct-acting electromagnetic trip device including a housing, and a regulation mechanism, a linkage mechanism, an electromagnetic system and a trip mechanism which are arranged in the housing. The regulation mechanism is connected with the linkage mechanism, the linkage mechanism is connected with one end of an iron core of the electromagnetic system, and the linkage mechanism is connected with the trip mechanism at the same time. The regulation mechanism includes a rotary knob and a regulation rod, wherein the rotary knob is abutted against and engaged with the regulation rod, and the regulation rod is abutted against and engaged with the linkage mechanism. The electromagnetic system further includes an elastic element that pushes the iron core to allow the linkage mechanism to be abutted against the regulation rod and allow the rotary knob to be abutted against the regulation rod. |
US11011333B2 |
Force-distance controlled mechanical switch
A force-controlled-switch comprises a diaphragm spring element and an absorber-plate. The absorber-plate is configured to absorb kinetic energy of the force-controlled-switch. In particular, the absorber-plate absorbs a part of the diaphragm-spring-element's kinetic energy. |
US11011327B2 |
Rotary bridge micro-switch
Disclosed is a rotary bridge micro-switch. The rotary bridge micro-switch comprises an insulating base, wherein a first terminal, a second terminal and a third terminal are arranged on the insulating base and are spaced from one another by the insulating base; and the insulating base is rotatably connected to a conducting plate having one end abutting against the first terminal. The rotary bridge micro-switch further comprises a spring having two ends respectively connected to the other end of the conducting plate and the insulating base. When the spring is not compressed, the first terminal is connected to the second terminal through the other end of the conducting plate. When the spring is compressed, the first terminal is connected to the third terminal. The rotary bridge micro-switch can be pressed to realize switching between two circuits. |
US11011319B2 |
Electronic component
An electronic component includes an electronic element that includes a lead portion, a sealing body that seals the electronic element in a state where an end portion of the lead portion is exposed, a first current collector that is formed on the sealing body and is connected to the end portion, and a first terminal that includes a first portion which is sealed in the sealing body and is connected to the first current collector. |
US11011318B2 |
Solid electrolytic capacitor
A solid electrolytic capacitor comprises a capacitor element including a valve-acting metal substrate including a core part and a porous part disposed on at least one principal surface of the core part, a dielectric layer formed on a surface of the porous part and a solid electrolyte layer is disposed on the dielectric layer. The capacitor element further includes a conductive layer disposed on the solid electrolyte layer. A sealing resin is located on the conductive layer and seals a principal surface of the capacitor element. A cathodic outer electrode is located on the sealing resin and is electrically connected to the conductive layer by a cathodic via electrode which extends through the sealing resin. An anodic outer electrode is electrically connected to the core part. |
US11011313B2 |
Multilayer ceramic capacitor
A multilayer ceramic capacitor includes a body having a dielectric layer and internal electrodes disposed to be alternately exposed to the third and fourth surfaces with the dielectric layer interposed therebetween. External electrodes include connection parts respectively formed on opposing surfaces of the body, band parts formed to extend from the connection parts to portions of side surfaces of the body, and corner parts in which the connection parts and the band parts are contiguous. A thickness of each of the external electrodes may be 50 nm to 2 μm. The external electrodes may be formed using a barrel-type sputtering method. A ratio t2/t1 may satisfy 0.7 to 1.2, where t1 is a thickness of each connection part and t2 is a thickness of each band part. A ratio t3/t1 may satisfy 0.7 to 1.0, where t3 is a thickness of each corner part. |
US11011312B2 |
Multilayer ceramic capacitor using molybdenum (Mo) ground layer and manufacturing method of the same
A multilayer ceramic capacitor includes: a multilayer chip in which each of dielectric layers and each of internal electrode layers are alternately stacked and the internal electrode layers are alternately exposed to two end faces; and external electrodes formed on the two end faces; wherein: the external electrodes have a structure in which a plated layer is formed on a ground layer including Mo; and “M≥0.003185×(Ew×Et)−0.5921 is satisfied when “Et” is a height from a bottom one of the internal electrode layers to a top one of the internal electrode layers, “Ew” is a width of the internal electrode layers in a direction in which side faces of the multilayer chip face with each other, and “M” is a Mo concentration (atm %) with respect to a main component ceramic of a total of the multilayer chip and the pair of external electrodes. |
US11011308B2 |
Multilayer ceramic electronic component
A multilayer ceramic electronic component includes a laminated body, and first and second external electrodes respectively provided on first and second end surfaces of the laminated body. The laminated body includes an inner layer portion in which the first and second internal electrode layers oppose each other with the dielectric ceramic layers interposed therebetween, and outer layer portions sandwiching the inner layer portion in the lamination direction and a side margin portion sandwiching the inner layer portion and the outer layer portions in the width direction. The side margin portion is defined by ceramic layers laminated in the width direction, and includes, as the ceramic layers, an inner layer on an innermost side of the laminated body and an outer layer on an outermost side of the laminated body. |
US11011307B2 |
Electronic component
An electronic component includes a laminate and an external electrode provided on an end surface of the laminate. The external electrode includes a Ni layer provided on the end surface, a Ni—Sn alloy layer provided on the Ni layer, and a resin layer that is provided on the Ni—Sn alloy layer and includes metal grains including Sn grains. The Ni layer and the Ni—Sn alloy layer reduce or prevent intrusion of moisture from the external electrode into an interior of the laminate, and the resin layer reduces or prevents generation of cracks when a bending stress is applied to the external electrode. |
US11011303B2 |
Dummy fill with eddy current self-canceling element for inductor component
A dummy fill element for positioning inside an active inductor component of an integrated circuit (IC), the inductor component, the IC and a related method, are disclosed. The active inductor component is configured to convert electrical energy into magnetic energy to reduce parasitic capacitance in an IC. The dummy fill element includes: a first conductive incomplete loop having a first end and a second end, and a second conductive incomplete loop having a first end and a second end. First ends of the first and second conductive incomplete loops are electrically connected, and the second ends of the first and second conductive incomplete loops are electrically connected. In this manner, eddy currents created in each conductive incomplete loop by the magnetic energy cancel at least a portion of each other, allowing for a desired metal fill density and maintaining the inductor's Q-factor. |
US11011302B2 |
Common-mode choke coil
A common-mode choke coil having; a core that extends in a predetermined direction; and first and second wires that are intertwined and wound together around the core. |
US11011298B2 |
Coil component
A coil component includes a magnetic portion that includes metal particles and a resin material, a coil conductor embedded in the magnetic portion, and outer electrodes electrically connected to the coil conductor. The bottom surface of the magnetic portion includes grooves, and end portions of the coil conductor, extend into the grooves. |
US11011296B2 |
Method for manufacturing a surface mounted inductor
A surface mounted inductor is equipped with a coil formed by winding a conductive wire, and a formed body in which the coil is sealed with a sealing material that mainly contains metal magnetic powder and a resin. The coil is embedded so that surfaces of lead-out ends are exposed on surfaces of the formed body. The resin at portions of surfaces of the formed body where external terminals are formed is removed, and the metal magnetic powder and a plating layer forming the external terminals are joined to each other, thereby connecting the external terminals and the lead-out ends of the coil. |
US11011295B2 |
High efficiency on-chip 3D transformer structure
An integrated circuit transformer structure includes at least two conductor groups stacked in parallel in different layers. A first spiral track is formed in the at least two conductor groups, the first spiral track included first turns of a first radius within each of the at least two conductor groups, and second turns of a second radius within each of the at least two conductor groups, the first and second turns being electrically connected. A second spiral track is formed in the at least two conductor groups, the second spiral track including third turns of a third radius within each of the at least two conductor groups and disposed in a same plane between the first and second turns in each of the at least two conductor groups. |
US11011292B2 |
Electronic component
An electronic component includes a multilayer body obtained by laminating a plurality of insulator layers the shape of which is substantially rectangular in plan view, a coil conductor in a substantially spiral shape provided on an insulator layer, and a land electrode located outside the coil conductor. The land electrode faces two sides intersecting at a vertex of the substantially rectangular shape when viewed along a direction of laminating the insulator layers, and is electrically connected to an end portion of the coil conductor, in which a shortest distance from one side of the two sides to the land electrode is equal to or longer than a shortest distance from the coil conductor to the one side. |
US11011288B1 |
Hybrid electrical/optical data/power cabling system
A hybrid electrical/optical data/power cabling system includes a hybrid electrical/optical data/power transceiver device connected to a computing device. The hybrid electrical/optical data/power transceiver device includes a power transmission element that receives power and transmits the power to a first power transmission layer included in a hybrid electrical/optical data/power cable connected to the hybrid electrical/optical data/power transceiver device. The hybrid electrical/optical data/power transceiver device also includes optical data signal transmission element that transmits optical data signals to a first optical data signal transmission layer in the hybrid electrical/optical data/power cable connected to the hybrid electrical/optical data/power transceiver device. An electrical/optical data signal conversation subsystem in the hybrid electrical/optical data/power transceiver device receives and converts electrical data signals to optical data signals that it provides to the optical data signal transmission element for transmission to the first optical data signal transmission layer in the hybrid electrical/optical data/power cable. |
US11011287B2 |
Electrical HV transmission power cable
A transmission cable includes a conductor or a bundle of conductors extending along a longitudinal axis, which is circumferentially covered by an insulation layer having an extruded insulation material, whereby the transmission cable passes the electrical type test as specified in Cigré TB496, whereby the rated voltage U0 is 450 kV or more. The type test includes subjecting the power cable to a DC voltage of 1.85*U0 during 10 to 15 cycles at negative polarity, followed by a polarity reversal with another 10 to 15 cycles at positive polarity at a DC voltage of 1.85*U0, followed by additional 2 to 5 cycles during at least 4 to 10 days at positive polarity, and wherein U0 is 450 kV, or 525 kV, or more. |
US11011285B2 |
Method of manufacturing electrical cable, and resulting product, with reduced required installation pulling force
Disclosed are cable types, including a type THHN cable, the cable types having a reduced surface coefficient of friction, and the method of manufacture thereof, in which the central conductor core and insulating layer are surrounded by a material containing nylon or thermosetting resin. A silicone based pulling lubricant for said cable, or alternatively, erucamide or stearyl erucamide for small cable gauge wire, is incorporated, by alternate methods, with the resin material from which the outer sheath is extruded, and is effective to reduce the required pulling force between the formed cable and a conduit during installation. |
US11011283B2 |
Easy clean cable
Cables having a conductor with a polymeric covering layer and a non-extruded coating layer made of a material based on a liquid composition including a polymer resin and a fatty acid amide. Methods of making cables are also provided. |
US11011279B2 |
Alternative circulation cooling method for emergency core cooling system, and nuclear power plant
The present invention provides an alternative circulation cooling method for an emergency core cooling system that, even if the emergency core cooling system does not operate normally, can prevent the implementation of containment vessel venting by suppressing a rise in pressure and temperature in the containment vessel, and can suppress the implementation of dry-well venting even if containment vessel venting needs to be performed, as well as a nuclear power plant that is capable of the same. An alternative circulation cooling method for an emergency reactor core cooling system is performed at a nuclear power plant that includes an RHR system and a MUWC system. The method includes: connecting the downstream side of an RHR heat exchanger to the upstream side of a MUWC pump, and cooling water from a suppression chamber using the RHR heat exchanger and performing nuclear reactor injecting or containment vessel spraying using the MUWC pump. |
US11011278B1 |
Methods and rapid test kits facilitating epidemiological surveillance
A method for facilitating epidemiologic surveillance for a target disease such as Covid-19 includes a step of using an optical identifier such as a barcode or a numerical code to rapidly report de-identified test results to a central database. A rapid test device may be based on a direct flow point-of-care device comprising a porous membrane with at least one recombinant antigen applied thereto and procedural control. The recombinant antigen may comprise an epitope for detecting the target disease marker. The first optical identifier may be applied to the device and facilitate remote communication of the test results without the use of any specialized equipment. |
US11011272B2 |
Techniques for remotely controlling a medical device based on image data
A system and a method for remotely controlling a medical device based on image data are disclosed. The system includes a medical device, an image sensor, and a remote caregiver interface. The medical device includes a controller coupled to a communication network. The image sensor is coupled to the communication network and is configured to capture image data. The remote caregiver interface is coupled to the communication network and is configured to display the image data for viewing by a user, receive a selected remote control function from the user, and transmit an input signal corresponding to the selected remote control function to the controller of the medical device to execute the selected remote control function based on the input signal. |
US11011271B2 |
Devices, methods and systems for acquiring medical diagnostic information and provision of telehealth services
The invention relates generally to various systems, tools and methods for acquiring diagnostic information, including medical information, for a user, transmitting the information to a remote location, assessing the information, and transmitting resulting diagnosis and treatment information to the user and/or a third party for subsequent action. The present invention provides consumer and user-friendly telemedicine systems and procedures which enable health services and/or diagnosis to be provided at a distance remotely. |
US11011264B2 |
Radiotherapy treatment planning using artificial intelligence (AI) engines
Example methods and systems for radiotherapy treatment planning are provided. One example method may comprise obtaining image data associated with a patient; and processing the image data to generate a treatment plan for the patient using an inferential chain that includes multiple AI engines that are trained separately to perform respective multiple treatment planning steps. A first treatment planning step may be performed using a first AI engine to generate first output data based on at least one of: (i) the image data, and (ii) first input data generated based on the image data. A second treatment planning step may be performed using a second AI engine to generate the treatment plan based on at least one of: (i) the first output data, and (ii) second input data generated based on the first output data. |
US11011261B2 |
Device for generating protocol data for an injection pen
The invention concerns a device (1) for generating protocol data for an injection pen (2). The device (1) comprises a motion sensing unit (13) including one or more of a gyroscope and an accelerometer in order to generate one or more of a gyro signal and an acceleration signal. The device comprises a signal processing unit (14) which implements an analyser which is configured to analyse one or more of the gyro signal and the acceleration signal and to generate protocol data reflecting an adjusted dosage of a medicament. Optionally, the analyser is configured to generate protocol data reflecting delivery of the adjusted dosage of the medicament. |
US11011258B1 |
Systems and methods for data processing and performing structured and configurable data compression
Data processing and compression of healthcare information may be performed by mapping the attributes of healthcare data from a standard healthcare coding to one or a few encoded bytes to greatly reduce the data storage and transmission requirements, facilitating the use of healthcare data storage and transmission in disconnection, intermittent, or low-bandwidth environments. The disclosed compression can facilitate the movement of large amounts of patient information using relatively low storage capability devices. |
US11011257B2 |
Multi-label heat map display system
A multi-label heat map display system is operable to receive a medical scan and a set of heat maps set of heat maps that each correspond to probability matrix data generated for each of a set of abnormality classes. An interactive interface that displays image data of the medical scan and at least one of the set of heat maps is generated for display on a display device associated with the multi-label heat map display system. User input to a client device is received, and an updated interactive interface that includes a change to the display of the at least one of the set of heat maps by the second portion of the interactive interface in response to the user input is displayed. |
US11011253B1 |
Escape profiling for therapeutic and vaccine development
A method of viral escape profiling is used in association with antiviral or vaccine development. The method begins by training a language-based model against training data comprising a corpus of viral protein sequences of a given viral protein to model a viral escape profile. The viral escape profile represents, for one or more regions of the given viral protein, a relative viral escape potential of a mutation, the relative viral escape potential being derived as a function that combines both “semantic change,” representing a degree to which the mutation is recognized by the human immune system (i.e., antigenic change), and “grammaticality,” representing a degree to which the mutation affects viral infectivity (i.e. viral fitness). Using the model, a region of the given viral protein having an escape potential of interest is identified. Information regarding the region is then output to a vaccine or anti-viral therapeutic design and development workflow. |
US11011252B1 |
Gene expression profile algorithm and test for determining prognosis of prostate cancer
The present invention provides algorithm-based molecular assays that involve measurement of expression levels of genes, or their co-expressed genes, from a biological sample obtained from a prostate cancer patient. The genes may be grouped into functional gene subsets for calculating a quantitative score useful to predict a likelihood of a clinical outcome for a prostate cancer patient. |
US11011250B2 |
Modifying memory bank operating parameters
Methods, systems, and devices for modifying memory bank operating parameters are described. Operating parameter(s) may be individually adjusted for memory banks or memory bank groups within a memory system based on trimming information. The local trimming information for a memory bank or memory bank group may be stored in a fuse set that also stores repair information for the particular memory bank or in a fuse set that also stores repair information for a memory bank in the particular memory bank group. The local trimming information may be applied to operating parameters for particular memory banks or memory bank groups relative to or instead of global adjustments applied to operating parameters of multiple or all of the memory banks in the memory system. |
US11011245B2 |
Semiconductor device and electronic device
A semiconductor device or the like with a novel structure that can change the orientation of the display is provided. A semiconductor device or the like with a novel structure, in which a degradation in transistor characteristics can be suppressed, is provided. A semiconductor device or the like with a novel structure, in which operation speed can be increased, is provided. A semiconductor device or the like with a novel structure, in which a dielectric breakdown of a transistor can be suppressed, is provided. The semiconductor device or the like has a circuit configuration capable of switching between a first operation and a second operation by changing the potentials of wirings. By switching between these two operations, the scan direction is easily changed. The semiconductor device is configured to change the scan direction. |
US11011244B2 |
Shift register, semiconductor device, display device, and electronic device
The invention provides a semiconductor device and a shift register, in which low noise is caused in a non-selection period and a transistor is not always on. First to fourth transistors are provided. One of a source and a drain of the first transistor is connected to a first wire, the other of the source and the drain thereof is connected to a gate electrode of the second transistor, and a gate electrode thereof is connected to a fifth wire. One of a source and a drain of the second transistor is connected to a third wire and the other of the source and the drain thereof is connected to a sixth wire. One of a source and a drain of the third transistor is connected to a second wire, the other of the source and the drain thereof is connected to the gate electrode of the second transistor, and a gate electrode thereof is connected to a fourth wire. One of a source and a drain of the fourth transistor is connected to the second wire, the other of the source and the drain thereof is connected to the sixth wire, and a gate electrode thereof is connected to the fourth wire. |
US11011242B2 |
Bit line voltage control for damping memory programming
An apparatus includes a programming circuit configured to supply a program pulse to increase a threshold voltage of a memory cell. The apparatus also includes a sensing circuit configured to determine that the threshold voltage of the memory cell satisfies a trigger threshold voltage in response to the program pulse. The apparatus further includes a damping circuit configured to increase a voltage of a bit line connected to the memory cell after initiation of and during a second program pulse in response to the threshold voltage of the memory cell satisfying the trigger threshold voltage, the second program pulse being sent by the programming circuit. |
US11011239B2 |
Semiconductor memory
A semiconductor memory according to an embodiment includes first and second memory cells, first and second memory cell arrays, first and second word lines, and controller. The first and second memory cell array include the first and second memory cells, respectively. The first and second word lines are coupled to the first and second memory cells, respectively. Data of six or more bits including a first bit, a second bit, a third bit, a fourth bit, a fifth bit, and a sixth bit is stored with the use of a combination of a threshold voltage of the first memory cell and a threshold voltage of the second memory cell. |
US11011236B2 |
Erasing memory
Methods of operating a memory, and memory configured to perform similar methods, might include applying a positive first voltage level to a first node selectively connected to a string of series-connected memory cells while applying a negative second voltage level to a control gate of a transistor connected between the first node and the string of series-connected memory cells, and increasing the voltage level applied to the first node to a third voltage level while increasing the voltage level applied to the control gate of the transistor to a fourth voltage level lower than the third voltage level and higher than the first voltage level. |
US11011235B2 |
Non-volatile semiconductor memory device in which erase and write operations are sequentially performed to control voltage thresholds of memory cells
A non-volatile semiconductor memory device includes a memory cell array and a control circuit. A control circuit performs an erase operation providing a memory cell with a first threshold voltage level for erasing data of a memory cell, and then perform a plurality of first write operations providing a memory cell with a second threshold voltage level, the second threshold voltage level being higher than the first threshold voltage level and being positive level. When the control circuit receives a first execution instruction from outside during the first write operations, the first execution instruction being for performing first function operation except for the erase operation and the first write operations, the circuit performs the first function operation during the first write operations. |
US11011233B2 |
Nonvolatile memory device, storage device including nonvolatile memory device, and method of accessing nonvolatile memory device
A nonvolatile memory device includes a memory cell array that includes memory blocks, wherein each of the memory blocks includes pages each including memory cells, a row decoder circuit that selects one of the pages from a selected memory block of the memory blocks in a write operation and selects memory cells of a close unit from the selected memory block in a close operation, and a page buffer circuit that writes data into memory cells of a page selected by the row decoder circuit in the write operation and writes dummy data into the memory cells of the close unit selected by the row decoder circuit in the close operation. The close unit includes one or more pages, and, in the close operation, the row decoder circuit adjusts a size of the close unit. |
US11011231B2 |
Data write-in method and non-volatile memory
A data write-in method and a non-volatile memory are provided. The data write-in method includes: providing a reset voltage to a plurality of selected memory cells according to a first flag, and recursively performing a reset process for the plurality of selected memory cells; setting a second flag according to a plurality of first verification currents of the plurality of selected memory cells; and under a condition that the second flag is set: providing a set voltage to the plurality of selected memory cells according to a resistance of the plurality of selected memory cells; and setting the first flag according to a plurality of second verification currents of the plurality of selected memory cells. |
US11011229B2 |
Memory systems and memory programming methods
Memory systems and memory programming methods are described. In one arrangement, a memory system includes a memory cell configured to have a plurality of different memory states, an access circuit coupled with the memory cell and configured to provide a first signal to a memory element of the memory cell to program the memory cell from a first memory state to a second memory state, and a current source coupled with the memory cell and configured to generate a second signal which is provided to the memory element of the memory cell after the first signal to complete programming of the memory cell from the first memory state to the second memory state. |
US11011228B2 |
Memory device having an increased sensing margin
A memory device includes a memory cell array including memory cells disposed at points at which word lines and bit lines intersect, a first decoder circuit determining a selected bit line and non-selected bit lines among the bit lines, a second decoder circuit determining a selected word line and non-selected word lines among the word lines, a current compensation circuit providing a current path drawing a compensation current from the selected word line to compensate for off currents flowing in the non-selected bit lines, a first sense amplifier comparing a voltage of the selected word line with a reference voltage and outputting an enable signal, and a second sense amplifier outputting a voltage difference between the voltage of the selected word line and the reference voltage during an operating time determined by the enable signal in a readout operation mode of the memory device. |
US11011223B2 |
Memory sub-system grading and allocation
An apparatus includes a component coupleable to a memory device. The component can be configured to analyze a plurality of sets of memory cells of the memory device to determine quality attributes associated with the plurality of sets of memory cells and assign grades to one or more sets of the memory cells based, at least in part, on the determined quality attributes. The component can be configured to allocate at least one of the plurality of sets of memory cells for use by the memory device based, at least in part, on the assigned grade associated with the one or more sets of the memory cells. |
US11011222B2 |
Memory structure with bitline strapping
Various implementations described herein refer to an integrated circuit having an array of bitcells coupled between at least one pair of bitlines including a first bitline and a second bitline that is a complement of the first bitline. The integrated circuit may include at least one pair of ancillary lines disposed adjacent to the at least one pair of bitlines, and the at least one pair of ancillary lines include a first ancillary line disposed adjacent to the first bitline and a second ancillary line disposed adjacent to the second bitline. The integrated circuit may include multiple pairs of passgates coupled between the at least one pair of bitlines and the at least one pair of ancillary lines. |
US11011215B1 |
Apparatus with an internal-operation management mechanism
Methods, apparatuses, and systems related to scheduling internal operations are described. An apparatus detects a condition associated with repeated accesses to a memory address and/or region. In response to detection of the condition, the apparatus generates a scheduling output that secures a scheduled duration of inactivity for commanded operations. The apparatus initiates execution of one or more internal operations during the scheduled duration. |
US11011214B2 |
Data receiving circuit
A data receiving circuit may include: a variable delay circuit suitable for generating a delayed strobe signal by delaying a strobe signal; a receiving circuit suitable for sampling data in synchronization with the delayed strobe signal; a phase shift circuit suitable for generating a shifted strobe signal by shifting a phase of the delayed strobe signal; a phase comparison circuit suitable for comparing phases of the data and the shifted strobe signal; and a delay adjusting circuit suitable for adjusting a delay value of the variable delay circuit in response to the phase comparison result of the phase comparison circuit. |
US11011211B2 |
Semiconductor storage device
A semiconductor storage device includes a plurality of memory cells and a plurality of bit lines connected thereto, a plurality of sense amplifier units respectively connected to the plurality of bit lines, and a cache memory connected to the plurality of sense amplifier units. Each sense amplifier unit includes a sense node and a latch in which data transferred onto the sense node from a corresponding bit line is latched. First data latched in a first sense amplifier unit among the plurality of sense amplifier units is transferred to the cache memory, and second data latched in a second sense amplifier unit among the plurality of sense amplifier units is transferred to the sense node of the first second sense amplifier unit. Thereafter, the second data is latched in the first sense amplifier unit and transferred to the cache memory. |
US11011208B2 |
Semiconductor memory device including parallel substrates in three dimensional structures
A semiconductor memory device includes a substrate, first memory cells that are connected to first word lines extending along a first direction and first bit lines extending along a second direction, over the substrate, first conductive materials that are connected to the first word lines and extend from the first word lines along a third direction perpendicular to the first direction and the second direction, second conductive materials that are connected to the first bit lines and extend along the first direction over the first bit lines, and third conductive materials that are connected to the second conductive materials and extend from the second conductive materials along the third direction. |
US11011207B1 |
Hard disk drive tray and hard disk drive tray module
A hard disk drive tray includes a tray body, a handle, and two elastic locking members. The tray body includes a bottom wall and two side walls. A first evading groove is defined in each side wall. The side wall includes a first clamping portion. The handle includes two handle operating portions and a beam portion. The handle operating portion is connected to the side wall. A second clamping portion is formed in the first limiting groove. Each elastic locking member includes a first side portion, a top portion, and a locking portion. A third clamping portion is formed on the first side portion. The locking portion is blocked by the second clamping portion, and the third clamping portion is blocked by the first clamping portion. When the elastic locking member is pushed toward the second clamping portion, the third clamping portion is separated from the first clamping portion. |
US11011206B2 |
User control for displaying tags associated with items in a video playback
A method receives a video sequence including a visually perceptible item and selectively causes a display device to present the video sequence at any given time in one of a plurality of modes, including a first mode and a second mode. In the first mode, the display device presents the video sequence with a tag, which comprises information pertaining to the visually perceptible item in the video sequence. In the second mode, the display device presents the video sequence without the tag. The method receives from an input device a signal that indicates whether to present the video sequence in the first mode or the second mode, wherein causing the display device to present the video sequence in the first mode is performed in response to receiving from the input device the signal that indicates that the video sequence should be presented in the first mode. |
US11011204B2 |
Detecting media defects
A system, according to one embodiment, includes: a processor, and logic that is integrated with the processor, executable by the processor, or integrated with and executable by the processor. Moreover, the logic is configured to: detect, by the processor, a change in a resistance value of at least one of a plurality of detector structures, for identifying a defect on a magnetic medium. Each of the detector structures includes a pair of conductive layers separated by an insulating material. However, none of the detector structures include an operable reader for reading data from a magnetic medium. Other systems, methods, and computer program products are described in additional embodiments. |
US11011202B2 |
Recording apparatus, recording method, and storage medium
There is provided a recording apparatus. A control unit repeatedly executes a recording operation of recording data into a recording medium having a recording area that includes a plurality of partial areas. The control unit performs control so that one partial area included among the plurality of partial areas is used as a recording destination, and when the one partial area is filled with recorded data, another partial area is used as a recording destination. The control unit performs control so that a size of data recorded in a single recording operation does not exceed a remaining size of a partial area that is used as a recording destination in the single recording operation. |
US11011200B2 |
Fluorine-containing ether compound, lubricant for magnetic recording medium, and magnetic recording medium
This fluorine-containing ether compound is represented by Formula (1). R1—R2—CH2—R3—CH2—R4—R5 (1) (in Formula (1), R1 is an aryl group or an aralkyl group, R2 is a divalent linking group having 0 or 1 polar group, R3 is a perfluoropolyether chain, R4 is a divalent linking group having 2 or 3 polar groups, and R5 is an aryl group or an aralkyl group.) |
US11011198B1 |
Tape-creep detection via frequency domain data
A tape drive may arrange timing-based-servo marks into a timing-based-servo pattern. The timing-based-servo pattern may be at least one M-pattern. The tape drive may select the at least one M-pattern. The tape drive may match at least two timing-based-servo marks in the at least one M-pattern. The tape drive may determine, from the matching, whether an alignment of the at least two timing-based-servo marks is demonstrative of tape-creep. |
US11011195B2 |
Manufacturing method for multi-layer PZT microactuator having a poled but inactive PZT constraining layer
A multi-layer piezoelectric microactuator assembly has at least one poled and active piezoelectric layer and one poled but inactive piezoelectric layer. The poled but inactive layer acts as a constraining layer in resisting expansion or contract of the first piezoelectric layer. |
US11011194B2 |
Magnetic head cleaning mechanism and magnetic tape device
A cleaning mechanism is provided with an arm and a drive unit. The arm includes: a holder having a shape that allows a magnetic tape touching a magnetic head to be separated from the magnetic head without wearing the magnetic tape while the magnetic tape is under tension; and a cleaning unit that can be brought into contact with the contact surface of the magnetic head that was touching the magnetic tape while the magnetic tape is separate from the magnetic head. The drive unit drives the arm to separate the magnetic tape touching the magnetic head from the magnetic head without wearing the magnetic tape while the magnetic tape is under tension, and drives the arm so that the cleaning unit comes in contact with the contact surface of the magnetic head that was touching the magnetic tape while the magnetic tape is separate from the magnetic head. |
US11011193B1 |
Dual flux change layer (FCL) assisted magnetic recording
A spin transfer torque reversal assisted magnetic recording (STRAMR) structure is disclosed wherein two flux change layers (FCL1 and FCL2) are formed within a write gap (WG) and between a main pole (MP) trailing side and trailing shield (TS). Each FCL has a magnetization that flips to a direction substantially opposing a WG field when a direct current of sufficient current density is applied across the STRAMR device thereby increasing reluctance in the WG and producing a larger write field output at the air bearing surface. A reference layer (RL1) is used to reflect spin polarized electrons that exert spin torque on FCL1 and cause FCL1 magnetization to flip. A second reference layer (or the MP or TS) is employed to reflect spin polarize electrons that generate spin torque on FCL2 and flip FCL2 magnetization. Non-spin polarization preserving layers and spin polarization preserving layers are also in the STRAMR structure. |
US11011184B2 |
Automatic determination of timing windows for speech captions in an audio stream
The technology disclosed herein may determine timing windows for speech captions of an audio stream. In one example, the technology may involve accessing audio data comprising a plurality of segments; determining, by a processing device, that one or more of the plurality of segments comprise speech sounds; identifying a time duration for the speech sounds; and providing a user interface element corresponding to the time duration for the speech sounds, wherein the user interface element indicates an estimate of a beginning and ending of the speech sounds and is configured to receive caption text associated with the speech sounds of the audio data. |
US11011183B2 |
Extracting knowledge from collaborative support sessions
At a communication server, a first computer device and a second computer device are connected to a collaborative support session configured to support audio communications, screen sharing, and control of the first computer device by the second computer device. Screen sharing video image content is converted to a text sequence with timestamps. A text log with timestamps is generated from the text sequence. Using a command-based machine learning model, a sequence of commands and associated parameters, with timestamps, are determined from the text log. Audio is analyzed to produce speech-based information with timestamps. The command sequence is time-synchronized with the speech-based information based on the timestamps of the command sequence and the timestamps of the speech-based information. A knowledge report for the collaborative support session is generated. The knowledge report includes entries each including a timestamp, commands and associated parameters, and speech-based information that are time-synchronized to the timestamp. |
US11011179B2 |
Signal processing apparatus and method, and program
A method, system, and computer program product for processing an encoded audio signal is described. In one exemplary embodiment, the system receives an encoded low-frequency range signal and encoded energy information used to frequency shift the encoded low-frequency range signal. The low-frequency range signal is decoded and an energy depression of the decoded signal is smoothed. The smoothed low-frequency range signal is frequency shifted to generate a high-frequency range signal. The low-frequency range signal and high-frequency range signal are then combined and outputted. |
US11011178B2 |
Detecting replay attacks in voice-based authentication
Disclosed are various embodiments for detecting replay attacks in voice-based authentication systems. In one embodiment, audio is captured via an audio input device. It is then verified that the audio includes a voice authentication factor spoken by a user. If it is determined that the audio includes unexpected environmental audio in addition to the voice authentication factor that has been verified, one or more actions may be performed. |
US11011174B2 |
Method and system for determining speaker-user of voice-controllable device
There are disclosed methods and systems for determining a speaker of a set of registered users associated with a voice-controllable device. The method is executable by an electronic device configured to execute a Machine Learning Algorithm (MLA). The method comprises executing the MLA to determine a first probability parameter indicative of the speaker of the user utterance being one of the set of registered users; executing a user frequency analysis to generate, for each given one of the set of registered users, a second probability parameter the being an apriori frequency based probability; generating, for the electronic device, for each given one of the set of registered users an amalgamated probability based on the first probability and the second probability associated therewith; selecting the given one of the set of registered users as the speaker of the user utterance based on the amalgamated probability value. |
US11011173B2 |
Interacting with a user device to provide automated testing of a customer service representative
A device obtains information concerning a plurality of customer service representatives to identify a customer service representative and a user device associated with the customer service representative. The device selects a test issue of a plurality of test issues to be presented to the customer service representative, and, based on the test issue, a virtual assistant to converse with the customer service representative. The device initiates, based on an availability of the user device, a communication session with the user device, and causes the virtual assistant to converse with the customer service representative regarding the test issue. The device obtains data concerning a performance of the customer service representative during the communication session, processes the data using a machine learning model to determine a performance score for the customer service representative, and causes, based on the performance score for the customer service representative, at least one action to be performed. |
US11011170B2 |
Speech processing method and device
The present invention provides a speech processing method, which includes: receiving speech information; recognizing the speech information to convert the speech information into a plurality of pieces of text information; displaying at least one pieces of the text information; and receiving a selection signal to respond according to selected text information. The present invention further provides a speech processing device. According to the speech processing method and device provided by embodiments of the present invention, a user can select and confirm by clicking on displayed text information after the speech information is recognized, so that the selected text information is guaranteed to be coincident with a received speech information, thus further increasing accuracy and convenience of the speech processing and providing the user with a good experience effect. |
US11011166B2 |
Voice message categorization and tagging
In embodiments, a method includes: defining a plurality of visual icons; receiving a voice message, metadata and voice tagging criteria from a first client device; converting the voice message to text; generating a summary of the converted text; generating keywords based on the summary; categorizing the voice message into categories based on the keywords and the metadata; selecting visual icons based on the categories and the tagging criteria; tagging the voice message with the selected visual icons; and sending the tagged voice message to a second client device. |
US11011162B2 |
Custom acoustic models
The technology disclosed relates to performing speech recognition for a plurality of different devices or devices in a plurality of conditions. This includes storing a plurality of acoustic models associated with different devices or device conditions, receiving speech audio including natural language utterances, receiving metadata indicative of a device type or device condition, selecting an acoustic model from the plurality in dependence upon the received metadata, and employing the selected acoustic model to recognize speech from the natural language utterances included in the received speech audio. Each of speech recognition and the storage of acoustic models can be performed locally by devices or on a network-connected server. Also provided is a platform and interface, used by device developers to select, configure, and/or train acoustic models for particular devices and/or conditions. |
US11011159B2 |
Detection of potential exfiltration of audio data from digital assistant applications
The present disclosure is generally related to a data processing system to detect potential exfiltration of audio data by agent applications can include a data processing system. The data processing system can identify, from an I/O record, an input received from the digital assistant application via a microphone of a client device, an output received from the agent application after the input, and a microphone status for the microphone. The data processing system can determine that the output is terminal based on the input and the output. The data processing system can identify the microphone status as in the enabled state subsequent to the input. The data processing system can determine that the agent application is unauthorized to access audio data acquired via the microphone of the client device based on determining that the output is terminal and identifying the microphone status as enabled. |
US11011155B2 |
Multi-phrase difference confidence scoring
An example method includes: receiving a test phrase; comparing feature vectors of the test phrase to contents of a first database to generate a first score; comparing the feature vectors of the test phrase to contents of a second database to generate a second score; comparing feature vectors of the contents of the second database to the contents of the first database to generate a third score; comparing the feature vectors of the contents of the second database to a model of the test phrase to generate a fourth score; determining a first difference score based on a difference between the first and second scores; determining a second difference score based on a difference between the third and fourth scores; and generating a difference confidence score based on a lesser of the first and second difference scores. |
US11011152B2 |
Multiple sound localizations for improved internal sound synthesis
Synthesizing engine sound in a cabin of a vehicle includes generating a synthesized engine noise audio signal including a plurality of engine order outputs; mixing the engine order outputs in accordance with a first set of gain levels to provide a first channel output; mixing the engine order outputs in accordance with a second set of gain levels to provide a second channel output; using a first localization filter set to provide a first localized output to localize the first channel output as a first sound image at a first location within the cabin, and a second localization filter set to provide a second localized output to localize the second channel output as a second sound image at a second location within the cabin; and mixing the first and second localized outputs into loudspeaker outputs to be applied to the loudspeakers in the cabin. |
US11011150B2 |
Electronic device and method for eliminating noises from recordings
A method for eliminating noises collected by an electronic device when voice recordings are being taken detects whether the electronic device is in a voice recording mode. A first acquiring device is controlled to acquire the speaking voices of at least one user, when determining that the electronic device is in the voice recording mode. A determination is made as to whether the speaking voices of at least one user acquired by the first acquiring device include noises produced by the vibration device, and eliminating noises produced by the vibration device, when the speaking voices of at least one user acquired by the first acquiring device include the noises produced by the vibration device. |
US11011141B2 |
Method for controlling display of screen of mobile terminal, and mobile terminal
The present application relates to the field of computer technologies, and in particular, to a method for controlling display of a screen of a mobile terminal, and a mobile terminal. In the method for controlling the display of the screen of the mobile terminal, the mobile terminal can detect whether a beam emitted by a recognition apparatus arrives. When the mobile terminal detects that a beam arrives, the mobile terminal can determine whether the detected beam is in an inclined state. Once the mobile terminal detects that the beam is in the inclined state, the mobile terminal can adjust a display direction of interface content on a screen of the mobile terminal based on the inclined state of the beam. |
US11011140B2 |
Image rendering method and apparatus, and VR device
An image rendering method and apparatus relate to the field of communications technologies and include a moving direction of a head of a user wearing a virtual reality (VR) device being detected, at least two rendering areas in a display interface being determined based on the moving direction, and then images displayed in different rendering areas being rendered using different rendering intensity coefficients, where a rendering intensity coefficient of a rendering area to which the moving direction points is greater than a rendering intensity coefficient of a rendering area to which an opposite direction of the moving direction points. |
US11011136B2 |
Image data processing device and display device including the same
An image data processing device of the inventive concept includes an image data converter and a light emission amount calculator. The image data converter converts image data into modulation image data. The image data includes first to third data corresponding to the first to third colors, respectively. The modulation image data includes first to fourth modulation data corresponding to the first to fourth colors, respectively. The light emission amount calculator calculates the fourth modulation data based on the ratio between the first data and the second data. The fourth color includes a color based on mixing the first color and the second color. |
US11011129B2 |
Display device
Disclosed is a display device which is capable of increasing a lifespan of a gate driver by maintaining a deterioration balance among a plurality of pull-down transistors, wherein the display device may include a display panel for displaying an image, a gate driver for supplying a gate signal to the display panel, and a timing controller for supplying a gate driver control signal to the gate driver, wherein the timing controller is set in such a way that it is turned-off until after a predetermined one among the plurality of pull-down transistors inside the gate driver is driven by the use of reset signal supplied from a reset integrated circuit. |
US11011125B2 |
Electrooptic device and electronic apparatus
An electrooptic device includes a scan line; data lines; a scan line driving circuit that selects the scan line; a data line driving circuit that supplies data signals to the data lines; a TFT that includes a gate electrode receiving gate signals for selecting the data line and has one end connected to the data line and the other end connected to the data line driving circuit; and a TFT that includes a gate electrode receiving gate signals for selecting the data line and has one end connected to the data line and the other end connected to the data line driving circuit. The gate electrode of the TFT overlaps the data line. |
US11011123B1 |
Pan-warping and modifying sub-frames with an up-sampled frame rate
In an embodiment, a method includes accessing a first rendered frame generated at a first frame rate. The method includes generating, based on the first rendered frame, one or more sub-frames at a second frame rate that is higher than the first frame rate. A first sub-frame of the one or more sub-frames is generated by determining a displacement measure associated with an anticipated movement of an optics component of a display system and applying, based on the displacement measure, one or more transformations to the first rendered frame to generate the first sub-frame. The first sub-frame is to be perceived by a user using the optics component of the display system. The method includes outputting the one or more sub-frames for display at the second frame rate. The one or more sub-frames are perceived by the user using the optics component of the display system. |
US11011122B2 |
Liquid crystal display having a rolling backlight
A liquid crystal display (LCD) that may include: a plurality of transistors groups forming a pixel array of said LCD, wherein the transistors groups are independently controllable; a plurality of backlight units, forming a backlight surface of said LCD, wherein the backlight units are independently controllable; a data refresh module configured to periodically refresh data at said groups of transistors, at a specified order, over a refresh cycle time; and a backlight control module configured to periodically dim the backlight units at said specified order over a backlight cycle time which is substantially shorter than the refresh cycle time. |
US11011120B2 |
Display device
A display device includes: first pixels coupled to data lines and a first scan line; second pixels coupled to the data lines and a second scan line; a data driver for sequentially supplying, to the data lines, first data voltages corresponding to first grayscale values of the first pixels and second data voltages corresponding to second grayscale values of the second pixels; a scan driver for supplying a first scan signal to the first scan line, and supplying a second scan signal to the second scan line; and a precharge controller for determining a width of a pulse of the second scan signal, based on a comparison result of the second grayscale values and previous frame grayscale values and a comparison result of the first grayscale values and the second grayscale values. |
US11011118B2 |
Pixel-driving circuit and a compensation method thereof, a display panel, and a display apparatus
The present application discloses a pixel-driving circuit in a display panel. The pixel-driving circuit includes a first transistor being provided with a fixed voltage, a driving transistor having a gate configured to receive the fixed voltage controlled by the first transistor and a drain coupled to a first power supply, a capacitor coupled between the gate and a source of the driving transistor, a light-emitting device coupled to the source and a second power supply, a second transistor having a drain coupled to the source of the driving transistor and a source coupled to a data line, a sensing sub-circuit coupled to the data line in a first period, and a driving sub-circuit coupled to the data line in a second period. The sensing sub-circuit and the driving sub-circuit are configured to connect to the data line in a time-divisional manner respectively for sensing and compensating the pixel-driving circuit. |
US11011114B2 |
Compensation method, device, circuit for display panel, display panel and display device
The present disclosure provides a compensation method, device, circuit for a display panel, a display panel and a display device. The display panel includes a plurality of pixel circuits, each of which comprises a driving transistor. The compensation method includes: obtaining a first compensation grayscale value GL1 and a second compensation grayscale value GL2 of a pixel circuit to be compensated; obtaining a first compensation luminance L1, a first gate-source voltage Vgs1 of the driving transistor, a second compensation luminance L2, and a second gate-source voltage Vgs2 of the driving transistor, wherein L1 and Vgs1 correspond to GL1, and L2 and Vgs2 correspond to GL2; obtaining a theoretical luminance L corresponding to an input grayscale value GL; calculating the compensation gate-source voltage V′gs by using L, L1, Vgs1, L2, and Vgs2; and obtaining an output compensation grayscale value GL′ according to V′gs. |
US11011113B1 |
TFT pixel threshold voltage compensation circuit with global compensation
A pixel circuit compensates the threshold voltage variations of the drive transistor with an ultra-short one horizontal (1H) time, with additionally removing the possible memory effects associated with the light-emitting device and the drive transistor from the previous frame. An ultra-short 1H time (<2 μs) is achieved via separation of threshold compensation of the drive transistor and data programming phases. The pixel circuit has a two-capacitor configuration, whereby a first capacitor is used for drive transistor threshold compensation, and a second capacitor is used to store the data voltage during a data pre-loading phase. Two transistors are employed to electrically connect the gate and source of the drive transistor to a common initialization voltage during an initialization phase to reset circuit voltages for the current frame. In this manner, no current flows through the drive transistor to the light-emitting device during the initialization phase when the light-emitting device does not emit light, which saves power. An array of individual pixel circuits is controlled using a global compensation scheme in which global control signals are applied to the individual pixel circuits of the pixel array. |
US11011112B2 |
Organic light-emitting display panel and organic light-emitting display device
Provided is an organic light-emitting display panel including: a first pixel driving circuit driving a first sub-pixel and including first driving transistors, and a second pixel driving circuit driving a second sub-pixel and including one or more second driving transistors. An operating current of the first sub-pixel at a preset grayscale is n times an operating current of the second sub-pixel at the preset grayscale, n≥1.5. The first driving transistor includes first and second driving sub-transistors. The first driving sub-transistor has a gate electrode electrically connected to a gate electrode of the second driving sub-transistor, a first electrode electrically connected to a first electrode of the second driving sub-transistor, and a second electrode electrically connected to a second electrode of the second driving sub-transistor. The number of the one or more second driving transistors is smaller than the number of the first driving transistors. |
US11011110B1 |
Organic light emitting diode display thermal management
An information handling system organic light emitting diode (OLED) display adapts presentation of visual information to manage a display thermal state, such as to maintain a uniform thermal condition. In one example embodiment, a first display zone of plural pixels presents visual images with a first refresh rate, such as the nominal refresh rate established by the display settings, and a second display zone presents visual images with a partial pixel refresh rate that reduces power dissipation and, thus, thermal energy release so that a more uniform thermal state may be achieved at the display. |
US11011109B1 |
Organic light emitting diode display power management based on usage scaling
A portable information handling system organic light emitting diode (OLED) display manages power consumption by dividing the display into plural zones of contiguous pixels and presenting visual images in a first zone at a full pixel density and in a second pixel density. For example, a full pixel density presents visual images with all pixels at a display setting and a partial pixel density presents visual images with at least some pixels at the display setting and at least some pixels at a reduced power setting, such as off or a reduced illumination. |
US11011107B2 |
Pixel circuit, method for driving pixel circuit, and display apparatus
A pixel circuit includes a compensation module, a resetting module, a writing module, a driver module, a light emission enabling module, and a light emitting device. The resetting module is configured to reset the driver module and the light emitting device; the compensation module performs threshold voltage compensation on the driver module; the writing module is configured to write, to the driver module, a data voltage that is output by a data line; the light emission enabling module is configured to provide a voltage of a first supply voltage end to the driver module; the driver module is configured to provide, under action of the voltage output by the first supply voltage end, a drive current to the light emitting device; and the light emitting device is configured to emit light based on the drive current. The pixel circuit is configured to drive to display a subpixel. |
US11011104B2 |
Image display device and method for manufacturing image display device
An image display device includes pixels each of which includes subpixels including a first subpixel and a second subpixel. The first subpixel includes a first light-emitting element configured to emit isochromatic light and a first wavelength conversion layer provided over the first light-emitting element to emit red light. The second subpixel includes a second light-emitting element configured to emit the isochromatic light and a second wavelength conversion layer provided over the second light-emitting element to emit green light. The pixels includes at least one pixel which includes a defective subpixel. A drive circuit is configured to drive the subpixels based on data of an image signal such that the pixels reproduces the data of the image signal. The drive circuit is configured to drive the first subpixel and the second subpixel based on the position data and data of red and green luminances. |
US11011103B2 |
Pixel circuit and display device including light emission control circuit
A pixel circuit includes a first driving circuit, a light-emitting element, a second driving circuit, an energy storage circuit and an input circuit. A first end of the first driving circuit is connected to a power source voltage input end. An anode of the light-emitting element is connected to a second end of the first driving circuit. A first end of the second driving circuit is connected to a first level signal input end, a second end thereof is connected to a cathode of the light-emitting element. The energy storage circuit is connected to control ends of the first driving circuit and the second driving circuit, a second level signal input end. The input circuit is connected to a data signal input end, an input control end, the control end of the first driving circuit and the control end of the second driving circuit. |
US11011100B2 |
Dynamic pixel diagnostics for a high refresh rate LED array
A LED controller for an LED pixel array includes a switch K1 activated in response to a row and column select signal; a switch K2 activated in response to a pulse width modulation duty cycle; and a switch K3 providing a current source from Vbias. Pixel activation is determined at least in part by state of switch K1 and K2. In operation, the LED pixel in the LED pixel array is selected by switch K1 and a fault determination for the LED pixel is made based on determined Vf on a Vf bus. |
US11011097B2 |
Method for driving display panel and computer readable storage medium
A method for driving a display panel is disclosed. The display panel includes a plurality of sub-pixels arranged in an array, a plurality of data input ports, a plurality of groups of data lines, and a plurality of groups of selection switches, wherein each group of data lines includes a plurality of data lines coupled to the same data input port through a plurality of selection switches in a corresponding group of selection switches. The method includes: sequentially turning on a plurality of selection switches according to a first sequence when an Mth row of sub-pixels of the display panel is scanned; and sequentially turning on the plurality of selection switches according to a second sequence when an (M+1)th row of sub-pixels of the display panel is scanned, wherein M is a positive integer greater than or equal to 1, and the first sequence is different from the second sequence. |
US11011096B2 |
Self-diagnostic imaging method, self-diagnostic imaging program, display device, and self-diagnostic imaging system
A display device is for displaying an image generated by an image processing device. The display device includes: a video decoding and input unit that receives an encoded image of a reference signal generated by the image processing device, and decodes the encoded image; a video display unit that performs image quality correction of the decoded image and displays, on a display panel, the image to which the image quality correction has been performed; and an image cut-out unit that cuts out an image at a position corresponding to the reference signal from an image to which the image quality correction has not been performed and transmits the cut out image to which the image quality correction has been performed, to the image processing device. |
US11011091B2 |
Array substrate for reducing coupling effect, display panel, display device, operating method, and manufacturing method
An array substrate, a display panel, a display device, an operating method, and a manufacturing method are disclosed. The array substrate includes a wiring structure formed on a base substrate, and the wiring structure includes a common electrode line for connecting a common electrode, and a plurality of signal lines. The plurality of signal lines include at least one pair of signal lines, and the pair of signal lines include a first signal line and a second signal line. The first signal line is disposed on a first side of the common electrode line and is configured to transmit a driving signal for a gate driving circuit. The second signal line is disposed on a second side of the common electrode line and is configured to transmit an inverted signal of the driving signal. |
US11011088B2 |
Shift register unit, driving method, gate drive circuit, and display device
A shift register unit, a driving method, a gate drive circuit and a display device are provided. The shift register unit includes: an input sub-circuit used to control an electric potential of the pull-up node, an output sub-circuit used to input a first clock signal from a first clock signal terminal to the output terminal, a pull-down control sub-circuit used to control an electric potential of the pull-down node, a pull-down sub-circuit used to control electric potentials of the pull-up node and the output terminal, a first reset control sub-circuit used to control an electric potential of the second control node under control of the first control node and a reset signal from the reset signal terminal and a reset sub-circuit used to control the electric potential of the pull-up node. The shift register unit improves the noise reduction efficiency at the output terminal. |
US11011086B2 |
Display device performing unevenness correction and method of operating the display device
A display device includes a display panel including a plurality of pixels, a power management circuit configured to generate an analog driving voltage, a correction data memory configured to store a plurality of unevenness correction data sets respectively corresponding to a plurality of analog driving voltage ranges, a controller configured to determine, among the plurality of analog driving voltage ranges, a current analog driving voltage range to which the analog driving voltage output from the power management circuit belongs, to select an unevenness correction data set corresponding to the current analog driving voltage range from the plurality of unevenness correction data sets stored in the correction data memory, and to correct image data based on the selected unevenness correction data set, and a source driver configured to receive the corrected image data from the controller, and to provide the plurality of pixels with data voltages corresponding to the image data. |
US11011083B2 |
Display device
A display device includes: a display panel including a first display region, a second display region, and a third display region between the first display region and the second display region; and a display panel driving circuit configured to drive the display panel, wherein the display panel driving circuit drives the first display region, the second display region, and the third display region in a full pixel-row driving manner when an image is displayed on the first display region, the second display region, and the third display region, and wherein the display panel driving circuit drives the first display region in the full pixel-row driving manner and drives the third display region in a partial pixel-row driving manner when the image is displayed only on the first display region and the third display region. |
US11011078B2 |
System and method for three-dimensional augmented reality guidance for use of medical equipment
Methods for providing real-time, three-dimensional (3D) augmented reality (AR) feedback guidance to a user of a medical equipment system to achieve improved diagnostic or treatment outcomes in the use of the medical equipment. The methods involve providing real-time position-based 3D AR feedback and real-time outcome-based 3D AR feedback to the user via an augmented reality user interface (ARUI). The feedback may be provided to the user via a head mounted display (HMD). |
US11011075B1 |
Calibration of haptic device using sensor harness
A haptic calibration device comprises a signal generator configured to receive the subjective force value and the force location from a subjective magnitude input device. The signal generator also receives from at least one of a plurality of haptic sensors a sensor voltage value, with the at least one of the plurality of haptic sensors corresponding to the force location. The signal generator stores the subjective force value and the corresponding sensor voltage value in a data store. The signal generator generates a calibration curve indicating a correspondence between subjective force values and sensor voltage values for the location where the subjective force was experienced using the data from the data store, wherein the calibration curve is used to calibrate a haptic feedback device. |
US11011073B2 |
Weight-loss service that supports multiple remote users in losing weight
A method including, at a computer: causing a man machine interface to be provided to each one of a plurality of remote users, wherein the man machine interface is configured to enable a remote user to be specified to have a particular user state selected from a group comprising an output state and a potential-input state but not comprising a live-input state; causing a command interface to be provided to a remote administrator, wherein the command interface is configured to enable the remote administrator to change a user state from a potential-input state to a live-input state and configured to enable the remote administrator to input comment; causing a first variant of the first man machine interface to be provide to a remote user while the remote user has a live-input state, wherein the first variant of the man machine interface is configured to enable the remote user, while the remote user has the live-input state, to input comment to be read by other remote users and to read comments input by the remote administrator and read comments input by remote users, if any, simultaneously having the live-input state; causing a second variant of the man machine interface to be provided to a remote user while the remote user has a potential-input state, wherein the second variant of the man machine interface is configured to enable the remote user having the potential-input state to read comments input by the remote administrator and read comments input by remote users having the live-input state but is not configured to enable the remote user, while the remote user has the potential-input state, to input comment to be read by other remote users; and causing a third variant of the man machine interface to be provided to a remote user while the remote user has an output state, wherein the third variant of the man machine interface is configured to enable the remote user having the output state to read comments input by the remote administrator and read comments input by other remote users having, the live-input state but is not configured to enable the remote user, while the remote user has the potential-input state, to input comment to be read by other remote users. |
US11011069B1 |
Method and system for altering level of difficulty of computer games and learning programs
A computer implemented method for helping a user of computer game and learning programs to perceive a correct answer to a question presented by the programs. These computer game and learning programs (Set A programs) are modified by a computer program of this invention that accepts exactly one token string to be a correct answer (Set ESP program). Answer related output information in a Set A program is modified by the Set ESP program to provide a cue (hint) to a user to increase or decrease the ability of a user to perceive a correct answer. When a user enters an answer a guard requirement in the Set ESP program is satisfied and a guarded subfunction in the Set ESP program is executed if the user's answer is correct. Cues for answers can be visual (with or without eye-tracking), audible, and haptic and can be presented subliminally. |
US11011068B2 |
Systems and methods for automated response data sensing-based next content presentation
Systems and methods for automatic generation of a content presentation plan are disclosed herein. The method can include receiving content identification information, retrieving objective information for the one or several objectives identified for inclusion in a content presentation plan, identifying at least one prerequisite skill for completion of at least one of the one or several objectives, generating at least one remediation question configured to delineate between users having mastery of the at least one prerequisite skill and users not having mastery of the at least one prerequisite skill, pre-selecting remedial content for providing to users identified as not having mastery of the at least one prerequisite skill, selecting objective content corresponding to the at least one objectives, and creating a content presentation plan containing the at least one remediation question, the remedial content, and the objective content. |
US11011067B2 |
Shadow fairytale projector
A shadow fairytale projector for providing images of a fairytale, comprises: a head part having a first lens module which protrudes from an outer side surface; a slit part where a perforated hole overlapping with the first lens module is formed, where the slit part comprises a first engagement rotation module for rotating a pack inserted into the pack slit and a film formed inside the pack, a fixing protrusion module for fixing the pack, and a discriminant protrusion module; and a body part which comprises a drive module connected to the first engagement rotation module to drive the first engagement rotation module, a control module, a speaker module connected to the control module to receive the sound signal and generate sound, and a battery for applying electrical energy to the drive module, the control module, and the speaker module. |
US11011061B2 |
Determining changes in a driving environment based on vehicle behavior
A method and apparatus are provided for determining whether a driving environment has changed relative to previously stored information about the driving environment. The apparatus may include an autonomous driving computer system configured to detect one or more vehicles in the driving environment, and determine corresponding trajectories for those detected vehicles. The autonomous driving computer system may then compare the determined trajectories to an expected trajectory of a hypothetical vehicle in the driving environment. Based on the comparison, the autonomous driving computer system may determine whether the driving environment has changed and/or a probability that the driving environment has changed, relative to the previously stored information about the driving environment. |
US11011058B2 |
Computer-implemented system and method for providing available parking spaces
A computer-implemented system and method for providing available parking spaces is provided. Parking spaces, each associated with a hold time, are monitored. A request for parking is received from a user. Available parking spaces near the destination are identified, and a location of the user is determined. At least two different routes from the user's location to one of the available parking spaces are identified. An arrival time of the user for each route is calculated. The route with the fastest arrival time is selected for that available parking space. Those parking spaces for which the user's arrival time is less than the hold time are selected as possible parking spaces. A number of the possible parking spaces is reduced by removing those available parking spaces that fail to satisfy one or more parking preferences of the user. The remaining available parking spaces are sent to the user for selection. |
US11011056B2 |
Fragmentation-aware intelligent autonomous intersection management using a space-time resource model
An intersection management system (IMS) may receive one or more traversing requests from one or more Connected Autonomous Vehicles (CAVs). The IMS may determine a solution space for each of the one or more traversing requests in a space-time resource model of the intersection, find a CAV trajectory allocation in the space-time resource model for each of the one or more traversing requests. The IMS may send an approved reservation to each CAV corresponding to each of the one or more CAV trajectory allocations that have been found. Each of the one or more CAVs may, when an approved reservation corresponding to the CAV may have been received from the IMS, move through the intersection zone as specified in the approved reservation. |
US11011053B2 |
Systems and methods for remote power tool device control
Systems and methods for remote power tool control are provided. In one example, a battery pack is coupled to a power tool device. The battery pack includes a pack transceiver and a pack electronic processor. The pack electronic processor is coupled to the pack transceiver and is configured to determine that the power tool device is remotely controllable. The pack electronic processor is further configured to receive, wirelessly via a pack transceiver of the battery pack, a remote control command from a mobile device, and to provide the remote control command to the power tool device. The system further includes a tool electronic processor of the power tool device in communication with the pack electronic processor. The tool electronic processor is configured to control the power tool device to perform an action specified by the remote control command in response to receiving the remote control command. |
US11011052B2 |
Control system and control method
A control system includes a server and a plurality of nodes. The server transmits data of command strings being described in combination of sequential processing and loop processing to the nodes. The nodes store the data of command strings received from the server. Each node includes a plurality of application programming interface (API) units that perform predetermined sequential processing. Each node selects an API unit on the basis of the command strings acquired from the server and causes the selected API unit to perform sequential processing and loop processing. |
US11011051B1 |
Automated bulk location-based actions
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for automating bulk location-based actions in response to disaster events. A system obtains data defining zones related to different geographic locations and configures a set of preferences for each zone. One of the preferences is a command for responding to an event. The system detects a disaster event and determines that a location affected by the event is related to a zone defined at the system. The system obtains sensor data generated by a sensor in the zone that is connected to a monitoring system for the zone. The system generates an alert based on the sensor data and the command and provides the alert to a client device of an entity that manages properties in the zone. The alert provides an assessment of how the disaster event affects items at properties in the zone. |
US11011042B2 |
Wearable device and associated detecting method
A wearable device includes: a sensing circuit and a processing circuit, wherein the sensing circuit is arranged to generate a wearing information output in each of a plurality of detecting periods, and the processing circuit is arranged to inform a wearing status indicative of a status of wearing the wearable device according to wearing information outputs generated in the plurality of detecting periods. |
US11011041B2 |
Monitoring system, apparatus and method
A system, topology, and methods for a monitoring via one or more sensors and controlling the operation of a controllable module. A system can include a first wireless communication module the first wireless communication module including a transceiver employing a first protocol to receive digital data from an electronic sensor and to control the operation of the electronic sensor. The system can further include an internal memory storing data received for the electronic sensor. The system can further include a second wireless communication module, the second wireless communication module including a transceiver employing a second protocol different from the first protocol to communicate real time electronic sensor data and electronic sensor data stored in the internal memory directly with a user portable electronic device, the portable electronic device including an internal electrical energy storage element, a processor, and a user perceptible display. |
US11011040B2 |
Electronic personal dosimeter smart accessory system
An electronic personal dosimeter (EPD) smart accessory system is described. The system includes a first component configured to be attachable to the EPD and a second component configured to be attachable to safety glasses. The first component includes an ambient light sensor and a first communication module. The ambient light sensor detects light from a light-emitting diode (LED) of the EPD to detect a warning signal from the EPD. The second component includes a feedback mechanism and a second communication module. The first communication module establishes a short range wireless communication connection with the second communication module, and transmits a signal to cause the second component to turn on the feedback mechanism when the warning signal from the EPD is detected. |
US11011038B2 |
Method and system for security tagging
Aspects of the present disclosure include methods, apparatus, and computer readable medium for managing a removal code of a tag includes providing information associating the tag with a merchandise item, wherein the information includes a removal code for removing the tag from the merchandise item, receiving, from a requesting device, a request for the removal code, authenticating the request, and transmitting, in response to successfully authenticating the request, the removal code to the requesting device, wherein the removal code is configured to be transmitted by the requesting device to the tag to remove the tag from the merchandise item. |
US11011035B2 |
Methods and systems for detecting persons in a smart home environment
The various implementations described herein include methods, devices, and systems for detecting motion and persons. In one aspect, a method is performed at a smart home system that includes a video camera, a server system, and a client device. The video camera captures video and audio, and wirelessly communicates, via the server system, the captured data to the client device. The server system: (1) receives and stores the captured data from the video camera; (2) determines whether an event has occurred, including detected motion; (3) in accordance with a determination that the event has occurred, identifies video and audio corresponding to the event; and (4) classifies the event. The client device receives information indicative of the identified events, displays a user interface for reviewing the video and audio stored by the remote server system, and displays the at least one classification for the event. |
US11011028B2 |
Gaming devices and methods for enriching game play with migrating award enhancements
Systems, apparatuses and methods for providing opportunities to enhance gaming results over a plurality of gaming events. In one embodiment, award enhancements such as wild cards and/or payout modifiers migrate through a multi-hand poker array over multiple poker games, thereby changing the award enhancement opportunities as the award enhancements migrate. |
US11011025B2 |
System and method for providing awards based on accumulating triggering elements independent of reel symbols
Systems and methods which provide a player zero, one or more awards based on the accumulation of triggering elements independent of the generation of a plurality of symbols of a plurality of reels. |
US11011024B2 |
Gaming system and method for providing a plurality of chances of winning a progressive award with dynamically scalable progressive award odds
The gaming system disclosed herein provides a plurality of chances to win a progressive award with the odds of winning the progressive award in at least one chance being based on the wager amount placed. |
US11011019B2 |
Gaming system and method for providing dynamic paytable awards
Gaming systems and methods which utilize one or more persistent supplemental awards to dynamically modify or otherwise alter one or more awards associated with one or more game outcomes of a paytable. |
US11011018B2 |
Electronic transaction systems and methods for gaming or amusement credit purchases
Systems and methods for purchasing credits are described. The system includes a plurality of electronic transaction terminals, an activity table, a computing device, a financial account server, and a credit system. The electronic transaction terminals include a handheld device that receives patron input and are located at an activity table. The electronic transaction terminals are in electronic communication with the computing device and provide an electronic transaction request instruction. The system generates from the electronic transaction request instruction, an electronic transaction request that is communicated from the computing device to the financial account server. The computing device then receives an electronic transaction approval from the financial account server and generates an authorization to dispense credits to a patron. The computing device then communicates the authorization to dispense credits to the credit system associated with the activity table so that the patron receives the credits at the activity table. |
US11011017B2 |
Systems and methods for playing a wagering game
Systems and methods enable one or more players to play a wagering game having virtual cards. A game system includes a game server configured to connect to at least one mobile gaming device over a network. The game server includes a processor configured to provide a wagering game having virtual cards to a player using the gaming device. Each wagering game is played by players at a virtual table who are dealt virtual cards to form a hand, and the hand satisfying a winning criterion is determined to be a winning hand. The game system also includes a database that may be implemented as a non-relational database configured to be connected to the game server. The database is configured to store a state of the hands of each table as a plurality of document-oriented datasets. The mobile gaming device may automatically re-authenticate to the game server after a disconnection. |
US11011013B2 |
System for identifying running streak wagering events and outcomes
A physical system supports a method on a surface of a gaming table for reception of markers identifying placement of wagers on a series of sequential random outcomes. There are a series of distinct adjacent areas for receiving markers indicating wagers on the series of sequential random outcomes. Each distinct area has a surface area sufficient to accommodate a marker indicating wagers from a single player. Associated with each area is an indicator of a degree of progression through a sequence of random outcomes. The indicator of a degree of progression changing after each sequential outcome. Any markers present on a distinct area moving relative to a last indicator on which any marker was present to indicate a change in a degree of progression in the series of sequential random outcomes. |
US11011009B2 |
Method and apparatus for controlling and monitoring a vending machine
An apparatus to control and/or monitor a vending machine. The apparatus controls and/or monitors the microcontroller on the vending machine controller board in the vending machine, to control and/or monitor status information, configuration data, one or more events, and/or one or more activities, in the vending machine. The apparatus can be integrated and/or used with a vending machine, without replacing the vending machine controller board and without changing the vending software program in the vending machine. The apparatus implements and/or uses a hardware abstraction layer (HAL) and provides a software application programming interface (API) library to the vending machine. The software API library is used by a software application to control and/or monitor the vending machine. Software applications can be developed for existing and/or new vending machines, without knowing the technical hardware and/or software details of the vending machine. The software application can control and/or monitor different vending machine brands and/or types. |
US11011003B1 |
Systems and methods for managing infectious disease dissemination
System and method for infectious disease prevention includes transmitting, via a server, a facility credential associated with a facility configured to identify a user operating on an application deployed by server from a mobile computing device. The server receives a user identification test code (UITC) associated with a status of an infectious disease of the user. The server then generates a two-dimensional code associated with the facility credential based on the UITC. The server determines if the two-dimensional code is valid for permitting access to the facility based on the status of the infectious disease. Thereafter, the server activates the two-dimensional code on the mobile computing device for a predetermined period of time. A gatekeeper device responds to the two-dimensional code from the mobile computing device and then permits the user access to the facility within the predetermined period of time based on the facility credential and the two-dimensional code. |
US11011002B2 |
Controlling access to an access object
It is presented a method for controlling access to an access object. The method is performed in an access control device and comprises the steps of: receiving a user input to reset the access control device; generating a new identifier for the access control device, and discarding any previously used identifier for the access control device; communicating with an electronic key to obtain an identity of the electronic key; obtaining a plurality of delegations, wherein each delegation is a delegation from a delegator to a receiver; and granting access to the access object only when the plurality of delegations comprise a sequence of delegations covering a delegation path from the access control device, identified using the new identifier, to the electronic key such that, in the sequence of delegations, the delegator of the first delegation is the access control device, and the receiver of the last delegation is the electronic key. |
US11010999B2 |
Systems and methods for voice-activated control of an access control platform
The systems and methods provided herein use a rolling voice identifier in a multi-factor authentication system to avoid the security problems present in prior voice activated control systems. By implementing a rolling voice identifier in an access control platform, users may no longer need to be concerned with being overheard or recorded when providing voice authentication commands to an access control platform because the rolling voice identifier that the user will be prompted to speak will be specific to the particular instance of control of an access control platform. An access control platform is a platform that controls operation of a movable barrier by, for example, controlling the state of a movable barrier using a remote control. An access control platform may cause a movable barrier to become opened, closed, locked, or unlocked to permit or prevent access to a physical space by a physical object. |
US11010997B2 |
Methods and apparatus to wirelessly interlock doors
Methods and apparatus to wirelessly interlock doors are disclosed. A door system includes a user interface to receive interlock configuration data input from a user, the interlock configuration data to define an interlock condition to be satisfied before a first door is to undergo an operation, the interlock condition associated with a current state of a second door. The door system includes a first wireless transceiver to receive a signal from a second wireless transceiver associated with a second door. The method includes a door operation controller to at least one of (1) implement the operation of the first door in response to a request when the current state of the second door satisfies the interlock condition, (2) ignore the request, or (3) not execute the operation of the first door in response to the request when the current state of the second door does not satisfy the interlock condition. |
US11010988B2 |
Method, system and product for automatic parking payment and policy detection
Method, system and product for automatic parking payment and policy detection. One method comprises detecting a parking event, querying a parking policy database to obtain a parking policy for the parking location, wherein the parking policy indicates that the parking location is a paid parking spot; and initiating, either automatically or semi-automatically, a parking payment service for parking of the vehicle in the parking location based on the parking policy, wherein said initiating is performed by the mobile device. Another method comprises detecting a parking exit event, wherein the exit parking event is associated with a parking location that is a paid parking location; automatically determining whether a parking payment service is being used by the user for the paid parking location; and stopping the parking payment service for the paid parking location. |
US11010987B2 |
Ticket burster
Embodiments of a ticket burster employ a dividing wall that is movable between different positions to facilitate dispensing tickets of different sizes, and a sensor that detects and communicates the position of the dividing wall to a controller. The controller communicates with feed motors to selectively operate feed drive rollers independently or in unison depending upon the detected position of the dividing wall. |
US11010986B2 |
Virtual object kit
In some implementations, a method includes obtaining a virtual object kit that includes a set of virtual object templates of a particular virtual object type. In some implementations, the virtual object kit includes a plurality of groups of components. In some implementations, each of the plurality of groups of components is associated with a particular portion of a virtual object. In some implementations, the method includes receiving a request to assemble a virtual object. In some implementations, the request includes a selection of components from at least some of the plurality of groups of components. In some implementations, the method includes synthesizing the virtual object in accordance with the request. |
US11010984B2 |
Three-dimensional conversion of a digital file spatially positioned in a three-dimensional virtual environment
Systems and methods include transforming a digital file into a three-dimensional object that is spatially positioned in a three-dimensional virtual environment to visually organize the digital file relative to the three-dimensional virtual environment. Embodiments of the present disclosure relate to receiving the digital file that includes digital file parameters and is in a file format. The digital file is transforming into the three-dimensional object based on the digital file parameters associated with the digital file. The three-dimensional object is representative of the presentation of the digital file when executed by the computing device. The three-dimensional object is spatially positioned at a spatial location in the three-dimensional environment based on the digital file parameters of the digital file. A user is enabled to engage the three-dimensional object as spatially positioned in the three-dimensional virtual environment so that the three-dimensional object is executed in the three-dimensional virtual environment. |
US11010981B2 |
Augmented reality authentication for public device interfaces
Augmented reality-based user authentication for automatic teller machines is disclosed. Embodiments include a system with one or more memory devices storing instructions. The system may further include one or more processors configured to execute the instructions and to receive an authentication request from a user of an ATM. In some embodiments, the processor may retrieve, from the one or more memory devices, an augmented reality password specific to a user, the password comprising an augmented reality object. In other embodiments, the processor may identify a personal user device configured to receive the password, and personalize the password, based on information previously configured by the user. In yet other embodiments, the processor may be configured to present the augmented reality object via a display on the personal user device, and to determine, based on input provided by a user to the augmented reality object, whether to approve the authentication request. |
US11010980B2 |
Augmented interface distraction reduction
An audiovisual input from a wearable device is received. It is determined that a discrete task is currently being performed. The determination is based on the receiving the audiovisual input. An unrelated audiovisual input, unrelated to the discrete task is detected. The detection is based on the determining the discrete task. The unrelated audiovisual input is intercepted in response of the detection of the unrelated audiovisual input. The audiovisual input is prevented based on the intercepting the unrelated audiovisual input. |
US11010976B2 |
Interactive item placement simulation
An approach for simulating items in an environment, such as a room, is disclosed. A package file can store information including an image of the environment and metadata including an identifier that uniquely identifies a selected image. The package file can be used to regenerate a simulation of the item arranged over the image of the environment. Later changes can be made to the simulation of the item by accessing the metadata. |
US11010973B2 |
Information processing apparatus, information processing system, and non-transitory computer readable medium
An information processing apparatus includes an acquiring unit and a command unit. The acquiring unit acquires positional information of a container containing a contained object from an image acquired as a result of photographing the container by using a display device that displays a virtual-space image and a real space in an overlapping manner and that has a photographing function. The command unit commands the display device to display information related to the contained object stored in association with the positional information as the virtual-space image near the container. |
US11010971B2 |
User-driven three-dimensional interactive gaming environment
An invention is provided for affording a real-time three-dimensional interactive environment using a depth sensing device. The invention includes obtaining depth values indicating distances from one or more physical objects in a physical scene to a depth sensing device. The depth sensing device is configurable to be maintained at a particular depth range defined by a plane so that objects between the particular depth range and the depth sensing device are processed by the depth sensing device, wherein the particular depth range establishes active detection by the depth sensing device, as depth values of objects placed through the particular depth range and toward the depth sensing device are detected and depth values of objects placed beyond the particular depth range are not detected. The objects placed through the particular depth range are rendered and displayed in a virtual scene based on geometric characteristics of the object itself. |
US11010970B1 |
Conveying data to a user via field-attribute mappings in a three-dimensional model
Systems and methods according to various embodiments enable a user to view three-dimensional representations of data objects (“nodes”) within a 3D environment from a first person perspective. The system may be configured to allow the user to interact with the nodes by moving a virtual camera through the 3D environment. The nodes may have one or more attributes that may correspond, respectively, to particular static or dynamic values within the data object's data fields. The attributes may include physical aspects of the nodes, such as color, size, or shape. The system may group related data objects within the 3D environment into clusters that are demarked using one or more cluster designators, which may be in the form of a dome or similar feature that encompasses the related data objects. The system may enable multiple users to access the 3D environment simultaneously, or to record their interactions with the 3D environment. |
US11010969B1 |
Generation of subsurface representations using layer-space
Data in physical space may be converted to layer space before performing modeling to generate one or more subsurface representations. Computational stratigraphy model representations that define subsurface configurations as a function of depth in the physical space may be converted to the layer space so that the subsurface configurations are defined as a function of layers. Conditioning information that defines conditioning characteristics as the function of depth in the physical space may be converted to the layer space so that the conditioning characteristics are defined as the function of layers. Modeling may be performed in the layer space to generate subsurface representations within layer space, and the subsurface representations may be converted into the physical space. |
US11010968B2 |
Automated three dimensional model generation
In various example embodiments, a system and methods are presented for generation and manipulation of three dimensional (3D) models. The system and methods cause presentation of an interface frame encompassing a field of view of an image capture device. The systems and methods detect an object of interest within the interface frame, generate a movement instruction with respect to the object of interest, and detect a first change in position and a second change in position of the object of interest. The systems and methods generate a 3D model of the object of interest based on the first change in position and the second change in position. |
US11010965B2 |
Virtual object placement for augmented reality
An augmented reality device includes a logic machine and a storage machine holding instructions executable by the logic machine to, for one or more real-world surfaces represented in a three-dimensional representation of a real-world environment of the augmented reality device, fit a virtual two-dimensional plane to the real-world surface. A request to place a virtual three-dimensional object on the real-world surface is received. For each of a plurality of candidate placement locations on the virtual two-dimensional plane, the candidate placement location is evaluated as a valid placement location or an invalid placement location for the virtual three-dimensional object. An invalidation mask is generated that defines the valid and invalid placement locations on the virtual two-dimensional plane. |
US11010963B2 |
Realism of scenes involving water surfaces during rendering
A water surface mesh is determined for a scene to be rendered. This water surface mesh includes a grouping of geometric shapes such as triangles that represents the surface of the water. This water surface mesh is then used to create a refracted or reflected mesh. The refracted or reflected mesh shows an effect produced by the water surface's refraction or reflection of light. The relationship between the water surface mesh and the refracted or reflected mesh is then used to determine how to illuminate elements within the scene. This eliminates some previously necessary steps during rendering, and enables an accurate depiction of caustics within a scene that can be performed in real-time. |
US11010958B2 |
Method and system for generating an image of a subject in a scene
A method of generating an image of a subject in a scene includes obtaining a first image and a second image of a subject in a scene, each image corresponding to a different respective viewpoint of the subject, each image being captured by a different respective camera, where at least some of the subject is occluded in the first image and not the second image by virtue of the different viewpoints, obtaining camera pose data indicating a pose of a camera for each image, re-projecting, based on the difference in camera poses associated with each image, at least a portion of the second image to correspond to the viewpoint from which the first image was captured, and combining the re-projected portion of the second image with at least some of the first image so as to generate a composite image of the subject from the viewpoint of the first image, the re-projected portion of the second image providing image data for at least some of the occluded part or parts of the subject in the first image. |
US11010948B2 |
Agent navigation using visual inputs
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for navigation using visual inputs. One of the systems includes a mapping subsystem configured to, at each time step of a plurality of time steps, generate a characterization of an environment from an image of the environment at the time step, wherein the characterization comprises an environment map identifying locations in the environment having a particular characteristic, and wherein generating the characterization comprises, for each time step: obtaining the image of the environment at the time step, processing the image to generate a first initial characterization for the time step, obtaining a final characterization for a previous time step, processing the characterization for the previous time step to generate a second initial characterization for the time step, and combining the first initial characterization and the second initial characterization to generate a final characterization for the time step. |
US11010945B2 |
Augmented reality system and image display method thereof
The present invention provides an image display method applied to an augmented reality (AR) system which positions a virtual object by a marker image. The image display method includes that: a reality image is acquired, wherein the reality image includes a first image where the marker image is positioned and a second image, and the marker image includes a known pattern; the first image in the reality image is replaced with an extending image of the second image on the basis of a relationship between the known pattern and the first image to generate a display image; and the display image is displayed. Therefore, the condition that an AR image includes the marker image and thus the whole image looks unnatural may be avoided. In addition, the AR system using the foregoing method is also provided. |
US11010942B2 |
Graphical display with integrated recent period zoom and historical period context data
A system and method are provided for displaying a data series. In one embodiment, a graphical interface is provided including at least one axis that is divided into a plurality of axis regions. Preferably, each axis region uses a different linear scale, and the plurality of axis regions forms a continuous non-linear scale. The graphical interface also displays the data series in relation to the plurality of axis regions, and the data series is plotted in relation to each axis region based on a scale resolution corresponding to each respective axis region. |
US11010940B2 |
Matched array alignment system and method
A system and method for displaying in a two-dimensional array the structured interaction of two variables moving in tandem to achieve a target outcome: e.g., a chemical reaction balancing heat and pressure to produce a desired compound, or an aircraft changing speed over angles of attack. Underlying system operating variables are represented in the display as proxy values of X and Y, scaled so the range and interval of X- and Y-axes are the same. The resulting display is a “matched array” of all possible X, Y intersections, including a unique and clearly-delineated “alignment vector” of those cells in which proxy values of X equal proxy values of Y, the jointly-optimal values of the underlying system operating variables. Wherever X and Y intersect, indicators depict the operating variable values, their proximity to optimal on the alignment vector, and the direction and extent of adjustments needed to achieve optimal system performance. |
US11010938B2 |
Systems and methods for positron emission tomography image reconstruction
Methods and systems for PET image reconstruction are provided. A method may include obtaining an image sequence associated with a subject. The image sequence may include one or more images generated via scanning the subject at one or more consecutive time periods. The method may also include obtaining a target machine learning model. The method may further include generating at least one target image using the target machine learning model based on the image sequence. The at least one target image may present a dynamic parameter associated with the subject. The target machine learning model may provide a mapping between the image sequence and the at least one target image. |
US11010936B2 |
System for supporting flexible color assignment in complex documents
A system implementable on a computing device for handling color assignment within a complex document includes a user interface to facilitate user modification of at least one first color to at least one second color within a previously chosen color scheme for a component of the document. The color scheme has a predetermined number X of principal colors and a predetermined number Y of associated subordinate colors per principal color. The system also includes a color handler to modify the color scheme to produce an updated color scheme to match a perceived brightness of the at least one second color throughout at least a portion of the updated color scheme and a color processor to process and apply the updated color scheme at least to the component. |
US11010934B2 |
Imaging apparatus, image processing apparatus, display system, and vehicle
An imaging apparatus 20 includes an image sensor 22 and a controller 33. The image sensor 22 is configured to capture a rear area behind a vehicle 50 and generate a first video image. The controller 33 is configured to synthesize a guide wall image 80 that indicates a predicted path of the vehicle in a display region of the first video image. |
US11010928B2 |
Adaptive distance based point cloud compression
A system comprises an encoder configured to compress attribute information for a point cloud and/or a decoder configured to decompress compressed attribute for the point cloud. To compress the attribute information, attribute values are predicted using one of a plurality of prediction strategies, wherein a selected prediction strategy is selected based at least in part on attribute variability of points in a neighborhood of points. A decoder follows a similar prediction process. Also, attribute correction values may be determined to correct predicted attribute values and may be used by a decoder to decompress a point cloud, wherein the decoder applies the same prediction strategy applied at the encoder. |
US11010925B2 |
Methods and computer program products for calibrating stereo imaging systems by using a planar mirror
A method is provided for calibrating a stereo imaging system by using at least one camera and a planar mirror. The method involves obtaining at least two images with the camera, each of the images being captured from a different camera position and containing the mirror view of the camera and a mirror view of an object, thereby obtaining multiple views of the object. The method further involves finding the center of the picture of the camera in each of the images, obtaining a relative focal length of the camera, determining an aspect ratio in each of the images, determining the mirror plane equation in the coordinate system of the camera, defining an up-vector in the mirror's plane, selecting a reference point in the mirror's plane, determining the coordinate transformation from the coordinate system of the image capturing camera into the mirror coordinate system, and determining a coordinate transformation. |
US11010921B2 |
Distributed pose estimation
Systems, methods, and computer-readable media are provided for distributed tracking and mapping for extended reality experiences. An example method can include computing, at a device, a pose of the device at a future time, the future time being determined based on a communication latency between the device and a mapping backend system; sending, to the mapping backend system, the pose of the device; receiving, from the mapping backend system, a map slice including map points corresponding to a scene associated with the device, the map slice being generated based on the pose of the device, wherein the map points correspond to the predicted pose; and computing an updated pose of the device based on the map slice. |
US11010916B2 |
Method of configuring camera position suitable for localization and robot implementing same
Disclosed herein are a method of configuring a camera position suitable for localization and a robot implementing the same, and the robot according to an embodiment, which configures a camera position suitable for localization, calculates a first SLAM index with respect to an image captured by a first camera sensor on a mounting unit, and calculates a second SLAM index by changing a position of the first camera sensor along the mounting unit, or selects any one of the first SLAM index and the second SLAM index by calculating the second SLAM index with respect to an image captured by a second camera sensor disposed in the mounting unit. |
US11010912B2 |
Method of merging point clouds that identifies and retains preferred points
Method that merges two or more point clouds captured from a scene, eliminates redundant points, and retains points that best represent the scene. The method may generally include a detection step, which locates points from different clouds that are close and thus potentially redundant, followed by a selection step that identifies preferred points. Clouds may be represented as range images, which may simplify both steps. Closeness testing may be optimized by dividing range images into tiles and testing tile bounding volumes for intersections between clouds. Selection of preferred points may incorporate user input, or it may be fully or partially automated. User selection may be performed using 2D drawing tools on range images to identify images with preferred views of a scene. Automated selection may assign a quality measure to points based for example on the surface resolution of each point cloud scan at overlapping points. |
US11010910B2 |
Systems and methods for dynamic object tracking using a single camera mounted on a moving object
A self-contained, low-cost, low-weight guidance system for vehicles is provided. The guidance system can include an optical camera, a case, a processor, a connection between the processor and an on-board control system, and computer algorithms running on the processor. The guidance system can be integrated with a vehicle control system through “plug and play” functionality or a more open Software Development Kit. The computer algorithms re-create 3D structures as the vehicle travels and continuously updates a 3D model of the environment. The guidance system continuously identifies and tracks terrain, static objects, and dynamic objects through real-time camera images. The guidance system can receive inputs from the camera and the onboard control system. The guidance system can be used to assist vehicle navigation and to avoid possible collisions. The guidance system can communicate with the control system and provide navigational direction to the control system. |
US11010908B2 |
Apparatus with component aligner
An apparatus comprises a component aligner having a base, a top opposite the base, and a body. The body includes one or more exterior wall surfaces extending from the base to the top. The body includes a first bore configured for fixed placement of a first component. The first bore extends between and through both the top and the base, and is defined at least in part by a first interior wall surface of the body. The body includes a second bore configured for fixed placement of a second component. The second bore extends between and through both the top and the base, and is defined at least in part by a second interior wall surface of the body. The component aligner also includes a first slot within the body. The first slot is open at the first interior wall surface and at the top. |
US11010907B1 |
Bounding box selection
Techniques to train a model with machine learning and use the trained model to select a bounding box that represents an object are described. For example, a system may implement various techniques to generate multiple bounding boxes for an object in an environment. Each bounding box may be slightly different based on the technique and data used. To select a bounding box that most closely represents an object (or is best used for tracking the object), a model may be trained. The model may be trained by processing sensor data that has been annotated with bounding boxes that represent ground truth bounding boxes. The model may be implemented to select a most appropriate bounding box for a situation (e.g., a given velocity, acceleration, distance, location, etc.). The selected bounding box may be used to track an object, generate a trajectory, or otherwise control a vehicle. |
US11010906B2 |
Image-processing method for removing light zones
An image-processing method for filtering light pollution appearing in a video image stream acquired by a video camera. The method includes, for a current image of the video image stream, the steps of subtracting the background represented in the current image in order to obtain the foreground of the current image, determining a brightening matrix, determining a compensating matrix by restricting the values of the pixels of the determined brightening matrix, segmenting the determined brightening matrix, determining a mask from the segmented brightening matrix, applying the mask to the determined compensating matrix in order to obtain a filtering matrix, and filtering the foreground of the current image by applying the filtering matrix in order to decrease the zones of light pollution in the images of the image stream. |
US11010904B2 |
Cognitive state analysis based on a difficulty of working on a document
A break recommendation method, system, and non-transitory computer readable medium, include detecting a deviation between a current cognitive state of the user and a past cognitive state of the user during a predetermined amount of time for a document type based on a change in an eye gaze movement and a facial and emotional expression and recommending that the user takes a break from viewing the document for a predetermined amount of time based on the deviation being greater than a predetermined threshold value, where the deviation is related to the user viewing the document and the document type of the document. |
US11010900B2 |
Information processing method, information processing apparatus, and storage medium
The present disclosure is directed to a technique for outputting images so that a user can easily compare the image on which image processing is executed and the image on which image processing is not executed. In the technique, a first image of a region of an output target in a predetermined image on which predetermined image processing is not executed and a second image of the region of the output target in the predetermined image on which the predetermined image processing is executed are output by an output apparatus so that the first image and the second image are output and arranged in an output layout according to a shape of the region of the output target. |
US11010899B2 |
Image processing apparatus, control method of image processing apparatus, and storage medium
An image processing apparatus comprises a corresponding point obtaining unit configured to obtain corresponding points that are feature points of an object associated between a first image and a second image; a first deformation obtaining unit configured to obtain first deformation that is based on the corresponding points; a second deformation obtaining unit configured to obtain second deformation that is performed between the first image and the second image, and in which a degree of coincidence of corresponding points is lower than the first deformation; and a combining unit configured to combine the first deformation and the second deformation, regarding positions in at least one image of the first Image and the second image, based on distances between the corresponding points and the positions. |
US11010898B2 |
Detection and characterization of cancerous tumors
Processes and techniques are disclosed to identify regions of suspected malignancy and their localization within a body part or organ. These methods rely on the analysis of infrared images to identify thermal abnormalities using image post-processing techniques, numerical modeling, iterative solutions methodology or a digital library. The methods utilize noninvasive, non-radiative and no contact infrared imaging that can be used for breast cancer screening for improved prognosis. |
US11010896B2 |
Methods and systems for generating 3D datasets to train deep learning networks for measurements estimation
Disclosed are systems and methods for generating data sets for training deep learning networks for key point annotations and measurements extraction from photos taken using a mobile device camera. The method includes the steps of receiving a 3D scan model of a 3D object or subject captured from a 3D scanner and a 2D photograph of the same 3D object or subject at a virtual workspace. The 3D scan model is rigged with one or more key points. A superimposed image of a pose-adjusted and aligned 3D scan model superimposed over the 2D photograph is captured by a virtual camera in the virtual workspace. Training data for a key point annotation DLN is generated by repeating the steps for a plurality of objects belonging to a plurality of object categories. The key point annotation DLN learns from the training data to produce key point annotations of objects from 2D photographs captured using any mobile device camera. |
US11010892B2 |
Digital pathology system and associated workflow for providing visualized whole-slide image analysis
A digital pathology system and associated method and computer program product provide a quantitative analysis of entire tissue slides as well as intuitive, effective, fast, and precise quantification of biomarker expressions across relevant areas of the entire tissue slides. The digital pathology system enables a novel workflow that allows the user to efficiently outline clinically relevant morphology in its entirety, including solid tumor areas. Quantitative analysis results are then efficiently and intuitively provided to the user for all tissue content (i.e., millions of cells) within seconds. This efficiency is made possible by a pre-computation step that computes and stores image analysis results for later retrieval. Visualizing vast amount of data effectively is another component of the system that provides information and confidence to the user about the biomarker expression levels. |
US11010882B2 |
Image processing apparatus, image processing method, and non-transitory computer-readable storage medium
A single composite image is generated by selecting a pixel value for each pixel in any one of a plurality of captured images having been consecutively captured. A motion vector between at least two captured images among the plurality of captured images is calculated. Correction processing is performed, based on a motion vector corresponding to a pixel of interest in the composite image, on the pixel of interest or a pixel near the pixel of interest. The correction processing is performed by updating, using a bright pixel value, a pixel value of at least one pixel in a group of pixels associated with a path from the pixel of interest to a pixel indicated by the motion vector corresponding to the pixel of interest. |
US11010875B2 |
Apparatus and method to compute a high dynamic range image from a single acquisition
A system and method of processing an image may include capturing an image of a scene. Image data having M-bits per pixel of the image may be generated. Multiple sets of simulated image data of the scene may be generated by applying different simulated exposure times to the generated image data. A processed image may be derived from the sets of simulated image data. The image data having M-bits per pixel may be an HDR image, and the processed image may be an LDR image. |
US11010873B2 |
Per-pixel photometric contrast enhancement with noise control
Embodiments relate to enhancing local contrast in an image. A bilateral high pass filter generates a high frequency value for each pixel of an input image, based on a convolution using photometric kernel coefficients associated with other pixels around the pixel. A noise control circuit generates a modulated high frequency value for the pixel based on a noise model for the image defining a noise threshold value for modifying the high frequency value. The modulated high frequency value for the pixel is then combined with a pixel value of the pixel to generate an enhanced value for the pixel. Enhanced values for pixels of the image may be generated to provide the local contrast enhancement for the input image. |
US11010868B2 |
Information processing apparatus and non-transitory computer readable medium
An information processing apparatus includes an obtaining unit, a determining unit, and a display controller. The obtaining unit obtains information represented by each of plural thumbnails. The determining unit individually determines a size of each of the plural thumbnails so that the information is identifiable. The display controller performs control so that the plural thumbnails will be displayed in a size greater than or equal to the size determined by the determining unit. |
US11010867B2 |
Automatic cropping of video content
Electronic devices are often equipped with a camera for capturing video content and/or a display for displaying video content. However, amateur users often capture video content without regard to composition, framing, or camera movement, resulting in video content that can be jarring or confusing to viewers. There is a need to automate the processing and presentation of video content in an aesthetically pleasing manner. The embodiments described herein provide a method of automatically cropping video content for presentation on a display. |
US11010866B2 |
Circuit device, electronic apparatus, and mobile body
A circuit device (100) includes a coordinate transform circuit (20) and a mapping processing circuit (30). The coordinate transform circuit (20) performs coordinate transformation from an input coordinate (IXY1) to an output coordinate (QXY1). The mapping processing circuit (30) generates a second image (IMG2) to be displayed in a display panel for displaying an image in a curved screen display by performing mapping processing on a first image (IMG1) that is input based on the output coordinate (QXY1). The coordinate transform circuit (20) performs the coordinate transformation from the input coordinate (IXY1) to the output coordinate (QXY1) by performing computation processing using a second or more order polynomial representing the coordinate transformation. |
US11010864B2 |
Image capturing apparatus, control method, and storage medium
An acquiring unit configured to acquire association information that indicates a relationship between a profile, which is a setting information group containing a plurality of pieces of setting information, and dewarp information on a fisheye image, and a associating unit configured to associate a video source configuration, a video encoder configuration, and a PTZ configuration to the profile based on the association information acquired by the acquiring unit are provided. |
US11010847B2 |
Systems and methods for regression-based determination of expected energy consumption and efficient energy consumption
Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to identify a set of features associated with at least one of a collection of residences or an energy billing period. Measured energy consumption information and a plurality of feature values can be acquired for each residence in the collection of residences. Each feature value in the plurality of feature values can correspond to a respective feature in the set of features. A regression model can be trained based on the measured energy consumption information and the plurality of features values for each residence in the collection of residences. At least one expected consumption value and at least one efficient consumption value can be determined based on the regression model. |
US11010843B2 |
Systems and methods for encouragement of data submission in online communities
The invention relates to systems and methods for behavioral modification of users in an online community where users store or share data to help one another reach informed decisions. One aspect of the invention provides a method for encouraging active participation in an online community. The method includes: receiving information from a first user regarding a topic, receiving a request from a second user for additional information desired from the first user, and sending a personalized message to the first user requesting the additional information. Another aspect of the invention provides a computer-readable medium whose contents cause a computer to perform a method for encouraging active participation in an online community. The method includes: receiving information from a first user regarding a topic; identifying additional information desired from the first user; and sending a personalized message to the first user requesting the additional information. |
US11010842B2 |
System, method, and application for exchanging content in a social network environment
Users share live (SHARE LIVE) content in real-time by sharing socially-targeted user-selected/generated content while simultaneously consuming content from any integrated content provider. In the context of an exemplary music-based scenario, the user, while listening to music from any integrated music provider, may initiate a SHARE LIVE session such that concurrent data streams are maintained and media playback information is managed separately from media content playback channels. Information about playback events is continuously transmitted via facilitated sockets. Other users may consume shared content (LISTEN LIVE) by tapping a proprietary resolution method to identify and properly source the media content files the broadcaster is sharing. Independent social broadcast streams may also be overlaid atop the direct playback of media content from a preferred provider as governed by the proprietary resolution method. An event-handling micro-service maintains and combines the broadcaster's content playback actions and social content, which are synchronized on multiple user devices. |
US11010840B1 |
Fault determination with autonomous feature use monitoring
Methods and systems for determining fault for an accident involving a vehicle having one or more autonomous (and/or semi-autonomous) operation features and paying claims associated with such accidents are provided. According to certain aspects, operating data from sensors within or near the vehicle may be used to determine the occurrence of a vehicle accident, such as a collision. The operating data may further be used to determine an allocation of fault for the accident between a vehicle operator, the autonomous operation features, or a third party. The allocation of fault may be used to further determine and make claims payments related to the accident. In some embodiments, claims may be rejected based upon the operating data and determined allocation of fault. |
US11010839B1 |
Determining an event
A system allows for a user to notify an insurance provider or other third-party with a button press. The button can notify of an emergency situation. An event determiner may analyze information of events surrounding the button click. This information may include the time of day, location, identifying information for the insured, recent locations of the button, information from similar button presses and information from previous insurance claims. Based on this information, the event determiner may provide a high percentage estimate of an abnormal condition: home break-in, car accident, flat tire, etc. The system may automatically take action, depending on the event, such as contacting the police, sending a tow truck, or starting an insurance claim. |
US11010838B2 |
System and method for optimizing damage detection results
One embodiment can provide a system for detecting optimizing a damage detection result. During operation, the system can obtain a digital image of a damaged vehicle, identify a set of candidate damaged areas from the digital image as the damage detection result. The system can then extract a set of feature vectors corresponding to the set of candidate damaged areas For each candidate damaged area, the system can calculate a set of similarity features between the candidate damaged area and other candidate damaged areas in the set of candidate damaged areas based on the set of feature vectors. The system can input the set of similarity features to a damage prediction module. The system can then determine whether the candidate damaged area is an exceptional area based on an output of the damage prediction module to optimize the damage detection result. |
US11010837B1 |
Enhanced unmanned aerial vehicles for damage inspection
Systems and methods for performing insurance damage inspection by an unmanned aerial vehicle (UAV) are provided. A computing device may receive a request to inspect a vehicle, the request comprising a location of the vehicle. The computing device may identify a UAV from a plurality of UAVs that is located closest to the location of the vehicle from other UAVs in the plurality of UAVs. The computing device may instruct the UAV to travel to the location of the vehicle. The computing device may instruct the UAV to collect damage information on the vehicle using one or more onboard sensors of the UAV. The computing device may determine an amount of insurance payout to approve for repairs to the vehicle based on the damage information collected by the UAV. |
US11010833B2 |
Systems and methods for calculating a latency of a transaction processing system
A method for generating a prediction of a latency of a transaction processing system includes: sampling a first plurality of messages from a database that stores data indicative of messages previously processed by the transaction processing system including a characteristic and a processing time of each previously processed message; generating latency tables based upon the characteristics and the processing times of the sampled first plurality of messages; determining a characteristic of each of a second plurality of messages being processed by the transaction processing system; selecting, for each of the second plurality of messages, a latency table from the plurality of latency tables based upon the respective determined characteristic; simulating a processing time for each of the second plurality of messages based upon the respective selected latency table; and generating a latency prediction for the transaction processing system based upon the simulated processing times for the second plurality of messages. |
US11010829B2 |
Liquidity management system
A device may determine a behavioral pattern of an account over a past time period based on data relating to one or more transactions associated with the account. The device may identify one or more quantitative features of the behavioral pattern and one or more spatial features of the behavioral pattern. The device may determine an account type cluster to which the account belongs, based on the one or more quantitative features and the one or more spatial features identified. The device may determine, based on the account type cluster that is determined, a model for processing the behavioral pattern. The device may predict, using the model that is determined, an amount of funds that is likely to remain in the account during a future time period. The device may perform one or more actions based on the amount of funds that is predicted. |
US11010828B2 |
Information processing apparatus, information processing method, information processing program, recording medium having stored therein information processing program
Provided are an information processing apparatus, an information processing method, an information processing program, and a recording medium having stored therein the information processing program, which can reduce time and effort necessary for a user to find his desired review information. The information processing apparatus searches transaction targets, based on a search condition used for searching transaction targets designated by a user, and acquires review information regarding each of the searched transaction targets. The information processing apparatus determines a display priority order of the review information regarding the transaction targets with respect to each of the searched transaction targets, based on the search condition, and displays at least one piece of the review information regarding each of the transaction targets on a display screen, based on the display priority order. |
US11010826B2 |
System and method for prioritization of rendering policies in virtual environments
A system and method implemented in a computer infrastructure having computer executable code, includes receiving one or more bids for at least one of an enhanced rendering quality and an enhanced rendering order of an object in a virtual universe (VU) and performing a bid resolution for the received one or more bids. Additionally, the method includes rendering one or more objects in the VU with the at least one of the enhanced rendering quality and the enhanced rendering order based on the bid resolution. |
US11010823B2 |
Connector leasing for long-running software operations
Preventing certain types of service disruptions in a computing system involves receiving a lease request at a server of a cloud-based computing system, where the lease request originates from one of a plurality of cloud-hosted service computing systems (CSCS). The lease request will specify at least one suitable connector of a plurality of remote computing machines, where such connectors comprise an availability set at a computing resources location. In response to receiving the request, the server determines whether at least one of the connectors has pending maintenance operations. Based on such determination, the server will selectively grant the lease request by generating at least one electronic message directed to the CSCS which originated the lease request. |
US11010818B2 |
Secure email authentication system for completing e-commerce transactions
A system for leveraging email to complete an online checkout from a customer accessing a third party vendor website is disclosed. The system may store customer information including a name, email address, shipping address, and billing information. The system may receive a request for a purchase from the third party vendor including a customer email address and an item to be purchased. The system may authenticate the customer email address. The system may send a first email to the customer email address requesting authorization to complete a purchase. The system may receive a second email, from the customer email address, encoded with the token and confirming or canceling the purchase. The system may authenticate the second email using the customer email address and the token. And the system may transmit a confirmation of purchase of the at least one item to the third party vendor website. |
US11010816B2 |
Methods of selecting thermoplastic materials for use with plastic article forming apparatuses that control melt flow
A method of selecting thermoplastic materials for use with an injection molding apparatus that adjusts viscosity of a thermoplastic material based on an interpreted viscosity is provided. The method includes determining a target MFI for an identified plastic article based on performance properties. A thermoplastic material supply chain is analyzed and a first thermoplastic material having a first starting MFI and a first MFI range is identified and a second thermoplastic material having a second starting MFI and a second MFI range that is greater than the first MFI range is identified and is priced less than the first thermoplastic material. The second thermoplastic material is purchased. The second thermoplastic material is tested by providing the second thermoplastic material to the injection molding apparatus for multiple shot molding cycles with the second thermoplastic material in a molten state. The step of testing includes monitoring melt pressure of the molten second thermoplastic material using a sensor and providing a signal to a controller indicative of melt pressure. The controller controls introduction of an additive to the second thermoplastic material thereby changing a viscosity of the molten second thermoplastic material based on the signal. A molded article is formed by reducing a mold temperature of the second thermoplastic material within the at least one mold cavity. |
US11010813B2 |
System for building grocery basket and method of using same
A system and method includes presenting a single product to be located in the retail store to the customer using a mobile application running on the mobile device, receiving an indication from the customer either to dismiss the product or to add the product to a grocery basket of the mobile application to form user data, presenting a cue card to ask the customer a question, receiving an answer from the customer as to yes or no to the question to form cue card data, using a data model and an algorithm to predict the most probable product the customer is going to want to add to the grocery basket, transmitting a representation of the most probable product, and displaying the most probable product on a graphical display of the mobile device, wherein the most probable product is based on the user data and the cue card data. |
US11010811B2 |
Online marketplace method
Among other things, information is received, from two or more competitor merchants offering products to customers, about one or both of a current price and units of inventory of each of the products. The information about the current prices and units of inventory of the product offered by the two or more competitor merchants is provided through a communication network for presentation to one or more customers. |
US11010808B1 |
System and medium for providing financial products via augmented reality
A system may a processor that may receive image data of a vehicle via one or more image sensors and retrieve vehicle data regarding the vehicle from a vehicle database based on the image data. The vehicle database may include a first set of data regarding a plurality of vehicles. The processor may then retrieve financial data regarding a user from a financial database, such that the financial database includes a second set of data regarding financial information concerning the user. The processor may then determine one or more financial products associated with a purchase of the vehicle, generate one or more visualizations representative of the one or more financial products, and modify the image data depicted on a display to include the one or more visualizations. |
US11010801B2 |
Method, system, and computer program product for transparency via opt-in aggregation
Price transparency via aggregation of real-time quoted prices is provided. Real-time quoted service price data corresponding to a service application is collected from registered client devices. The real-time quoted service price data corresponding to the service application is aggregated. It is determined whether a price quoted to a client device by the service application is fair based on the aggregated real-time quoted service price data. In response to determining that the price quoted to the client device by the service application is unfair, a graphical input button is provided within a price transparency display on the client device that enables a user of the client device to send a complaint to a service provider corresponding to the service application with a price transparency log. |
US11010796B2 |
Evaluating condominium appraisals using project as location effect
Modeling appropriate comparable properties for the assessment of appraisals entails accessing a property dataset, wherein subsets of properties represented in the property data are determined to be members of respective condominium projects. Condominium project identification information is scrubbed, standardized and updated using various techniques. An automated valuation model is applied to the property data, preferably implementing the condominium project variable as a location fixed effect variable. Appraisal reports where the subject property is a condominium are then analyzed using the results of the automated valuation model, including but not limited to ranking and displaying the appraiser-chosen comparables among the model-chosen comparables. |
US11010794B2 |
Methods for viewer modeling and bidding in an online advertising campaign
Systems and methods are disclosed for employing supervised machine learning methods with activities and attributes of viewers with truth as input, to produce models that are utilized in determining probabilities that an unknown viewer belongs to one or more demographic segment categories. Using these models for processing viewer behavior, over a period of time a database of known categorized viewers is established, each categorized viewer having a probability of belonging to one or more segment categories. These probabilities are then used in bidding for online advertisements in response to impression opportunities offered in online media auctions. The probabilities are also used in predicting on-target impressions and GRPs (Gross Rating Points) in advance of online advertising media campaigns, and pricing those campaigns to advertiser/clients. Strategies are also disclosed for fulfilling a campaign when an available inventory of known categorized viewers is not adequate to fulfill a campaign in a required runtime. |
US11010792B2 |
Fuel deal advertisements
A fuel deal advertisement method, system, and non-transitory computer readable medium, include determining if a plurality of navigation route maps overlap each other at a point along travel and when the plurality of navigation route maps overlap each other, generating an advertisement to entice a user to stop at a first fuel refill center along the plurality of navigation route maps instead of stopping at a second fuel refill center along the plurality of navigation route maps. |
US11010789B1 |
Generating content based on a captured IP address associated with a visit to an electronic resource
Methods and apparatus related to determining and/or utilizing one or more attributes for an Internet Protocol (IP) address. In some of those implementations, the attributes may include a physical address associated with the IP address. Some implementations are directed to determining physical addresses for inclusion in a postal campaign based on computing devices having IP addresses associated with those physical addresses having retrieved content of one or more electronic resources (e.g., webpages) assigned to the campaign. |
US11010788B1 |
Method and system for parametric survival analysis based multi-touch attribution in advertising
Within the field of advertising, multi-touch attribution (MTA) is the process of assigning credit at a unique identifier level to marketing activities for their contribution towards driving a desired marketing result. This invention discloses a data-driven attribution solution and optimization process for improving marketing return on investment by enabling greater speed and agility in responding to continually changing media performance. Specifically, this invention details a survival analysis based approach to attribution using parametric accelerated failure time (AFT) modeling which accommodates both the right-censored discrete time events and is well suited for media data. |
US11010785B2 |
Automatic recommendation of digital offers to an offer provider based on historical transaction data
According to an embodiment, a data processing system for managing electronic offers comprises: a memory storing a set of historical transaction records pertaining to past consumer transactions and a set of offer data relating to an offer provider; and a logic module adapted to automatically suggest an offer to the offer provider based on at least a subset of the historical transaction records and at least a subset of the offer data, the offer being targeted at a consumer. In an embodiment, the electronic offer is suggested in response to a request for a receipt made by the consumer. In an embodiment, the electronic offer is automatically approved by the offer provider and is included in a transaction receipt transmitted to a data processing system associated with the consumer. |
US11010784B2 |
Systems and methods for search query refinement
In many embodiments, the method can comprise receiving a search query from a search by a user and determining a question to present to the user. In many embodiments, determining the question to present to the user can comprise evaluating a user profile associated with the user, evaluating the search query, evaluating one or more user actions during a current browse session of the user, and selecting the question from a set of questions. In some embodiments, the method can further comprise presenting the question to the user when a confidence score associated with the question reaches or exceeds a predetermined threshold. Other embodiments of related methods and systems are also provided. |
US11010781B2 |
Automatic rewards and benefits optimization
A processor may detect a user interaction with a user interface provided through a network by a server. The processor may analyze the user interaction to identify at least one offer associated with at least one item available for purchase through the user interface. The offer may be associated with a first payment type. The processor may process a user transaction to purchase the at least one item. The processing may include automatically applying the first payment type to the transaction. |
US11010768B2 |
Character-based attribute value extraction system
A system is provided that extracts attribute values. The system receives data including unstructured text from a data store. The system further tokenizes the unstructured text into tokens, where a token is a character of the unstructured text. The system further annotates the tokens with attribute labels, where an attribute label for a token is determined, in least in part, based on a word that the token originates from within the unstructured text. The system further groups the tokens into text segments based on the attribute labels, where a set of tokens that are annotated with an identical attribute label are grouped into a text segment, and where the text segments define attribute values. The system further stores the attribute labels and the attribute values within the data store. |
US11010766B1 |
Payment vehicle with on and off functions
A computer-based network system and method for using a payment vehicle having an on and off function. The system comprises a payment vehicle comprising an on and off function to enable or to disable the payment vehicle in the computer-based network for processing an electronic payment transaction, a holder of the payment vehicle, and a computer payment network wherein the computer payment network comprises a transaction engine for enabling or for disabling the payment vehicle at a request of the holder of the payment vehicle. |
US11010764B1 |
Zero-step authentication of transactions using passive biometrics
A zero-step authentication system and method which uses wireless mobile devices to automatically make payments in a secure manner without requiring the customer to handle his or her mobile device. The system and method use a payment facilitation device at the business location which automatically detects and recognizes registered mobile devices, displays a photo of the customer to a business employee for identity confirmation, and automatically deducts payments for purchases from a pre-authorized customer account. The customer account is managed by a payment processing server, which stores the customer account data, makes appropriate deductions, sends confirmation of deductions to the customer's mobile device, and automatically refills the customer's account by making pre-authorized charges to the customer's banking institution. |
US11010763B1 |
Biometric authentication on push notification
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for transmitting push notification data to a computing device, the push notification data being processable by the computing device to display a push notification, receiving biometric data, the biometric data being provided from user input responsive to the push notification, determining that a user providing the user input is authenticated at least partially based on the biometric data, and inducing execution of a transaction in response to determining that the user is authenticated. |
US11010761B2 |
Multi-factor automated teller machine (ATM) personal identification number(PIN)
An automated teller machine (ATM) may include an input component and one or more processors. The input component may be configured to detect multi-factor input associated with an account. The multi-factor input may include at least two of: a sequence of characters input via the input component, a force with which at least one character, of the sequence of characters, is input via the input component, a length of time over which at least one character, of the sequence of characters, is input via the input component, or a combination of at least two characters, of the sequence of characters, that are input concurrently via the input component. The ATM may receive the multi-factor input, validate the multi-factor input in association with the account, and selectively permit or deny access to one or more actions associated with the account based on validating the multi-factor input. |
US11010758B2 |
Digital wallet notification systems and methods
A method includes receiving by a processor a prescription drug claim transaction data from a claims processor over a data communications network, analyzing the prescription drug claim transaction data by the processor, identifying by the processor from the prescription drug claim transaction data an entity selected from the group consisting of: prescribing doctor and dispensing pharmacy, determining by the processor a location of the entity, and generating by the processor a token for the digital wallet of the user device, the token includes rules for displaying a message in the user device when the user device passes to within a threshold distance of the location of the entity as detected by a location sensor of the user device. The rules cause display of the message in the user device when the user device passes to within a threshold distance of the location of the entity as detected by a location sensor of the user device. |
US11010757B2 |
Intelligent mobile payment system and method
An intelligent wallet (IW) computer device is provided for recommending a payment card from a plurality of payment cards to a cardholder for use in a payment transaction with a merchant. The IW computer device includes a memory device for storing data and a processor in communication with the memory device. The processor is programmed to receive event data and transaction data associated with the payment transaction. The transaction data includes product identifier data and purchase amount data. The processor is further programmed to receive payment card rules and cardholder preferences for each of the plurality of payment cards associated with the cardholder and to recommend a candidate payment card from the plurality of payment cards. The candidate payment card is recommended by processing the event data and the transaction data with the payment card rules and the cardholder preferences. |
US11010753B2 |
Electronic wallet checkout platform apparatuses, methods and systems
The ELECTRONIC WALLET CHECKOUT PLATFORM APPARATUSES, METHODS AND SYSTEMS (“EWCP”) transform customer purchase requests triggering electronic wallet applications via EWCP components into electronic purchase confirmation and receipts. In one implementation, the EWCP receives a merchant payment request, and determines a payment protocol handler associated with the merchant payment request. The EWCP instantiates a wallet application via the payment protocol handler. The EWCP obtains a payment method selection via the wallet application, wherein the selected payment method is one of a credit card, a debit card, a gift card selected from an electronic wallet, and sends a transaction execution request for a transaction associated with the merchant payment request. Also, the EWCP receives a purchase response to the transaction execution request, and outputs purchase response information derived from the received purchase response. |
US11010751B2 |
Performing transactions using virtual card values
Performing transactions using virtual card values is disclosed, including: generating a virtual card value corresponding to a transaction; sending a request to a card management server, wherein the request includes the virtual card value and a transaction amount corresponding to the transaction; receiving an indication from the card management server that the virtual card value and the transaction amount have been successfully stored; generating a merchant-related locator based at least in part on identifying information associated with a merchant server and the virtual card value; sending the merchant-related locator to a client device; and receiving, from the card management server, a request to transfer the transaction amount from a user account associated with a cardless payment server to a funds account associated with the merchant server. |
US11010750B2 |
Customer voice order triggered mutual affinity merchant donation
A customer uses a mobile device to verbally request an offer that includes an incentive to transact at a merchant's brick and mortar store in the customer's local community in exchange for the merchant's agreement to make an auditable donation to a charity serving the local community. Business rules limit the merchant's charitable donations over calendar periods, which donations can be made directly by the merchant to the community charity, or indirectly to the charity by way of a blind donation made by the merchant to a donation disbursement agency acting on the merchant's behalf to satisfy the merchant's commitment to donate. |
US11010746B2 |
System, method, operator server, and program for financial demand response provision services
A financial demand response provision service system having a company server that manages the credit limit for employees, a time server managing employee time data, a provider server that manages the employees' managed accounts, and a bank server that manages the employees' bank accounts to which salary is transferred which are connected via a network wherein the provider server has a calculation unit for transferring electronic value information of an advance in which the advanceable amount is calculated based on the credit limit for an employee and the time data, an auto charge data output unit which transfers electronic value information of the advance to the bank account, and an output means that outputs, to the company server, the advance amount loaned to the employee by transferring the electronic value information, wherein the total advanced amount to the employees of a same company does not exceed the company's total advanceable amount. |
US11010742B2 |
System, method, and computer program product for augmented reality point-of-sale
Provided is a method for an augmented reality point-of-sale. A first location for rendering an augmented reality point-of-sale may be detected. A computer-generated image of the augmented reality point-of-sale may be superimposed on a view of the customer at the first location, which may be at least partially within the view of the customer. In response to an item being placed within the view of the customer, item data associated with the item may be detected. The item data may be transmitted to a merchant system. Price data associated with a price of the item may be received. A payment transaction may be initiated based on the price data. A system and a computer program product are also provided. |
US11010740B1 |
Merchant cash advance payment deferrals
In some examples, a payment processing system may receive, from a plurality of merchant computing devices associated with a plurality of merchants, respectively, transaction data of transactions performed between the plurality of merchants and a plurality of customers. Based at least on the transaction data, the payment processing system may provide financing to an account of a first merchant, the financing including repayment terms for repayment of the financing. In addition, the payment processing system may determine that the first merchant is predicted to have a change in sales during an upcoming time period. Based on the predicted change in sales, the payment processing system may determine updated repayment terms for repayment of the financing from the first merchant, and may apply the updated repayment terms for repayment of the financing. |
US11010735B2 |
Method and system for effecting a payment transaction
Provided are a method and system for effecting a payment transaction. The method capturing a digital image of a price identifier and a merchant identifier at a client device. Generating payment request data by a payer application at the client device comprising data corresponding to the price and merchant identifiers contained in the digital image. Forwarding the payment request data from the payer application to a payment server. Initiating by the payment server a payment transaction from a payer account to a recipient account in response to receipt of the payment request data. Forwarding notification data to the payer application indicating the status of the payment transaction from the payment server. |
US11010728B2 |
Timestamping changes to smart-contract state
An example operation may include one or more of calculating a timestamp for each transaction within a blockchain. The calculating of the time stamp includes setting an incremental number to each key and value modified in the transaction, and incrementing the incremental number when the transaction within the blockchain is processed. The example operation may also include determining a relative order of change made to a smart-contract state. |
US11010725B2 |
Determining validity of service recommendations
Embodiments include techniques for determining the validity of service recommendations, where the techniques include receiving a service provider recommendation for a device from a service provider, and receiving device inputs and service provider inputs associated with the device. The techniques also include performing an input analysis on the device inputs to determine a predicted recommendation, and determining a trust level score for the service provider based at least in part on the service provider inputs, and comparing the service provider recommendation and the predicted recommendation. Techniques include performing, based at least in part on the trust level score, a value analysis and a severity analysis, and generating a recommended action based at least in part on the value analysis and the severity analysis. |
US11010724B2 |
Analyzing calendar entries
A computer-implemented method for analyzing calendar entries may include receiving, at a computing device, at least one calendar entry associated with a calendar application, the calendar entry comprising data defining a meeting type; tracking a user's activity in the meeting type; detecting at least one related calendar entry related with the received calendar entry, wherein the detected related calendar entry comprises a meeting type related to the meeting type of the received calendar entry; and supplementing the related calendar entry with at least one indicator describing the user's activity in the meeting type based on the tracked user activity. |
US11010723B2 |
Conflict management in scheduling meetings
A floating meeting is set up such that the actual meeting time is not fixed until after pre-defined parameters are satisfied. One parameter is a point in time nearer to the proposed meeting date(s) than the time of the original meeting invitation. At the later point in time, subsequent and potentially conflicting meetings are automatically avoided to maximize invitee availability or otherwise meet a meeting organizer's objective. |
US11010719B1 |
Systems and methods for detecting errors of asynchronously enqueued requests
A system for managing a client request is described herein, which may have at least one processor and a non-transitory computer-readable medium containing a set of instructions executable by the at least one processor. Execution of these instructions may cause the processor to perform steps of: validating a client request received from a remote client device, the client request including request data; transmitting, based on the validating, a response to the remote client device; based on the request data, determining a queue for the client request; asynchronously enqueuing the client request in the queue, the queue being configured to analyze the client request according to a model; analyzing the client request; and based on analyzing the client request, performing a responsive action. |
US11010718B2 |
System, method and device for organizing and presenting digital flyers
A system, method and communication device are disclosed for organizing and presenting a plurality of digital flyers. Using flyer stack information, which organizes the plurality of digital flyers into at least one flyer stack, the plurality of digital flyers are presented to allow for inter-flyer and intra-flyer navigation. Moreover, the flyer stack information may be used to allow the inter-flyer and intra-flyer content to be searched. This is achieved by providing a method and communication device that receives the flyer stack information from a server, and presents the flyer stack information in a flyer navigation interface. The flyer navigation interface displays the at least one flyer stack, selects the flyer stack from the at least one flyer stack, and displays a digital flyer from the selected flyer stack in the flyer navigation interface as a current digital flyer, including displaying an indication of a next digital flyer in the selected flyer stack, the next digital flyer being accessible by navigating to the indication. |
US11010717B2 |
Tool for improving network security
A system includes a memory, a survey engine, and a reporting engine. The memory stores identifying information of a plurality of users. The survey engine determines a question to present to each user of the plurality of users and determines an interval for each user of the plurality of users. The determined interval for a first user of the plurality of users is different from the determined interval for a second user of the plurality of users. For each user, the survey engine communicates to that user, based on the stored identifying information, the determined question for that user according to the determined interval for that user and receives a response from each user of the plurality of users. The reporting engine generates a report based on the received response from the plurality of users. |
US11010714B2 |
Automatic location based discovery of extended inventory
In various example embodiments, systems and methods for automatic location based discovery of variations of displayed items in a store are presented. In some embodiments, a beacon ID associated with a beacon device located at a store is received. In other embodiments, at least one product identifier associated with the beacon ID and representing one or more of store displayed items available for sale by the store is determined. In further embodiments, product variations of the one or more store displayed items available for sale by the store are identified associated with the at least one product identifier. In another embodiment, display information representing the product variations of the one or more store displayed items available for sale by the store is provided. |
US11010707B1 |
Systems and methods for interconnecting network devices based on queuing and servicing responses
A system for interconnecting network devices based on queuing and servicing responses includes one or more processors configured to receive, from a first computer system, an order request for a product or service associated with a second computer system of a plurality of second computer systems. Instantiate an order messaging queue associated with the order request and add an identifier of the first computer system to the order messaging queue. Add an identifier of the second computer system and one of the third computer systems to the order messaging queue. Determine the contents of the communication and based on determining contents of the communication, consult a response rule table to determine a response to the communication. Access the order messaging queue to identify server devices corresponding with servicing the determined response and publish, to the identified server devices. |
US11010705B2 |
Providing operator feedback during operation of an industrial machine
Systems and methods for providing feedback to an operator of an industrial machine. One system includes a controller including an electronic processor. The electronic processor is configured to monitor at least one operating parameter of the industrial machine, determine a plurality of performance metrics based on the at least one operating parameter, and select a subset of the plurality of performance metrics based on a selection criterion. The electronic processor is also configured to display the subset of the plurality of performance metrics to an operator of the industrial machine during operation of the industrial machine. |
US11010704B2 |
Automated multi-channel customer journey testing
A system and method for automated multi-channel customer journey testing, that links communication channels and follows a customer interaction across multiple channels as a single journey, incorporating data and interaction content from each channel utilized to maintain a “big picture” view of a customer's journey across these channels during an interaction. The invention also provides flexible success indicators to accommodate virtual assistant and chat bot programs, by accommodating variances in expected test results such as to handle natural language variance, time of day, context, and other factors that may cause variances in interaction content. |
US11010703B2 |
Productivity measurement, modeling and illustration system
A productivity measuring, modeling and illustrating system receives input data pertaining to the productivity of an organization to generate various productivity views using a productivity maturity model. The productivity maturity model is based on suggested actions for increasing the productivity which are received in the input data. The productivity maturity model computes various productivity gains and provides productivity levels for the productivity levers associated with the organization. Various productivity views generated to display the productivity information include a summary view that displays the productivity gains and productivity levels using different filters. |
US11010700B2 |
Identifying task and personality traits
The present invention provides a method, a system, and a computer program product of determining tasks of a project and determining personality traits of the tasks. In an embodiment, the method, the system, and the computer program product include in response to receiving a set of data for a current project, generating, by one or more processors, a set of one or more current tasks for the current project based on at least a first machine learning associated with one or more preexisting projects, generating a set of one or more personality traits for a current task in the set of one or more current tasks based on at least a second machine learning associated with one or more preexisting tasks, and compiling the set of one or more current tasks and the set of one or more personality traits into one or more current task profiles. |
US11010695B2 |
System and method of work assignment management
Methods of intelligent routing of work assignment includes indexing plurality of pending tasks and indexing a plurality of available employees. A first employee is retrieved from an index of available employees. A next available task assignable to the first employee is determined. A work item for the next available task is assigned to the first employee from the available employee list. The assigned work item is removed from pending task list. The first employee is removed from the available employee list. The next employee is retrieved from the index of available employees. |
US11010690B2 |
Machine learning for determining confidence for reclamation of storage volumes
A method, system and computer product for performing storage maintenance is described. A training set for storage volume reclamation is received. The training set for storage volume reclamation contains sets of storage parameters for storage volumes and corresponding user decisions whether the storage volumes are reclaimable. The training set is used to train a machine learning system to recognize reclaimable candidate storage volumes. The trained machine learning system is used to determine that a candidate storage volume for reclamation is likely a reclaimable storage volume. |
US11010689B2 |
Machine learning for time series using semantic and time series data
Techniques that facilitate semantic and time series analysis using machine learning are provided. In one example, a system includes a data analysis component, a prediction component and a learning component. The data analysis component that establishes one or more relationships between one or more elements of semantic data, including one or more time series identifiers, and one or more elements of time series data in a relationship database. The prediction component generates one or more advisory outputs, wherein generation of the one or more advisory outputs is performed in response to a trigger event. A learning component that determines the one or more relationships in the relationship database, wherein determination of the one or more relationships is based on information indicative of whether the advisory outputs satisfy a defined criterion. |
US11010685B2 |
Frequency allocation in multi-qubit circuits
Techniques facilitating frequency allocation in multi-qubit circuits are provided. In one example, a computer-implemented method comprises determining, by a device operatively coupled to a processor, an estimated fabrication yield associated with respective qubit chip configurations by conducting simulations of the respective qubit chip configurations at respective frequency offsets; and selecting, by the device, a qubit chip configuration from among the respective qubit chip configurations based on the estimated fabrication yield associated with the respective qubit chip configurations. |
US11010684B2 |
Quantum spin hall-based charging energy-protected quantum computation
This application concerns quantum computing, and in particular to structures and mechanisms for providing topologically protected quantum computation. In certain embodiments, a magnetic tunnel barrier is controlled that separates Majorona zero modes (“MZMs”) from an edge area (e.g., a gapless edge) of a quantum spin hall system. In particular implementations, the magnetic tunnel barrier is formed from a pair of magnetic insulators whose magnetization is held constant, and the magnetic tunnel barrier is tuned by controlling a gate controlling the electron density around the magnetic insulator in the QSH plane, thereby forming a quantum dot. And, in some implementations, a state of the quantum dot is read out (e.g., using a charge sensor as disclosed herein). |
US11010681B2 |
Distributed computing system, and data transmission method and apparatus in distributed computing system
A distributed computing system is provided. Both a first computing node and a second computing node in the distributed computing system store information about a name, a size, and a communication peer side identifier of a first data flow graph parameter in a data flow graph. The first computing node stores the first data flow graph parameter, where the first computing node and the second computing node generate respective triplets based on same interface parameter generation algorithms and information about the first data flow graph parameter that are stored in the respective nodes. The triplet is used as an interface parameter of a message passing interface (MPI) primitive that is used to transmit the first data flow graph parameter between the first computing node and the second computing node. |
US11010680B1 |
Memory efficiency of production rule systems
A method for improving memory efficiency of production rule systems is described. In one embodiment, the method includes identifying a rule associated with production rule systems, constructing a production rule network based at least in part on the rule, identifying a positional constraint associated with the rule, and implementing an alpha memory gate in the production rule network based at least in part on the positional constraint. In some cases, the alpha memory gate is one of a plurality of nodes of the production rule network. |
US11010677B2 |
Event management system
An event management system generates and displays an event schedule for an attendee. An initial order of the event schedule is based on (a) events already completed by the attendee, (b) events to be completed by the attendee to meet an event completion target, and (c) a set of ordering rules associated with the set of events to be completed by the attendee. The event management system may include an interface for modifying the event schedule in accordance with the set of ordering rules. The interface may include an initial set of events, in an initial order with respect to a timeline. The event management system may receive user input including a proposed modification to the initial order of the events. The event management system may or may not permit the proposed modification based on the set of ordering rules. |
US11010675B1 |
Machine learning integration for a dynamically scaling matching and prioritization engine
A system and related method are provided for dynamically modifying a rule-based matching system, A processor receives a source data entity, and then locates a matching data entity by a search based on the source data entity and a rule set. A rater assessment is provided by a rater that utilizes at least one factor that is independent of the rule set and comprises a degree of matching between the source and matching data entity. A revised rule set is dynamically created based on an output of the analyzer, which in turn is based on the source data entity, the matching data entity, the rater assessment, and the rule set. Once this is complete, a second matching data entity is located by searching for the second matching data entity based on the source data entity and the revised rule set. |
US11010672B1 |
Evolutionary techniques for computer-based optimization and artificial intelligence systems
Techniques are provided for evolutionary computer-based optimization and artificial intelligence systems, and include receiving first and second candidate executable code (with ploidy of at least two and one, respectively) each selected at least in part based on a fitness score. The first candidate executable code and the second candidate executable code are combined to produce resultant executable code of the desired ploidy. A fitness score is determined for the resultant executable code, and a determination is made whether the resultant executable code will be used as a future candidate executable code based at least in part on the third fitness score. If an exit condition is met, then the resultant executable code is used as evolved executable code. |
US11010661B2 |
Neural network chip, method of using neural network chip to implement de-convolution operation, electronic device, and computer readable storage medium
A neural network chip and a related product are provided. The neural network chip (103) includes: a memory (102), a data reading/writing circuit, a convolution calculation circuit, wherein the memory is used for storing a feature map; the data reading/writing circuit is used for reading the feature map from the memory and execute an expansion and zero-padding operation on the feature according to configuration information of the feature map, and sending to the convolution calculation circuit (S401); and the convolution calculation circuit is used for performing convolution calculation on the data obtained after the expansion and zero-padding operation to implement a de-convolution operation (S402). The technical solution has advantages of saving memory usage and bandwidth. |
US11010660B2 |
Synaptic neural network core based sensor system
A sensor system comprises: an energy storage device electrically coupled to an intermittent energy release device that causes the energy storage device to release stored energy intermittently; a sensor electrically coupled to the energy storage device, where the sensor detects physical events occurring at a physical device and is intermittently powered by electrical energy received from the energy storage device; a synaptic neural network core electrically coupled to the sensor, where the synaptic neural network core converts sensor readings into an object that describes the physical events occurring at the physical device; a transponder electrically coupled to the synaptic neural network core; and a storage buffer within the transponder, where the storage buffer stores the object for transmission from the transponder to a monitoring system, where the intermittent energy release device provides power to the sensor in response to the transponder transmitting the object to the monitoring system. |
US11010651B1 |
Optically configurable charge-transfer materials and methods thereof
The present invention relates to an optical code including a film of a charge-transfer material, as well as methods thereof. Described herein are optical codes having anisotropic and/or isotropic regions within the film, which can be provided in a pattern that serves as an optical code. |
US11010648B2 |
Image processing apparatus converting target partial image data to partial print data using first profile or second profile
An image processing apparatus performs a first generation process generating first partial print data by a first color conversion process using a first profile corresponding to a first direction, and a second generation process generating second partial print data using a second color conversion process using a second profile. When a color difference is smaller than a reference, the apparatus sets a printing direction to the first direction, and outputs the first partial print data to a print execution unit for printing the first partial print data while the main scan moves in the first direction. When the color difference is larger than or equal to the reference, the apparatus sets the printing direction to the second direction, and outputs the second partial print data to the print execution unit for printing the second partial print data while the main scan moves in the second direction. |
US11010647B2 |
Inkjet recording device and inkjet recording method
An inkjet recording device including: a recorder; a mover; and a hardware processor, wherein a pair of recording heads having recording elements in overlapping arrangement ranges in a width direction are at positions different in one movement direction orthogonal to the width direction, ink changes the phase to a solid in a time shorter than a difference between times when the ink adheres to a same position in the one movement direction, the hardware processor performs recording control of causing a selected recording element to perform an output operation to each position in the one movement direction and determines an execution order of output operations such that the output operation by each of downstream-side recording elements is performed twice or more continuously and at least a part of the output operations by upstream-side recording elements is not continuous. |
US11010645B2 |
Interactive artificial intelligence analytical system
A method and system for an AI-based communication training system for individuals and organizations is disclosed. A video analyzer is used to convert a video signal into a plurality of human morphology features with an accompanying audio analyzer converting an audio signal into a plurality of human speech features. A transformation module transforms the morphology features and the speech features into a current multi-dimensional performance vector and combinatorial logic generates an integration of the current multi-dimensional performance vector and one or more prior multi-dimensional performance vectors to generate a multi-session rubric. Backpropagation logic applies a current multi-dimensional performance vector from the combinatorial logic to the video analyzer and the audio analyzer. |
US11010644B2 |
Image processing
An object classifier using a set of object definitions arranged in an object definition hierarchy including at least a first group of coarse-level object definitions and a second group of finer-level object definitions. The object classifier is arranged to configure a first object classification cycle and a second, subsequent, object classification cycle by selectively executing a first subset of object definitions from the categorization data in the first object classification cycle; and selectively executing a second, different, subset in the second object classification cycle. |
US11010641B2 |
Low power consumption deep neural network for simultaneous object detection and semantic segmentation in images on a mobile computing device
A mobile computing device receives an image from a camera physically located within a vehicle. The mobile computing device inputs the image into a convolutional model that generates a set of object detections and a set of segmented environment blocks in the image. The convolutional model includes subsets of encoding and decoding layers, as well as parameters associated with the layers. The convolutional model relates the image and parameters to the sets of object detections and segmented environment blocks. A server that stores object detections and segmented environment blocks is updated with the sets of object detections and segmented environment blocks detected in the image. |
US11010634B2 |
Measurement apparatus, measurement method, and computer-readable recording medium storing measurement program
An apparatus includes a processor that matches of local-feature-amounts in a state where an image of a measurement target captured by an image-sensor and a projective-transformed image of three-dimensional design data of the measurement target substantially overlap each other on a display to search the captured image and a virtual image generated from the projective-transformed image for a plurality of feature-point pairs with similar local-feature-amounts of an image, estimates a temporary-external-parameter related to a position and orientation of the image-sensor, compares an initial-external-parameter and the temporary-external-parameter to diagnose reliability of the temporary-external-parameter, and selects, among the feature-point pairs, a specified number of feature-point pairs with a score value indicating similarity between two feature-points forming each feature-point pair equal to or higher than a threshold value, estimate a final-external-parameter using the selected feature-point pairs, and display the captured image and the projective-transformed image in a superimposing manner using the external-parameter. |
US11010629B2 |
Method for automatically extracting image features of electrical imaging well logging, computer equipment and non-transitory computer readable medium
A method and an apparatus for automatically extracting image features of electrical imaging well logging, wherein the method comprises the steps of: acquiring historical data of electrical imaging well logging; pre-processing the historical data of the electrical imaging well logging to generate an electrical imaging well logging image covering a full hole; recognizing and marking a typical geological feature in the electrical imaging well logging image covering the full hole, obtaining a processed image, and determining the processed image as a training sample according to types of the geological features; constructing a deep learning model including an input layer, a plurality of hidden layers, and an output layer; training the deep learning model using the training sample; using the trained deep learning model, recognizing type of a geological feature of an electrical imaging well logging image of a well section to be recognized, and performing morphological optimization processing on the recognition result to obtain a feature optimization recognition result. The solution can automatically, quickly and accurately recognize the typical geological features in the electrical imaging well logging image. |
US11010625B2 |
Vehicle exterior environment recognition apparatus and method of recognizing exterior environment outside vehicle
A vehicle exterior environment recognition apparatus includes a position deriving unit, a grouping unit, and a pairing unit. The position deriving unit derives three-dimensional positions of respective blocks from an image received from an imaging unit. The grouping unit groups the respective blocks and identifies potential three-dimensional objects from the grouped blocks. The pairing unit projects the potential three-dimensional objects on a horizontal plane, classifies the potential three-dimensional objects into a rear face and a side face on a basis of angles of the potential three-dimensional objects on the horizontal plane with respect to a depth direction, determines whether a relation between the side face and the rear face satisfies a predetermined condition, and pairs the side face with the rear face into a single three-dimensional object when the determination is made that the relation between the side face and the rear face satisfies the predetermined condition. |
US11010619B2 |
Device and a method for searching for a lane on which a vehicle can drive
A device for searching for a lane on which a vehicle can drive, wherein the device is configured to receive an image captured by a camera, the image showing an area in front of the vehicle, detect lane markings in the image, determine for each of the lane markings if the respective lane marking is of a first type indicating a road condition of a first type or a second type indicating a road condition of a second type, create lane candidates from the lane markings, divide the lane candidates into classes of lane candidates depending on the type of the lane markings of the lane candidates, and search the classes of lane candidates for a lane on which the vehicle can drive. |
US11010618B2 |
Apparatus for identifying line marking on road surface
An apparatus for identifying a line marking on a road surface. In the apparatus, an extractor extracts a paint candidate that is a candidate for road surface paint used to identify a line marking in an image captured by a camera mounted on a vehicle to capture an image of an area including a road surface ahead of the vehicle. A determiner determines whether or not the paint candidate has at least one predefined flare feature. A line marking identifier identifies a line marking using the paint candidate which meets an identification condition used to identify a line marking. The line marking identifier sets the identification condition to be more stringent for a flare paint candidate that is the paint candidate determined by the determiner to have the at least one predefined flare feature than for the paint candidate determined by the determiner to have no predefined flare feature. |
US11010612B2 |
Information generation device, information generation method, computer program, and in-vehicle device
An information generation device comprises a processor that acquires sensor information indicating a measurement result of a detection target area from each of a plurality of sensors having the detection target area that is common to the plurality of sensors, that determines whether or not each of the plurality of sensors detects an object existing in the same predetermined area on the basis of a plurality of pieces of the sensor information acquired, and that generates first display information for separately displaying the object that is detected by each of the plurality of sensors in a case where a determination result is positive and a predetermined condition for determining whether or not a plurality of the objects detected by the plurality of sensors are the same object is not satisfied, and generates second display information for displaying the object detected by each of the plurality of sensors in a display style different from a display style of the first display information in a case where the determination result is positive and the predetermined condition is satisfied. |
US11010608B2 |
System and method for vegetation management risk assessment and resolution
The present disclosure relates generally to vegetation management and control, in particular, to vegetation data capture, maintenance workflow generation, prioritization, passive and continuous monitoring of vegetation, and predictive analysis for vegetation that may be within or adjacent to clearance zones for railway, transportation, utility, pipeline, range & pasture, and industrial sites. |
US11010604B2 |
Documentation determination device and documentation determination program
A CPU acquires bibliographic information of attached documents listed in an application document and bibliographic information given in each of the attached documents. If the application document or any of the attached document linked to the application document are in the form of image data, the CPU recognizes character information from the image data. Once the CPU determines the levels of agreement between bibliographic information in the application document and the corresponding bibliographic information in the individual attached documents, the CPU reports the bibliographic information in the application document, the corresponding bibliographic information in the attached documents, and the levels of agreement between these bibliographic information. |
US11010603B2 |
Ledger document processing device, ledger document processing method and storage medium
A ledger document processing device including a display section which displays a live view image captured by an imaging section while waiting for a ledger document to be captured, and a processor which actualizes functions including judging whether a pixel-count size of an area corresponding to the ledger document in an image to be captured and stored in response to an imaging instruction is equal to or larger than a reference pixel-count size while waiting for the ledger document to be captured, notifying a user of a judgment result, and storing in a storage section the image captured by the imaging section in response to the imaging instruction. |
US11010597B1 |
Entry prevention of persons of interest from venues and events using facial recognition
A system uses facial recognition to exclude persons of interest (e.g., “undesirables”) from events and/or venues. Such a system can include a combination of cameras, edge processing devices, and servers that are in communications coupling (e.g., via a network) and that are on premise and/or in the cloud to recognize such persons of interest (POI) and interdict and prevent such POI from entering, traversing, and/or attending (collectively, “entering”) such venues or events. |
US11010592B2 |
System and method for lifting 3D representations from monocular images
In one embodiment, example systems and methods relate to a manner of generating 3D representations from monocular 2D images. A monocular 2D image is captured by a camera. The 2D image is processed to create one or more feature maps. The features may include depth features, or object labels, for example. Based on the image and the feature map, regions-of-interest corresponding to vehicles in the image are determined. For each region-of-interest a lifting function is applied to the region-of-interest to determine values such as height and width, camera distance, and rotation. The determined values are used to create an eight-point box that is a 3D representation of the vehicle depicted by the region-of-interest. The 3D representation can be used for a variety of purposes such as route planning, object avoidance, or as training data, for example. |
US11010589B1 |
Defensive measures for residue re-imaging
An input device includes a biometric sensor and a processing system. The biometric sensor is configured to capture images of a sensing region of the input device. The processing system is configured to acquire a first image of the sensing region in response to a first authentication trigger, and to acquire a second image of the sensing region in response to a second authentication trigger. The processing system is further configured to determine an amount of similarity between the first image and the second image, and to validate the second image for user authentication when the amount of similarity between the first image and the second image is below a threshold level. |
US11010587B2 |
Authentication using prism
A prism of an approximately quadrangle-frustum shape is arranged so that a bottom side, out of two parallel surfaces of the prism, is a placing surface side for a finger. A first imaging unit arranged below a top surface parallel to the bottom surface images an image of the finger transmitted through the top surface. A light source radiates light to at least one side surface of a first set of side surfaces, out of two sets of side surfaces of the approximately quadrangle-frustum shape that face each other. A second imaging unit images the image of the finger transmitted through a second set of side surfaces, out of the two sets of side surfaces. An infrared ray light source radiates infrared ray light into the finger so that the infrared ray light is scattered inside the finger and is received by the imaging unit. |
US11010583B2 |
Display panel and display apparatus
The present disclosure provides a display panel, a display apparatus and a method for manufacturing the display panel. The display panel includes a driving circuit, a light-emitting device, and a fingerprint recognition unit. The light-emitting device includes a first electrode, a second electrode, and an organic function layer disposed between the first and second electrodes, and the first electrode is a reflective electrode. The driving circuit includes a light-emitting control transistor and a first initialization transistor that are connected to the first electrode via the first through-hole. The driving circuit includes at least a first driving circuit, and a minimum distance between the first through-hole of the first driving circuit and a first gate signal line connected to the first initialization transistor is smaller than a minimum distance between the first through-hole and a second gate signal line connected to the light-emitting control transistor. |
US11010582B2 |
TFT panel type fingerprint recognition sensor
The present invention relates to a TFT panel type fingerprint recognition sensor comprising: a total reflection unit for totally reflecting light emitted from a light source; a photodiode for detecting light reflected through the total reflection unit; and a TFT panel for processing voltage output from the photodiode so as to perform imaging. |
US11010581B2 |
Fingerprint sensing apparatus and method having three-dimensional sensing mechanism
A fingerprint sensing apparatus having a three-dimensional (3-D) sensing mechanism that includes optical fingerprint sensing circuits and a processing circuit is provided. The optical fingerprint sensing circuits are configured to perform sensing within sensing areas to obtain sensed images, wherein each of the sensing areas corresponds to one of the optical fingerprint sensing circuits and the sensing areas includes at least one overlapped area. The processing circuit is electrically coupled to the optical fingerprint sensing circuits to receive the sensed images and generate a three-dimensional sensed image having depth information of the overlapped area according to a disparity between the sensed images. |
US11010566B2 |
Inferring confidence and need for natural language processing of input data
Improved data ingestion techniques are provided. A data set comprising records is received, where each record contains one or more fields. A group of fields is identified, where each of the fields has a common metadata attribute. Metrics are determined for the group based on metadata associated with each field, and weight values are assigned to each of the metrics. A natural language processing (NLP) measure and a discreteness measure are generated for the group of fields based on the metrics and the weight values. A processing workflow is selected to use when ingesting data from the group of fields into a corpus, based on comparing the NLP measure and the discreteness measure to one or more predefined thresholds, and each of the fields in the group of fields are processed using the processing workflow. |
US11010558B2 |
Temporary slots for storing chat data
This disclosure relates to configuration tools for interactive agents, sometimes referred to as bots, chatbots, virtual robots, or talkbots. Such interactive agents utilize slots for organizing and storing data received as inputs and displayed as outputs. These slots can be configured such that a slot is temporary and does not persist beyond its source dialog. Slots can also be configured such that a slot is pre-populated with information contain in incoming passed parameters. |
US11010557B2 |
Apparatus and method for extracting nickname list of identical user in online community
A method of extracting nicknames of identical user by an apparatus operated by at least one processor, the method includes receiving a posting uploaded to an online community from a server; extracting at least one feature information for identifying a posting writer who writes the posting, from the posting; and extracting nicknames of identical user with the posing writer, from a plurality of nicknames, based on similarity of the feature information with a predetermined reference or greater. |
US11010556B1 |
Conversational agent
A method includes converting a user's utterance to text; encapsulating the converted text in a rheme object; searching, for each of a plurality of topics, for keywords in the converted text; determining a relevancy metric for each of the plurality of topics based on such searching; selecting one or more topics based on determined relevancy metrics; comparing some or all of the converted text to names in one or more patient lists or databases; identifying a unique patient whose name is contained in the converted; attaching an indication of the identified patient to the rheme object; effecting an action based on the selected one or more topics and the attached patient indication; and saving the topic in a conversation history with a reference to the identified patient. |
US11010553B2 |
Recommending authors to expand personal lexicon
A computer implemented method is provided for recommending at least one author of a plurality of authors to a user based on a learned lexicon of the user. First communication content pertaining to a user is obtained. Second communication content pertaining to an author is obtained. A lexicon of the user is learned from the first communication content to identify a set of words known to the user. High frequency words are identified from the second communication content of the author, the high frequency words being one or more words having an occurrence frequency in the second communication content that is higher than a first predetermined threshold occurrence frequency level. The author is suggested to the user upon detecting that the high frequency words are not in the lexicon of the user. |
US11010552B2 |
Detecting expressions learned based on a theme and on word correlation and co-occurence
Embodiments relate to a type of expression based on a particular theme. An aspect includes acquiring, by an electronic apparatus, from text data for learning, a subset of the text data associated with the particular theme and with particular time period information. Another aspect includes extracting text data containing negative information from the acquired subset of the text data. Another aspect includes extracting a word or phrase having a high correlation with the extracted text data or a word or phrase having a high appearance frequency in the extracted text data from the extracted text data. Yet another aspect includes determining that the extracted word or phrase is the type of expression based on the particular theme. |
US11010547B2 |
Generating and applying outgoing communication templates
Methods, apparatus, systems, and computer-readable media are provided for generating and applying outgoing communication templates. In various implementations a corpus of outgoing communications sent by a user may be grouped into a plurality of clusters based on one or more attributes of a context of the user. One or more segments of each outgoing communication of a particular cluster may be classified as fixed in response to a determination that a count of occurrences of the one or more segments across the particular cluster satisfies a criterion. One or more remaining segments of each communication of the particular cluster may or may not be classified as transient. Based on sequences of classified segments associated with each communication of the particular cluster, an outgoing communication template may be generated to automatically populate at least a portion of a draft outgoing communication being prepared by the user. |
US11010542B2 |
Interactive electronic whiteboard appliance with adaptive application management
An interactive whiteboard appliance includes the capability to instantiate and manage multiple windows on the interactive whiteboard appliance in a manner that allows information in multiple windows to be viewed concurrently by dynamically selecting and changing the opacity of one or more portions of a topmost window in response to one or more conditions. The one or more conditions may include one or more user actions made with respect to the topmost window or the one or more conditions may be related to a window other than the topmost window, such as detection of an audio signal in a non-topmost window. Opacity may be selectively changed on a region-by-region basis and graphical user interface controls may be provided to allow users to specify different opacity levels. |
US11010541B2 |
Enterprise web application constructor system and method
A web-based application constructor can be used to construct a web display. A specification, for constructing a web display to contain page components that display data from heterogeneous data sources, may be created. The page components may be associated with uniform resource locators. Data from heterogeneous data sources may be retrieved to produce the web display. Display and update of the page components may be controlled using the uniform resource locators. User-selectable options may allow annotation of the page components for a page with comments. |
US11010539B2 |
State-specific commands in collaboration services
Implementations of enhanced content collaboration technology are disclosed herein. In an implementation, a collaboration service determines which collaboration commands to surface in association with each user in a list of users collaborating on a document. The collaboration commands are selected based on each user's collaboration state. The service updates local applications with information indicative of the user state, so that the local applications may surface a user-specific, collaboration state-driven selection of commands. |
US11010537B2 |
Web-intrinsic interactive documents
A system for providing interactive documents as a web service is described. The system includes a content repository for storing an interactive document in a web-intrinsic container. The interactive document includes a document editor that is a native web browser application. The system also includes a web server to deliver the interactive document to a client computer through a network, receive Hypertext Transfer Protocol (HTTP) requests from a web browser of the client computer, and updates the interactive document based on the HTTP requests. |
US11010535B1 |
Method for coding a vanity message for display
A sentence communicating a desired vanity message is parsed into the component parts. Code blocks corresponding to one or more component parts of the sentence are unambiguously coded. At least one of the code blocks is non-phonetically and unambiguously coded. And at least one of the code blocks representing a component part of a sentence has, as a part of the code block, a code distinguishing feature for the code block representing the component part of the sentence. The code blocks follow each other to form a coded message. The first and one or more other code blocks have no fewer than the predetermined minimum number of characters and no more than the predetermined maximum number of characters. |
US11010533B2 |
Method for layout design and semiconductor device manufactured based on the same
Disclosed is a computer-readable medium including a program code. The program code, when executed by a processor, causes the processor to place an electrically active pattern having a first width and a first least margin area, on a layer, to place a first dummy pattern having a second width wider than the first width and having a second least margin area, on the layer, and to place a second dummy pattern having a third width and a third least margin area, on the layer, based on whether a ratio of an area of the layer to areas of the electrically active pattern and the first dummy pattern is within a reference range. |
US11010531B2 |
Method of design quality through the consistency check and design rule check of engineering data of 3D CAD model for plant engineering
The present invention can determine in advance whether the design RULE is violated by checking the design conditions and design requirements required by the client and the project in the plant engineering stage on the 3D CAD model. The present invention can improve the design quality of plant engineering and minimizing the modification of the drawings occurring during construction by checking whether the various data of the vendor drawings received by the EPC company are accurately reflected to the 3D CAD modeling design. |
US11010528B2 |
Knowledge-based analog layout generator
A computer-implemented method for generating a layout of a design includes invoking the computer to receive a schematic representation of the design, generating a connection graph associated with the design, comparing the connection graph with a plurality of connection graphs stored in a database and selecting a layout associated with the matching connection graph in generating the layout of the design. |
US11010525B2 |
Fast pattern matching
A search engine receives data describing reference geometry and generates a hash based on the reference geometry. A reference bloom filter is generated for the reference geometry based on the hash. The search engine performs a search to determine whether instances of the reference geometry are present in an integrated circuit (IC) layout. The search includes comparing the reference bloom filter with each one of a plurality of bloom filters corresponding to a plurality of subdomains of the IC layout. Based on results of the comparison, one or more subdomains of interest are identified and searched to determine whether the particular reference geometry is present in the subdomain. |
US11010513B2 |
Methods and devices for preventing computationally explosive calculations in a computer for model parameters distributed on a hierarchy of geometric simplices
A computer-implemented method of preventing computationally explosive calculations. The method includes obtaining, by a processor of the computer, measured data of one of a physical process or a physical object; performing hierarchical numerical modeling of a physical process inclusive of an Earth model containing at least one of (a) infrastructure in the ground and (b) a formation feature in the ground, wherein predicted data is generated; comparing the measured data to the predicted data to calculate an estimated error; analyzing the estimated error via an inversion process to update the at least one of the Earth model and infrastructure model so as to reduce the estimated error and to determine a final composite Earth model of at least one of the infrastructure and the feature; and using the final composite Earth model to characterize at least one of the process and the physical object. |
US11010508B2 |
Automation facility and method for operating the automation facility
A method for operating an automation facility, wherein and to an the automation facility includes a simulation server, which has a simulation framework for simulation of the process behavior of sensors and/or actuators in accordance with a simulation model, where a large number of simulation models is stored in the simulation server, which can be loaded into the simulation framework, includes a simulation interface for simulating the communication behavior of the sensors and/or actuators and for connecting the modelled process behavior to a controller, and includes an operator system for process control and process operation such that it becomes possible to verify, in a simplified manner within the context of what is known as a “Factory Acceptance Test” (FAT) during the test or during the verification of functionality, whether testing was performed with the simulation models provided for this purpose. |
US11010507B2 |
Stratum component optimization determination method and device
The present invention provides a stratum component optimization determination method and device, which fall within the technical field of oil-gas exploration well logging. The method comprises: establishing a stratum rock component model according to core analysis data and geological conditions of a stratum to be detected, and determining a well logging curve determined by a participation model; determining a well logging response equation expression corresponding to the well logging curve determined by the participation model; parsing, recording and storing the well logging response equation expression, establishing a target function of an optimization problem, and solving the target function through an iteration algorithm to determine an optimal component content of the stratum to be detected. By establishing the stratum rock component model, determining corresponding well logging response equation, and parsing through an expression parsing method and recording and storing the well logging response equation expression, and then, establishing the target function of the optimization problem, and obtaining the optimal component content of the stratum to be detected through the iteration algorithm, the present invention can not only optimizes the self-defined well logging response equation expression of the user, but achieves a high processing precision. |
US11010506B2 |
Method for designing a die surface
A method for designing a die surface of a die, comprising generating a workpiece simulation-model corresponding to the workpiece, generating a target simulation-model corresponding to a target formed part, determining an initial die surface, which an initial numerical simulation predicts as forming the workpiece simulation-model into the target simulation-model, determining residual stresses resulting from forming the workpiece simulation-model into the target simulation-model, forming the workpiece into an actual formed part, generating a numerical representation of the actual formed part, generating an actual simulation-model, based on the residual stresses, matching the actual simulation-model and the target simulation-model, based on deviations between the matched target simulation-model and actual simulation-model, modifying the initial numerical simulation to provide a modified numerical simulation, and determining a corrected die surface, which the modified numerical simulation predicts as forming the workpiece simulation-model into the target simulation-model. |
US11010503B2 |
Method and system providing temporal-spatial prediction of load demand
Method and system for predicting temporal-spatial distribution of load demand on an electric grid due to a plurality of Electric Vehicles (EVs) is described. The method includes creating an EV load demand (EVLD) model for a Region of Interest (ROI) serviced by the electric grid, wherein the EVLD model integrates an EV model and a transport simulator simulating EV traffic conditions for the ROI. Further, the method includes computing the load demand in time and space in terms of State of Charge (SOC) of a battery for each EV among the plurality of EVs in the ROI, based on the EVLD model. Furthermore, the method includes aggregating the computed the load demand, in terms of the SOC, of each EV in time domain and space domain to create a temporal-spatial impact of the load demand by the plurality of EVs on the electric grid for the ROI. |
US11010502B2 |
Method and device for generating a sectional view of a body of a vehicle
A method for generating a sectional view of a body of a vehicle includes displaying a first sectional view of the vehicle body on a screen, where the first sectional view comprises two surfaces of two components of the vehicle body which adjoin one another at a first transition point. The method includes displaying a joint catalog with a plurality of predefined joint types, where one joint type of the plurality of predefined joint types defines a predefined joint section for a joint between two surfaces. The method also includes detecting a selection of a first joint type from the joint catalog, and automatically inserting the predefined joint section for the first joint type at the first transition point into the first sectional view displayed on the screen, with the result that the surfaces of the two components are connected to one another at the first transition point by the joint section. |
US11010486B2 |
Secure offline streaming of content
Methods, systems, and computer-readable media for secure offline transmission of a plurality of data segments from a sending device to one or more receiving devices. The sending device and the one or more receiving devices may communicate via an offline local network. A secure, encrypted container may be created at the receiving device to temporarily cache the received data segments one at a time and the encrypted storage container prevents access by one or more applications of the receiving device to data stored therein based on storage instructions from the sending device. The encrypted container may be configured to store the data segments such that less than all of the data segments are stored at the receiving device at any one time. |
US11010484B2 |
System and method to provide document management on a public document system
A system and method for document management are provided in which documents are managed in a file/document sharing system. |
US11010476B2 |
Security-aware caching of resources
Systems, methods, and non-transitory computer readable media are provided for security-aware caching of resources. An offline version of a resource may be prepared for a computing device. The offline version of the resource may include a security parameter. The security parameter may define a security rule to be enforced with respect to offline usage of the resource. The offline version of the resource may be provided for caching by the computing device. The cache of the offline version of the resource may enable the offline usage of the resource by the computing device. The security rule for the offline usage of the resource may be enforced by the computing device based on the security parameter. |
US11010472B1 |
Systems and methods for signature-less endpoint protection against zero-day malware attacks
Disclosed herein are embodiments of systems, methods, and products providing real-time anti-malware detection and protection. The computer uses artificial intelligence techniques to learn and detect new exploits in real time and protect the full system from harm. The computer trains a first machine learning model for executable files. The computer trains a second machine learning model for non-executable files. The computer trains a third machine learning model for network traffic. The computer identifies malware using the various machine learning models. The computer restores to a clean, uncorrupted state using virtual machine technology. The computer reports the detected malware to a security server, such as security information and even management (SIEM) systems, by transmitting detection alert message regarding the malware. The computer interacts with an administrative system over an isolated control network to allow the system administrator to correct the corruption caused by the malware. |
US11010471B2 |
Attack code detection apparatus, attack code detection method, and attack code detection program
An attack code detection apparatus includes a preprocessing unit that analyzes in advance a library file for learning used in an ROP (Return Oriented Programming) chain, and obtains sets including the addresses of ROP gadgets, which represent pieces of code in the library file, and increment values of the stack pointer at the time of execution of the ROP gadgets; and a detecting unit that refers to the obtaining result of the preprocessing unit, that verifies, regarding an unknown data series representing the examination target, whether or not the ROP chain is valid in which the ROP gadgets are correctly linked, and that detects whether or not the unknown data series representing the examination target is a malicious data series. |
US11010464B2 |
Methods and apparatus for encoding passwords or other information
In illustrative implementations, shape is used to encode computer passwords or other information. The passwords may be easy for a human to remember—and yet have an extremely high number of permutations (e.g., in some cases, greater than 1030 permutations, or greater than 10261 permutations, or greater than 106264 permutations). This combination of a password being easy for a human to remember—yet having a large number of permutations—offers many practical benefits. Among other things, the huge number of permutations makes the password extremely resistant to guessing attacks. In addition, in some cases, the passwords that are created with the shapes are highly resistant to attacks by keystroke logging, mouse logging, touch-gesture logging, screen logging, shoulder surfing, phishing, and social engineering. Alternatively, the shapes may be used to encode other information, such as information that uniquely identifies a product or a machine part. |
US11010454B2 |
Method and system for digital rights management enforcement
A method and system for Digital Right Management (DRM) enforcement on a client device is provided. The method includes: determining client requested digital content; retrieving DRM data associated with the requested digital content; bundling the associated DRM with the requested digital content; transmitting the bundled DRM and digital content to the client device; and enforcing the DRM on the client device. The system includes: a client device configured to issue a request for digital content; a content review module configured to retrieve DRM data associated with the requested digital content; a bundler module configured to bundle the associated DRM with the requested digital content; a connection module configured to transmit the bundled DRM and digital content to the client device; and an enforcement module configured to enforce the DRM on the client device. |
US11010451B2 |
Techniques for automated Bayesian posterior sampling using Markov Chain Monte Carlo and related schemes
Techniques for automated Bayesian posterior sampling using Markov Chain Monte Carlo and related schemes are described. In an embodiment, one or more values in a stationarity phase for a system configured for Bayesian sampling may be initialized. Sampling may be performed in the stationarity phase based upon the one or more values to generate a plurality of samples. The plurality of samples may be evaluated based upon one or more stationarity criteria. The stationarity phase may be exited when the plurality of samples meets the one or more stationarity criteria. Other embodiments are described and claimed. |
US11010447B1 |
Systems, devices, and methods for presenting customized content through web API
The solutions provide a distributed computing architecture and system for HTTP message exchange and modification. An HTTP request for information may be pre-processed by a first server to detect the geographic location information of the requester and add such geographic information into the request. The modified request is further processed by a second server to identify rules associated with each type of geographic location information included in the request and to add such rule information as associated with the geographic location information into the request. The further modified request is then processed by a third server to determine the geographic location information, retrieve the rule information, and map and obtain a content customized for the request based on the geographic location information and the rule information. |
US11010444B2 |
Onboard navigation device and spot search device for use with the onboard navigation device
A spot search device includes a device communication unit, a search unit, a generator unit, and a spot search unit. The device communication unit communicates with a server device on a network. The search unit searches over information on the network with the use of the device communication unit. The generator unit generates a genre regarding information on a spot included in a search history of the search unit. The spot search unit searches, over the information on the network, for information on one or more spots around a route of a vehicle, according to the genre generated by the generator unit, with the use of the search unit. The device communication unit transmits the information on the one or more spots around the route, together with information on the route, to an onboard navigation device installed on the vehicle. |