Document | Document Title |
---|---|
US11012527B2 |
Managing multiple profiles for a single account in an asynchronous messaging system
Multiple profiles are received in association with a first user account in an asynchronous messaging system. One or more of the profiles are associated with other user accounts. The associated profiles are transmitted to user clients associated with the other user accounts for storage as a local copy. The association may include inclusion in a contact list of the first user, or a contact list of the other users. The associated profiles are transmitted when messages are sent from the first account to the other user clients, or the profiles are created or updated. A public profile may include a version identifier which is updated when the public profile is updated. Updates to local copies of the public profile at other user clients may occur only when a local copy of the associated version identifier indicates that the local profile is outdated, thereby reducing network traffic. |
US11012526B1 |
Inspection and assessment based on mobile edge-computing
Methods, computer-readable media, software, and apparatuses may receive, at a field vehicle, field data from one or more unmanned autonomous vehicles, where the field data may be indicative of an item for assessment. Edge-computing, based on machine learning techniques, may be performed at the field vehicle to identify one or more characteristics of the assessment, and a projected cost may be determined. An estimate may be sent to a consumer. In some aspects, the projected costs may be based on local data related to a geographical location of the item. In another aspect, underwriting tasks may be performed at the field vehicle, and a quote may be sent to a consumer. |
US11012524B2 |
Remote socket splicing system
A remote socket splicing system includes a first computing device and a second computing device that are coupled to a router device. A proxy system is coupled to the router device. The proxy system is configured to operate on a first connection with the first computing device through the first router device, and operate on a second connection with the second computing device through the first router device. The proxy system is also configured to send an instruction to perform a socket splicing operation to the first router device subsequent to operating on the first connection and the second connection. The first router device is configured to perform the socket splicing operation to provide a data path between the first computing device and the second computing device that does not include the proxy system. |
US11012522B2 |
Modifying application functionality based on usage patterns of other users
In an approach for modifying a user interface for a user of an application, a processor receives a plurality of actions for a user of an application. A processor generates a unique identifier for each action of the plurality of actions. A processor generates a unique string of the generated unique identifiers for each action of the plurality of actions. A processor determines that a portion of a pattern of the unique string matches, within a predetermined threshold, a portion of a pattern of a history of usage of a set of users of the application. A processor modifies a user interface of the application, for the user, based on the portion of the pattern of the matched unique string, within the predetermined threshold, the portion of the pattern of the history of usage. |
US11012519B2 |
Handoff feature for content sharing platforms
Implementations disclose a handoff feature for a content sharing platform. A method includes maintaining a session history of a session that occurred at a first client device, the session history identified by a visit identifier (ID) and comprising a set of recently-watched content items on a content sharing platform, determining that a user associated with the session is active on a second client device, transmitting, to the second client device, a session continuation notification associated with the visit ID and a navigation end-point of the session, receiving, from the second client device, a request for a watch page user interface (UI) of a content item corresponding to the navigation end-point of the session, and transmitting, to the second client device, instructions to load the watch page UI and to request additional components of the watch page UI using the visit ID. |
US11012518B2 |
Systems and methods for managing networked communication sessions
Systems and methods for managing networked communication sessions are described herein. A processor may obtain, by a driver running in a first operating mode of the one or more processors, session information and content information from a client application to be communicated to an external entity over a network. The processor may redirect, by the driver, the session information and the content information to a local proxy running in a second operating mode of the one or more processors via a local listening port of the local proxy. The redirecting may comprise modifying the session information to generate modified session information. The processor may obtain, at the local proxy, the modified session information and the content information. The processor may establish a communication channel between the local proxy and the external entity by modifying the modified session information to communicate the content information to the external entity. |
US11012517B2 |
System and method for accessing multimedia content
Devices, systems, and methods are described herein that comprise a multi-screen application which allows users to establish communication sessions with other users of the multi-screen application as well as allowing the user to request multimedia content using the same multi-screen application interface. The user makes a connection request to establish a multimedia session by entering a name or phone number. The multi-screen application uses a request string from the connection request to search a user's contact directory in order to determine possible user connection identifiers associated with the request string. The multi-screen application may additionally or alternatively transmit the request string to a directory server maintained by a service provider. The directory server may provide an endpoint for retrieving multimedia content associated with the string. The multi-media application may be used to allow a user to ‘call’ multimedia content using the same user interface used for calling another user. |
US11012516B1 |
System and methods for dynamically extending analytics in a cloud communications platform
The disclosed technology provides a system and method for correlating events from a single application run in a cloud communications network using session identifiers uniquely identifying a communication session, and event identifiers uniquely identifying events in network elements of the cloud communication network. A data manager of the cloud communications network maps common fields and event-specific fields of network element event records to common fields and generic fields of a data warehouse based on the event type of the event to be recorded. |
US11012515B2 |
Machine to machine architecture
A machine-to-machine communication platform provides a flexible system for device control and solution hosting. In particular, the communication platform hosts and manages third party vertical solutions that interact with external devices. A third party gateway provides the third parties with access to the communication platform so that the third parties may define, configure, and monitor custom vertical solutions that are locally hosted in the communication platform. The communication platform provides a communication manager that implements a device independent communication facility for communicating with the external devices. As a result, the communication platform connects to, communicates with, and controls virtually any external device. |
US11012513B2 |
Data-driven managed services built on top of networks of autonomous vehicles
Communication network architectures, systems and methods for supporting a network of mobile nodes. As a non-limiting example, various aspects of this disclosure provide autonomous vehicle network architectures, systems, and methods for supporting a dynamically configurable network of autonomous vehicles comprising a complex array of both static and moving communication nodes. In particular, systems and methods for data-driven managed services built on top of a network of autonomous vehicles. |
US11012509B2 |
Cloud computing server interface
A cloud computing server interface is described, the cloud computing server interface arranged to provide a platform for transferring data from, and updating the status of field devices for use in utilities monitoring. A cloud computing server interface comprising, a first data processing element arranged to communicate with a remote device having a remote device status; a first storage device having a first storage device status; and a second data processing element arranged to communicate with a second storage device having a second storage device status; wherein the first storage device is arranged to communicate with the first and second data processing elements; wherein the first data processing element is arranged to control data transfer from a remote device to the first storage device; wherein the second data processing element is arranged to control data transfer from the first storage device to a second storage device; wherein data transfer from the second data processing element to a second storage device is dependent upon a second storage device status; wherein data transfer from the second data processing element to a second storage device comprises utilities management data. The invention aims to achieve a simple, reconfigurable platform for updating the status of field devices, while enabling more efficient use of power for extending battery life. |
US11012505B2 |
Application information sharing method and apparatus
Embodiments provide an application information sharing method and apparatus. The application information sharing method of embodiments includes receiving, by a second terminal by using Near Field Communication, application information sent by a first terminal, where the application information includes identification information of an application and status information of the application and parsing the application information to obtain the identification information of the application and the status information of the application. The method also includes performing a query on the second terminal according to the identification information of the application, and in a case in which it is found that the application is installed in the second terminal, synchronizing, according to the status information of the application, status information of the application in the second terminal with the status information of the application in the first terminal. |
US11012503B2 |
Application deployment engine
Concepts and technologies are disclosed herein for an application deployment engine. A processor that executes an application deployment engine can receive an application request. The processor can obtain network topology data that indicates availability of resources of a data center, an application template associated with the application, and a running time during which an application placement plan is to be identified out of a large number of placement scenarios within the running time. The application template can describe an application flow path associated with the application. The processor can identify the application placement plan, where the application placement plan can include an optimal placement of the application at the data center, before a given running time expires by pruning the large search space. The processor can generate a command to effect deployment of the application in accordance with the application placement plan. |
US11012494B2 |
Method and system for online conversion attribution
A system for online conversion attribution. The system includes a short uniform resource locator (URL) service programmed to, in response to receiving a short URL from a device: provide a cookie that includes a short URL ID to the device, and provide a short URL descriptor including the short URL ID to a user mapping service. The system further includes the user mapping service programmed to receive the short URL descriptor, receive a social media descriptor including a social media ID, map the short URL ID to the social media ID using the short URL descriptor and the social media descriptor, and attribute, using the mapping, a conversion on a website accessed using the device based upon receipt of the short URL ID from the device. |
US11012492B1 |
Human activity detection in computing device transmissions
Methods, apparatus and computer software products implement embodiments of the present invention that include protecting a computing system by defining a list of network access messages that are indicative of human use of computing devices, and extracting, from data traffic transmitted over a data network connecting a plurality of the computing devices to multiple Internet sites, respective transmissions from the computing devices to the Internet sites. A given transmission including one of the network access messages in the list is detected in the transmissions from a given computing device, and the given computing device is classified as being operated by a human in response to detecting the given transmission. Upon identifying suspicious content in the transmissions from a subset of the computing devices that includes the given computing device, any suspicious transmissions from the given computing device are ignored in response to the classification. |
US11012489B2 |
Picture file processing method, picture file processing device, and storage medium
A picture file processing method is provided. The method includes determining, by a computing device, during a process of encoding transparency data of a picture, transparency input values according to the transparency data of the picture. The method also includes encoding, by the computing device using a video encoder, the transparency input values as data of a preset target channel of the video encoder, to obtain transparency stream data of the picture; and encoding color data of the picture, to obtain color stream data of the picture. The method also includes outputting, by the computing device, compressed image data of the picture. The compressed image data includes the transparency stream data of the picture and the color stream data of the picture. |
US11012488B2 |
Content streaming redundancy architecture
A system can include multiple content ingress sites to process content into portions of content. A content ingress site, of the multiple content ingress sites, can include a first set of devices. The first set of devices can be configured to process the content in a synchronized manner. The first set of devices can be configured to have excess processing capacity to facilitate failover of a first segmenter device to a second segmenter device. The first set of devices can be configured to process content from multiple sources. The system can include multiple content distribution sites to encode the portions of content. A content distribution site can include a second set of devices. The system can include multiple content satellite offices to provide the portions of content to one or more destination devices. A content satellite office can include a third set of devices. |
US11012482B1 |
Spatially aware multimedia router system and method
A spatially-aware multimedia router system includes at least one media server computer configured to receive and analyze incoming data comprising incoming multimedia streams from client devices, and adapt outbound multimedia streams for individual client devices based on the incoming data received from the client devices. The incoming multimedia streams include elements from within a virtual environment. The outbound multimedia streams are adapted for the individual client devices based on user priority data and spatial orientation data that describes spatial relationships between corresponding user graphical representations and sources of the incoming multimedia streams within the virtual environment. |
US11012481B2 |
Systems and methods for scheduled video chat sessions
A computer-implemented method for facilitating a virtual meet-and-greet between a first client device, a second client device, and at least a third client device is provided. The method involves establishing a first private one-on-one video chat between the first client device and the second client device. The method also involves transmitting a request to the third client device to carry out one or more preloading operations to test the operation of one or more hardware and/or software elements of the third client device. The method further involves establishing a second private one-on-one video chat between the first client device and the third client device based at least in part on the third client device have successfully completed the preloading operations and being ready to establish a private one-on-one video chat. |
US11012480B2 |
Modifying signal associations in complex computing networks
This disclosure is directed to an apparatus for modifying a temporal data association in a complex computing network such that a future computing operation is executed based on the modified data association. |
US11012477B2 |
Methods, apparatus and systems to increase media resource function availability
Communications methods, apparatus and systems for detecting a status condition indicative of a failure of a media processing entity and providing media redirection to increase media resource function availability. One embodiment of the present invention is a method that includes directing, by a first Session Border Controller (SBC), a first media call flow of a first call through a first media content processing entity to a second SBC, detecting, at one of said first or second SBCs, a status condition indicative of a failure condition for the first media content processing entity, and redirecting, by the SBC that detects the status condition indicative of a failure condition, the first media call flow for the first call so that the first media call flow passes through a second media content processing entity instead of through the first media content processing entity without terminating the first call. |
US11012474B2 |
Methods and systems for protecting a secured network
Methods and systems for protecting a secured network are presented. For example, one or more packet security gateways may be associated with a security policy management server. At each packet security gateway, a dynamic security policy may be received from the security policy management server, packets associated with a network protected by the packet security gateway may be received, and at least one of multiple packet transformation functions specified by the dynamic security policy may be performed on the packets. |
US11012469B2 |
Detecting and preventing denial of service attacks due to fraudulent BSS color collision events
A management entity obtains from a first wireless access point a Basic Service Set (BSS) color collision event detected by the first wireless access point. The first wireless access point uses a first BSS color. A color collision event occurs when the first wireless access point receives from a device in a BSS of a different physical wireless access point a frame or PHY Protocol Data Unit (PPDU) that includes the first BSS color. The management entity obtains from the first wireless access point an indication whether the color collision event has been detected for longer than a predetermined duration. When the color collision event has been detected for longer than the predetermined duration, the management computes a probability of the color collision event. The management entity determines whether the color collision event is malicious or benign, and determines whether to maintain the first BSS color. |
US11012468B2 |
Detecting and responding to attempts to gain unauthorized access to user accounts in an online system
In response to detected attempts to gain unauthorized access to user accounts of an online system, a security module of an online system applies an attack response policy to take actions in response to the attempts. Possible responses of the policy include reordering credential types requested by the online system during multi-factor authentication-enabled login, switching to a mode in which login requests are accepted but login is not permitted for the requesting user, and logging information about the login requests. Logged information may be applied to enhance the ability to prevent future unauthorized accesses, such as adding credential values to a list of common credential values and prohibiting users from associating those values with their accounts, or training a model based on the logged information to predict a probability that a given login request is unauthorized. |
US11012467B2 |
System and method for scrubbing DNS in a telecommunications network to mitigate attacks
Aspects of the present disclosure involve systems, methods, computer program products, and the like, for providing a proxy server or scrubbing service for an authoritative domain name server (DNS) of a CDN to prevent or otherwise mitigate attacks on the server. The proxy server may receive incoming requests to the authoritative DNS and determine which requests are valid and which are potentially part of an attack on the network. In one embodiment, the proxy server may then “scrub” or otherwise remove the requests of the attack to mitigate the effect of the attack on the network. For example, the proxy server may ignore the request, may direct the request to a “dead-end” server or other device to prevent overloading of the target device, may instruct a device from which the request was sent to discard the request, etc. |
US11012464B2 |
Network vulnerability assessment
A method to assess network vulnerabilities of devices may include accessing, by a relay device, a network that includes a firewall to separate the network from external networks such that the relay device is coupled to the network from behind the firewall attached to the network. The method may further include establishing a communication channel over a secondary network between the relay device and a monitor system. The method may further include detecting one or more devices behind the firewall attached to the network by the relay device. The method may also include after establishing the communication channel and detecting the one or more devices and while the relay device is coupled to the network from behind the firewall attached to the network, performing, by the monitor system, one or more network vulnerability assessments on the one or more devices via network communications that pass through the relay device. |
US11012461B2 |
Network device vulnerability prediction
The vulnerability of network devices may be predicted by performing a survival analysis on big data. A prediction algorithm may be built by considering historical data from heterogeneous data sources. The operating state of the network devices on a network may be predicted. The services potentially affected by a predicted outage may be determined and displayed. Alternatively or in addition, the number of clients potentially affected by a predicted outage may be determined and displayed. |
US11012459B2 |
Rule-based network-threat detection
A packet-filtering device may receive packet-filtering rules configured to cause the packet-filtering device to identify packets corresponding to network-threat indicators. The packet-filtering device may receive packets and, for each packet, may determine that the packet corresponds to criteria specified by a packet-filtering rule. The criteria may correspond to one or more of the network-threat indicators. The packet-filtering device may apply an operator specified by the packet-filtering rule. The operator may be configured to cause the packet-filtering device to either prevent the packet from continuing toward its destination or allow the packet to continue toward its destination. The packet-filtering device may generate a log entry comprising information from the packet-filtering rule that identifies the one or more network-threat indicators and indicating whether the packet-filtering device prevented the packet from continuing toward its destination or allowed the packet to continue toward its destination. |
US11012458B2 |
Statistical analysis of network behavior using event vectors to identify behavioral anomalies using a composite score
Examples of the present disclosure describe systems and methods for identifying anomalous network behavior. In aspects, a network event may be observed network sensors. One or more characteristics may be extracted from the network event and used to construct an evidence vector. The evidence vector may be compared to a mapping of previously-identified events and/or event characteristics. The mapping may be represented as one or more clusters of expected behaviors and anomalous behaviors. The mapping may be modeled using analytic models for direction detection and magnitude detection. One or more centroids may be identified for each of the clusters. A “best fit” may be determined and scored for each of the analytic models. The scores may be fused into single binocular score and used to determine whether the evidence vector is likely to represent an anomaly. |
US11012450B2 |
Detection device, detection method, detection system, and detection program
A device and method to accurately detect list-based attacks without reducing the convenience for authorized users. An acquirer acquires information on accounts used for log-in trials to a plurality of websites. An analyzer calculates the degree of use of each account used in common for log-in trials to different websites in a predetermined period of time out of the accounts acquired by the acquirer and determine the log-in trials using the account to be attacks when the degree of use exceeds a predetermined threshold. A detector detects, as an attack, a log-in trial to the website using the same account as the account used for the log-in trials determined to be attacks by the analyzer. |
US11012447B2 |
Method, system, and storage medium for secure communication utilizing social networking sites
Embodiments disclosed herein provide secure communication among enterprise users utilizing social networking sites. A server computer may encrypt a post intended for a social networking site and forward the encrypted data or may save the post locally and send a placeholder to the social networking site. The server may receive a message from the social networking site containing the encrypted data or placeholder and determine that a recipient is authorized to view the original post. The server may then decrypt the data or retrieve the original post for servicing the request. In this way, authorized users of an enterprise can utilize social networking sites, which are independently owned and operated, to communicate with each other in a secure manner. |
US11012446B2 |
Multicast splitting
A system and method for transmitting packets to a plurality of network devices that cannot be accessed via a single multicast message is disclosed. The system includes a gateway controller that received a multicast request from a client, and creates a plurality of multicast messages based on the number of different security classes. The gateway controller parses the request from the client and identifies all of the desired destination nodes. The gateway controller then identifies the security class that each of these destination nodes belongs to. Based on this, the gateway controller then creates one or more multicast messages, where each multicast message is intended for the destination nodes that belong to a single security class. In certain embodiments, the gateway controller also aggregates the acknowledgments from the destination nodes and forwards this information to the client. |
US11012444B2 |
Declarative third party identity provider integration for a multi-tenant identity cloud service
Embodiments provide login functionality to a user using a third party identity provider for a multi-tenant identity cloud service. Embodiments receive declarative metadata that includes an identity of a token endpoint corresponding to the third party identity provider and corresponding parameter values. Embodiments store the declarative metadata in a database and receive a request for a login using the third party identity provider. Embodiments retrieve the metadata and build an authorization request and send the authorization request to the third party identity provider, and in response receive an authorization code. Embodiments retrieve the metadata and build a token request using the authorization code and send the token request to the third party identity provider, and in response receive an access token. |
US11012440B2 |
Systems and methods for interaction among terminal devices and servers
System and method are disclosed for providing authentication of a terminal device. One embodiment includes a method implemented by a first terminal device. The method may include receiving first location information and receiving a first predetermined signal. The method may also include transmitting status information and the first location information to a server upon receiving the first predetermined signal to allow the server to compare the first location information with second location information received from a second terminal device and to allow the server to transmit the status information to the second terminal device. The status information may indicate that the first terminal device is authenticated and the first location information may indicate a current location of the first terminal device. |
US11012439B1 |
Multi-person authentication and validation controls for image sharing
Provided herein are methods and systems for multi-person authentication and validation systems for sharing of images. The multi-person authentication and validation system may identify the respective representations of one or more individuals captured in an image, and request authorization for sharing the image from the one or more individuals captured in the image. In some instances, the multi-person authentication and validation system may provide a different image version for sharing if at least one of the one or more individuals denies authorization. |
US11012433B2 |
Method and system for modifying network connection access rules using multi-factor authentication (MFA)
A method and a system for modifying network connection access rules using multi factor authentication (MFA) are provided herein. The method may include the following steps: receiving, at a computer network, an access request from a client device; retrieving a user identification data associated with said client device; presenting a message over said client device, wherein the message contains details associated with said access request; responsive to the user confirmation of said details, initiating an MFA process, wherein the MFA process comprises presenting an authentication message over the client device; and only in a case that the user has been authenticated by the MFA process, establishing the requested connection access. |
US11012426B2 |
Secure data pools
Techniques for secure data management in a sensor data environment are provided. For example, a method obtains sensor data, at a gateway, generated by at least one sensor associated with a set of one or more sensors operatively coupled to the gateway. The method generates at least one data object comprising the sensor data and metadata corresponding to the sensor data, and sends the data object to a secure data pool for storage and for secure access by one or more clients. |
US11012422B2 |
Telecommunication system and method for traversing an application layer gateway firewall during the establishment of an RTC communication connection between an RTC client and an RTC server
A telecommunications assembly and a method for traversing an application layer gateway firewall during the establishment of an RTC communication connection between an RTC client and an RTC server using a proprietary RTC signalling protocol, wherein the firewall has no specific knowledge of the proprietary RTC signalling protocol. The RTC client and the RTC server can negotiate during the establishment of the RTC communication connection which of the ports of the firewall are required for the data packets to be exchanged via the RTC communication connection, wherein they use at least one standardised message element as a component of the proprietary RTC signalling protocol, with which information relating to the ports to be used can be found by the firewall. |
US11012413B2 |
Device and method for securing a network connection
A network security device mediates communications between a client computing device and a network. The network security device includes a memory storing packet header verification rules defining parameters for structure and content of packet headers. The network security device further includes a communications interface to connect to the client computing device and the network. The network security device further includes a processor interconnected with the memory and the communications interface. The processor is configured to: in response to receiving an incoming packet from the network for transmission to the client computing device, extract an incoming header from the incoming packet. The processor is further configured to perform a verification of structure and content of the incoming header according to the packet header verification rules. The processor is further configured to: in response to a successful verification of the incoming header, transmit the incoming packet to the client computing device. |
US11012411B2 |
Network interface device
A network interface device having a hardware module comprising a plurality of processing units. Each of the plurality of processing units is associated with its own at least one predefined operation. At a compile time, the hardware module is configured by arranging at least some of the plurality of processing units to perform their respective at least one operation with respect to a data packet in a certain order so as to perform a function with respect to that data packet. A compiler is provide to assign different processing stages to each processing unit. A controller is provided to switch between different processing circuitry on the fly so that one processing circuitry may be used whilst another is being compiled. |
US11012410B2 |
Distributed denial-of-service prevention using floating internet protocol gateway
An apparatus for preventing data traffic overload of a customer enterprise network in a networked computing system includes a plurality of data centers, each of the data centers being in operative communication with one another via a secure connection. The data centers form at least one floating gateway for providing a distributed interface between a public network and an Internet Protocol (IP) interface of the customer enterprise network, the IP interface of the customer enterprise network being inaccessible using a public IP address. The apparatus further includes at least one controller in operative communication with the data centers. The controller is configured to synchronize state information among the data centers and to control ingress and egress data traffic for each of the data centers. |
US11012407B2 |
System and method of utilizing multiple networks
In one or more embodiments, an information handling system (IHS) may receive, from another IHS via a first network, a dynamic host configuration protocol discovery request, provide, via the first network, a first Internet protocol version four (IPv4) address to the other IHS, and associate a first Internet protocol version six (IPv6) address. The IHS may receive a domain name service (DNS) lookup request from the first information handling system, provide a multicast DNS (mDNS) request, based at least on logical name information from the DNS lookup request, to a second network, and receive a mDNS response that includes a second IPv6 address associated with the logical name information from the DNS lookup request. In response to receiving the mDNS response, the IHS may configure at least one network address translation configuration that associates that associates the second IPv6 address and a second IPv4 address. |
US11012398B1 |
Ephemeral message gallery user interface with screenshot messages
A server maintains a gallery of ephemeral messages. Each ephemeral message is posted to the gallery by a user for viewing by recipients via recipient devices. In response to a gallery view request from any of the recipient devices, the ephemeral messages in the gallery are displayed on the requesting device in automated sequence, each message being displayed for a respective display duration before display of the next message in the gallery. A user interface via which the gallery is viewable includes indicia with respect to the number of screenshots taken with respect to messages in the gallery during online viewing. |
US11012394B2 |
Method and system for providing social media using partition function
Disclosed are a method and system for providing social media using a partition function. A method of providing social media may include receiving sharing information input in one or more user terminals included in a chat room, assigning partitioned pieces generated by partitioning the received sharing information based on the number of users included in the chat room to user terminals included in the chat room, receiving a request for the reading of specific-processed sharing information from a specific user terminal included in the chat room, restoring the specific-processed sharing information based on the partitioned pieces received from the user terminals included in the chat room, and transmitting the restored sharing information to the user terminal that has requested the reading of the sharing information. |
US11012387B2 |
Apparatus and method for matching individuals during an ephemeral time period based upon voting and matching criteria
A computer implemented method includes supplying to a client device prompts for a first individual to provide a vote for a preference of the first individual. The preference relates to an activity during an ephemeral time period. The vote is collected. Matches between the first individual and a pool of individuals are generated based upon common votes and matching criteria. The matches are supplied to the client device. A match acceptance for a second individual is collected from the client device. Network communication is enabled between the first individual and the second individual. |
US11012383B2 |
Operational safety mode
The present disclosure generally relates to implementing an operational safety mode that manages the output of notifications at an electronic device when a user of the device is operating a vehicle. |
US11012380B2 |
Message communication apparatus, non- transitory computer readable medium, and display control method
A message communication apparatus includes an operating unit that activates a chat bot, the chat bot running in a messaging service in which users exchange a message, the chat bot exchanging a message with a user, a registration unit that registers the chat bot for each user, and a controller that, if a single first chat bot has been activated in a single chat room through operation of the operating unit by a first user, causes the first chat bot to execute, in response to a message from a second user different from the first user, a function of a second chat bot registered by the second user by using the registration unit. |
US11012372B2 |
Electronic apparatus and method for control thereof
An electronic apparatus and a method for controlling the same are provided. The method includes executing an application; acquiring a resource configuration corresponding to the application; first identifying an external electronic apparatus from among a plurality of external electronic apparatuses based on preference information, the first identifying being in response to the resource configuration containing pre-stored information relating to the plurality of external electronic apparatuses; second identifying whether the external electronic apparatus is available; connecting to the external electronic apparatus; and sending a message regarding the application to the external electronic apparatus. |
US11012368B2 |
Data packet management in a memory constrained environment
Disclosed aspects relate to data packet management in a memory-constrained environment. A data packet having a command may be received by a first device. The data packet may be processed by the first device using the command. A first portion of processed data may be loaded in the memory component by the first device. The first portion of processed data may be communicated by the first device to a second device. A second portion of processed data may be loaded in the memory component by the first device. The second portion of processed data may be communicated by the first device to the second device. A trailer may be loaded in the memory component by the first device. The trailer may be communicated by the first device to the second device. |
US11012366B2 |
Methods and systems for data transmission
A method for data transmission may be implemented on an electronic device having one or more processors. The one or more processors may include a master queue including a master queue head and a plurality of primary ports that are connected to each other using a serial link. The method may include operating the master queue head to obtain a message. The method may also include operating the master queue head to segment the message into a plurality of segments. The method may also include operating the master queue head to transmit the plurality of segments to a first primary port of the plurality of primary ports in the master queue. The method may also include operating the first primary port to transmit the plurality of segments to a second primary port of the plurality of primary ports in the master queue. |
US11012364B2 |
Aggregated link flow control system
An aggregated link flow control system includes a first networking device having a plurality of peer ports and a second networking device that includes a first port having a first flow control configuration. The first port is coupled to the first networking device via a first peer port of the plurality of peer ports. The second networking device includes a second port having a second flow control configuration. The second port is coupled to the first networking device via a second peer port of the plurality of peer ports. The second networking device groups the first port and the second port as an aggregated link interface. The second networking device determines that the first flow control configuration of the first port is compatible with a third flow control configuration of the first peer port and, in response, provides a data flow for the aggregated link interface through the first port. |
US11012361B2 |
Managing transmission control protocol (TCP) traffic
A terrestrial terminal enables communications, over a network connection through a satellite, between a local host of one or more connected local hosts and a remote host. The terrestrial terminal is configured to perform operations comprising: receiving, from the remote host, a network packet for the local host; obtaining, from the network packet, an included TCP segment; determining, from the TCP segment, a receive window size advertised by the remote host; computing, using one or more characteristics of the network connection, a target receive window size; comparing the target receive window size with the advertised receive window size; and in response to determining that the target receive window size is different from the advertised receive window size: modifying the TCP segment by replacing the advertised receive window size with the target receive window size, and forwarding the network packet with the modified TCP segment to the local host. |
US11012354B2 |
Pre-routing device for data centers
A routing circuit coupled to one or more ingress ports and one or more egress ports is configured to receive data packets from the one or more ingress ports and route the data packets to the one or more egress ports based on a header portion of the data packets. |
US11012353B2 |
Using in-band operations data to signal packet processing departures in a network
In one embodiment, nodes use in-band operations data (e.g., carried in iOAM data field(s)) to signal departures in the processing of a packet in a network. A “departure” refers to a divergence or deviation, as from an established rule, plan, or procedure. Departures include, but are not limited to, sending a packet over a backup path (thus, a departure/deviation from sending over a primary path); offload processing of a packet (thus, a departure/deviation from processing of a packet by an application processing apparatus); and exception or punting/slow/software path processing of a packet (thus, a departure/deviation from normal or fast/hardware path processing of a packet). In one embodiment, a proof of transit validation apparatus uses departure information to select among multiple possible verification secrets, with the selected verification secret used in validation processing with a cumulative secret value obtained from the packet. |
US11012351B2 |
Service path computation for service insertion
The disclosure provides an approach for computing service paths for a service chain identifying a sequence of services. One method includes including information about a plurality of hosts in a heap. Each of the plurality of hosts includes at least one service virtual computing instance (SVCI) configured to provide at least one of the services of the service chain. The information includes, for each of the plurality of hosts, a number of service paths computed for the service chain at the host and one of a number of services provided by unused SVCIs of the host or a number of consecutive services provided by unused SVCIs of the host. The method further includes selecting a host from the heap based on the information. The method further includes generating a first service path for the service chain, the first service path identifying at least one SVCI of the selected host. |
US11012349B2 |
Route reflector optimizations for interconnecting MPLS-based L3-VPN and L3-EVPN networks
Methods and systems are described for providing route advertisements to provider edge devices on virtual private networks implemented using different protocols. An illustrative method includes receiving, from a first provider edge device on a first virtual private network (VPN), a route advertisement in a first format, wherein the first format corresponds to a first standard, determining whether the first format is translatable to a second format, wherein the second format corresponds to a second standard, in response to determining that the first format is translatable to the second format, identifying parameters for translating a route included in the route advertisement from the first format into the second format, generating a translated route advertisement by translating the route included in the route advertisement in accordance with the identified parameters, and transmitting, to a second provider edge device on a second VPN, the translated route advertisement including the translated route. |
US11012348B2 |
Traffic shaping and end-to-end prioritization
A method is disclosed, comprising: receiving a first and a second Internet Protocol (IP) packet at a mesh network node; tagging the first and the second IP packet at the mesh network node based on a type of traffic by adding an IP options header to each of the first and the second IP packet; forwarding the first and the second IP packet toward a mesh gateway node; filtering the first and the second IP packet at the mesh gateway node based on the added IP options header by assigning each of the first and the second IP packet to one of a plurality of message queues, each of the plurality of message queues having a limited forwarding throughput; and forwarding the first and the second IP packet from the mesh gateway node toward a mobile operator core network, thereby providing packet flow filtering based on IP header and traffic type. |
US11012347B2 |
Communication apparatus, communication control method, and communication system for multilink communication simultaneously using a plurality of communication paths
In a communication apparatus (10), a determination unit (12) determines, from a plurality of candidate communication paths other than one of a plurality of communication paths used for multilink communication, a distribution-destination communication path based on the free bandwidths of the respective candidate communication paths. Further, a distribution control unit (11) executes control for distributing a setting flow for the one communication path to the determined distribution-destination communication path. |
US11012345B2 |
Data transmission method, device, and system
The present application provides a data transmission method, device and system. The method comprises: a sending device sends a data packet to a receiving device by means of a first relay device, and receives feedback information of the receiving device on the receiving condition of the data packet by means of another communication link according to a predetermined condition. Therefore, the sending device can timely obtain the feedback information of the receiving device on the receiving condition of the data packet by means of another communication link under a predetermined condition. |
US11012343B2 |
Systems and methods for automatically packaging and deploying virtual network functions based on network interface dependencies and compatibilities
A device may receive information identifying existing virtual network functions (VNFs) associated with an existing virtual radio access network (VRAN), and may receive information identifying proposed VNFs to deploy with the existing VRAN, wherein the information identifying the proposed VNFs includes VNF descriptors indicating interface dependencies associated with the proposed VNFs. The device may generate testing configurations, for testing the proposed VNFs, based on the interface dependencies, and may determine that a set of the proposed VNFs are validated based on testing the proposed VNFs with the testing configurations. The device may derive dependency constraints for the set of the proposed VNFs based on the information identifying the existing VNFs, and may select a new VNF that satisfies the dependency constraints, based on the set of the proposed VNFs. The device may cause the new VNF to be deployed with the existing VRAN. |
US11012340B2 |
Method and system for detecting interference to wireless networks
Interference is a common problem in wireless communication networks. This disclosure provides a method and system that detect and locate interference sources based on various data describing or captured from an operational network during normal mobile wireless service times. |
US11012338B2 |
Network adaptive latency reduction through frame rate control
Novel solutions are provided for consistent Quality of Service in cloud gaming system that adaptively and dynamically compensate for poor network conditions by moderating rendered frame rates using frame rate capping to optimize for network latency savings (or surplus). In further embodiments, the encoding/sent frame rate to the client can also be managed in addition, or as an alternative to capping the rendered frame rates. The claimed embodiments not only maintain a constant Quality of Service (QoS) for the user, but may also be employed to leverage higher-performing networks to reduce operational costs. |
US11012336B2 |
Techniques to monitor control plane network traffic
Examples include techniques to monitor control plane (CP) network traffic. Examples include monitoring CP traffic between one or more user equipment (UEs) wirelessly coupled to a network and a virtual network function arranged to process user plane (UP) traffic for an application service provided to the one or more UEs to determine whether at least a portion of the UP traffic needs to be routed to a different VNF for UP processing. |
US11012324B2 |
Explicit interaction contracts for network connected devices
A computer system is provided that includes one or more processors configured to store a plurality of software interfaces that define explicit interaction contracts between network connected devices and software services. The one or more processors are configured to execute a plurality of software services. Each software service defines one or more software interfaces operated on by that software service. The one or more processors are configured to receive, from a network connected device, a list of one or more software interfaces implemented by the network connected device, select one or more software services based on a match between the one or more software interfaces implemented by the network connected device and the one or more software interfaces operated on by the plurality of software services, and process data received from the network connected device using the selected software services. |
US11012323B2 |
Feature parameter obtaining method and apparatus
A feature parameter obtaining method and apparatus are disclosed. The method includes: obtaining feature set information from a data analytics network element, where a feature set corresponding to the feature set information includes a first part of feature and a second part of feature; obtaining a first feature parameter of the first part of feature when data corresponds to the first part of feature; sending a request message to at least one second network element, to request a second feature parameter of the second part of feature when the data corresponds to the second part of feature; receiving the second feature parameter from the at least one second network element; and sending, based on the first feature parameter and the second feature parameter, a third feature parameter of the feature set when the data corresponds to the feature set to the data analytics network element. |
US11012320B2 |
Interactive graphical model-based monitoring and control of networked physical assets
A system and method are disclosed for gathering information relating to a system being monitored, modeling various aspects of the system to present it on a useful console, and further for controlling the system using a monitoring and control interface. In an aspect the system and method employ combinations of graphics architectures, including advanced video gaming technology and methods in previously-unknown configurations, to achieve an effective monitoring and control architecture. |
US11012310B2 |
Managing containers based on pairing keys in a segmented network environment
A container orchestration server stores pairing keys in association with container profiles. A container orchestration agent executing on an operating system instance instantiates a new container according to a particular container profile in response to an instruction from the container orchestration server and stores the pairing key as metadata associated with the container. An enforcement module detects the instantiation of the container and obtains the corresponding pairing key from the container orchestration agent. The enforcement module transmits the pairing key to a segmentation server for validation. If the segmentation server validates the key, the segmentation server determines a label set corresponding to the container profile associated with the pairing key and generates management instructions for the container based on the label set. The management instructions, when enforced by the operating system, controls communications between the container and other workloads in accordance with a segmentation policy. |
US11012307B2 |
Network entity and method for controlling a son-function
The invention relates to a network entity installed in a network comprising an operator objective interface for receiving operator objectives; a SON-Function model interface for receiving at least a first SON Function Model, wherein the network entity is adapted to link the operator objectives with the first SON-Function model in order to adapt a SON Function for influencing a network behavior. Moreover the invention relates to a method for automatic controlling of at least one SON Function. |
US11012306B2 |
Autonomous datacenter management plane
Presented herein are methodologies for managing servers in a datacenter or cloud service environment. A method includes sending, from a first baseboard management controller (BMC), to other BMCs in a network, a first message indicating a desire to establish a master-slave relationship; receiving a response from a second BMC from among the other BMCs, the response indicating an ability to function as a master in the master-slave relationship; sending, from the first BMC, a second message to the second BMC confirming establishment of the master-slave relationship between the second BMC and the first BMC; sending, from the first BMC to the second BMC, a request for configuration information; and in response to the request for configuration information, receiving, from the second BMC, configuration profile data representative of a configuration of a server, which is controlled by the second BMC. |
US11012303B2 |
Configuration replication system
A port configuration replication system includes a first networking device including a first port, and a second networking device including a second port. A management device communicates with the first networking device to provide a first networking device Graphical User Interface (GUI) that displays port configuration details for the first port. The management device then copies the port configuration details, and analyzes the port configuration details to identify port configuration replication information. The management device then communicates with the second networking device to display a second networking device GUI that provides for the configuration of the second port, and provides the port configuration replication information in the second networking device GUI in order to provide for the configuration of the second port. |
US11012301B2 |
Notification and transfer of link aggregation group control in anticipation of a primary node reboot
A first information handling system may detect a reboot condition for the first information handling system. The first information handling system may transmit a first notification to a second information handling system, notifying the second information handling system that the first information handling system is going to reboot. The first information handling system may transmit a second notification to a third information handling system, instructing the third information handling system to age out old root information. The first information handling system may then reboot. |
US11012297B2 |
Methods and apparatus to migrate physical server hosts between virtual standard switches and virtual distributed switches in a network
An example apparatus to migrate a physical server host from a virtual standard switch to a virtual distributed switch includes: a user input interface to receive a user-selection of first physical network interface cards of a first physical server host to migrate from the virtual standard switch to the virtual distributed switch; a configurator to generate a first migration plan to configure the virtual distributed switch using network configuration settings of the virtual standard switch corresponding to the first physical network interface cards; and a virtual distributed switch creator to, based on a user-selection to proceed with the migration from the virtual standard switch to the virtual distributed switch, create the virtual distributed switch in the first physical server host and a second physical server host, the configurator to configure the network configuration settings of the virtual standard switch in the virtual distributed switch. |
US11012296B2 |
Handling unsolicited requests from devices
Techniques for handling requests from a remote device are disclosed. A server receives a first unsolicited activation request from a first device of a plurality of devices. A probabilistic hash filter, associated with a data set, is queried using a first identifier associated with the first device. In response, a first result is received from the probabilistic hash filter indicating that the first device is not ready for activation. In response to receiving the first result, a back-off indication is transmitted to the first device. |
US11012295B2 |
Provisioning using computer vision
The embodiments of the present disclosure are generally directed to systems and methods for provisioning computing resources using computer vision. An image comprising a plurality of visual elements can be received. The visual elements within the image can be recognized as objects that represent network elements, where the recognized objects represent network elements of a network element type and the network element types comprise one or more of a database, a load balancer, a sub-network, or a virtual machine instance, and an arrangement of the recognized objects that represents a network architecture is recognized. Computing resources can be caused to be provisioned corresponding to the recognized objects by provisioning network elements that comprise one or more of the network element types, wherein the provisioning comprises generating a network architecture for the provisioned network elements based on the recognized arrangement. |
US11012294B2 |
Inline data plane monitor placement and operation for network function virtualization
A method for inline data plane monitor placement and operation for network function virtualization involves receiving, at one or more control modules of a network, a logical monitoring specification. The logical monitoring specification includes a monitoring regime abstracted from a physical topology of the network. The one or more control modules perform one or more of instantiating or identifying one or more monitor instances of the network based on the logical monitoring specification, the one or more monitor instances being or having been instantiated within one or more data plane components of the network. The one or more control modules configure the one or more monitor instances based on the logical monitoring specification. |
US11012292B2 |
Unified replication mechanism for fault-tolerance of state
A network control system that achieves high availability for forwarding state computation within a controller cluster by replicating different levels of table state between controllers of the controller cluster. To build a highly available controller cluster, the tables for storing the forwarding state are replicated across the controllers. In order to reduce network traffic between the controllers, fewer tables are replicated to slave controllers, which then recompute the forwarding state of the master controller in order to have a replicate copy of the master controller's forwarding state for possible failover. In other embodiments, more tables are replicated to minimize the recomputations and processor load on the slave controller. The network control system of some embodiments performs continuous snapshotting to minimize downtime associated with reaching a fixed point and replicating the state. |
US11012290B2 |
Systems and methods for node outage determination and reporting
A method includes receiving beacons originating from endpoints. The beacons are received during a single beacon interval and are sent using a power strength to reach nodes within physical proximity of the endpoints. The method also includes establishing a list including multiple endpoints from which a node receives the beacons at more than a threshold percentage of the beacon intervals. The method includes detecting that a threshold number of the beacon intervals have passed since receiving a most recent beacon from an endpoint. The method includes outputting a ping at full power strength to the endpoint requesting a response. When the response is not received from the endpoint, the method includes transmitting an outage alarm to a next topologically higher layer of a mesh network. The outage alarm includes an identification of the endpoint and a timestamp indicating when the first node received the most recent beacon from the endpoint. |
US11012289B2 |
Reinforced machine learning tool for anomaly detection
In some embodiments, there may be provided a system. The system may be configured to receive web server data indicating a current state of a web server; determine, by a machine learning model and based on the web server data, whether the web server is in a first failure state; generate a first failure state indication for the web server in response to the determination, by the machine learning model, that the web server is in the first failure state; determine, by a forecaster and based on the web server data, whether the web server is in a second failure state; and generate a second failure state indication for the web server in response to the determination, by the forecaster, that the web server is in the second failure state. |
US11012282B2 |
System discovery and signaling
An extensible communication system is described herein. The system includes a first module for receiving a root index value and for generating a constant amplitude zero auto-correlation sequence based on the root value. The system further includes a second module for receiving a seed value and for generating a Pseudo-Noise sequence based on the seed value. The system further includes a third module for modulating the constant amplitude zero auto-correlation sequence by the Pseudo-Noise sequence and for generating a complex sequence. The system further includes a fourth module for translating the complex sequence to a time domain sequence, wherein the fourth module applies a cyclic shift to the time domain sequence to obtain a shifted time domain sequence. |
US11012281B2 |
Device and method for enhanced seamless mobility
Devices and methods of determining offsets for different eNBs in a dynamic switched CoMP network are generally described. A UE may receive, in an RRCConnectionReconfiguration message, DL parameter sets associated with different eNBs and having reference signal information for a PSS, SSS and DRS. The UE may receive reference signals based on the DL set associated with the eNB and determine a timing/frequency offset based on the reference signals. The offsets may be used to decode a dynamically switched PDSCH indicated by a PDCCH. The DL sets may indicate which PDCCH to detect or the PDCCH from the same cNB may be used and the PDSCH determined from a DCI in the PDCCH. A UL DCI may indicate which of UL parameter sets to use. The UL sets may indicate a reference signal to determine path loss and a timing advance value. |
US11012277B2 |
Method and device for inserting k pair of reference signal
The invention relates to inserting a first and a second Reference Signals in a radio signal to be transmitted over a wireless communication system, the radio signal being emitted according to a specific SC-SFBC scheme, the method comprising: determining K integers such as { n i | i ∈ 〚 1 ; K 〛 , 0 ≤ n i ≤ M 2 - 1 , ∀ i , j ∈ 〚 1 ; K 〛 2 , i < j ⇒ n i < n j } ; and for each pair i of first and second Reference Signals: inserting the first Reference Signal in the radio signal, such as samples of the first Reference Signal are in time periods in the radio signal, said time periods being dependent on a first position in the block of symbols processed by the specific SC-SFBC scheme; inserting the second Reference Signal in the radio signal, such as samples of the second Reference Signal are in time periods in the radio signal, said time periods being dependent on a specific position according to the first position in the same block of symbols. |
US11012275B2 |
Preamble symbol transmitting method and device
A preamble symbol transmitting device and method, includes: generating a prefix according to a partial time-domain main body signal truncated from a time-domain main body signal; generating the hyper prefix according to the entirety or a portion of the partial time-domain main body signal; and generating time-domain symbol based on at least one of the cyclic prefix, the time-domain main body signal and the hyper prefix, the preamble symbol containing at least one of the time-domain symbols. |
US11012274B2 |
Demultiplexer and method of controlling the same, and display device
A demultiplexer includes a voltage boost circuit and at least one data selection output circuit. The voltage boost circuit is coupled to N second-stage selection signal input terminals and N first-stage selection signal input terminals, N is greater than or equal to 2, and N is a positive integer. Each data selection output circuit is coupled to a data input terminal, N data output terminals and the N first-stage selection signal input terminals. |
US11012272B2 |
Channel or interference estimation for SC-FDM symbol streams
Techniques are described for wireless communication. A first method includes inserting channel or interference estimation modulation symbols into a sequence of data modulation symbols; performing a discrete Fourier transform (DFT) on a group of modulation symbols in the sequence of data modulation symbols, the group of modulation symbols including at least one of the channel or interference estimation modulation symbols; and generating a single-carrier frequency domain modulated (SC-FDM) symbol stream based at least in part on an output of the DFT. A second method includes performing an IDFT on a tone-demapped output of a DFT for each of at least one SC-FDM symbol stream, to recover a plurality of data modulation symbols and channel or interference estimation modulation symbols for each of the at least one SC-FDM symbol stream; estimating interference based at least in part on the channel or interference estimation modulation symbols; and decoding the data modulation symbols based at least in part on the estimated interference. |
US11012271B2 |
Demodulator for an RFID circuit
An RFID circuit and to a demodulator for an RFID circuit, the demodulator including an input and at least one output, a clock extractor connected to the input, a comparator connected to at least one output, a finite impulse response FIR filter arrangement connected to the input and connected to the comparator. |
US11012270B2 |
Window/filter adaptation in frequency-multiplexed OFDM-based transmission systems
Techniques are disclosed for adaptively determining windowing functions and/or filtering functions in a system that uses multiple multicarrier modulation numerologies. According to one aspect, a method comprises determining (1610) first and second quantities of frequency resources needed for first and second multicarrier modulation schemes, respectively, the first and second multicarrier modulation schemes having first and second subcarrier spacings, respectively, the first subcarrier spacing differing from the second subcarrier spacing; determining (1620) a first windowing function and/or first filtering function, for use with the first multicarrier modulation scheme, based on at least one of the first and second quantities of frequency resources; and transmitting (1630) a multi-mode multi-carrier modulation signal in a frequency band, during the first interval, using the first and second multicarrier modulation schemes and the first and second quantities of frequency resources. Transmitting the multi-mode multi-carrier modulation signal comprises applying the first windowing and/or first filtering function to the first multicarrier modulation scheme. |
US11012266B2 |
Sub-carrier estimation method and apparatus in multi-carrier communication system
Provided are a sub-carrier estimation method in a multi-carrier communication system and an apparatus. The method includes: receiving a data frame transmitted by a transmitting end, and extracting a training sequence from the data frame; performing fast Fourier transform operation on the training sequence and a preset reference sequence, respectively, to obtain frequency domain data of the training sequence and frequency domain data of the reference sequence, and conjugately multiplying the two kinds of frequency domain data; extracting real part of conjugate multiplication result; averaging values in each column of an M×N array, respectively, to obtain an output array of 1 row and N columns; and estimating, according to the value in each column of the output array of 1 row and N columns, whether valid data is transmitted over N sub-carriers corresponding to the output array of 1 row and N columns. |
US11012261B2 |
Associating VXLANs with tunnels
Via a tunnel configured on a Virtual eXtensible Local Area Network (VXLAN) Tunnel End Point (VTEP), a notification message is received from a peer VTEP over the tunnel. The received notification message contains VXLAN Network Identifiers (VNIs) of VXLANs currently configured on the peer VTEP. For each of VXLANs currently configured on the VTEP, when the same VXLAN as the VXLAN configured on the VTEP exists in the VXLANs indicated by the VNIs contained in the received notification message and when the VXLAN configured on the VTEP has not been associated with the tunnel, the VXLAN configured on the VTEP is associated with the tunnel. |
US11012257B2 |
Home side device and method of clearing management table
A home side device according to one aspect of the present invention includes: a UNI port for a communication line used by one or a plurality of communication devices in a user's home; an access processing unit that performs upstream access control and holds a management table of address information of the communication devices; a detecting unit that detects link states of the communication devices; and a control unit that performs a process of clearing the management table when a link-down of all of the communication devices has been detected. |
US11012255B2 |
Electronic control unit, frame generating method, and non-transitory computer-readable recording medium storing a program
An electronic control unit (ECU) is provided. The ECU is connected to a first network in an onboard network system. The onboard network system includes the first network and a second network. In the first network, first-type frames are transmitted following a first communication protocol. In the second network, second-type frames are transmitted following a second communication protocol. The ECU generates first-type frames following the first communication protocol, and transmits the generated first-type frames to the first network. The ECU receives external information indicating state information of a device on the onboard network system received from another electronic control unit connected to the first network or the second network, or receives external information indicating information received from a communication module configured to communicate with the server via an external network. |
US11012253B2 |
Controller for smart devices
A controller for connecting to and controlling active units of smart devices according to a spreadsheet received from a programming device and stored in the controller's memory and current states received from other smart devices. The controller may operate to provide to programming devices the spreadsheet stored in the memory for restoring a cluster of smart devices. The controller may include a real-time clock and interpret spreadsheet formulas that include time parameters. |
US11012247B2 |
Power-over-ethernet (PoE) control system having PSE control over a power level of the PD
One example includes a power-over-Ethernet (PoE) control system. The system includes a powered device (PD) that is configured to receive a voltage signal via an Ethernet connection and which comprises a PoE signal receiver configured to indicate a nominal power level via the received voltage signal. The system also includes a power sourcing equipment (PSE) device configured to generate the voltage signal and to measure a class current of the voltage signal to determine the nominal power level. The PSE device includes a PoE controller configured to provide a power setting command as a function of the nominal power level to the PoE signal receiver via the voltage signal, such that the PD can operate at a power level that is based on the power setting command. |
US11012245B1 |
Decentralized management of data access and verification using data management hub
Disclosed embodiments relate to securely facilitating decentralized management of identity data. Operations may include receiving, from an identity, encrypted data and an index associated with the encrypted data; receiving, from the identity, a first request including: the index, a first part of a first cryptographic key, and a target service cryptographic key; identifying, using the index, the encrypted data; encrypting a copy of the encrypted data using the target service cryptographic key to form a doubly encrypted data; sending a challenge token to the identity; receiving a second request, from a target service, the second request including: the index and a challenge response created based on the challenge token; and sending to the target service the doubly encrypted data and the first part of the first cryptographic key; wherein the target service is operable to decrypt the doubly encrypted data. |
US11012240B1 |
Methods and systems for device authentication
A method for disabling a device associated with a virtual identity may include receiving, from the device, a request to use the virtual identity, where the request that may include a passcode guess and a device identifier. The method may also include determining that the passcode guess does not authorize use of the virtual identity and incrementing a number of incorrect passcode guesses received within a time interval. The method may additionally include determining that the number of incorrect passcode guesses received within the time interval is greater than or equal to a threshold. The method may further include storing an indication that subsequent requests associated with the device identifier should not authorize use of the virtual identity. |
US11012236B1 |
Secure communication tool for use alongside non-secure communications
A method of communicating through a less secure messaging system provides an option of masking messages sent from a second party to a first party so that they are unreadable when received by the first party. For some embodiments, it may be that they are visible, but unreadable, other embodiments, not visible. In either case, an authorization may be provided by the first party to make the masked messages readable messages, for many embodiments until a session rule makes the readable message a masked message again. |
US11012232B2 |
Blockchain management platform for performing asset adjustment, cross sectional editing, and bonding
Aspects of the disclosure relate to processing systems for performing bonding of asset approvers. A computing platform may generate a sub-element based on a parent element, associated with a first list of quorum approvers, in a stored element chain. The computing platform may determine that the sub-element should be associated with a second list of quorum approvers. The computing platform may generate authentication keys for the second list of quorum approvers by generating authentication keys for those included in the second list of quorum approvers that were not included in the first list of quorum approvers, and revoking authentication keys from those included in the first list of quorum approvers that are not included in the second list of quorum approvers. The computing platform may direct a database to store the authentication keys for the second list of quorum approvers and to concatenate authorization keys accordingly. |
US11012231B2 |
Authenticated copying of encryption keys between secure zones
The solutions disclosed enable security credentials to be shared between two entities. Embodiments of the present invention can be used to facilitate the transfer security credentials associated with a first level of permission of a first entity to a second entity that does not have the security credentials associated with the first level of permission in response to receiving a request to share security credentials between two entities. |
US11012230B2 |
Communication apparatus and cryptographic processing system
A cryptographic communication method using a dynamically-generated private key is provided. A signal generation unit outputs a second signal obtained by giving an error in a predetermined range to a signal obtained based on a first signal. An error correction generation unit outputs a third signal obtained based on the second signal and auxiliary information for correcting an error included in the second signal. A private-key generation unit generates a first private key based on the third signal. An encryption calculation unit outputs an encrypted signal obtained by encrypting a fourth signal based on the first private key. |
US11012229B2 |
Method for preventing short-term bifurcation and double-spend attack on block chain network
The present invention discloses a method for preventing short-term bifurcation and double-spend attack on a block chain network. The method includes the following steps: adding one CA certificate issuance and updating center to the blockchain network; transforming a block data structure and adding a CA certificate-based signature and a public key field; adding certificate effective verification of the signature and the public key to a consensus algorithm of a blockchain network node; improving the consensus algorithm; adding risk identification of a short-term bifurcation malicious double-spending attack to the improved consensus algorithm. The present invention makes minor changes to an original chain and is easy to implement. Because the method only adds the CA center and modifies and adds the necessary consensus algorithms, the method may effectively reduce the possibility of short-term bifurcation double-spending attack. A real-name system CA certificate provides an effective real-name system evidence for subsequently judicial investigation afterwards. |
US11012227B2 |
Authentication method and system for device using Bluetooth technology
Disclosed is an authentication method and system for a device using a Bluetooth technology. A method for performing authentication by a first device, using Bluetooth low energy (LE), according to an embodiment of the present invention comprises: authenticating a user on the basis of ID information of the user; and authenticating a device by comparing information acquired from a user input with information acquired using an exchanged public key. The authentication scheme for a device is determined according to the input/output capability of the device. |
US11012223B2 |
Method and apparatus for transmitting and receiving radio signals in a wireless communication system
The present invention relates to a wireless communication system, and more particularly, to a method and apparatus for receiving information on a number N of a code block group defined for one transport block from a base station through an upper layer signal, receiving a first transport block including a plurality of code blocks from the base station through a physical layer channel, and transmitting HARQ-ACK payload including HARQ-ACK information on the first transport block to the base station. Preferably, a code block-based CRC is attached to each of the code blocks, a transport block-based CRC is attached to the first transport block, and the HARQ-ACK payload includes a plurality of HARQ-ACK bits corresponding to M code block groups for the first transport block. |
US11012217B2 |
Mobile station, base station, communications system, and communications method
A mobile station includes a radio link control unit for outputting or inputting data that are transmitted or received via a radio channel to or from a higher-level protocol layer, a media access control unit for outputting or inputting the data via a logical channel to or from the radio link control unit, a physical layer control unit for outputting or inputting the data via a transport channel to or from the media access control unit, and for controlling radio communications, and a radio resource control unit for outputting or inputting control data to or from the radio link control unit, media access control unit, and physical layer control unit. The mobile station multiplexes report information therefrom into a channel for packet data transmission so as to transmit it to a base station. The base station carries out assignment of radio resources using the report information. |
US11012216B2 |
One-segment PUCCH formats
A user equipment (UE) that performs control signal transmission according to a single-segment subframe format is described. In an aspect, the UE selects a single-segment subframe format as an uplink transmission format for a subframe instead of a multi-segment subframe format. This selection may be based on an indication received by a network node that the single-segment subframe format is to be used for transmission of the one or more control signals. In addition, the UE transmits the one or more control signals on an uplink control channel using the single-segment subframe format. |
US11012215B2 |
Information transmission method, terminal device and network device
Provided are an information transmission method, a terminal device and a network device. The information transmission method includes that: a terminal device receives a downlink channel sent from a first network device, the downlink channel carrying downlink scheduling information and uplink scheduling information of the terminal device; and the terminal device performs, according to the downlink channel, data transmission with the first network device. By means of the information transmission method, the terminal device and the network device provided in the embodiments of the present application, overheads of a channel can be saved, thereby saving data transmission time. |
US11012210B2 |
System and method for demodulation reference signal overhead reduction
An embodiment method defines a demodulation reference signal (DMRS) pattern for transmitting DMRSs for rank 3 or rank 4 transmissions. The DMRS pattern specifies 12 REs in total per physical resource block (PRB) for carrying DMRSs on three or four antenna ports in antenna ports 7-14 for rank 3 or rank 4 transmissions. DMRS settings for transmitting DMRS according to the DMRS pattern may be specified using a downlink control information table. |
US11012207B2 |
Method and device for transmitting tracking reference signal
A method for transmitting a tracking reference signal (TRS) in an unlicensed band and a device using the method are provided. The device performs listen before talk (LBT) in the unlicensed band and transmits the TRS in a TRS resource set according to a result of the LBT. |
US11012205B2 |
D2D communication control method and control apparatus
Device to device (D2D) communication control is provided. A method comprises: allocating a pilot channel resource for at least one directional pilot signal associated with directional D2D communication; and sending information associated with the pilot channel resource. A respective pilot channel resource for a direction pilot signal can be allocated for each direction D2D communication, thereby providing a basis for better control of the D2D communication. |
US11012204B2 |
Communication method of using full duplex in NR
The disclosure of the present invention proposes a communication method. The method may be performed by a wireless device and comprise: if a full duplex of a downlink (DL) reception and an uplink (UL) transmission is configured in an uplink carrier spectrum including a DL portion and a UL portion, considering that the DL portion in the uplink carrier spectrum is configured as protected DL portion for another device configured with non full-duplex. Here, the protected DL portion may allow the device configured with a non full-duplex to perform a UL transmission in the protected DL portion at a low power. The DL portion and the UL portion may be flexibly configured in the uplink carrier spectrum. |
US11012203B2 |
Method and device for wireless communication in UE and base station
The present disclosure provides a method and device for wireless communication in a user equipment and a base station. The user equipment receives a first information, and transmits a first wireless signal in a first time domain resource of a first sub-band. The first information is used to indicate a first parameter; the first parameter is associated with one of L spatial parameter sets; the L spatial parameter sets are respectively in one-to-one corresponding to L time domain resources; the first time domain resource is one of the L time domain resources. The L time domain resources belong to a first time window; the first information is used to determine the first time domain resource from the L time domain resources; the first parameter is used to determine a transmitting antenna port group of the first wireless signal. |
US11012200B2 |
Node and method for uplink scheduling and hybrid automatic repeat request timing
Example embodiments presented herein are directed towards a base station, and corresponding method therein, for determining a control timing configuration. The control timing configuration provides a subframe timing for configuring PUSCH and uplink HARQ-ACK control timing for a cell serving a user equipment in a multiple cell communications network. The user equipment is served by a TDD based cell and a FDD based cell. Example embodiments are also directed towards a user equipment, and corresponding method therein, determining the control timing configuration discussed above. |
US11012198B2 |
HARQ feedback method, apparatus and system
A hybrid automatic repeat request (HARQ) feedback method includes: receiving, by a first equipment, a data subframe transmitted by a second equipment, wherein the data subframe comprises a first slot corresponding to a first type of service and a second slot corresponding to a second type of service; generating, by the first equipment, the HARQ feedback according to the data subframe, wherein the HARQ feedback includes a first feedback bit corresponding to the first slot and a second feedback bit corresponding to the second slot; and transmitting, by the first equipment, the HARQ feedback to the second equipment. |
US11012197B2 |
Resource set configurations using automatic repeat request information
An apparatus is configured to be employed within a user equipment (UE) device. The apparatus comprises baseband circuitry which includes a radio frequency (RF) interface and one or more processors. The one or more processors are configured to identify a plurality of monitoring occasions for a set of flexible control resource sets (CORESET); determine bit ordering for the plurality of monitoring occasions; generate hybrid automatic repeat request (HARQ) feedback based on the received downlink transmission; and incorporate the ordered plurality of monitoring occasions into the HARQ feedback. |
US11012192B2 |
Control information sending method and apparatus, and control information receiving method and apparatus
Embodiments of this application provide a control information sending method and apparatus. A network device generates first control information for a first TB, where the first TB includes n code block (CB) groups, where N is a maximum quantity of CB groups included in the first TB; each CB group includes at least one CB; the first control information includes N control information fields, and the N control information fields are in correspondence with the maximum N CB groups included in the first TB; and a control information field i in the N control information fields is used to indicate whether a CB group corresponding to the control information field i is to be sent or received, and i∈[1, N]. In this way, a quantity of bits included in downlink control information can remain fixed, thereby reducing blind detection complexity of a terminal device. |
US11012189B2 |
Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
A method and an apparatus for transmitting broadcast signals thereof are disclosed. The apparatus for receiving broadcast signals, the apparatus comprises a receiver to receive the broadcast signals, a demodulator to perform demodulation on the received broadcast signals by an OFDM (Orthogonal Frequency Division Multiplex) scheme, wherein the broadcast signals include at least one signal frame, wherein a signal frame includes a preamble and at least one sub-frame, a frequency de-interleaver to frequency de-interleave the demodulated broadcast signals by using a different interleaving sequence, wherein the different interleaving sequence is used for data at least one of the preamble and a sub-frame, wherein the different interleaving sequence is generated based on an interleaving sequence and a symbol offset, a frame parser to parse the at least one signal frame from the frequency de-interleaved broadcast signals and a decoder to decode service data in the parsed at least one signal frame. |
US11012176B2 |
Cable arrangement with wavelength division multiplexer
A passive optical network includes a central office providing subscriber signals; a drop terminal; and a wave division multiplexer. A fiber distribution hub may split or separate out dedicated optical signals from subscriber optical signals between the central office and the drop terminal. The wave division multiplexer separates dedicated optical signals pertaining to a specific dedicated subscriber from other optical signals on the line received at the wave division multiplexer. The wave division multiplexer may be part of a cable or part of an intermediate service terminal. |
US11012175B2 |
Intelligence-defined optical tunnel network system and network system control method
An intelligence-defined optical tunnel network system includes a plurality of pods. Any one of the pods includes a plurality of optical add-drop sub-systems (OADS), which are configured to perform data transmission, respectively, through a plurality of Top-of-Rack (ToR) switches between a corresponding plurality of servers. Any one of the OADSs includes a first transmission module and a second transmission module. The first transmission module is configured to perform data transmission at a first frequency band, and the first transmission module of any one of the OADSs connected to the first transmission module of the adjacent OADSs to form a first transmission ring. The second transmission module is configured to perform data transmission at a second frequency band differed to the first frequency band, and the second transmission module of any one of the OADSs connected to the second transmission module of the adjacent OADSs to form a second transmission ring. |
US11012173B2 |
Method and network node for enabling reduced interference in a wireless network
A method and a first network node (800) serving a first cell (800A) in a wireless network, for enabling reduction of interference in a second cell (800B) caused by transmission of reference signals in the first cell (800A). The first network node (800) transmits (8:1) scheduling blocks with said reference signals, using a time offset relative transmission of scheduling blocks in the second cell. A timing advance value is determined (8:3) for a wireless device (802) and the wireless device (802) instructed (8:4) to apply said timing advance value for uplink transmissions. The timing advance value was determined such that uplink symbols transmitted from the wireless device (802) are aligned with uplink symbols received at a second network node (804) of the second cell (804A). |
US11012166B2 |
Radio wave environment analysis device and radio wave environment analysis method
A radio wave environment analysis device includes: a processor configured to analyze a radio wave environment corresponding to a radio wave transmitted from a wireless transmitter arranged within an area including observation points using a scattering body having a volume of an initial value or higher; and a memory configured to store the radio wave environment at each of observation points of an area where based on the analysis. The processor is configured to: analyze the radio wave environment using a scattering body having a volume reduced by a first predetermined value, and terminate the analysis if a difference between first and second radio wave environments at each observation point based on analyses using the scattering bodies before and after reduction of the volume, respectively, is equal to or lower than a second predetermined value. |
US11012165B2 |
Jitter determination method and measurement instrument
A jitter determination method for determining at least one jitter component of an input signal is described, wherein the input signal is generated by a signal source, comprising: receiving and/or generating probability data containing information on a collective probability density function of a random jitter component of the input signal and a other bounded uncorrelated jitter component of the input signal; determining a standard deviation of the random jitter component based on the probability data; determining a RJ probability density function associated with the random jitter component based on the standard deviation; and determining a OBUJ probability density function associated with the other bounded uncorrelated jitter component, wherein the OBUJ probability density function is determined based on the probability data and based on the probability density function that is associated with the random jitter component. Further, a measurement instrument is described. |
US11012163B1 |
Apparatus and methods for fast and accurate near-field measurement
A computer-implemented method for adaptive near-field data acquisition during a sampling process; it includes measuring at least one of an amplitude and phase of a field using one or more probes, wherein the measuring is performed at a plurality of points; selecting, for each point of the plurality of points, a set of neighboring points; calculating a field variation to determine the presence of a strongly varying near-field pattern; for each location corresponding to each point of the plurality of points where a varying near-field pattern is determined after the calculating of the field variation, inserting one or more new points; and for each of said one or more new points, calculating a field variation to obtain a higher near-field resolution for said each location where a near-field variation is determined. |
US11012162B2 |
Local oscillator leakage detecting and cancellation
A mixer circuitry comprises a mixer, a local oscillator (LO) leakage detector, a digital LO leakage cancellation controller and a DAC arrangement. The mixer is configured to mix a first LO signal having an LO frequency fLO with an intermediate frequency (IF) signal and generate an output signal, i.e. a wanted signal. The LO leakage detector measures the LO leakage at the output of the mixer in the presence of the wanted signal. Then in the digital LO leakage cancellation controller, a digital algorithm is run that automatically adjusts the LO leakage in the mixer by steering the digital-to-analog converter arrangement such that the intermediate frequency input signal level to the mixer is adjusted. |
US11012160B2 |
Phase change detection in optical signals
Optical signal receivers and methods are provided that include multiple optical resonators, each of which receives a portion of an arriving optical signal. Various of the optical resonators are tuned or detuned from a carrier wavelength, and produce an intensity modulated output signal in response to modulation transitions in the arriving optical signal. A detector determines phase transitions in the arriving optical signal, by analyzing the intensity modulation output signals from the optical resonators, and distinguishes between differing phase transitions that result in a common final state of the arriving optical signal. |
US11012157B2 |
Systems and methods for high-altitude radio/optical hybrid platform
Techniques for data transmission include a geostationary earth orbiting satellite that includes a first optical communication system configured to receive forward-direction user data via a forward optical link between the satellite and a stratospheric high-altitude communication device, and a first radio frequency (RF) communication system configured to transmit, via a plurality of RF spot beams, the forward-direction user data. The stratospheric high-altitude communication device includes a second RF communication system configured to receive the forward-direction user data via a plurality of concurrent forward RF feeder links, and a second optical communication system configured to transmit to the satellite, via the forward optical link, the forward-direction user data received via the plurality of forward RF feeder links. A substantial portion of forward feeder data throughput for all forward RF service link transmissions by the satellite is carried via the forward optical link and the plurality of forward RF feeder links. |
US11012154B2 |
Systems and methods for measuring a modal delay and a modal bandwidth
The present disclosure is directed to systems and methods for calculating a modal time delay and a modal bandwidth. For example, a method may include: transmitting an intensity-modulated light through a mode conditioner to generate a mode-conditioned intensity-modulated light; transmitting the mode-conditioned intensity-modulated light through an optical fiber under test (FUT) to excite a plurality of modes of the optical FUT; converting the mode-conditioned intensity-modulated light transmitted through the optical FUT into an electrical signal; measuring, based on the electrical signal, a transfer function or a complex transfer function of the optical FUT based on at least on one pair of the plurality of modes; calculating a modal delay time of the optical FUT based on the transfer function or the complex transfer function; and calculating a modal bandwidth of the optical FUT based on the modal delay time, the modal bandwidth being calculated for any given launch conditions of the plurality of modes. |
US11012151B2 |
Methods and systems relating to optical networks
Data center interconnections, which encompass WCs as well as traditional data centers, have become both a bottleneck and a cost/power issue for cloud computing providers, cloud service providers and the users of the cloud generally. Fiber optic technologies already play critical roles in data center operations and will increasingly in the future. The goal is to move data as fast as possible with the lowest latency with the lowest cost and the smallest space consumption on the server blade and throughout the network. Accordingly, it would be beneficial for new fiber optic interconnection architectures to address the traditional hierarchal time-division multiplexed (TDM) routing and interconnection and provide reduced latency, increased flexibility, lower cost, lower power consumption, and provide interconnections exploiting N×M×D Gbps photonic interconnects wherein N channels are provided each carrying M wavelength division signals at D Gbps. |
US11012149B2 |
Communication device and terminal device
A system and method for providing network information using a short-range wireless communication path between a communication device and a terminal device is described. In some examples, authentication information is required from the terminal device prior to communication of the network information. In some examples, the short-range wireless communication path is disconnected and reestablished in which one of the terminal device and the communication device changes operation modes of a short-range wireless interface. |
US11012148B2 |
Satellite operating system, architecture, testing and radio communication system
A cubesat communication system implementing addressable data packet for transmitting information collected by the cubesat to one or more receive-only ground stations. The cubesat may transmit information to the receive-only ground stations according to a scheduler. The receive-only ground stations may receive information from the cubesat without sending any commands to the cubesat to prompt transmission and re-transmit to a central common station using a bent pipe streaming protocol. Information between the cubesat and the ground station may be transmitted via a connectionless, datagram network protocol. |
US11012146B2 |
System and method for aircraft data transmission
A communication system and a method for transmitting data from an aircraft, the aircraft comprising at least one engine. A data collection and transmission unit is configured to collect and transmit data received from one or more locations in the aircraft, the data collection and transmission unit comprising at least one radio transmitter. At least one engine controller for the at least one engine is communicatively coupled to the data collection and transmission unit and configured to transmit, while the aircraft is airborne, engine data to the data collection and transmission unit, and, responsive to determining that the aircraft is on ground, cause the at least one radio transmitter to activate for transmitting the engine data from the data collection and transmission unit to at least one ground equipment. |
US11012144B2 |
System and methods for in-band relaying
A method and system is disclosed for operating an in-band relay to receive and amplify an incoming radio frequency signal and forward the amplified radio frequency signal. Methods to improve isolation between receive and transmit front-ends are disclosed, enabling an increase in the amplification gain without causing oscillation. Methods for learning the impulse response of the self-interference channel, and methods to perform adaptive echo cancellation in the analog domain. In addition, methods for transmit and receive beamforming are presented that achieve two objectives: (1) Improve the signal-to-noise ratio of the relayed signal, thereby compensating for noise amplification. (2) Improve the isolation, thereby enabling to increase the relay gain without causing oscillation. |
US11012143B2 |
Desktop signal booster
Technology for a signal repeater is disclosed. The signal repeater can include a cellular signal amplifier configured to amplify signals for a wireless device. The signal repeater can include an integrated satellite transceiver coupled to the cellular signal amplifier and configured to communicate signals to one or more satellites. The integrated satellite transceiver can be used when cellular signals are unavailable. |
US11012139B2 |
Adaptive multiplexing and transmit/receive diversity
Adaptive multiplexing and transmit/receive diversity. A wireless device may include multiple antennas. A first set of antennas may be used for communication. One or more trigger conditions may be determined, and additional antennas may be activated for measurement. Based on the measurement(s), a second set of antennas may be selected and used for communication. |
US11012136B2 |
Beamforming in a MU-MIMO wireless communication system with relays
This invention presents methods for MU-MIMO wireless communication systems comprising a BS with plural of antennas, either closely located or distributed; A plural of AFRs deployed over a coverage area, each AFR has NBF≥1 BF antennas with a beam pattern facing the MU-BFer and NUF≥1 UF antennas with a beam pattern facing UEs or downstream AFR(s); A channel estimation module for estimating the Total Channels between a plural of UEs and the BS with the AFRs in place; and, A MU-BFer that uses the estimates of the Total Channels to perform beamforming computations for transmitting and/or receiving multiple spatially multiplexed streams of signals to or from a plural of UEs using the same frequency resource. |
US11012128B2 |
Precoding matrix determining method and apparatus
Embodiments of this application disclose a precoding matrix determining method and apparatus, to determine a stage-1 precoding matrix based on indication information that is of a spatial correlation matrix and that is fed back by a terminal, thereby implementing three-dimensional precoding based on a channel state and increasing a channel capacity. The method includes: sending, by a base station, a plurality of groups of first reference signals, where the plurality of groups of first reference signals are in a one-to-one correspondence with a plurality of dimensions of an antenna array, and each of the plurality of groups of first reference signals is used by a terminal to estimate spatial correlation matrix information in a corresponding dimension; receiving the spatial correlation matrix information fed back by the terminal based on the plurality of groups of first reference signals; and determining a stage-1 precoding matrix based on the spatial correlation matrix information. |
US11012127B2 |
Apparatus and radio communication method
The apparatus according to one aspect of the present invention communicates using beams, and has a receiving section that receives information about a beam of another apparatus, and a control section that decides whether or not to select a transmitting beam autonomously, based on whether certain information is present or not. According to one aspect of the present invention, even when certain apparatus is capable of selecting beams autonomously, it is still possible to reduce the decline in communication throughput and so forth. |
US11012126B2 |
Method and apparatus for beam selection for CSI reporting in advanced wireless communication systems
A method of a user equipment (UE) in a wireless communication system is provided, the method comprises receiving, from a base station (BS), configuration information including a number of total beam quantities (N) and a number of selected beam quantities (L), wherein L≤N; calculating an index indicating L selected beam quantities out of N total beam quantities based on the configuration information and a predefined mapping table including combinatorial binomial coefficient values, C ( x , y ) = ( x y ) (i.e., x choose y); and transmitting, to the BS, the index indicating the L selected beam quantities. |
US11012124B2 |
Multiple input multiple output (MIMO) setup in millimeter wave (MMW) WLAN systems
An AP/PCP may perform user selection/pairing/grouping based on a measurement of an analog transmission (e.g., signal to noise ratio (SNR) or signal to interference plus noise ratio (SINR)). The SNRs may be used, for example by the station, to determine best beams and/or beam pairs and/or worst beams and/or beam pairs. A station may feed back the best few beams and/or beam pairs for a Tx and Rx virtual antenna pair. A station may feed back the worst few beams for the Tx and Rx virtual antenna pair. The AP/PCP may receive the indication(s) and/or use the indication(s) to group the stations. |
US11012119B2 |
NFC arrangement
The present invention relates to a near field communication, NFC, arrangement (100) which comprises an antenna (10) and a controller (20), wherein the controller (20) is connected to the antenna (10) for receiving and/or transmitting data and controlling the operation of the NFC arrangement (100). The NFC arrangement (100) further comprises a booster (30) operatively connected to the antenna (10), and an activation circuit (40) connected to the NFC arrangement (100), wherein the activation circuit (40) is configured to detect an electromagnetic field and in response thereto power up and activate the NFC arrangement (100). In one embodiment, the activation circuit (40) is configured to generate said enabling signal by converting said electromagnetic field into said enabling signal. |
US11012116B2 |
Field device adapter for wireless data transfer
Disclosed is a field device adapter for wireless data transfer, comprising: an adapter housing having a first and a second end, the first end such that the field device adapter can be mechanically connected to a field device and the second end such that a two-wire cable can be connected to the field device adapter. The adapter housing also having an adapter chamber; a supply electronics unit arranged in the adapter chamber and designed to provide a supply voltage via a voltage tap; an adapter electronics unit; and an adapter connection cable at the first end for connecting the adapter electronics to a field device electronics. The adapter electronics are designed to communicate the two-conductor signals between the field device electronics and the two-conducting-wire cable and also to convert the two-conductor signals into radio signals or vice versa. |
US11012111B2 |
Transmitter and communication method
In a case that a large number of terminal apparatuses that are accommodated by contention-based radio communication technologies share a frequency resource, the number of data signals of the terminal apparatus that are non-orthogonally multiplexed in the spatial domain increases. If terminal apparatuses, of which the number exceeds the number of receive antennas or the spreading factor transmit uplink data at the same time, it is tantamount to a presence of terminal apparatuses using the same spreading code, and inter-user interference becomes a problem. A transmitter for transmitting a data signal to a receiver, includes a transmission processing unit configured to transmit the data signal without receiving control information to permit transmission (UL grant) transmitted by the receiver; a spreading unit configured to spread the data signal; and a transmit power control unit capable of switching a plurality of methods of controlling transmit power of the data signal, wherein the methods of controlling transmit power are switched in accordance with at least one of a spreading factor or a sequence of spreading codes used by the spreading unit for spreading the data signal. |
US11012109B2 |
Active geo-location range for WLAN devices
A method and devices are disclosed that increase the range of active geo-location from the airborne measuring station as compared with known methods by increasing the effective receive sensitivity of the airborne measuring station. In one embodiment this may be accomplished by transmitting a predetermined ranging packet and correlating the raw received bit stream of the response packet with the predetermined bit stream. In one embodiment, the disclosed method applies to the reception of IEEE 802.11 direct sequence spread spectrum DSSS ACK and DSSS CTS packets in response to DSSS data null and DSSS RTS packets respectively, in the 2.4 GHz band. |
US11012104B2 |
Apparatus and methods for calibrating radio frequency transmitters to compensate for common mode local oscillator leakage
Apparatus and methods for calibrating radio frequency transmitters to compensate for common mode local oscillator leakage are provided herein. In certain configurations herein, a transmitter generates a radio frequency transmit signal based on mixing a baseband input signal with a local oscillator signal. The transmitter is calibrated to compensate for common mode local oscillator leakage. Thus, a common mode component of the local oscillator signal is reduced or eliminated from the radio frequency transmit signal, which provides a number of benefits, including lower levels of undesired emissions from the transmitter. |
US11012102B2 |
Puncturing of polar codes with complementary sequences
Systems and methods are disclosed herein for puncturing Polar-encoded bits. In some embodiments, a method of operation of a radio node that utilizes a Polar encoder comprising performing Polar encoding of a plurality of bits to provide a plurality of Polar-encoded code bits and puncturing the plurality of Polar-encoded code bits using a hybrid puncturing scheme to provide a plurality of rate-matched Polar-encoded code bits, wherein the hybrid puncturing scheme uses different puncturing patterns for different code rate regions. |
US11012101B2 |
Data transmission method, apparatus and storage medium
The present application provides a data transmission method which includes: obtaining statistical characteristics of interferences; determining a total number of coding layers of multi-layer coding and a code rate and transmitting power of each coding layer according to the statistical characteristics of the interferences; processing to-be-transmitted information bits through data re-organization according to the determined total number of coding layers of the multi-layer coding to obtain information bits of each coding layer; coding the information bits of each coding layer respectively according to the determined code rate of each coding layer to obtain a coded data stream of each coding layer; processing the coded data stream of each coding layer through layer mapping and modulation according to the determined transmitting power of each coding layer to obtain a symbol stream to be transmitted; and transmitting the symbol stream to be transmitted. |
US11012100B2 |
Convolutional precoding and decoding of polar codes
Devices, systems and methods for convolutional precoding and decoding of polar codes are disclosed. An example method for error correction in a data processing system includes receiving a noisy codeword, the codeword having been generated based on an outer stream decodable code and an inner polar code and provided to a communication channel or a storage channel prior to reception by the decoder, the stream decodable code characterized by a trellis, and performing, based on the trellis, a list-decoding operation on the noisy codeword vector to generate a plurality of information symbols, the list-decoding operation being configured to traverse through a plurality of states at one or more stages of a plurality of decoding stages. |
US11012094B2 |
Encoder with mask based galois multipliers
A programmable digital data encoder employs error correcting coding that uses Galois field multiplication logic wherein each bit of the product is produced by first applying pre-calculated mask values or mask values calculated via a processor executing code, and then applying an XOR circuit together with the mask bits from the pre-calculated or generated mask. In one example, a set of Galois field multipliers is used wherein each multiplier in the set includes a plurality of 2-bit input AND gate circuits and an m-bit input XOR gate circuit to produce a bit of the product. In one example, there are “m” mask values in a mask table wherein m is the symbol width. A different mask value is applied for each bit of the product. The mask values are each m-bits wide, and are stored, for example, in memory as a small look-up table with m m-bit entries or in m m-bit wide registers. |
US11012092B2 |
Polar decoding method and apparatus
The present disclosure relates to polar decoding methods and apparatus. One example method includes obtaining a polar code sequence, determining at least one first information bit length corresponding to a code length of the polar code sequence, and decoding the polar code sequence based on blind detection by using the code length and the at least one first information bit length. The at least one first information bit length is a part of a preset information bit length set corresponding to the code length. A remaining part of the preset information bit length set is at least one second information bit length. The at least one second information bit length is excluded from being used for the blind detection. Each second information bit length is less than one or more information bit lengths in the at least one first information bit length. |
US11012091B2 |
Transmitting apparatus and transmission method, receiving apparatus and reception method, and program
LDPC coding is executed using a check matrix of an LDPC code whose code length is 736 bits and whose code rate is 1/4, and modulation is executed using a repetition unit that has an LDPC code obtained by the LDPC coding, repeatedly arranged therein. The LDPC code includes information bits and parity bits, the check matrix includes an information matrix portion corresponding to the information bits and a parity matrix portion corresponding to the parity bits, the parity matrix portion has a stepwise structure, the information matrix portion is indicated by a check matrix initial value table, and the check matrix initial value table is a predetermined table indicating positions of elements of “1” of the information matrix portion for each eight columns. This technique is applicable to, for example, information transmission using the LDPC code. |
US11012088B2 |
Data processing apparatuses, methods, computer programs and computer-readable media
A first value of a first data element in a first set of data elements is obtained, the first set of data elements being based on a first time sample of a signal. A second value of a second data element in a second set of data elements is obtained, the second set of data elements being based on a second, later time sample of the signal. A measure of similarity is derived between the first value and the second value. Based on the derived measure, a quantisation parameter useable in performing quantisation on data based on the first time sample of the signal is determined. Output data is generated using the quantisation parameter. |
US11012082B1 |
Multiphase clock generator and associated frequency synthesizer
A multiphase clock generator includes a current mirror, a voltage controller, a pseudo-resistor circuit and a first delaying circuit. The current mirror includes a receiving terminal, a first mirroring terminal and a second mirroring terminal. The voltage controller is connected with the receiving terminal of the current mirror. A feedback terminal of the voltage controller is connected with the first mirroring terminal of the current mirror. A first terminal of the pseudo-resistor circuit is connected with the first mirroring terminal of the current mirror. A second terminal of the pseudo-resistor circuit is connected with a ground terminal. The first delaying circuit is connected with the second terminal of the pseudo-resistor circuit. An input terminal of the first delaying circuit receives a first input clock signal. An output terminal of the first delaying circuit generates a first delayed clock signal. |
US11012079B1 |
Continuous tuning of digitally switched voltage-controlled oscillator frequency bands
A phase locked loop (PLL) control system includes a voltage-controlled oscillator (VCO) circuit including an inductor and a plurality of capacitors arranged in parallel with the inductor. Digitally enabling or disabling the capacitors in a thermometer coded manner via switches creates tuning states that provide additional frequency range, and each has a limited range of VCO frequency tuning. Slowly ramping the switched capacitance, by implementing the capacitor as a varactor, from one thermal code to the next, provides a wider continuous VCO frequency tuning range for use in the PLL. The slow transition between tuning states allows the PLL to remain in lock, useful under changing operating conditions. Specifically, under changing operating conditions, digital logic detects the PLL tuning control voltage approaching the edge of a VCO band and will add/reduce VCO capacitance effectively transitioning into the adjacent VCO band while the PLL maintains lock via its normal feedback loop. |
US11012078B1 |
IQ signal source
An IQ signal source (100) includes: a Q-VCO (3) having a first VCO (1) and a second VCO (2), the IQ signal source (100) outputting an I signal and a Q signal by electrically coupling the first VCO (1) and the second VCO (2) with each other; a first PLL (10) for comparing a frequency of the I signal or the Q signal with a frequency of a reference signal input from the outside of the IQ signal source (100) and outputting a voltage depending on a result of the comparison; and a second PLL (9) for detecting an IQ phase difference and outputting a voltage depending on the IQ phase difference. The IQ phase difference converges to 90 degrees in dependence on the output voltage of the first PLL (10) and the output voltage of the second PLL (9). |
US11012069B2 |
Keyboard key with capacitive switch having mechanical and proximity switching functions
A key switch implements a receiving switch conductor and transmitting switch conductor in the key switch. Depressing the key switch will cause the receiving switch conductor and transmitting switch conductor to approach each other. The approach of a finger and movement of the key switch can be detected using the receiving switch conductor and the transmitting switch conductor. |
US11012066B2 |
Drive device for power semiconductor element
A plurality of drive circuits each drive a corresponding one of a plurality of power semiconductor elements connected in parallel. Each of the drive circuits includes a control command unit, a current detector, a differentiator, and an integrator. The current detector detects a gate current that flows into a gate terminal of a corresponding one of the power semiconductor elements after the control command unit outputs a turn-on command. The differentiator performs time differentiation of the gate current detected by the current detector. The integrator performs time integration of the gate current detected by the current detector. Based on a differential value and an integral value in each of the drive circuits, the determination unit determines whether an overcurrent state occurs or not in any of the plurality of power semiconductor elements. |
US11012063B2 |
GaN switch with integrated failsafe pulldown circuit
Circuits and devices are provided for reliably holding a normally-off Gallium Nitride (GaN) power transistor, such as a Gate Injection Transistor (GIT), in a non-conducting state when a gate of the power transistor is not driven with an active (turn-on) control signal. This is accomplished by coupling a normally-on pulldown transistor between the gate and the source of the power transistor, such that the pulldown transistor shorts the gate to the source when the power transistor is not set for its conducting state. The pulldown transistor is preferably located on the same semiconductor die as, and in close proximity to, the power transistor, so as to avoid spurious noise at the power transistor gate that may unintentionally turn on the power transistor. A pulldown control circuit is coupled to the gate of the pulldown transistor and autonomously turns off the pulldown transistor when the power transistor is set to conduct. |
US11012062B2 |
Bootstrap circuit and a sampling circuit using the same
A bootstrap circuit including: a charge pump; a power unit including a bootstrap capacitor, wherein the bootstrap capacitor is charged using an output voltage of the charge pump; and a switch driver for generating a bootstrap signal based on a clock signal and an analog signal, wherein the analog signal is input to an analog switch, the switch driver for controlling the analog switch using the bootstrap signal, and including a first body switch connected between an input terminal and a body of the analog switch. |
US11012058B2 |
Linear low side recycling modulation
A circuit includes a filter, a comparator, and converter. A first input of the comparator couples to the output of the filter. A second input of the comparator is configured to receive ramp signal. An input of the converter couples to the output of the comparator. The circuit also includes a dual minimum pulse generator having an input coupled to the output of the converter. The dual minimum pulse generator is configured to, responsive to an input pulse on the input of the dual minimum pulse generator having a pulse width less than a predetermined delay time period, generate a pulse on the first output of the dual minimum pulse generator that has a pulse width equal to a sum of the pulse width of the input pulse and the predetermined delay time period. A driver is coupled to the output of the dual minimum pulse generator. |
US11012057B2 |
Data retention circuit and method
A circuit includes a slave latch including a first input and an output, the first input being coupled to a master latch, and a retention latch including a second input coupled to the output. The master latch and the slave latch are configured to operate in a first power domain having a first power supply voltage level, the retention latch is configured to operate in a second power domain having a second power supply voltage level different from the first power supply voltage level, and the circuit further includes a level shifter configured to shift a signal level from one of the first power supply voltage level or the second power supply voltage level to the other of the first power supply voltage level or the second power supply voltage level. |
US11012054B2 |
Acoustic wave filter including two types of acoustic wave resonators
Aspects of this disclosure relate to a multiplexer, such as a duplexer, a quadplexer, a hexaplexer, or the like. The multiplexer includes acoustic wave filters coupled to a common node. A first acoustic wave filter of the acoustic wave filters includes acoustic wave resonators of a first type and a series acoustic wave resonator of a second type coupled between the acoustic wave resonators of the first type and the common node. |
US11012052B2 |
Surface acoustic wave filter
A longitudinally coupled resonator type surface acoustic wave filter includes a high-acoustic-velocity member, a low-acoustic-velocity film provided on the high-acoustic-velocity member, a piezoelectric film provided on the low-acoustic-velocity film, a plurality of interdigital transducers provided on the piezoelectric film and along a propagation direction of a surface acoustic wave and each including a plurality of electrode fingers, and reflectors arranged such that the interdigital transducers are interposed therebetween from both sides in the propagation direction of the surface acoustic wave. An electrode finger pitch is uniform or substantially uniform in each of the interdigital transducers. When a wavelength determined by the electrode finger pitch in the reflector is defined as λ, an inter-electrode finger center distance that is an interval between each of the interdigital transducers and the interdigital transducer adjacent thereto is not shorter than about 0.25λ and not longer than about 0.37λ. |
US11012050B2 |
Radio-frequency filter, radio-frequency front-end circuit, and communication apparatus
A radio-frequency filter (10) includes a series arm resonator (s1) connected between input/output terminals (11m and 11n) and parallel arm circuits (110 and 120) connected to a node (xl) and a ground. The parallel arm circuit (110) includes a parallel arm resonator (p1) and a variable frequency circuit (110A) connected in series with each other between the node (xl) and a ground. The variable frequency circuit (110A) changes the resonant frequency of the parallel arm circuit (110). The variable frequency circuit (110A) is connected in series with the parallel arm resonator (p1) and includes a capacitor (C1) and a switch (SW1) connected in parallel with each other. The parallel arm circuit (120) includes a capacitor (C2) and a switch (SW2) connected in series with each other between the node (x1) and a ground. |
US11012048B2 |
Filter and multiplexer
A filter includes: a piezoelectric substrate; a first acoustic wave resonator located on the piezoelectric substrate and including a pair of first reflectors including first grating electrodes and a pair of first comb-shaped electrodes that is located between the first reflectors and includes first electrode fingers; and a second acoustic wave resonator that is connected in series or parallel with the first acoustic wave resonator, is located on the piezoelectric substrate, and includes a pair of second reflectors including second grating electrodes and a pair of second comb-shaped electrodes that is located between the second reflectors and includes second electrode fingers, an average value of duty ratios of the second grating electrodes being different from an average value of duty ratios of the first grating electrodes, an average value of pitches of the second electrode fingers being substantially equal to an average value of pitches of the first electrode fingers. |
US11012047B2 |
Resonant retunable antenna
The invention relates to the antenna technology used generally for providing a communication in the mines, in particular to the small resonant re-tunable antennas intended for providing an induction communication too. The technical effect is a possibility to adjust smoothly an operation frequency of the antenna within the wide radio wave range and, as a consequence, a possibility to compensate an effect of the outer objects having a capacity and switch the antenna to the other transceiving frequency channels.Re-tunable resonant antenna with matching device, the said antenna comprising a matching device in the form of a transformer consisting of a primary and secondary windings; a transmitting vibrator in the form of 2D- or 3D-conducting body, the said vibrator being connected to the secondary winding of the transformer and located in the magnetic field of the matching transformer, is characterized in that, proximal to the coils of the secondary solenoid of the transformer, there is a capacity component coupled galvanically to the matching transformer in any point and is moved along the axis of the solenoid.Due to that the primary and secondary solenoids of the antenna transformer are made of sections which are connected in series via a relay, it is possible to retune a frequency not only within a single range, but to switch to the other range. |
US11012045B2 |
Variable gain amplifier
A variable gain amplifier circuit is disclosed. In one embodiment, an amplifier circuit includes first and second stages. Each stage includes one or more inverter pairs, with one inverter of each pair coupled to receive an inverting component of a differential signal and the other inverter of the pair coupled to receive a non-inverting component. The first stage receives a differential input signal and produces an intermediate differential signal. The second stage receives the intermediate differential signal and produces a differential output signal, the differential output signal being an amplified version of the differential input signal. |
US11012043B2 |
Hybrid autozeroing and chopping offset cancellation for switched-capacitor circuits
A system has an output and receives an input signal. An operational amplifier has an input, an output and an offset at the input. A switched capacitor network samples the input signal at a switched capacitor frequency. An autozeroing capacitor connected to the input of the operational amplifier captures the offset during an offset capture interval according to an autozeroing frequency. Chopping and autozeroing switches, connected between the autozeroing capacitor and the switched capacitor network, chop the sampled input signal according to a chopping frequency and autozero the captured offset according to the autozeroing frequency. De-chopping switches, connected between the output of the operational amplifier and the output of the system, operate on the output of the operational amplifier at the chopping frequency to chop the autozeroed captured offset and de-chop the chopped sampled input signal processed by the operational amplifier. |
US11012028B2 |
Reinforcing member for solar cell modules, and solar cell module
A reinforcing member according to an aspect of the present disclosure is a long member provided between a frame and a frame on the rear side of a solar cell module. The reinforcing member is provided with: a pair of leg parts respectively fixed to inner flanges and of the frames and; a pair of wall parts erected on the respective leg parts and arranged roughly vertical to the rear surface of a solar cell panel; and a top board part that connects upper ends of the wall parts and are arranged along the rear surface in a state of being close to or in contact with the rear surface of the solar cell panel. |
US11012026B2 |
Photovoltaic module
A photovoltaic module includes an encapsulated photovoltaic element and an infrared-transmissive decorative overlay simulating conventional roofing. |
US11012023B2 |
Solar panel coupling stabilization system
In various embodiments, a stabilization assembly may comprise a shaft, a foot, a snap plate and a nut. The foot may be operatively coupled to the shaft. The snap plate may be configured to surround and retain the shaft. The nut may be installable on the shaft and engagable to raise and lower a foot. The stabilization assembly may be installed in a solar panel coupling. The foot may be driven to engagement with a roof surface in response to the coupling being installed on the roof. |
US11012022B2 |
Inverter device and electric motor device using same
The object of the invention is to provide an inverter device and an electric motor device using the same to shorten a dead time. Thus, an inverter device is provided, which includes: a switching element including a control terminal and a pair of main terminals; a control circuit configured to output a control signal which indicates whether to instruct an ON state of the switching element; a decision circuit configured to output a decision signal which indicates a state of the switching element based on a voltage between the main terminals of the switching element; and a drive circuit configured to control the ON state or an OFF state of the switching element based on the control signal and the decision signal. |
US11012021B2 |
Inverter device and control circuit therefor, and motor driving system
An inverter device includes gate driving circuits for upper and lower arms of a bridge circuit, a first power supply supplying a power supply voltage to each driving circuit, and a second power supply having a reference potential different from that of the first power supply. The inverter device also includes a first fail-safe circuit having a reference potential common to the first power supply and generating driving commands with respect to the upper and lower arms, and a second fail-safe circuit having a reference potential common to the second power supply and generating driving commands with respect to the upper or lower arm. The lower arm gate driving circuit has two driving command input functions having different reference potentials, one function inputs the driving commands from the first fail-safe circuit, and the other function inputs the driving commands from the second fail-safe circuit. |
US11012019B2 |
Electric linear motor, elevator and method for controlling rotation of a mover with respect to a stator beam of an electric linear motor
An electric linear motor, an elevator and a method for controlling rotation of a mover with respect to a stator beam are presented. The electric linear motor includes a number of stator beams, wherein at least one of them includes stators extending in a longitudinal direction of the beam. The motor also includes a number of movers, wherein at least one them includes armatures, wherein each armature is adapted for establishing an electromagnetic coupling with a corresponding stator for moving the mover. The motor also includes an air gap regulator for regulating movement of the mover with respect to the stator beam, wherein the air gap regulator includes guide element(s) arranged for limiting the rotation of the mover with respect to the stator beam. |
US11012018B2 |
Motor drive operation at light load conditions
A system includes a motor-driven component, a motor configured to operate the motor-driven component, and a motor drive circuit configured to power the motor. The motor drive circuit includes at least one complementary stage, where each stage includes a first transistor and a second transistor. During operation of the motor drive circuit, the first transistor is switched on when the second transistor is switched off. The system includes a controller communicatively coupled to the motor drive circuit. A load condition associated with the component is monitored. Based on the load condition, the controller determines whether the component is operating at a light load condition. If the component is operating at the light load condition, a switching frequency of each of stages is changed from a first switching frequency to a second switching frequency, which is less than the first switching frequency. |
US11012016B2 |
Energy packet control of generator prime mover
A controller may use energy packets to control a prime mover of a machine. The controller may include an energy packet measurement control to calculate energy packets and convert the energy packets into a fuel valve reference. Further, a frequency control may receive system feedback associated with the monitored machine and generate a frequency correction based on the system feedback. The controller may add the energy packet value and the frequency correction to determine a prime mover power reference and provide the prime mover power reference to a fuel valve control of the machine. |
US11012014B2 |
Motor drive unit of a DC electric motor
A motor drive unit for driving a direct current electric motor including a moving part equipped with permanent magnets. The motor drive unit, which is powered by a voltage supply source, includes a switch circuit, an inductor circuit and a capacitor circuit including a set of capacitors. By selectively opening and closing the switches of the switch circuit, a series of consecutive low energy pulses can be generated such that the power consumption of the motor drive circuit is minimized. |
US11012013B2 |
Control device of motor, control system, and control method
According to one embodiment, there is provided a control device including a drive circuit and a control circuit. The drive circuit includes a plurality of transistors and a current determination circuit. The plurality of transistors is electrically connected in parallel to each other between a first node and a second node. The first node is connected to a power supply circuit. The second node is connected to a DC motor. The current determination circuit determines a current flowing between the first node and the second node. The control circuit generates a control signal to control a number of transistors to be turned on among the plurality of transistors in accordance with the determined current. The drive circuit drives the DC motor using a current in response to the control signal. |
US11012012B2 |
Synchronization control device
Provided is a synchronization control device that can control a mechanical system with good track followability. A control unit for each shaft of the synchronization control device includes: a delay time compensator which delays a position command to an FB torque command generation unit, and of which equivalent time constant is approximately the same as an equivalent time constant as a gain compensator. The synchronization control device also includes a phase adjustment unit, which adjusts a phase of at least one of the position commands, in a previous stage of each control unit, so that the time until the position command, input to each control unit, is output from the delay time compensator, becomes approximately the same. |
US11012010B2 |
Auxiliary power supply device and electric power steering system
An auxiliary power supply device includes a parasitic diode forming a parallel circuit together with a second switching element and connected in a forward direction to a main power supply, and a parasitic diode forming a parallel circuit together with a fourth switching element and connected in a reverse direction to an auxiliary power supply. When a state parameter indicates that a reaction force that interferes with operation of an assist motor is applied, an electronic control unit turns ON a first switching element, turns OFF the second switching element, turns ON a third switching element, and turns OFF the fourth switching element. A regenerative current from the assist motor flows to the auxiliary power supply via an inverter, the third switching element, and the parasitic diode. |
US11012007B2 |
Magnetostriction element and magnetostriction-type vibration powered generator using same
Provided herein is a magnetostriction element having a large power output and a high power density. The magnetostriction element is comprised of a magnetostrictive material that is a monocrystalline alloy represented by the following formula (1), Fe(100-α-β)GaαXβ, Formula (1) wherein α and β represent the Ga content (at %) and the X content (at %), respectively, X is at least one element selected from the group consisting of Sm, Eu, Gd, Tb, Dy, Cu, and C, and the formula satisfies 5≤α≤40, and 0≤β≤1. |
US11012004B2 |
Vibration actuator and electronic device including the same
A vibration actuator includes a vibrator including a shaft, an output transmission member penetrated by the shaft, and configured to rotate about the axis of the shall, and a fixed member configured not to move relative to the shaft and configured to move relative to the output transmission member. The fixed member includes a base portion and a projection portion protruding from the base portion to the output transmission member side, the vibration actuator includes a pressure reception member between the base portion and the output transmission member in an axial direction of the shaft, and wherein the projection portion and the output transmission member are in contact with each other in a direction orthogonal to the axial direction of the shaft, and the projection portion and the output transmission member are not in contact with each other in the axial direction of the shaft. |
US11012002B1 |
Single-phase voltage source inverter circuit with power decoupling, and control methods
A single-phase voltage source inverter including a first stage configured to be connectable to a DC source, and a second stage configured to be connectable to an AC load, the first stage including a bridge leg including first and second decoupling switches, the bridge leg connected through an inductor to a decoupling capacitor, where the decoupling capacitor is in series with the DC source when the inverter is connected to the DC source, and the second stage including a bi-directional H-bridge inverter including first, second, third and fourth switches. The decoupling capacitor can be a small film capacitor. The first and second decoupling switches are the only decoupling switches in the bridge leg. The first controller can use pulse width modulation and the second controller uses sinusoidal pulse width modulation. The first controller can use pulse width modulation and the second controller uses pulse energy modulation. |
US11012001B2 |
Transformer-less, tapped point AC voltage splitter for full bridge DC AC inverters
A DC AC inverter system includes a full bridge DC AC inverter, a first module with a first capacitance connected to a positive DC input and an intermediate output, and a second module with a second capacitance connected to a negative DC input and to the intermediate output, wherein the first and second capacitance is greater than PΔA/(VΔ*Vnom*2πf); (a) PΔ is a predetermined power imbalance between a first output and the intermediate output and a second output and the intermediate output; (b) Vnom is a predetermined nominal output voltage between the first output and the intermediate output (V1) and the second output and the intermediate output (V2); (c) VΔ is a predetermined fraction of voltage difference, relative to Vnom, between V1 and V2 when there is a power imbalance PΔ; and (d) f is a frequency of V1 or V2. |
US11012000B2 |
Switching type control method based on double loop predictive control
A switching type control method based on a double loop predictive control is provided. A deadbeat control is adopted by the outer loop control. The switching type control method is adopted by the inner loop control. When the system is in the steady state, the deadbeat control by an inner loop is adopted to ensure the steady state accuracy of the system and to achieve the fixed switching frequency. When the system is in the transient state, it is switched to the finite control set model predictive control by the inner loop to ensure the rapid transition of the system to the steady state. |
US11011998B2 |
Inverter power generator and method for controlling same
An inverter power generator includes an engine, an actuator that adjusts the position of a throttle valve of the engine, a power generator that generates AC power from a driving force of the engine, a converter that converts the AC power outputted from the power generator into DC power, an inverter that converts the DC power outputted from the converter into AC power, a current detector that detects the current of the AC power outputted from the inverter, a voltage detector that detects the voltage of the AC power outputted from the inverter, a target rotation speed determiner that determines a target rotation speed of the engine based on a detected current value and a correction value based on the difference between a target voltage value and the detected voltage value, and an actuator controller that controls the actuator based on the determined target rotation speed. |
US11011997B2 |
Pulse width modulation control for a multilevel converter
A method for controlling multiple switching devices (15a-d, 75a-b) of a multilevel converter (1, 70) includes providing a plurality of carrier signals (C1-C6) and a reference signal (34, 80), the reference signal (34, 80) having a waveform range divided in a plurality of contiguous bands (B1-B6), dynamically allocating the plurality of carrier signals (C1-C6) to the multiple switching devices (15a-d, 75a-b), and generating pulse width modulation signals (18, 77) to generate switching events of the multiple switching devices (15a-d, 75a-b) based on a comparison of dynamically allocated carrier signals (C1-C6) with the reference signal (34, 80), wherein the plurality of carrier signals (C1-C6) have a phase shift between the carrier signals (C1-C6), and wherein the plurality of carrier signals (C1-C6) are dynamically allocated to the multiple switching devices (15a-d, 75a-b) such that for each switching device (15a-d, 75a-b) the plurality of carrier signals (C1-C6) are rotated and selected based on a position of the reference signal (34, 80) with respect to the plurality of bands (B1-B6). |
US11011996B2 |
Power converter
An object of the present invention is to improve the reliability of a power converter against electromagnetic noise.A power converter according to the present invention includes: a power semiconductor circuit unit; a DCDC converter circuit unit; a first drive circuit board that outputs a drive signal to the power semiconductor circuit unit; a second drive circuit board that outputs a drive signal to the DCDC converter circuit unit; and a control circuit board that outputs a first control signal for controlling the first drive circuit board and a second control signal for controlling the second drive circuit board, in which the control circuit board is arranged at a position facing the second drive circuit board with the power semiconductor circuit unit and the DCDC converter circuit unit interposed therebetween, the first drive circuit board is arranged to be substantially parallel to an array direction of the control circuit board and the second drive circuit board, and the first drive circuit board has a relay wiring that relays the second control signal output from the control circuit board to the second drive circuit board. |
US11011994B2 |
Quasi-resonant flyback converter controller
A flyback converter includes a primary-side circuit to receive an input voltage, a secondary-side circuit to generate an output voltage, a transformer coupling the primary-side circuit to the secondary-side circuit, a main switch coupled to a primary winding of the transformer, and a converter controller having a primary-side controller in signal communication with the main switch to control an on time and an off time of the main switch and to detect one or more valleys of a resonant waveform developed at the main switch during the off time of the main switch. The primary-side controller is configured to operate in a valley reduction mode of operation upon determining that the output voltage is less than a reference voltage minus a predetermined threshold value. The valley reduction mode of operation includes decrementing, for each switching cycle of the main switch, a number of valleys occurring during that switching cycle. |
US11011992B2 |
Method and system for reducing the circulating current between multiple non-isolated modules operating in parallel
The present disclosure discloses a method and system for reducing a circulating current between a plurality of non-isolated modules operating in parallel. The input terminals and the output terminals of the plurality of non-isolated modules are respectively connected in parallel, and each of the non-isolated modules comprises a first stage converter, a bus capacitor and a second stage converter, which are electrically connected in sequence. For each of the non-isolated modules, the method comprises: comparing a first signal reflecting the input power of the non-isolated module with a reference value to obtain a comparison result; and adjusting the voltage of the bus capacitor according to the comparison result, wherein the voltage of the bus capacitor is decreased when the first signal is greater than the reference value, and the voltage of the bus capacitor is increased when the first signal is less than the reference value. |
US11011990B2 |
Power converter
A DC/DC power converter has an input terminal, an output terminal, and a ground terminal. The DC/DC power converter includes two capacitors connected in series between the output terminal and the ground terminal, a boost converter having a first boost converter terminal connected to the input terminal, a second boost converter terminal connected to the output terminal, and a third boost converter terminal connected to a connection point between the capacitors, and a step-up converter having a first step-up converter terminal connected to the ground terminal, a second step-up converter terminal connected to the output terminal, and a third step-up converter terminal connected to the connection point. |
US11011988B1 |
Implicit on-time regulated hybrid converter
A DC/DC power converter and a method to convert an input voltage into an output voltage are presented. The power converter may have a first flying capacitor, a second flying capacitor, an inductor, and switching elements. It may control the switching elements such that the switching elements establish a first magnetizing current path from the input node, via the first flying capacitor, via the second flying capacitor, via the inductor, to the output node. The converter may control the switching elements to interrupt said first magnetizing current path after a pre-determined time interval. The converter may control the switching elements such that the switching elements establish a demagnetizing current path from a reference potential via the inductor to the output node. The converter may control the switching elements such that said demagnetizing current path is interrupted when a current through the inductor reaches a pre-determined threshold current value. |
US11011985B2 |
Voltage reducing circuit with pre-biasing circuit portion
A voltage reducing circuit comprises a power switch circuit portion comprising a high-side and low-side field-effect-transistors connected at a switch node. The power switch circuit portion has an on-state wherein the high-side transistor is enabled and the low-side transistor is disabled and, vice versa, an off-state. An energy storage circuit portion comprising an inductor connected to the switch node is arranged to provide an output voltage. A drive circuit portion receives a pulse width modulation control signal and outputs pulse width modulated (PWM) drive signals. A pre-biasing circuit portion applies bias voltages to the gate terminals of the high-side and low-side transistors in response to the PWM drive signals, wherein the pre-biasing circuit portion is arranged such that the bias voltage applied to the gate terminal of the currently disabled transistor is set to an intermediate voltage before switching between the on-state and off-state. |
US11011980B2 |
Switched-capacitor converter with multi-tapped autotransformer
A power supply system comprises: a switched-capacitor converter, a multi-tapped autotransformer, and an output stage. The multi-tapped autotransformer includes multiple primary windings. The switched-capacitor converter includes multiple circuit paths coupled to the primary windings. For example, a first circuit path includes a first capacitor; a second circuit path includes a second capacitor. The power supply further includes a controller that controllably switches an input voltage to the first circuit path and the second circuit path, conveying energy to the primary windings of the multi-tapped autotransformer. The output stage of the power supply is coupled to receive energy from a combination of the first primary winding and the second primary winding of the multi-tapped autotransformer. Via the received energy, the output stage produces an output voltage that powers a load. |
US11011976B2 |
Transient control for power factor correction
A drive circuit includes a transient detector that includes a detector input to receive a loop error signal from a phased locked loop (PLL) and generates a transient detected output signal if a transient is detected in an alternating current (AC) input voltage. A controller includes a controller input to receive the transient detected output signal from the transient detector and a feedback input to sense the AC input voltage provided to a bridge circuit. The controller is configured to apply a PLL angle output signal from the PLL to control switch output signals to the bridge circuit if the transient detected output signal is not generated and configured to apply the AC input voltage sensed from the feedback input to control the switch output signals to the bridge circuit if the transient detected output signal is generated. |
US11011974B2 |
Inverter arrangement, electric drive system, and method for discharging a DC link capacitor in an inverter arrangement
The invention relates to the discharging of a DC link capacitor in an inverter arrangement, thereby allowing, for example, a DC link capacitor to be discharged while an electric machine that is connected to the inverters can operate in an idling mode as a safe mode. The DC link capacitor is discharged by very briefly triggering a semiconductor switch within the inverter. According to the invention, the inverter bridge arm with the smallest phase voltage is selected for the very brief triggering process. |
US11011973B2 |
Harmonic regulator for current source rectification and inversion
A methods and systems for generating rectified signals are disclosed. For example, a system performing the methods includes a current source rectifier which has a plurality of switches configured to receive an input current from an AC voltage source and to receive a plurality of control signals. The switches are configured to produce a rectified output current based on the input current and the control signals. The system also includes a rectifier controller configured to receive a current sense signal indicative of the rectified output current and to generate the control signals based at least in part on the current sense signal, where the control signals cause the current source rectifier to attenuate at least one of a plurality of harmonic frequencies in the rectified output current. |
US11011970B2 |
Gate drive circuit
A gate drive circuit, which drives a gate of a first transistor, includes a first switch on a high potential side and a second switch on a low potential side connected in series at a second connection node between a high potential end and a low potential end of a series connection structure, constituted of a first voltage source and a second voltage source connected in series at a first connection node; and a third switch and an inductor connected in series between the first connection node and the second connection node. The gate of the first transistor can be electrically connected to the second connection node. |
US11011967B2 |
Massive energy storage system with distributed rotor or mover structure and transitional rotor pulse current
This invention discloses a significantly improved linear machine system used for massive energy storage with vertical movement of heavy mass placed in containers. It adopts distributed rotor or mover structure to minimize the fringing effect and thereby enhancing effective lifting force. It further adopts the pulse transitional current to those non-transitional rows of rotor or mover conductors when the transitional rotor or mover coils cross the boundary between the magnetic and non-magnetic layers of the stator. |
US11011961B2 |
System for cooling an electric machine
A system for cooling an electric machine, including as components a stator and a rotor, wherein each component has a cooling circuit, the system including at least one regulator for regulating a volume flow of a coolant from a coolant reservoir and a control unit, wherein in each case an input of each cooling circuit is connected to at least one regulator for regulating the volume flow of the coolant from the coolant reservoir, wherein the control unit is adapted to set at least one regulator for regulating the volume flow of the coolant into the cooling circuit of a respective component, while taking into account at least one temperature of the respective component. |
US11011958B2 |
Extreme environment variable reluctance energy harvester and method for implementing same
An energy harvester article configured to associate with a ferromagnetic flywheel having gear teeth is provided and includes a magnet, a first pole piece, wherein the first pole piece includes a first pole piece first end and a first pole piece second end, a second pole piece, wherein the second pole piece includes a first portion and a second portion configured into an “L” shape, and wherein the second portion is arranged to be substantially parallel with the first pole piece and separated from the first pole piece by a distance L, and a coil, wherein the coil is configured to be wrapped around the first pole piece proximate the first pole piece second end. |
US11011957B2 |
Servo shaft couplers
A coupler for coupling an output shaft of a servo to an auxiliary shaft, comprises an coupler body having a longitudinal axis extending from a first end to a second end. The coupler body comprises a first bore, configured to accept a portion of the auxiliary shaft, centered on the longitudinal axis and extending into the first end a first distance. The coupler also comprises a second bore centered on the longitudinal axis and extending into the second end a second distance. The coupler also comprises a first fastener disposed proximate the first end, wherein adjusting the first fastener deforms a cross sectional dimension of the first bore. The coupler also comprises a second fastener disposed proximate the second end, wherein adjusting the second fastener deforms a cross sectional dimension of the second bore. An inner surface of the second bore has a female spline configuration to accept and engage a portion of the output shaft of the servo. |
US11011952B2 |
Motor driving device and motor driving method
A motor driving device includes N units (N is a natural number equal to or greater than 2) of inverters configured to control N units of motors, respectively, a×N units (a is a natural number) of cables configured to allow connection between the N units of inverters and the N units of motors, respectively, and a PWM signal output unit configured to transmit a PWM signal to the N units of inverters. The N units of inverters and the a×N units of cables are divided into M groups (M≤N). The PWM signal output unit outputs the PWM signal for driving at least one inverter belonging to each group of the M groups so that the PWM signals have phase differences shifted by 360 degrees/M among the groups. |
US11011951B2 |
Brushless electric motor system comprising a rotor, a stator and power electronic means
A brushless electric motor system having integrated power stages, said electric motor system comprising a rotor, a stator, a plurality of power stages, and a cooling system comprising a substantially flat hollow main cool body arranged to support the flowing of a cooling medium inside said hollow main cool body for cooling said main cool body, a base cooling plate connected to a first flat surface of said hollow main cool body and to said plurality of power stages for transferring heat between said plurality of power stages and said base cool plate, heat resistance inserts connected to said base cooling plate and said plurality of electrically excitable coils for transferring heat between said plurality of coils and said base cooling plate wherein said heat resistance inserts provide for a thermal conductivity, thereby creating a thermal buffer such that said electrically excitable coils are cooled less compared to said power stages, by said cooling system. |
US11011947B2 |
Stator and manufacturing method of stator
A stator includes a main yoke having a cylindrical shape with a bottom, an auxiliary yoke having a band shape arranged on an outer or inner circumferential wall surface of this main yoke, and a field magnet arranged inside the main yoke. The auxiliary yoke is arranged along a circumferential direction on the outer or inner circumferential wall surface of the main yoke. One end of the auxiliary yoke has at least one protrusion, and another end of the auxiliary yoke has at least one recess facing and engaging in a circumferential direction with the protrusion either on the inner or outer circumferential wall surface of the main yoke. |
US11011945B2 |
Systems and methods for wireless charging and wired data transfer
Disclosed are devices and methods for performing wireless charging of an electronic device and establishing a wired connection with the electronic device for data transfer. In some cases, a device includes a port that can supply power to charge the electronic device when a wired connection is detected between the device and the electronic device. The device can be configured such that the port does not supply power to the electronic device via wired connection when the device provides charging power to the electronic device wirelessly. Data transfer between the device and the electronic device can be performed via the port at the same time as wirelessly charging the electronic device. |
US11011944B2 |
Foreign matter detection device for non-contact power supply system
A foreign object detection device for a wireless power transfer system includes a storage unit that stores first coil device information including a shape and a size of a first coil facing surface, a height position from the reference surface, and a height position of a first device facing surface; an information acquiring unit that acquires second coil device information including a shape, a size, and a height position of a second coil facing surface, and a height position of a second device facing surface; a region identifying unit that identifies a magnetic field generation region generated between the first device facing surface and the second device facing surface during power feeding, based on the first coil device information and the second coil device information; and a foreign object detection unit that detects the presence or absence of a foreign object within the identified magnetic field generation region. |
US11011942B2 |
Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
The various embodiments described herein include methods, devices, and systems for wireless power transmission. In one aspect, a wireless power transmission system includes an antenna component configured to transmit and/or receive electromagnetic waves, such as power waves, the antenna component having at least two conductive plates positioned on a same plane, where: (1) the at least two conductive plates form a monopole antenna configured to transmit and/or receive electromagnetic waves in a first frequency range, (2) the at least two conductive plates are positioned such that a gap exists between the at least two conductive plates, thereby forming a capacitor, and (3) the at least two conductive plates and the gap form a loop antenna configured to transmit and/or receive electromagnetic waves in a second frequency range. |
US11011941B2 |
Method and apparatus for wireless power delivery tracking
A wireless power generating unit, includes, in part, a multitude of transmitting elements transmitting a multitude of RF signals to a wireless device, a backscatter RF receiver configured to receive the backscattered RF signal from the wireless device in response to the transmission of the RF signals, and a processor adapted to change the phases of the multitude of RF signals values in accordance with the strength of the received backscattered signal. The phases are changed to maximize the strength of the backscattered signal which may be modulated by varying a resistive load at the wireless device. The modulated backscattered signal may be encoded to carry information. The modulation frequency may be representative of the identity of the wireless device. The information may define the amount of RF power received by the wireless device. |
US11011936B2 |
Single-stage transmitter for wireless power transfer
A single-stage transmitter for wireless power transfer is provided. The transmitter includes a rectifier stage and an inverter stage sharing a first phase leg. The rectifier stage further includes a rectifying leg including two diodes connected in series, and a boost inductor coupling the first phase leg and the rectifying leg to an input port. The inverter stage further includes a second phase leg. Each phase leg includes two switches connected in series. The first and second phase legs are coupled to an output port. A bus capacitor is coupled across the first phase, second phase, and rectifying legs. A controller is programmed to determine first and second parameters, based on an output power at the output port, to simultaneously control the rectifier stage and the inverter stage to maintain constant bus voltage and achieve high power factor and low total harmonic distortion at the input port. |
US11011935B2 |
Smart wireless power/data transfer system
A system for providing electrical power to a remote device through wireless transmission and the system comprises a power transmitting data unit (PTDU) receiving electrical power from a power source and at least one power receiving data unit (PRDU), connected to the remote device, receiving electromagnetic waves and converting the electromagnetic waves to the electrical power. The PTDU further comprises a controller, a first resonator emitting electromagnetic waves, and a DC/AC converter receiving electrical power from a remote power source and providing a driving voltage at a driving frequency to the first resonator, the driving frequency being independent from a resonant frequency of the first resonator, and the controller monitors environment variables related to the emitting of electromagnetic waves. |
US11011933B2 |
Contactless electric power supply device
A contactless electric power supply device configured to widen a range in which power supply is possible to a moving body in a connection direction by supplying electric power from a supply coil to the moving body provided with the receiving coil in a contactless manner and connecting power supply modules provided with the supply coil, wherein, when at least one of the receiving coils is positioned to be able to receiver power from at least one of the supply coils, the contactless electric power supply device performs communication from the power supply module to an alternating module that supplies alternating current and performs communication from the alternating module to the power supply module, and causes a semiconductor switch provided on the power supply module to conduct electricity. |
US11011932B2 |
Mouse pad comprising wireless power transmission apparatus and mouse
A mouse pad includes a wireless power transmission apparatus including at least a first transmission coil and a second transmission coil and configured to wirelessly transmit power to a mouse placed on the mouse pad; and a controller configured to directly receive determination information for selecting one transmission coil among the first transmission coil and the second transmission coil according to a movement of the mouse on the mouse pad from a power supply connected to the mouse pad, and enable the second transmission coil and disable the first transmission coil when the movement of the mouse indicates the mouse is moving on the mouse pad from the first transmission coil to the second transmission coil. |
US11011926B2 |
Adaptive charger
According to at least one aspect of the present disclosure, a method of operating a, Uninterruptible Power Supply (UPS) is provided. The method includes receiving, in a first mode of operation, AC power at an input of the UPS, providing, in the first mode, the AC power to a charger and a clamp-charger circuit, charging, by the charger in the first mode, a UPS battery of the UPS with a first charging current derived from at least a portion of the AC power, charging, by the clamp-charger circuit in the first mode, the UPS battery with a second charging current derived from at least a portion of the AC power, providing, in a second mode of operation, output power at an output of the UPS derived from the UPS battery, and charging, by the clamp-charger circuit in the second mode, the UPS battery using a third charging current. |
US11011925B2 |
Battery charging apparatus and method, terminal, power adapter, and storage medium
A battery charging apparatus and method, a terminal, a power adapter, and a storage medium relate to the electronics field, where the method includes detecting temperature of a charging path in a battery charging apparatus, and when a power adapter supplying charging power for the battery charging apparatus works in a first working mode and a detected largest temperature value is greater than or equal to a preset threshold, instructing the power adapter to switch to a second working mode, decoupling a charging path corresponding to the first working mode, and coupling a charging path corresponding to the second working mode. This reduces impact of local heat accumulation on device performance during charging of a terminal battery, lengthens a device life span, and improves user experience. |
US11011924B2 |
Charging UAV using electric-field actuated generator within vicinity of powerlines
In accordance with a preferred embodiment, a charging station for charging of a UAV within a vicinity of powerlines includes an interface for electric coupling with the UAV for charging of a rechargeable battery of the UAV; a power supply having first and second electrodes separated and electrically insulated from each other for enabling a differential in voltage at the first and second electrodes resulting from a differential in electric field strength experienced at the first and second electrodes when within the vicinity of the powerlines; and electrical components electrically connected with the first and second electrodes and configured to establish a circuit with the rechargeable battery of the UAV when electronically coupled with the interface. The differential in voltage between the first and second electrodes causes electric current to flow through the electric circuit for charging the battery of the UAV. |
US11011920B2 |
Energy storage apparatus for engine start-up, method for controlling the same, and vehicle
An energy storage apparatus for engine start-up includes: an energy storage device, a first switch provided in a first energizing path to the energy storage device, a step-down circuit provided in a second energizing path to the energy storage device, and a controller. The controller turns the first switch on to discharge through the first energizing path at engine start-up, and turns the first switch off to select the second energizing path if an output voltage of a vehicle generator is higher than a predetermined voltage to cause the output voltage of the vehicle generator to be stepped down with the step-down circuit to charge the energy storage device. |
US11011918B2 |
Intelligent charging USB splitter
A smart charging solution is provided. The smart charging solution includes a power supply, a power line connected to the power supply and at least one universal serial bus (USB) splitter module and/or wireless charging module. The smart charging solution further includes a cable compensation integrated circuit (IC) for improved output voltage stabilization and a locking mechanism for furniture installation. |
US11011916B2 |
Link device for coupling energy storage devices having disparate chemistries
An energy storage system includes a first energy storage device having a first energy storage chemistry, a second energy storage device having a second energy storage chemistry different than the first energy storage chemistry, and a link device. The link device is configured to facilitate electrically coupling the second energy storage device to the first energy storage device, regulate a first power profile of first power provided by the first energy storage device to the second energy storage device such that the first energy storage device can selectively charge the second energy storage device, and regulate a second power profile of second power provided by the second energy storage device to the first energy storage device such that the first energy storage device can selectively draw power from the second energy storage device to increase a power capacity thereof. |
US11011913B2 |
Multifunction power management system
A dwelling power management system includes a smart power integrated node located at a dwelling and configured to transit information to and receive information from a remote server arrangement. The smart power integrated node selectively controls power applied to dwelling electrical power hardware components according to a recommended operating procedure (ROP). The system also includes a utility switch connected to the smart power integrated node, the utility switch configured to control distribution of electrical power received from a dwelling external power source. The smart power integrated node transmits dwelling power usage information and dwelling user preferences to the remote server arrangement that evaluates relevant information including dwelling power usage information and dwelling user preferences and dwelling external factors to develop an optimized ROP. The smart power integrated node operates according to the optimized ROP. |
US11011911B2 |
MMC converter and sub-modules thereof
An MMC converter linked to a HVDC system and a sub-module are proposed. The sub-module includes: first and second power semiconductor switches serially connected in the same direction, each including a semiconductor switch and a diode connected in anti-parallel to the semiconductor switch; a capacitor parallelly connected to the first and second power semiconductor switches serially connected; a first terminal connected to a first node between the first and second power semiconductor switches; a second terminal connected to a second node between the second power semiconductor switch and the capacitor; a third power semiconductor switch of which a side is connected to the second node, the third power semiconductor switch including a semiconductor switch and a diode connected in anti-parallel to the semiconductor switch; and a third terminal connected to a terminal of an AC grid system and connected to the other side of the third power semiconductor switch. |
US11011910B2 |
System and method for controlling a power storage device
The present invention relates to a local control system (6) configured to define a charge or discharge command made to a power storage device (5) on the basis of a charge or discharge instruction, sent by an overall control system (7), and the instantaneous power used by the power-using devices (4), such that the instantaneous power used by the power using devices (4) is always greater than the discharge power of the power storage device (5), so as to guarantee that the power stored by the power storage device (5) is not re-injected into the power distribution network (3). |
US11011907B2 |
Surge protection circuit with integrated surveillance
According to one aspect, a power device is provided. The power device includes an input having at least a first connection and a second connection, and configured to be coupled to an AC power source to receive input AC power, a converter circuit coupled to the input and configured to convert an input AC voltage to a DC voltage, a load output configured to provide output power derived from the DC voltage, a rectifier circuit coupled to the input and having a first output and a second output, and a first capacitor coupled to the first output of the rectifier circuit and the second output of the rectifier circuit. |
US11011904B2 |
Low-voltage circuit breaker and method
An embodiment of the invention relates to a method for ground fault detection for low-voltage three-phase AC circuits having a neutral conductor, in which first to fourth analog current signals of the first to third phase conductors and of the neutral conductor of the three-phase AC circuit are ascertained that each contain the level or an equivalent of the level of the current. The analog current signals are time-division multiplexed, subjected to a/d conversion, and a sequence of time-division-multiplexed first to fourth digital current values present in first to fourth successive time frames form first to fourth current signals. Three of the four digital current signals are interpolated to ascertain interpolated current values. The current value of the time frame of the uninterpolated current signal and the interpolated current values for the time frame of the uninterpolated current signal are used for discovering the ground fault. |
US11011902B2 |
Line connector, electrical line assembly and production process for an electrical connection
The present disclosure pertains to a line connector for permanently connecting two or more electrical lines, with at least one metallic receiving sleeve which partially accommodates one of the lines, which exhibits at least a first through-opening as well as a second through-opening for introducing a welding tool or for introducing the lines, and at least a second compression section located between the through-openings, in which the receiving sleeve can be radially compressed. Furthermore, the present disclosure pertains to an electrical line assembly as well as a process for connecting two or more electrical lines. |
US11011892B2 |
Pre-chamber spark plug and method for producing a pre-chamber spark plug
This disclosure relates to a pre-chamber spark plug including a housing, a ground electrode, a cap enclosing a pre-chamber, and a center electrode inside the pre-chamber, with transfer passages being formed in the cap. Center axes of the transfer passages diverge from a longitudinal direction of the main combustion chamber. A method of manufacturing such a pre-chamber spark plug is also disclosed. The method includes generating a housing, generating a ground electrode, and generating a cap enclosing a pre-chamber and having transfer passages formed in the cap. The method may further include generating a center electrode inside the pre-chamber, such that center axes of the transfer passages diverge from a longitudinal direction of the main combustion chamber. The method further includes generating the cap by a forming process from a raw material wire or from raw material bars. The method may further include compacting a material forming the cap. |
US11011891B2 |
Spark plug and ignition device of internal combustion engine
A spark plug has a housing of a cylindrical shape, an insulator of a cylindrical shape fitted into the inside of the housing, a center electrode and a ground electrode. No male screw part is formed on an outer peripheral surface of the housing. A housing support surface is formed on an inner peripheral surface of the housing. An outer peripheral surface of the insulator has an insulator support surface which is supported by the housing support surface in an axial direction of the spark plug. The housing has a pressure fitting part to be presses to a cylinder head of an internal combustion engine. A part of the pressure fitting part and a part of at least one of the housing support surface and the insulator support surface are arranged to be overlapped with each other in a radial direction of the spark plug. |
US11011890B2 |
Arrester and method for manufacturing an arrester
An arrester comprising a plurality of layers arranged one above another and comprising a cavity is specified, wherein the cavity extends through at least two of the layers and wherein electrodes adjoining the cavity are arranged between said two layers. Furthermore, a method for manufacturing an arrester is specified. |
US11011886B2 |
Packaging of a directly modulated laser chip in photonics module
A package structure of a directly modulated laser in a photonics module includes a thermoelectric cooler including multiple conductor traces formed in a cool surface. The package structure further includes a directly modulated laser (DML) chip having a first electrode being attached with the cool surface and a second electrode at a distance away from the cool surface. Additionally, the package structure includes an interposer having a plurality of through-holes formed between a first surface to a second surface. The first surface is mounted to the cool surface such that each through-hole is aligned with one of the multiple conductor traces and the second surface being leveled with the second electrode. Moreover, the package structure includes a driver disposed on the second surface of the interposer with at least a galvanically coupled output port coupled directly to the second electrode of the DML chip. |
US11011885B2 |
Laser device and light-source device
A laser device that is easily assembled and can be manufactured at low cost and a light-source device using the same are provided. The laser device includes a base plate portion, a semiconductor laser element placed on the base plate portion, a lid portion provided on the base plate portion, on which the semiconductor laser element is placed, and including a top plate, and a side wall portion covering a part or all of lateral sides of a space between the base plate portion and the top plate. The top plate is integrally formed with a part or all of the side wall portion. |
US11011882B2 |
Ultrafast electro-optic laser
An ultrafast electro-optic laser makes a stabilized comb and includes: a comb generator that produces a frequency comb; a dielectric resonant oscillator; a phase modulator in communication with the dielectric resonant oscillator; an intensity modulator in communication with the phase modulator; an optical tailor in communication with the comb generator and that produces tailored light; a filter cavity in communication with the intensity modulator; a pulse shaper in communication with the filter cavity; a highly nonlinear fiber and compressor in communication with the pulse shaper; an interferometer in communication with the optical tailor and that produces a difference frequency from the tailored light; and an electrical stabilizer in communication with the interferometer and the comb generator and that produces the stabilization signal with a stabilized local oscillator cavity that produces a stabilized local oscillator signal that is converted into the stabilization signal and communicated to the dielectric resonant oscillator. |
US11011880B2 |
Connecting cable, connecting cable assembly, and driving system
A connecting cable (20), comprising: a first end (21) which is arranged with a first interface (23) and a second interface (24) coupled with each other, and a second end (22) which is arranged with a third interface (25) having a centrosymmetric cross section, wherein every two interfaces of the first, the second and the third interfaces (23, 24, 25) are in electrical communication, and the third interface (25) is connected with at least one of the first and the second interfaces (23, 24) by pluggable connection. When supplying driving circuits for actuators, each subsequent actuator can be parallelly connected through one connecting cable (20) with another connecting cable (20) of preceding actuator. In such a manner, disorders of cables in the fields can be avoided, whereby the risk of making mistakes during assembly and maintenance can be lowered. The cables can be neatly arranged in the fields. |
US11011879B2 |
High-density patch panel
Disclosed is a high-density patch panel for use in a network incorporating high-density connections for increased efficiency, network operation and management. The high-density connections are incorporated into the patch panel, network switch, and cables that connects them, as well as into cable analyzers and printed circuit boards (PCBs) which allow for a complete network within a single computer running virtualization software. |
US11011874B2 |
Connector and connector assembly
A mating guide part formed with a mating recess part that has a substantially rectangular shaped in a plan view with a first high frequency connection unit mounted therein is included, the first high frequency connection unit includes a first high frequency terminal and a square tube shaped first high frequency shield with a substantially rectangular cross section extending in the mating direction enclosing around the first high frequency terminal, the second connector includes a counterpart mating guide part that has a substantially rectangular shape in a plan view with a second high frequency connection unit mounted therein, and the second high frequency connection unit includes a second high frequency terminal and a square tube shaped second high frequency shield with a substantially rectangular cross section that extends in the mating direction enclosing around the second high frequency terminal. |
US11011873B2 |
Connector assembly
The described connector assemblies are useful in wire-to-board systems. The assemblies which include a free-end connector that is attached to a twin-ax cable, and a fixed-end connector that is attached to a board. Embodiments include a free-end terminal set including a first signal terminal, a second signal terminal and a ground plate. The ground plate has a horseshoe shape and provides a ground terminal on opposing sides of the first and second signal terminals. Additionally, embodiments include a locking system between the free-end connector and fixed-end connector, and lead designs for the fixed-end connector utilizing a similar horseshoe shape as that used for the ground plate of the free-end connector. |
US11011869B2 |
Connector seal structure
The outer peripheral surface of a connector, to which a connector seal structure is applied, is provided with an engaging section that engages with a seal member. A rib of the engaging section locks the seal member in the inserting direction of the connector. The seal member is provided with a cutout section formed by cutting out a part of the rib, or a protruding section that engages with the rib. |
US11011868B2 |
Opening sealing member and electrical device
An opening sealing member 10 is for closing an opening 91 for work open in a vertical direction and includes a cover plate 20 configured to cover the opening 91 from above and a plug body 40 held on the cover plate 20 and including a sealing member 45 to be held in close contact with an inner peripheral surface of the opening 91 by the plug body being fit into the opening 91. An upper surface 21A of the cover plate 20 is provided with a gradient to cause water adhering to the cover plate 20 to flow down to outside of the cover plate 20. An upper surface 51A of the plug body 40 is provided with a gradient to cause water adhering to the upper surface 51A of the plug body 40 to flow down to outside of the opening 91. |
US11011862B2 |
Electrical connector
An electrical connector includes a body provided with multiple accommodating holes running through the body vertically, and multiple terminals correspondingly accommodated in the accommodating holes. Each terminal includes a main body member and multiple conductive members. The main body member has two long edges extending in a front-rear direction and two short edges. The conductive members are arranged in the front-rear direction. Each conductive member has a base electrically connected to the main body member and an elastic arm. The base has a vertical flat plate portion downward covering the main body member. The elastic arm extends upward from an upper end of the flat plate portion. Each elastic arm has at least one contact portion located in front of the corresponding base to be downward abutted by the electronic component and to move downward. Two adjacent terminals in the front-rear direction are separately provided in the front-rear direction. |
US11011861B1 |
Stacked receptacle connector assembly
A stacked receptacle connector assembly includes a receptacle cage configured to be mounted to a circuit board, a lower communication connector assembly received in the receptacle cage, and an upper communication connector assembly stacked in the receptacle cage above the lower communication connector assembly. The receptacle cage has a divider between an upper and lower module channels receiving upper and lower pluggable modules. The lower communication connector assembly includes a lower communication connector. The upper communication connector assembly includes a paddle card, an upper communication connector mounted to the paddle card, and a cable assembly having cables electrically connected to the paddle card and extending from the paddle card. |
US11011859B1 |
Plug-type connector with insulation displacement contact
A plug-type connector for connecting a cable with at least one wire to a respective plug contact includes a first housing part, a connection block and a second housing part. A hinge connection allows the second housing part to pivot out of a first position into a second position towards the first housing part. In the first position the wire can be inserted into a wire channel of the connection block and, in the second position, the second housing part presses the connection block against the insulation displacement contact. The second housing part can move into a third position in which the connection block is fully pressed onto the insulation displacement contact. The hinge connection allows an insertion movement from the second into the third position such that the second housing part inserts the wire into the insulation displacement contact in an exclusively translatory manner. |
US11011858B2 |
Multiple bussed terminations
A multiple bussed termination for connecting a plurality of wires comprises a plurality of splices each having a base and a region for holding some of the plurality of wires. The splices are connected to each other by a conductive strip extending from the base of a first splice of the plurality of splices to a remainder of the plurality of splices. The splices are each capable of being crimped to some of the plurality of wires. |
US11011857B2 |
Wire termination using fixturing elements
A method for forming a connection between a wire and a pin includes placing a fixturing element over the pin, capturing the wire between an upper surface and a lower surface of the fixturing element, compressing the fixturing element to hold the wire around the pin and forming a fixed connection between the wire and the pin. A system for forming an electrical connection includes a pin, a fixturing element disposed around the pin, and a wire placed around pin and sandwiched between an upper surface and a lower surface of the fixturing element. |
US11011856B2 |
Dual vertical beam cellular array
A dual vertical beam cellular array is disclosed herein. In one embodiment, a cellular array includes discrete radiators coupled in pairs and arranged in-line. The radiators are connected to hybrid couplers configured to sum the output from the pairs of discrete radiators. A first power distribution network is configured to receive a first output from the hybrid couplers and produce a first beam, and a second power distribution network configured to receive a second output from the hybrid couplers and produce a second beam. According to some embodiments, the first beam is a main beam with high gain and the second beam is a coverage beam with a large coverage area. |
US11011855B2 |
Antenna system
An antenna system includes a dielectric substrate, a first dipole antenna element, a second dipole antenna element, a first additional metal element, a second additional metal element, first conductive via elements, and second conductive via elements. The first dipole antenna element and the first additional metal element are disposed on a first surface of the dielectric substrate. The first dipole antenna element includes a first radiation element and a second radiation element. The second dipole antenna element and the second additional metal element are disposed on a second surface of the dielectric substrate. The second dipole antenna element includes a third radiation element and a fourth radiation element. The first additional metal element is coupled through the first conductive via elements to the third radiation element. The second additional metal element is coupled through the second conductive via elements to the first radiation element. |
US11011854B2 |
Polymer dispersed/shear aligned phase modulator device
An antenna comprising: a variable dielectric constant (VDC) layer; a plurality of radiating patches provided over the VDC layer; a plurality of signal lines, each terminating in alignment below one of the radiating patches; a plurality of control lines, each corresponding to one of the signal lines; a ground plane; wherein the VDC layer comprises: a polymer dispersed liquid crystal (PDLC) layer or a PDLC layer in a polymerized and sheared state. |
US11011850B2 |
Antenna apparatus and electronic device
An antenna apparatus and an electronic device are provided. The antenna apparatus includes an antenna radiator, a support member, and a first extension portion. The antenna radiator includes a radiator body and a power feeding portion. The radiator body includes a first end and a second end. The power feeding portion is disposed at the first end and configured to receive an excitation signal. The support member includes a first surface, a second surface opposite to the second surface, and a side surface disposed between the first surface and the second surface and adjacent to the radiator body. The first extension portion is located adjacent to the second end and electrically connected to the support member through the side surface. The first extension portion, the side surface, and the antenna radiator cooperatively define a gap region constituting at least part of a clearance area of the antenna radiator. |
US11011848B2 |
Quad-tapered slot antenna with thinned blades
A dual-polarized tapered slot antenna (TSA) comprising: a dielectric bracket; a first pair of conductive blades mounted to the dielectric bracket so as to define a first tapered slot between edges of the conductive blades of the first pair thereby forming a horizontally-polarized TSA; a second pair of conductive blades mounted in the dielectric bracket orthogonal to the first pair so as to define a second tapered slot between edges of the conductive blades of the second pair thereby forming a vertically-polarized TSA; and wherein at least part of each of the slot-defining edges of the conductive blades has a thickness that is non-tapered and stepwise-reduced from the thickness of a remainder of the corresponding blade. |
US11011841B2 |
Method of eliminating resonances in multiband radiating arrays
A multiband radiating array according to the present invention includes a vertical column of lower band dipole elements and a vertical column of higher band dipole elements. The lower band dipole elements operate at a lower operational frequency band, and the lower band dipole elements have dipole arms that combine to be about one half of a wavelength of the lower operational frequency band midpoint frequency. The higher band dipole elements operate at a higher frequency band, and the higher band dipole elements have dipole arms that combine to be about three quarters of a wavelength of the higher operational frequency band midpoint frequency. The higher band radiating elements are supported above a reflector by higher band feed boards. A combination of the higher band feed boards and higher band dipole arms do not resonate in the lower operational frequency band. |
US11011838B2 |
Heterogeneous network optimization utilizing modal antenna techniques
A communication system is described where multiple communication networks are simultaneously accessible from a plurality of fixed and/or mobile communication devices. A Master and Slave hierarchy is implemented among the communication devices to improve communication properties on one or multiple networks. A network system controller is implemented to select the network with optimal communication characteristics for subsets of communication devices as well as assigning Master status to a communication device within these subsets. |
US11011836B2 |
Adjacent antenna interference mitigation
A system for mitigating radio frequency interference includes a multiple patch antenna array including a multiplicity of patch antenna elements. The multiple patch antenna array is positioned relative to an interfering antenna such that signals from the interfering antenna cause interference with the multiple patch antenna array. The system also includes an auxiliary antenna positioned relative to the multiple patch antenna array. The system additionally includes a device to generate a spatial null in a direction to the interfering antenna from the multiple patch antenna array in response to a first signal from the auxiliary antenna and a second signal from the multiple patch antenna array. The first signal and the second signal are generated in response to a transmitted signal being received by the auxiliary antenna and the multiple patch antenna array. The spatial null permits simultaneous operation of the multiple patch antenna array and the interfering antenna. |
US11011835B2 |
Adjustable-tilt housing with flattened dome shape, array antenna, and bracket mount
Radio devices for wireless transmission including an integrated adjustable mount allowing mounting to a pole or stand and adjustment of the angle of the device (e.g., the altitude). The device may include a compact array antenna having a high gain configured to operate in, for example, the 5.15 to 5.85 GHz band and/or the 2.40-2.48 GHz band. The antenna emitters may be arranged in a separate plane from a plane containing the antenna feed connecting the emitting elements and also from a ground plane. The antenna array may be contained within a protective weatherproof housing along with the radio control circuitry. |
US11011828B2 |
Apparatus and method for arranging antennas supporting millimeter wave frequency bands
Disclosed is an electronic device. The electronic device comprises a housing forming an exterior of the electronic device, and including a front surface, a back surface facing away from the front surface, and a side surface substantially perpendicular to the front surface and the back surface; a first conductive plate positioned towards the back surface having a first antenna array disposed on the first conductive plate, the first antenna array configured to radiate a signal in a first frequency band toward the back surface; a second antenna array connected to the conductive plate, the second antenna array configured to radiate a signal in a second frequency band at least partially different from the first frequency band toward the side surface, and having an antenna element at least partially different from the first antenna array, a second conductive plate positioned towards the side surface having a third antenna array disposed on the second conductive plate, the third antenna array configured to radiate the signal in the second frequency band toward the side surface, and a fourth antenna array connected to the second conductive plate and configured to radiate the signal in the first frequency band toward the back surface. |
US11011825B2 |
Antenna assembly comprising antennas formed on inclined side surface of printed circuit board and electronic device comprising the same
An inclined antenna assembly and an electronic device including the antenna assembly are provided. The inclined antenna assembly and an electronic device include a communication circuit and a Printed Circuit Board (PCB) including a front face, a back face on which the communication circuit is disposed, and at least one side face having an inclined manner between the front face and the back face. According to various embodiments, the PCB may include one or more antennas formed on a region corresponding to at least one side face. |
US11011822B2 |
Antenna apparatus, circuit board, and arrangement method
An antenna apparatus includes a plurality of circuit boards, an antenna element, and an electronic component. A plurality of the antenna elements are arranged along the surfaces of the plurality of circuit boards. The electronic component is arranged along the surfaces of the circuit boards, configured to be larger in size in the thickness direction of the circuit boards than a gap between the antenna elements, and connected to the arranged antenna elements via a high-frequency transmission circuit. The plurality of circuit boards are arranged with component mounting surfaces arranged oppositely to each other and, for each pair, the positions corresponding to the electronic component are misaligned in the surface direction of the circuit boards. |
US11011816B2 |
Radar assembly with a slot transition through a printed circuit board
A radar assembly includes a monolithic-microwave-integrated-circuit (MMIC), an antenna-element, and a single printed-circuit-board (PCB). The MMIC includes an arrangement of solder-balls configured to couple radar-signals into or out of the MMIC. The antenna-element includes a ridge-air-waveguide configured to propagate radar-signals to or from one or more radiation-slots of the antenna-element. The PCB is directly attached to the MMIC. The PCB includes a transition-feature configured to couple radar-signals between the arrangement of solder-balls and the ridge-air-waveguide. The transition-feature is characterized as a slot that extends between the arrangement of solder-balls and the ridge-air-waveguide. The transition-feature may be an L-shaped-slot or a U-shaped-slot. The assembly is designed/configured to be compatible with known printed circuit board fabrication processes. |
US11011815B2 |
Circularly-polarized dielectric waveguide launch for millimeter-wave data communication
A wave communication system includes an integrated circuit and a multilayered substrate. The multilayered substrate is electrically coupled to the integrated circuit. The multilayered substrate includes an antenna structure configured to transmit a circularly polarized wave in response to signals from the integrated circuit. |
US11011814B2 |
Coupling comprising a conductive wire embedded in a post-wall waveguide and extending into a hollow tube waveguide
A transmission line includes a post-wall waveguide which includes a dielectric substrate on which a pair of post-walls is formed and a first conductor layer and a second conductor layer opposed to each other with the dielectric substrate interposed therebetween and in which a region surrounded by the pair of post-walls, the first conductor layer, and the second conductor layer is a waveguide region, a waveguide tube having a hollow rectangular shape, being connected with the first conductor layer so as to cover an opening portion formed in a side wall, and in which an inside communicates with the waveguide region through an opening formed in the first conductor layer, and a wire member which is arranged such that through the opening, a first end is located inside the dielectric substrate and a second end is located in the waveguide tube. |
US11011811B2 |
Low voltage battery protector
The present invention discloses a low voltage battery protector, interposed between a battery and a cable connected thereto, including: a main body having an upper end, a lower end substantially opposite to the upper end, and a frame connecting the upper end to the lower end. The frame further includes a mounting surface. The protector incudes a first contact extending from the top end; a supporting portion extending substantially perpendicularly from the mounting surface; a second contact assembled with the supporting portion. The second contact includes a connecting portion pivotally assembled with the supporting portion. Such a low voltage battery protector provides the user with great flexibility and convenience to choose an adaptive position to mount the protector, and provides the user with more space to mount the protector. |
US11011808B2 |
Energy storage device and method for manufacturing energy storage device
An energy storage device, includes a terminal; an electrode assembly having a body portion and a tab portion projecting from the body portion; and a current collector electrically connecting the terminal and the tab portion with each other. The current collector is configured such that a plate portion and a second plate portion which opposedly face each other are continuously formed with each other with curved portion interposed therebetween, and a thickness of the curved portion is set smaller than a thickness of the first plate portion and a thickness of the second plate portion. |
US11011805B2 |
Electrode
Some examples include an electrode for an electrochemical cell including a plate portion and a tab portion. The plate portion includes a plate body, a perimeter body edge, and an inset area recessed into the plate body from the perimeter body edge. The inset area is defined by an inset edge. The tab portion extends from the plate portion. The tab portion includes a tab body and tab body edge. The inset edge extends between the perimeter body edge and the tab body edge. |
US11011804B2 |
Battery module
Provided is a battery module in which weldability between electrode leads and/or between an electrode lead and a bus bar is improved. The battery module includes: a cell assembly that includes a plurality of secondary batteries stacked in at least one direction, respectively including electrode leads, and electrically connected to each other via a connection between the electrode leads; and at least one bus bar that includes an electrically conductive material and is electrically connected by contacting the electrode leads of the plurality of secondary batteries, wherein at least one of the electrode leads is combined and fixed to at least one of another electrode lead and the at least one bus bar, which are contacted by the at least one of the electrode leads, via a welding spot formed in a tornado shape. |
US11011803B2 |
Connection assembly for a battery pack assembly, the battery pack assembly, and a method of assembling the battery pack assembly
A connection assembly includes a busbar defining a first hole, and a circuit board defining a second hole that aligns with the first hole. A battery pack assembly includes the connection assembly. The connection assembly includes a pin having a first body portion and a second body portion. The first body portion is disposed in the first hole and the second body portion is disposed in the second hole. The first body portion defines a first eyelet to allow the first body portion to flex as the first body portion engages the busbar inside the first hole. The second body portion defines a second eyelet to allow the second body portion to flex as the second body portion engages the circuit board inside the second hole. A method of assembling the battery pack assembly includes a first material molded to the busbar to form a frame attached to the busbar. |
US11011796B2 |
Electrolyte separators including lithium borohydride and composite electrolyte separators of lithium-stuffed garnet and lithium borohydride
Set forth herein are compositions comprising A.(LiBH4).B.(LiX).C.(LiNH2), wherein X is fluorine, bromine, chloride, iodine, or a combination thereof, and wherein 0.1≤A≤3, 0.1≤B≤4, and 0≤C≤9 that are suitable for use as solid electrolyte separators in lithium electrochemical devices. Also set forth herein are methods of making A.(LiBH4).B.(LiX).C.(LiNH2) compositions. Also disclosed herein are electrochemical devices which incorporate A.(LiBH4).B.(LiX).C.(LiNH2) compositions and other materials. |
US11011795B2 |
Barrier for thin film lithium batteries made on flexible substrates and related methods
A thin film solid state battery configured with barrier regions formed on a flexible substrate member and method. The method includes forming a bottom thin film barrier material overlying and directly contacting a surface region of a substrate. A first current collector region can be formed overlying the bottom barrier material and forming a first cathode material overlying the first current collector region. A first electrolyte can be formed overlying the first cathode material, and a second current collector region can be formed overlying the first anode material. The method also includes forming an intermediary thin film barrier material overlying the second current collector region and forming a top thin film barrier material overlying the second electrochemical cell. The solid state battery can comprise the elements described in the method of fabrication. |
US11011789B2 |
Package sealing structure, preparation method thereof and flexible packaging battery
The present application provides a package sealing structure, a preparation method thereof and a flexible packaging battery. In a package peripheral region of the package sealing structure, the insulating heat sealing layers of the two layers of packaging film face each other and are melted into one body to form an insulating fusion layer which seals and bonds the two layers of the packaging film together. The insulating fusion layer is formed with an overflow portion that overflows from the package peripheral region of the package sealing structure to the outer end surfaces of the core metal layers of the two layers of packaging film and covers completely the outer end surfaces of the core metal layer of the two layers of packaging film, so that the outer end surfaces of the core metal layers are insulated from the peripheral environment. |
US11011787B2 |
Hermetic thin film electrochemical cells housed in a ceramic casing and activated with a solid electrolyte
A miniature electrochemical cell having a total volume that is less than 0.5 cc is described. The cell casing is formed by joining two ceramic casing halves together. One or both casing halves are machined from ceramic to provide a recess that is sized and shaped to contain the electrode assembly. The opposite polarity terminals are metal feedthroughs, such as of gold, and are formed by brazing gold into openings machined into one or both ceramic casing halves. The two ceramic casing halves are separated from each other by a metal interlayer, such as of gold, bonded to a thin film metallization adhesion layer, such as of titanium, that contacts an edge periphery of each ceramic casing half. A solid electrolyte (LixPOyNz) is used to activate the electrode assembly. |
US11011782B2 |
Methods for self-heating induced healing of metal dendrites
A method of prolonging service life of an energy storage device such as a lithium-ion battery includes temporarily operating the battery at an elevated current density. Cycling of lithium-ion batteries at regular current densities results in the generation of lithium-metal dendrites at the surface of the anode, particularly in batteries where the anode is lithium metal. The lithium metal dendrites pose a threat to damage other components of the battery, such as separators, as well as causing an electrical short. Operating the battery in bursts at the elevated current density results in self-heating at the anode surface that merges adjacent lithium-metal dendrites and an overall smoothing of the anode surface. This method is also applicable to other alkali-metal-based batteries and chemistries. |
US11011776B2 |
Lithium-ion-conductive ceramic material, lithium-ion-conductive ceramic sintered body, and lithium battery
[OBJECTS]An object of the present invention is to provide a lithium-ion-conductive ceramic material having a target ion conductivity, while suppressing production cost. Another object is to provide a high-performance lithium battery, while suppressing production cost, by virtue of having the lithium-ion-conductive ceramic material.The lithium-ion-conductive ceramic material contains Li, La, and Zr, as well as at least one of Mg and A (wherein A represents at least one element selected from the group consisting of Ca, Sr, and Ba) and which has a garnet-type crystal structure, wherein the elements contained in the ceramic material satisfy the following mole ratio conditions (1) to (3): (1) 1.33≤Li/(La+A)≤3; (2) 0 |
US11011775B2 |
Sulfide solid electrolyte material, sulfide glass, solid state lithium battery, and method for producing sulfide solid electrolyte material
A sulfide solid electrolyte material having a high Li ion conductivity is provided. A sulfide solid electrolyte material includes Li, P, I and S, having peaks at 2θ=20.2° and 23.6°, not having peaks at 2θ=21.0° and 28.0° in an X-ray diffraction measurement using a CuKα ray, and having a half width of the peak at 2θ=20.2° of 0.51° or less. |
US11011774B2 |
Lithium-ion secondary battery
There is provided a lithium ion secondary battery having excellent cycle characteristics at a high temperature and comprising lithium nickel composite oxides, in which the Ni content is high, in a positive electrode. The present invention relates to a lithium ion secondary battery having a positive electrode, a negative electrode and an electrolyte solution, wherein the positive electrode comprises a lithium nickel complex oxide denoted by the general formula, LiNixCoyMnzO2, wherein x, y, and z are respectively 0.75≤x≤0.85, 0.05≤y≤0.15, and 0.10≤z≤0.20. |
US11011773B2 |
Devices and methods for reducing battery defects
Solid-state battery structures and methods of manufacturing solid-state batteries are disclosed. More particularly, embodiments relate to solid-state batteries having one or more subdivided electrode layers. Other embodiments are also described and claimed. |
US11011767B2 |
Fuel cell system and method of controlling fuel cell system
In a fuel cell system and a method of controlling the fuel cell system, correlation temperature correlated to temperature of a fuel cell stack is obtained. Further, temperature of a heating unit provided at the bottom of a water storage area of a gas liquid separator is estimated. The presence/absence of water in the gas liquid separator is determined based on the correlation temperature of the fuel cell stack and the temperature of the heating unit. |
US11011765B2 |
Fuel cell based power generator
A fuel cell based power generator includes a fuel cell element, an ambient air path configured to receive ambient air and provide the ambient air across a cathode side of the fuel cell element, receive water from the fuel cell element and provide wet air to the water exchanger element, and a fuel cell cooling mechanism associated with the fuel cell element, separate from the ambient air path and configured to cool the fuel cell element. |
US11011764B2 |
Fuel cell system with a single coolant loop
Embodiments of the present invention provide a single coolant loop (40) that can be used for cooling at least two systems (100, 26) that are generally operable at two different temperatures. Rather than providing two separate cooling loops that can provide the two different cooling temperatures, there is provided a single cooling loop (40) that can route, harness, and mix heated coolant so that the two system can be served by a single loop. |
US11011759B2 |
Redox flow battery
A redox flow battery includes a flow path frame provided with a flow path conveying an electrolyte introduced into a fixing frame having a flow path for introducing and discharging an electrolyte supplied from outside. The flow path frame is provided with an inflow path connected to the flow path of the fixing frame and an outflow path discharging the electrolyte to an impregnation part conveying the electrolyte to a reaction surface of a membrane, thereby preventing leakage of the electrolyte that is caused by a difference between supply pressure and circulation pressure of the electrolyte. |
US11011757B2 |
Separator for fuel cell, fuel cell, and manufacturing method of separator for fuel cell
A separator for a fuel cell, includes: a metal plate; a first electro-conductive resin layer formed on a first surface side of the metal plate; a second electro-conductive resin layer formed on a second surface side of the metal plate opposite to the first surface side; and a flow channel in which the metal plate and the first and second electro-conductive resin layers have a wavy shape in cross section. |
US11011756B2 |
Nanofiber-based bipolar membranes, fabricating methods and applications of same
A bipolar membrane comprising a cation exchange mat of one or more cation exchange polymers, an anion exchange mat of one or more anion exchange polymers, and an internal 3D bipolar interface, disposed between the cation and anion exchange layers, including a mixture of at least one cation exchange polymer and at least one anion exchange polymer, such that an interface of the at least one cation exchange polymer and the at least one anion exchange polymer is the internal 3D bipolar interface that has a large area, and the at least one cation exchange polymer in the 3D bipolar interface is connected to the one or more cation exchange polymers of the cation exchange layer, and the at least one anion exchange polymer in the 3D bipolar interface is connected to the one or more anion exchange polymers of the anion exchange layer. |
US11011755B2 |
Holey graphene framework composites for ultra-high rate energy storage and methods of preparing such composites
A method of forming an electrode material includes: (1) loading an electrochemically active material onto graphene sheets; (2) combining the electrochemically active material-loaded graphene sheets with holey graphene oxide sheets to form a mixture; and (3) treating the mixture under reducing conditions to form a composite including a graphene framework loaded with the electrochemically active material. |
US11011751B2 |
Positive electrode active material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
A compound having a layered structure that is used for a positive electrode active material for a lithium ion secondary battery achieves both a high energy density and a high cyclability. The positive electrode active material for a lithium ion secondary battery contains a compound having a layered structure belonging to a space group R-3m, in which the compound having a layered structure is represented by a compositional formula: Li1+aM1O2+α wherein M1 represents a metal element or metal elements other than Li, and contains at least Ni, −0.03≤a≤0.10, and −0.1<α<0.1, a proportion of Ni in M1 is larger than 70 atom %, and a site occupancy of a transition metal or transition metals at a 3a site obtained by structural analysis by a Rietveld method is less than 2%, and a content of residual lithium hydroxide in the positive electrode active material is 1 mass % or less. |
US11011748B2 |
Electroactive materials for metal-ion batteries
This invention relates to particulate electroactive materials comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework including micropores and optional mesopores having a total volume of at least 0.7 cm3/g and up to 2 cm3/g, wherein at least half of the total micropore and mesopore volume is in the form of pores having a diameter of no more than 1.5 nm; and (b) silicon located within the micropores and optional mesopores of the porous carbon framework in a defined amount relative to the total volume of the micropores and optional mesopores. |
US11011746B2 |
Composite cathode active material for lithium battery, cathode for lithium battery including the same, and lithium battery including the cathode
A composite cathode active material for a lithium battery including: a lithium composite oxide; and a coating layer including a metal oxide and a lithium fluoride, (LiF) wherein the coating layer is disposed on at least a portion of a surface of the lithium composite oxide. |
US11011740B2 |
Positive electrode material, positive electrode, battery, battery pack, electronic device, electric vehicle, electric storage device, and electric power system
A battery includes a positive electrode, a negative electrode, and an electrolyte. The positive electrode includes LixAl2(OH)7-y.zH2O where 0.9 |
US11011736B2 |
Vent housing for advanced batteries
A system includes a vent housing configured to be installed on a lower housing of a battery module at a first side of the vent housing. The vent housing has a main body having an opening on a second side of the vent housing and an internal chamber coupled to the opening. The internal chamber includes a first wall having an internal burst vent configured to open at a first pressure threshold and a second wall having a ventilation vent comprising a gas-selective permeability layer. |
US11011735B2 |
Method and apparatus for producing flexible OLED device
In a flexible OLED device production method, after an intermediate region and flexible substrate region of a plastic film of a multilayer stack are divided, the interface between the flexible substrate region and glass base is irradiated with laser light. The multilayer stack is separated into first and second portions while the multilayer stack is kept in contact with the stage. The first portion includes a plurality of OLED devices in contact with the stage. The OLED devices include a plurality of functional layer regions and the flexible substrate region. The second portion includes the glass base and intermediate region. The laser light is formed from a plurality of arranged laser light sources and irradiation intensity for at least part of the interface between the intermediate region and the glass base is lower than the irradiation intensity for the interface between the flexible substrate region and the glass base. |
US11011734B2 |
Manufacturing method for flexible display panel and flexible display device
A flexible display panel and a method for manufacturing the same, and a flexible display device and a method for manufacturing the same are provided. The method for manufacturing a flexible display panel according to the disclosure includes: forming an adhesion-variable back film on a non-light-exiting surface of a flexible display substrate; cutting the adhesion-variable back film along a boundary of a to-be-removed region; removing the adhesion-variable back film in the to-be-removed region; and increasing adhesion of the adhesion-variable back film to obtain the flexible display panel. |
US11011720B2 |
Semiconductor nanocrystal particles, production methods thereof, and devices including the same
A quantum dot including a core including a first semiconductor nanocrystal including zinc, tellurium, and selenium and a semiconductor nanocrystal shell disposed on the core and including zinc, tellurium, selenium, and sulfur, a production method thereof, and an electronic device including the same. The quantum dot is free of cadmium, the quantum dot has a mole ratio of tellurium with respect to selenium of less than or equal to about 0.06:1, a photoluminescence peak wavelength of the quantum dot is greater than or equal to about 450 nm and less than or equal to about 470 nanometers (nm), and a full width at half maximum (FWHM) of a photoluminescence peak of the quantum dot is less than or equal to about 41 nm. |
US11011717B2 |
Photodetectors and photovoltaic devices
Embodiments of the present disclosure describe a photodetector and/or photovoltaic device comprising a semiconducting substrate and a solution including at least GQD and PEDOT:PSS, the solution deposited as a layer on the semiconducting substrate. Embodiments of the present disclosure further describe a method of fabricating a photodetector and/or photovoltaic device comprising contacting an amount of GQD with PEDOT:PSS sufficient to form a solution; and depositing the solution as a layer on a semiconducting substrate. |
US11011713B2 |
Display module and electronic apparatus
The present disclosure provides a display module and an electronic apparatus. The display module includes: a flexible substrate having: a first surface configured to form a displaying structure, and a second surface opposite to the first surface; and a protective part located on the second surface and having a supporting portion. The flexible substrate includes: a substrate body having a first subsurface which is a portion of the second surface corresponding to the substrate body; and a bent portion located at at least one side of the substrate body, bent towards the first subsurface of the substrate body, and having a second subsurface which is a portion of the second surface corresponding to the bent portion. The second subsurface is supported by the supporting portion such that a radius of curvature of the bent portion : is not less than a minimal radius of curvature which the flexible substrate is capable of withstanding. |
US11011701B2 |
Switching device formed from correlated electron material
Subject matter disclosed herein may relate to fabrication of a correlated electron material (CEM) switch. In embodiments, processes are described in which conductive traces may be formed on or over an insulating material. Responsive to forming voids in the insulating material, localized portions of the conductive traces in contact with the voids may be exposed to gaseous oxidizing agents, which may convert the localized portions of the conductive traces to a CEM. In embodiments, an electrode material may be deposited within the voids to contact the localized portion of conductive trace converted to the CEM. |
US11011697B2 |
Faceted sidewall magnetic tunnel junction structure
A magnetic tunnel junction (MTJ) structure having faceted sidewalls is formed on a conductive landing pad that is present on a surface of an electrically conductive structure embedded in a dielectric material layer. No metal ions are re-sputtered onto the sidewalls of the MTJ structure during the patterning of the MTJ material stack that provides the MTJ structure. The absence of re-sputtered metal on the MTJ structure sidewalls reduces the risk of shorts. |
US11011695B2 |
Piezoelectric vibration device
A piezoelectric vibration device includes an element mounting member provided with a recessed part, a vibration element held in the recessed part, and a lid closing the recessed part. The element mounting member includes an insulating base body including an inner bottom surface of the recessed part and an inner circumferential surface of the recessed part surrounding the inner bottom surface, a pair of signal terminals which are located on an outer surface of the base body and are electrically connected to the vibration element, a GND terminal which is located on the outer surface of the base body, and a shield film which is superposed on the inner circumferential surface of the recessed part and is electrically connected to the GND terminal. |
US11011694B2 |
Vibrating device and tactile sense presenting device
A tactile sense presenting device that includes a control unit, a driving unit, and a vibrating device. The vibrating device includes a diaphragm, a piezoelectric film that is bridged over the diaphragm and stretches and contracts in a planar direction, and spacers that are provided in a gap portion, in which the piezoelectric film and the diaphragm face each other, and are fixed to the diaphragm. |
US11011693B2 |
Integrated quantum circuit assemblies for cooling apparatus
Embodiments of the present disclosure describe integrated quantum circuit assemblies that include quantum circuit components pre-packaged, or integrated, with some other electronic components and mechanical attachment means for easy inclusion within a cooling apparatus. An example integrated quantum circuit assembly includes a package and mechanical attachment means for securing the package within a cryogenic chamber of a cooling apparatus. The package includes a plurality of components, such as a quantum circuit component, an attenuator, and a directional coupler, which are integral to the package. Such an integrated assembly may significantly speed up installation and may help develop systems for rapidly bringing up quantum computers. |
US11011692B2 |
Thermoelectric device utilizing non-zero berry curvature
Thermoelectric devices and methods of using thermoelectric devices. A thermoelectric device includes a thermoelectric element comprised of a material having a non-zero Berry curvature. The device may operate as a Nernst generator that generates electricity in response to application of a temperature gradient to the thermoelectric element, or as an Ettingshausen cooler that pumps heat into or out of an object to be heated or cooled in response to application of a current to the thermoelectric element. In either application, the non-zero Berry curvature of the material allows the device to operate without an externally applied magnetic field. |
US11011690B2 |
LED (light-emitting diode) module and a light apparatus
An LED chip module includes a first electrode plate and a second electrode plate. A first set of LED chip and a second set of LED chip are respectively set on the first electrode plate and the second electrode plate. The second set of LED chip is electrically connected to the first set of LED chip. A plastic shell is fixedly connected to the first electrode plate and the second electrode plate by injection molding to make the first electrode plate and the second electrode plate keep a predetermined space between each other and make a lower surface of the first electrode plate and a lower surface of the second electrode plate be respectively connected to two different polarity terminals of the power supply to drive the first set of LED chip and the second set of LED chip to emit light. |
US11011689B2 |
Quantum dot LED package and quantum dot LED module including the same
A quantum dot LED package is disclosed. The quantum dot LED package includes: a heat dissipating reflector having a through cavity; a quantum dot plate accommodated in the upper portion of the through cavity; an LED chip accommodated in the lower portion of the through cavity and whose top surface is coupled to the lower surface of the quantum dot plate; electrode pads disposed on the lower surface of the LED chip and protruding more downward than the lower surface of the heat dissipating reflector; and a resin part formed in the through cavity to fix between the LED chip and the reflector and between the quantum dot plate and the reflector. |
US11011680B2 |
Light-emitting device
A light-emitting device includes a semiconductor structure including a first semiconductor layer, a second semiconductor layer, and an active layer formed between the first semiconductor layer and the second semiconductor layer; a via penetrating the second semiconductor layer and the active layer to expose a surface of the first semiconductor layer; a first electrode formed in the via and on the second semiconductor layer; a second electrode formed on the second semiconductor layer; and an insulating structure covering the first electrode, the second electrode and the semiconductor structure and including a first opening to expose the first electrode and a second opening to expose the second electrode, wherein the first electrode and the second electrode respectively include a metal layer contacting the insulating layer, the metal layer includes a material including a surface tension value larger than 1500 dyne/cm and a standard reduction potential larger than 0.3 V. |
US11011678B2 |
Group 13 element nitride layer, free-standing substrate and functional element
A layer of a crystal of a group 13 nitride selected from gallium nitride, aluminum nitride, indium nitride and the mixed crystals thereof has an upper surface and a bottom surface. The upper surface of the crystal layer of the group 13 nitride includes a linear high-luminance light-emitting part and a low-luminance light-emitting region adjacent to the high-luminance light-emitting part, observed by cathode luminescence. The high-luminance light-emitting part includes a portion extending along an m-plane of the crystal of the group 13 nitride. |
US11011677B2 |
Display device
A display device is provided. The display device includes a substrate and a light-emitting unit disposed on the substrate. The light-emitting unit includes a transporting layer having a first semiconductor region and a second semiconductor region, and a conductive layer having a contact region that is in contact with the second semiconductor region. The distance between an edge of the contact region and an edge of the transporting layer is greater than or equal to 0.1 μm. |
US11011675B2 |
Semiconductor device and semiconductor device package including same
Disclosed in an embodiment are a semiconductor device and a semiconductor device package including the same, the semiconductor device comprising: a semiconductor structure including a first light emitting unit and a second light emitting unit; a first electrode for electrically connecting a first conductive type semiconductor layer of the first light emitting unit with a first conductive type semiconductor layer of the second light emitting unit; and a second electrode for electrically connecting a second conductive type semiconductor layer of the first light emitting unit with a second conductive type semiconductor layer of the second light emitting unit, wherein: the first electrode includes a first pad arranged on the first light emitting unit, a first branch electrode arranged on the first light emitting unit, and a first extension electrode arranged on the second light emitting unit; the second electrode includes a second pad arranged on the second light emitting unit, a second branch electrode arranged on the second light emitting unit, and a second extension electrode arranged on the first light emitting unit; the semiconductor structure includes a first spacing section which extends in a first direction and comparts the first light emitting unit and the second light emitting unit; and the first pad and the second pad are not overlapped in the first direction and a second direction which is perpendicular to the first direction. |
US11011672B2 |
Quantum dots and devices including the same
A quantum dot includes a core-shell structure including a core including a first semiconductor nanocrystal and a shell disposed on the core, and including a material at least two different halogens, and the quantum dot does not include cadmium. |
US11011670B2 |
Optical device layer transferring method
A transferring method of transferring a plurality of optical device layers includes a transfer member bonding step, a buffer layer breaking step, a first optical device layer transferring step, an adhesive removing step, and a second optical device layer transferring step. In the transfer member bonding step, an optical device wafer and a transfer member are bonded to each other through an adhesive, and each spacing between adjacent ones of the optical device layers of the optical device wafer which each have been divided in a chip size is filled with the adhesive. In the adhesive removing step, at least part of the adhesive with which each spacing between the adjacent ones of the optical device layers has been filled is removed such that the optical device layers which have been embedded in an adhesive layer in the transfer member bonding step project from the adhesive layer. |
US11011669B2 |
Integrated active-matrix light emitting pixel arrays based devices
Integrated active-matrix light emitting pixel arrays based displays and methods of fabricating the integrated displays are provided. One of the methods includes: forming a plurality of light emitting elements on a substrate, each of the light emitting elements including multiple semiconductor layers epitaxially grown on the substrate and being configured to emit light with a single color, integrating the light emitting elements formed on the substrate with a backplane device, such that each of the light emitting elements is bonded and conductively coupled to a respective pixel circuit in the backplane device, and then removing the substrate from the light emitting elements that remain integrated with the backplane device. Active-matrix multi-color pixel arrays can be formed by sequentially integrating different color light emitting element arrays on the backplane device or depositing different color phosphor or quantum dot materials on single color light emitting element arrays integrated on the backplane device. |
US11011668B2 |
Semiconductor device, semiconductor system, and method of controlling the semiconductor device
It is to provide a semiconductor device, a semiconductor system, and a method of controlling the semiconductor device capable of reducing the power consumption. According to one embodiment, a semiconductor device includes a photo coupler control circuit that passes the current to a first signal path for a predetermined period when detecting a change of the input signal supplied from the outside, an insulating circuit that transmits a pulse signal indicating the change of the input signal, from the first signal path to a second signal path insulated from the first signal path, according to the current flow to the first signal path, a holding circuit that generates an input reproducing signal as a reproducing signal of the input signal from the pulse signal transmitted to the second signal path by the insulating circuit, and an internal circuit that receives the input reproducing signal generated by the holding circuit. |
US11011666B2 |
Optoelectronic semiconductor structure having a bipolar phototransistor structure and manufacturing method thereof
An optoelectronic semiconductor structure includes a first n-type semiconductor layer, a first quantum well layer, a first p-type semiconductor layer, and a second n-type semiconductor layer. The first quantum well layer is disposed on the first n-type semiconductor layer. The first p-type semiconductor layer is disposed on the first quantum well layer. The second n-type semiconductor layer is disposed on the first p-type semiconductor layer. The second n-type semiconductor layer includes both an n-type dopant and a p-type dopant. The concentration of the n-type dopant in the second n-type semiconductor layer is greater than the concentration of the p-type dopant in the second n-type semiconductor layer. The first n-type semiconductor layer, the first quantum well layer, the first p-type semiconductor layer, and the second n-type semiconductor layer form a bipolar phototransistor structure. A manufacturing method of the optoelectronic semiconductor structure is also provided. |
US11011665B2 |
Thin film transistor array substrate for high-resolution digital X-ray detector and high-resolution digital X-ray detector including the same
Disclosed are a thin-film transistor array substrate for a high-resolution digital X-ray detector and a high-resolution digital X-ray detector including the same in which a photo-sensitivity is improved by increasing a fill factor, and interference between PIN diodes is minimized, and step coverage of the PIN diode is improved to improve stability of the PIN diode. To those ends, an area of the PIN diode is maximized, and a pixel electrode of the PIN diode is disposed inside the PIN layer. Further, a clad layer made of inorganic material is formed in an edge region and/or a contact hole region of the pixel electrode. Thus, a leakage current resulting from concentrating an electric field on a curved region may be minimized. |
US11011664B2 |
Photodiode and photosensitive device
Provided is a semiconductor photodiode which has an electrode structure having not only high adhesion to a Mg2Si material but also improved overall performance including photosensitivity. A photodiode comprising: a pn junction of a magnesium silicide crystal; an electrode comprising a material that is in contact with p-type magnesium silicide; and an electrode comprising a material that is in contact with n-type magnesium silicide, wherein the material that is in contact with p-type magnesium silicide is a material which has a work function of 4.81 eV or more and reacts with silicon to form a silicide or form an alloy with magnesium. |
US11011661B2 |
High work function MoO2 back contacts for improved solar cell performance
Improved high work function back contacts for solar cells are provided. In one aspect, a method of forming a solar cell includes: forming a completed solar cell having a substrate coated with an electrically conductive material, an absorber disposed on the electrically conductive material, a buffer layer disposed on the absorber, a transparent front contact disposed on the buffer layer, and a metal grid disposed on the transparent front contact; removing the substrate and the electrically conductive material using exfoliation, exposing a backside surface of the solar cell; depositing a high work function material onto the back side surface of the solar cell; and depositing a back contact onto the high work function material. A solar cell formed by the present techniques is also provided. Yield of the exfoliated device can be improved by removing bubbles from adhesive used for exfoliation and/or forming contact pads to access the metal grid. |
US11011660B1 |
Inverted metamorphic multijunction solar cell
A method of manufacturing an inverted metamorphic multijunction solar cell by providing a growth semiconductor substrate with a top surface having a doping in the range of 1×1018 to 1×1020 charge carriers/cm3; depositing a window layer for a top (light facing) subcell subsequently to be formed directly on the top surface of the growth substrate; depositing a sequence of layers of semiconductor material forming a solar cell directly on the window layer; providing a surrogate substrate on the top surface of the sequence of layers of semiconductor material, and removing a portion of the semiconductor substrate so that only the high doped surface portion of the substrate, having a thickness in the range of 0.5 μm to 10 μm, remains. |
US11011659B2 |
Mobile body having reflection control layer
A mobile body=includes a reflection control layer that is formed on a surface of the mobile body, to absorb light in a wavelength region from 0.3 micrometer to 0.75 micrometer of incident sunlight, and emit light in a wavelength region from 0.75 micrometer to 100 micrometers. |
US11011658B2 |
Method and system for waveguide thermophotovoltaic power generation
Method and system for wavelength thermophotovoltaic (WTPV) power generation. In one embodiment, the system comprises a refractory waveguide that collects broadband infrared light generated by a heat source; a filter that filters the collected broadband infrared light to generate narrow-band infrared light; and a thermophotovoltaic (TPV) converter, thermally de-coupled from the heat source, that receives the narrow-band infrared light and converts the received narrow-band infrared light to electrical power. |
US11011656B2 |
Photodiode device and photodiode detector
A photodiode device and a photodiode detector are provided. According to an embodiment, the photodiode device may include a first type lightly doped semiconductor base including a first surface and a second surfaces opposite to each other, a first electrode region being first type heavily doped and disposed on the first surface of the semiconductor base, a second electrode region being second type heavily doped and disposed on the second surface of the semiconductor base, wherein the first surface is a light incident surface. |
US11011654B2 |
Lens cap, photodiode with a lens cap, and method for producing same
A photodiode with a lens cap is provided, having a header with a photodiode active surface area where the photodiode active surface area has a diameter dF. Further included is a cap having a fused-in lens, the fused-in lens having a diameter dL shown in a top plan view of the cap. The ratio of the diameter of the fused-in lens to the diameter of the photodiode active surface area, dL/dF, is greater than 30. |
US11011653B2 |
Schottky barrier diode
Provided is a Schottky barrier diode which is configured from a Ga2O3-based semiconductor, and has a lower rising voltage than a conventional one. In one embodiment, the Schottky barrier diode 1 is provided which has: a semiconductor layer 10 configured from a Ga2O3-based single crystal; an anode electrode 11 which forms a Schottky junction with the semiconductor layer 10, and has a portion which contacts the semiconductor layer 10 and is composed of Fe or Cu; and a cathode electrode 12. |
US11011648B2 |
Semiconductor device and manufacturing method thereof
A semiconductor device with favorable electric characteristics is provided. The semiconductor device includes a first insulating layer, a second insulating layer, an oxide semiconductor layer, and first to third conductive layers. The oxide semiconductor layer includes a region in contact with the first insulating layer, the first conductive layer is connected to the oxide semiconductor layer, and the second conductive layer is connected to the oxide semiconductor layer. The second insulating layer includes a region in contact with the oxide semiconductor layer, and the third conductive layer includes a region in contact with the second insulating layer. The oxide semiconductor layer includes first to third regions. The first region and the second region are separated from each other, and the third region is located between the first region and the second region. The third region and the third conductive layer overlap with each other with the second insulating layer located therebetween. The first region and the second region include a region having a higher carbon concentration than the third region. |
US11011642B2 |
Ambipolar field-effect device using engineered work-functions
Devices, circuits, and methods for fabricating circuits. A device having ambipolar characteristics includes a semiconductor layer and multiple gates, a source contact, and a drain contact coupled to the semiconductor layer. One channel may have elections as the majority charge carrier and may be formed proximate to one of the gates. Another channel may have holes as the majority charge carrier and be formed proximate another gate. Each of the channels is generally parallel to the other and couples the source contact to the drain contact. The device may be optimized by adjusting the work-functions in one or more of source and drain contacts or gates to compensate for differences in the effective masses of the majority carriers in each of the channels. The ambipolar nature of the devices allows logic circuits to be fabricated using one or two of the devices. |
US11011638B2 |
Transistor having airgap spacer around gate structure
An integrated semiconductor device having a gate structure adjacent to a semiconductor body at a channel region, the channel region being positioned laterally between source/drain regions. Metal plugs are on the source/drain regions, and rectangular-shaped or trapezoidal-shaped plug caps are above and immediately adjacent to the metal plugs. A self-aligned metal filled contact (CA) is conductively coupled to one of the metal plugs on the source and drain regions, and a self-aligned metal filled contact (CBoA) is conductively coupled to the gate structure. The device further includes a low k dielectric layer that includes a continuous airgap having an inverted u-shape formed about the gate structure and breaks at about a portion of the gate structure including the self-aligned metal filled contact (CBoA). Also, methods for forming the device including the uniquely shaped continuous airgap are disclosed. |
US11011634B2 |
Elongated source/drain region structure in finFET device
A semiconductor device includes a semiconductor substrate, an n-type fin field effect transistor. The n-type fin field effect transistor includes a fin structure, a gate stack, and a source/drain region. The gate stack includes a gate dielectric and a gate electrode. The gate dielectric is disposed in between the fin structure and the gate electrode. The source/drain region includes an epitaxial structure and an epitaxy coat covering the epitaxial structure. The epitaxial structure is made of a material having a lattice constant larger than a channel region. The epitaxy coat is made of a material having a lattice constant lower than the channel region. |
US11011632B2 |
High voltage devices and methods of forming the same
A device which includes a substrate having a device region is provided. The device region may be a high voltage device region. A source region and a drain region are disposed in the substrate within the device region. A gate is arranged over the substrate and between the source region and the drain region. A trench structure having a trench is disposed in the substrate within the device region. The trench structure is arranged on a first side of the gate where a predetermined distance is arranged between the trench structure and the first side of the gate. A well tap region is disposed adjacent to the source region. The well tap region is arranged at least around a bottom and a sidewall of the trench. The well tap region has a deeper depth within the substrate as compared to the source region. |
US11011629B2 |
Power semiconductor switch with improved controllability
A power semiconductor switch includes a cross-trench structure associated with at least one IGBT cell. The cross-trench structure merge at least one control trench, at least one dummy trench and at least one further trench of at least one IGBT cell to each other. The cross-trench structure overlaps at least partially along a vertical direction with trenches of the at least one IGBT-cell. |
US11011628B2 |
Method for making thin film transistor with nanowires as masks
A method of making a thin film transistor, the method includes: providing a semiconductor layer; arranging a first photoresist layer, a nanowire structure, a second photoresist layer on the semiconductor layer, wherein the nanowire structure includes a single nanowire; forming one opening in the first photoresist layer and the second photoresist layer to form an exposed surface, wherein a part of the nanowire is exposed and suspended in the opening; depositing a conductive film layer on the exposed surface using the nanowire structure as a mask, wherein the conductive film layer defines a nano-scaled channel, and the conductive film layer is divided into two regions, one region is used as a source electrode, and the other region is used as a drain electrode; forming an insulating layer on the semiconductor layer to cover the source electrode and the drain electrode, and locating a gate electrode on the insulating layer. |
US11011623B2 |
Method for increasing germanium concentration of FIN and resulting semiconductor device
In an embodiment, a device includes: a substrate; a first semiconductor layer extending from the substrate, the first semiconductor layer including silicon; a second semiconductor layer on the first semiconductor layer, the second semiconductor layer including silicon germanium, edge portions of the second semiconductor layer having a first germanium concentration, a center portion of the second semiconductor layer having a second germanium concentration, the second germanium concentration being less than the first germanium concentration, the edge portions of the second semiconductor layer including sides and a top surface of the second semiconductor layer; a gate stack on the second semiconductor layer; lightly doped source/drain regions in the second semiconductor layer, the lightly doped source/drain regions being adjacent the gate stack; and source and drain regions extending into the lightly doped source/drain regions. |
US11011622B2 |
Closely packed vertical transistors with reduced contact resistance
A method of forming a semiconductor device and resulting structures having closely packed vertical transistors with reduced contact resistance by forming a semiconductor structure on a doped region of a substrate, the semiconductor structure including a gate formed over a channel region of a semiconductor fin. A liner is formed on the gate and the semiconductor fin, and a dielectric layer is formed on the liner. Portions of the liner are removed to expose a top surface and sidewalls of the semiconductor fin and a sidewall of the dielectric layer. A recessed opening is formed by recessing portions of the liner from the exposed sidewall of the dielectric layer. A top epitaxy region is formed on the exposed portions of the semiconductor fin and dielectric layer such that an extension of the top epitaxy region fills the recessed opening. The top epitaxy region is confined between portions of the liner. |
US11011621B2 |
Vertical tunneling field-effect transistor cell and fabricating the same
A tunneling field-effect transistor (TFET) device is disclosed. A protrusion structure is disposed over the substrate and protrudes out of the plane of substrate. Isolation features are formed on the substrate. A drain region is disposed over the substrate adjacent to the protrusion structure and extends to a bottom portion of the protrusion structure as a raised drain region. A drain contact is disposed over the drain region and overlap with the isolation feature. |
US11011620B2 |
Techniques for increasing channel region tensile strain in n-MOS devices
Techniques are disclosed for forming increasing channel region tensile strain in n-MOS devices. In some cases, increased channel region tensile strain can be achieved via S/D material engineering that deliberately introduces dislocations in one or both of the S/D regions to produce tensile strain in the adjacent channel region. In some such cases, the S/D material engineering to create desired dislocations may include using a lattice mismatched epitaxial S/D film adjacent to the channel region. Numerous material schemes for achieving multiple dislocations in one or both S/D regions will be apparent in light of this disclosure. In some cases, a cap layer can be formed on an S/D region to reduce contact resistance, such that the cap layer is an intervening layer between the S/D region and S/D contact. The cap layer includes different material than the underlying S/D region and/or a higher dopant concentration to reduce contact resistance. |
US11011619B2 |
Method and related apparatus for reducing gate-induced drain leakage in semiconductor devices
In some embodiments, a semiconductor device is provided. The semiconductor device includes a pair of source/drain regions disposed in a semiconductor substrate, where the source/drain regions are laterally spaced. A gate electrode is disposed over the semiconductor substrate between the source/drain regions. Sidewall spacers are disposed over the semiconductor substrate on opposite sides of the gate electrode. A silicide blocking structure is disposed over the sidewalls spacers, where respective sides of the source/drain regions facing the gate electrode are spaced apart from outer sides of the sidewall spacers and are substantially aligned with outer sidewalls of the silicide blocking structure. |
US11011611B2 |
Semiconductor device with low resistivity contact structure
A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate having a conductive region made of silicon, germanium or a combination thereof. The semiconductor device structure also includes an insulating layer over the semiconductor substrate and a fill metal material layer in the insulating layer. In addition, the semiconductor device structure includes a nitrogen-containing metal silicide or germanide layer between the conductive region and the fill metal material layers. |
US11011610B2 |
Plate design to decrease noise in semiconductor devices
A semiconductor device and method for forming the semiconductor device are provided. In some embodiments, a semiconductor substrate comprises a device region. An isolation structure extends laterally in a closed path to demarcate the device region. A first source/drain region and a second source/drain region are in the device region and laterally spaced. A sidewall of the first source/drain region directly contacts the isolation structure at a first isolation structure sidewall, and remaining sidewalls of the first source/drain region are spaced from the isolation structure. A selectively-conductive channel is in the device region, and extends laterally from the first source/drain region to the second source/drain region. A plate comprises a central portion and a first peripheral portion. The central portion overlies the selectively-conductive channel, and the first peripheral portion protrudes from the central portion towards the first isolation structure sidewall. |
US11011609B2 |
Method of manufacturing a semiconductor device
A semiconductor device includes a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type provided on the first semiconductor region, a third semiconductor region of the first conductivity type provided on the second semiconductor region, a first insulating part provided in the first semiconductor region, a first electrode provided in the first semiconductor region, the first insulating part disposed between the first electrode and the first semiconductor region, a second insulating part provided on the first electrode, a gate electrode provided on the second insulating part, a gate insulating part provided between the gate electrode and the second semiconductor region, and a second electrode provided on the second semiconductor region and on the third semiconductor region, and is electrically connected to the second semiconductor region, the third semiconductor region, and the first electrode. |
US11011605B2 |
Diamond semiconductor device
An electrical device comprising a substrate of diamond material and elongate metal protrusions extending into respective recesses in the substrate. Doped semiconductor layers, arranged between respective protrusions and the substrate, behave as n type semiconducting material on application of an electric field, between the protrusions and the substrate, suitable to cause a regions of positive space charge within the semiconductor layers. |
US11011604B2 |
Semiconductor device with recessed source/drain contacts and a gate contact positioned above the active region
A device includes a first gate structure positioned above an active region defined in a semiconducting substrate. A first spacer is positioned adjacent the first gate structure. First conductive source/drain contact structures are positioned adjacent the first gate structure and separated from the first gate structure by the first spacer. A first recessed portion of the first conductive source/drain contact structures is positioned at a first axial position along the first gate structure. A second recessed portion of the first conductive source/drain contact structures is positioned at a second axial position along the gate structure. A dielectric cap layer is positioned above the first and second recessed portions. A first conductive contact contacts the first gate structure in the first axial position. The dielectric cap layer above the first recessed portion is positioned adjacent the first conductive contact. |
US11011603B2 |
Preparation of nanocrystals with mixtures of organic ligands
Semiconductor nanocrystals prepared using a mixture of organic ligands (e.g., oxoacids), as well as compositions, kits, and methods of using such semiconductor nanocrystals are disclosed. |
US11011601B2 |
Narrow gap device with parallel releasing structure
The present disclosure, in some embodiments, relates to a semiconductor structure. The semiconductor structure includes a substrate. As viewed from a top-view, the substrate has a first sidewall, one or more second sidewalls, and a plurality of third sidewalls. The first sidewall extends along a first direction and defines a first side of a trench. The one or more second sidewalls extends along the first direction and define a second side of the trench. The plurality of third sidewalls are oriented in parallel and extends in a second direction perpendicular to the first direction. The plurality of third sidewalls protrude outward from the second side of the trench and define a plurality of parallel releasing openings that are separated along the first direction by the substrate. The trench continuously extends in opposing directions past the plurality of parallel releasing openings. |
US11011599B2 |
Stretchable display panel and stretchable display device including the same
Disclosed herein are a stretchable display panel and a stretchable device. The stretchable display panel comprises: a lower substrate having an active area and a non-active area surrounding the active area; a plurality of individual substrates disposed on the lower substrate, spaced apart from each other and located in the active area; a connection line electrically connecting a pad disposed on the individual substrate; a plurality of pixels disposed on the plurality of individual substrates; and an upper substrate disposed above the plurality of pixels, wherein the modulus of elasticity of the individual substrates is higher than that of at least one part of the lower substrate. Accordingly, the stretchable display device according to the present disclosure may have a structure that enables the stretchable display device to be more easily deformed when a user stretches or bends the stretchable display device and that can minimize damage to the components of the stretchable display device when the stretchable display device is deformed. |
US11011596B2 |
Display device
A display device can include a plurality of sub-pixels including light emitting portions and circuit portions, and being configured to receive signals through vertical lines extending in a first direction and horizontal lines extending in a second direction intersecting the first direction; transistors disposed in the circuit portions; an overcoat layer covering the transistors; first electrodes disposed on the overcoat layer, each of the first electrodes being electrically connected to a corresponding light emitting portion among the light emitting portions and at least one of the transistors; a bank layer disposed on the first electrodes and including openings exposing the first electrodes; an open hole disposed in a region between two adjacent first electrodes among the first electrodes and penetrating through the bank layer; an organic compound layer disposed on the first electrodes; and a second electrode disposed on the organic compound layer and extending to an area inside of the open hole, in which the vertical lines and the horizontal lines are absent from the region between the two adjacent first electrodes. |
US11011594B2 |
Display apparatus
A display apparatus includes a substrate including a display area for displaying an image, a first thin film transistor in the display area and including a first semiconductor layer having a silicon semiconductor and a first gate electrode insulated from the first semiconductor layer, a first interlayer insulating layer covering the first gate electrode and having a first contact hole extending therethrough, and a second thin film transistor on the first interlayer insulating layer and including a second semiconductor layer having an oxide semiconductor and a second gate electrode insulated from the second semiconductor layer. A portion of the second semiconductor layer extends into a first contact hole and is electrically connected to the first semiconductor layer. |
US11011591B2 |
Organic light emitting diode display panel and method for fabricating same
The present disclosure provides an organic light emitting diode display panel and a method for fabricating the same to solve the technical problem where available organic light emitting diode devices of a display panel are damaged by water and oxygen intrusion. The organic light emitting diode display panel includes a substrate, a flat layer, and an anode layer. The substrate includes an active area and a frame area. The flat layer is disposed on the substrate. The flat layer includes a plurality of spaced apart spacers in the frame area, and the spacers define trenches therebetween. The anode layer is disposed on the flat layer in the active area and on bottom surfaces of the trenches and top surfaces of the spacers in the frame area. The anode layer is discontinuous in the frame area. |
US11011585B2 |
Display panel and display device having an array of sub-pixels and transparent areas, and driving method thereof
The present disclosure provides a display panel including pixel areas arranged in array. The pixel area includes a sub-pixel area and a transparent area arranged in column direction. For two adjacent rows of pixel areas, sub-pixel areas/transparent areas of pixel areas in one row are disposed adjacent to sub-pixel areas/transparent areas of pixel areas in the other row. The sub-pixel area in an odd-numbered row of pixel areas is first sub-pixel area, in which first and second sub-pixels are arranged along row direction. The sub-pixel area in an even-numbered row of pixel areas is second sub-pixel area, in which third and fourth sub-pixels are arranged along row direction. First and third sub-pixels are arranged along column direction, and second and fourth sub-pixels are arranged along column direction. First, second and fourth sub-pixels emit light of different colors, and second and third sub-pixels emit light of a same color. |
US11011571B2 |
Nanowire light emitting switch devices and methods thereof
A nanowire system includes a substrate and at least one nanowire structure which extends out along an axis from a surface of the substrate. The nanowire structure comprises a light emitting diode and a device driver electrically coupled to control an operational state of the light emitting diode. The light emitting diode and the device driver are integrated to each share at least one doped region. |
US11011570B2 |
Imaging panel and method for manufacturing same
An imaging panel includes a photoelectric conversion layer on a side of one of surfaces of a substrate. Further, the imaging panel includes an electrode connected to one of surfaces of the photoelectric conversion layer, a bias line connected with the electrode, and a protection film that is made of a material resistant against an etching agent containing hydrofluoric acid, and covers side surfaces of the bias line. |
US11011569B2 |
Image sensor including a plurality of transfer transistors coupled between photodiode and floating diffusion region
An image sensor includes a pixel group comprising a plurality of photodiodes configured to produce photocharges produced in response to light incident on the plurality of photodiodes, a floating diffusion region configured to receive and accumulate the photocharges produced by the plurality of photodiodes, a plurality of transfer transistors coupled to the plurality of photodiodes, respectively, each of the plurality of transfer transistors configured to transfer the photocharges produced by the corresponding photodiode, and a common transfer transistor coupled between the plurality of transfer transistors and the floating diffusion region and configured to transfer the photocharges produced by the plurality of photodiodes to the floating diffusion region. |
US11011566B2 |
Bonding pad on a back side illuminated image sensor
A bonding pad structure comprises an interconnect layer, an isolation layer over the interconnect layer, a conductive pad, and one or more non-conducting stress-releasing structures. The conductive pad comprises a planar portion over the isolation layer, and one or more bridging portions extending through at least the isolation layer and to the interconnect layer for establishing electric contact therewith, wherein there is a trench in the one or more bridging portions. The one or more non-conducting stress-releasing structures are disposed between the isolation layer and the conductive pad. The trench is surrounded by one of the one or more non-conducting stress-releasing structures from a top view. |
US11011563B2 |
Solid-state imaging device and electronic apparatus with divided pixels
A solid-state imaging device includes a plurality of pixels each of which includes a photoelectric conversion unit that generates charges by photoelectrically converting light, and a transistor that reads a pixel signal of a level corresponding to the charges generated in the photoelectric conversion unit. A phase difference pixel which is at least a part of the plurality of pixels is configured in such a manner that the photoelectric conversion unit is divided into a plurality of photoelectric conversion units and an insulated light shielding film is embedded in a region for separating the plurality of photoelectric conversion units, which are divided, from each other. |
US11011558B2 |
Energy ray detector, detection apparatus, and equipment
A detector includes a semiconductor layer included in a detection region and a peripheral region, and having a first surface and a second surface opposite to the first surface, and a wiring structure included in at least the detection region, and disposed between a space on the first surface side with respect to the semiconductor layer and a space on the second surface side with respect to the semiconductor layer, wherein a thickness of the semiconductor layer in at least a part of the detection region is smaller than a thickness of the peripheral region including the semiconductor layer, and the thickness of the semiconductor layer is larger than a distance between the first surface in the detection region and the space on the first surface side, and a distance between the second surface in the detection region and the space on the second surface side. |
US11011551B2 |
Array substrate with a plurality of different signal lines
An array substrate and display apparatus, the array substrate comprising a base substrate (10) and signal lines (VDD, VSS) provided on the base substrate (10), wherein at least one electrically conductive element (12) corresponding to the signal lines (VDD, VSS) is further provided on the base substrate (10), the signal lines (VDD, VSS) are connected in parallel with corresponding electrically conductive elements (12), and the electrically conductive elements (12) corresponding to different signal lines (VDD, VSS) are insulated from one another. Thus, resistance of the signal lines (VDD, VSS) can be reduced and the display effect can be improved. |
US11011541B2 |
Semiconductor memory device in which memory cells are three-dimensionally arrange
A semiconductor memory device includes a first block and a second block arranged adjacent to each other in a Y direction. Each of the first and second blocks includes conductive layers extended in an X direction, memory trenches between the conductive layers, memory pillars provided across two conductive layers with a memory trench interposed therebetween, and transistors provided between the memory pillars and the conductive layers. One of the conductive layers provided at an end of the first block in the Y direction is electrically connected to one of the conductive layers provided at an end of the second block. |
US11011534B2 |
Multi-level cell thin-film transistor memory and method of fabricating the same
A multi-level cell thin-film transistor memory and a method of fabricating the same, a structure of which memory comprises sequentially from down to top: a gate electrode, a charge blocking layer, a charge trapping layer, a charge tunneling layer, an active region, and source and drain electrodes; wherein the charge tunneling layer fully encloses the charge trapping layer so as to completely isolate the charge trapping layer from the ambience, which prevents change of physical properties and chemical compositions of the charge trapping layer during the annealing treatment, reduces loss of charges stored in the charge trapping layer, and enhances data retention property and device performance stability; a metal oxide semiconductor thin film is utilized as the charge trapping layer of the memory, which implements multi-level cell storage and improves storage density. |
US11011530B2 |
Memory cell, nonvolatile semiconductor storage device, and method for manufacturing nonvolatile semiconductor storage device
When a memory cell (MC) is downsized by reducing the distance between a drain region (12a) and a source region (12b) on the surface of a fin (S2) with a high impurity concentration inside the fin (S2), the shape of the fin (S2) can be set such that a potential difference between a memory gate electrode (MG) and the fin (S2) is reduced to suppress the occurrence of disturbance. Accordingly, the memory cell (MC) achieves downsizing and suppression of the occurrence of disturbance. |
US11011528B2 |
Asymmetric gate edge spacing for SRAM structures
An integrated circuit having logic and static random-access memory (SRAM) devices includes at least three active regions with gate terminals. Dielectric pillars are disposed between the active regions of the integrated circuit. A pillar is disposed symmetrically between two active regions of the logic device. A pillar is disposed asymmetrically between a p-channel field effect transistor (pFET), and an n-channel field effect transistor (nFET) of the SRAM device. |
US11011526B2 |
Methods of manufacturing semiconductor devices
A method of manufacturing a semiconductor device includes forming a first pattern structure having a first opening and a second pattern structure having a second opening on a substrate, forming a gap fill layer in the second opening, forming fences and contact structures in the first opening, removing the gap fill layer in the second opening, forming an upper conductive layer to cover the first and second pattern structures, the fences, and the contact structures, forming a mask pattern based on a photolithography process using the second pattern structure covered by the upper conductive layer as an align mark, and etching the upper conductive layer using the mask pattern to form upper conductive patterns. A width of the second opening is larger than a width of a first opening. A thickness of the upper conductive layer is smaller than a depth of the second opening. |
US11011520B2 |
Semiconductor DRAM cell structure having low leakage capacitor
This invention discloses a DRAM cell includes an asymmetric transistor coupled to a capacitor. The asymmetric transistor includes a drain region extending upward from an isolator region; a gate region extends upward from a gate dielectric or the isolator; a source region of asymmetric transistor extends upward from a first portion of an isolating layer. The upward extending directions of the drain region, the gate region, and the source region are perpendicular or substantially perpendicular to an original silicon surface. Moreover, the capacitor is partially formed in a concave and the isolating layer is positioned in the concave. The capacitor extends upward from a second portion of the isolating layer. The upward extending directions of the upright portion of the capacitor electrode, the third portion of the insulating layer and the counter electrode are perpendicular or substantially perpendicular to the original silicon surface. |
US11011509B2 |
Electrostatic discharge protection device
An ESD protection device may include a substrate, a first conductivity region arranged at least partially within the substrate, a second conductivity region arranged at least partially within the first conductivity region, third and fourth conductivity regions arranged at least partially within the second conductivity region, and first and second terminal portions arranged at least partially within the third and fourth conductivity regions respectively. The third and fourth conductivity regions may be spaced apart from each other. The substrate and the second conductivity region may have a first conductivity type. The first conductivity region, third conductivity region, fourth conductivity region and first and second terminal portions may have a second conductivity type different from the first conductivity type. The first and second terminal portions may have higher doping concentrations than the third and fourth conductivity regions respectively. |
US11011505B2 |
Semiconductor memory and manufacturing method thereof
A semiconductor memory includes a substrate, a memory controller, a plurality of memory modules, and a cover layer. The memory controller is provided on an upper surface of the substrate. Each of the memory modules partially covers an upper surface of the memory controller and the upper surface of the substrate through at least an adhesive layer. The cover layer is on the upper surface of the substrate and encloses the memory controller and the plurality of memory modules between the substrate and the cover layer. |
US11011500B2 |
Memory scaling semiconductor device
A semiconductor device is disclosed including a memory module formed from a pair of semiconductor dies mounted face to face to each other at the wafer level. These die pairs are formed using wafer-to-wafer bonding technology, where the wafers may be bonded to each other when they are of full thickness. The semiconductor device may further include a CMOS logic circuit as part of the pair of semiconductor dies or in its own semiconductor die mounted to the pair of semiconductor dies. |
US11011497B2 |
Electronic device having a substrate-to-substrate interconnection structure and manufacturing method thereof
An electronic device and a method of making an electronic device. As non-limiting examples, various aspects of this disclosure provide various methods of manufacturing electronic devices, and electronic devices manufactured thereby, that comprise utilizing an adhesive layer to attach an upper electronic package to a lower die and/or utilizing metal pillars for electrically connecting the upper electronic package to a lower substrate, wherein the metal pillars have a smaller height above the lower substrate than the lower die. |
US11011496B2 |
Semiconductor device packages and methods of manufacturing the same
A semiconductor device package includes a first conductive layer, a second conductive layer and a third conductive layer. The first conductive layer has a first pitch. The second conductive layer has a second pitch and is arranged at two different sides of the first conductive layer. The third conductive layer has a third pitch and is disposed above the first conductive layer and the second conductive layer. The third conductive layer is electrically connected to the first conductive layer. The first pitch is smaller than the third pitch, and the third pitch is smaller than the second pitch. |
US11011495B2 |
Multiple-die integrated circuit with integrated voltage regulator
A data processor is implemented as an integrated circuit. The data processor includes a processor die. The processor die is connected to an integrated voltage regulator die using die-to-die bonding. The integrated voltage regulator die provides a regulated voltage to the processor die, and the processor die operates in response to the regulated voltage. |
US11011489B2 |
Semiconductor device
A semiconductor device includes an insulating layer, a barrier electrode layer formed on the insulating layer, a Cu electrode layer that includes a metal composed mainly of copper and that is formed on a principal surface of the barrier electrode layer, and an outer-surface insulating film that includes copper oxide, that coats an outer surface of the Cu electrode layer, and that is in contact with the principal surface of the barrier electrode layer. |
US11011487B2 |
Semiconductor package having varying conductive pad sizes
A semiconductor package is provided, including a package component and a number of conductive connectors. The package component has a number of conductive features on a surface of the package component. The conductive connectors are formed on the conductive features of the package component. The conductive features include a first conductive feature and a second conductive feature contacting a first conductive connector and a second conductive connector, respectively. The size of the first conductive feature is smaller than the size of the second conductive feature, and the height of the first conductive connector on the first conductive feature is greater than the height of the second conductive connector on the second conductive feature. |
US11011484B2 |
Semiconductor device having first and second terminals
A semiconductor device includes a first substrate and a second substrate that is stacked on a first surface of the first substrate in a stacking direction and includes a second surface facing the first surface. A plurality of first terminals is provided on the first surface of the first substrate. A plurality of second terminals is provided on the second surface of the second substrate. A plurality of metallic portions is respectively provided between the plurality of first terminals and the plurality of second terminals. In a cross-section substantially perpendicular to the stacking direction, at least one of (i) each of the plurality of first terminals or (ii) each of the plurality of second terminals (a) includes a recessed portion in a first direction toward an adjacent first terminal or second terminal or (b) includes a projecting portion in a second direction intersecting with the first direction. |
US11011475B2 |
Electromagnetic wave attenuator and electronic device
According to one embodiment, an electromagnetic wave attenuator includes a multilayer member, and a magnetic member. The multilayer member includes a plurality of magnetic layers and a plurality of nonmagnetic layers. The plurality of nonmagnetic layers is conductive. A direction from one of the plurality of magnetic layers toward an other one of the plurality of magnetic layers is aligned with a first direction from the multilayer member toward the magnetic member. One of the plurality of nonmagnetic layers is between the one of the plurality of magnetic layers and the other one of the plurality of magnetic layers. A thickness along the first direction of the magnetic member is not less than ½ of a thickness along the first direction of the multilayer member. |
US11011471B2 |
Semiconductor device
A graphic data of a first wiring in a first area of a semiconductor wafer may be extracted, which may correspond to a semiconductor chip forming area. The first area may be surrounded by a scribed area of the semiconductor wafer. The first area includes a second area bounded with the scribed area. The second area has a second distance from a boundary between the semiconductor chip forming area and the scribed area to a boundary between the first area and the second area. A first dummy pattern in the first area is laid out to have at least a first distance from the first wiring. A second dummy pattern in the second area is laid out to have at least the first distance from the first wiring and at least a third distance from the first dummy pattern. |
US11011468B2 |
Semiconductor structure and method for manufacturing the same
The present disclosure provides a semiconductor structure. The semiconductor structure includes a semiconductor substrate, a target layer, a plurality of metal pads, a plurality of conductive lines, a plurality of conductive plugs, an isolating liner, and a plurality of metal contacts. The semiconductor substrate has a front surface, a rear surface opposite to the front surface, and an implanted region connected to the rear surface. The target layer is disposed over the front surface. The metal pads are disposed over the target layer. The plurality of conductive lines are disposed within the semiconductor substrate and the target layer and connected to the metal pads. The conductive plugs are disposed in the implanted region. The isolating liner encircles the conductive plugs. The metal contacts are disposed over the conductive lines and the conductive plugs. |
US11011467B2 |
Method of forming interconnection structure
A method includes depositing an etch stop layer over a non-insulator structure and a dielectric layer over the etch stop layer; etching the dielectric layer to form a first hole in the dielectric layer; deepening the first hole into the etch stop layer such that the non-insulator structure is exposed at a bottom of the deepened hole; after the non-insulator structure is exposed, performing a cleaning operation to remove etch byproducts from the deepened first hole, wherein the cleaning operation results in lateral recesses laterally extending from a bottom portion of the deepened first hole into the etch stop layer; depositing a first diffusion barrier layer into the deepened first hole until the lateral recesses are overfilled; depositing a second diffusion barrier layer over the first diffusion barrier layer; and depositing one or more conductive layers over the second diffusion barrier layer. |
US11011466B2 |
Integrated circuit package with integrated voltage regulator
Various semiconductor chip devices and methods of making the same are disclosed. In one aspect, an apparatus is provided that includes a first redistribution layer (RDL) structure having a first plurality of conductor traces, a first molding layer on the first RDL structure, plural conductive pillars in the first molding layer, each of the conductive pillars including a first end and a second end, a second RDL structure on the first molding layer, the second RDL structure having a second plurality of conductor traces, and wherein some of the conductive pillars are electrically connected between some of the first plurality of conductor traces and some of the second plurality of conductor traces to provide a first inductor coil. |
US11011461B2 |
Perpendicular inductors integrated in a substrate
Some features pertain to a substrate, and a first inductor integrated into the substrate. The first inductor includes a plurality of first inductor windings in a first metal layer and a second metal layer. A second inductor is integrated into the substrate. The second inductor includes a first spiral in a third metal layer. The first spiral is located at least partially inside the plurality of first inductor windings, wherein the second inductor is perpendicular to the first inductor. |
US11011453B2 |
Cooling apparatus, semiconductor module, vehicle, and manufacturing method
A cooling apparatus for a semiconductor module including a semiconductor chip, having a case with a top plate, a base plate, a side wall plate arranged between the top plate and the base plate, and a coolant flow-through portion surrounded by the top plate, base plate, and side wall plate; first cooling pins secured to the top plate in the coolant flow-through portion of the case; and second cooling pins secured to the top plate in the coolant flow-through portion of the case and having lengths in a thickness direction from the top plate toward the base plate greater than lengths of the first cooling pins, wherein at least one first cooling pin and at least one second cooling pin are arranged in an alternating manner, and this pattern appears repeatedly at least twice, along a first direction in a plane parallel to the top plate. |
US11011452B2 |
Heat spreaders for semiconductor devices, and associated systems and methods
A memory system having heat spreaders with different arrangements of projections are provided. In some embodiments, the memory system comprises a substrate, a first semiconductor device attached to a first side of the substrate, a second semiconductor device attached to a second side of the substrate, a first heat spreader attached to the first semiconductor device, and a second heat spreader attached to the second semiconductor device. The first heat spreader has a plurality of first projections facing a first direction and positioned in a first arrangement, and the second heat spreader has a plurality of second projections facing a second direction and positioned in a second arrangement different than the first arrangement. In some embodiments, the first projections are aligned with a majority of the second projections in a first direction and are offset with a majority of the second projections in a second direction. |
US11011451B2 |
Integrated circuit package and method
In an embodiment, a device includes: an integrated circuit die; a redistribution structure over a front-side surface of the integrated circuit die; a socket over the redistribution structure; a mechanical brace over the socket, the mechanical brace having an opening exposing the socket, edge regions of the socket overlapping edge regions of the mechanical brace at the opening; a first standoff screw disposed in the edge regions of the mechanical brace, the first standoff screw physically contacting the socket, the first standoff screw extending a first distance between the socket and the mechanical brace; and a bolt extending through the mechanical brace and the redistribution structure. |
US11011443B2 |
Power semiconductor device including a spacer
At the time of clamping, excessive stress is applied to bonding parts between substrates and input/output terminals, which may cause the bonding parts to be detached and cause the substrates to be cracked.A lower electrode of a power semiconductor element 11 is connected via a bonding material 13 to a first interconnection layer 12 arranged on a lower surface of the power semiconductor element 11, and an upper electrode 14 of the power semiconductor element 11 is connected via the bonding material 13 to a second interconnection layer 15 arranged on an upper surface. Also, a second main terminal 16 electrically connected to the upper electrode 14 of the power semiconductor element 11 is connected via the bonding material 13 to the second interconnection layer 15 and contacts and is positioned on a third interconnection layer 24 (spacer) arranged to be parallel to the first interconnection layer 12 on the lower surface. An insulating layer 26 is laminated on a surface of each of the first interconnection layer 12 to the third interconnection layer 24 opposite the bonding material 13, and a heat dissipating layer 27 is laminated on the insulating layer 26. |
US11011435B2 |
Apparatus and method inspecting bonded semiconductor dice
An apparatus for inspecting a semiconductor die bonded on a top surface of a substrate uses an optical assembly including an image sensor and an optical system for conducting the inspection. The optical assembly is tilted at an oblique angle with respect to the top surface of the substrate, and is arranged such that its depth of focus is substantially perpendicular to the top surface of the substrate for inspecting at least one side wall of the semiconductor die. |
US11011431B2 |
Semiconductor structure and manufacturing method thereof
A semiconductor structure includes a substrate including a first surface, a second surface opposite to the first surface, a sidewall substantially orthogonal to the first surface and the second surface; and a metallic layer surrounding and connected with the sidewall of the substrate, wherein the metallic layer includes an exposed surface substantially level with the first or second surface of the substrate. Further, a method of manufacturing the semiconductor structure is also disclosed. |
US11011428B2 |
Method for fabricating a semiconductor device
A method for fabricating a semiconductor device includes forming a fin extending along a first direction on a semiconductor substrate and forming a sacrificial gate electrode structure extending along a second direction substantially perpendicular to the first direction over the fin. The sacrificial gate electrode structure comprises a sacrificial gate dielectric layer and a sacrificial gate electrode layer disposed over the sacrificial gate dielectric layer. Opposing gate sidewall spacers are formed extending along the second direction, on opposing sides of the sacrificial gate electrode layer. The sacrificial gate electrode layer is removed to form a gate space. Fluorine is implanted into the gate sidewall spacers after removing the gate electrode layer by performing a first fluorine implantation. The sacrificial gate dielectric layer is removed and a high-k gate dielectric layer is formed in the gate space. Fluorine is implanted into the gate sidewall spacers and the fin after forming the high-k gate dielectric layer by performing a second fluorine implantation. |
US11011426B2 |
Semiconductor device and manufacturing method thereof
A method for manufacturing a semiconductor device includes forming a semiconductor fin over a substrate. A fin spacer is formed on a sidewall of the semiconductor fin. An e-beam treatment is performed on the fin spacer. An epitaxial structure is formed over the semiconductor fin. The epitaxial structure is in contact with the e-beam treated fin spacer. |
US11011421B2 |
Semiconductor device having voids and method of forming same
A method embodiment includes forming a hard mask over a dielectric layer and forming a first metal line and a second metal line extending through the hard mask into the dielectric layer. The method further includes removing the hard mask, wherein removing the hard mask defines an opening between the first metal line and the second metal line. A liner is then formed over the first metal line, the second metal line, and the dielectric layer, wherein the liner covers sidewalls and a bottom surface of the opening. |
US11011418B2 |
3D IC method and device
A method of three-dimensionally integrating elements such as singulated die or wafers and an integrated structure having connected elements such as singulated dies or wafers. Either or both of the die and wafer may have semiconductor devices formed therein. A first element having a first contact structure is bonded to a second element having a second contact structure. First and second contact structures can be exposed at bonding and electrically interconnected as a result of the bonding. A via may be etched and filled after bonding to expose and form an electrical interconnect to interconnected first and second contact structures and provide electrical access to this interconnect from a surface. |
US11011416B2 |
Semiconductor structure and method for forming a semiconductor structure
A semiconductor structure and a method for forming a semiconductor structure are provided. One form of the method includes: providing a base, a bottom dielectric layer formed on the base, and an interconnecting wire located within the bottom dielectric layer, where the bottom dielectric layer exposes a top of the interconnecting wire; etching a portion of a thickness of the bottom dielectric layer, along an extending direction of the interconnecting wire, where adjacent interconnecting wires and a remainder of the bottom dielectric layer form a groove; forming an etch stop layer at least in the groove, the etch stop layer sealing a top of the groove; forming a top dielectric layer covering the interconnecting wire, the etch stop layer, and the bottom dielectric layer; forming a via within top dielectric layers on both sides of the groove, the via exposing the top of the interconnecting wire; forming a via interconnecting structure filling the via, the via interconnecting structure being electrically connected to the interconnecting wire. Embodiments and implementations of the present disclosure provide reliability and stability of the semiconductor structure while enlarging a process window for forming the via and improving a degree of freedom of a layout design of the via interconnecting structure. |
US11011411B2 |
Semiconductor wafer having integrated circuits with bottom local interconnects
A semiconductor wafer includes a substrate. The substrate includes a first substrate region doped with a first dopant and a second substrate region doped with a second dopant. The semiconductor wafer further includes a buried oxide (BOX) layer formed on the substrate and a channel layer formed above the BOX layer. A first transistor is operably disposed on the substrate in the first substrate region and a second transistor is operably disposed on the substrate in the second substrate region. First doped source and drain structures electrically connected to the substrate in the first substrate region and separated by portions of the channel layer and the BOX layer. Second doped source and drain structures electrically connected to the substrate in the second substrate region and separated by portions of the channel layer and the BOX layer. |
US11011408B2 |
Memory arrays and methods used in forming a memory array comprising strings of memory cells
A method used in forming a memory array comprising strings of memory cells comprises forming a stack comprising vertically-alternating first tiers and second tiers. Horizontally-elongated trenches are formed into the stack to form laterally-spaced memory-block regions. Bridge material is formed across the trenches laterally-between and longitudinally-along immediately-laterally-adjacent of the memory-block regions. The bridge material comprises longitudinally-alternating first and second regions. The first regions of the bridge material are ion implanted differently than the second regions of the bridge material to change relative etch rate of one of the first or second regions relative to the other in an etching process. The first and second regions are subjected to the etching process to selectively etch away one of the first and second regions relative to the other to form bridges that extend across the trenches laterally-between and longitudinally-spaced-along the immediately-laterally-adjacent memory-block regions. Other embodiments and structure independent of method are disclosed. |
US11011406B2 |
Method of processing a substrate
The invention relates to a method of processing a substrate. The substrate has one side and a side opposite to the one side. The substrate has, on the one side or on the side opposite to the one side, at least one recess. The method comprises providing a protective film and applying the protective film to the side of the substrate having the at least one recess so that at least a central area of a front surface of the protective film is in direct contact with the side of the substrate having the at least one recess. The method further comprises applying pressure to the protective film so that the protective film enters into the at least one recess along at least part of a depth of the recess, and processing the one side of the substrate and/or the side of the substrate opposite to the one side. |
US11011404B2 |
Ceramic structure, member for substrate-holding apparatus, and method for producing the ceramic structure
The ceramic structure 10 includes a discoid ceramic base 12 and an electrode 14 buried in the ceramic base 12. The ceramic base 12 is a sintered body composed principally of alumina or a rare-earth metal oxide and has a thermal expansion coefficient of 7.5 to 9.5 ppm/K over the range of 40° C. to 1200° C. The electrode 14 is composed principally of metal ruthenium. The electrode 14 may be formed in the shape of a sheet. Alternatively, the electrode 14 may be patterned in the manner of a one-stroke sketch so as to extend over the entire cross section of the ceramic base 12. |
US11011399B2 |
Substrate storing container
A substrate storing container includes a container main body, a lid body removably attached to a container main body opening portion and able to close the container main body opening portion, a ventilation passage which enables a substrate storing space and a space outside the container main body to communicate with each other, a gas ejecting nozzle portion having a plurality of opening portions through which a gas flowing into the ventilation passage is supplied into the substrate storing space, and a gas flow rate uniformizing unit which enables the gas to flow out through the plurality of opening portions at a uniform flow rate. |
US11011395B2 |
Cover structure for a light source, light illuminating apparatus having the same
A cover structure for a light source includes a frame having an inner space, a driver, and an oxygen discharger. The frame is combined with the light source such that an object disposed in the inner space is covered by the frame, and the inner space is sealed by the combined frame and light source to provide a closed space between the frame and the light source enclosing the object. The driver combines the frame and the light source by moving the frame toward the light source such that the frame contacts the light source. The oxygen discharger creates a low-oxygen state in the closed space by discharging oxygen from the closed space. |
US11011393B2 |
Cutting apparatus
A cutting apparatus includes a processing feed direction determining mechanism. The processing feed direction determining mechanism includes an imaging unit that images a region including a cut groove and a recording unit that records chipping data of the imaged cut groove. The recording unit records first chipping data of a cut groove formed by cutting a workpiece from a first direction, second chipping data of a cut groove formed by cutting the workpiece from a direction opposite from the first direction, third chipping data of a cut groove formed by cutting the workpiece from a second direction orthogonal to the first direction, and fourth chipping data of a cut groove formed by cutting the workpiece from a direction opposite from the second direction. |
US11011390B2 |
Micro device stabilization post
A method and structure for stabilizing an array of micro devices is disclosed. The array of micro devices is formed on an array of stabilization posts formed from a thermoset material. Each micro device includes a bottom surface that is wider than a corresponding stabilization post directly underneath the bottom surface. |
US11011385B2 |
CMP-friendly coatings for planar recessing or removing of variable-height layers
A method of manufacturing an integrated circuit device is provided. A first feature, which has a first susceptibility to damage by chemical mechanical processing (CMP), is formed at a first height as measured from an upper surface of the substrate. A second feature, which has a second susceptibility to damage by the CMP, is formed at a second height as measured from the upper surface of the substrate and is laterally spaced from the first feature by a recess. The second height is greater than the first height, and the second susceptibility is less than the first susceptibility. A sacrificial coating is formed in the recess over an uppermost surface of the first feature. CMP is performed to remove a first portion of the sacrificial coating and expose an upper surface of the second feature while leaving a second portion of the sacrificial coating in place over the first feature. |
US11011384B2 |
Gapfill using reactive anneal
Methods for seam-less gapfill comprising forming a flowable film by PECVD, annealing the flowable film with a reactive anneal to form an annealed film and curing the flowable film or annealed film to solidify the film. The flowable film can be formed using a higher order silane and plasma. The reactive anneal may use a silane or higher order silane. A UV cure, or other cure, can be used to solidify the flowable film or the annealed film. |
US11011383B2 |
Etching method
There is provided an etching method which includes: supplying an etching gas to a workpiece including a first SiGe-based material and a second SiGe-based material having different Ge concentrations; and selectively etching the first SiGe-based material and the second SiGe-based material with respect to the other using a difference in incubation time until the first SiGe-based material and the second SiGe-based material begin to be etched by the etching gas. |
US11011379B2 |
Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors
Disclosed herein are methods of doping a fin-shaped channel region of a partially fabricated 3-D transistor on a semiconductor substrate. The methods may include forming a multi-layer dopant-containing film on the substrate, forming a capping film comprising a silicon carbide material, a silicon nitride material, a silicon carbonitride material, or a combination thereof, the capping film located such that the multi-layer dopant-containing film is located in between the substrate and the capping film, and driving dopant from the dopant-containing film into the fin-shaped channel region. Multiple dopant-containing layers of the film may be formed by an atomic layer deposition process which includes adsorbing a dopant-containing film precursor such that it forms an adsorption-limited layer on the substrate and reacting adsorbed dopant-containing film precursor. Also disclosed herein are multi-station substrate processing apparatuses for doping the fin-shaped channel regions of partially fabricated 3-D transistors. |
US11011378B2 |
Atom implantation for reduction of compressive stress
Systems, apparatuses, and methods related to atom implantation for reduction of compressive stress are described. An example method may include patterning a working surface of a semiconductor, the working surface having a hard mask material formed over a dielectric material and forming a material having a lower refractive index (RI), relative to a RI of the hard mask material, over the hard mask material. The method may further include implanting atoms through the lower RI material and into the hard mask material to reduce the compressive stress in the hard mask material. |
US11011377B2 |
Method for fabricating a semiconductor device
A cavity structure comprises one or more seed surfaces, a first growth path for the growth of a first semiconductor structure from one of the one or more seed surfaces and a second growth path for the growth of a second semiconductor structure from one of the one or more seed surfaces. The cavity structure further comprises at least one opening for supplying precursor materials to the cavity structure. A method can include selectively growing the first semiconductor structure along the first growth path and selectively growing the second semiconductor structure along the second growth path. The first semiconductor structure has a first growth front and the second semiconductor structure has a second growth front. The method can further include merging the first and the second growth front at a border area of the first and the second semiconductor structure. |
US11011375B1 |
Hybrid template area selective epitaxy (HTASE)
A hybrid template assisted selective epitaxy (HTASE) process is described comprising the steps of: depositing a template oxide layer on top of a silicon fin; opening a via in a selected portion of the template oxide to expose a portion of the encapsulated silicon fin and subsequently growing a nitride superconductor layer on top of the exposed silicon fin thereby forming a hybrid encapsulation of the silicon fin; performing a back-etch of the silicon fin to remove a portion (e.g., 5 nm-20 um) of the silicon fin; growing a layer formed from a group III/group V compound within an area where the silicon fin was removed via the back-etch; and if needed, removing the template oxide layer. |
US11011372B2 |
Semiconductor devices and methods of manufacture
A method for forming a crystalline high-k dielectric layer and controlling the crystalline phase and orientation of the crystal growth of the high-k dielectric layer during an anneal process. The crystalline phase and orientation of the crystal growth of the dielectric layer may be controlled using seeding sections of the dielectric layer serving as nucleation sites and using a capping layer mask during the anneal process. The location of the nucleation sites and the arrangement of the capping layer allow the orientation and phase of the crystal growth of the dielectric layer to be controlled during the anneal process. Based on the dopants and the process controls used the phase can be modified to increase the permittivity and/or the ferroelectric property of the dielectric layer. |
US11011370B2 |
Method for manufacturing semiconductor device
A method for manufacturing a semiconductor device includes: forming an ohmic electrode including Al on a semiconductor substrate; forming a SiN film covering the ohmic electrode; forming a first photoresist on the SiN film, the first photoresist having an opening pattern overlapping the ohmic electrode; performing ultraviolet curing of the first photoresist; forming an opening in the SiN film exposed through the opening pattern and causing a surface of the ohmic electrode to be exposed inside the opening; forming a barrier metal layer on the first photoresist and on the ohmic electrode exposed through the opening; forming a second photoresist in the opening pattern; performing a heat treatment on the second photoresist and covering the barrier metal layer overlapping the opening with the second photoresist; and etching the barrier metal layer using the second photoresist. |
US11011364B2 |
Apparatus configured to produce an image charge/current signal
An apparatus configured to produce an image charge/current signal representative of trapped ions undergoing oscillatory motion. The apparatus includes: an electrostatic ion trap configured to trap ions such that the trapped ions undergo oscillatory motion in the electrostatic ion trap; an image charge/current detector configured to obtain an image charge/current signal representative of trapped ions undergoing oscillatory motion in the electrostatic ion trap, wherein the electrostatic ion trap configured to trap ions such that the image charge/current signal in the time domain repeats, for ions of a given mass/charge ratio m, at a frequency fsig(m) [Hz] with a signal period Tsig(m) [s]. The image charge/current detector includes one or more pickup electrodes configured to obtain the image charge/current signal. The one or more pickup electrodes are arranged to detect two signal pulses caused by ions having the given mass/charge ratio m within each signal period Tsig(m). The one or more pickup electrodes are further arranged such that the time separation Δtsep(m) between the two signal pulses caused by ions having the given mass/charge ratio m within each signal period Tsig(m) is approximately equal to 2p+1/2.n.fsig(m) so as to suppress a predetermined nth harmonic within the image charge/current signal, where n is an integer that is 1 or more, and where p is an integer that is 0 or more. |
US11011361B1 |
Mass spectrometer and nozzle member
The mass spectrometer includes an ionization unit that ionizes a sample; a nozzle unit having an inflow port that is connected to the ionization unit by a flow pipe and through which the ionized sample flows, and an outflow port from which the sample flowing in flows out; a vacuum chamber that is evacuated by vacuum evacuation means and into which the sample flows from the nozzle unit; a mass analysis unit that is located downstream of a flow of the sample relative to the vacuum chamber and that selects ions from the sample; and an ion detection unit that detects the ions selected by the mass analysis unit, wherein a division portion that divides a flow of the sample is provided inside the nozzle unit, and the division portion has a tapered projection whose diameter decreases toward the outflow port. |
US11011351B2 |
Monoenergetic ion generation for controlled etch
Systems and methods for generating monoenergetic ions are described. A duty cycle of a high parameter level of a multistate parameter signal is maintained and a difference between the high parameter level and a low parameter level of the multistate parameter signal is maintained to generate monoenergetic ions. The monoenergetic ions are used to etch a top material layer of a substrate at a rate that is self-limiting without substantially etching a bottom material layer of the substrate. |
US11011350B2 |
Variable power capacitor for RF power applications
A power capacitor (7) is described for use in an RF power delivery system. The power capacitor comprises at least two RF electrodes (18, 19) separated by a capacitor dielectric (17) comprising a solid paraelectric dielectric material whose relative permittivity is controllable by varying a DC bias voltage applied across the dielectric (17) at DC bias electrodes (10, 26, 28). Composite capacitor configurations, an RF power system and a method of controlling the power capacitor are also described. |
US11011349B2 |
System, method, and apparatus for controlling ion energy distribution in plasma processing systems
Systems, methods and apparatus for regulating ion energies in a plasma chamber and chucking a substrate to a substrate support are disclosed. An exemplary method includes placing a substrate in a plasma chamber, forming a plasma in the plasma chamber, controllably switching power to the substrate so as to apply a periodic voltage function (or a modified periodic voltage function) to the substrate, and modulating, over multiple cycles of the periodic voltage function, the periodic voltage function responsive to a defined distribution of energies of ions at the surface of the substrate so as to effectuate the defined distribution of ion energies on a time-averaged basis. |
US11011344B2 |
Interferometric electron microscope
An interferometric electron microscope with increased irradiating electric current density which causes electron waves to interfere with each other and includes: an electron source; an irradiating lens system a focusing lens system an observational plane an artificial grating disposed between the electron source and the irradiating lens system and diffracting the electron beam emitted from the electron source to produce a first electron wave and a second electron wave; an electron beam biprism deflecting the first electron wave and the second electron wave to pass the first electron wave through the specimen for use as an object wave and to use the second electron wave as a reference wave; and an electron beam biprism in a focusing system deflecting the objective wave and the reference wave to superimpose the objective wave and the reference wave on the observational plane to produce an image. |
US11011343B2 |
High-current ion implanter and method for controlling ion beam using high-current ion implanter
Provided herein are approaches for increasing operational range of an electrostatic lens. An electrostatic lens of an ion implantation system may receive an ion beam from an ion source, the electrostatic lens including a first plurality of conductive beam optics disposed along one side of an ion beam line and a second plurality of conductive beam optics disposed along a second side of the ion beam line. The ion implantation system may further include a power supply in communication with the electrostatic lens, the power supply operable to supply a voltage and a current to at least one of the first and second plurality of conductive beam optics, wherein the voltage and the current deflects the ion beam at a beam deflection angle, and wherein the ion beam is accelerated and then decelerated within the electrostatic lens. |
US11011338B2 |
Annular cathode for vacuum tube
An annular cathode for a vacuum tube includes a central cylindrical support whose axis is that of the cathode; an outer peripheral electron emitter with annular section whose axis is that of the cathode, extending over the outer perimeter of the cathode; and a folded skirt, secured at an inner end to the central support, and secured, at its outer end, to a plurality of lugs; each lug being disposed in series with the folded skirt, and secured with the folded skirt and with the inner surface of the electron emitter. |
US11011335B2 |
In or relating to circuit interruption devices
A trip apparatus for a circuit interruption device that comprises a coil operatively connectable to a circuit interruption device. The coil is configured to selectively operate the circuit interruption device to interrupt when a current flowing through the circuit interruption device exceeds a threshold. The trip apparatus also includes a current measuring device configured to selectively measure a coil current flowing through the coil to determine a measured coil current signal. In addition, the trip apparatus includes a monitoring device configured to determine the derivative of the measured coil current signal and to perform a correlation of the derivative of the measured coil current signal and a reference derivative of a reference coil current signal to determine a correlation output. The monitoring device is further configured to compare the correlation output with a reference correlation threshold to determine whether an operating condition of the coil is normal or abnormal. |
US11011334B2 |
Electromagnetic switch
An electromagnetic switch for a starting device of an internal combustion engine may include a coil carrier having a carrier wall enclosing a cavity, a coil winding, a piston, and a ferromagnetic bypass body. During operation, the coil winding may provide a magnetic field within the cavity. The piston may be disposed in a passive position and may be adjusted axially in a direction of a core. The coil winding may have a coil wire which may be wound around the carrier wall in a first winding direction and an opposing second winding direction. The ferromagnetic bypass body may surround the cavity and may be arranged radially between the cavity and the coil winding. In the passive position of the piston, the bypass body may axially overlap the axial gap. At least one winding of the second winding section may axially overlap the bypass body. |
US11011329B2 |
Reaction force generating member for a key switch device
A key switch device includes: an operation member to be depressed; a switch disposed below the operation member; a reaction force generating member that is provided between the operation member and the switch, performs elastic buckling deformation by depression of the operation member, gives a reaction force according to the elastic buckling deformation to the operation member; and a depression member that is provided between the operation member and the switch, and depresses the switch; wherein the reaction force generating member includes a supporter that supports the depression member. |
US11011324B2 |
Contact device
A contact device including a fixed contact member having a fixed contact; and a movable contact member which includes a movable contact and is movable between a position where the movable contact is in contact with the fixed contact and a position where the movable contact is away from the fixed contact, a first contact member which is one of the fixed contact member and the movable contact member further including a recess in a surface to which a first contact of the first contact member is provided. The first contact protrudes toward a second contact of a second contact member which is another of the fixed contact member and the movable contact member, and a periphery of the recess at least partially surrounding a periphery of the first contact in a surface perpendicular to a protruding direction of the first contact. |
US11011322B2 |
Graphene alignment in solid polymer electrolyte
Solid polymer electrolyte (SPE) having conductive filler aligned to have directional ionic conductivity. The SPE with aligned conductive filler are used in a structural supercapacitor comprising one or more plies. Each of the plies has a first and second conducting member, each with a plurality of sections with conductive filler oriented normal to the inner surface of the first conducting member. The plies also having a pair of epoxy-SPE layers with aligned conductive filler. The resin layers are between the inner surfaces of the first and second conducting members. |
US11011321B2 |
Electrochemical energy storage device
An electrochemical energy storage device includes an anode having a first mixture which includes a first plurality of electrically conductive carbon-comprising particles having a first average porosity, and lithium metal materials. The weight ratio of the first plurality of carbon-comprising and lithium metal materials is from 30:1 to 3:1. A cathode includes a second mixture having a second plurality of electrically conductive carbon-comprising particles having a second average porosity greater than the first average porosity, and lithium-intercalating metal oxide particles. The weight ratio of the second plurality of carbon-comprising and lithium-intercalating metal oxide particles is from 1:20 to 5:1. The weight ratio between the lithium metal materials loaded in the anode and the second plurality of carbon-comprising particles in the cathode is from 0.1-10%. An electrolyte physically and ionically contacts the anode and the cathode, and fills the pore volume in the anode, cathode and a porous separator. |
US11011320B2 |
Bus stop using large-scale perovskite solar cell
Disclosed is a bus stop using a large-scale perovskite solar cell in which a perovskite solar cell is prepared using a hybrid structure including a graphene-carbon nanotube. The bus stop includes a body unit fixed to the ground to maintain the overall shape, a solar cell unit for producing electrical energy from sunlight, and an energy storage system (ESS) for storing the electrical energy produced by the solar cell part. |
US11011310B2 |
Electronic component with external electrode including sintered layer and conductive resin layer on the sintered layer
An element body of a rectangular parallelepiped shape includes a first principal surface arranged to constitute a mounting surface, a second principal surface opposing the first principal surface in a first direction, a pair of side surfaces opposing each other in a second direction, and a pair of end surfaces opposing each other in a third direction. An external electrode is disposed on the element body. The external electrode includes a conductive resin layer. The conductive resin layer continuously covers one part of the first principal surface, one part of the end surface, and one part of each of the pair of side surfaces. A length of the conductive resin layer in the first direction is smaller than a length of the conductive resin layer in the third direction. |
US11011309B2 |
Ceramic electronic component, ceramic electronic component manufacturing method, and ceramic electronic component-mounting circuit board
Disclosed is a ceramic electronic component having external electrodes on each of opposed end portions of a rectangular parallelepiped component body. A first direction dimension, a second direction dimension and a third direction dimension of the component body satisfy a condition of second direction dimension>first direction dimension>third direction dimension. The external electrodes are of a five-face type having a first face portion, a second face portion, a third face portion, a fourth face portion and a fifth face portion. At least one edge of the fourth face portion and the fifth face portion of the external electrode has a recess portion recessed from the edge toward the first face portion. Both side portions in the third direction of the recess portion are covering portions which cover ridge portions of the two faces in the second direction of the component body. |
US11011306B2 |
Ceramic electronic component and method for producing ceramic electronic component
A ceramic electronic component that includes a ceramic insulator and an inner conductor layer disposed in the ceramic insulator. The inner conductor layer contains a metal and a metal oxide containing at least one first metal element selected from Ti, Mg, and Zr, first insulator regions that contain at least one second metal element selected from Ti, Mg, and Zr and that are discontinuous from the ceramic insulator and present in a dispersed state in the inner conductor layer, and a second insulator region containing a third metal element the same as the second metal element contained in the first insulator regions and present around the inner conductor layer. |
US11011300B2 |
Electronic component
An electronic component is mounted on a circuit board such that a mounting surface of an element body to which a first outer electrode and a second outer electrode are exposed is directed toward the circuit board. A coil is formed of a spiral coil in which a plurality of coil conductor layers arranged in a direction perpendicular to a first side surface and a second side surface orthogonal to the mounting surface are connected in series. Then, an intermediate point between a lowest point closest to the mounting surface and an uppermost point farthest from the mounting surface in an inner circumference of the coil is offset from the center of the element body in a direction perpendicular to the mounting surface toward the opposite side to the mounting surface. |
US11011297B2 |
Semiconductor device and semiconductor module
The semiconductor device of the present invention includes an insulating layer, a high voltage coil and a low voltage coil which are disposed in the insulating layer at an interval in the vertical direction, a low potential portion which is provided in a low voltage region disposed around a high voltage region for the high voltage coil in planar view and is connected with potential lower than the high voltage coil, and an electric field shield portion which is disposed between the high voltage coil and the low voltage region and includes an electrically floated metal member. |
US11011293B2 |
Inductor component
An inductor component includes a drum core including a winding core portion extending along a longitudinal direction and a pair of flange portions disposed on end portions of the winding core portion, a plate core bonded to the pair of flange portions, and a wire wound around the winding core portion. The drum core and the plate core are made of a magnetic material. An average distance between the plate core and the pair of flange portions is no less than about 20 μm and no more than about 50 μm. The wire includes aligned banked winding portions arranged along the longitudinal direction and more than half of a total number of turns of the wire belong to the aligned banked winding portions. |
US11011289B2 |
Anti-kink device for a cable
An anti-kink device for a cable is provided. The anti-kink device for a cable comprises: an anti-kink bush which can be secured on a cable, wherein the anti-kink bush has at least one first snap-in element, a first connecting element which has an opening for the passage of the anti-kink bush, wherein the first connecting element has at least one second snap-in element, a second connecting element which can be connected to the first connecting element, wherein the at least one first snap-in element and the at least one second snap-in element are in such a form that, in a first position of the anti-kink bush relative to the first connecting element, they allow the anti-kink bush to be guided through the opening of the first connecting element and, in a second position of the anti-kink bush relative to the first connecting element, they can be locked together. |
US11011286B2 |
Cable
A cable includes a plurality of electric wires, which are laid helically around a center of the cable and along a central axis of the cable, and a sheath provided to cover respective peripheries of the plurality of electric wires together. The sheath includes an inner layer sheath made of a urethane resin, and an outer layer sheath provided around an outer periphery of the inner layer sheath to protect the inner layer sheath. The cable may further include a core member at its center. The sheath may be composed of a single layer instead of plural layers. |
US11011284B1 |
Data line convenient for storage
A data line convenient for storage includes a data line body (1); a plurality of magnetic rings (2) sleeve on the data line body (1); and a plurality of limit tube (3). Each limit tube (3) is arranged between each two adjacent magnetic rings (2). Two opposite ends of each limit tube (3) respectively abuts against the two adjacent magnetic rings (2). When the data line is coiled and stacked into a multiple-layer structure, the magnetic rings (2) located at two adjacent layers attract each other. The magnetic rings (2) at two adjacent layers can attract each other to fix the adjacent layers tightly for storage. The data line is simple in structure, each to use and properly designed to improve user experience. |
US11011280B2 |
Reactor coolant system piping temperature distribution measurement system
A system that measures the temperature distribution of the reactor coolant flowing through the hot leg or cold leg pipes by measuring the speed of sound time delay. This concept uses radiation hardened and temperature tolerant ultrasonic signal drivers based on vacuum micro-electronic technology. The system employs ultrasonic signals propagated through water, and relies on the characteristic that the speed of sound changes as the density and temperature of the water changes. Thus, a measured difference in the speed of sound in water may be directly correlated to a temperature change of the water. |
US11011276B2 |
Method for establishing computer-aided data interpretation model for immune diseases by immunomarkers and visualization
A method for establishing a computer-aided data interpretation model for immune diseases by immunomarkers and visualization is revealed. First combine a plurality of immunomarkers into an immunomarker panel. Then collect test data of a plurality of subjects measured by the immunomarker panel, and disease diagnosis information of the subjects for establishment of an immunomarker-panel testing database. Next new subjects are tested by the immunomarker panel. The data obtained and the corresponding information in the immunomarker-panel testing database are processed by unsupervised machine learning algorithm to get a computer-aided data interpretation model showing comparison of case distribution patterns. The method provides real-time analysis of multiple data to medical professionals for their reference. Thereby the correctness, the timeliness and the reproducibility of the interpretation result for the diagnosis and treatment of immune diseases are all improved. |
US11011275B2 |
System and method for diagnosing gastrointestinal neoplasm
A system and method of diagnosing gastrointestinal neoplasm or pathologies in an endoscopy system including an endoscopy system display for displaying an image enhanced endoscopy (IEE) image. The method includes randomly generating training image samples with or without cancer region(s) by an adversarial network (AN) including collecting endoscopic training images (T1) and automatically generating a realistic IEE image as a new training image sample (T2) using a generator network in the AN from a generated segmentation map; using a prediction network (L1PN) to learn a level 1 prediction result being a cancerous probability of an IEE image from the collected T1 and T2; using a prediction network (L2PN) to learn a level 2 prediction result being detected cancerous region(s) of an IEE image; and predicting the level 1 result and the level 2 result for an IEE image using the L1PN and the L2PN and without using the AN. |
US11011268B2 |
System and method for managing medical waste received in one or more containers
A system for managing medical waste received in one or more containers placed at one or more medical facilities, for instance, for improved scheduling is disclosed. In some embodiments, the system comprises tracking modules coupled to the one or more containers, wherein each tracking module comprises, a plurality of LEDs positioned opposite to a plurality of light sensors, wherein each of the LED is being configured to periodically project a light beam towards a light sensor among plurality of light sensors for detecting a fill level of the container, and a controller in communication with the plurality of LEDs and the plurality of light sensors, wherein the controller is being configured for, periodically triggering the plurality of LEDs for projecting the light beams, receiving output data of the plurality of light sensors, the output data representing the fill level of the container, and communicating the fill level to a server. |
US11011267B2 |
Bed/room/patient association systems and methods
Systems and methods of associating beds and/or rooms and/or patients are provided. One system and method involves using a signature of emitted light to determine a location of a patient bed in a healthcare facility. Another system and method involves reading a bar code from an array of redundant bar codes. Still another system and method involves manually entering location information on a graphical user interface of a patient bed for subsequent transmission. A further system and method involves sending bed ID and location ID along parallel paths from two independent circuits on a patient bed for receipt by two different transceivers and ultimately by two different remote computers that cooperate to associate the bed ID with the location ID. Still a further system and method involves using circuitry on a bed to mutate a received location ID and a bed ID into a single unique mutated ID such as by adding the location ID and bed ID and then performing a hashing operation. |
US11011266B2 |
Health provider matching service
A health provider matching service is provided to match patients to health providers based on a semantic relationship graph of data associated with conditions of patients. Using natural language processing, the service identifies terms describing symptoms, treatments, and health providers associated with a condition. The service then identifies semantic relations among the terms and probability distributions of the terms to generate a semantic relationship graph. Quality information of therapists is combined with machine learning techniques to identify features that are used to distinguish high quality and low quality providers. Based on the semantic relationship graph and the derived quality information, the service matches a patient to a health provider suitable to treat the particular needs of the patient. The service also handles social, behavioral, or emotional issues for which medications are not appropriate. |
US11011265B2 |
Predicting prostate cancer risk of progression with multiparametric magnetic resonance imaging using machine learning and peritumoral radiomics
Embodiments facilitate stratification of a patient according to prostate cancer (PCa) risk. A first set of embodiments relates to training of a machine learning classifier to compute a probability that a patient has a low-risk of PCa progression based on intratumoral radiomic features and peritumoral radiomic features extracted from multi-parametric magnetic resonance imaging (mpMRI) images. A second set of embodiments relates to classifying a patient as low-risk of PCa progression, or high-risk of PCa progression, based on radiomic features extracted from mpMRI imagery of the patient. |
US11011262B2 |
Retrofitted continuous passive motion devices
A method for gathering information relating to the use of a continuous passive motion device can include receiving usage information from a continuous passive motion device processing unit. The usage information can include at least one duration of time that the continuous passive motion device was used. The method can also include storing the usage information such that the usage information is available within a historical dataset. Additionally, the method can include displaying at least a portion of the usage information from the historical dataset on a graphical user interface. |
US11011260B2 |
Medication management and reporting technology
Medication management and reporting technology, in which output from at least one sensor configured to sense physical activity in a building in which medication of a patient is located is monitored and a determination is made to capture one or more images of the medication based on the monitoring. A camera is used to capture an image of the medication and the captured image is analyzed to detect a state of the medication. Information regarding a schedule by which the medication should be taken by the patient is accessed and an expected state of the medication is determined. The detected state is compared with the expected state and a determination is made that the patient has departed from the schedule based on the comparison revealing that the detected state does not match the expected state. A message indicating the departure from the schedule is sent based on the determination. |
US11011259B2 |
Automated pharmacy translation engine for prescription medication instructions
A system, apparatus, and method for providing an automated translation engine for translating a prescription into a standardized format is generally disclosed. More particularly, embodiments described in this disclosure relate to a system, apparatus, and method for automatically receiving a prescription form, analyzing information provided on the prescription form, and translating the information into a standardized form that details medication information including medication administration directions that are easy for a reader to understand. |
US11011249B2 |
Concurrent testing of a logic device and a memory device within a system package
Testing packaged integrated circuit (IC) devices is difficult and time consuming. When multiple devices (dies) are packaged to produce a SiP (system in package) the devices should be tested for defects that may be introduced during the packaging process. With limited access to the inputs and outputs of the devices, test times increase compared with testing the devices before they are packaged. A CoWoS (chip on wafer on substrate) SiP includes a logic device and a memory device and has interfaces between the logic device and memory device that cannot be directly accessed at a package ball. Test programs are concurrently executed by the logic device and the memory device to reduce testing time. Each memory device includes a BIST (built-in self-test) module that is initialized and executes the memory test program while the one or more modules within the logic device are tested. |
US11011247B2 |
Source driving sub-circuit and driving method thereof, source driving circuit, and display device
A source driving sub-circuit includes a shift register circuit and a latch circuit. The latch circuit includes a resetter and a latch. The resetter is coupled to an enabling signal terminal, a reset signal terminal and the latch. The latch is coupled to the shift register circuit and a data signal terminal. The latch is configured to receive signals output from the shift register circuit and at least in response to the signals output from the shift register circuit. And the resetter is configured to receive a signal provided from the enabling signal terminal and a signal provided from the reset terminal, and reset the at least one data signal latched by the latch in response to the signal provided from the enabling signal terminal. |
US11011246B2 |
Shift register, gate driving circuit, display device, and driving method of node sustaining circuit
A shift register, a gate driving circuit, a display device, and a driving method of a node sustaining circuit are disclosed. The shift register includes an input sub-circuit, a reset sub-circuit, an output sub-circuit, a pull-down sub-circuit, a first control sub-circuit, a second control sub-circuit, a first storage sub-circuit, and a node sustaining circuit. The node sustaining circuit is configured to sustain the potential of a node, which is one of a pull-up node or a pull-down node in the shift register. |
US11011240B2 |
Flash memory cell and associated high voltage row decoder
The present invention relates to a flash memory cell with only four terminals and a high voltage row decoder for operating an array of such flash memory cells. The invention allows for fewer terminals for each flash memory cell compared to the prior art, which results in a simplification of the decoder circuitry and overall die space required per flash memory cells. The invention also provides for the use of high voltages on one or more of the four terminals to allow for read, erase, and programming operations despite the lower number of terminals compared to prior art flash memory cells. |
US11011238B2 |
Floating data line circuits and methods
A write line circuit includes a power supply node configured to carry a power supply voltage level, a reference node configured to carry a reference voltage level, a first input node configured to receive a first data signal, a second input node configured to receive a second data signal, a third input node configured to receive a control signal, and an output node. The write line circuit is configured to, responsive to the first data signal, the second data signal, and the control signal, either output one of the power supply voltage level or the reference voltage level on the output node, or float the output node. |
US11011237B2 |
Semiconductor memory device with erase control
A semiconductor memory device includes: a memory cell array including a plurality of conductive layers, a semiconductor layer, and charge accumulating sections; and a control circuit that executes an erase operation. The erase operation includes an erase mode that executes a first erase flow. The first erase flow includes: a first write operation in which a first program voltage is applied to the plurality of conductive layers; a first erase operation that is executed after the first write operation, and in which, while a first voltage is applied to a first conductive layer, a voltage higher than the first voltage is applied to the second conductive layer; and a second erase operation that is executed after the first erase operation, and in which, while the first voltage is applied to a second conductive layer, a voltage higher than the first voltage is applied to the first conductive layer. |
US11011225B2 |
Semiconductor storage device
According to one embodiment, a semiconductor storage device includes a first wiring, a first resistance change element which is connected to the first wiring, a first nonlinear element which is connected to the first resistance change element, and a second wiring which is connected to the first nonlinear element. In a read operation for the first resistance change element, a voltage between the first wiring and the second wiring increases to a first voltage, and after the voltage between the first wiring and the second wiring increases to the first voltage, the voltage between the first wiring and the second wiring increases to a second voltage which is larger than the first voltage. |
US11011220B2 |
Apparatuses and methods for compute in data path
The present disclosure includes apparatuses and methods for compute in data path. An example apparatus includes an array of memory cells. Sensing circuitry is coupled to the array of memory cells. A shared input/output (I/O) line provides a data path associated with the array. The shared I/O line couples the sensing circuitry to a compute component in the data path of the shared I/O line. |
US11011219B2 |
Method for refreshing a memory array
The present disclosure provides a method for refreshing a memory array. The method includes the following steps: generating a plurality of target row records respectively for a plurality of banks; generating a plurality of row address records based on the plurality of target row records; and performing a row-hammer-refreshing process based on the plurality of row address records. |
US11011216B1 |
Compute-in-memory dynamic random access memory
A compute-in-memory dynamic random access memory bitcell is provided that includes a first transistor having an on/off state controlled by a weight bit stored across a capacitor. The first transistor is in series with a current-source transistor connected between the first transistor and a read bit line. An activation voltage controls whether the current-source transistor conducts a current when the first transistor is in the on state. |
US11011210B2 |
Memory layout structure
A memory layout structure, which is provided with multiple source lines between active areas, each source line has multiple branches electrically connecting with the active areas at opposite sides in alternating arrangement. Multiple word lines traverse through the active areas to form transistors. Multiple storage units are disposed between the word lines on the active areas in staggered array arrangement, and multiple bit lines electrically connect with all storage units on a corresponding active area, wherein each storage cell includes one of the storage unit, two of the transistors respectively at both sides of the storage unit, and two branches of the source line. |
US11011209B2 |
Three-dimensional memory device including contact-level bit-line-connection structures and methods of making the same
A semiconductor structure includes a memory die, which includes an alternating stack of insulating layers and electrically conductive layers located over a substrate and memory stack structures vertically extending through the alternating stacks. A contact-level dielectric layer embeds drain contact via structures that are electrically connected to a respective drain region and contact-level metal interconnects, and a via-level dielectric embedding drain-to-bit-line connection via structures, bit-line-connection via structures, and pad-connection via structures. A bit-line-level dielectric layer overlies the via-level dielectric layer, and embeds bit lines that contact a respective subset of the drain-to-bit-line connection via structures, and embeds metal pads that contact a respective one of the pad-connection via structures. Each metal pad is electrically connected to a respective bit line through a series connection of a respective pad-connection via structure, a respective contact-level metal interconnect, and a respective bit-line-connection via structure. |
US11011203B1 |
Patterned thermal absorption layer for granular storage media
A heat-assisted magnetic recording device includes a granular magnetic recording layer and a thermal absorption layer formed on top of the magnetic recording layer. The thermal absorption layer is patterned to include rows extending in a cross-track direction of the magnetic media, each adjacent pair of the rows being separated from one another by an insulating material. |
US11011199B2 |
Magnetic disk device and control method of servo write
According to one embodiment, a magnetic disk device including a disk, a head, and a controller configured to, when writing a first servo sector, a second servo sector, and a third servo sector in the order described according to a second route varying in a radial direction of the disk with respect to a first route, adjust first timing used to write the second servo sector next to the first servo sector, and adjust second timing used to write the third servo sector next to the second servo sector. |
US11011192B1 |
Method of building self-aligned optical side shield structure
An optically shielded (thermally assisted magnetic recording (TAMR) head comprises a perpendicular magnetic recording (PMR) write head and a near-field transducer (NFT) having an emerging peg at the air-bearing surface (ABS). Self-aligned optical side shields (SA-OSS) are formed using a self-aligning process that positions the shields symmetrically relative to the emergent peg of the NFT. As a result of the symmetric positioning the down-track and cross-track near-field and near-field gradients are significantly sharpened. |
US11011189B2 |
Readback waveform oversampling method and apparatus
A read channel is configured to obtain an analog readback waveform from a magnetic recording medium of a disk drive at a sampling rate of one sample per one written bit. A buffer is coupled the read channel. Circuitry is configured to inject a plurality of different phase offsets into the read channel for each of a plurality of revolutions of the medium. The circuitry is also configured to store, in a buffer, an amplitude of the readback waveform for each of the different phase offsets. The circuitry is further configured to generate an oversampled readback waveform using the amplitudes stored in the buffer. |
US11011188B2 |
Diagnostic techniques based on speech-sample alignment
Reference-sample feature vectors that quantify acoustic features of different respective portions of at least one reference speech sample, which was produced by a subject at a first time while a physiological state of the subject was known, are obtained. At least one test speech sample that was produced by the subject at a second time, while the physiological state of the subject was unknown, is received. Test-sample feature vectors that quantify the acoustic features of different respective portions of the test speech sample are computed. The test-sample feature vectors are mapped to respective ones of the reference-sample feature vectors, under predefined constraints, such that a total distance between the test-sample feature vectors and the respective ones of the reference-sample feature vectors is minimized. In response to the mapping, an output indicating the physiological state of the subject at the second time is generated. Other embodiments are also described. |
US11011187B2 |
Apparatus for generating relations between feature amounts of audio and scene types and method therefor
An apparatus for generating relations between feature amounts of audio and scene type includes at least one processor and a memory. The memory is operatively coupled to the at least one processor. The processor is configured to set one of the scene types to each of clusters classifying the feature amounts of audio in one or more pieces of content. The processor is also configured to generate a plurality of pieces of learning data, each representative of a feature amount, from among the feature amounts of the audio, that belongs to each cluster and the scene type set for each cluster. The processor is also configured to generate an identification model representative of relations between the feature amounts of audio and the scene types by performing machine learning using the plurality of pieces of learning data. |
US11011186B2 |
Mobile emulator determination using sound detection
A method and apparatus for mobile emulator determination using sound fingerprinting is disclosed. The method includes a verification computer system receiving a transaction request from a computing device purporting to be a mobile device. Responsive to receiving the request, the verification computer system transmits a request for verification information to the computing device. The verification system includes information regarding a tone to be generated by a speaker of the computing device. Thereafter, verification information is received from the computing device. The verification information includes information tone information generated by the computing device, wherein the tone is, after generation, detected by a microphone. The verification system then verifies, based on the receive verification information, whether the information indicates that the computing device is a mobile device. |
US11011180B2 |
Audio signal dynamic range compression
Provided are systems, methods and techniques for compressing the dynamic range of an audio signal. In one implementation: an input audio signal is obtained, and a time-varying gain signal is provided based on it and a desired output range. The time-varying preliminary gain signal is then applied to the input audio signal to provide an output audio signal. Provision of the time-varying gain signal involves lowpass filtering a signal that is based on the input audio signal, using an attack gain-response time and a release gain-response time as filtering parameters, with the attack gain-response time decreased and the release gain-response time increased in response to a determination that a transient is occurring in the input audio signal. |
US11011177B2 |
Voice identification feature optimization and dynamic registration methods, client, and server
A voice identification method comprises: obtaining audio data, and extracting an audio feature of the audio data; determining whether a voice identification feature having a similarity with the audio feature above a preset matching threshold exists in an associated feature library; and in response to determining that the voice identification feature exists in the associated feature library, updating, by using the audio feature, the voice identification feature obtained through matching. |
US11011175B2 |
Speech broadcasting method, device, apparatus and computer-readable storage medium
Embodiments of a speech broadcasting method, device, apparatus and a computer-readable storage medium are provided. The method can include: receiving recorded speech data from a plurality of speakers; extracting respective text features of the plurality of speakers from the recorded speech data, and allocating the plurality of speakers with respective identifications; and inputting the text features and the identifications of the speakers to a text-acoustic mapping model, to output speech features of the plurality of speakers; and establishing a mapping relationship between the text feature and the speech feature of each speaker. In the embodiments of the present application, a broadcaster can be selected to broadcast a text, greatly improving user experience of the text broadcasting. |
US11011172B2 |
Electronic device and voice recognition method thereof
An electronic device and a voice recognition method thereof are provided. A voice recognition method of an electronic device includes receiving trigger voice, storing a characteristic of the trigger voice for voice verification by analyzing the trigger voice. When a user issues a voice command, determining whether the user voice command comprises the characteristic belonging to the trigger voice, and performing function of the electronic device corresponding to the user voice command based on the determination. Accordingly, users may easily use the voice recognition function of the electronic device. |
US11011171B2 |
Pre-emptively initializing an automated assistant routine and/or dismissing a scheduled alarm
Implementations set forth herein relate to initializing performance of an automated assistant routine and/or dismissing an alarm pre-emptively according to satisfaction of one or more conditions. A condition can be satisfied by a user acknowledging the alarm when the alarm is going off, or causing the alarm to be dismissed prior to a time at which the alarm was scheduled for. The user can cause the alarm to be dismissed pre-emptively by interacting with the automated assistant prior to the time the alarm was scheduled for and/or interacting with a device, which is known to the automated assistant, prior to the time that the alarm was scheduled for. In this way, actions that cause an alarm to be dismissed can be recognized and used to initialize other processes, such as an automated assistant routine, thereby reducing a number of inputs needed from a user. |
US11011169B2 |
Inaudible frequency transmission in interactive content
Systems and methods may be used to detect an inaudible signal associated with a first audible signal of an audio input. The inaudible signal may include a frequency signature. The frequency signature may be associated with an electronic device type. The systems and methods may activate a response monitor. The response monitor may be activated for a predetermined time. The response monitor may be activated responsive to the frequency signature. The systems and methods may determine a content characteristic of the first audible signal based on the inaudible signal. The systems and methods may include generating a message. The message may be based on the content characteristic. The systems and methods may include transmitting the message. The message may be transmitted on a condition that a second audible signal corresponds to the message and is received within the predetermined time. |
US11011167B2 |
Communication system, communication method, and computer-readable storage medium
A communication system includes a pair of speech recognition devices that are capable of communicating with each other, each of the speech recognition devices including a speech input section into which speech is input, a speech recognition section that recognizes speech input to the speech input section, and a speech output section that outputs speech. The communication system also includes an information generation section that generates notification information corresponding to speech recognized by the speech recognition section in one speech recognition device from out of the pair of speech recognition devices, and a speech output control section that performs control to output notification speech corresponding to the notification information at a specific timing from the speech output section of the other speech recognition device from out of the pair of speech recognition devices. |
US11011165B2 |
Voice input device, non-transitory computer readable medium storing voice input program, and voice input system
After acceptance of a start instruction of voice input, a voice input device determines whether a volume of input sound into a microphone exceeds a specific acceptable upper limit volume (S83). Upon determination that the volume of the sound input into the microphone exceeds the acceptable upper limit volume (S83: affirmative), the voice input device notifies a request to move the voice input device (S85). Upon determination that the volume of the sound input into the microphone is equal to or smaller than the acceptable upper limit volume (S83: negative), the voice input device starts inputting voice through the microphone (S89). |
US11011164B2 |
Activation of remote devices in a networked system
The present disclosure is generally directed to the generation of voice-activated data flows in interconnected network. The voice-activated data flows can include input audio signals that include a request and are detected at a client device. The client device can transmit the input audio signal to a data processing system, where the input audio signal can be parsed and passed to the data processing system of a service provider to fulfill the request in the input audio signal. The present solution is configured to conserve network resources by reducing the number of network transmissions needed to fulfill a request. |
US11011163B2 |
Method and apparatus for recognizing voice
Embodiments of the present disclosure disclose a method and apparatus for recognizing voice. A specific implementation of the method comprises: receiving voice information sent by a user through a terminal, and acquiring simultaneously a user identifier of the user; recognizing the voice information to obtain a first recognized text; determining a word information set stored in association with the user identifier of the user based on the user identifier of the user; and processing the first recognized text based on word information in the determined word information set to obtain a second recognized text, and sending the second recognized text to the terminal. The implementation improves the accuracy of voice recognition and meets a personalized need of a user. |
US11011161B2 |
RNNLM-based generation of templates for class-based text generation
A computer-implemented method is provided for generating a plurality of templates. The method includes obtaining, by a processor device, a Recurrent Neural Network Language Model (RNNLM) trained using a first set of text data. The method further includes adapting, by the processor device, the RNNLM using a second set of text data by adding a new node corresponding to a class in both an input layer and an output layer of the RNNLM, the class being obtained from the second set of text data. The method also includes generating, by the processor device, the plurality of templates using the adapted RNNLM. |
US11011160B1 |
Computerized system for transforming recorded speech into a derived expression of intent from the recorded speech
A computerized system for transforming recorded speech into a derived expression of intent from the recorded speech includes: (1) a text classification module comparing a transcription of at least a portion of recorded speech against a text classifier to generate a first set of one or more of the representations of potential intents based upon such comparison; (2) a phonetics classification module comparing a phonetic transcription of at least a portion of the recorded speech against a phonetics classifier to generate a second set of one or more of the representations of potential intents based upon such comparison; (3) an audio classification module comparing an audio version of at least a portion of the recorded speech with an audio classifier to generate a third set of one or more of the representations of potential intents based upon such comparison; and a (4) discriminator module for receiving the first, second and third sets of the one or more representations of potential intents and generating at least one derived expression of intent by processing the first, second and third sets of the one or more representations of potential intents together; where at least two of the text classification module, the phonetics classification module and the audio classification module are asynchronous processes from one another. |
US11011156B2 |
Training data modification for training model
A computer-implemented method for training a model is disclosed. The model is capable of retaining a history of one or more preceding elements and has a direction of prediction. The method includes obtaining a training sequence of elements. The method also includes splitting the training sequence into a plurality of parts. The method further includes selecting one part of the plurality of the parts depending on the direction of the model to generate a modified training data. The method includes further training the model using the modified training data. |
US11011153B2 |
Communications system providing automatic text-to-speech conversion features and related methods
An electronic mail server, computer-readable medium and method of delivering an electronic message to a wireless communication device are provided. The wireless communications device comprises a long-range wireless transceiver, a short-range wireless transceiver having a range less than the long-range wireless transceiver, and a display screen. A new text message is received via the long-range wireless transceiver. Based upon a short-range wireless connection being established with another device via the short-range wireless transceiver, the wireless communication device is switched to an audio message mode. An indication that the new text message has been received is displayed on the display screen. The new message is selected and, when in the audio message mode, an audio message comprising speech generated based upon the new text message is output via the short-range wireless transceiver. |
US11011149B2 |
Multi profile hearing protection headset
A hearing protection headset that can be worn by a user includes left and right earcups. The headset includes a radio communication system enabling at least one radio signal to be received and played through one or both of the earcups. Noise control circuitry in the headset is configurable by a user between at least three active modes of operation—the circuitry having a first active mode in which the headset provides automatic noise reduction, a second active mode in which the headset provides automatic noise cancellation, and a third active mode in which the headset provides both automatic noise reduction and automatic noise cancellation. A switch is manually operable by the user to configure the circuitry between the first active mode and the second active mode and the third active mode. |
US11011147B2 |
Sheet material with a cellular structure and/or a process for producing same
A sheet material with a cellular structure wherein the sheet material is produced by preparing a composition including PVC, a filler material and a plasticiser and providing a cellular structure within the composition prior to curing to form the sheet material. The composition may further include a cellular structure promoting agent. The sheet material with a cellular structure may be used in building applications and has advantageous sound attenuation, thermal conductivity, resilience and impact resistance properties. |
US11011146B2 |
More embodiments for common-point pickup circuits in musical instruments part C
This invention continues and adds to the embodiments under Non-provisional patent application Ser. No. 16/840,644, adding circuits using small dual-coil humbucking pickups made to mount in the same holes as and replace single-coil pickups. It also develops circuits to match the value of tone capacitors to the lumped inductances of pickup circuits. A mechanical switching system for 3 single-sized humbuckers can produce 21 distinct tonal circuits from 48 different switch combinations, using a 6-way circuit switch and three 2-way mode switches. A digitally-controlled solid-state switching system can avoid the duplicate circuits, and control even more pickups for more tones. With such a switching system, the user can set the order of 2, 21, 120 and 705 distinct tonal circuits for 2, 3, 4 and 5 single-sized humbucking pickups, with expected extensions to larger numbers of pickups, and the caveat from previous work by this inventor that tones tend to bunch together at the warm end, decreasing the number of audibly distinct tones. |
US11011143B2 |
Carbon fiber guitar
A stringed musical instrument comprises a bridge that receives a plurality of strings. The bridge comprises at least one internal pocket. In some embodiments, the bridge comprises a plurality of internal pockets. |
US11011142B2 |
Information processing system and goggle apparatus
In a goggle apparatus, an opening portion is formed, and in a state where an information processing apparatus is attached to the goggle apparatus, a touch operation can be performed on a third area different from a first area and a second area of a touch screen. Then, a left-eye image is displayed in the first area of the touch screen, and a right-eye image having parallax with the left-eye image is at least displayed in the second area of the touch screen. If a touch operation is performed on a position in the third area of the touch screen, a process is executed. |
US11011138B2 |
Mobile terminal and control method thereof
A terminal and a control method for simultaneously executing a plurality of applications are provided. The mobile terminal includes a display unit to output a first screen and a second screen overlapping at least a portion the first screen as a higher screen than the first screen and a control unit to control transparency based on occurrence of a preset event of at least a first region of the first screen on which an object corresponding to the preset event is output or a second region of the second screen overlapping the first region according to a preset scheme. |
US11011135B2 |
Head-up display with transparency mask
A head-up display has an image generator, an optical system, a transmissive screen and a transparency mask. The transparency mask is arranged close to a display of the image generator. A mask pixel map is applied to the processed image to get a masked image. |
US11011134B2 |
Non-transitory storage medium encoded with information processing program readable by computer of information processing apparatus which can enhance zest, information processing apparatus, method of controlling information processing apparatus, and information processing system
A non-transitory storage medium encoded with an information processing program executed by a computer of an information processing apparatus connected to a display including first and second display areas according to one aspect, the information processing program causing the computer to perform first representation processing for showing a first image in the first display area and second representation processing for showing a second image in the second display area. In the second representation processing, a color of the second image in the second display area is changed based on the first image shown in the first display area. |
US11011131B2 |
Off-screen control method determining signal intensity calibration value for filmed display screen
The implementations of the present disclosure disclose a screen-off control method which includes: obtaining a plurality of signal intensity values by performing a signal intensity value reading operation on a proximity sensor the number of times preset; calculating an average intensity value; determining whether a first difference value between the average intensity value and an initial intensity value of the proximity sensor is greater than a preset value; if yes, determining the first difference value to be a signal intensity calibration value; and performing screen-off control according to the signal intensity calibration value and a screen-off threshold value. The present disclosure also provides a screen-off control apparatus, a storage medium, and a terminal. |
US11011130B2 |
Circuit device, electro-optical device, and electronic apparatus having plural capacitor elements
A circuit device includes a driving circuit and an output capacitor. The output capacitor includes a first MIM capacitor element including a first metal layer, a second metal layer, and a first insulating layer, and a second MIM capacitor element including a third metal layer, a fourth metal layer, and a second insulating layer. The first metal layer and the fourth metal layer are electrically coupled to the capacitor drive node, and the second metal layer and the third metal layer are electrically coupled to the voltage output node. The second metal layer is positioned at the third metal layer side with respect to the first metal layer, and the third metal layer is positioned at the second metal layer side with respect to the fourth metal layer. |
US11011128B1 |
GOA circuit driving method and driving device
The present invention teaches a GOA circuit driving method and a GOA circuit driving device. Through the configuration of a buffer capacitor electrically connected to the level shift IC, the level shift IC connects to the buffer capacitor and switches to the transition level during shifting the target clock signals from high to low level or from low to high level. Through the buffer capacitor, the present invention is able to keep the transition level always equal to one half of the sum of the low voltage and the high voltage, thereby maximizing reduction of power consumption and feedthrough effect of the GOA circuit. |
US11011126B2 |
Display device and display controller
A display device includes a display panel, a gate driver that supplies scan signals to a first to nth scan lines, a data driver that supplies gradation voltage signals corresponding to a video data signal to a plurality of data lines, and a display controller that supplies the video data signal to the data driver. The display controller supplies a first to nth pieces of display data to the data driver in units of display data pairs each including a kth piece of display data and an (n+1−k)th piece of display data. The gate driver supplies the scan signals to the plurality of scan lines. Each of the scan signals has different pulse widths depending on distance from the data driver to the respective first to nth scan lines. The data driver supplies the gradation voltage signals to the plurality of data lines on the basis of supply of the display data pairs from the display controller. |
US11011121B2 |
Multiview backlight, display, and method employing active emitter arrays
A multiview backlight includes a first array active emitters configured to provide a first plurality of directional light beams and a second array of active emitters configured to provide a second plurality of directional light beams. The second array of active emitters is interleaved between active emitters of the first array of active emitters. Further, directional light beams of each of the first and second directional light beam pluralities have directions corresponding to view directions of a multiview display. A multiview display further includes an array of light valves configured to modulate the directional light beams to display a multiview image. An image resolution of the multiview image is configured to be dynamically selectable according to operational mode. |
US11011119B2 |
Array substrates and display screens
The present disclosure relates to an array substrate and a display screen. The array substrate includes a first gate drive unit located in the non-display area and corresponding to pixels in the special-shaped display region, and a second gate driving unit located in the non-display area and corresponding to pixels in the non-special-shaped display region. A width-length ratio of a first output transistor of the first gate driving unit is smaller than a width-length ratio of a second output transistor of the second gate driving unit. |
US11011115B1 |
Method, equipment, and system of electrical detecting and adjusting TFT
A method, an equipment, and a system of electrical detecting and adjusting TFTs are provided. The method includes steps of: obtaining a gate-source voltage ratio of each sub-pixel of a display device; detecting an output voltage of each driving TFT in a predetermined sampling time to obtain a detecting voltage; obtaining a constant value K according an input voltage of each driving TFT and the detecting voltage in the predetermined sampling time; adjusting the constant value K of each compensating sub-pixel in sequence according to a gate-source voltage ratio of a standard sub-pixel, a constant value K of the standard sub-pixel, and a gate-source voltage ratio of the compensating sub-pixel to obtain a compensating factor; and adjusting a pixel voltage of each compensating sub-pixel according to its compensating factors to obtain an adjusted pixel voltage. |
US11011111B2 |
Display driving device
A display driving device comprising: a high supply voltage operation unit that generates an operating current under application of a high supply voltage so as to supply driving voltages to a display panel; a low supply voltage operation unit that operates under the application of a low supply voltage lower than the high supply voltage and controls the high supply voltage operation unit; and a reuse circuit that receives the operating current from the high supply voltage operation unit and supplies the operating current to a ground side via the low supply voltage operation unit so as to apply the low supply voltage to the low supply voltage operation unit. |
US11011106B1 |
System and method for error adaptation
A method for compensating for characteristics of a transistor. In some embodiments, the method includes: measuring an error value, the error value being a difference between: a target current and a current driven by the transistor when the transistor is controlled by a compensated control signal based on an input control signal; adding to a first compensation parameter a first adjustment; adding to a second compensation parameter a second adjustment; and applying to a gate of the transistor a voltage equal to the sum of: the second compensation parameter, and the product of: the first compensation parameter, and an uncompensated drive voltage. |
US11011105B2 |
Pixel circuit
A pixel circuit includes a light-emitting device, a first transistor, a second transistor, a first capacitor, a third transistor, a fourth transistor, and a fifth transistor. The first transistor and the fourth transistor are controlled by a light-emitting signal. The third transistor and the fifth transistor are controlled by a scan signal. The light-emitting device, the first transistor, the second transistor, the fourth transistor, and the fifth transistor are serially connected between a system high voltage and a system low voltage. The third transistor is coupled between a data signal and a control terminal of the first transistor. The first capacitor is coupled between a control terminal and a downstream terminal of the second transistor. The fifth transistor is coupled between the downstream terminal of the second transistor and a charging reference voltage. A current of the charging reference voltage is less than a current of the system low voltage. |
US11011101B2 |
Method and electronic device for controlling display device based on color perceived brightness
A method of controlling a display device is disclosed including receiving a plurality of sub-pixel values for a target pixel among a plurality of pixels of an image frame, wherein the sub-pixel values of the target pixel comprise red, green, and blue sub-pixel values; calculating a pixel-based boosting ratio corresponding to the target pixel according to the sub-pixel values of the target pixel; and adjusting at least one of a plurality of backlight duties associated with the target pixel and the plurality of sub-pixel values of the target pixel according to the pixel-based boosting ratio. |
US11011099B2 |
Driving circuit and display device
A DA converter is provided with a select circuit that selects a predetermined number of gray scale reference voltages from a plurality of different gray scale reference voltages on a basis of display data corresponding to a plurality of different gray scale values, and an output circuit that outputs an output voltage corresponding to the gray scale values on a basis of the gray scale reference voltages selected by the select circuit. When the gray scale reference voltages corresponding to the selected gray scale values are substantially equal to the output voltage, the select circuit selects the gray scale reference voltages such that at least one of the gray scale reference voltages to be selected is different from the others. |
US11011098B2 |
System and method for a six-primary wide gamut color system
Systems and methods for a six-primary color system for display. A six-primary color system increases the number of primary colors available in a color system and color system equipment. Increasing the number of primary colors reduces metameric errors from viewer to viewer. The six-primary color system includes Red, Green, Blue, Cyan, Yellow, and Magenta primaries. The systems of the present invention maintain compatibility with existing color systems and equipment and provide systems for backwards compatibility with older color systems. |
US11011095B2 |
Display panel, and image control device and method thereof
The present application relates to the technical field of display and provides a display panel and an image control device and an image control method thereof; wherein, the image control device includes a high-voltage gamma module, a low-voltage gamma module and a first selection module. |
US11011094B1 |
Display device with low power consumption and polarity inversion
A display devices with better visual effects and low power consumption in inversion manners is provided. The display device includes a display panel and a driving circuit. The display panel includes scan lines, pixels, first common electrodes and second common electrodes. The second common electrodes and the first common electrodes are alternately arranged. The driving circuit provides a first common voltage to the first common electrodes and provides a second common voltage to the second common electrodes in a first time interval of a first frame time interval and a second time interval of a second frame time interval. In addition, the driving circuit provides the second common voltage to the first common electrodes, and provides the first common voltage to the second common electrodes in the first time interval of the second frame time interval and the second time interval of the first frame time interval. |
US11011090B2 |
Display device and driving method thereof
A display device and driving method thereof are provided. In the display device, a control circuit provides first and second start signals. In a display panel, a pixel array has a plurality of odd and even gate lines. A first and second gate circuits respectively receive the first and second start signals, and respectively provide the sequentially enabled first and second gate signals to odd and even gate lines according to the phases of the first and second start signals, respectively. One of the first and second start signals is phase-shifted by at least one clock cycle from a preset phase during a first scan period that scans from a first side to a second side of the pixel array or during a second scan period that scans from the second side to the first side of the pixel array. |
US11011089B2 |
Shift register unit and method for driving the same, gate driving circuit, array substrate and display apparatus
The present application discloses a shift register unit and a method for driving the same, a gate driving circuit, an array substrate, and a display apparatus. The shift register unit includes an input sub-circuit; a first output sub-circuit configured to output a first output signal to an output signal terminal, so that the output signal terminal outputs a gate driving signal having a first valid level; and a second output sub-circuit configured to output a second output signal to the output signal terminal, so that the output signal terminal outputs a gate driving signal having a second valid level, wherein an absolute value of the second valid signal is greater than an absolute value of the first valid level. |
US11011087B2 |
IC, driver IC, display system, and electronic device
A test circuit is incorporated in an IC without an increase in a chip area. The IC includes a plurality of pins, a plurality of current sensing circuits, and a current generation circuit. The plurality of current sensing circuits process currents flowing through the plurality of pins in parallel and generates digital data, for example. The current generation circuit includes a capacitor and generates a reference current corresponding to the amount of electric charge of the capacitor. The amount of electric charge can be controlled by a voltage input to the capacitor, and thus the range of output currents for current generation can be made wide. The reference current is used for testing the plurality of current sensing circuits. The IC is used for a source driver IC of a display panel, for example. In this case, currents flowing through pixels in the display panel can be sensed by the plurality of current sensing circuits. |
US11011084B1 |
Modular mounting system
A coupler and a system are provided for mounting panels, such as a plurality of display tiles. According to an embodiment, the system includes a mount sheet having a plurality of mounting positions, a plurality of chassis having at least one locating feature and at least one magnetic coupler on one side and at least one magnet on an opposite side. The locating features on one side of the chassis are adapted to locate a locating feature on at least one display tile. The magnetic couplers on one side of the chassis are adapted to magnetically couple at least one magnetic coupler on a display tile. The magnet or magnets on an opposite side are adapted to magnetically couple the mount sheet in one of the mounting positions. |
US11011082B2 |
Stairway safety device
A safety device includes a body configured for attachment to a structure. The body has a first layer and a second layer. The body is washable, reusable, and attachable to varying surface compositions. An indicia is formed in the first layer, the indicia providing visual stimuli for persons with impaired depth perception. |
US11011081B1 |
Transparent display case assembly
A transparent display case assembly for displaying planar cards includes a panel that has a plurality of planar cards that are positionable thereon. A plurality of clips is provided and each of the clips is coupled to the panel. Each of the clips is biased to abut the panel to grip a respective one of the planar card. Each of the clips is urgeable away from the panel to facilitate the document to be put into or taken out of the clips. A frame is provided that has a pair of grooves therein for slidably engaging the panel. The frame has a viewing opening and a back wall, and the viewing opening is open into an interior of the frame such that the panel is visible through the viewing opening. |
US11011080B2 |
Arrangement for indicating an intended end of the period of use of a textile product
In an arrangement for indicating an intended end of a period of use of a textile product (1), the textile product (1) or a label (2) of the textile product (1) has an indicator field (3) which, in a first area (3a), has a first color that changes during the period of use of the textile product (1) and in the course of the associated washes. The indicator field (3) additionally has a second color in a second area (3b), wherein the wash-fastness of the first color is less than the wash-fastness of the second color, and the first color differs, in the delivery state, from the second color and, over a number of washes of the textile product (1), increasingly approximates to the second color. |
US11011076B2 |
Display module for visually impaired persons
The present invention relates to a display module for visually impaired persons. More specifically, the present invention provides a display module for visually impaired persons which provides information such as braille, figures and images by using a plurality of protrusions which vertically moves so that a visually impaired person may obtain information through hand sensation. |
US11011074B2 |
Information processing system, information processor, information processing method and program
The problem is solved by an information processing system including: a standard data acquirer that acquires registered standard data on work; a work data acquirer that acquires work data on a worker performing the work; a determiner that determines whether or not a difference between the standard data acquired by the standard data acquirer and the work data acquired by the work data acquirer is a threshold value or more; a generator that generates an instruction image regarding correction of the work according to the difference when the difference is determined to be the threshold value or more by the determiner; and a displayer that displays the instruction image generated by the generator on a display unit of a display device worn by the worker to display the instruction image superimposed on a real space. |
US11011072B2 |
Educational training systems, games, and methods
Games and systems for playing those games are described that are non-consequential, intuitively educational, reflective, and physically-interactive. The games can be played by players at a variety of skill levels and ages, using a set of unique cards and signs that direct the players to interact with one another and the game in ways that promote mental and physical development. |
US11011065B2 |
Method and electronic device for managing the display of an aircraft flight profile with selection of suitable resolution(s) of field data base(s), related computer program and electronic display system
A method for managing the display of an aircraft flight profile may be carried out by an electronic management device intended to be connected to a set of at least one terrain data base. Each terrain data base may have a respective resolution. The method may include selecting at least one resolution, as well as the terrain data base associated with each selected resolution. The method may further include generating data for displaying the flight profile and using each terrain data base selected. The method may also include where each resolution is selected according to a width of a corridor associated with a respective portion of the flight profile. |
US11011063B2 |
Distributed data collection and processing among vehicle convoy members
A vehicle convoy management system includes a processor and a non-transitory computer readable memory configured to store a machine-readable instruction set. The machine-readable instruction set causes the vehicle convoy management system to: determine a first vehicle and a second vehicle form a convoy, delegate a first task to the first vehicle based on a first set of sensor resources of the first vehicle, delegate a second task to the second vehicle based on a second set of sensor resources of the second vehicle, where the first task is distinct from the second task, receive a first information generated in response to the first vehicle completing the first task with the first set of sensor resources, receive a second information generated in response to the second vehicle completing the second task, and transmit at least one of the first information or the second information to at least one vehicle. |
US11011060B1 |
System for protecting vehicles from damage in a confined space
A system is provided for alerting of potential vehicle damage when moving into or out of a confined space, the confined space having a side structure which can damage the vehicle when moving into the confined space if the vehicle is too close to the side structure. The system comprises a beam transmitter for transmitting a beam, and a beam receiver for receiving the beam. The beam travels along a path at an angle relative to a ground surface of from about 40 degrees to 60 degrees. An alert generator generates an alert such as light, sound, or both, when a vehicle intersects the beam. |
US11011059B2 |
Vehicle control device
In the case of recognizing a traffic regulation which determines that the priority of a first lane is higher than the priority of a second lane, and in the case of determining a state in which another vehicle is in compliance with the traffic regulation, and then determining that the other vehicle is not complying with the traffic regulation, a vehicle control device carries out at least one of a travel control in which a travel position of a host vehicle is moved in a direction of a side opposite to the second lane, and a travel control in which acceleration is not performed. |
US11011057B2 |
Systems and methods for generating personalized destination recommendations
Methods and systems for generating a trained destination prediction model are provided. The method may include obtaining a plurality of historical orders corresponding to a plurality of users and determining a plurality of first features and a plurality of second features associated with the plurality of historical orders. The method may further include determining a plurality of transformed features based on the plurality of first features and a plurality of sets of cross features by correlating the plurality of second features. The method may further include obtaining a preliminary destination prediction model and training the preliminary destination prediction model to obtain a trained destination prediction model based on the plurality of transformed features and the plurality of sets of cross features. |
US11011048B2 |
System and method for generating a status output based on sound emitted by an animal
The disclosure relates to a system for generating a status output based on sound emitted by an animal. The system comprising: a client (102), a server (104) and a database (106); the database (106) is accessible (107) by the server (104) and comprises historic sound data pertaining to the animal (302) or animals of the same type as the animal; the client (102) comprising circuitry (110) configured to: detect (202) sound emitted (308, 312) by the animal (302); record (204) the detected sound (308, 312); analyze (206) the recorded sound for detecting whether the sound (308, 312) comprises a specific sound characteristic out of a plurality of possible sound characteristics, wherein the sound characteristic includes at least one of intensity, frequency and duration of the detected sound; transmit (208), in response to detecting that the sound (308, 312) comprises the specific sound characteristic, the recorded sound to a server (104); the server (104) comprises circuitry (122) configured to: receive (210) the recorded sound; classify (212) the recorded sound by comparing one or more sound characteristics of the recorded sound with the historic sound data comprised in the database (106); generate (214) the status output based on the classification of the recorded sound. A method (200) for generating a status output based on sound emitted by an animal is also provided. |
US11011047B2 |
System and method for automatically disarming an intrusion detection system
A system for automatically disarming an intrusion detection system protecting a premises and having at least an armed state of operation and a disarmed state of operation, the system for automatically disarming the intrusion detection system including an intrusion detection system state of operation ascertainer operable for receiving an indication of activation of an armed state of operation of the intrusion detection system; and a registered mobile communicator proximity detector communicating with the intrusion detection system state of operation ascertainer and operable, responsive to receiving the indication of activation of the armed state of operation by the intrusion detection system state of operation ascertainer for ascertaining at least a subset of a multiplicity of registered mobile communicators which are located in a vicinity of the premises during an activation time of the armed state of operation and for deactivating the subset of the multiplicity of registered mobile communicators. |
US11011036B2 |
Object tracking using disparate monitoring systems
Methods, systems, apparatus, and computer programs, for tracking objects are disclosed. In one aspect, a method is disclosed that includes actions of obtaining an image, determining that a user of a first monitoring system has opted-in for object tracking by a second monitoring system that is remote from the first monitoring system, and based on a determination that the user of the first monitoring system has opted-in for object tracking: determining whether the obtained image satisfies a predetermined level of similarity to a stored tracking object image model stored on a first device of the first monitoring system, and based on a determination that the obtained image satisfies a predetermined level of similarity to the stored tracking object image model, generating a tracking update notification, and transmitting the tracking update notification to the second monitoring system that is remote from the first monitoring system. |
US11011034B2 |
Egress controller, egress control system and mobile communication terminal
An evacuation controller, an evacuation control system, and a mobile communication terminal. The evacuation controller includes: a local control unit capable of storing or acquiring evacuation path information to or from a cloud via a mobile communication terminal, wherein the evacuation path information is configured at least based on a layout of a building and a location of a danger occurred in the building. According to the evacuation controller and the evacuation control system, exchange of evacuation path information between the local control unit and a remote provider service system is realized through exchange between the mobile communication terminal and the cloud; or by configuring evacuation path information directly in the local control unit, the local control unit can clearly and timely learn about the local evacuation path information and can evacuate people based on the local evacuation path information. |
US11011033B1 |
Haptic vibrotactile actuators on textiles and related systems and methods
The disclosed haptic vibrotactile actuator may include a textile comprising a first major surface and a second, opposite major surface, an electrode coupled to the first major surface of the textile across at least a majority of a surface area of a first surface of the electrode, and a flexible electroactive material electrically coupled to a second, opposite surface of the electrode. Various other related methods and systems are also disclosed. |