Document Document Title
US10951928B2 Execution of cases based on barcodes in video feeds
Systems and methods for executing a case based on a barcode detected in a video feed are described herein. An example method commences with receiving the video feed from a video content provider. The video feed may be provided by a client. The method may continue with extracting at least one video frame from the video feed. The method may further include detecting a barcode embedded in the at least one video frame and analyzing the barcode to determine a category associated with the at least one video frame. The method may continue with ascertaining an execution case associated with the category. The method may further include selectively executing the execution case.
US10951925B2 System and method for transcoding media stream
This disclosure relates to a system for transcoding a media stream. The system comprises at least one network interface; at least one memory; and at least one processor each coupled to one or more of the at least one network interface and one or more of the at least one memory, the at least one processor configured to publish, via a messaging bus, a segment transcode request in a segment transcode request queue, retrieve the segment transcode request by a transcode worker thread, wherein the first transcode worker thread monitors the segment transcode request queue, transcode by a second transcode worker thread a segment referenced by the segment transcode request, determine by the manifest processor whether the second transcode worker thread has completed transcoding the segment and is still operating, and, if not, transcode the segment by a third transcode worker thread, and store the transcoded segment.
US10951918B2 Intra prediction-based video encoding/decoding method and device
A video encoding/decoding method and device according to the present invention may: determine a reference area for the intra prediction of the current block; derive the intra prediction mode of the current block; and decode the current block on the basis of the reference area and the intra prediction mode.
US10951916B2 Apparatus and method for video encoding or decoding
The present disclosure relates to video encoding or decoding for splitting a picture into a plurality of tiles in order to encode video efficiently. In one aspect of the present disclosure, a video encoding method for encoding a picture split into a plurality of tiles includes encoding first information indicating whether to merge some of the plurality of tiles; when the first information is encoded to indicate tile merging, generating one or more merge tiles by merging some of the plurality of tiles, each of the merge tiles being defined as one tile; encoding second information indicating tiles merged into each of the merge tiles among the plurality of tiles; and encoding each of the merge tiles as one tile without restriction on encoding dependencies between the tiles merged into each of the merge tiles.
US10951915B2 Transmission device, transmission method, reception device and reception method
High frame rate moving image data is satisfactorily transmitted.Mixing processing is performed in units of two temporally consecutive pictures in predetermined frame rate image data, and base frame rate image data is obtained. Image data of one picture in units of the two temporally consecutive pictures is extracted, and high frame rate enhanced frame image data is obtained. Prediction encoding processing of base frame rate image data is performed to the base frame rate image data, and a base stream is obtained. Prediction encoding processing with respect to the base frame rate image data is performed to the high frame rate enhanced frame image data, and an enhanced stream is obtained. A predetermined format container is transmitted including the base stream and the enhanced stream.
US10951914B2 Reliable large group of pictures (GOP) file streaming to wireless displays
One or more system, apparatus, method, and computer readable media is described for reducing the GOP length during a direct pass-through of an encoded video stream format that is supported by the decoder at the sink. In some embodiments, the encoded video stream is decoded on the source device and employed to generate and insert supplemental intra-predicted frames (I-frames) at shorter intervals allowing for faster recovery in the event of lost packets/frames when transmitted to a sink display. In some embodiments, Residual Artifact Suppressed (RAS) inter-predicted frames are further created and inserted in place of any frames that reference a frame converted to a supplemental I-frame. The encoded video stream passed through will consist of all the original frames except for the supplemental I-frames reducing the GOP, and RAS inter-predicted frames modified to prevent propagation of residual induced artifacts.
US10951913B2 Merge candidates for motion vector prediction for video coding
A method of decoding and encoding video data includes constructing a motion vector candidate list for the current block of video data based on the motion information from the neighboring blocks relative to the current block determined to include motion information, and adaptively ordering the constructed motion vector candidate list for the current block of video data based on at least one weight among a plurality of weights associated with motion information included in each neighboring block determined to include motion information.
US10951912B2 Systems and methods for adaptive selection of weights for video coding
Techniques and systems are provided for processing video data. For example, a current block of a picture of the video data can be obtained for processing by an encoding device or a decoding device. A pre-defined set of weights for template matching based motion compensation are also obtained. A plurality of metrics associated with one or more spatially neighboring samples of the current block and one or more spatially neighboring samples of at least one reference frame are determined. A set of weights are selected from the pre-defined set of weights to use for the template matching based motion compensation. The set of weights is determined based on the plurality of metrics. The template matching based motion compensation is performed for the current block using the selected set of weights.
US10951910B2 Transmission device, transmitting method, reception device, and receiving method
In the case where image data of a super-high definition service is transmitted without scalable coding, image data suitable to own display capability in a receiver not supporting the super-high definition service can be easily obtained.A container in a predetermined format having a video stream including encoded image data is transmitted. Auxiliary information for downscaling a spatial and/or temporal resolution of the image data is inserted into the video stream. For example, the auxiliary information indicates a limit of accuracy for a motion vector included in the encoded image data. Further, for example, the auxiliary information identifies a picture to be selected at the time of downscaling the temporal resolution at a predetermined ratio.
US10951907B2 Signaling change in output layer sets
A system for decoding a video bitstream includes receiving a bitstream and a plurality of enhancement bitstreams together with receiving a video parameter set and a video parameter set extension. The system also receives an output layer set change message including information indicating a change in at least one output layer set.
US10951906B2 Method and system for implementing split and parallelized encoding or transcoding of audio and video content
Novel tools and techniques are provided for implementing split and parallelized encoding or transcoding of audio and video. In various embodiments, a computing system might split an audio-video file that is received from a content source into a single video file and a single audio file. The computing system might encode or transcode the single audio file. Concurrently, the computing system might split the single video file into a plurality of video segments. A plurality of parallel video encoders/transcoders might concurrently encode or transcode the plurality of video segments, each video encoder/transcoder encoding or transcoding one video segment of the plurality of video segments. Subsequently, the computing system might assemble the plurality of encoded or transcoded video segments with the encoded or transcoded audio file to produce an encoded or transcoded audio-video file, which may be output to a display device(s), an audio playback device(s), or the like.
US10951903B2 Video analytics encoding for improved efficiency of video processing and compression
Embodiments are generally directed to video analytics encoding for improved efficiency of video processing and compression. An embodiment of an apparatus includes a memory to store data, including data for video streaming, and a video processing mechanism, wherein the video processing mechanism is to analyze video data and generate video analytics, generate metadata representing the video analytics and insert the generated video analytics metadata into a message, and transmit the video data and the metadata to a succeeding apparatus or system in a video analytics pipeline, the video data being compressed video data.
US10951900B2 Speeding up small block intra-prediction in video coding
Speeding up small block intra-prediction in video coding is described herein. The system includes an encoder. The encoder is to execute intra-prediction by deriving a plurality of prediction angles, wherein the prediction angles are based on a video coding standard. The encoder is also to disable a prediction angle for a current block to eliminate a dependency on an immediate predecessor block.
US10951899B2 Extension data handling
A length indicator associated with an encoded representation of a slice is parsed. The length indicator is indicative of a length of an extension field present in a slice header of the encoded representation. A decoder can then determine to ignore, during decoding of the encoded representation, any value of the extension field in the slice header where these values are identified based on the length indicator. As a consequence, an extension field can be added to slice headers and still enable legacy decoders to correctly decode the encoded representations.
US10951897B2 Method and apparatus for image compression
The invention relates to a method and apparatus for image compression, particularly to an improved block-coding apparatus and method for image compression. Image compression systems such as JPEG and JPEG2000 are known and popular standards for image compression. Many of the advantageous features of JPEG2000 derive from the use of the EBCOT algorithm (Embedded Block-Coding with Optimized Truncation). One drawback of the JPEG2000 standards is computational complexity. This application discloses a relatively fast block-coding algorithm, particularly as compared with the standard JPEG2000 EBCOT algorithm. Computational complexity is reduced.
US10951896B2 Encoder, decoder, encoding method, and decoding method
An encoder includes memory and circuitry accessible to the memory. The circuitry accessible to the memory: switches whether or not to apply arithmetic encoding to a binary data string in which image information has been binarized; binarizes frequency transform coefficient information according to different binarization formats between when arithmetic encoding is applied to the binary data string and when arithmetic encoding is not applied to the binary data string; and binarizes a part or the entirety of prediction parameter information according to a binarization format which is common between when arithmetic encoding is applied to the binary data string and when arithmetic encoding is not applied to the binary data string.
US10951891B2 Coding apparatus capable of recording raw image, control method therefor, and storage medium storing control program therefor
A coding apparatus capable of improving coding efficiency without calculating a PSNR that is coding distortion. A conversion unit obtains subbands by applying wavelet transform to image data. A control unit decides quantization parameters of the respective subbands within quantization parameter ranges corresponding to image quality modes of the image data. A quantization unit quantizes the subbands obtained by the conversion unit based on the respective quantization parameters decided by the control unit. A coding unit codes quantization image data quantized by the quantization unit.
US10951889B2 Image delivery device, image delivery program, and image delivery method
An image delivery device is, for example, implemented which is capable of better preventing delays even when real-timeness is required. The image delivery device includes operation information acquisition means, image information acquisition means, allocation information generation means, compression means, and transmission means. The operation information acquisition means acquires operation information. The image information acquisition means acquires image information generated on the basis of the operation information. The allocation information generation means generates allocation information representing allocation of numbers of bits during compression of the image information on the basis of the operation information. The compression means compresses the image information on the basis of the allocation information. The transmission means transmits the compressed image information.
US10951885B2 Adaptive temporal filtering for alternate frame reference rendering
A method for using an alternate frame reference (ARF) includes selecting an anchor frame and video frames, where the anchor frame includes an anchor block, and the anchor block includes an anchor pixel; identifying, for the anchor block of the anchor frame, respective reference blocks in the video frames; determining, for the anchor pixel and using an anchor patch, respective distances between the anchor pixel and respective co-located reference pixels of the respective reference blocks, where the anchor patch includes anchor patch pixels, and a respective distance, of the respective distances, between the anchor pixel and a respective co-located reference pixel is determined using the anchor patch pixels and co-located reference pixels; determining, using the respective distances, respective weights; determining, using the respective weights, an ARF pixel that is co-located with the anchor pixel; and encoding, in a compressed bitstream, the ARF.
US10951884B2 Method and apparatus for encoding/decoding an image signal
Disclosed are an image encoding/decoding method and apparatus. The image decoding method includes decoding coding mode information of a current coding block, dividing the current coding block into at least one prediction block, and generating prediction samples of the at least one prediction block on the basis of the decoded coding mode, in which the coding mode information is information indicating any one mode among intra mode, inter mode, and hybrid mode.
US10951882B2 Head mounted display device and method for providing visual aid using same
An external scene image captured by an external scene imaging electronic camera attached to a head mounted display (HMD) is projected and displayed onto an image display screen arranged in front of the eyes of the user as a virtual image with a suitable viewing distance corresponding to the visual acuity of the user. At this time, for each object image presented in the virtual image of the external scene image, the virtual image is processed and formatted to add a predetermined degree of binocular disparity and image blur to the virtual image projected and displayed on the right and the left image display screen on the basis of a predetermined converted distance calculated from the real distance of each object. Thus, the user is given a sense of a realistic perspective for the virtual image of the external scene, free of the discomfort or unease.
US10951877B2 Providing a contiguous virtual space for a plurality of display devices
Disclosed herein are system, method, and computer program product embodiments for rendering a contiguous virtual space for a plurality of display devices. An embodiment operates by identifying a projection of a virtual camera onto a virtual plane and determining a display plane area based on an intersection of the projection of the virtual camera onto the virtual plane. Thereafter, a position for a plurality of virtual windows correlating to a plurality of real-world display devices on the display plane area is calculated based on (i) properties of the display devices and (ii) a focal length of the virtual camera. After placing the virtual windows their respective display plane area positions, content behind a virtual window is identified and provided to the corresponding real-world display device.
US10951873B2 Information processing apparatus, information processing method, and storage medium
An information processing apparatus includes an obtaining unit configured to obtain viewpoint information indicating at least a position of a virtual viewpoint corresponding to a virtual viewpoint image that is generated based on a plurality of images obtained by a plurality of image capturing apparatuses each capturing an image of an imaging target area in a different direction, and an output unit configured to output a value of the virtual viewpoint image corresponding to the position of the virtual viewpoint indicated by the viewpoint information obtained by the obtaining unit, wherein the value is determined based on the viewpoint information.
US10951869B1 System for optimizing blended video streams
An enhanced fluorescence imaging system includes a light source for emitting non-visible and visible light and an image sensor for capturing non-visible and visible light image data. Data processing hardware performs operations that include determining a non-visible value associated with an amount of non-visible light captured by the image sensor and applying a color map to each non-visible value to generate non-visible light selected color values. The operations also include weighting a visible light chroma value with a non-visible chroma value to generate weighted chroma values and combining luma values of each pixel of the visible light image data to the weighted chroma values. The operations also include generating RGB values based on the luma values of the visible light image data and the weighted chroma values and transmitting the RGB values to the display.
US10951865B2 Personal tactical system including a power distribution and data hub and network of personal tactical systems
A personal tactical system including a load-bearing garment, a pouch with one or more batteries enclosed in the pouch, at least one power distribution and data hub, and at least one camera. The camera is incorporated into or removably attachable to the load-bearing garment, the pouch is removably attachable to the load-bearing garment and the one or more batteries are operable to supply power to the at least one power distribution and data hub. The at least one power distribution and data hub is operable to supply power to at least one peripheral device. A plurality of personal tactical systems is operable to form an ad hoc network to share images and other information for determining object direction, location, and movement.
US10951864B2 Rotating LIDAR with co-aligned imager
Example implementations are provided for an arrangement of co-aligned rotating sensors. One example device includes a light detection and ranging (LIDAR) transmitter that emits light pulses toward a scene according to a pointing direction of the device. The device also includes a LIDAR receiver that detects reflections of the emitted light pulses reflecting from the scene. The device also includes an image sensor that captures an image of the scene based on at least external light originating from one or more external light sources. The device also includes a platform that supports the LIDAR transmitter, the LIDAR receiver, and the image sensor in a particular relative arrangement. The device also includes an actuator that rotates the platform about an axis to adjust the pointing direction of the device.
US10951863B2 Refrigerator, camera device, refrigerator door pocket, and home appliance network system
A refrigerator (1) is provided with an image capturing camera 18 (image capturing unit) configured to capture an image of an interior of a storage chamber (such as a refrigeration chamber 3); and a communication portion (52) (communication unit) configured to transmit image of the interior of the storage chamber captured by the image capturing camera (18) to an external device.
US10951860B2 Methods, systems, and apparatus for providing video communications
Methods, systems, and apparatus for conducting a video conference. A location of one or more sets of eyes in an image may be determined. The relative location of an image capture device and/or a portion of a display device may be adjusted based on the determined location.
US10951857B2 Method and system for video recording
A method and system for video recording are provided, the method including: reading an audio data stream of a target video in real time, and converting a video picture of the target video into a video frame data; monitoring a play state of the target video, recording a start time node when the play state indicates that the live broadcast is paused, and recording an end time node when the play state indicates that the live broadcast is resumed; calculating an amount of a to-be-inserted data based on the start time node and the end time node, and inserting an audio null packet data with an amount equal to the calculated amount before the audio data stream when the live broadcast is resumed; and synthesizing the audio data stream into which the audio null packet data is inserted and the video frame data into a recorded video file.
US10951856B2 Transcoding and caching for off air television programming delivery
Techniques are disclosed for capturing, transcoding, and caching off-air programming at a location local to the consumer. According to certain embodiments, a device is provided that receives off-air (e.g., broadcast) and/or cable (e.g., ClearQAM) programming via one or more antennas and caches the programming in various streams having various bit rates for later viewing using, for example, Adaptive Bit Rate (ABR) streaming. Such a device can be incorporated in a larger system that can stream content via a data communication network (e.g., the Internet) and the device in a seamless manner. The device also can be controlled by a remote system via the data communication network, and further can be configured to stream content to a remote device via the data communication network.
US10951850B2 Imaging device and electronic device
An offset component of multiplication by a transistor is to be reduced. An imaging device includes a pixel region, a first circuit, a second circuit, a third circuit, and a fourth circuit. The pixel region includes a plurality of pixels, and a pixel includes a first transistor. An offset potential and a weight potential are supplied to the pixel selected by the first circuit and the second circuit. The pixel obtains a first signal by photoelectric conversion with use of light. The first transistor multiplies the first signal by the weight potential. The first transistor generates a first offset term and a second offset term with use of a multiplication term of the first signal by the weight potential and the offset potential. The third circuit subtracts the first offset term, and the fourth circuit subtracts the second offset term. The fourth circuit determines the multiplication term, and the fourth circuit outputs a determination result through the neural network interface.
US10951848B2 High speed, low power image sensor system
An image sensing system is disclosed. The image sensing system includes an array of pixel circuits and a multiplexer configured to convey an output signal from a selected one of the pixel circuits. The output signal from the selected one of the plurality of pixel circuits is converted from analog to digital by a successive approximation register (SAR) analog-to-digital converter (ADC). A control circuit is provided to cause the SAR ADC power cycling with shaped power control signal. The SAR ADC comparator pre-amp with integrate-reset causes reduced power to the theoretical limit for imaging systems. The control circuit causes quantization process of selected ones of the pixel circuits to be repeated one or more times during the processing.
US10951847B2 Electronic device and method for generating image data
A method of an electronic device including an image sensor that acquires an optical signal corresponding to an object and a controller that controls the image sensor, is provided. The method includes identifying a mode for generating an image corresponding to the object by using the optical signal, determining a setting of at least one image attribute to be used for generating the image at least based on the mode, generating image data by using pixel data corresponding to the optical signal at least based on the setting, and displaying the image corresponding to the object through a display functionally connected to the electronic device at least based on the image data.
US10951844B2 Time-of-flight detection pixel
A time-of-flight detection pixel includes a photosensitive area and at least two assemblies. Each assembly includes: a charge storage area; a transfer transistor configured to control charge transfer from the photosensitive area to the charge storage area; and readout circuit configured to non-destructively measure a quantity of charges stored in the charge storage area.
US10951839B2 Imaging apparatus including unit pixel, counter electrode, photoelectric conversion layer, and computing circuit
An imaging apparatus includes a unit pixel including a pixel electrode; a counter electrode facing the pixel electrode; a photoelectric conversion layer disposed between the pixel electrode and the counter electrode; and a computing circuit that acquires a first signal upon a first voltage being applied between the pixel electrode and the counter electrode, the first signal corresponding to an image captured with visible light and infrared light and a second signal upon a second voltage being applied between the pixel electrode and the counter electrode, the second signal corresponding to an image captured with visible light, and generates a third signal by performing a computation using the first signal and the second signal, the third signal corresponding to an image captured with infrared light.
US10951837B2 Generating a stereoscopic representation
A camera image is acquired by a camera and a structure that is optically concealed in the camera image is acquired by a material-penetrating acquisition modality. A stereoscopic depth location of a common reference point is then fixed at a predetermined value. The stereoscopic representation is then generated from the camera image, and an overlay image is generated based on the concealed structure. In this case, a depth location of the camera image is fixed at the depth location of the reference point, and, as a function thereof, a depth location of the overlay image is adjusted in relation to the depth location of the reference point, such that in the stereoscopic representation, the overlay image appears realistically in front of and/or behind an optically opaque part in the recording direction of the camera image.
US10951835B1 Imaging device, method, and storage medium
According to one embodiment, an imaging device includes a first optical system including a lens and is configured to control a position of the lens to adjust a focal point. The imaging device includes first storage and a processor. The first storage is configured to store a statistical model generated by learning bokeh which occurs in an image influenced by aberration of a second optical system and changes nonlinearly in accordance with a distance to a subject in the image. The processor is configured to acquire an image influenced by aberration of the first optical system, input the acquired image to the statistical model and acquire distance information, and control the position of the lens included in the first optical system.
US10951832B2 Image pickup apparatus that performs continuous flash shooting, light-emitting apparatus, image pickup system, control method for them, and storage medium
An image pickup apparatus which is capable of setting shooting conditions suitable for continuous flash shooting. The image pickup apparatus is connected to a light-emitting apparatus and causes the light-emitting apparatus to emit light when shooting. A light emission mode of the light-emitting apparatus is obtained from the light-emitting apparatus. Exposure control values including at least a shooting sensitivity for use in shooting in a first light emission mode in which automatic light control are determined. In a case where the light emission mode of the light-emitting apparatus is a second light emission mode in which automatic light control for continuous shooting is performed, the determined shooting sensitivity is changed to a greater value before the automatic light control.
US10951830B2 In-vehicle device and vehicle search system
An in-vehicle device comprises a direction controller configured to perform control of switching a direction of an in-vehicle camera that photographs an outside of a vehicle to acquire an image to a first direction which is a direction toward a side in front of the vehicle and a second direction which is a direction toward a lane opposite a lane along which the vehicle is traveling; a recognizer configured to periodically recognize license plate information included in the image acquired continuously from the in-vehicle camera; a transmitter configured to transmit data related to the recognized license plate information to a server device, wherein the direction controller switches the direction of the in-vehicle camera facing the first direction to the second direction when the recognizer has continuously recognized the same license plate information for a predetermined period or more.
US10951829B2 Image capturing apparatus and method for controlling display
An image capturing apparatus includes an image sensor, a shake detector, at least one processor and a memory storing a program including instructions, which when executed by the at least one processor, cause the at least one processor to function as: a selection unit configured to select any area in an image capturing area, a generation unit configured to generate shake information during exposure of a still image on the image sensor in accordance with a detection result of the shake detector during the exposure of the still image, a photographing condition, and the area selected by the selection unit, and a control unit configured to cause the shake information to be displayed on a display unit during the exposure of the still image on the image sensor.
US10951823B2 Method and apparatus for capturing a video, terminal device and storage medium
Provided is a method for capturing a video. The method includes the following steps: a video captured instruction is acquired, and video capturing is performed on a target scenario until a video captured pause instruction is acquired, so as to obtain a video segment captured between the video captured instruction and the video captured pause instruction; it is determined whether a video generation instruction is acquired; if the video generation instruction is not acquired, the video captured instruction and the video captured pause instruction are acquired repeatedly to obtain corresponding video segments until the video generation instruction is acquired; and based on the video generation instruction, a target video is generated according to the obtained video segments. Further provided are an apparatus for capturing a video, a terminal device and a storage medium.
US10951821B2 Imaging control device, imaging system, and imaging control method
An imaging control device includes a wide-angle image acquisition unit 401, an imaging information acquisition unit 405, a margin information acquisition unit 407, a region information acquisition unit 409, an imaging region calculation unit 413 that calculates an imaging region of each of divided images constituting a composite image as each imaging region in a wide-angle image, in which a margin is secured, based on imaging information, margin information, and imaging target region information, and a control unit 411 that moves a moving object, makes the moving object image each calculated imaging region in a closed-up imaging mode with a camera, and acquires captured closed-up images as the divided images. The control unit 411 compares an image corresponding to each imaging region of the acquired wide-angle image with an image acquired in the closed-up imaging mode with the camera and controls a position of the moving object where the camera is made to image each imaging region in the closed-up imaging mode.
US10951819B2 Image capture and ordering
One or more techniques and/or systems are provided for ordering images for panorama stitching and/or for providing a focal point indicator for image capture. For example, one or more images, which may be stitched together to create a panorama of a scene, may be stored within an image stack according to one or more ordering preferences, such as where manually captured images are stored within a first/higher priority region of the image stack as compared to automatically captured images. One or more images within the image stack may be stitched according to a stitching order to create the panorama, such as using images in the first region for a foreground of the panorama. Also, a current position of a camera may be tracked and compared with a focal point of a scene to generate a focal point indicator to assist with capturing a new/current image of the scene.
US10951818B2 Video encoding method and apparatus, device, and storage medium
A method and apparatus are provided. The method includes obtaining a panoramic video formed by plural panoramic picture frames, each being formed to record a scenery of a viewing angle. The panoramic video is divided into N viewing angle video sequences, each sequence being formed by areas that are in the panoramic picture frames, that do not overlap with each other, and that have a same horizontal viewing angle. The sum of the viewing angles of the N video sequences is a total horizontal viewing angle of the panoramic picture frame, N being a positive integer. The N video sequences are respectively encoded to obtain N respective groups of encoded data, and a viewing angle is determined. A viewing angle video sequence whose viewing angle comprises the determined viewing angle is selected, and encoded data of the selected viewing angle video sequence is transmitted.
US10951817B2 Compound-eye imaging device, image processing method, and recording medium
A compound-eye imaging device includes a camera device and a processor including a resolution enhancer. The camera device includes an imaging element including imaging regions including at least one imaging region of a first type and imaging regions of a second type smaller than the imaging region of the first type; lenses to image images of the same field of view onto the imaging regions; and optical filters provided so that an image acquired in each of the imaging regions of the second type represents a different type of information from an image acquired in each of the at least one imaging region of the first type. The resolution enhancer receives the image acquired in one of the at least one imaging region of the first type and the image acquired in one of the imaging regions of the second type, and generates a high-resolution image from the acquired images.
US10951816B2 Method and apparatus for processing image, electronic device and storage medium
A method, an electronic device, and a storage medium are provided for processing an image. The method includes: at least one first image frame is acquired based on a first pixel arrangement pattern when receiving a photographing instruction, where a pixel in the first pixel arrangement pattern includes sub-pixels of the same color component distributed in a square array in a photosensitive element; at least one second image frame is acquired based on a second pixel arrangement pattern, where the second pixel arrangement pattern is a standard Bayer arrangement pattern; and the at least one first image frame and the at least one second image frame are fused to obtain the image to be displayed.
US10951812B2 Depth triggered auto record
The invention relates to an underwater digital video camera having an auto record system for automatically starting and stopping video recording at predetermined depths. The camera receives a current depth from a depth gauge and holds a sequence of recent currents depths and auto record settings such as a start trigger depth and a stop trigger depth, wherein the auto record system is adapted to, after the start/stop trigger depth is arrived at or passed for increasing/decreasing depths, start/stop video recording.
US10951810B2 Image sensor system, image sensor, data generation method of image sensor in image sensor system, and non-transitory computer-readable recording medium
Provided is a technique capable of generating data of a screen suitable for each operation terminal displaying information of an image sensor. An image sensor system has an image sensor that performs an examination of a product and an operation terminal for externally operating the image sensor. In addition, the image sensor system includes a recognition part configured to specify user information of a user who uses the operation terminal and device information of the operation terminal, a determination part configured to determine display information on the examination displayed on a display part used by the operation terminal and a disposition of the display information on the display part on the basis of the specified user information and the specified device information, and a generation part configured to generate data for displaying the display information in the determined disposition on the display part of the operation terminal.
US10951809B2 Adaptive camera control and calibration for dynamic focus
A camera vision system for creating 3D reconstructions of objects may include a camera, a distance sensor having a fixed spatial relationship with the camera, and a system controller. The system controller receives distance sensor signals from the distance sensor indicating a sensor-to-object distance, determines a camera-to-object distance and a corresponding camera focus state based on the sensor-to-object distance, and transmits camera focus state control signals to cause the camera to adjust to the camera focus state. The system controller retrieves camera intrinsic parameter values for the camera focus state, transmits image capture control signals to cause the camera to capture an object image of the object, receives object image data from the camera for the captured object image, and stores the object image data and the camera intrinsic parameter values in an image database for use in the 3D reconstruction.
US10951803B2 Execution status indication method, apparatus, and unmanned aerial vehicle
A method comprising receiving control instructions sent from a control device, where the control instructions are configured to instruct a photographing apparatus carried by an unmanned aerial vehicle to perform an image capturing operation; and controlling an indicator light at the unmanned aerial vehicle to indicate an execution status of the control instructions executed by the photographing apparatus.
US10951802B2 Camera module of electronic device
A camera module includes multiple camera units, a bracket, and multiple mounting rods. Each of the camera units includes a main body and a lens on the main body. The main body includes two protrusions. The two protrusions protrude from opposite sides of the main body. Each of the two protrusions includes a fixing hole. The bracket is mounted in an electronic device and includes multiple mounting holes and multiple mounting grooves disposing in a surface of the bracket. Each two of the multiple mounting grooves connect with corresponding mounting holes at opposite sides of the mounting holes. The mounting rods protrude from the mounting grooves. When the mounting holes receive the camera units, the corresponding mounting grooves receive the corresponding protrusions and the mounting rods pass through the corresponding fixing holes.
US10951800B2 Endoscope system and endoscope processor
An endoscope system is provided with: a processor; a light source; and an image pickup device. The processor performs control for causing reflected light images corresponding to a predetermined period before start of the fluorescence occurrence period during the fluorescence non-occurrence period, among the reflected light images, to be recorded to the first storage medium; and, furthermore, performs control for causing the reflected light images to be recorded to the first storage medium during an after-end-of-fluorescence-occurrence period corresponding to a predetermined period with an end of the fluorescence occurrence period as a start point, and performs control for causing the reflected light images not to be recorded to the first storage medium during the fluorescence non-occurrence period after an end of the after-end-of-fluorescence-occurrence period.
US10951797B2 Electronic device
An electronic device includes a first display screen assembly having a first display portion; a second display screen assembly having a second display portion, the second display screen assembly being coupled with the first display screen assembly and being movable between a first position and a second position, in which the first display screen assembly and the second display screen assembly are not overlapped in a front-rear direction when the second display screen assembly moves between the first position and the second position; and a camera provided to the second display screen assembly and located at a rear side of the second display portion, in which the camera moves along with the movement of the second display screen assembly between the first position and the second position to capture images of different regions.
US10951796B2 Image pickup apparatus including thermally isolated radio antenna and thermally isolated electronic viewfinder
An image pickup apparatus equipped with an electronic viewfinder, which has a radio antenna arranged therein in a space saving manner while preventing a casing from becoming hot and suppressing electric noise. An electronic viewfinder (EVF) has a display section that displays an image of an object, captured by an image sensor. A wireless communication module has an antenna capable of performing wireless communication and is arranged in a manner overlapping the electronic viewfinder. A metal member is disposed between the wireless communication module and the EVF, and has the wireless communication module fixed thereto. The wireless communication module is thermally connected to a main body structure. The electronic viewfinder is thermally connected to a top cover different from the main body structure.
US10951795B2 Image pickup apparatus having movable part that is movable between retracted position and projecting position
An image pickup apparatus that is capable of positioning and holding a movable part at both a housing position and a projecting position without adding a lock releasing member. The movable part has a latching pin and a slide part. A fixed part holds the movable part slidably between the housing and projecting positions and is fixed to an apparatus body. A first energizing member energizes the movable part in a projecting direction. A lever has an engagement part and a contact part, is energized by a second energizing member, and is held by the fixed part. The movable part is held in the housing position when the latching pin engages with the engagement part. The contact part abuts on the slide part and energizes the movable part in the projecting direction when the movable part is in the projecting position.
US10951790B1 Systems and methods for authenticating an image
An image capturing device may capture image data for processing to form an image. The image capturing device may perform a hashing procedure on the image data, wherein performing the hashing procedure generates a hash value of the image data. The image capturing device may provide, to an image authentication device, the hash value of the image data, wherein the hash value of the image data is to be used by the image authentication device to validate the image based on a request to authenticate the image received from a receiving device. The image capturing device may process the image data to form the image for display to a user. The image capturing device may provide, after providing the hash value of the image data to the image authentication device, the image for display to the user.
US10951787B2 Information processing apparatus that controls timing for enabling an application, control method of information processing apparatus, and recording medium
An information processing apparatus that can operate an application on firmware comprising: at least one memory that stores a set of instructions; and at least one processor that executes the instructions, the instructions, when executed, causing the information processing apparatus to perform operations comprising: receiving an instruction from a user; performing job determination in which whether or not a job is being executed is determined upon receipt of an instruction to enable an application in the receiving; and activating the application, wherein, in the activating, if it is determined that the job is being executed, the application is activated after the job ends.
US10951786B2 Systems and methods relating to document and fastener identification
Method and systems of automated document processing described herein include activating in sequence a plurality of illumination modules of an illumination source to illuminate a document, where the plurality of illumination modules are located at different positions relative to the document. The document can be imaged each time the document is illuminated by an illumination module to provide a plurality of images. A shadow profile of the document can be obtained based on the plurality of images. One or more of a boundary of the document and presence of a fastener attached to the document can be identified using the shadow profile. Any fasteners present may be removed using a robot arm.
US10951781B2 Information processing apparatus that displays a confirmation screen if display languages of a screen and an operation object do not match, method of controlling the same, and storage medium
The present invention provides an information processing apparatus having a display unit that displays a screen on which a pointing tool corresponding to a function is disposed. The information processing apparatus obtains a display language of the screen and obtains a language of the pointing tool, and in a case where the display language differs from the language, displays, on the display unit, a confirmation screen for confirming with a user whether to execute the function corresponding to the pointing tool in response to an instruction given by the user via the pointing tool.
US10951780B2 Image processing apparatus for easily setting direction of document and screen display method by image processing apparatus
An image processing apparatus includes: an automatic document feeder; a document placement table; a document detector provided on at least one of the automatic document feeder and the document placement table, the document detector being configured to detect a document; and circuitry to cause a display to display one of a first screen that receives an input for selecting an orientation of a document placed on the automatic document feeder and a second screen that receives an input for selecting the orientation of the document placed on the document placement table, based on a detection result of the document detector.
US10951778B1 Nested email addressing for document processing and delivery
Nested email delivery substitutes a control token into an recipient email address, and uses the result as the username in email to a domain of a secure processing server. At the secure processing server, the recipient email address is extracted, control token identified, and any attachments processed and delivered based on the control token. The secure processing server may be an internet-based secure fax server and attachments processed as native documents for high-resolution, color faxing. Delivery may also be via certified email, or native documents may be processed into workspace storage or through other configured processing. Multiple tokens may be combined to trigger multiple actions.
US10951773B2 Systems and methods for suggesting contacts
An example method of suggesting contacts in a communications routing system includes: routing, via a routing engine, communications events between a communications device and a plurality of further communications devices coupled to the communications routing system as VoIP calls using respective VoIP telephone numbers; storing, for a user account associated with the communications device, a contact database representing VoIP telephone numbers stored in a contact tracking application of the communications device; storing, in the contact database for the user account, a log of communications events including a record for each new telephone number; and when the record for a new telephone number satisfies a threshold condition, providing a prompt, at the communications device, to add the new telephone number to the contact tracking application.
US10951771B2 Method and apparatus for call handling control
A method and apparatus for call handling control comprises receiving, from a first device, call handling information directed towards a second device, wherein a call is currently established between the first device and the second device and transmitting the call handling information to the second device, wherein the call handling information comprises feature activation instructions for the second device.
US10951767B2 Techniques for benchmarking pairing strategies in a contact center system
Techniques for benchmarking pairing strategies in a contact center system are disclosed. In one embodiment, the techniques may be realized as a method for benchmarking pairing strategies in a contact center system comprising: determining for each contact of a plurality of contacts, an associated plurality of historical contact assignments; determining, for each contact, an associated outcome value; partitioning, for each contact, the associated plurality of historical assignments into a first associated subset assigned using a first pairing strategy and a second associated subset assigned using a second pairing strategy; determining, for each contact, a first portion of the associated outcome value attributable to the first associated subset and a second portion of the associated outcome value attributable to the second associated subset; and outputting a difference in performance between the first and second pairing strategies according to the first and second associated portions of the associated outcome value for each contact.
US10951760B2 System and method for managing communication interrupts in an enterprise
A computing system for managing one or more communication interrupts during a communication session associated with a resource in an enterprise is disclosed. The computing system includes a monitoring module for monitoring one or more parameters of the communication session. The system further includes a database for storing the one or more monitored parameters. The system further includes a determination module for determining at least one participation score for the resource based on the one or more stored parameters. The system further includes a control module for controlling the one or more communication interrupts based on the at least one determined participation score.
US10951759B2 System and method to authenticate contact center agents by a reverse authentication procedure
An authentication system to validate the authenticity of call center agents by using a reverse authentication procedure. The authentication system includes a verification module that verifies the authenticity of agents calling from the call center. The verification module retrieves reference answers in response to the user-provided query questions from a media server. The media server may be located inside the enterprise network. These reference questions and their corresponding reference answers are provided by users when registering with the enterprise network.
US10951746B2 Method and device in UE and base station used for wireless communication
The present disclosure provides a method and a device in a User Equipment (UE) and a base station for wireless communication. A first node transmits a first radio signal in a first time window, the first time window is any one time window of M time windows, the first radio signal carries a first check bit block. Herein, an information bit block corresponding to the first check bit block comprises a first bit block; values of bits comprised in the first check bit block are related to a position of the first time window in the M time windows, or, a total number of bits comprised in the first check bit block is or isn't related to a position of the first time window in the M time windows, the M is a positive integer greater than 1. The method improves precision of error correction without increasing redundancy.
US10951745B1 Method and apparatus for header compression configuration for sidelink radio bearer in a wireless communication system
A method and apparatus are disclosed from the perspective of a UE (User Equipment) for applying header compression and decompression on a Sidelink Radio Bearer (SLRB). In one embodiment, the method includes the UE obtaining at least one Packet Data Convergence Protocol (PDCP) parameter for the SLRB from a network node. The method also includes determining whether the header compression and decompression is used for transmitting (Vehicle-to-Everything) V2X messages on the SLRB according to whether (Internet Protocol) IP based or non-IP based V2X messages are to be transmitted on the SLRB, wherein the header compression and decompression is used if IP based V2X messages are to be transmitted on the SLRB, and the header compression and decompression is not used if non-IP based V2X messages are to be transmitted on the SLRB.
US10951740B2 System and method for testing applications with a load tester and testing translator
Methods, media, and devices for communicating messages between a computer and a server are provided. A processor receives a message in a first format incompatible with the computer from a client computer and performs first and second operations in parallel. In the first operation, the message in the first format is forwarded to the server. In the second operation, the message in the first format is converted into a message in a second format compatible with the computer, and the message in the second format is forwarded to the computer. The processor receives, from the computer, a request in the second format, converts the request in the second format to a request in the first format, and forwards the request in the first format to the server.
US10951738B1 Automatic API integration
A target device executes a target application programming interface (API), and a client device executes a client API that generates and/or collects data. The client device determines that at least a portion of the data collected by the client API is to be sent from the client API to the target API. In response to this determination, target configuration information is received. The target configuration information includes one or both of software properties of software executed on the target device and hardware properties of the target device. The client device determines that a data transfer change is needed for receipt of the portion of the data by the target API. In response to determining that the data transfer change is needed, the data transfer change is automatically implemented. The portion of the data is then sent to the target API.
US10951735B2 Peer based distribution of edge applications
According to some embodiments, system and methods are provided, comprising providing an application module; receiving a request from at least one master agent for application content at the application module, wherein the application content is for execution at one or more assets; executing the application module to determine the distribution of the application content to at least one node located in each of the one or more assets, wherein execution of the application module further comprises: determining an origin of the request and a requesting hierarchy associated with the request; exchanging metadata associated with the requesting hierarchy and metadata associated with the requested application content; determining whether to distribute the application content based on an analysis of the exchanged metadata; distributing the application content to the at least one node located in the asset based on the analysis; and generating an operating response of the asset based on the distributed application content. Numerous other aspects are provided.
US10951733B2 Route selection method and system, network acceleration node, and network acceleration system
A route selection method, a route selection system, a network acceleration node, and a network acceleration system are provided. The route selection method comprises detecting, by an ingress network acceleration node, a link delay from the ingress network acceleration node to each egress network acceleration node, and determining whether each egress network acceleration node is available; obtaining, by the ingress network acceleration node, from an available egress network acceleration node, a link delay from the available egress network acceleration node to a source site IP; and selecting a desired route from the ingress network acceleration node to the source site IP based on a link delay from the ingress network acceleration node to an available egress network acceleration node and a link delay from the available egress network acceleration node to the source site IP.
US10951731B2 Profile switch feature in subsidy locked devices with eUICC
The apparatus determines whether a subscriber identification module (SIM) card is an embedded universal circuit card (eUICC) or a non-eUICC while in a subsidy locked state. The apparatus performs a profile sequence to determine available network profiles if the SIM card is the eUICC. The apparatus may present an option at the user interface UI to switch network profiles on the UE if the current profile of the eUICC does not satisfy a personalization check on the ME.
US10951727B2 Remote access of media items
Methods and systems that facilitate the downloading of media items to a first network device from a second network device are disclosed. A plurality of media items are identified Media item metadata associated with the plurality of media items is obtained from the second network device and stored on the first network device. Media item content data associate with a first subset of the plurality of media items is obtained from the second network device and stored on the first network device. In this manner, only media item metadata associate with a second subset of the plurality of media items is stored on the first network device.
US10951725B2 Request routing processing
Generally described, the present disclosure is directed to managing request routing functionality corresponding to resource requests for one or more resources associated with a content provider. The processing of the DNS requests by the service provider can include the selective filtering of DNS queries associated with a DNS query-based attack. A service provider can assign DNS servers corresponding to a distributed set of network addresses, or portions of network addresses, such that DNS queries exceeding a threshold, such as in DNS query-based attacks, can be filtered in a manner that can mitigate performance impact on for the content provider or service provider.
US10951722B2 Deriving mobile application usage from network traffic
A system provides monitoring for application usage on a device, such as a mobile device, using network consumption data of the device. The system determines an application list of applications executing on a device, determines application strings associated with the applications, receives network consumption data for a process executing on the device, and determines consumption data strings from the network consumption data. The system further determines match scores by identifying matching strings between the application strings and the consumption data strings along weighted search paths defined between the application strings and the consumption data strings, identifies an application from the application list for the process based on the match scores, and associates the network consumption data for the process with the application. The system generates usage data for the application by aggregating network consumption data associated with the application over time.
US10951721B2 Methods and apparatus to determine media impressions using distributed demographic information
Examples to determine media impressions using distributed demographic information are disclosed. An example apparatus includes a reporter to detect at the client device a login event. The example apparatus also includes a communication interface to send a communication to an impression monitor system in response to the reporter detecting at the client device the login event via the login webpage, the login event associated with a first Internet domain different from a second internet domain of the impression monitor system. The example communication interface also sends a login reporting message to the database proprietor, the login reporting message including first and second cookie identifiers, the first cookie identifier associated with the first Internet domain, and the second cookie identifier associated with the second Internet domain of the impression monitor system.
US10951720B2 Multi-channel cognitive resource platform
Embodiments of the invention are directed to systems, methods, and computer program products for providing a multi-channel cognitive resource platform configured for intelligent, proactive and responsive communication with a user, via a user device. The system is further configured to perform one or more user activities, in an integrated manner, within a single interface of the user device, without requiring the user to operate disparate applications. Furthermore, the system is configured to receive user input through multiple communication channels such as a textual communication channel and an audio communication channel. The system is further configured to switch between the various communication channels seamlessly, and in real-time.
US10951715B2 Systems and methods for generating an anonymous interactive display in an extended timeout period
Systems and methods are disclosed for displaying health data during a security timeout. One method includes: displaying an interactive interface; receiving a data type included in the display; detecting a timeout of the interactive interface; hiding or removing the data type from the display in response to the timeout; and initiating an extended timeout including the display with the data type removed.
US10951714B1 Method and system for sharing tangible objects
A system is configured to provide managed services for deployment of shared tangible objects by an operator. The system includes cloud resources provided by the system administrator. In one embodiment, the cloud resources include a device activation module configured to process information concerning the end users to determine whether activation of the shared object should be authorized for use by a selected end user; and a sharable-object command module configured to communicate signals employed in activating shared tangible objects for use when the end user is successfully authorized by the device activation module. The system includes an API provided by the system administrator. The API is configured to facilitate a communication of object activation signals from the sharable-object command module to allow the end user to use the shared tangible object. The same API is employed to facilitate the communication of object activation signals for different types of shared tangible objects that can be provided in different vertical markets.
US10951707B2 Selection device, device selection method, and program
A selection device includes: a storage part in which connection path information indicating a connection path of a device is stored; and a selection part configured to select the device for executing a process from among the plurality of devices. The selection part is configured to select, as the devices for executing a process, the devices whose paths from a place to store data used in the process to the devices are at least partly common on the basis of the connection path information.
US10951705B1 Write leases for distributed file systems
A method, article of manufacture, and apparatus for providing a write leases in a distributed file system is discussed. A lease break is received for a file at a client from a metadata server (“MDS”), wherein the client has a write lease for the file. A write buffer is flushed on the client to an object store, wherein the write buffer comprises data objects comprising the file. A metadata request is transmitted from the client to the MDS in connection with flushing the write buffer. A lease extension is received for the write lease from the MDS.
US10951703B1 Peer-to-peer email content replication and synchronization
Techniques of peer-to-peer email synchronization are disclosed herein. In one embodiment, a technique includes transmitting, from a first client device to an email server, a synchronization request to synchronize an email between the email server and the first client device. In response, the first client device receives a reply containing data representing a replicate identification of email content of the email and identification of a second client device at which a copy of the email content is present. Upon receiving the reply, the first client device can establish a peer-to-peer communications channel with the second client device, download a copy of the email content of the email from the second client device instead of the email server, and surface the downloaded email content in an email client on the first client device to a user.
US10951702B2 Synchronized content library
The disclosed technology addresses the need in the art for synchronizing a content library between a content management system and client devices. Each content item in a user's content library is stored on the content management system and a record of each change to the content library is recorded in a content journal. A client device transmits a synchronization request that a portion of the content journal representing unsynchronized changes be processed to update the content library on the client device. The synchronization request includes a content library identifier and a content journal number identifying the content entry in the content journal last processed by the client device. Synchronization commands are sent based on the content entries not processed by the client device. Updated synchronization data representing the processed content entries is sent to the client device after synchronization is completed.
US10951701B2 Method and apparatus for synchronizing webpage information
According to an example, a cloud server receives an upload request transmitted by the first terminal, wherein the upload request comprises an account and webpage information of a webpage displayed on a first browser of the first terminal. The cloud server transmits the webpage information of the webpage to the second terminal according to the account, such that a second browser of the second terminal opens the webpage according to the webpage information.
US10951698B2 Systems and methods to discover and notify devices that come in close proximity with each other
A first electronic device of a first user programmed to: connect, with a second electronic device of a second user over a first peer-to-peer wireless network link; send, to the second electronic device, a first unique code generated by the first electronic device, corresponding to a first user identifier of the first electronic device; receive, from the second electronic device, a second unique code generated by the second electronic device, corresponding to a second user identifier of the second electronic device; store, the second unique code, and second metadata associated with the second electronic device including the time, proximity or duration of interaction; retrieve, from a coupled backend database stored in a cloud, a third unique code of an electronic device, uploaded to the coupled backend database stored in the cloud; and display, a notification on the first electronic device, if the third unique code matches the second unique code.
US10951691B2 Load balancing in a distributed system
Systems, methods, and computer-readable media are disclosed for implementing a load balance update. A system may be configured to receive a plurality performance reports for a plurality of service nodes running on the plurality of host entities, wherein each performance report comprises performance indicators for a service node in the plurality of service nodes running on a host entity in the plurality of host entities, generate a load balance update based on the performance reports, and implement the load balance update at a load balancer.
US10951690B2 Near real-time computation of scaling unit's load and availability state
Various embodiments of the present technology generally relate to systems and methods for intelligent load shedding. More specifically, various embodiments of the present technology generally relate to intelligent load shedding of traffic based on current load state of target capacity. In some embodiments, a first server can send a capacity request indicating that the first server is nearing capacity and needs assistance with load. In response to the capacity request, an assistance request can be published to additional nearby servers. The servers can respond with a status update providing load and availability information. Based on the load and availability information (or other information such as latency), a second server from the additional servers can be selected and traffic can be routed away from the first server to the second server.
US10951689B1 Electronic device allocation and routing
An advisor distribution system may include an advisor management system, which may include various software modules. The advisor management system may allow for a balanced distribution of a plurality of advisors operating a plurality of advisor computing devices into multiple groups based on value of a Mahalanobis Distance between each covariate of the plurality of advisors operating the plurality of advisor computing devices.
US10951684B2 Information processing system, information processing method, user terminal and storage medium
A non-limiting example information processing system includes a plurality of user terminals, and a download task list for each user terminal is managed by a list server. Existence/non-existence of renewal of the download task list is managed by a revision server, and the user terminal inquires of the revision server the existence/non-existence of the renewal. If the download task list is renewed, the user terminal acquires the download task list from the list server, and acquires a content from a content server according to an acquired download task list.
US10951682B2 Systems and methods for accessing multiple resources via one identifier
A computer-implemented method includes receiving, by an application executing on a computing device, a first environment with a first identifier, in response to a first request comprising an authentication code. The method further includes associating, by the application, the first identifier with the authentication code, sending, by the application, a second request comprising the first identifier and the authentication code, and in response to sending the second request, receiving, by the application, a second environment with a second identifier. The second environment is a version snapshot of the first environment.
US10951680B2 Apparatus, system, and method for multi-bitrate content streaming
An apparatus for multi-bitrate content streaming includes a receiving module configured to capture media content, a streamlet module configured to segment the media content and generate a plurality of streamlets, and an encoding module configured to generate a set of streamlets. The system includes the apparatus, wherein the set of streamlets comprises a plurality of streamlets having identical time indices and durations, and each streamlet of the set of streamlets having a unique bitrate, and wherein the encoding module comprises a master module configured to assign an encoding job to one of a plurality of host computing modules in response to an encoding job completion bid. A method includes receiving media content, segmenting the media content and generating a plurality of streamlets, and generating a set of streamlets.
US10951678B2 Method and apparatus for content distribution over a network
A method that incorporates teachings of the subject disclosure may include, for example transmitting, via a connection to a network having an available digital bandwidth, a first pre-fetch media content item of media content items included in the a media recommendation transmitted to a communication device, the first pre-fetch media content item having a first rank. Responsive to a determination of a change in the available digital bandwidth, the transmitting of the first pre-fetch media content item is stopped and a second pre-fetch media content item of media content items included in the media recommendation is transmitted via the connection to the network. The second pre-fetch media content item has a second rank. Other embodiments are disclosed.
US10951677B1 Managing a distributed system processing a publisher's streaming data
A distributed system processing a publisher's streaming data. The distributed system comprises multiple workers and publisher data stores, each publisher data store dedicated to a worker and a publisher. A sampling ratio (the fraction of data items for storage in the publisher's data store) is selected by a publisher data store's worker based on historical information. At least two workers select different sampling ratios. Data items representing an interaction between an entity and the publisher are received. Each data item is assigned to a worker for processing. A hash function is applied to the data item's identifier, resulting in a key value falling within the hash function's range. The scope of the publisher's data store is equal to the hash function's range multiplied by the sampling ratio of the publisher's data store. A data item with a key value within the scope of the publisher's data store is stored therein.
US10951675B2 Methods and systems for blockchain incentivized data streaming and delivery over a decentralized network
Methods and systems for incentivizing the delivery of data contents among peer nodes in a decentralized data delivery network are disclosed. The network comprises peer-to-peer (P2P) connections implemented on top of a content delivery network (CDN) having CDN servers that provide data resources to network nodes. Such a hybrid network comprises viewer peer nodes, edge cacher peer nodes, tracker servers, and a payment service module. A micropayment pool is created on a blockchain by the payment service module. A cacher peer node downloads a data resource from a CDN server, and shares portions of the data resource with viewer peer nodes in the hybrid network. In return, the cacher peer node receives from the payment service module, off-chain transactions that encode cumulative payment amounts from the micropayment pool to the cacher peer node. A last off-line transaction is submitted to the blockchain to claim a total payment amount.
US10951665B2 ACR buffering in the cloud
A network element of an Internet Protocol multimedia subsystem buffers network resource usage information in the cloud. After generating network resource usage information based on an observation of network resource usage, the network element transmits the network resource usage information to a cloud-based storage service for buffering. Once a network resource usage collection function is available, the network element retrieves the network resource usage information from the cloud-based storage service and transmits it to a charging collection function for generation of call detail records.
US10951662B1 Open integration framework for cybersecurity incident management software platform
In an open integration framework of a computerized cybersecurity incident management software platform, integrations are defined at an action level for integrating cybersecurity products for performing desired actions into the cybersecurity incident management software platform. High-level parameters of an integration are defined through an integration definition file. The integration definition file identifies a cybersecurity product to be called through an application program interface. One or more actions of the integration are defined through one or more respective action definition files that define details of the one or more actions. The action definition files identify the integration defined by the integration definition file, and the actions requiring use of the cybersecurity product through the application program interface.
US10951660B2 Methods and systems for protecting a secured network
Methods and systems for protecting a secured network are presented. For example, one or more packet security gateways may be associated with a security policy management server. At each packet security gateway, a dynamic security policy may be received from the security policy management server, packets associated with a network protected by the packet security gateway may be received, and at least one of multiple packet transformation functions specified by the dynamic security policy may be performed on the packets.
US10951659B2 System and method for providing network and computer firewall protection with dynamic address isolation to a device
A computer performs dynamic address isolation. The computer comprises an application associated with an application address, a network interface coupled to receive incoming data packets from and transmit outgoing data packets to an external network, a network address translation engine configured to translate between the application address and a public address, and a driver for automatically forwarding the outgoing data packets to the network address translation engine to translate the application address to the public address, and for automatically forwarding the incoming data packets to the network address translation engine to translate the public address to the application address. The computer may communicate with a firewall configured to handle both network-level security and application-level security.
US10951657B2 Systems and methods for authenticating platform trust in a network function virtualization environment
A remote attestation system for a computer network includes an attestation operations subsystem configured to manage attestation procedures for the remote attestation system, and an attestation server pool including a plurality of attestation servers. The plurality of attestation servers is configured to perform attestation of at least one host in a data center. The system further includes an attestation state database configured to store a state of attestation of the at least one host, an attestation policy database configured to store at least one operator policy of the computer network, and an end-user service portal configured to provide access to the remote attestation system by users of the computer network.
US10951647B1 Behavioral scanning of mobile applications
Behavioral analysis of a mobile application is performed to determine whether the application is malicious. During analysis, various user interactions are simulated in an emulated environment to activate many possible resulting behaviors of an application. The behaviors are classified as hard or soft signals. A probability of the application being malicious is determined through combining soft signals, and the application is classified as malicious or non-malicious. Users of the application, the developer of the application, or a distributor of the application are notified of the application classification to enable responsive action.
US10951644B1 Auto-containment of potentially vulnerable applications
There is provided a method and system for advanced endpoint protection. With this methodology, when a file is requested to be executed on any endpoint, all intelligence sources would be checked to decide if that file has any known or potential vulnerability associated with it. If there is any information about any known or potential vulnerability, it would be launched inside the secure container to isolate the all resource usage of that application from the rest of the known good and secure applications in order to achieve the securest computing environment on an endpoint.
US10951642B2 Context-dependent timeout for remote security services
A threat management facility that remotely stores global reputation information for network content can be used in combination with a recognition engine such as a machine learning classifier that is locally deployed on endpoints within an enterprise network. More specifically, the recognition engine can locally evaluate reputation for a network address being accessed by an endpoint, and this reputation information can be used to dynamically establish a timeout for a request from the endpoint to the threat management facility for corresponding global reputation information.
US10951641B2 Threat mitigation system and method
A computer-implemented method, computer program product and computing system for: obtaining system-defined consolidated platform information for a computing platform from an independent information source; obtaining client-defined consolidated platform information for the computing platform from a client information source; and presenting differential consolidated platform information for the computing platform to the third-party.
US10951640B2 Traffic attack protection method and system, controller, router, and storage medium
A method for protection against cyberattack includes: establishing neighbor relationships with border routers at a plurality of traffic entrances; and receiving an attack protection request from an intrusion detection system at a first traffic entrance. The first traffic entrance is any one of the plurality of traffic entrances. The attack protection request carries a target network address that has been attacked. The method also includes: generating routing information based on the attack protection request, and sending the routing information to a first border router based on the neighbor relationships. The routing information includes the target network address and routing address information. The first border router performs, based on the routing address information, protection processing on traffic that corresponds to the target network address. The first border router is a border router at the first traffic entrance at which the intrusion detection system that sends the attack protection request is located.
US10951638B2 Security of server hosting remote application
A method, computer system, and a computer program product for detecting a malicious activity with respect to an application hosted on a server is provided. The present invention may include collecting user activity data associated an application accessed remotely over a network and generating a graph from the collected user activity data. Each node of the graph may represent a set of user requests received from a user with respect to a location within the application and each connection between nodes may represent a user navigable path between locations within the application. The present invention may include storing the generated graph and monitoring subsequent user activity with respect to the application. The present invention may include detecting a subsequent user activity that does not match the stored graph.
US10951636B2 Dynamic phishing detection methods and apparatus
A computer-implemented method for detecting a phishing attempt by a given website is provided. The method includes receiving a webpage from the given website, which includes computer-readable code for the webpage. The method also includes ascertaining hyperlink references in the computer-readable code. Each hyperlink reference refers to at least a component of another webpage. The method further includes performing linking relationship analysis on at least a subset of websites identified to be referenced by the hyperlink references, which includes determining whether a first website is in a bi-directional/uni-directional linking relationship with the given website. The first website is one of the subset of websites. The method yet also includes, if the first website is in the bi-directional linking relationship, designating the given website a non-phishing website. The method yet further includes, if the first website is in the uni-directional linking relationship, performing anti-phishing measures with respect to the given website.
US10951633B1 Serverless auto-remediating security systems and methods
Systems and methods involve an input layer function of a function-as-a-service (FaaS) pipeline that receives trigger data from a trigger layer function of one or more processors of enterprise processing systems, calls one or more processors of an enrich layer function of the FaaS pipeline that adds enriching context to the trigger data, and creates an event based at least in part on the enriched trigger data. A route layer function of the FaaS pipeline invoked by the input layer function creates an action based on the event created by the input layer function. An action layer function of the FaaS pipeline invoked by the route layer function creates a command based on the action created by the route layer function, and the action layer function sends a remediation action to a command layer function of the enterprise processor based on the action created by the route layer function.
US10951627B2 Securing ordered resource access
Ordered access to resources is controlled by restricting access to additional resources that are accessible when a client device provides an authentication provided when accessing an initial resource. When the client device accesses the initial resources, a set of access parameters are identified describing the request and the client device providing the request, and included with an expiration time in generating a token. The token and expiration date are provided in an authorization for the additional resources. When requesting the additional resources, the authorization is provided and verified by comparing the token in the authorization with a test token generated with reference to access parameters of the request for additional resources. When the tokens match, the additional resource is provided to the client device.
US10951625B2 Cross-application identity and access management
Techniques are described for unified identity and access management (IAM) across multiple applications in a distributed (e.g., cloud) computing environment. Implementations provide for IAM across multiple applications through use of a single, unified IAM tool including an IAM interface. The IAM tool can manage user identity and user access rights for multiple applications in the platform environment. The IAM tool can also employ a unified IAM database, which stores user profiles that each describes user access rights for a user in one or more applications. Through use of the unified IAM tool, an operator can access a single interface to manage user identity and access privileges across multiple applications which may have their own identity management interfaces, with user roles in different applications mapped through use of an equivalency matrix in some cases. The IAM tool can be used to add, remove, or edit user access privileges for multiple applications.
US10951621B2 Leveraging a regulated network to enable device connectivity in a restricted zone
A component of an environment having available bandwidth for performing a task is located. Authorization to connect a device associated with the task to the component is granted. In response to determining that a set of one or more conditions are met, the device is connected to the component. The connection provides network connectivity to the device via the component.
US10951613B2 Biometric methods for online user authentication
Methods for authenticating a genuine presence of a human involve directing one or more modulated probes towards a body part of the human, receiving a response to the probes from the body part, and analyzing the response to determine whether it contains spectral characteristics that match a class of responses to such probes for the human body part in a human population. Replay attacks are countered by varying the modulation of the probe temporally, spatially, and spectrally each time authentication is performed. The probes may include electromagnetic radiation, acoustic beams, or particle beams that generate a detected reflection, absorption pattern, scintillation, or fluorescence response of the body part. The analysis of the response may be directed to one or more of temporal, spatial, and spectral variations in accordance with the nature of the probes and the modulation.
US10951612B2 System and method of inter-account resource access management
An improved method and system of enabling the owner of an account associated with a resource to allow a second user to gain access to the resource or a particular aspect of the resource is disclosed. Solutions and implementations disclosed provide an easily manageable mechanism for allowing access to a resource, without the need for a complex administrator-based access control system. Instead, a negotiated account to account resource access arrangement is established between the first user's account and the second user's account to share some or all of the actions available to the first user for the resource.
US10951610B2 Operation of mathematical constant PI to authenticate website and computer network users
A computer-implemented user authentication method to provide users of computer devices interconnecting with computer information systems with a frequently changing numeric passcode generated via a time-synchronized mathematical operation of the mathematical constant Pi (π) without the need for a Two Factor Authentication process. The method operates the mathematical constant Pi, wherein an application software performs the mathematical operation of Pi to select a segment of Pi. The selected Pi segment becomes the user's passcode, referred in this invention as the PI ID Value (PIV). The method is dynamic, creating a new PIV for the computer user each time the user operates his/her computer device to gain access into a network or website. To attain the same Pi segment in real-time and authenticate the user, the network or website administrator utilizes in its computer server the same parameters and mathematical operation used by the user's computing device.
US10951602B2 Server based methods and systems for conducting personalized, interactive and intelligent searches
Existing search methods/systems are often generic and sometimes offer no user specific information. Disclosed herein are methods and systems for providing personalized, interactive, and intelligent search information. In particular, a search query is provided to a remote server and the remote server uses intelligent analysis for better interpreting and understanding user input and interactive user feedback concerning both search query quality and search result quality are provided to improve search quality and user experience, especially for accurate and intelligent searches in an interactive system (e.g., in an AR system). Using a remote server for query processing is advantageous because of its superior capability, including superior computing capacity.
US10951600B2 Domain authentication
Various systems and methods for domain authentication are described herein. In an example, the method may include detecting a domain from a request of a tenant for access to a farm. The method may also include identifying a presence of a site ID from a database of the farm based on the domain. The method may also include sending an authentication request to a default site or a custom site, the authentication request managed through a site manager based on the identified presence of the site ID in the database of the farm. The method may also include routing traffic from the tenant to the farm in response to satisfaction of the authentication request.
US10951599B2 Secure shell (SSH) server public key validation by a SSH client in a high volume device deployment
A method of securely accessing a modem is disclosed that uses an authentication token with a hash of a secure shell server (SSH) public key. The method includes receiving an encrypted authentication token from the modem, the authentication token having one of a hash of the SSH public key and the SSH public key and being encrypted according to another public key, transmitting the encrypted authentication token to a central server, receiving a decrypted authentication token from the central server, the decrypted authentication token comprising the hash of the SSH server public key, configuring modem interfaces at least in part using the authentication token, the modem interfaces including an interface with an SSH server, and communicating with the modem according to the hash of the SSH server public key.
US10951598B2 Sharing resources between wireless networks
A wireless device establishes a first link for communications with a cellular base station, wherein the first link uses a first channel as a carrier. The wireless device receives information from the cellular base station for configuring a second link between the wireless device and another wireless device, wherein the second link uses a second channel as a carrier and wherein the second channel is different than the first channel. The wireless device communicates directly with the other wireless device using the second link, wherein the second link resources are assigned by the cellular base station using the first link. The wireless device can use one or more uplink and/or downlink grants from the cellular base station to communicate directly with the other wireless device.
US10951597B2 Methods and systems for transferring secure data and facilitating new client acquisitions
Methods and systems for directly and securely transferring encrypted medical data between two remote locations, such as an imaging site and a diagnostic site, wherein the diagnostic site is not within a data transfer network utilized by the imaging site. The invention allows the diagnostic site to receive medical data and view the data using a thin client viewer, and allows the diagnostic site to register as an in-network site.
US10951595B2 Method, system and apparatus for storing website private key plaintext
The present application discloses a method, system and apparatus for storing a website private key plaintext. A specific implementation of the method includes: receiving a public key sent from a terminal configured to perform encryption and decryption, wherein the public key is generated at random by the terminal; encrypting a website private key plaintext by using the public key to generate a website private key ciphertext, wherein the website private key plaintext is pre-acquired; and sending the website private key ciphertext to the terminal, so that the terminal decrypts the website private key ciphertext by using the private key to generate the website private key plaintext and store the website private key plaintext in the terminal. This implementation improves the security of storage of the website private key plaintext.
US10951590B2 User anonymity through data swapping
A size of collected data to swap is identified, over vehicle-to-vehicle communication between first and second vehicles. A first segment of data of the size stored to the first vehicle is swapped with a second segment of data of the size stored to the second vehicle over the vehicle-to-vehicle communication between the first and second vehicles. The swapped data received from the second vehicle is sent from the first vehicle to a server.
US10951589B2 Proxy auto-configuration for directing client traffic to a cloud proxy
Among other things, this document describes systems, methods and devices for providing a cloud proxy auto-config (PAC) function for clients connected to a private network, such as an enterprise network. The teachings hereof are of particular use with cloud hosted proxy services provided by server deployments outside of the private network (e.g., external to the enterprise or other organizational network). This document also describes systems, methods and devices for providing a proxy auto-config (PAC) function for clients connected to a third party network, such as when the client moves outside of the enterprise network.
US10951586B2 Providing location-specific network access to remote services
Techniques are described for providing users with access to computer networks, such as to enable users to create and configure computer networks that are provided by a remote configurable network service for the users' use. Computer networks provided by the configurable network service may be configured to be private computer networks that are accessible only by the users who create them, and may each be created and configured by a client of the configurable network service to be an extension to an existing computer network of the client, such as a private computer network extension to an existing private computer network of the client. In addition, access to remote resource services may be configured and provided from such computer networks in various manners, such as to automatically include access control information to limit access to particular resources to computing nodes at the location of that provided computer network.
US10951582B2 Dynamic firewall configuration
Disclosed are systems and methods for firewall configuration. A request can be transmitted to a DNS server. A response to the DNS request can include an Internet Protocol (IP) address. A firewall rule can be generated permitting access to the IP address. The firewall rule can be configured to be valid until expiration of a time-to-live value in the response to the DNS request. Thus, firewall rules can be automatically created as needed by executed processes, eliminating the need for manual firewall rule creation. As the firewall rule is invalid after the expiration of the time-to-live value, risks associated with maintaining out-of-date firewall rules are eliminated, as is the requirement to manually remove or modify out-of-date firewall rules.
US10951581B2 Mitigation of attacks on satellite networks
A system includes a terminal and a gateway. The terminal is programmed to identify, in received data, a signature of rogue data that includes at least a device identifier and an application identifier, and to transmit, via uplink to a satellite, the identified signature to a gateway. The gateway is programmed to block downlink data, upon determining that downlink data includes the received signature, and to broadcast the received signature to a second gateway.
US10951579B2 Systems and methods for resolving double address faults during the commissioning of a connected system
Systems and methods for resolving double address faults during the commissioning of a connected system are provided. Some methods can include identifying a subset of a plurality of devices in a region with a double address fault, displaying a first list of the subset, receiving user input selecting one of the subset, identifying a current location of a user, generating a map of the region, wherein the map identifies a respective location of each of the subset and includes visual signs to guide the user from the current location of the user to the respective location of the one of the subset, displaying the map, generating a second list of valid addresses assignable to the one of the subset to address the double address fault, and displaying the second list.
US10951578B1 Stateless policy and service chaining in neutral host network
Presented herein are techniques that provide for a way to associate a policy, or signal the policy for a user equipment (UE), directly from the UE traffic, inband or, in other words, within the data plane. The policies are effectively embedded in the address of the UE traffic. When the Neutral Host Network (NHN) receives the UE traffic, the policy can be determined directly from the address associated with the UE traffic. This provides for a unique way of integrating a service chain identifier in the Internet Protocol address of the UE to identify the services/policies to be applied to UE traffic in a stateless manner.
US10951575B1 Domain name system (DNS) translations for co-located Gateway User Planes in wireless communication networks
A Gateway Control Plane (GW-C) receives a session request for User Equipment (UE) from a serving Access Point (AP) and transfers an Access Gateway User Plane (AGW-U) request that has network data and the AP Identifier (ID). The GW-C receives an AGW-U response that indicates a translation fault for the AP ID. A translation controller transfers a translation request that has the Tracking Area Indicator (TAI) for the UE. A Domain Name System (DNS) translates the TAI into AGW-U IDs and External Gateway User Plane (EGW-U) IDs. The translation controller determines a co-located group of the AGW-Us and the EGW-Us and adds a location ID to the AGW-U IDs and the EGW-U IDs in the co-located group. The translation controller generates translations of the AP ID into the AGW-U IDs and of the AGW-U IDs into the EGW-U IDs. The translation controller transfers the translations to the DNS.
US10951570B2 Preventing a user from missing unread documents
According to one exemplary embodiment, a processor-implemented method for informing a user that an important unread email (IUE) will be removed from an online communication inbox, wherein the IUE is a high priority email determined by an algorithm is provided. The method may include determining, by the processor, if the online communication inbox associated with the user has received the IUE. The method may also include determining if an email removal event associated with the received IUE will occur within a threshold time. The method may then include displaying a notification to the user of the email removal event based on determining that the email removal event will occur within the threshold time.
US10951564B1 Direct messaging instance generation
Techniques are described for expediting a generation of a direct messaging instance between two people associated with different organizations. A first person associated with a communication platform may submit a request to the communication platform to generate an invitation to communicate via the direct messaging instance. The first person may provide the invitation to a second person directly or via the communication platform. Responsive to receiving an indication that the second person has accepted the invitation, the communication platform may generate a direct messaging instance between the first person and the second person. The communication platform may update respective user interfaces to include the direct messaging instance. The communication platform may process messages and/or data between the first person and the second person that is input on the respective user interface and sent via the direct messaging instance.
US10951563B2 Enhancing a social media post with content that is relevant to the audience of the post
Systems and methods are described for enhancing a social media post with a content item. An illustrative method includes receiving a social media post; extracting, from the social media post, a first content item; identifying, in a frame of the first content item, a portion of the frame that is a non-focus portion; identifying a plurality of content items that fit within the non-focus portion; identifying a content preference of an audience of the social media post; determining an estimated length of time that the audience will view the social media post; selecting a second content item, from the plurality of content items, that matches the content preference of the audience and has a duration that does not exceed the estimated length of time; generating an enhanced social media post by overlaying the second content item onto the non-focus portion; and generating for display the enhanced social media post.
US10951562B2 Customized contextual media content item generation
Among other things, embodiments of the present disclosure improve the functionality of electronic messaging and imaging software and systems by determining topics of electronic communications between users and generating customized media content items based on such topics. The media content can be generated for a variety of topics and shared with other users. For example, media content (e.g., images or video can be generated and displayed on a user's computing device, as well as transmitted to other users via electronic communications, such as short message service (SMS) or multimedia service (MMS) texts and emails.
US10951557B2 Information interaction method and terminal
An information interaction method is applied to a first terminal installed with an interaction program, the first terminal is connected to a second terminal installed with a voice player and a lighting device, and the method includes: acquiring, by the first terminal, at least one type of interaction information of voice information, text information and expression information and at least one interaction effect of a sound effect and a lighting effect that are corresponding to the interaction information; and sending acquired effect data to the second terminal according to the interaction information and the interaction effect, the second terminal displaying the effect data.
US10951554B1 Systems and methods facilitating bot communications
A method for delivering messages from customers to bots that includes providing a bot gateway and, pursuant to a process, formatting and sending the messages. The bot gateway includes bot schemas that each defines a data field arrangement for sending requests to a particular bot. The process includes receiving a first message and determining therefrom a first customer, a first tenant, a first bot, and a text message from the first customer to the first bot. The process includes: providing a bot configuration data set; selecting a first bot schema pertaining to the first bot; creating a formatted request via mapping the text message and the data values defined in the bot configuration data set to corresponding data fields defined within the data field arrangement; and sending the formatted request to the first bot.
US10951553B2 Updatable message channels/topics for customer service interaction
A computer-implemented process for displaying one or more message channels may include arranging the one or more message channels for a user of a computing system to view. Each of the one or more message channels may include a message channel icon, a message channel name, a message, a timestamp of the message, and a badge number.
US10951549B2 Reusing switch ports for external buffer network
An Integrated Circuit (IC) includes multiple ports and packet processing circuitry. The ports are configured to serve as ingress ports and egress ports for receiving and transmitting packets from and to a communication network. The packet processing circuitry is configured to forward the packets between the ingress ports and the egress ports, to read an indication that specifies whether the IC is to operate in an internal buffer configuration or in an off-chip buffer configuration, when the indication specifies the internal buffer configuration, to buffer the packets internally to the IC, and, when the indication specifies the off-chip buffer configuration, to configure one or more of the ports for connecting to a memory system external to the IC, and for buffering at least some of the packets in the memory system, externally to the IC.
US10951548B2 Method for resetting a packet processing component to an operational state
A network device that includes a plurality of packet processing components may receive traffic associated with one or more services. The network device may store state information for each of the plurality of packet processing components, while the plurality of packet processing components are receiving the traffic. The state information may include state configuration information and/or internal storage information. The state information may be stored using a data structure that is internal to the network device and external to the packet processing component. The network device may detect an error that prevents the packet processing component from processing at least a portion of the traffic. The network device may execute, based on detecting the error that prevents the packet processing component from processing at least the portion of the traffic, a recovery procedure that uses the state information to reset the packet processing component to an operational state.
US10951547B2 Message sequence evaluation for redundant communication system
The technical solutions described herein address technical challenges in case of redundant communication channels between microcontrollers (MCU)s, which communicate the same information and use rolling counter(s). For example, the technical solutions include a method to evaluate a sequence of communication messages between the MCUs in a redundant communication network and react responsively.
US10951542B2 Method for managing operational schedules of cloud-based systems
Techniques for managing cloud-based systems are provided. A user provides search criteria for cloud-based resources through a web-based user interface. A search for the cloud-based resources is conducted based on the search criteria. The web-based interface displays a listing of cloud-based resources matching the search criteria. The user provides an input indicating a request to keep awake a first cloud-based resource. In response, the web-based interface copies an original operating schedule for the first cloud-based resource into a first tag and modifies the original operating schedule contained within a second tag to form a modified operating schedule to cause the cloud-based resource to keep awake. The user can restore the original operating schedule when desired. Alternatively, the web-based interface can automatically restore the original operating schedule when a predetermined time period expires.
US10951540B1 Capture and execution of provider network tasks
A provider network provides task capture and execution for tasks performed with respect to resources in the provider network. Task actions performed with respect to resources may be captured based on inputs to a provider network via a network-based service for the provider network in order to generate a recorded task. The recorded task may be stored for subsequent execution. In response to the detection of an execution event for the recorded task, the task actions may be performed as described in the recorded task. In some embodiments, task parameters and execution events may be defined for recorded tasks. Multiple recorded tasks may be linked together to be managed and executed as recorded task workflows. Recorded tasks may also be obtained that were recorded by other clients, or recorded for different provider networks.
US10951536B1 Sequence number recovery in stateful devices
In one embodiment, a network security device configured to monitor a communication session between a first device and a second device generates a first empty acknowledgment packet specifying a first sequence number and sends the first empty acknowledgment packet to the first device. The network security device may thereafter determine that a response from the first device has not been received within a threshold amount of time and generate, at least partly in response, a second empty acknowledgment packet specifying a second sequence number. The network security device may send the second empty acknowledgment packet to the first device and receive, from the first device, a third empty acknowledgment packet specifying a third sequence number. The network security device may then store the third sequence number in association with the communication session between the first device and the second device.
US10951534B2 Quality of service management system for a communication network
A quality of service management system includes a rules engine that receives information associated with a communication path having an assigned quality of service (QoS) to be provided for a customer communication device, and identifies one or more network elements assigned to provide the communication path. Each network element having a plurality of queues configured to provide varying QoS levels relative to one another. For each of the network elements, the rules engine determines at least one queue that is configured to provide the communication path at the assigned quality of service, and transmits queue information associated with the determined queue to its respective network element, the network element conveying the communication path through the determined queue.
US10951530B2 Systems and methods for adjusting a congestion window value of a content delivery network
Aspects of the present disclosure involve systems, methods, computer program products, and the like, for controlling a congestion window (CWND) value of a communication session of a CDN. In particular, a content server may analyze a request to determine or receive an indication of the type of content being requested. The content server may then set the initial CWND based on the type of content being requested. For example, the content server may set a relatively high CWND value for requested content that is not particularly large, such as image files or text, so that the data of the content is received at the client device quickly. For larger files or files that a have a determined smaller urgency, the initial CWND may be set at a lower value to ensure that providing the data of the content does not congest the link between the devices.
US10951526B2 Technologies for efficiently determining a root of congestion with a multi-stage network switch
Technologies for determining a root of congestion include a network switch. The network switch is to operate arbiter units in at least one upstream stage at a packet transfer rate that is greater than a packet transfer rate of an arbiter unit in an output stage, determine whether an input buffer of a remote network switch in communication with the output stage has sustained congestion over a first predefined time period, determine whether an output buffer of the arbiter unit in the output stage has sustained congestion over a second predefined time period, and determine, as a function of whether the input buffer of the remote network switch has sustained congestion and whether the output buffer of the arbiter unit in the output stage has sustained congestion, whether the network switch is a root of congestion.
US10951519B2 Methods, systems, and computer readable media for multi-protocol stateful routing
Methods, systems, and computer readable media for multi-protocol stateful routing are provided. One method of routing is performed at a multi-protocol stateful router and includes receiving a first message of a client session that is communicated using a first protocol. The method includes obtaining, from the first message, one or more client identifiers, determining a policy server that is assigned to the client session, and storing the one or more client identifiers and a policy server identifier that is associated with the policy server assigned to the client session as a multi-protocol binding record. The method also includes receiving a second message that is communicated using a second protocol that is different from the first protocol, using the multi-protocol binding record to determine that the second message is in the client session, and route the second message to the policy server that is assigned to the client session.
US10951517B2 DCB-based path selection systems and methods for san traffic in lag topologies
Data Center Bridge (DCB)-based path selection methods and systems reduce packet loss in a network system comprising a Link Aggregation Group (LAG) topology. In embodiments, once traffic received at a LAG node and identified as DCB traffic, links whose DCB status are identified as “up” are assigned to a LAG sub-trunk that may be used to forward the DCB traffic on the LAG trunk, while non-DCB traffic is forwarded to any member of the LAG, irrespective of DCB status. In addition, DCB traffic received from a LAG peer node, which sends traffic on an inter-node link (INL) when no DCB-enabled links to a downstream device are present, is identified as DCB traffic and forwarded on a LAG sub-trunk that comprises DCB-enabled links. An egress mask that indicates to not forward the traffic received at the LAG node on the INL may be overridden, such that DCB traffic may be forwarded.
US10951516B2 Technologies for quality of service based throttling in fabric architectures
Technologies for quality of service based throttling in a fabric architecture include a network node of a plurality of network nodes interconnected across the fabric architecture via an interconnect fabric. The network node includes a host fabric interface (HFI) configured to facilitate the transmission of data to/from the network node, monitor quality of service levels of resources of the network node used to process and transmit the data, and detect a throttling condition based on a result of the monitored quality of service levels. The HFI is further configured to generate and transmit a throttling message to one or more of the interconnected network nodes in response to having detected a throttling condition. The HFI is additionally configured to receive a throttling message from another of the network nodes and perform a throttling action on one or more of the resources based on the received throttling message. Other embodiments are described herein.
US10951510B2 Communication device and communication method
A communication device belonging to a first cluster among a plurality of clusters includes a memory, a processor, and a network connection device. The memory stores identification information of another cluster that has information being retrievable by a terminal connecting to the communication device in a summary of data held by the other cluster. The processor performs, upon receiving a combination of identification information of a second cluster that holds retrieval-target data and identification information of the retrieval-target data from the terminal that accessed the summary, a control to request target data identified by the combination. The network connection device forwards the target data to the terminal.
US10951508B2 End-to-end data path integrity validation at layer 2
Systems and methods of end-to-end data path integrity validation of a service with a data path at Layer 1 and Layer 2 implemented by a network element include, responsive to initiation of a test, messaging between network elements in the data path to coordinate defect and statistics collection at each of the network elements in the data path; receiving results for the defect and statistics collection from each of the network elements in the data path; and summarizing the received results to form a consolidated report for the test across all of the network elements in the data path.
US10951506B1 Offloading heartbeat responses message processing to a kernel of a network device
System and method for processing heartbeat messages. A first network device receives heartbeat response messages from two or more of a plurality of network devices. Each heartbeat response message respectively corresponds to one network device of the plurality of network devices. The first network device processes the received heartbeat response messages in kernel space and determines, for each of the plurality of heartbeat response messages, an index value identifying the network device that sent the respective heartbeat response message. The first network device updates heartbeat response message fields in a health check data structure in kernel space based on the generated index values and subsequently processes, in a user space, information received from at least one of the heartbeat response message fields of the health check data structure to obtain health status associated with one or more of the plurality of network devices.
US10951505B2 Optimizing network efficiency for application requirements
Methods and systems for selecting routes from among multiple media and/or optimizing transmission across those media are described. A minimum data rate may be determined for transmitting a content item. Based on that minimum data rate, a device may determine whether to transmit the content item via a given medium, select a different medium for transmission, or adjust transmission to compensate for unfavorable network conditions. A device may select a medium based on ranking one or more routes from a content source to a user device. Further, a device may determine a data rate for transmission based on calculating an expected time of transmission that includes time spent performing retransmissions at a given data rate.
US10951498B2 System and method for aggregating and reporting network traffic data
A method for analyzing traffic in a communications network includes sampling data packets at a plurality of network interconnection points, wherein sampling the data packets includes generating a plurality of sampled packet data in one or more standardized formats, converting the sampled packet data from the one or more standardized formats into a neutral format, and aggregating the sampled packet data in the neutral format from the plurality of network interconnection points. A system includes a communications node operable to sample data packets flowing through and generate sample packet data in a specified format, a collector node operable to convert the sampled packet data into a neutral format, the collector node further operable to map IP addresses of the sampled packet data to corresponding prefixes in a routing table; and an aggregator node operable to aggregate neutrally formatted sampled packet data from a plurality of collector nodes.
US10951493B2 Determining wireless network performance
Aspects described herein relate to various methods, systems and apparatuses that may improve methods of determining network performance. One or more aspects relate to performing one or more network tests based on a controller device and one or more measurement devices. The controller device may be configured to determine one or more network tests and initiate performance of the one or more network tests. The one or more measurement devices may be configured to perform the one or more network tests. One or more additional aspects may relate to determining one or more rankings of wireless networks. A ranking may be determined based on measurement data that is associated with aspects of network performance, based on results of one or more surveys, based on one or more user types, and/or based on weights that adjust the importance of factors including the measurement data and the results of a survey.
US10951492B2 System and a method for automatic conversion of monolithic services to micro-services
A system and method for conversion of monolithic services to micro-services is provided. One or more features related to service associated with domain implemented by monolithic service source code are identified. Features are identified for creating first feature set. One or more features are determined related to dependencies and cross-dependencies amongst one or more service functions associated with service, implemented by monolithic service source code, and between service functions and entities associated with domain expressed in the monolithic service source code. One or more features related to dependencies and cross-dependencies are determined for creating second feature set. Relationship between features present in first feature set and second feature set is determined. The relationship is representative of similarity of the features present in first feature set and second feature set. One or more micro-services are created based on similarity between features present in first feature set and second feature set.
US10951491B2 Automatic microservice problem detection in enterprise applications
A server system includes a memory, a processor in communication with the memory, and a server managing a plurality of cooperating microservices. The server executes on the at least one processor to capture tracing information reported during invocation of a set of cooperating microservices. The tracing information includes a service name and version information associated with at least one microservice of the set of cooperating microservices. Additionally, the server builds an application deployment profile from the service name and version information, compares the application deployment profile to an existing profile, and classifies the application deployment profile as a previously existing profile, a subset profile, an extension profile, and/or an updated profile. The server tracks performance data associated with the application deployment profile.
US10951485B1 System, method, and computer program for operating a multi-stage artificial intelligence (AI) analysis in a communication network
A system, method, and computer program product are provided for operating a multi-stage artificial intelligence (AI) analysis in a communication network. In use, first log data of network activity of the communication network is acquired based on a first set of monitoring rules. A network situation is detected in log data by an artificial intelligence (AI) system using an AI-model. A confidence level is computed associated with the detection of the network situation. Additionally, it is determined whether the confidence level surpasses a predefined value, and when it is determined that the confidence level does not surpass the predefined value, second log data of the network activity of the communication network is acquired based on an additional set of monitoring rules. Further, the detection of the network situation, the computation of the confidence level, and the determination whether the confidence level surpasses the predefined level are each repeated.
US10951477B2 Identification of conflict rules in a network intent formal equivalence failure
Systems, methods, and computer-readable media for identifying conflict rules between models of network intents. A first and second model of network intents are obtained, the models describing the operation and communication between one or more network devices in a network. A logical exclusive disjunction between the first and second models is calculated over the space of possible packet conditions and network actions defined by models, without enumerating all possible packet conditions and network actions. It is detected whether the models are in conflict with respect to at least a first network device. If the models are in conflict, it is determined whether a given rule of a plurality of rules associated with the first model is a conflict rule. The determining comprises calculating the intersection between the given rule and the logical exclusive disjunction, wherein the given rule is a conflict rule if the calculated intersection is non-zero.
US10951476B1 Methods and apparatus for dynamic network classification using authenticated neighbor detection
Methods, apparatus, systems, and articles of manufacture are disclosed for dynamic network classification using authenticated neighbor detection. An example includes a network comparator to determine whether a network to be connected by a computing device is a managed network based on network configuration information associated with the network, in response to determining the network is not a managed network, a neighbor comparator to determine a number of different computing devices on the network that are managed computing devices, and in response to determining that the number of the managed computing devices satisfies a threshold, a sensor controller to invoke a sensor of the computing device to obtain data from computing devices associated with the network, the computing devices including the managed computing devices.
US10951475B2 Technologies for transmit scheduler dynamic configurations
Technologies for performing dynamic configurations to a transmit scheduler of a network device with minimal downtime are disclosed. The transmit scheduler includes a topology of scheduling nodes. The transmit scheduler identifies, from a number of configuration operations to be executed on one or more of the scheduling nodes, one or more first configuration operations to be executed while the scheduling nodes are active, one or more second configuration operations to be executed while the scheduling nodes are inactive, and one or more third configuration operations to be executed via a cache. The first operations are executed as part of a background process. The second operations are executed while the scheduling nodes are inactive. The third operations are executed via the cache.
US10951474B2 Configuring event stream generation in cloud-based computing environments
The disclosed embodiments provide a method and system for facilitating the processing of network data. During operation, the system obtains, at a remote capture agent, configuration information for the remote capture agent from a configuration server over a network. Next, the system uses the configuration information to configure the generation of event data from network packets at the remote capture agent. Upon receiving an update to the configuration information from the configuration server, the system uses the update to reconfigure the generation of the event data by the remote capture agent during runtime of the remote capture agent.
US10951469B2 Consumption-based elastic deployment and reconfiguration of hyper-converged software-defined storage
A consumption request, for consuming storage assets, is parsed to determine if it can be matched to an existing deployment of one or more storage assets, to correspond to matching storage assets that satisfy the consumption request. If the consumption request cannot be matched to the existing deployment of one or more storage assets, a determination is made whether the existing deployment of one or more storage assets can be modified to satisfy the consumption request. If the existing deployment of one or more storage assets cannot be modified to satisfy the consumption request, a determination is made to see if other other storage assets can be deployed or reconfigured to satisfy the consumption request. At least one storage asset is modified, deployed, or reconfigured, to satisfy the consumption request.
US10951466B2 Provisioning of wireless security configuration information in a wireless network environment
A network environment includes a message-processing resource that receives a communication originated by a communication device and transmitted from the communication device over a wireless communication link. By way of non-limiting example, the communication can be a request for retrieval of content from server resource disposed in the network environment. The message-processing resource processes the communication transmitted over the wireless communication link to identify a network address assigned to the communication device. The message-processing resource maps the network address to corresponding status information associated with the communication device. In response to detecting status information indicating that the communication device has not yet been configured with configuration information supporting secured wireless communications of a particular type, the message-processing resource: initiates generation of configuration information supporting subsequent secured wireless communications between the communication device and a corresponding wireless access point, and forwards the configuration information to the communication device.
US10951459B2 Method and system for determining compatibility of computer systems
Compatibility and consolidation analyses can be performed on a collection of systems to evaluate the 1-to-1 compatibility of every source-target pair, evaluate the multi-dimensional compatibility of specific transfer sets, and to determine the best consolidation solution based on various constraints including the compatibility scores of the transfer sets. The analyses can be done together or be performed independently. These analyses are based on collected system data related to their technical configuration, business factors and workloads. Differential rule sets and workload compatibility algorithms are used to evaluate the compatibility of systems. The technical configuration, business and workload related compatibility results are combined to create an overall compatibility assessment. These results are visually represented using color coded scorecard maps.
US10951456B2 Base station apparatus, terminal apparatus, and communication method
The present invention relates to a base station apparatus, a terminal apparatus, and a communication method. In a case that Multi-User Superposition Transmission (MUST) is applied, the transmit power for applying 256 QAM is insufficient. MUST is efficiently applied in an environment in which an MCS table including 256 QAM is configured for use. The base station includes an MCS configuration unit configured to hold a first table including MCS indices that include 256 QAM, and a second table not including 256 QAM, and in a case of performing MUST, configure an MCS not including 256QAM for downlink data of the second terminal, and a PDSCH generating unit configured to generate, by use of MUST, downlink data of the first terminal and downlink data of the second terminal that are generated based on the MCS indices configured.
US10951455B2 Methods of converting or reconverting a data signal and method and system for data transmission and/or data reception
Methods (C) for converting a data signal (U). The methods may comprise (i) providing an input symbol stream (IB) of input symbols (Bj), the input symbol stream (IB) being representative for the data signal (U) to be converted and (ii) applying to consecutive disjunct partial input symbol sequences (IBp) of a number of p consecutive input symbols (IBj) covering said input symbol stream (IB), a distribution matching process (DM) to generate and output a final output symbol stream (OB) or a preform thereof, wherein the distribution matching process (DM) may be formed by a preceding shell mapping process (SM) and a succeeding amplitude mapping process (AM), wherein said shell mapping process (SM) may be configured to form and output to said amplitude mapping process (AM) for each of said consecutive partial input symbol sequences (IBp) a sequence (sq) of a number of q shell indices (s), and wherein said amplitude mapping process (AM) may be configured to assign to each shell index (s) a tuple of amplitude values.
US10951453B2 Configuration aspects of a tracking reference signal in new radio
Methods, systems, and devices for wireless communications are described for configuration aspects of a tracking reference signal in New Radio. A base station may select a first burst duration and a second burst duration for a tracking reference signal (TRS) burst, the first burst duration being different from the second burst duration, and may transmit configuration information indicating the first burst duration and the second burst duration to a user equipment (UE). The base station may transmit a first TRS burst having the first burst duration and a second TRS burst having the second burst duration. The UE may detect the first TRS burst having the first burst duration and the second TRS burst having the second burst duration based at least in part on the configuration information, and perform resource tracking based at least in part on the detected first TRS burst and the second TRS burst.
US10951452B2 Transmitter module, receiver module and data transmission system
A transmitter module for a broadband data transmission system for radio communications, comprising at least one polyphase FFT filter bank is described. The at least one polyphase FFT filter bank is established as a synthesis polyphase FFT filter bank, wherein the at least one polyphase FFT filter bank comprises several filter units, wherein the transmitter module is configured to generate a transmission signal by an orthogonal frequency division multiplexing technique, for example by a shaped orthogonal frequency division multiplexing. Moreover, a receiver module for a broadband data transmission system and a data transmission system are described.
US10951450B2 Transmitter module, data transmission system and data transmission method
A transmitter module for a broadband data transmission system for radio communications, comprising at least one transmitter filter bank and a shaping module is described. The at least one transmitter filter bank is established as a synthesis polyphase FFT filter bank, wherein the transmitter module is configured to generate a transmission signal, wherein the transmitter module is configured to forward the transmission signal to the shaping module, wherein the shaping module is connected to the at least one transmitter filter bank downstream of the at least one synthesis polyphase FFT filter bank, and wherein the shaping module is configured to reduce a crest factor of the transmission signal. Moreover, a data transmission system and a data transmission method are described.
US10951448B2 Method and apparatus for synchronization signal design
A method of a base station (BS) for transmitting synchronization signals in a wireless communication system. The method comprises generating a primary synchronization signal (PSS) including one of multiple PSS sequences that is generated based on a M-sequence of length 127 in a frequency domain, wherein the PSS indicates part of cell identification (ID) information using a cyclic shift performed on the M-sequence generating the PSS; generating a secondary synchronization signal (SSS) including one of multiple SSS sequences that is generated based on multiple BPSK modulated M-sequences of length 127 in the frequency domain, wherein the SSS indicates the cell ID information using cyclic shifts performed on the M-sequences generating the SSS; and transmitting, to a user equipment (UE), the PSS and SSS over downlink channels.
US10951447B2 Dynamic cyclic extension for fast access to subscriber terminals (G.Fast)
Concepts and technologies for dynamic cyclic extension (“CE”) for Fast Access to Subscriber Terminals (“G.Fast”) are described. According to one aspect described herein, a system can synchronize a G.Fast modem with the default CE value, measure an upstream signal attenuation of a G.Fast cable in a G.Fast circuit to obtain an upstream signal attenuation value, determine a new CE value based upon the upstream signal attenuation value, and determine if the new CE value is not equal to a default CE value. In response to determining that the new CE value is not equal to the default CE value, the system can update and apply a CE value for the G.Fast cable in the G.Fast circuit to the new CE value. If, however, the new CE value is equal to the default CE value, the system can instead apply the default CE value.
US10951446B2 Backscatter devices including examples of single sideband operation
Examples described herein include devices and systems utilizing backscatter communication to generate transmissions in accordance with wireless communication protocols. Examples are described including single sideband operation, generation of a carrier wave using Bluetooth, downlink communication to a backscatter device, and combinations thereof.
US10951445B2 Radio frequency integrated circuit supporting carrier aggregation and wireless communication device including the same
A radio frequency (RF) integrated circuit is provided. The RF integrated circuit supports carrier aggregation and includes first receiving circuits and a first shared phase locked loop circuit that provides a first frequency signal of a first frequency to the first receiving circuits. One of the first receiving circuits includes an analog to digital converter (ADC) and a digital conversion circuit. The ADC converts an RF signal received by the one of the first receiving circuits to a digital signal by using the first frequency signal. The digital conversion circuit generates a digital baseband signal by performing frequency down conversion on the digital signal.
US10951443B2 Communication device and communication method
A communication device according to the disclosure includes: a signal generator that generates, on the basis of the first signal received from a communication partner through a coil, a second signal that synchronizes with the first signal; a first modulator configured to be able to modulate the first signal on the basis of the second signal; a second modulator configured to be able to modulate the first signal; and a communication controller that selects, on the basis of the first signal, whichever modulator is to be operated, from the first modulator and the second modulator.
US10951433B2 Systems and methods for wireless monitoring and control of pool pumps based on environmental data
Embodiments of the invention provide a system for adapting a pool pump for wireless communication. In some embodiments, a system for adapting a pool pump with a serial communication port for communication with a user via a remote server, an internet connection, and internet enabled device is provided, the system comprising: a wireless gateway device connected to a router; and a wireless adapter connected to the serial communication port, comprising: a gateway node; a transceiver; and a processor programmed to: establish a wireless connection with the wireless gateway; receive a first message from the pool pump; cause the gateway node to modify the first message; cause the first modified message to be transmitted to the remote server via the wireless gateway; receive a second message from the remote server; modify the second message for output to the pool pump; and transmit the second modified message to the pool pump.
US10951432B2 Method and apparatus for providing remote user interface services
A method and an apparatus by which a remote user interface (UI) client device provides a remote UI service, the method including receiving an event message, which includes a URL for accessing a first UI resource providing a UI notifying the receipt of a message, from a remote UI server device; obtaining the first UI resource from the remote UI server device by using the URL; receiving external inputs of message control commands via the first UI resource; and transmitting the message control command to the remote UI server device.
US10951431B1 Device registry service
Technologies are disclosed for providing a device registry service for devices that communicate over a network. The devices are configured as Internet of Things (IoT) devices. The devices are registered and classified as various types. Based upon the classification, interfaces are provided for the registered devices by the registry service if the devices do not already include them to allow for interaction and control of the devices. New interfaces can be provided to the service by various parties including manufacturers and system integrators to expose additional capabilities of the devices and create additional functionalities. The new interfaces are generally made available to all users of the registry service.
US10951430B2 Electronic collaboration and communication method and system
An electronic communication method and system are disclosed. Exemplary methods include using the second communication device, determining a presence of a first communication device, based on the step of determining the presence of the first communication device, using a cloud service, connecting the first communication device to the electronic communication, and using the cloud service, connecting the second communication device to the electronic communication. Exemplary methods and systems can provide a way to automatically extract meeting access information and seamlessly launch and/or log a user/participant into an electronic communication.
US10951426B2 Devices, systems and methods for performing maintenance in DOCSIS customer premise equipment (CPE) devices
Devices, systems and methods for performing maintenance in Data over Cable Service Interface Specification (DOCSIS) network CPE devices and for improving recovery to a normal operating state from maintenance are provided. The devices, systems and methods provide for entering a standby mode for an electronic device for a duration of a maintenance period. A currently-used RF communication channel frequency of the electronic device is stored as a last known channel frequency into a memory. RF communication channel operation between the electronic device and an upstream content distribution device is suspended for the duration of the maintenance period. After the maintenance period, the last known channel frequency is used to reestablish a communication connection between the electronic device and the upstream content distribution device.
US10951420B2 Cryptologic blockchain interoperation
A distributed ledger technology (DLT) network may include a plurality of participant nodes. The participant nodes may respectively validate a distributed ledger based on a consensus protocol. A blockchain export system may send, to a data receiver not included in the DLT network, a participant public key for a participant node of the DLT network. The blockchain export system may receive, from the data receiver, a request to share token data stored in a blockchain of the distributed ledger. The blockchain export system may generate a certification that the token data is stored on the blockchain. The certification may include a digital signature based on a participant private key paired to the participant public key. The blockchain system may transmit the certification to the data receiver. The data receiver may verify the certification based on the participant public key.
US10951419B2 Secure device pairing
Techniques are disclosed relating to the secure communication of devices. In one embodiment, a first device is configured to perform a pairing operation with a second device to establish a secure communication link between the first device and the second device. The pairing operation includes receiving firmware from the second device to be executed by the first device during communication over the secure communication link, and in response to a successful verification of the firmware, establishing a shared encryption key to be used by the first and second devices during the communication. In some embodiments, the pairing operation includes receiving a digital signature created from a hash value of the firmware and a public key of the second device, and verifying the firmware by extracting the hash value from the digital signature and comparing the extracted hash value with a hash value of the received firmware.
US10951417B2 Blockchain-based transaction verification
This disclosure relates to blockchain-based transaction verification. Some aspects include receiving, by a blockchain system, transaction data to be verified. The transaction data includes plaintext transaction information and at least one piece of verifier signature data. The plaintext transaction information includes a designated-verifier information set that identifies verifiers that have been designated to verify the plaintext transaction information and that includes, for each of one or more verifiers, a piece of designated-verifier information. Each piece of signature data includes a digital signature generated by one of the verifiers. The blockchain system obtains an authenticated information set by verifying each digital signature. The authenticated information set includes the piece of designated-verifier information for each verifier for which the digital signature is successfully verified. The blockchain system determines that the transaction data is verified successfully when the authenticated information set includes a pre-determined quantity of pieces of designated-verifier information.
US10951415B2 System, method, and computer program product for implementing zero round trip secure communications based on noisy secrets with a polynomial secret sharing scheme
Zero round trip secure communications is implemented based on noisy secrets with a polynomial secret sharing scheme. A sender identifies two negotiated noisy secrets associated with an encrypted message to send to a receiver system. The sender utilizes a first negotiated noisy secret for sub-key selection, and generates a secret polynomial using Shamir's polynomial-based secret sharing scheme with N positive integer points and a message key as a secret. The sender divides the first negotiated noisy secret into a plurality of sub-keys, and divides a second negotiated noisy secret into test blocks of a length equivalent to a length of a sub-key. The sender utilizes each of the plurality sub-keys for encrypting a corresponding test block along with one unique point of the secret polynomial. Moreover, the sender sends all encrypted test blocks and corresponding encrypted points of the secret polynomial to the receiver with the encrypted message.
US10951412B2 Cryptographic device with administrative access interface utilizing event-based one-time passcodes
A cryptographic device comprises a processor coupled to a memory and is configured to maintain an event counter characterizing a number of successful administrative accesses to the cryptographic device. The cryptographic device is further configured to receive an event-based one-time passcode for a given administrative access attempt, to compare the received event-based one-time passcode to an expected event-based one-time passcode determined as a function of a current value of the event counter, and to grant or deny the given administrative access attempt based at least in part on a result of the comparing. The cryptographic device may store an administrative seed value, with the expected event-based one-time passcode being determined as a function of the administrative seed value and the current value of the event counter. The cryptographic device illustratively comprises a smartcard, a hardware or software authentication token, an Internet-of-Things (IoT) device, or other type of processor-based device having an administrative access interface.
US10951408B2 Method and system for publicly verifiable proofs of retrievability in blockchains
A method for securing a blockchain and incentivizing the storage of blockchain data using a publicly verifiable proof of retrievability (PoR) includes receiving a PoR transaction having a PoR proof; determining whether the PoR proof is a verified PoR proof; and based upon determining that the PoR proof is a verified PoR proof, incorporating, by a block creator node, the PoR transaction into a new block of the blockchain.
US10951406B2 Preventing encryption key recovery by a cloud provider
Methods, systems, and devices for encryption key storage are described. An application server may store an encryption key in volatile memory and access the key directly from the volatile memory when performing an encryption process. In some cases, a user may supply the encryption key to the application server on demand. Accordingly, when the application server is restarted, the encryption key may be purged from the memory. In some cases, the encryption key may be wrapped in a public key, and the application server may derive a private key to decrypt the public key-encrypted information to access the encryption key and store it in the volatile memory. Additionally or alternatively, the user may supply a first fragment of the encryption key, and the application server may derive the encryption key from the first fragment and a second fragment of the encryption key retrieved from a database.
US10951400B2 Authentication method, authentication system, and controller
An authentication method for a group of devices connected to a network includes selecting the first controller as a coordinator, the coordinator being configured to manage a group key to be used in common in the group. The method includes generating the group key, and performing first mutual authentication and second mutual authentication. The method also includes sharing the group key with each device for which the first mutual authentication has been successful, and sharing the group key with each second controller for which the second mutual authentication has been successful. The method further includes encrypting transmission data by using the group key to generate encrypted data, generating, authentication data by using the group key, and simultaneously broadcasting a message to each device for which the first mutual authentication has been successful and each second controller for which the second mutual authentication has been successful.
US10951398B2 Regulating communication comprising access to protected data
Executable code, placed into a plurality of computing resources forming a distributed ledger, (e.g., “smart contracts”) are provided to enable communicating between parties without requiring trust or an intermediary, such as a broker or escrow service. Data may be deposited in a secure data storage for access by a party who satisfies the condition of the smart contract. A resource holding the deposited data then activates a link upon receiving an access token, as produced as a result of satisfying the smart contract. The distributed ledger is then updated to enable other parties to see a description of the data and the terms.
US10951391B2 Randomized logic against side channel attacks
A randomization element includes a logic input for inputting a logic signal, a logic output for outputting the input logic signal at a delay and a randomization element. The randomization elements introduces the delay between said logic input and said logic output and operates selectably in static mode and in dynamic mode in accordance with a mode control signal. A logic circuit may be formed with randomization elements interspersed amongst the logic gates, to obtain protection against side channel attacks by inputting a selected control sequence into the randomization elements.
US10951390B2 Two-stage IP de-jitter algorithm in a multiplexer for a group of statistically multiplexed single program transport streams
A system and method are provided for encoding and decoding multiplexed video signals to de-jitter the content. A first de-jitter operation is performed on incoming signals and a second de-jitter operation is performed on PCR modified outbound packetized signals after sequencing of the packetized signals has been determined. In one case the second de-jitter operation can be performed using a PLL that is based, at least in part, on the output hardware limitations.
US10951386B2 Indication of interoperability and deployment tested time-division duplex slot formats
Aspects of the subject matter described herein are directed towards indicating to a wireless network device which time-division duplex slot patterns (slot formats) are supported by a user equipment device, e.g., which slot patterns have went through interoperability and deployment testing (IODT) successfully with respect to the type of user equipment device. With the supported slot pattern information, the network can make an intelligent decision on scheduling downlink/uplink ratios, while selecting a slot pattern that the user equipment device is known to support. In one aspect, the technology adds a “Slot format IODTed” information element in the user equipment device capability information, which the network obtains when the user equipment device reports its capabilities to the network. In another aspect, the network can query the user equipment device for the supported slot format information.
US10951384B2 Channel bonding mode signaling for punctured channels
A wireless communication device comprising processor electronics configured to select a channel bonding mode from a plurality of channel bonding modes. Each of the plurality of channel bonding modes indicates at least two wireless communication channels and at least one of the plurality of channel bonding modes corresponds to a mode that indicates a punctured wireless communication channel. The processor electronics are further configured to generate a frame to be transmitted from the wireless communication device in accordance with the selected channel bonding mode. The frame includes a preamble portion and a data portion and the preamble portion includes a first preamble field that identifies the selected channel bonding mode. Transceiver electronics are configured to transmit the frame on the wireless communication channels indicated by the selected channel bonding mode identified in the first preamble field.
US10951380B1 Optimizing uplink synchronization via dynamic PRACH configuration
Based on measurement reports reported to a base station by a plurality of UEs, the base station or a data system may dynamically configure a location of a physical random access control channel (PRACH) defined by the base station such that the PRACH is located in an optimal location. In one example, a data system may receive a plurality of subband CQI reports that includes one or more subband CQI values reported to the base station by each of a plurality of UEs served by the base station. The data system may determine, based on the plurality of subband CQI reports, that a particular range of resource blocks has a highest reported downlink air interface quality. And the data system may cause the base station define a PRACH instance in the particular range of resource blocks for carrying random access requests from the plurality of UEs to the base station.
US10951377B2 Method and device for allocating resources in wireless communication system
Provided are a method and device for rate matching in a wireless communication system. More specifically, provided is a method for rate matching by user equipment (UE), in new radio access technology (NR), under various circumstances. As an example, UE receives a configuration for the rate matching either UE-specifically or cell-specifically, and, if the configuration is received UE-specifically, the rate matching is performed only on unicast data, and, if the configuration is received cell-specifically, the rate matching is performed on broadcast data and the unicast data.
US10951375B2 Method and device for transceiving wireless signal in wireless communication system
The present invention relates to a wireless communication system and particularly to a method and a device for the method, the method comprising: a step of receiving data on a competition-based resource pool; a step of selecting, based on the size of the data, N number of competition-based resources from a plurality of competition-based resources constituting the competition-based resource pool; and a step of transmitting the data to a base station by using the N number of competition-based resources, wherein N is indicated via a reference signal transmitted along with the data.
US10951372B2 DMRS port configuration information obtaining method, DMRS port configuration information delivery method, and apparatus
The present disclosure discloses a demodulation reference signal (DMRS) port configuration information obtaining method, a DMRS port configuration information delivery method, and an apparatus, and relates to the field of communications technologies, to reduce signaling overheads. The DMRS port configuration information obtaining method may include: receiving, by user equipment (UE), indication information sent by a base station, where the indication information includes overview information of DMRS ports of all UEs scheduled by the base station; and obtaining, by the UE, DMRS port configuration information of all the UEs according to a preset rule and the indication information.
US10951371B2 Method and apparatus for reduction of CSI-RS transmission overhead in wireless communication system
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A terminal in a wireless communication system and method thereof are provided for receiving a channel state information reference signal (CSI-RS). The method includes receiving configuration information on a CSI-RS, the configuration information including information on a transmission bandwidth of the CSI-RS; identifying a transmission bandwidth of a synchronization signal block (SSB); and receiving the SSB and the CSI-RS. When the SSB and the CSI-RS are configured to be allocated in an orthogonal frequency division multiplexing (OFDM symbol), the transmission bandwidth of the SSB and the transmission bandwidth of the CSI-RS are not overlapped.
US10951369B2 Inter-point data exchange in UL CoMP
A data exchange method in a Coordinated Multi-Point (CoMP) system, including an assistant point and a converging point. One method comprises selecting a predetermined number of subbands with the best channel quality, and exchanging user data of the selected subbands. Only part of the user data received at the assistant point is transmitted to the converging point. The requirement on the transport network capacity is thus loosened. By transmitting data with the best channel quality, a good enough gain is guaranteed.
US10951367B2 User equipment, access network device, and feedback information sending and receiving methods
Disclosed are a feedback information sending method and apparatus thereof. The method comprises: receiving downlink control information from an access network device; receiving a data channel scheduled by the downlink control information; determining an uplink time unit to send feedback information corresponding to the data channel; determining a first physical uplink control channel (PUCCH) resource for the feedback information according to resource indication information, wherein the first PUCCH resource is a part of a second PUCCH resource that is included in a second PUCCH resource set, and wherein the second PUCCH resource is indicated by the resource indication information, which raises resource utilization.
US10951360B2 Dynamic HARQ configuration and bitmap based ACK/NACK
The present disclosure provides for a user equipment (UE) operating in an unlicensed spectrum in time division duplex (TDD). Operating a UE in an unlicensed spectrum in TDD can comprise generating a bitmap message. Generating a bitmap message can include accessing a bitmap comprising a plurality of positions based on a plurality of supported HARQ processes including the HARQ process, mapping a HARQ process identifier (ID) of the HARQ process to a position from the plurality of positions of the partitioned bitmap, and generating a bitmap message comprising the ACK/NACK message in the position of the bitmap corresponding to the HARQ process ID.
US10951358B2 Using slice routers for improved storage placement determination
A method begins by a dispersed storage (DS) processing unit of a dispersed storage network (DSN) sending a set of data access requests regarding a set of encoded data slices to slice routers of the DSN. The method continues by a first slice router identifying a first storage unit of a first storage unit group based on a first slice name of a set of corresponding slice names that includes a first pillar number, wherein the first slice router is responsible for processing access requests that include the first pillar number. The method continues by the first slice router sending a first data access request of the set of data access requests to the first storage unit. The method continues by the first slice router receiving a first data access response. The method continues by the first slice router forwarding the first data access response to the DS processing unit.
US10951354B2 Method and apparatus for adjusting channel quality information (CQI) considering handover
Embodiments relate to an apparatus for adjusting channel quality indicator measurements of a channel between a client device and a serving device within a wireless communication system. The apparatus includes a controller adapted to receive, from the client device, a first information and, when the client device is in a handover zone, a second information. The controller is further adapted to transmit according to a switching sequence either the first information alone or the first information together with the second information. The apparatus also includes an adjustment function entity adapted to receive the first information together with the second information and adapted to adjust the first information based on the second information by modifying it or keeping it unchanged. The first information is related to the CQI measurements, while the second information is related to a handover (HO).
US10951352B2 Communications method and apparatus
Embodiments of this application provide a communications method and apparatus. The method includes: obtaining an input sequence for rate matching, wherein the input sequence is a retransmission sequence corresponding to a transport block, the input sequence comprises M code block groups, a value of M is less than a quantity of code block groups obtained after the transport block is segmented, and the M code block groups comprise Ct code blocks; and performing rate matching on the Ct code blocks, wherein a length of a rate matching output sequence of of each of the Ct code blocks satisfies the following conditions: when j≤Ct−γ−1, E=NL·Qm·└G′/Ct┘; when j>Ct−γ−1, E=NL·Qm·┌G′/Ct┐. The method may be applicable to a system in which transmission is performed based on a code block group, and resources are fully used as many as possible, thereby improving performance.
US10951349B2 Adaptive configuration of modulation and coding scheme tables for new radio
The described technology is generally directed towards a network node in a radio communications system adaptively switching the modulation and coding scheme (MCS) table in use by user equipment. The network node evaluates performance data corresponding to one or more performance criteria to determine which MCS table to use. Non-limiting examples of performance data/performance criterion include the current transmission scheme, user equipment cell location, user equipment geometry, the number of transmit and/or receive antennas, the feedback reporting mode, the frequency band used in communications, network node performance, base station transmission power, user equipment deployment scenario, user equipment radio environment, user equipment recommendation, and the type of service being served by the base station. Any of the above performance data/performance criteria can be combined to adaptively make a determination and selection of which modulation and coding scheme table to use.
US10951346B2 Decoding method, apparatus, and system for OvXDM system
This application discloses a decoding method for an OvXDM system, including: generating an augmented matrix B related to a received symbol information sequence; performing singular decomposition on the augmented matrix B; and performing decoding by using a total least square method, to obtain a decoded output information sequence. This application further discloses an OvXDM system. In a specific implementation of this application, decoding is performed by using the total least square method.
US10951342B2 Throughput increases for optical communications
Disclosed in some examples, are optical devices, systems, and machine-readable mediums that send and receive multiple streams of data across a same optical communication path (e.g., a same fiber optic fiber) with a same wavelength using different light sources transmitting at different power levels—thereby increasing the bandwidth of each optical communication path. Each light source corresponding to each stream transmits at a same frequency and on the same optical communication path using a different power level. The receiver differentiates the data for each stream by applying one or more detection models to the photon counts observed at the receiver to determine likely bit assignments for each stream.
US10951339B2 Simultaneous sampling rate adaptation and delay control
A variable delay interface configured to introduce a controllable, variable delay between a radio equipment controller and a radio equipment is provided. The interface includes a variable rate change filter, VRCF, having a signal input, a signal output and a rate control input. The VRCF is configured to receive a rate control signal at the rate control inputs and sample an input signal received at the signal input at a sampling rate controlled by a rate control signal to produce a VRCF output signal. The sampling rate is one of greater than and less than a sampling rate of the input signal. The VRCF has a first delay. The interface includes a first in first out, FIFO, buffer having an input and an output, the FIFO buffer configured to store samples of the VRCF output signal received at the FIFO buffer.
US10951330B2 Method for calibration and apparatus therefor
The present invention relates to calibration of an electronic device. An operation method of an electronic device may comprise the operations of: setting a first path for a first calibration of a transmission path; performing the first calibration of the transmission path by using the first path; setting a second path for a second calibration of a transceiving path; performing the second calibration of the transceiving path by using the second path; and generating data indicating a result of calibration of a reception path, on the basis of a result obtained by the first calibration and the second calibration. Various other embodiments are possible.
US10951325B1 Use of siilicon photonics (SiP) for computer network interfaces
A silicon photonics (SiP) chip includes MAC and PHY blocks interconnected by optical waveguides (560) to provide network interface for a computer system. The SiP chip may be formed in a package mounted to the computer's motherboard. In an example, the computer system is a blade server module mounted in a datacenter chassis.
US10951322B2 Dual-band photonic device and method for converting frequency
A photonic frequency converter includes an electro-optical intensity modulator having an optical input, one optical output and at least one RF input for receiving two modulation radiofrequency signals at different frequencies; a set of optical sources that are configured to generate optical signals at at least two different wavelengths, the signals being modulated by respective local-oscillator signals at least two of which have different frequencies; and an optical multiplexer arranged to multiplex the optical signals and to inject them into the optical input of the modulator. A method for converting frequency by means of such a converter is also provided.
US10951320B2 Apparatus and method of generating broadband single-sideband signal based on laser diode
An apparatus for generating a broadband single-sideband signal based on a laser diode includes a first optical coupler configured to receive an optical carrier signal to divide the optical carrier signal into signals corresponding to a plurality of paths, a hybrid coupler configured to perform Hilbert transform on a radio frequency (RF) signal, a first slave laser and a second slave laser each configured to modulate optical output powers of the divided optical carrier signals by using a Hilbert-transformed RF signal, and a second optical coupler configured to receive an optical output power-modulated optical carrier signal to output a single-sideband signal.
US10951318B2 PAM4 transceivers for high-speed communication
The present invention is directed to data communication. More specifically, embodiments of the present invention provide a transceiver that processes an incoming data stream and generates a recovered clock signal based on the incoming data stream. The transceiver includes a voltage gain amplifier that also performs equalization and provides a driving signal to track and hold circuits that hold the incoming data stream, which is stored by shift and holder buffer circuits. Analog to digital conversion is then performed on the buffer data by a plurality of ADC circuits. Various DSP functions are then performed over the converted data. The converted data are then encoded and transmitted in a PAM format. There are other embodiments as well.
US10951313B2 Transmitting device, transmission method, and recording medium
A remaining battery capacity measuring device within a control device of a mobile apparatus measures a remaining battery capacity level of a battery. The light-emission control device, in a period separate from a transmission period for transmitting an ID, in accordance with the remaining charge amount of the battery, performs changing of a hue of light emitted by an LED, and setting no-data and a no-data period. Alternatively, the light-emission control device, in the period separate from the transmission period for transmitting the ID, in reaction to the remaining battery capacity level of the battery, changes a luminosity of the light emitted by the LED.
US10951309B2 Display method, non-transitory recording medium, and display device
A display method includes capturing, by an imaging sensor, a still image lit up by a transmitter that transmits a signal by luminance change of light as a subject to obtain a first captured image with a first exposure time. The still image is captured to obtain a second captured image with a second exposure time which is longer than the first exposure time. The display method further includes decoding the signal form the first captured image, and determining whether identification information included in each of a plurality of sets is identical to the decoded signal. Further, the method also includes reading the video included in each of the sets with the identification information identical to the decoded signal, and superimposing the video on a target region corresponding to the subject in the second captured image for display on a display.
US10951308B2 Apparatus for conversion between wireless signals and spatial light communication signals
In order to reduce wire connections and achieve a wireless communication environment securing a sufficient communication band, the present invention provides a communication apparatus that includes a wireless communication means for transmitting and receiving a wireless signal, an optical communication means for transmitting and receiving spatial light as communication light, and a control means for performing signal conversion in a process for converting the wireless signal and the communication light and setting a transmission destination of the wireless signal and the communication light.
US10951301B2 5G new radio beam refinement procedure
Apparatuses, systems, and methods for a wireless device to perform methods to implement mechanisms for a UE to request a beam quality measurement procedure. A user equipment device may be configured to perform a method including performing transmitting a request to perform a beam quality measurement procedure for downlink receptions (e.g., a P3 procedure) to a base station/network entity, receiving instructions to perform the beam quality measurement procedure from the base station, and transmitting results of the beam quality measurement procedure to the base station. In some embodiments, transmission of the request may be response to at least one trigger condition and/or detection of a condition at the UE. The request may include an indication of a preferred timing offset. The instructions to perform the beam quality measurement procedure may include a schedule for the beam quality measurement.
US10951296B1 Direction-controlled PAPR reduction
A direction-controlled PAPR reduction is provided in which a base station transmits a PAPR reduction signal using a subset of antenna beams selected from a null space plurality of antenna beams. The subset of antenna beams is selected such that the PAPR reduction signal is not directed having a relatively-high path gain to a UE and/or so that the PAPR reduction signal power is concentrated in directions that have a relatively-lo path gain to the UE.
US10951278B2 Interference mitigation technique for a MSS system from an inverted terrestrial frequency BWA reuse
Methods of mitigating interference to a Mobile Satellite Service (MSS) satellite from terrestrial Broadband Wireless Access (BWA) base stations are provided. A method includes nulling first transmissions in a first base station subsector associated with a first terrestrial BWA base station that is in a first geographical area, and nulling second transmissions in a second base station subsector associated with a second terrestrial BWA base station that is in a second geographical area different from the first geographical area.
US10951276B2 Channel measurement and feedback method, network device, and system
Embodiments of the present invention provide a channel measurement and feedback method, a network device, and a system, and relate to the field of communications technologies. The method includes: receiving, by a first network device, pilot port configuration information sent by a second network device, where the pilot port configuration information is used to describe at least two pilot ports; measuring, by using the at least two pilot ports, a pilot signal sent by the second network device, and determining first information, where the first information includes at least one of second information of the first network device or third information of a third network device when it is assumed that the first network device and the third network device communicate with the second network device by performing spatial multiplexing on a same time frequency resource.
US10951265B1 Surface wave repeater with cancellation and methods for use therewith
A repeater includes a first coupler receives a first guided electromagnetic wave that propagates along a surface of a transmission medium without requiring an electrical return path, the first coupler generating a first received signal in response to the first guided electromagnetic wave. Impulse cancellation circuitry generates a first impulse noise signal in response to impulse noise in the first received signal. Transceiver circuitry generates a first transmit signal based on the first received signal and the first impulse noise signal, wherein the transceiver circuitry cancels the first impulse noise signal when generating the first transmit signal. A second coupler converts the first transmit signal to a second guided electromagnetic wave that propagates along the surface of the transmission medium without requiring an electrical return path.
US10951261B2 Pseudo channel hopping in mesh networks without time synchronization
A method for pseudo channel hopping in a node of a wireless mesh network is provided that includes scanning each channel of a plurality of channels used for packet transmission by the node, wherein each channel is scanned for a scan dwell time associated with the channel, updating statistics for each channel based on packets received by the node during the scanning of the channel, and selecting a channel of the plurality of channels for scanning based on the statistics when the scan dwell time of a currently scanned channel ends.
US10951259B2 Method for simultaneously transmitting/receiving upstream and downstream signals using remote PHY architecture and apparatus for the same
Disclosed herein are a method for simultaneously transmitting/receiving upstream and downstream signals using a remote PHY architecture and an apparatus for the same. The method determines whether to divide frequencies depending on whether signal interference occurs among multiple cable modems connected to a cable network, if it is determined to divide the frequencies, categorize the multiple cable modems into multiple groups so that signal interference occurs in each group, but signal interference does not occur between groups, set transmission bands for the multiple groups so that an upstream band and a downstream band of one group alternate with upstream bands and downstream bands of remaining groups by dividing the frequencies in accordance with a number of groups, and cancels, by a remote physical layer (PHY) device located at an optical network terminal of the cable network, self-interference signals for respective groups based on the transmission bands.
US10951258B2 Waveguide unit, waveguide device, and connection method
A waveguide unit includes an interface unit configured to receive a transmission radio wave f1TX1 output from a transmission/reception processing unit, and output a reception radio wave f1RX1 to the transmission/reception processing unit. Further, the waveguide unit includes a transmission wave input port, a transmission wave output port, a reception wave input port, and a reception wave output port. Further, the waveguide unit includes a reception band-pass filter configured to pass the reception radio wave f1RX1 of a multiplex reception radio wave input to the reception wave input port and output the reception radio wave f1RX1 toward the interface unit, and, on the other hand, reflect a reception radio wave f1RX2 and output the reception radio wave f1RX2 toward the reception wave output port.
US10951255B1 Method and apparatus for network assignment of the user equipment transmitter local oscillator frequency
A method and apparatus are provided for assigning a user equipment transmitter local oscillator frequency including informing the network of a capability of the user equipment to adjust a frequency location of a transmit local oscillator of the user equipment, to a frequency location which has been identified by the network, within a predefined channel frequency spectrum. The frequency location identification to be used to adjust the frequency location of the transmit local oscillator is received from the network. The frequency location of the local oscillator is then adjusted in accordance with the frequency location identification received.
US10951253B2 Bendable user terminal device and method for displaying thereof
A bendable user terminal device provided with a flexible display controls the flexible display to display information on a first area while the user terminal device is maintained in a bent state based on a detected bending state of the user terminal device, and, in response to the user terminal device changing from the bent state to an unbent state, controls the flexible display not to display the information on the first area.
US10951246B2 Multi-channel radio communication device
A multi-channel communication device comprising: a plurality of receivers, each usable for receiving radio-signals within a corresponding distinct selected frequency band within a spectrum; a Radio Frequency (RF) power splitter usable for splitting an input radio-signal into a plurality of split radio-signals; and a filter bank that comprises a plurality of filters each having a respective distinct passband within the spectrum, and a routing mechanism configured to route each of the split radio-signals into respective selected filters of the filters, selected in accordance with the selected frequency band of each of the receivers, wherein each of the selected filters outputs a corresponding output radio-signal, in the passband of the respective filter, to a respective receiver of the receivers.
US10951245B2 Electronic device and method for switching antenna thereof
The electronic device includes a housing including a first surface and a second surface. The first surface includes a first side, a second side, a third side, and a fourth side, a first conductive member extending along the first side, a second conductive member extending along the third side, a first communication circuit including a transmission port and at least one first reception port. The at least one first reception port is electrically coupled with at least one of the first conductive member or the second conductive member, a second communication circuit including a second reception port, and a switching circuit configured to selectively provide a first electrical path for electrically coupling the transmission port and the second reception port with the first conductive member or a second electrical path for electrically coupling the transmission port and the second reception port with the second conductive member.
US10951243B2 Wireless system having diverse transmission protocols
A first plurality of wireless devices each having a microphone and a wireless antenna forming a first plurality of microphones and a first plurality of wireless antennas may be provided. The first plurality of wireless devices may be configured to transmit the first plurality of signals over Bluetooth. A master transceiver with a first microphone and a first wireless antenna may also be provided and the master transceiver can be configured to receive the plurality of signals from the plurality of wireless devices over Bluetooth. The master transceiver can be configured to combine the plurality of signals and the master signal into a combined signal. And the master transceiver can be configured to broadcast the combined signal over Bluetooth and Wi-Fi simultaneously with the transmission over Bluetooth for redundancy.
US10951236B2 Hierarchical data integrity verification of erasure coded data in a distributed computing system
Various methods, computer storage media, and systems for implementing hierarchical data integrity verification, in distributed computing systems, are provided. A data manager operates to perform hierarchical data integrity verification operations on message-digests that are associated based on a linear property of a non-cryptographic function, such that a data integrity of source data is verifiable based on the message-digests combined based on an exclusive-or (XOR) operator. The data manager accesses data fragments that are erasure coded fragments and a parity fragment generated from the data fragments, which correspond to source data. The data manager generates and stores the data-fragment message-digests, data-parity message-digests, and parity-fragment message-digests in corresponding data fragment zones and parity fragment zones. The data manager executes two different types of hierarchical data integrity verification operations, to verify the data integrity of the source data, the operations include: local data integrity verification operations, and global data integrity verification operations.
US10951234B2 Non-linear LLR look-up tables
In one implementation, the disclosure provides a system including a detector configured to generate an output of a first log-likelihood ratio for each bit in an input data stream. The system also includes at least one look-up table providing a mapping of the first log-likelihood ratio to a second log-likelihood ratio. The mapping between the first log-likelihood ratio and the second log-likelihood ratio is non-linear. The system also includes a decoder configured to generate an output data stream using the second log-likelihood ratio to generate a value for each bit in the input data stream.
US10951233B2 System and method for decoding iterations and dynamic scaling
A decoder is configured to perform, for a unit of data received by the decoder, a plurality of decoding iterations in which a plurality of messages are passed between a plurality of check nodes and a plurality of variable nodes, each message indicating a degree of reliability in an observed outcome of data. The decoder determines, for each of the plurality of decoding iterations, whether a trigger condition is satisfied based on an internal state of the decoder and, when a trigger condition is determined to be satisfied during a respective decoding iteration, scales one or more respective messages of the plurality of messages during a subsequent decoding iteration. The unit of data is decoded based on the plurality of decoding iterations and at least one scaled message resulting from the trigger condition being satisfied during the respective decoding iteration.
US10951232B2 Error correction bit flipping scheme
Methods, systems, and devices for operating a memory device are described. An error correction bit flipping scheme may include methods, systems, and devices for performing error correction of one or more bits (e.g., a flip bit) and for efficiently communicating error correction information. The data bits and the flip bit (e.g., an error corrected flip bit) may be directly transmitted (e.g., to a flip decision component). The flip bit may be transmitted to the flip decision component over a dedicated and/or unidirectional line that is different from one or more other lines that carry data bits (e.g., to the flip decision component).
US10951230B1 Method and apparatus for ternary mapping
In certain aspects, a circuit for modulo-3 operation has an encoder stage coupled to a binary number, wherein the encoder stage includes one or more encoders, each one of the one or more encoders receives one or two binary bits of the binary number and generates a unary code of encoder. The circuit for modulo-3 operation further has one or more levels of reduction stage, wherein a first level of the one or more levels of reduction stage includes one or more mergers of first reduction, each one of the one or more mergers of first reduction receives two unary codes of encoder or a unary code of encoder and a bit from the binary number and generates a unary code of first reduction.
US10951229B1 Digital filter
A digital filter and a method for filtering a pulse density modulation (PDM) signal are presented. The digital filter has a first filter circuit to receive an input signal with input values at successive time steps to provide a filtered input signal with filtered values at successive time steps. The digital filter does not require sample-rate or data format conversions. Also, the digital filter is area and power efficient when implemented in hardware. Optionally, the digital filter has a sigma-delta modulator including the quantiser, the sigma-delta modulator being used to receive the filtered input signal and to process the filtered input signal before and/or after being quantised by the quantiser. This digital filter does not require sample-rate or data format conversions. This digital filter is area and power efficient when implemented in hardware.
US10951228B2 Semiconductor apparatus
A semiconductor apparatus is used together with a processor. An A/D converter is configured to be calibratable. A logic circuit periodically supplies a calibration trigger to the A/D converter by means of a count operation using the output of an oscillator.
US10951223B2 Current signal generation useful for sampling
Sampler circuitry including load circuitry having sampler switches to sample first and second load currents, the load circuitry having first and second load nodes and a biasing node; a power supply node connected to a voltage source; a first current path extending from the power supply node to the first load node to provide the first load current at the first load node, where a first supply-connection impedance is connected along the first current path; a second current path extending, in parallel with the first current path, from the power supply node to the second load node to provide the second load current at the second load node for use by the load circuitry, where a second supply-connection impedance is connected along the second current path between the power supply node and the second load node; first and second input-connection impedances; and control circuitry.
US10951219B2 Method for generating a synthetic time period output signal
A system and method of generating a synthetic time period output signal for a fork density sensor (601) which produces a consistent and low-noise output signal (705) which is identical in frequency to the frequency at which the fork density meter vibrates. Such a synthetic signal generated by a meter signal prevents any real noise from the pickoffs from propagating to the output meter and removes process noise and interference from the produced output signal.
US10951218B2 Multi-mode clock multiplier
In a first clock frequency multiplier, multiple injection-locked oscillators (ILOs) having spectrally-staggered lock ranges are operated in parallel to effect a collective input frequency range substantially wider than that of a solitary ILO. After each input frequency change, the ILO output clocks may be evaluated according to one or more qualifying criteria to select one of the ILOs as the final clock source. In a second clock frequency multiplier, a flexible-injection-rate injection-locked oscillator locks to super-harmonic, sub-harmonic or at-frequency injection pulses, seamlessly transitioning between the different injection pulse rates to enable a broad input frequency range. The frequency multiplication factor effected by the first and/or second clock frequency multipliers in response to an input clock is determined on the fly and then compared with a programmed (desired) multiplication factor to select between different frequency-divided instances of the frequency-multiplied clock.
US10951216B1 Synchronization of clock signals generated using output dividers
A method includes generating a filtered phase difference signal based on a reference clock signal and a feedback clock signal. The method includes generating a first output clock signal based on a first divider control signal and an input clock signal. The feedback clock signal is based on the first output clock signal. The method includes generating a first time code based on a counter signal and a first update of the first output clock signal in response to an update of the filtered phase difference signal to a first value from a second value. The second output clock signal is based on a second divider control signal, the input clock signal, and an error correction signal generated based on the first value, the second value, the first time code, and the second time code. The first and second divider control signals are based on the filtered phase difference signal.
US10951214B1 Signal analysis method and signal analysis module
A signal analysis method for recovering a clock signal from an input signal is described. The input signal comprises a symbol sequence, wherein each symbol has one of N different amplitude values, and wherein N is an integer bigger than 1. The signal analysis method comprises the following steps: The input signal is received. Transition times of the input signal are determined, wherein the input signal respectively crosses one of several predetermined amplitude thresholds at the transition times. The transition times are transformed into one reference symbol period, thereby obtaining transformed transition times. The clock signal is determined based on the transformed transition times. Further, a signal analysis module for recovering a clock signal from an input signal is described.
US10951212B2 Self-timed processors implemented with multi-rail null convention logic and unate gates
There is disclosed a self-timed processor. The self-timed processor includes a plurality of functional blocks comprising null convention logic. Each of the functional blocks outputs one or more multi-rail data values. A global acknowledge tree generates a global acknowledge signal provided to all of the plurality of functional blocks. The global acknowledge signal switches to a first state when all of the multi-rail data values output from the plurality of functional blocks are in respective valid states, and the global acknowledge signal switches to a second state when all of the multi-rail data values output from the plurality of functional blocks are in a null state.
US10951211B2 FPC integrated capacitance switch and method of manufacturing the same
Object:To provide an FPC integrated capacitance switch and a method of manufacturing the same, which allow an FPC portion to have high electrical reliability when used in a bent manner and to have wiring lines to be densely arranged.Solution:The FPC integrated capacitance switch includes a transparent flexible substrate (1) including a sensor unit (11) and a tail portion (12), a plurality of electrodes (2) formed on a first main surface (1a) of the transparent flexible substrate (1) and in the sensor unit (11), a plurality of first electrode wiring lines (21), a plurality of second electrode wiring lines (22) arranged and formed in parallel in the tail portion (12) and made of a photoresist including conductive particles, an electromagnetic shield (3) formed on a second main surface (1b) of the transparent flexible substrate (1) overlapping in plan view a region including the plurality of electrodes (2), a pair of first electromagnetic shield wiring lines (31), a pair of second electromagnetic shield wiring lines (32) formed in the tail portion (12) to be arranged in plan view outward of a region including the plurality of second electrode wiring lines (22), the second electromagnetic shield wiring lines (32) being made of a photoresist including conductive particles, and an electromagnetic shield mask (33) formed on the second main surface (1b) of the transparent flexible substrate (1) overlapping in plan view the region including the plurality of second electrode wiring lines (22), the electromagnetic shield mask (33) including a light-shielding metal film.
US10951208B2 Slew-limited output driver circuit
A slew-limited output driver circuit facilitates finding a circuitry that allows a flexible setting of the slew-rate of an integrated circuit, with only a small footprint and latency, and which allows realizing different driver modes without additional components integrated protection against ESD. A short circuit will be solved by a slew-limited output driver circuit comprising a switchable current mirror providing an output current equal to an input current, wherein the current mirror is controlled by an additional switch, which is switched in response to control signals and/or an output current level of the output driver circuit, wherein adjustable operating modes of the slew-limited output driver circuit are realized by the control signals.
US10951204B2 Digital pulse width modulation driver system
A digital pulse width modulation driver system and method can include: receiving input digital data with a digital signal processing chip on a device; converting the input digital data into pulse width modulated data; generating an amplitude signal with the digital signal processing chip; transmitting the amplitude signal and the pulse width modulated data from a transmit interface within the device to a receive interface within an analog driver chip; and amplifying the pulse width modulated data with a driver coupled to a high voltage rail based on the amplitude signal corresponding to the high voltage rail, or amplifying the pulse width modulated data with the driver coupled to a low voltage rail based on the amplitude signal corresponding to the low voltage rail.
US10951203B1 Semiconductor device and method for controlling amplitude of signal in the semiconductor device
A semiconductor device and a method for controlling amplitude of signal in the semiconductor device are provided. The semiconductor device comprises a signal generator configured to output a sinewave, a comparator configured to compare a magnitude of the sinewave with a magnitude of a reference signal at a first timing corresponding to a timing control signal and to output a comparison result, and a control signal adjustor configured to adjust one of the current control signal and a timing control signal depending on the comparison result of the comparator.
US10951196B2 Multiplexer, high-frequency front-end circuit, and communication device
A multiplexer includes a first filter that is a ladder elastic wave filter including series-arm resonators and parallel-arm resonators, a second filter connected to the first filter at a common connection point, and a board including an inductor pattern defining an inductor connected in parallel with the series-arm resonator, and a ground pattern provided in the layer in which the inductor pattern is provided, so as to be disposed at a distance from and adjacent to the inductor pattern. A minimum distance between the inductor pattern and the ground pattern is not greater than about 1.55 times a minimum pattern width in the ground pattern.
US10951192B2 Elastic wave device, high-frequency front-end circuit, and communication apparatus
An elastic wave device includes a piezoelectric substrate and an interdigital transducer electrode on the piezoelectric substrate, the piezoelectric substrate including a piezoelectric layer and a high-acoustic-velocity member layer, the piezoelectric layer being stacked on the high-acoustic-velocity member layer. The piezoelectric layer is made of lithium tantalate. Denoting an elastic wave propagation direction as a first direction, and a direction perpendicular or substantially perpendicular to the first direction as a second direction, a central region, low-acoustic-velocity regions, and high-acoustic-velocity regions are provided in the interdigital transducer electrode in the second direction. The low-acoustic-velocity regions include mass-adding films on electrode fingers. Denoting a film thickness normalized to a wavelength determined by the electrode finger pitch of the interdigital transducer electrode as a wavelength-normalized film thickness (%), a product of the wavelength-normalized film thickness of the mass-adding films and the density (g/cm3) of the mass-adding films is about 13.4631 or less.
US10951186B2 Amplification systems and methods with output regulation
Systems and methods are provided for amplifying multiple input signals to generate multiple output signals. An example system includes: a first channel configured to receive a first input signal and a second input signal and generate a first output signal and a second output signal based at least in part on the first input signal and the second input signal; and a second channel configured to receive a third input signal and a fourth input signal and generate a third output signal and a fourth output signal based at least in part on the third input signal and the fourth input signal. A first differential signal is equal to the first input signal minus the second input signal. A second differential signal is equal to the third input signal minus the fourth input signal. The first output signal corresponds to a first phase.
US10951184B2 Push-pull dynamic amplifier circuits
A push-pull dynamic amplifier is operable in reset and amplification phases. The amplifier includes first NMOS and PMOS input transistors that are electrically coupled to a first input terminal and a first output terminal. Second NMOS and PMOS input transistors are electrically coupled to a second input terminal and a second output terminal. First and second reset switches are electrically coupled to the first and second output terminals, respectively. A power supply switch is electrically coupled to the first and the second PMOS transistors, and a ground switch is electrically coupled to the first and the second NMOS transistors. During the reset phase, the reset switches are closed and the power supply switch and the ground switch are opened. During the amplification phase, the reset switches are opened and the power supply switch and the ground switch are closed.
US10951176B2 Highly linear low noise transconductor
A transconductance circuit comprises a first transistor, a second transistor, a first source-degeneration device, a second source-degeneration device, a first feedback device, and a second feedback device. The gate node of the first transistor is coupled to a source node of the second transistor via the first feedback device. The gate node of the second transistor is coupled to a source node of the second transistor via the second feedback device. The source node of the first transistor is coupled to a reference voltage via the first source-degeneration device. The source node of the second transistor is coupled to the reference voltage via the second source-degeneration device.
US10951167B2 Semiconductor device
A semiconductor device that generates or detects terahertz waves includes a semiconductor layer that has a gain of the generated or detected terahertz waves; a first electrode connected to the semiconductor layer; a second electrode that is arranged at a side opposite to the side at which the first electrode is arranged with respect to the semiconductor layer and that is electrically connected to the semiconductor layer; a third electrode electrically connected to the second electrode; and a dielectric layer that is arranged around the semiconductor layer and the second electrode and between the first electrode and the third electrode and that is thicker than the semiconductor layer. The dielectric layer includes an area including a conductor electrically connecting the second electrode to the third electrode. The area is filled with the conductor.
US10951154B2 Motor driving circuit and control method thereof
A motor driving circuit including a first and a second driving signal output circuit is configured to selectively output a six-step square wave driving signal from the first driving signal output circuit, or a space-vector driving signal from the second driving signal output circuit to an inverter to drive a motor according to whether an operating power exceeds a power threshold. The first driving signal output circuit is configured to generate the six-step square wave driving signal. The second driving signal output circuit is configured to generate the space-vector driving signal.
US10951153B2 Apparatus and method for controlling inverter driving motor
An apparatus for controlling an inverter driving a motor is provided. The apparatus includes a current controller that generates a voltage instruction for causing a current detection value, obtained by measuring a current provided from an inverter to a motor, to correspond to a current instruction for driving the motor. A voltage modulator generates a pulse width modulation signal for controlling on/off states of switching devices in the inverter at a predetermined switching frequency based on the voltage instruction. A frequency determiner determines the switching frequency based on driving information of the motor, determines a plurality of synchronization frequencies based on a speed of the motor, and randomly selects and determines one of the plurality of synchronization frequencies as the switching frequency.
US10951150B2 Motor system with distributed winding structures
A system comprises a stator magnetically coupled to a rotor and a plurality of conductor assemblies distributed evenly along a perimeter of the device, wherein each conductor assembly is evenly distributed into at least two branches of conductors, and wherein each branch comprising a plurality of conductors, all the branches form a plurality of windings, wherein a winding comprises a positive segment and a negative segment, and wherein each segment has a plurality of branches, and wherein one segment is in more than two conductor assemblies and the plurality of windings is symmetrically divided into a plurality of groups, wherein each group of windings forms a balanced multi-phase system and is connected to a connection bar, and wherein at least two connection bars are isolated from each other.
US10951148B2 Control apparatus of a synchronous motor
A control apparatus of a synchronous motor with a load commutated inverter includes a positive/negative judgment unit for discriminating positive/negative of the motor voltage of each phase of the three-phase AC input of the synchronous motor, an estimated phase setting unit for calculating and setting the estimated phase of the motor voltage based on the discrimination result by the positive/negative discrimination unit, and a speed estimation unit for estimating the speed of the synchronous motor by integrating the change of the estimated phase by a predetermined number of times and dividing the integrated result by the product of the predetermined number and the operation cycle. When driving the synchronous motor with the load commutated inverter, in a condition the synchronous motor slips at high speed, restart is made easier.
US10951142B2 Control system and control method
A control system and a control method, used for controlling a motor. The control system includes a central processing module and a drive control module. In a period in which a voltage is not applied to any phase coil of the motor, the drive control module collects voltages of the phase coil, converts the voltages of the coil into digital signals and stores the digital signals. The central processing module reads the digital signals from the drive control module, accumulates the digital signals to obtain an accumulated value, and determines the operating condition of the motor according to a relationship between the accumulated value and a preset threshold, thereby improving the reliability of the motor control.
US10951140B2 Synchronous motor drive device, air-sending device and air-conditioning device
A synchronous motor drive device drives a plurality of synchronous motors, and includes a power converter that converts power to supply power to the plurality of synchronous motors, a first switch device that electrically connects or disconnects between the power converter and each of the plurality of synchronous motors, and a controller that, based on a higher order command, performs stability judgment processing of the plurality of synchronous motors, determines the number of synchronous motors to be driven and a drive speed from among the plurality of synchronous motors, selects a synchronous motor corresponding to the number of the synchronous motors from among the plurality of synchronous motors, controls the first switch device corresponding to the selected synchronous motor to electrically connect the power converter to the synchronous motor and to supply the power, and instructs, to the power converter, the drive speed of the synchronous motor to be driven.
US10951138B2 Method and apparatus for commutation of drive coils in a linear drive system with independent movers
A motor controller is provided that executes a commutation routine in one of a plurality of operating modes to regulate current provided to drive coils in a linear motion system. The motor controller generated currents for each of the drive coils in a first operating mode to minimize the copper losses in the drive coils, in a second operating mode to maximize the force applied to the mover, in a third operating mode to provide balanced currents between the drive coils, and in a fourth operating mode to provide currents according to a selected operating point that combines characteristics of the first three operating points. The motor controller may also monitor each of the drive coils for saturation and redistribute at least a portion of the current required to control operation of the mover to the other drive coils when one of the drive coils is saturated.
US10951134B2 Repulsive-force electrostatic actuator
A repulsive-force electrostatic actuator includes a first actuator layer including a first substrate, a first electrode pattern, and a second electrode pattern. The actuator includes a second actuator layer spaced apart from the first actuator layer that includes a second substrate, a third electrode pattern, and a fourth electrode pattern. The actuator includes a voltage source connected to the first, second, third, and fourth electrode patterns such that the first electrode pattern is at an opposite voltage relative to the second, the third electrode pattern is at an opposite voltage relative to the fourth, and the first and second actuator layers are arranged to have a repulsive electrostatic force therebetween. The actuator further includes an actuator frame connected to the first and second actuator layers such that at least a portion of at least one of the first and second actuator layers is movable due to an applied voltage to effect motion to an object.
US10951132B2 Electrostatic rotating-machine employing dielectric substrates with surface conductors
An electrostatic rotating electrical machine employs axially extending electrically conductive electrodes on a rotor interacting with a corresponding set of axially extending electrodes on a stator, where the electrodes are supported at an outer surface of a dielectric sleeve which continues beneath the electrodes to provide a robust support and to minimize electrode weight.
US10951129B2 Apparatus and system for providing a power converter
An AC input power converter comprising a rectifier circuit (D3, D4, D5, D6) for rectifying an AC input signal, a first unidirectional device (D1) coupled in series with a first capacitor (C1) for charging the first capacitor (C1) and wherein the first unidirectional device (D1) and the first capacitor (C1) are arranged in parallel to an output of the rectifier circuit (D3, D4, D5, D6), a second unidirectional device (D2) coupled in series with a second capacitor (C2) for charging the second capacitor (C2) and wherein the second unidirectional device (D2) and the second capacitor (C2) are arranged in parallel to an output of the rectifier circuit (D3, D4, D5, D6), a first output (OUT1) for providing a first power and a first average voltage to a first power converter, wherein the first output (OUT1) s coupled to a first node between the first capacitor (C1) and the first unidirectional device (D1) and a second output (OUT2) for providing a second power and a second average voltage to a second power converter, wherein the second output (OUT2) is coupled to a second node between the second capacitor (C2) and the second unidirectional device (D2), wherein the first capacitor (C1) has a first value and the second capacitor (C2) has a second value, and wherein the first value of the first capacitor and the second value of the second capacitor are selected such that when the first power is lower than the second power, the first average voltage is larger than the second average voltage, and when the first power is larger than the second power, the first average voltage is lower than the second average voltage.
US10951128B2 Main circuit wiring member and power conversion device
A busbar includes an opening, a first terminal, and a second terminal. The first terminal includes a first terminal piece with a step-like bent shape, in which the first terminal piece is bent from a conductor along a bending line, and a plurality of hole portions formed on the first terminal piece and arrayed in a direction parallel to the bending line. The second terminal includes a second terminal piece with a step-like bent shape, in which the second terminal piece is bent from a conductor along a bending line, and a plurality of hole portions formed on the second terminal piece and arrayed in a direction parallel to the bending line. The busbar balances the current sharing in a current that flows through a plurality of fastening points.
US10951118B2 Digital current mode control for multi-phase voltage regulator circuits
A voltage regulator circuit included in a computer system may include multiple phase circuits each coupled to a regulated power supply node via a corresponding inductor. The phase circuits may modify a voltage level of the regulated power supply node using respective control signals generated by a digital control circuit that processes multiple data bits. An analog-to-digital converter circuit may compare the voltage level of the regulated power supply node to multiple reference voltage levels and sample the resultant comparisons to generate the multiple data bits.
US10951114B2 Apparatuses and methods for charge pump regulation
Certain embodiments of the present invention include an apparatus comprising a charge pump, configured to provide an output voltage at an output node of the charge pump, and a charge pump regulator circuit coupled to the charge pump. One such charge pump regulator circuit is configured to control the charge pump to increase the output voltage during a first period of time. Such a charge pump regulator circuit can also cause a node of a circuit coupled to the output node of the charge pump to reach a target voltage level during a second time period.
US10951111B2 Apparatus, methods and computer program products for inverter short circuit detection
An apparatus includes an inverter configured to be connected to a load, a driver having an output coupled to control terminals of transistors of the inverter and a control input configured to receive control vectors and responsively apply control signals to control terminals of the inverter, a desaturation detector configured to detect desaturation of the transistors, and a controller coupled to the control input of the driver and configured to apply at least one test vector that causes the driver to turn on selected ones of the transistors for a duration sufficient for the desaturation detector to detect desaturation of at least one of the selected transistors and to enable or inhibit further operation of the inverter responsive to the desaturation detector. The load may be a motor and the controller may be configured to apply the at least one test vector responsive to a command to start the motor.
US10951110B2 Control method and device for alternating-current and direct-current conversion circuit, and computer storage medium
Disclosed in embodiments of the present invention are a control method and device for an alternating-current and direct-current conversion circuit, and a computer storage medium. The alternating-current and direct-current conversion circuit comprises a first commutation unit, a second commutation unit, and a coupling unit. By obtaining voltage information and current information of the alternating-current and direct-current conversion circuit, a controllable device of the first commutation unit can be controlled to be turned on in delay or turned off in advance; and the second commutation unit is controlled to work in a controllable rectification state or a controllable inversion state or an uncontrollable rectification state.
US10951105B2 Geared spherical electromagnetic machine with two-axis rotation
A geared spherical electromagnetic machine with two-axis rotation includes an inner frame, an outer frame, a spherical body, a first coil, a second coil, a third coil, a first hemispherical body, a second hemispherical body, a first plurality of inner magnets, a second plurality of inner magnets, a first gearbox, and a second gearbox.
US10951104B2 Linear actuator
Provided is a linear actuator including a movable element, a stationary element, a magnetic drive mechanism configured to linearly move the movable element in a first direction with respect to the stationary element, and damper member arranged between the movable element and the stationary element. The magnetic drive mechanism includes a coil holder arranged on the stationary element, a coil supported by a coil supporting unit of the coil holder, a first yoke arranged on the movable element, and a first permanent magnet held by the first yoke. The damper member is arranged in a portion where the first yoke and the coil holder face each other in the second direction. As a result, the damper member can be arranged between the stationary element and the movable element without using a case.
US10951101B2 Induction motor rotor and a method of manufacturing the same
A method of manufacturing an induction motor rotor assembly, the method includes the steps of: providing a rotor; machining a plurality of re-entrant slots axially along an outer surface of the rotor; positioning a sleeve concentrically over the outer surface of the rotor; applying a friction stir welding process to the sleeve along each re-entrant slot axially along the outer surface of the rotor to cause the sleeve material to plasticise and flow into the axial re-entrant slot to form an axial re-entrant slot bar; and providing an electrical connection at each of the opposing axial ends of the rotor between respective ones of opposing ends of each of the axial re-entrant slot bars to thereby form the induction motor rotor.
US10951099B2 Method for manufacturing rotor, and rotor
A rotor includes a plurality of permanent magnets inclined relative to the axial direction of a rotor core. A method for manufacturing the rotor includes producing each of the permanent magnets, and providing the permanent magnets on the outer periphery of the rotor core. The producing of each of the permanent magnets includes working a magnet block into a shape such that a first surface and a second surface have a parallelogram shape, a third surface and a fourth surface are parallel to each other, and a fifth surface and a sixth surface extend planarly from the third surface to the fourth surface. The providing of the permanent magnets includes arranging the permanent magnets so that, between the permanent magnets adjacent to each other, the fifth surface and the sixth surface face each other.
US10951094B2 Rotating electric machine
Provided is a rotating electric machine that allows a stator cooling passage to be formed compactly. A passage of a stator cooling refrigerant is formed by a water jacket fitted and fixed to both ends on a base side which is the flange side and a distal end side of a cylindrical portion of a stator frame on an outer circumference of the cylindrical portion, the stator frame has a difference between a diameter on the base side and a diameter on the distal end side, the diameter on the base side being formed to be larger, and the stator frame and the water jacket are sealed by press fitting and welding on the base side and the distal end side.
US10951093B2 Rotary electric machine with liquid coolant
A rotary electric machine includes a rotor that rotates integrally with a rotary shaft and a stator disposed outside the rotor in a radial direction. In the stator, a coil is wound on a stator core, and a coil end of the coil exposed to an outside from an end portion of the stator core is cooled by a liquid coolant. The rotary electric machine further includes a coil end cover formed of an insulating material and configured to cover at least an outer circumference of an upper region of the coil end. A liquid coolant passage through which a liquid coolant flows toward a coil end is provided in the coil end cover.
US10951089B2 Tactile feedback mechanism
The present disclosure provides a vibration device, including a stator, an eccentric wheel and an electromagnetic driving assembly. The eccentric wheel rotates around a rotating shaft relative to the stator. The electromagnetic driving assembly includes at least one magnetic element and an induction coil. The at least one magnetic element is disposed on the eccentric wheel. The induction coil corresponds to the magnetic element, and the induction coil is disposed on the stator. When acurrent is applied to the induction coil, the induction coil acts with the magnetic element to generate an electromagnetic force to drive the eccentric wheel to rotate around the rotating shaft, so that the vibration device generates a vibration. The rotating shaft is disposed on the stator.
US10951088B2 System for controlling the vibration of a platform
A control system (1) controls the vibration of a platform (2), the platform is formed by a fixed lower support (2a), an upper support (2b) and a plurality of intermediate bodies (2c). The control system (1) includes at least one vibration generator (3) inside the platform (2) between intermediate bodies (2c) and comprising a stator body (4) and at least one vibrating body (5), made of material that is magnetic and concentric with respect to the stator body (4) and in a position that is radially external around the stator body (4), configured to vibrate the upper support (2b) with respect to the lower support (2a). The control system (1) also includes an electric circuit comprising a coil wound around the stator body (4) and designed to receive an audio and/or video signal to generate a magnetic field by the coil and designed to vibrate the at least one vibrating body (5) of the at least one vibration generator (3) as a function of the audio and/or video signal.
US10951083B2 Stator unit, stator, and motor comprising same
Embodiments relate to a stator unit, a stator, and a motor comprising same, the stator unit comprising: a unit stator core; an insulator disposed on the unit stator core; and a coil wound on the insulator, wherein the unit stator core comprises a main body formed so as to have a prescribed curvature with reference to the centre, and three teeth formed so as to protrude toward the centre from the main body, the main body comprising notches formed between the teeth. Thus mass productivity can be increased as a result of series winding using a coil on a unit stator core having three teeth arranged thereon.
US10951081B2 Bobbin for containing electric windings
A bobbin is provided for a stator of an electromagnetic device. The bobbin has two spaced-apart walls around which copper windings are wound. The spaced-apart wall arrangement reduces the material and space occupied by the bobbin, allowing for additional copper windings.
US10951077B2 Rotor and motor having the same
A rotor may include a first rotor core and a second rotor core. The first rotor core includes a first core body and a first teeth protruding from an outer circumferential surface of the first core body. and the second rotor core includes a second core body and a second teeth protruding from an outer circumferential surface of the second core body. Each of the first teeth includes a first extension protruding axially in a first direction, and each of the second teeth includes a second extension protruding axially in a second direction opposite the first direction. The first extension includes a first protrusion provided on a first inner circumferential surface of the first extension, and the second extension includes a second protrusion provided on a second inner circumferential surface of the second extension.
US10951076B2 Electric machines
A stator or rotor for an electric machine such as a motor or generator comprising: at least one ring formed of a plurality of pole segments, wherein each pole segment comprises an arcuate base and at least one magnetisable pole extending radially from the arcuate base; and at least one end cap comprising, or consisting essentially of a non-conductive material.
US10951074B2 Permanent magnet, rotary electrical machine, and vehicle
A permanent magnet is expressed by a composition formula: RpFeqMrCutCo100-p-q-r-t. The magnet comprises a metal structure including a main phase having a Th2Zn17 crystal phase and a grain boundary phase. The main phase includes a cell phase having the Th2Zn17 crystal phase and a Cu-rich phase. A section including a c-axis of the Th2Zn17 crystal phase has a first region in the crystal grain and a second region in the crystal grain, the first region is provided in the cell phase divided by the Cu-rich phase, the second region is provided within a range of not less than 50 nm nor more than 200 nm from the grain boundary phase in a direction perpendicular to an extension direction of the grain boundary phase, and a difference between a Cu concentration of the first region and a Cu concentration of the second region is 0.5 atomic percent or less.
US10951070B2 System for transmitting ultrasonic short-range wireless power and method of charging ultrasonic wireless power
Disclosed is an ultrasonic short-range wireless power transmission system including: an ultrasonic transmission transducer configured to transmit power, wherein the ultrasonic transmission transducer includes: a converter configured to convert power received from an external power source; a controller configured to control power of a modulator and power of an amplifier; a communication unit configured to communicate with an external reception transducer; a sensor configured to sense ultrasonic waves transferred from an ultrasonic wave emission region; the modulator electrically connected to the controller and configured to generate a signal for ultrasonic short-range wireless power transmission; and the amplifier configured to amplify a modulation signal generated by the modulator and convert the modulation signal into power; and one or more transmission modules configured to receive the power from the amplifier and convert an electrical reception signal into ultrasonic waves.
US10951064B2 Coreless power transformer
A transformer system is provided that includes four magnetically coupled coils having fixed spacing geometry. The four magnetically coupled coils include a drive coil that produces magnetic fields and a load coil. A first resonant coil is magnetically coupled to the drive coil producing energy that is stored by the first resonant coil. A second resonant coil is magnetically coupled to the first resonant coil to propagate the energy stored in the first resonant coil to the second resonant coil without using a magnetic core. The second resonant coil is then magnetically coupled to the load coil where the energy is transferred to the load coil.
US10951062B2 Wireless power receiver apparatus
A rectifier circuit rectifies the current that flows through a reception coil. A smoothing capacitor is coupled to the output of the rectifier circuit. A power supply circuit stabilizes the rectified voltage VRECT that occurs across the smoothing capacitor, and supplies the rectified voltage thus stabilized to a load. A dump circuit sinks the first dump current IDUMP from the output of the power supply circuit. A current detection circuit detects the current IOUT that flows through the power supply circuit, and generates a current detection signal S11 that indicates the amount of the current.
US10951056B2 Systems and methods for intelligent power distribution
Methods and systems for providing intelligent power distribution. A distribution point unit is connected to a plurality of user units in a telecommunications system. A loss of power to the distribution point unit is detected. It is determined that at least one user unit has backup power. Based on a determination that at least one user unit has backup power, a power mode for the distribution point unit is selected. The power mode is implemented on the distribution point unit.
US10951053B2 Portable electronic device
An inductive coil capable of providing power to the battery is described. The inductive coil is formed of a length of a wire having a conductive core capable of carrying an electrical current. The conductive core is surrounded by an insulating layer that electrically isolates the conductive core. Portions of the length of wire include a magnetically permeable material that is plated on an exposed surface of the conductive core.
US10951051B2 Method and apparatus to charge power assist unit
An information handling system includes a power supply unit (PSU) and a power assist unit (PAU). The PSU provides a power rail to power a load, and a constant current indication that indicates whether the power supply unit is operating in a constant current mode. The PAU is coupled to the power rail, and includes a power storage element, a converter coupled to the power storage element and to the power rail, and a controller. The controller receives an enable signal when the constant current indication indicates that the first power supply unit is operating in the constant current mode, and in response, the controller directs the converter to convert a voltage from the power storage element and to a current to the power rail to meet an additional demand of the load for power. When the controller does not receive the enable signal, the controller directs the converter to charge the power storage element from the power rail.
US10951049B2 Battery charging circuit with improved system stability and control method thereof
A control method for controlling a battery charging circuit having at least one switch, includes: generating a first difference signal based on a charging current feedback signal and a charging current reference signal; generating a second difference signal based on a battery voltage feedback signal and a battery voltage reference signal; based on a battery voltage, selecting one of the first and second difference signals, and a ground voltage as a third difference signal; generating a bias signal by proportionally integrating the third difference signal; comparing the sum of a system voltage feedback signal and a ramp signal with the sum of the bias signal and a system voltage reference signal and generating a comparison signal; generating a control signal to control the at least one switch of based on the comparison signal and a constant time period control signal.
US10951047B2 System for providing in-transit power for active storage containers
A container having a battery and one or more active systems for maintaining temperature or other characteristics of goods stored within the container relies on a battery to maintain those active systems during transit. The size of the battery required for such applications may be reduced by providing access to external power during a shipment cycle. For example, shelves within transit vehicles or warehouses can supply electricity to the active systems via a wireless or wired connection, or they may recharge the container's battery, or both. The container may also have data bridging capabilities that use short range wireless technology to communicate with nearby devices that have access to other data streams, such as GPS data and internet connectivity. When bridged with a provider, the container may have access to new data streams, or may be able to disable internal devices providing those same data streams to conserve power.
US10951043B2 Multi-device charging user interface
The present disclosure generally relates to user interfaces for charging electronic devices. At a first device with a display, detect that at least one of the first device or a second device has entered a wireless charging state. In response to detecting that at least one of the first device or the second device has entered a wireless charging state, and in accordance with a determination that the first device and the second device are being wirelessly charged by the same wireless charging device, display, on the display, an indication of charge status for the second device.
US10951041B2 Motor system
A motor system provided with one motor, two batteries, and two inverters further includes a charger which is connected to a first battery and supplies external power; and a control unit which controls drive of the first inverter and the second inverter to drive the motor. When the second battery is charged with the external power, the control unit drives the first inverter and the second inverter to allow power from the first inverter to be transmitted to the second battery through the motor and the second inverter while the motor is in a stationary state.
US10951038B2 Power supply device, power supply system, and method of controlling power supply
A power supply control device includes a control unit, and a power path that is connected to a primary external power system. If a connection state between the primary external power system and the power path is in a disconnected state, the control unit is configured to control power output of at least one power conditioner of at least one corresponding secondary external power generation unit, based on (a) an amount of power consumption of a specific load connected to the power supply control device through the power path, and (b) a power generation output of the secondary external power generation unit.
US10951037B2 Method and apparatus for time-domain droop control with integrated phasor current control
A method and apparatus for power converter current control. In one embodiment, the method comprises controlling an instantaneous current generated by a power converter such that that power converter appears, from the perspective of an AC line coupled to the power converter, as a virtual AC voltage source in series with a virtual impedance.
US10951036B2 Grid-tied variable frequency facility
A micro grid system comprises a secondary energy source and a power controller. The secondary energy source is associated with the micro grid, and the secondary energy source is configured to generate first DC power signal. The power controller is in communication with the secondary energy source and an electric grid, and configured to receive first AC power signal from the electric grid and the first DC power signal from the secondary energy source and to output a second AC power signal to loads in communication with the power controller. The power controller comprises a frequency converter configured to change frequency of the second AC power signal, a processor, and a memory configured to store instructions that, when executed, cause the processor to control the frequency converter to change the frequency of the second AC power signal.
US10951033B2 Method for controlling frequency of stand-alone microgrid and power converter for energy storage device for controlling same
The present invention relates to a method for controlling the frequency of a stand-alone microgrid wherein an energy storage device of the stand-alone microgrid is operated as a main power source by controlling a battery power conditioning system (PCS) of the stand-alone microgrid in a constant voltage constant frequency (CVCF) mode. According to the present invention, it is possible to operate the frequency stably while considering the fuel cost and power generation efficiency of a stand-alone microgrid.
US10951031B2 Reactive power control in power systems
Based on information from a controller scheduling data traffic in a processing arrangement, a super capacitor unit is activated, whereby reactive power is fed to a system bus of said power system. The controller is configured to have information at time t(n) about the data traffic workload of the processing arrangement at time t(n+1). By triggering discharge of the super capacitor unit based on super capacitor data at time t(n+1), transients on a system bus voltage are, at least in part, smoothed out at time t(n+1), which reduces the need for reactive power of the power system, where said transients are related to the data traffic workload of the processing arrangement. The power efficiency of the power system can be improved by 3-4% by the reduction of the need for reactive power from a power grid, for which reason the electrical bill of an operator is reduced.
US10951027B2 Smart load center panel
A smart load center panel (10) accepts two hot legs from each of two power sources, and selectively connects each of a plurality of breakers to one of the two power sources under processor control. A dielectric chassis (12) provides structural support and electrical isolation for a plurality of individual circuit boards (28), each including a pair of breaker stabs (26) and a relay (24) operative to selectively connect each breaker stab (26) to a different power source. A bus bar assembly (20) comprises two bus bars for the hot legs of each of two power sources, and insulates the bus bars from each other and from inadvertent contact. A master printed circuit board (40) comprises slits (43, 45) defining the individual circuit board (28) except at the edges. After mounting and soldering, the edges are cut away, yielding a plurality of individual circuit boards (28). Neutral and ground bus bars (46, 52) are mounted to the side of the panel housing (12), behind a flange of a front opening.
US10951026B2 Power distribution apparatus
A power distribution apparatus includes a power source terminal, a power-distributing module, at least a power distribution module, an input detection unit, at least an output detection unit and a management unit. The power source terminal receives an input power. The power-distributing module converts the input power into an output power. Each of the power distribution modules includes a plurality of output ports. The power distribution module receives the output power to output the output power through the output ports. The input detection unit detects the input power to generate a set of input information. The output detection unit detects the output power to generate at least a set of output information correspondingly. According to the input information or the output information, the management unit controls the output ports to be turned on or off correspondingly.
US10951018B2 Ground fault current interrupter circuit
A ground fault current interrupter circuit includes a plurality of comparators, threshold generation circuitry, and a plurality of timer circuits. Each of the comparators is configured to compare a threshold voltage to a signal representative of a difference of current flow to a load and current flow from the load. The threshold generation circuitry is configured to generate a plurality of different threshold voltages. Each of the different threshold voltages is provided as the threshold voltage for one of the comparators. Each of the comparators is coupled to one of the timer circuits, and the one of the timer circuits is configured to activate a fault signal responsive to activation of an output of the comparator for a time that is related to the threshold voltage provided to the comparator. The time increases with lower values of the threshold voltage.
US10951017B2 Cable sealing unit with multiple sealing modules
A sealing unit (28) that fits within the sealing unit opening (26) of a housing 22. The sealing unit (28) including a sealant arrangement (32) that define a plurality of cable ports (30). The sealing arrangement is also configured for providing a peripheral seal between the housing (22) and the sealing unit (28). The sealing unit (28) includes an actuation arrangement (31) for pressurizing the sealant arrangement (32) within the sealing unit opening (26). The sealant arrangement (32) includes a plurality of sealing modules (33a-33e) each sized to form only a portion of the pressure actuated sealant arrangement (32).
US10951012B2 Spark plug for internal combustion engines and internal combustion engine
A spark plug has a specific direction orthogonal to an axial direction of a spark plug; the specific direction has opposing front directional side and rear directional side; the housing has a tip surface having a front end in the front side of the specific direction and a rear end in the rear side, the tip surface has a tip inclined surface inclined toward the tip end of the spark plug from the front end to the rear end of the tip surface. The tip inclined surface has a rear end in the specific direction, the insulator having a front end of the specific direction, the rear end is located to be closer to the tip end of the spark plug than the front end of the tip surface is, and to be more rearward than the front end of the insulator in the rear side of the specific direction.
US10951006B2 High-power laser packaging utilizing carbon nanotubes and partially reflective output coupler
In various embodiments, laser devices include a thermal bonding layer featuring an array of carbon nanotubes and at least one metallic thermal bonding material.
US10951001B2 Tandem pumped fiber laser or fiber amplifier
In an example, an apparatus to tandem pump a fiber laser or fiber amplifier may include a combiner; a power amplifier or a power oscillator, or a combination thereof, coupled to an output of the combiner; a seed laser to output light to the power amplifier or the power oscillator, or the combination thereof, via the combiner; and a tandem pump to generate light of a pump source signal, wherein the light of the pump source signal is output to the combiner to cladding pump the power amplifier or the power oscillator, or the combination thereof. Other embodiments may be disclosed and/or claimed.
US10950999B2 Method of manufacturing cable connector hand tools
An illustrative cable connector hand tool and associated method are operable to permit cable connection sections to respectively pass through a side opening of hand tool members into a center aperture of the tool members. In one illustrative embodiment, the hand tool members are formed with a recessed portion adapted to receive an end of one of a pair of cable connectors such that mating edges of the cable connectors used to couple the cable connection sections are visible when the cable connectors are in a coupled configuration abutting each other. An illustrative embodiment includes the recessed portion formed with a plurality of keyway indentions or recesses spaced apart in the center aperture that are operable to engage keys, protrusions, or lugs on an outer wall of the cable connectors.
US10950991B2 Multiple unit charge cord assembly
A multiple unit charge cord assembly includes a housing coupled to a back side of an electronic device. A button movably coupled to the housing is urgeable into a releasing position. A first spool rotatably positioned within the housing is biased to rotate when the button is urged into the releasing position and the first spool is rotatable in a second direction. A second spool rotatably positioned within the housing is biased to rotate when the button is urged into the releasing position and the second spool is rotatable in a secondary direction. A first cord is wrapped around the first spool. The first cord is urgeable to rotate the first spool. A first plug is electrically coupled to the first cord. A second cord is wrapped around the second spool and is urgeable to rotate the second spool. A second plug is electrically coupled to the second cord.
US10950990B2 Reel based outlet relocation/extension system
A power adapter may include a base wall mounted power adapter configured to be plugged into a wall power outlet and at least one extension adapter unit electrically coupled to the base wall mounted power adapter and configured to be extended away from the wall power outlet. The at least one extension adapter unit may include an electrical conduit reel configured to unravel in response to the at least one extension adapter unit being extended.
US10950980B2 Connector and connector device
A connector device including: a plug connector provided with a plurality of plug terminals, a plug housing holding the plurality of plug terminals along a longer direction, and a plug shell held on the plug housing; and a receptacle connector provided with a plurality of receptacle terminals, a receptacle housing holding the plurality of receptacle terminals along the longer direction, and a receptacle shell held on the receptacle housing. The plug shell and the receptacle shell are electrically connected in a state in which the plug connector and the receptacle connector are mated together.
US10950978B2 Connector with prevention of lopsidedness in a movable region of a movable housing with respect to a fixed housing
A connector includes a fixed housing provided with a first side wall extending along an array direction of plural signal terminals, and a second side wall extending along an array-orthogonal direction that is orthogonal to both a fitting direction and the array direction. Each of the signal terminals spans between the first side wall and a movable housing, and a power source terminal span between the second side wall and the movable housing.
US10950977B2 Track assembly for a vehicle component
A track assembly includes a track, a support member, a support member conductor, a first conductor and a plurality of second conductors. The support member conductor may be configured to move substantially laterally and electrically contact the second conductors. The second conductor may be configured to move laterally and electrically contact the first conductor. The support member conductor may be configured to move the second conductor into electrical contact with the first conductor. The first conductor may extend substantially in the longitudinal direction and/or the first conductor may be disposed at least partially in the track. The plurality of second conductors may be disposed such that the support member conductor may be in contact with at least two second conductors of the plurality of second conductors in all positions of the support member relative to the track.
US10950973B2 Watertight plug assembly
A watertight plug assembly for electrical cords. One cord is connected to one plug end having a plug end proximal face and a sidewall. The sidewall includes a first mating member adjacent the proximal face. The second plug end is connected to a second cord and includes a cap having a central cavity for receiving the second plug end and which defines a second mating member to cooperate with the first mating member when said plug ends are connected to provide a watertight connection.
US10950970B2 Ganged coaxial connector assembly
A mated connector assembly includes: a first connector assembly, comprising a plurality of first coaxial connectors mounted on a mounting structure and a first shell; and a second connector assembly, comprising a plurality of second coaxial connectors, each of the second coaxial connectors connected with a respective coaxial cable and mated with a respective first coaxial connector. The second connector assembly includes a second shell surrounding the second coaxial connectors, the second shell defining a plurality of electrically isolated cavities, each of the second coaxial connectors being located in a respective cavity. In in a mated condition the second shell resides within the first shell.
US10950968B2 Electrical connector with a contact holder having transverse openings to receive fasteners
A receptacle and/or a plug of an electrical connector includes a proximal body portion defining transverse alignment slots extending through a side of the proximal body portion for contacts. A plug of an electrical connector includes a safety disk. The safety disk includes a hollow stem having at least one prong slidably inserted through a groove and captured within a central axial passage of a housing.
US10950966B2 Safety stab technology
A stab (pin and sleeve) electrical connector with improved safety is described. The female (sleeve) connector exterior surface is coated or made from with a nonconductive insulating material. A pressure loaded insulator plug is disposed inside the female sleeve. An electrical connection is made when the male (pin) connector is inserted into the female sleeve. The male pin contacts the insulator plug inside the female sleeve, causing compression, and makes electrical contact with the uninsulated inside of the sleeve. As the male pin is removed, the pressure mechanism of the insulator plug pushes the plug out flush with the external insulated surface making the female sleeve touch safe. Therefore, embodiments provide a high level of safety for the pin and sleeve electrical connection method without adding large or troublesome moving parts.
US10950965B2 Contact element arrangement
The invention relates to a contact element arrangement consisting of a shaped sheet metal part, wherein at least two contact elements, which are spaced apart from each other and extend away from a flat base plate of the sheet metal part, are shaped from the sheet metal part and wherein the one contact element forms a substantially cylindrical contacting portion for mounting a pin-shaped counter contact by insertion and wherein the second contact element is formed as a contact spring bent in an S-shape over two bending portions, the contact spring forming a contact point facing away from the base plate.
US10950961B2 Card edge connector structure
A card edge connector structure includes an insulating case, a terminal assembly, a first grounding sheet and a second grounding sheet. The terminal assembly includes a first terminal set and a second terminal set and is configured in the insulating case. The first grounding sheet is configured between the insulating case and the first terminal set, and the second grounding sheet is configured between the insulating case and the second terminal set. A first arm of the first grounding sheet contacts the first grounding terminal through a first groove of a first terminal fixing component, and a second arm of the second grounding sheet contacts the second grounding terminal through a second groove of a second terminal fixing component.
US10950958B2 Memory module connector, memory module, and pivotable latch
A memory module connector includes a memory module receiving slot configured to receive a memory module. The memory module connector further includes a restraining mechanism configured to release the memory module if a force applied by the memory module to the restraining mechanism is above a pre-determined force threshold.
US10950953B2 Antenna unit, MIMO antenna and handheld device
An antenna unit, a MIMO antenna and a handheld device. The antenna unit includes a feeder and a radiator, wherein the radiator is in a 90°-rotated U shape and includes a first horizontal part, a first vertical part and a second horizontal part, two ends of the first vertical part are respectively connected to the first horizontal part and the second horizontal part; the feeder is located in the U shape and includes a second vertical part, a third horizontal part and a third vertical part, two ends of the third horizontal part are respectively connected to the second vertical part and the third vertical part, and the second vertical part and the third vertical part are located on different sides of the third horizontal part. The MIMO antenna has an ultra wideband.
US10950951B2 Radar device
Included are: a radar main unit for emitting a radar wave and receiving a reflection wave of the radar wave reflected by an object; and a dielectric substrate in which multiple matching layers each having a protruded shape are regularly arranged on one surface of the dielectric substrate, and the radar wave emitted from the radar main unit enters the multiple matching layers in a state where the other-surface side of the dielectric substrate is attached to a windshield.
US10950948B2 Device and method for combined signal transmission or for combined signal transmission and energy transmission
A method and a device for combined signal transmission or for combined signal transmission and energy transfer, in particular a portable electronic terminal. The device has at least one coil structure for producing a first electromagnetic field for energy transfer or for signal transmission, wherein the device also has at least one antenna structure for additional signal transmission. The antenna structure has a first partial structure and a second partial structure. The first partial structure is designed and/or is arranged in relation to the second partial structure in such a way that signals in a first frequency range can be received and transmitted by the antenna structure. At least the first partial structure is arranged adjacent to the at least one coil structure in a projection plane oriented perpendicular to a central axis of the coil structure.
US10950944B2 Capacitively coupled patch antenna
Systems and methods relating to patch antennas. A patch antenna has a substrate, a resonant metal plate at one side of the substrate, and a ground plane at the other opposite side of the substrate. Two feed pins are used to couple the antenna to other circuitry. The feed pins pass through the substrate and holes in at the ground plane. The feed pins are physically disconnected from both the resonant metal plate and the ground plane. The feed pins are capacitively coupled to the resonant metal plate to provide an electronic connection between other circuitry and the patch antenna.
US10950939B2 Systems and methods for ultra-ultra-wide band AESA
In one aspect, the inventive concepts disclosed herein are directed to an antenna array system employing a current sheet array (CSA) wavelength scaled aperture. The CSA wavelength scaled aperture can include a first frequency region associated with a first operating frequency band and a second frequency region associated with a second operating frequency band. The first operating frequency band can include one or more current sheet sub-arrays having a respective plurality of first unit cells scaled to support the first operating frequency band. The second operating frequency band can include one or more current sheet sub-arrays having a respective plurality of second unit cells scaled to support the second operating frequency band. The CSA wavelength scaled aperture can include one or more capacitors each of which coupled to a respective first unit cell of the first frequency region and a respective second unit cell of the second frequency region.
US10950934B2 Wireless electric power transmission apparatus and electric power transfer system
A microwave power transmission apparatus converts electric energy into microwaves, and transmits the microwaves to a microwave power receiver between sea and land. A power transmission antenna to emit the microwaves is directed to a direction of the microwave power receiver by a driver. When a beacon receiver detects a beacon signal transmitted by the microwave power receiver, a transmission signal generator generates a transmission signal emitted as microwaves from the power transmission antenna. Radio waves are not emitted from the power transmission antenna when the beacon signal is not detected. Not detecting the beacon signal corresponds to a situation where a power reception antenna cannot receive the microwaves due to motion of the antenna being on the sea. The wireless electric power transmission apparatus and electric power transfer system can prevent occurrence of a situation where the emitted microwaves cannot be received.
US10950932B1 Electronic device wide band antennas
An electronic device may have a housing with metal sidewalls. One of the metal sidewalls may have an opening. The electronic device may have a speaker module that has a speaker housing member. Conductive structures on the speaker housing member may have an opening that forms a slot element. The opening of the metal sidewall may be aligned with slot element. The slot element and an interior cavity of the speaker housing member may form a cavity-backed slot antenna. An antenna feed structure may be disposed at the opening of the speaker housing member. An antenna feed may be directly coupled to the antenna feed structure. The antenna feed structure may indirectly feed the slot antenna resonating element by capacitive coupling. A sealing member may be disposed at the opening of the metal sidewall.
US10950930B2 Antenna device
An antenna device has a configuration in which a feeding point is located at a position that is distant from an outer periphery of a ground conductor plate to a center side and that would correspond to polarized waves parallel to the ground conductor plate. The antenna devices includes a ground conductor plate and an antenna element. The antenna element includes a first vertical portion and a second vertical portion which are erected substantially perpendicularly from the ground conductor plate and a first parallel portion, a second parallel portion, and a third parallel portion which extend substantially parallel to the ground conductor plate. An end portion, in the −Z direction, of the first vertical portion serves as a feeding point and is located at a position that is distant from an outer periphery of the ground conductor plate to a center side.
US10950929B2 Foam radiator
A novel system and method for creating a lightweight antenna is disclosed. Each lightweight antenna is formed using a foam material. This foam material is coated with a machinable material, which is machined to the desired dimensions. The machinable material is then plated with a metal. This creates a radiator that has the size and performance of traditional notch antennas, but weighs far less. This foam radiator may be mounted to a variety of substrate types, not limited to microwave laminate materials. Embodiments of mixed substrates or even multi-layered foam substrates are possible. The substrate may be a conventional printed circuit board (PCB), a PCB with sleeved coaxial vias, or a foam substrate. The lightweight antenna may be used in a plurality of applications, including ultra-wideband array systems and space-based applications.
US10950925B2 Antenna structure and wireless communication device using the same
An antenna structure includes a housing, a feeding portion, and a connecting portion. The housing defines a gap and a groove. The housing forms a radiating portion and a coupling portion through the gap and the groove. A portion of the housing between the feeding portion and the gap forms a first radiating section. The connecting portion is electrically connected to one end of the coupling portion adjacent to the gap. When the feeding portion supplies current, the current flows through the feeding portion and the first radiating section, and is coupled to the connecting portion through the gap to activate a first operating mode. When the feeding portion supplies current, the current flows through the feeding portion and the first radiating section, and is coupled to the coupling portion through the gap to activate a second operating mode.
US10950921B2 Radio and power pole
A radio and power pole that includes a pipe defining a longitudinal interior cavity for storing modular electronic equipment (e.g., radios) is described. The radio and power pole can also include mounting channels extending longitudinally proximate to an interior surface of the interior cavity of the pipe, a structural spine extending longitudinally through the interior cavity of the pipe, ribs spaced apart from one another proximate to the interior surface throughout the interior cavity of the pipe, doors for accessing the interior cavity of the pipe, and a vent trap. The radio and power pole can be configured as a direct bury radio and power pole (possibly including one or more vaults). A radio and power pole can include a precast pier connected to the pipe and configured to support the pipe when the pier is inserted into the ground. A radio and power pole can include a bench disposed about the pipe.
US10950918B1 Dual-mode monoblock dielectric filter
A dual-mode dielectric resonator using two dissimilar modes is described, the dissimilar modes supported by a ridge waveguide resonator and a ½-wavelength metalized cylindrical resonator within a single, metal-coated dielectric block. Each ridge waveguide resonator and cylindrical resonator form a resonator pair. Multiple pairs of ridge waveguide/cylindrical resonators are fabricated in the same dielectric block to form an 8-pole dielectric resonator filter for 5G or other applications. Transmission zeros can be positioned by the location of feeding probes along the cylindrical resonators.
US10950910B2 Air cell and patch
Provided are an air cell that has a reduced environmental impact and has favorable discharge characteristics as well as a patch equipped with the air cell. An air cell of the present invention includes, an outer case, which contains a positive electrode having a catalyst layer containing a catalyst and a binder, a negative electrode containing a metal material, a separator, and an electrolytic solution. The electrolytic solution is an aqueous solution with a pH of 3 or more and less than 12. The separator has an air permeability of 10 sec/100 ml or more, or the positive electrode has a porous sheet made of carbon as a current collector. A patch of the present invention includes the air cell of the present invention as a power supply.
US10950904B2 Battery system and electrically driven vehicle equipped with battery system
A battery system having: a series unit in which battery units are connected in series; heat exchangers thermally coupled with the battery units and internally circulating the coolant; and an outer case in which the series units and the heat exchangers are accommodated. The battery unit has battery cells stacked together, a plus output terminal and a minus output terminal at both ends thereof. The battery unit disposed at an end of the plus output terminal side of the series unit is disposed at an inclined posture where the end of the plus output terminal side is away from the base plate of the outer case. The battery unit disposed at an end of the minus output terminal side of the series unit, is disposed at an inclined posture where the end of the minus output terminal side is away from the base plate of the outer case.
US10950901B2 System and method for charge protection of a lithium-ion battery
A method for controlling a charge process of a solid-state battery having a sulfur-based positive electrode is provided. The method includes monitoring and storing a temperature of the solid-state battery and a predetermined interval, when the temperature exceeds a threshold temperature, monitoring the temperature of the solid-state battery and/or processing the stored temperature data of the solid-state battery, for an indication of sulfur sublimation, and terminating a flow of charge current upon detection of the indication of sulfur sublimation.
US10950897B2 Method of producing shape-conformable alkali metal-sulfur battery having a deformable and conductive quasi-solid electrode
Provided is a method of preparing an alkali-sulfur cell comprising: (a) combining a quantity of an active material, a quantity of an electrolyte containing an alkali salt dissolved in a solvent, and a conductive additive to form a deformable and electrically conductive electrode material, wherein the conductive additive, containing conductive filaments, forms a 3D network of electron-conducting pathways; (b) forming the electrode material into a quasi-solid electrode (the first electrode), wherein the forming step includes deforming the electrode material into an electrode shape without interrupting the 3D network of electron-conducting pathways such that the electrode maintains an electrical conductivity no less than 10−6 S/cm; (c) forming a second electrode (the second electrode may be a quasi-solid electrode as well); and (d) forming an alkali-sulfur cell by combining the quasi-solid electrode and the second electrode having an ion-conducting separator disposed between the two electrodes.
US10950896B2 Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery, and method of producing nonaqueous electrolyte secondary battery
A nonaqueous electrolyte solution used for a nonaqueous electrolyte secondary battery includes a cyclic carbonate and a fluorinated carboxylate ester including two fluorine atoms on an alpha carbon atom derived from a carboxylic acid as a nonaqueous solvent.
US10950894B2 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
The present invention relates to a non-aqueous electrolyte solution which includes an ionizable lithium salt, an organic solvent, and a mixed additive, wherein the organic solvent comprises at least one cyclic carbonate-based organic solvent selected from the group consisting of ethylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, and fluoroethylene carbonate, and at least one linear carbonate-based organic solvent selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethylmethyl carbonate, methylpropyl carbonate, and ethylpropyl carbonate, the mixed additive includes vinylene carbonate, 1,3-propylene sulfate, and 1,3-propane sultone in a weight ratio of 1:1:1 to 1:0.5:0.2, and a total amount of the mixed additive is in a range of 1 to 4.5 wt % based on a total weight of the non-aqueous electrolyte solution for a lithium secondary battery, and a lithium secondary battery including the same.
US10950888B2 All-solid-state battery including a solid electrolyte and a layer of ion-conducting material
An electrode film of an all-solid-state battery, an all-solid-state battery, and an electrode of an all-solid-state battery, which are fabricated by a process that includes thermally consolidating an electrode film by sintering at a temperature that does not exceed a predetermined threshold of a lowest melting temperature between an anode material and an cathode material.
US10950881B2 Fuel cell system
A controller of a fuel cell system executes at least one of a first control and a second control. The first control is executed when a value of current is raised in association with an increase in flow rate ratio of cathode exhaust gas flowing into a bypass, the first control is executed by which the value of the current is raised to boost discharge pressure from a compressor and subsequently, an opening degree of a flow dividing valve is changed so as to increase the flow rate ratio of the cathode exhaust gas flowing into the bypass. The second control is executed when the value of the current is lowered in association with a reduction in the flow rate ratio of the cathode exhaust gas flowing into the bypass, the second control is executed by which the opening degree of the flow dividing valve is changed so as to reduce the flow rate ratio of the cathode exhaust gas flowing into the bypass and subsequently, the value of the current is lowered so as to lower the discharge pressure from the compressor.
US10950880B2 Fuel gas injection device and fuel cell system
A fuel gas injection device of a fuel cell system includes an injector device and an ejector device. Mount portions of the injector device each include a mount body joined to a distal-side support portion, a screw member joining the mount body and an ejector body to each other in a state in which the screw member extends in an operating direction of a plunger, and a mount rubber member disposed on an outer circumferential side of a shaft portion of the screw member.
US10950879B2 Redox flow battery
A redox flow battery includes a positive electrolyte tank container which houses a positive electrolyte tank for storing a positive electrolyte; a negative electrolyte tank container which houses a negative electrolyte tank for storing a negative electrolyte; and a battery container which houses a battery cell including a positive electrode, a negative electrode, and a membrane, a positive electrolyte circulation mechanism configured to supply and circulate the positive electrolyte to the battery cell, and a negative electrolyte circulation mechanism configured to supply and circulate the negative electrolyte to the battery cell.
US10950878B2 Humidifier for a fuel cell
A humidifier for a fuel cell includes a body, first and second humidifying spaces formed inside the body, an exhaust gas inlet and an exhaust gas outlet for supplying exhaust gas released from the fuel cell stack into the first and second humidifying spaces, a passing space formed inside the body and directly or indirectly communicated with the second humidifying space and the fuel cell stack. The inflow gas flows into the passing space from the first humidifying space. A valve is installed in the passing space to allow the inflow gas introduced into the passing space to flow into the fuel cell stack with or without passing through or to allow some of the inflow gas introduced into the passing space to flow into the fuel cell stack passing through the second humidifying space and others of the inflow gas introduced into the fuel cell stack without passing through the second humidifying space.
US10950873B2 Electric connector for fuel cell stack
Electric connector assembly for electrically contacting at least one bipolar plate of a fuel cell stack including at least a support structure and at least one contact pin, adapted to electrically contact the bipolar plate and is supported by the support structure, the support structure includes at least a rear face which is adapted to face the fuel cell stack, a front face being opposite to the read face, and first and second side faces, the rear face includes at least one bipolar plate housing slit which extends from the first side face to the second side face, adapted to accommodate at least two teeth extending from a support basis, separated by the intermediately arranged bipolar plate housing slit, the support structure further includes at least one contact pin accommodation opening having a size which is adapted to accommodate the contact pin.
US10950867B2 Electrode, redox flow battery, and method for producing electrode
An object of the present invention is to provide an electrode which is used for a liquid flow-through device and in which liquid flow-through resistance is reduced and the utilization efficiency of the surface of carbon fiber is enhanced. Another object of the present invention is to provide a redox flow battery having excellent charge-discharge performance by use of the electrode which is used for the liquid flow-through device. The present invention provides an electrode to be used for a liquid flow-through device, the electrode including a plurality of sheets of carbon fiber nonwoven fabric each having irregularities on a surface of the sheet of carbon fiber nonwoven fabric being stacked or each having a through-hole on the carbon fiber sheet being stacked, and having inside of the electrode a plurality of gaps which is formed by recesses of the irregularities or the through-hole and is not opened in a thickness direction.
US10950862B2 Method for producing cathode, and method for producing oxide solid-state battery
A method for producing a cathode that can lower a sintering temperature is provided. The method comprises: acid-treating particles of a lithium containing composite oxide that has a layered rock-salt structure; obtaining a mixture by mixing the acid-treated particles with a lithium salt whose melting point is lower than that of the lithium containing composite oxide; and heating and sintering the mixture.
US10950858B2 IC power source, various IC products provided with same, method for supplying power to IC, and method for driving IC
Various useful IC-related applications are provided using all solid lithium secondary batteries. For example, there is provided a power source for integrated circuit (IC) that includes an all-solid-state lithium secondary battery including a positive electrode layer, a solid electrolyte layer, and a negative electrode layer, wherein the all-solid-state lithium secondary battery itself has a function as a bypass capacitor, thereby being capable of supplying a temporarily increased peak current in addition to a steady current.
US10950857B2 Polycrystalline metal oxides with enriched grain boundaries
Provided are electrochemical cells that include as a cathode active material within the cathode of the cell secondary particles that provide excellent capacity and improved cycle life. The particles are characterized by grain boundaries between adjacent crystallites of the plurality of crystallites and comprising a second composition having a layered α-NaFeO2-type structure, a cubic structure, a spinel structure, or a combination thereof, wherein the electrochemically active cathode active material has an initial discharge capacity of 180 mAh/g or greater; and wherein the electrochemical cell has an impedance growth at 4.2V less than 50% for greater than 100 cycles at 45° C.
US10950855B2 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the positive electrode active material
A positive electrode active material for a nonaqueous electrolyte secondary battery is provided, which can establish both high capacity and high output when used for a positive electrode material.A positive electrode active material for a nonaqueous electrolyte secondary battery comprises primary particles of a lithium-nickel composite oxide represented by the following general formula (1) and secondary particles composed by aggregation of the primary particles, wherein a 1-nm to 200-nm thick film containing W and Li is present on the surface of the primary particles, and a c-axis length in the LiNi composite oxide crystal ranges from 14.183 to 14.205 angstroms. General formula: LibNi1-x-yCoxMyO2  (1) (In the formula, M is at least one type of element selected from Mg, Al, Ca, Ti, V, Cr, Mn, Nb, Zr and Mo, and 0.95≤b≤1.03, 0
US10950854B2 Electrode and electrochemical device
The present application provides an electrode and an electrochemical device comprising the electrode. The electrode comprises a current collector; and an inorganic layer arranged on a surface of the current collector, wherein the inorganic layer comprises a metal oxide and does not comprise a polymer. The electrode of the lithium ion battery provided by the present application has little influence on the volume energy density of the lithium ion battery while improving the safety performance of the lithium ion battery.
US10950849B2 Hybrid materials and nanocomposite materials, methods of making same, and uses thereof
Hybrid materials and nanocomposite materials, methods of making and using such materials. The nanoparticles of the nanocomposite are formed in situ during pyrolysis of a hybrid material comprising metal precursor compounds. The nanoparticles are uniformly distributed in the carbon matrix of the nanocomposite. The nanocomposite materials can be used in devices such as, for example, electrodes and on-chip inductors.
US10950848B2 Positive electrode and alkaline secondary battery including the same
A positive electrode for an alkaline secondary battery includes a positive electrode substrate and a positive electrode composite material that is provided on at least one surface of the positive electrode substrate. The positive electrode substrate contains a Ni foil or a Ni-plated steel foil. The positive electrode composite material contains a positive electrode active material. The positive electrode active material contains nickel hydroxide coated with cobalt oxyhydroxide. A weight per unit area of the positive electrode composite material with respect to the one surface of the positive electrode substrate is 0.02 g/cm2 to 0.035 g/cm2.
US10950847B2 High capacity electrodes
An electrode comprises carbon nanoparticles and at least one of metal particles, metal oxide particles, metalloid particles and/or metalloid oxide particles. A surfactant attaches the carbon nanoparticles and the metal particles, metal oxide particles, metalloid particles and/or metalloid oxide particles to form an electrode composition. A binder binds the electrode composition such that it can be formed into a film or membrane. The electrode has a specific capacity of at least 450 mAh/g of active material when cycled at a charge/discharge rate of about 0.1C.
US10950845B2 Battery protection circuit module package
Provided is a battery protection circuit module package capable of easily achieving high integration and size reduction. The battery protection circuit module package includes a terminal lead frame including a first internal connection terminal lead and a second internal connection terminal lead provided at two edges of the terminal lead frame and electrically connected to electrode terminals of a battery bare cell, and a plurality of external connection terminal leads provided between the first and second internal connection terminal leads and serving as a plurality of external connection terminals, and a device package including a substrate mounted on the terminal lead frame to be electrically connected to the terminal lead frame, and providing a battery protection circuit device thereon.
US10950844B2 Battery pole and electrical contact unit for producing an electrical connection between a battery pole and an on-board electrical system of a vehicle
A pole cap for a battery pole of a battery has a sleeve-like contacting portion, which has an outer periphery widening conically in the direction of the battery pole and tapering conically in the direction of the battery pole. A terminal is formed as a double-walled terminal sleeve having an inner wall and an outer wall, both designed to be supported by a collar, where the walls form an annular gap for positively receiving the sleeve-like contacting portion of the pole cap and where the gap tapers in the direction of the collar.
US10950843B2 Electric batteries
The present invention relates to an electric battery (10). The electric battery (10) comprises plural battery cells (12), with each battery cell comprising a container. The container contains an electrochemical arrangement. Each battery cell (12) comprises positive and negative terminals of sheet form which extend from the electrochemical arrangement. The electric battery further comprises plural measurement arrangements (14), with each of the plural measurement arrangements being electrically coupled to each of two spaced apart locations on one of the positive and negative terminals of a respective one of the plural battery cells. Each of the plural measurement arrangements (14) is configured to measure potential difference between the two spaced apart locations.
US10950842B2 Connection module
Provided is a connection module that can prevent a detection wire from coming away from a branch line path that is formed as a narrow path with a simple configuration. A connection module includes: a busbar configured to connect electrode terminals of adjacent electricity storage elements to each other; an insulating protector configured to hold the busbar in an insulated manner; and a detection wire that is to be connected to the busbar. The insulating protector includes a main line path, and a branch line path that branches from the main line path, has a width narrower than the width of the main line path, and in which the detection wire 50 is to be routed. The branch line path includes a pair of opposing path walls, and an elastic retaining piece that is formed on at least one path wall of the pair of path walls.
US10950837B2 Methods of producing batteries utilizing anode metal depositions directly on nanoporous separators
Provided are methods of preparing a separator/anode assembly for use in an electric current producing cell, wherein the assembly comprises an anode current collector layer interposed between a first anode layer and a second anode layer and a porous separator layer on the side of the first anode layer opposite to the anode current collector layer, wherein the first anode layer is coated directly on the separator layer.
US10950832B2 Battery module
[Object] To provide a battery module that can prevent the breakage of batteries due to the expansion or contraction of the batteries when charging and discharging the batteries.[Solution To Problem] A battery module includes a plurality of stacked batteries and a restraint part for restraining the plurality of batteries. The restraint part is composed of a pair of end plates arranged at either end in the stacking direction of the plurality of batteries and tension bands for connecting the pair of end plates and constraining the plurality of batteries in a pressurized state. The tension bands include elastically deformable concave-convex parts.
US10950831B2 Pressure-induced battery pack venting with filtering
A battery pack is provided which includes an enclosure. The enclosure includes a battery cell compartment and a vent. The battery cell compartment is a sealed compartment, except for the vent, and the vent facilitates pressure-induced venting of gas from the battery cell compartment. One or more battery cells are disposed within the battery cell compartment, and the battery pack also includes a filter system associated with the enclosure. The filter system filters the pressure-induced venting of gas from the battery cell compartment resulting from a thermal runaway event at a battery cell of the one or more battery cells within the battery cell compartment of the enclosure.
US10950822B2 Display device capable of improving light extraction efficiency
A display device is provided that can increase brightness by improving light extraction efficiency. The display device can include a thin-film transistor disposed on a substrate, a first overcoat layer disposed on the thin-film transistor and including a groove portion, a reflective layer disposed on the first overcoat layer including the inside of the groove portion, a color filter disposed on the reflective layer and located in the groove portion, a second overcoat layer disposed on the color filter and the reflective layer, a first electrode disposed on the second overcoat layer and connected to the thin-film transistor, a bank layer disposed on the first electrode and including an open portion exposing the first electrode, an organic layer disposed on the bank layer and the first electrode, and a second electrode disposed on the organic film layer.
US10950813B2 Optical modifier and display device including the same
An optical modifier may include a color controller including quantum dots, a barrier layer encapsulating the color controller, and a low refractive layer spaced apart from the color controller with the barrier layer interposed between the color controller and the barrier layer. The barrier layer may have a layer density ranging from 1.50 g/cm3 to 3.0 g/cm3.
US10950811B2 Optoelectronic component
An optoelectronic component includes a photoactive layer which is arranged between an electrode and a counter electrode. In addition to a donor-acceptor system, the photoactive layer includes a third material which influences the crystallization of the donor-acceptor system. The third material selected from a group consisting of crown ethers, triphenyls, sorbitols, quinacridones and bis(4-(tert-butyl)benzoato-O) hydroxyaluminium. Crown ethers are especially preferred.
US10950809B2 Flexible display panel having a photoresist supporting element
The present invention provides a flexible display panel and a manufacturing method thereof. The flexible display panel includes a flexible substrate, a thin film transistor, a planarization layer having a non-through groove, an anode layer, a pixel defining layer having a through groove, and a photoresist supporting element. The present invention utilizes a patterning structure of the pixel defining layer and the planarization layer to reduce internal stress of the flexible substrate, so as to improve dynamic bending performance of the flexible substrate.
US10950808B2 Method of preparing organic electronic device
A method of preparing an organic electronic device, an organic electronic device prepared using the same, and a use thereof are provided. For example, the method of effectively preparing an organic electronic device using a flexible substrate, the organic electronic device prepared using the same, and the use thereof may be provided.
US10950805B2 Electronic device, light-emitting device, electronic appliance, and lighting device
An electronic device with high outcoupling efficiency or a high light-trapping effect is provided.The electronic device includes a first layer and a second layer between a first electrode and a second electrode, the first layer is included between the first electrode and the second layer, the first layer includes a first organic compound and a first substance, the refractive index of a thin film of the first organic compound is higher than or equal to 1 and lower than or equal to 1.75, the first substance has an electron-accepting property, and the second layer has a function of emitting or absorbing light.
US10950803B2 Compounds and uses in devices
This invention discloses a novel multicomponent system or a single compound that is capable of performing triplet-triplet annihilation up conversion process. (TTA-UC) A solution or solid film that comprises this TTA-UC system or compound is provided. This system or compound can be used in an optical or optoelectronic device.
US10950801B2 Organic light-emitting device
Provided is an organic light emitting device including a cathode; an anode provided opposite to the cathode; a light emitting layer provided between the cathode and the anode; and an organic material layer provided between the cathode and the light emitting layer, and including Compound (A) including a heteroatom and a cyano group, wherein Compound (A) satisfies Equation 1 and Equation 2: |PElCN|≥3debye  Equation 1 wherein: |PElCN| means an absolute value of a dipole moment of Compound (A);  P EI C ⁢ N   P EI  >  Ea EI CN   Ea EI  Equation ⁢ ⁢ 2 wherein: |PElCN| means an absolute value of a dipole moment of Compound (A); |PEl| means an absolute value of a dipole moment of a compound having the same core as the compound of |PElCN| without including a cyano group; |EaElCN| means an absolute value of electron affinity of Compound (A); and |EaEl| means an absolute value of electron affinity of a compound having the same core as the compound of |EaElCN| without including a cyano group.
US10950798B2 Organic electronic devices comprising a layer of a pyridine compound and a 8-hydroxypquinolinolato earth alkaline metal, or alkali metal complex
The present invention provides an organic electronic device including a first electrode, a second electrode, and an organic layer interposed between the first electrode and the second electrode, wherein the organic layer comprises an organic metal complex of formula and a compound of formula Organic light emitting devices (OLEDs) having superior life time, power efficiency, quantum efficiency and/or a low operating voltage are obtained, when the organic layer comprising the compounds of formula I and II constitutes the electron transport layer of an OLED.
US10950797B2 Organic electroluminescent device
The present invention provides an organic EL device having at least an anode, a first hole transport layer, a second hole transport layer, a luminous layer, an electron transport layer, and a cathode in this order, wherein the second hole transport layer contains an arylamine compound represented by the following general formula (1), and the electron transport layer contains a pyrimidine derivative represented by the following general formula (2). The organic EL device of the present invention has a high efficiency, and is driven at a low driving voltage. Further, it has a particularly long lifetime.
US10950795B2 Fullerene derivative blends, methods of making and uses thereof
Fullerene derivative blends are described herein. The blends are useful in electronic applications such as, e.g., organic photovoltaic devices.
US10950790B1 Two-terminal electronic charge resistance switching device
A two-terminal memory device and methods for its use are provided. In the device, a bottom electrode is electrically continuous with a first operating terminal, and a control gate electrode is electrically continuous with a second operating terminal. A stack of insulator layers comprising a hopping conduction layer and a tunnel layer is contactingly interposed between the bottom electrode and the control gate electrode. The tunnel layer is thinner than the hopping conduction layer, and it has a wider bandgap than the hopping conduction layer. The hopping conduction layer consists of a material that supports electron hopping transport.
US10950788B1 Resistive memory device having an oxide barrier layer
A memory device is disclosed. The memory device includes a bottom contact, and a memory layer connected to the bottom contact, where the memory layer has a variable resistance. The memory device also includes a top electrode on the memory layer, where the top electrode and the memory layer cooperatively form a heterojunction memory structure. The memory device also includes a top contact on the top electrode, and a first barrier layer, including a first oxide material and a second oxide material, where the first oxide material is different from the second oxide material, and where the first barrier layer is between one of A) the memory layer and the bottom contact, and B) the top electrode and the top contact, where the first barrier layer is configured to substantially prevent the conduction of ions or vacancies therethrough.
US10950782B2 Nitride diffusion barrier structure for spintronic applications
A magnetic tunnel junction (MTJ) is disclosed wherein a nitride diffusion barrier (NDB) has a L2/L1/NL or NL/L1/L2 configuration wherein NL is a metal nitride or metal oxynitride layer, L2 blocks oxygen diffusion from an adjoining Hk enhancing layer, and L1 prevents nitrogen diffusion from NL to the free layer (FL) thereby enhancing magnetoresistive ratio and FL thermal stability, and minimizing resistance x area product for the MTJ. NL is the uppermost layer in a bottom spin valve configuration, or is formed on a seed layer in a top spin valve configuration such that L2 and L1 are always between NL and the FL or pinned layer, respectively. In other embodiments, one or both of L1 and L2 are partially oxidized. Moreover, either L2 or L1 may be omitted when the other of L1 and L2 is partially oxidized. A spacer between the FL and L2 is optional.
US10950781B2 Method of manufacturing piezoelectric thin film and piezoelectric sensor manufactured using piezoelectric thin film
Disclosed are a method of manufacturing a piezoelectric thin film and a piezoelectric sensor manufactured using the piezoelectric thin film. A piezoelectric sensor according to an embodiment of the present disclosure includes a substrate; a lower electrode formed on the substrate; a two-dimensional perovskite nanosheet seed layer formed on the lower electrode; a ceramic piezoelectric thin film formed on the two-dimensional perovskite nanosheet seed layer; and an upper electrode formed on the ceramic piezoelectric thin film, wherein each of the two-dimensional perovskite nanosheet seed layer and the ceramic piezoelectric thin film has a crystal structure.
US10950778B2 Superconducting bump bond electrical characterization
Test structures and methods for superconducting bump bond electrical characterization are used to verify the superconductivity of bump bonds that electrically connect two superconducting integrated circuit chips fabricated using a flip-chip process, and can also ascertain the self-inductance of bump bond(s) between chips. The structures and methods leverage a behavioral property of superconducting DC SQUIDs to modulate a critical current upon injection of magnetic flux in the SQUID loop, which behavior is not present when the SQUID is not superconducting, by including bump bond(s) within the loop, which loop is split among chips. The sensitivity of the bump bond superconductivity verification is therefore effectively perfect, independent of any multi-milliohm noise floor that may exist in measurement equipment.
US10950771B2 Light-emitting device
A light-emitting device includes a heat-dissipating structure having a first part and a second part separated from the first part; a light-emitting unit including a light-emitting element with a first pad formed on the first part; and a first transparent enclosing the light-emitting element and having a sidewall; and an adhesive material covering a portion of the sidewall.
US10950770B2 Method for producing an electronic device
An object of the present invention is to provide a method for producing a conductive material that allows a low electric resistance to be generated, and that is obtained by using an inexpensive and stable conductive material composition containing no adhesive. The conductive material can be provided by a producing method that includes the step of sintering a first conductive material composition that contains silver particles having an average particle diameter (median diameter) of 0.1 μm to 15 μm, and a metal oxide, so as to obtain a conductive material. The conductive material can be provided also by a method that includes the step of sintering a second conductive material composition that contains silver particles having an average particle diameter (median diameter) of 0.1 μm to 15 μm in an atmosphere of oxygen or ozone, or ambient atmosphere, at a temperature in a range of 150° C. to 320° C., so as to obtain a conductive material.
US10950764B2 Light-emitting device
A light-emitting device includes: a first light-emitting element and a second light-emitting element, each having a peak emission wavelength in a range of 430 nm to 480 nm; and a sealing member covering the first light-emitting element and the second light-emitting element, the sealing member containing a first fluorescent material. The first light-emitting element and the second light-emitting element are configured to be individually driven. The sealing member includes a protruding portion at an upper surface thereof. The first light-emitting element is disposed in a first region, which is located under the protruding portion. The second light-emitting element is disposed in a second region, which is located under the upper surface of the sealing member at a position different from the first region.
US10950763B2 Method of manufacturing light emitting module
A method, comprising: providing a light emitting element including a semiconductor stack body and an electrode; providing a lightguide plate having a first surface and a second surface opposite to the first surface, wherein the second surface includes a plurality of recesses; arranging a light-transmitting member in each of the recesses; adjusting upper surfaces of the light-transmitting members to a uniform height; placing a wavelength conversion member on the light-transmitting member; placing the light emitting element on the wavelength conversion member with the electrode facing up; arranging a cover member that covers the light emitting element; removing the cover member until the electrode is exposed; and forming a wiring that electrically connects the light emitting elements together.
US10950756B2 Light emitting device including a passivation layer on a light emitting structure
The embodiments of the present invention relate to a light emitting device, a method for manufacturing a light emitting device, a light emitting device package, and a lighting device. A light emitting device according to an embodiment has: a light emitting structure including a first conductivity type semiconductor layer, a second conductivity type semiconductor layer, and an active layer disposed between the first conductivity type semiconductor layer and the second conductivity type semiconductor layer; a passivation layer disposed on the light emitting structure; and an insulating reflective layer disposed on the passivation layer. The passivation layer may include a first region disposed on an upper surface of the light emitting structure, and a second region disposed on side surfaces of the first conductivity type semiconductor layer, the second conductivity type semiconductor layer, and the active layer. The insulating reflective layer may be disposed on the first region, and an end portion of the insulating reflective layer may be disposed apart from an end portion of the first region.
US10950748B2 Method for preventing crack extensions during lift-off process
A method for preventing crack extensions during a lift-off process is provided. The method includes forming an epitaxial layer on a wafer substrate; forming a guard trench in the epitaxial layer, wherein a depth of the guard trench in a thickness direction of the epitaxial layer is at least half of a thickness of the epitaxial layer, and a total length of the guard trench is greater than at least a quarter of a circumference of the epitaxial layer; and performing a lift-off process to separate the wafer substrate from the epitaxial layer.
US10950747B2 Heterostructure for an optoelectronic device
A heterostructure, such as a group III nitride heterostructure, for use in an optoelectronic device is described. The heterostructure can include a sacrificial layer, which is located on a substrate structure. The sacrificial layer can be at least partially decomposed using a laser. The substrate structure can be completely removed from the heterostructure or remain attached thereto. One or more additional solutions for detaching the substrate structure from the heterostructure can be utilized. The heterostructure can undergo additional processing to form the optoelectronic device.
US10950745B2 Manufacturing systems and methods including inline cutting
An automated photovoltaic (PV) subassembly manufacturing method involves in-line cutting of material strips. A tape is cut longitudinally into multiple strips. The strips are separated and guided into spaced apart positions relative to a surface of the PV cell subassembly comprising one or more PV cells. The multiple strips remain attached to the tape while the strips are guided to the spaced apart positions. The multiple strips are positioned at attachment locations on the surface of a PV cell subassembly.
US10950743B2 Time of flight (TOF) sensor with transmit optic providing for reduced parallax effect
A transmit integrated circuit includes a light source configured to generate a beam of light. A receive integrated circuit includes a first photosensor. A transmit optic is mounted over the transmit and receive integrated circuits. The transmit optic is formed by a prismatic light guide and is configured to receive the beam of light. An annular body region of the transmit optic surrounds a central opening which is aligned with the first photosensor. The annular body region includes a first reflective surface defining the central opening and further includes a ring-shaped light output surface surrounding the central opening. Light is output from the ring-shaped light output surface in response to light which propagates within the prismatic light guide in response to the received beam of light and which reflects off the first reflective surface.
US10950741B2 Semiconductor nanocrystal, and method of preparing the same
A nanocrystal including a core including a Group III element and a Group V element, and a monolayer shell on the surface of the core, the shell including a compound of the formula ZnSexS(1-x), wherein 0≤x≤1, and wherein an average mole ratio of Se:S in the monolayer shell ranges from about 2:1 to about 20:1.
US10950735B2 Semiconductor device
According to one embodiment, a semiconductor device includes a semiconductor layer and a first layer. The semiconductor layer includes a first portion including a first element and oxygen. The first element includes at least one selected from the group consisting of In, Ga, Zn, Al, Sn, Ti, Si, Ge, Cu, As, and W. The first layer includes a second element including at least one selected from the group consisting of W, Ti, Ta, Mo, Cu, Al, Ag, Hf, Au, Pt, Pd, Ru, Y, V, Cr, Ni, Nb, In, Ga, Zn, and Sn. The first portion includes a first region and a second region. The second region is provided between the first region and the first layer. The first region includes a bond of the first element and oxygen. The second region includes a bond of the first element and a metallic element.
US10950732B2 Semiconductor device and method of manufacturing the same
A semiconductor device and method of forming the same are provided. The semiconductor device includes a gate structure formed over a substrate. A spacer layer is formed on side portions of the gate structure. A first dielectric layer is formed over the gate structure. A conductive cap layer passes through the first dielectric layer and is formed over the gate structure. A top surface of the conductive cap layer is above a top surface of the spacer layer. The semiconductor device further includes a conductive layer formed over the conductive cap layer. The conductive layer is electrically coupled with the conductive cap layer.
US10950731B1 Inner spacers for gate-all-around semiconductor devices
Semiconductor devices and methods of forming the same are provided. A semiconductor device according to the present disclosure includes a first semiconductor channel member and a second semiconductor channel member over the first semiconductor channel member and a porous dielectric feature that includes silicon and nitrogen. In the semiconductor device, the porous dielectric feature is sandwiched between the first and second semiconductor channel members and a density of the porous dielectric feature is smaller than a density of silicon nitride.
US10950729B2 Contact structure with insulating cap
A semiconductor device structure is provided. The semiconductor device structure includes a gate stack formed over a semiconductor substrate, a source/drain contact structure adjacent to the gate stack, and a gate spacer formed between the gate stack and the source/drain contact structure. The semiconductor device structure also includes a first insulating capping feature covering an upper surface of the gate stack, a second insulating capping feature covering an upper surface of the source/drain contact structure, and an insulating layer covering the upper surfaces of the first insulating capping feature and the second insulating capping feature. The second insulating capping feature includes a material that is different from a material of the first insulating capping feature. The semiconductor device structure also includes a via structure passing through the insulating layer and the first insulating capping feature and electrically connected to the gate stack.
US10950728B2 Fin field effect transistor (FinFET) device structure with isolation layer and method for forming the same
A FinFET device structure is provided. The FinFET device structure includes a gate structure formed over a fin structure and an S/D contact structure formed over the fin structure. The FinFET device structure also includes an S/D conductive plug formed over the S/D contact structure, and the S/D conductive plug includes a first barrier layer and a first conductive layer. The FinFET device structure includes a gate contact structure formed over the gate structure, and the gate contact structure includes a second barrier layer and a second conductive layer. The FinFET device structure includes a first isolation layer surrounding the S/D conductive plug, and the first barrier layer is between the first isolation layer and the first conductive layer. A second isolation layer surrounding the gate contact structure, and the second barrier layer is between the second isolation layer and the second conductive layer.
US10950724B2 Method of fabricating a semiconductor device including vertical-type field effect transistors
A semiconductor device includes a substrate with an upper surface and a lower surface, and first to third active patterns extending from the upper surface of the substrate. The first to third active patterns are arranged adjacent to each other in a first direction. The second active pattern is disposed between the first and third active patterns. The semiconductor device also includes a first gate electrode surrounding side surfaces of the first and second active patterns, and a second gate electrode surrounding side surfaces of the third active pattern. Each of the first to third active patterns includes a first impurity region, a channel region, and a second impurity region.
US10950721B2 Self-aligned high voltage transistor
Certain aspects of the present disclosure generally relate to a transistor having a self-aligned drift region and asymmetric spacers. One example transistor generally includes a channel region; a gate region disposed above the channel region; a first implant region; a second implant region having a same doping type as the first implant region, but a different doping type than the channel region; a first spacer disposed adjacent to a first side of the gate region; a second spacer disposed adjacent to a second side of the gate region and having a wider width than the first spacer; and a drift region having an edge vertically aligned with an edge of the second spacer and disposed between the channel region and the second implant region. The channel region may be disposed between the first implant region and the drift region.
US10950720B2 Electrostatic discharge guard ring with complementary drain extended devices
An electrostatic discharge (ESD) protection structure that provides snapback protections to one or more high voltage circuit components. The ESD protection structure can be integrated along a peripheral region of a high voltage circuit, such as a high side gate driver of a driver circuit. The ESD protection structure includes a p-channel device and an n-channel device. The p-channel device includes an n-type barrier region circumscribing a p-type drain region with an n-type body region. The p-channel device may be positioned adjacent to the n-channel device and a high voltage junction diode.
US10950717B2 Semiconductor device having semiconductor regions with an impurity concentration distribution which decreases from a respective peak toward different semiconductor layers
In a surface layer of a rear surface of the semiconductor substrate, an n+-type cathode region and a p-type cathode region are each selectively provided. The n+-type cathode region and the p-type cathode region constitute a cathode layer and are adjacent to each other along a direction parallel to the rear surface of the semiconductor substrate. The n+-type cathode region and the p-type cathode region are in contact with a cathode electrode. In an n−-type drift layer, plural n-type FS layers are provided at differing depths deeper from the rear surface of the semiconductor substrate than is the cathode layer. With such configuration, in a diode, a tradeoff relationship of forward voltage reduction and reverse recovery loss reduction may be improved and soft recovery may be realized.
US10950710B2 Fin-type field effect transistor
A fin-type field effect transistor including a substrate, insulators, a gate stack, a first spacer, a second spacer, and a third spacer is described. The substrate has fins thereon. The insulators are located over the substrate and between the fins. The gate stack is located over the fins and over the insulators. The first spacer is located over the sidewall of the gate stack. The second spacer is located over the first spacer. The first spacer and the second spacer includes carbon. The third spacer is located between the first spacer and the second spacer.
US10950705B2 Active matrix substrate
An active matrix substrate includes a peripheral circuit including a TFT (30A) supported on a substrate (1). When viewed in a direction normal to the substrate (1), a first gate electrode (3) of the TFT (30A) includes a first edge portion and a second edge portion (3e1, 3e2) opposing each other. The first edge portion and the second edge portion extend across an oxide semiconductor layer (7) in a channel width direction. At least one of the first edge portion and the second edge portion includes, in a region overlapping with the oxide semiconductor layer (7), a first recess portion (40) recessed in a channel length direction and a first part (41) adjacent to the first recess portion in the channel width direction. When viewed in the direction normal to the substrate (1), a source electrode (8) or a drain electrode (9) of the TFT (30A) overlaps with at least a part of the first recess portion (40) and at least a part of the first part (41).
US10950704B2 Vertical memory devices
A vertical memory device includes a substrate including a cell array region and a staircase region surrounding the cell array region, gate electrodes on the cell array region and the staircase region, and a channel on the cell array region. The gate electrodes are isolated from each other in first and third directions and each extend in a second direction. The channel extends in the first direction through one or more gate electrodes. End portions in the second direction of first gate electrodes of the plurality of gate electrodes define first steps in the second direction and second steps in the third direction on the staircase region of the substrate, the second steps being connected to the first steps, respectively, at same levels.
US10950695B1 Silicon carbide planar MOSFET with wave-shaped channel regions
A silicon carbide MOSFET includes first and second source regions respectively disposed in the first and second well regions. Each of the first and second source regions extends up to a top surface of the substrate. First and second channel regions of the respective first and second well regions laterally separate the first and second source regions from a JFET region by a channel length. The first and second channel regions extend up to the top surface. The first and second channel regions are each arranged in a wave-shaped pattern at the top surface of the substrate. The wave-shaped pattern extends in first and second lateral directions. In an on-state, current flows laterally from the first and second source regions to the JFET region, and then in a vertical direction down through an extended drain region to the drain region.
US10950693B2 Method of manufacturing a semiconductor device and a semiconductor device
In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers and second semiconductor layers are alternately stacked, is formed. A sacrificial gate structure is formed over the fin structure. The first semiconductor layers, the second semiconductor layer and an upper portion of the fin structure at a source/drain region of the fin structure, which is not covered by the sacrificial gate structure, are etched. A dielectric layer is formed over the etched upper portion of the fin structure. A source/drain epitaxial layer is formed. The source/drain epitaxial layer is connected to ends of the second semiconductor wires, and a bottom of the source/drain epitaxial layer is separated from the fin structure by the dielectric layer.
US10950682B2 Method for manufacturing organic electroluminescent device
A method for manufacturing an organic EL device according to an embodiment of the present invention includes: a step for preparing an element substrate having a substrate and a plurality of organic electroluminescent elements (3) which are supported by the substrate; and a step for forming a thin film encapsulation structure (10) covering the organic electroluminescent elements. The step for forming a thin film encapsulation structure includes: a step A for forming a first inorganic barrier layer (12); after the step A, a step B for detecting particles (P) below or above the first inorganic barrier layer (12) and obtaining positional information on each particle; a step C in which microscopic liquid drops of a coating liquid containing a photocurable resin are applied for each particle by an inkjet, method on the basis of the positional information; after the step C, a step D for irradiating the photocurable resin with an ultraviolet ray and curing the photocurable resin to form an organic barrier layer (14); and after the step D, a step E for forming a second inorganic barrier layer (16) on the first inorganic barrier layer and the organic barrier layer.
US10950669B2 Display device
A display device includes a light-emitting element, a thin film encapsulation layer disposed on the light-emitting element, a protection layer disposed on the thin film encapsulation layer, a first sensing electrode disposed on the protection layer, an insulating layer disposed on the first sensing electrode, and a second sensing electrode disposed on the insulating layer, in which at least one of the thin film encapsulation layer and the insulating layer has a multi-layer structure including first and second alternating layers forming at least three layers, and the first layer includes a first material having a first refractive index and the second layer includes a second material having a second refractive index different from the first refractive index.
US10950665B2 Organic light emitting display device
An organic light emitting display device is disclosed. The organic light emitting display device includes a first light emitting part between an anode and a cathode, the first light emitting part having a first light emitting layer, and a second light emitting part between the first light emitting part and the cathode, the second light emitting part having a second light emitting layer and a third light emitting layer, wherein the second light emitting layer includes a hole-type host and a first electron-type host, and the third light emitting layer includes a first electron-type host and a second electron-type host.
US10950662B2 Resistive memory device with meshed electrodes
A method is presented for incorporating a resistive random access memory (RRAM) stack within a resistive memory crossbar array. The method includes forming a conductive line within an interlayer dielectric (ILD), constructing a barrier layer over a portion of the conductive line, forming a bottom meshed electrode, depositing a dielectric layer over the bottom meshed electrode, and forming a top meshed electrode over the dielectric layer, where each of the top and bottom meshed electrodes includes a plurality of isolations films.
US10950656B2 Semiconductor memory device and method for fabricating the same
A method for fabricating a semiconductor memory device is provided. The method includes: etching a first region of the semiconductor memory device to expose a first capping layer; forming a second capping layer on the first capping layer; etching a portion of the first capping layer and a portion of the second capping layer to form a first trench reaching a first metal line; and forming a second metal line in the first trench to contact the first metal line.
US10950655B2 Transducer and inspection device
According to one embodiment, a transducer includes first structure sections and second structure sections. The first structure sections are spaced from each other in a first direction. Part of each of the first structure sections is fixed. The each of the first structure sections includes a first membrane part, a first piezoelectric part, a first conductive part, and a first electrode. The second structure sections are spaced from each other in the first direction. Part of each of the second structure sections is fixed. The each of the second structure sections includes a second membrane part, a second piezoelectric part, a second conductive part, and a second electrode. The second structure sections are spaced from the first structure sections in the first direction. Pitch along the first direction of the second structure sections is shorter than pitch along the first direction of the first structure sections.
US10950654B2 Integrating circuit elements in a stacked quantum computing device
A stacked quantum computing device including: a first chip including a superconducting qubit, where the superconducting qubit includes a superconducting quantum interference device (SQUID) region, a control region, and a readout region, and a second chip bonded to the first chip, where the second chip includes a first control element overlapping with the SQUID region, a second control element displaced laterally from the control region and without overlapping the control region, and a readout device overlapping the readout region.
US10950651B2 Photodiode (PD) array with integrated back-side lenses and a multi-channel transceiver module implementing same
The present disclosure is generally directed to an optical transceiver that includes a multi-channel on-board ROSA arrangement that includes an optical demultiplexer, e.g., an arrayed waveguide grating (AWG) and an array of photodiodes disposed on a same substrate. The array of photodiodes may be optically aligned with an output port of the optical demultiplexer and be configured to detect channel wavelengths and output a proportional electrical signal to an amplification circuit, e.g., a transimpedance amplifier. Each of the photodiodes can include an integrated lens configured to increase the alignment tolerance between the demultiplexer and the light sensitive region such that relatively imprecise bonding techniques, e.g., die bonding, may be utilized while still maintaining nominal optical power.
US10950648B2 Semiconductor element, manufacturing method of semiconductor element, and electronic apparatus
The present disclosure relates to a semiconductor element, a manufacturing method of a semiconductor element, and an electronic apparatus, which enable suppression of crack occurrences and leaks. The present technology has a laminated structure including an insulating film having a CTE value between those of metal and Si and disposed under a metal wiring, and P—SiO (1 μm) having good coverage and disposed as a via inner insulating film in a TSV side wall portion. As the insulating film having a CTE that is in the middle between those of metal and Si, for example, SiOC is used with a thickness of 0.1 μm and 2 μm respectively in the via inner insulating film and a field top insulating film continuous to the via inner insulating film. The present disclosure can be applied to, for example, a solid-state imaging element used in an imaging device.
US10950643B2 Imaging device, method for manufacturing imaging device, and electronic device
The present disclosure relates to an imaging device, a method for manufacturing an imaging device, and an electronic device capable of reducing light entering an electric-charge holding unit in a back-illuminated imaging device. An imaging device includes: a photoelectric conversion unit; an electric-charge holding unit; a semiconductor substrate; a wiring layer; an insulation film layer; a first light-shielding film; and a second light-shielding film. The insulation film layer, the first light-shielding film, and the wiring layer are stacked on a second surface of the semiconductor substrate. The second light-shielding film includes: a first light-shielding portion extending from the first surface of the semiconductor substrate to a middle of the semiconductor substrate; a second light-shielding portion penetrating the semiconductor substrate; and a third light-shielding portion covering a part of the first surface of the semiconductor substrate. The present technology is applicable to a CMOS image sensor, for example.
US10950641B2 Image sensor and electronic device including the same
An image sensor includes a semiconductor substrate including a plurality of photo-sensing devices, a photoelectric conversion device disposed on the semiconductor substrate and absorbing the mixed light of a first color and a second color, and a color filter disposed on one side of the photoelectric conversion device and configured to selectively transmit a mixed light including a third color, and an electronic device including the image sensor is provided.
US10950640B2 Image sensor
An image sensor includes a plurality of pixels, at least one of the pixels comprising: a photodiode configured to generate charges in response to light; and a pixel circuit disposed on the substrate, and including a storage transistor configured to store the charges generated by the photodiode, and a transfer transistor connected between the storage transistor and a floating diffusion node, wherein a potential of a boundary region between the storage transistor and the transfer transistor has a first potential when the transfer transistor is in a turned-off state, and has a second potential, lower than the first potential, when the transfer transistor is in a turned-on state.
US10950632B2 Array substrate, method for fabricating the same and display panel
An array substrate, a method for fabricating the array substrate and a display panel. The array substrate is provided with at least one isolation mesa in each of multiple pixel grooves in a pixel-defining layer, so that a light-emitting layer of a second sub-pixel located on the isolation mesa and a light-emitting layer of a first sub-pixel located on an exposed portion of a bottom surface of the pixel groove are on different planes and thereby isolated. It is prevented that an adjacent sub-pixel is influenced via the light-emitting layer, in a case that the anode of the second sub-pixel and the anode of the first sub-pixel receive different voltages. The isolation mesa does not form a non-emitting region in the pixel groove. An aperture ratio of the array substrate is not reduced. High PPI of the array substrate is ensured.
US10950631B1 Semiconductor-on-insulator wafer having a composite insulator layer
Various embodiments of the present disclosure are directed towards a semiconductor wafer. The semiconductor wafer comprises a handle wafer. A first oxide layer is disposed over the handle wafer. A device layer is disposed over the first oxide layer. A second oxide layer is disposed between the first oxide layer and the device layer, wherein the first oxide layer has a first etch rate for an etch process and the second oxide layer has a second etch rate for the etch process, and wherein the second etch rate is greater than the first etch rate.
US10950629B2 Three-dimensional flat NAND memory device having high mobility channels and methods of making the same
A three-dimensional memory device includes alternating stacks of insulating strips and electrically conductive strips laterally spaced apart by line trenches, and an alternating two-dimensional array of memory stack assemblies and dielectric pillar structures located in the line trenches. Each of the line trenches is filled with a respective laterally alternating sequence of memory stack assemblies and dielectric pillar structures. Each memory stack assembly includes a vertical semiconductor channel and a pair of memory film. The vertical semiconductor channel includes a semiconductor channel layer having large grains, which can be provided by a selective semiconductor growth from seed semiconductor material layers, sacrificial semiconductor material layers, or a single crystalline semiconductor material in a semiconductor substrate underlying the alternating stacks.
US10950620B2 Vertical-type memory device
A vertical-type memory device a vertical-type memory device comprising a substrate including a first region and a second region, adjacent to the first region, a first conductive layer extending on the first region and the second region, and a second conductive layer extending on the first region and the second region, the second conductive layer stacked on the first conductive layer. An upper surface of the substrate has a step portion at a boundary between the first region and the second region, and the upper surface of the substrate in the first region is lower than in the second region.
US10950618B2 Memory arrays
A memory array comprises vertically-alternating tiers of insulative material and memory cells. The memory cells individually comprise a transistor comprising first and second source/drain regions having a channel region there-between and a gate operatively proximate the channel region. The individual memory cells comprise a capacitor comprising first and second electrodes having a capacitor insulator there-between. The first electrode electrically couples to the first source/drain region. Wordline structures extend elevationally through the insulative material and the memory cells of the vertically-alternating tiers. Individual of the gates that are in different of the memory cell tiers directly electrically couple to individual of the wordline structures. Sense-lines electrically couple to multiple of the second source/drain regions of individual of the transistors. Other embodiments are disclosed.
US10950616B2 3-dimensional NOR strings with segmented shared source regions
A NOR string includes a number of individually addressable thin-film storage transistors sharing a bit line, with the individually addressable thin-film transistors further grouped into a predetermined number of segments. In each segment, the thin-film storage transistors of the segment share a source line segment, which is electrically isolated from other source line segments in the other segments within the NOR string. The NOR string may be formed along an active strip of semiconductor layers provided above and parallel a surface of a semiconductor substrate, with each active strip including first and second semiconductor sublayers of a first conductivity and a third semiconductor sublayer of a second conductivity, wherein the shared bit line and each source line segment are formed in the first and second semiconductor sublayers, respectively.
US10950614B2 Single poly non-volatile memory device, method of manufacturing the same and single poly non-volatile memory device array
A single poly non-volatile memory device that includes: a first type lower well; first and second wells separately formed in an upper portion of the first type lower well; a source electrode, a selection transistor, a sensing transistor, and a drain electrode sequentially disposed in an upper portion of the first well. A control gate is formed in an upper portion of the second well with separated on an opposite side of the source electrode from the first well and connected to the gate of the sensing transistor.
US10950611B2 Semiconductor device and manufacturing method thereof
A semiconductor device includes a non-volatile memory. The non-volatile memory includes a first dielectric layer disposed on a substrate, a floating gate disposed on the dielectric layer, a control gate. A second dielectric layer is disposed between the floating gate and the control gate, having one of a silicon nitride layer, a silicon oxide layer and multilayers thereof. A third dielectric layer is disposed between the second dielectric layer and the control gate, and includes a dielectric material having a dielectric constant higher than silicon nitride.
US10950608B2 Semiconductor device having junctionless vertical gate transistor and method of manufacturing the same
A junctionless vertical gate transistor includes an active pillar vertically protruding from a substrate and including a first impurity region, a second impurity region and a third impurity region sequentially formed over the first impurity region; gate electrodes coupled to sidewalls of the second impurity region; and bit lines arranged in a direction of intersecting with the gate electrodes and each contacting the first impurity region. The first to the third impurity regions include impurities of the same polarity.
US10950606B2 Dual fin endcap for self-aligned gate edge (SAGE) architectures
Dual fin endcaps for self-aligned gate edge architectures, and methods of fabricating dual fin endcaps for self-aligned gate edge architectures, are described. In an example, a semiconductor structure includes an I/O device having a first plurality of semiconductor fins disposed above a substrate and protruding through an uppermost surface of a trench isolation layer. A logic device having a second plurality of semiconductor fins is disposed above the substrate and protrudes through the uppermost surface of the trench isolation layer. A gate edge isolation structure is disposed between the I/O device and the logic device. A semiconductor fin of the first plurality of semiconductor fins closest to the gate edge isolation structure is spaced farther from the gate edge isolation structure than a semiconductor fin of the second plurality of semiconductor fins closest to the gate edge isolation structure.
US10950592B2 Display panel and method of fabricating the same, display device
A display panel and a method of fabricating the same, and a display device are provided, the display panel includes a display substrate a package substrate opposite to each other, the display substrate includes a first base substrate; and a first electrode, an electroluminescent layer and a second electrode disposed on the first base substrate in sequence; the package substrate includes a second base substrate; and a conductive layer on the second base substrate, the conductive layer and the second electrode facing towards each other; the display panel further includes a conductive adhesive between the second electrode and the conductive layer, the conductive adhesive is configured to bond the display substrate with the package substrate, and electrically connect the second electrode with the conductive layer.
US10950587B2 Printed circuit board and package structure
A printed circuit board includes an insulating material with a bump pad buried in one surface, an adhesive layer stacked on the one surface of the insulating material, an insulating layer stacked on the adhesive layer, and a cavity passing through both of the adhesive layer and the insulating layer to expose the bump pad, wherein the cavity has a cross-sectional area decreasing in a direction toward the insulating material.
US10950586B2 Semiconductor devices having upper and lower solder portions and methods of fabricating the same
A semiconductor device includes a package substrate, a semiconductor chip on a first region of the package substrate, and a solder bump on a second region of the package substrate. The solder bump includes a core portion and a peripheral portion encapsulating the core portion. The peripheral portion includes a first segment with a first melting point and a second segment with a second melting point that is less than the first melting point.
US10950582B2 Semiconductor power module
A semiconductor power module including an insulating substrate having one surface and another surface, an output side terminal arranged at a one surface side of the insulating substrate, a first power supply terminal arranged at the one surface side of the insulating substrate, a second power supply terminal to which a voltage of a magnitude different from a voltage applied to the first power supply terminal is to be applied, and arranged at another surface side of the insulating substrate so as to face the first power supply terminal across the insulating substrate, a first switching device arranged at the one surface side of the insulating substrate and electrically connected to the output side terminal and the first power supply terminal, and a second switching device arranged at the one surface side of the insulating substrate and electrically connected to the output side terminal and the second power supply terminal.
US10950581B2 3D semiconductor device and structure
A 3D semiconductor device including: a first level including a first layer, the first layer including first transistors, and where the first level includes a second layer, the second layer including first interconnections; a second level overlaying the first level, where the second level includes a third layer, the third layer including second transistors, where the second level includes a fourth layer, the fourth layer including second interconnections; and a plurality of connection paths, where the plurality of connection paths provides connections from a plurality of the first transistors to a plurality of the second transistors, where the second level is bonded to the first level, where the bonded includes oxide to oxide bond regions, where the bonded includes metal to metal bond regions, where the second level includes at least one memory array, where the third layer includes crystalline silicon, where the second layer includes radio frequency type circuits.
US10950579B2 Integrated circuit package and method of forming same
A package and a method of forming the same are provided. A method includes forming a first die structure. The first die structure includes a die stack and a stacked dummy structure bonded to a carrier. A second die structure is formed. The second die structure includes a first integrated circuit die. The first die structure is bonded to the second die structure by bonding a topmost integrated circuit die of the die stack to the first integrated circuit die. The topmost integrated circuit die of the die stack is a farthest integrated circuit die of the die stack from the carrier. A singulation process is performed on the first die structure to form a plurality of individual die structures. The singulation process singulates the stacked dummy structure into a plurality of individual stacked dummy structures.
US10950578B2 Semiconductor device, semiconductor package and method of manufacturing the same
A semiconductor package includes a first semiconductor chip and a second semiconductor chip stacked on the first semiconductor chip. The first semiconductor chip includes a substrate having a first via hole, an insulation interlayer formed on the substrate and having a first bonding pad in an outer surface thereof and a second via hole connected to the first via hole and exposing the first bonding pad, and a plug structure formed within the first and second via holes to be connected to the first bonding pad. The second semiconductor chip includes a second bonding pad bonded to the plug structure which is exposed from a surface of the substrate of the first semiconductor chip.
US10950575B2 Package structure and method of forming the same
An embodiment is a structure including a first die, a molding compound at least laterally encapsulating the first die, a first redistribution structure including metallization patterns extending over the first die and the molding compound, a first conductive connector comprising a solder ball and an under bump metallization coupled to the first redistribution structure, and an integrated passive device bonded to a first metallization pattern in the first redistribution structure with a micro bump bonding joint, the integrated passive device being adjacent the first conductive connector.
US10950573B2 Lead-free column interconnect
Disclosed are interconnects in which one substrate having a high melting temperature, lead-free solder column is joined to a second substrate having openings filled with a low melting temperature, lead-free solder such that the high melting temperature, lead-free solder column penetrates into the low melting temperature, lead-free solder so as to obtain a short moment arm of solder.
US10950570B2 Bonding wire for semiconductor device
There is provided a bonding wire that improves bonding reliability of a ball bonded part and ball formability and is suitable for on-vehicle devices.The bonding wire for a semiconductor includes a Cu alloy core material, and a Pd coating layer formed on a surface of the Cu alloy core material, and is characterized in that the Cu alloy core material contains Ni, a concentration of Ni is 0.1 to 1.2 wt. % relative to the entire wire, and a thickness of the Pd coating layer is 0.015 to 0.150 μm.
US10950564B2 Methods of forming microelectronic devices having a patterned surface structure
A connector structure and a manufacturing method thereof are provided. The connector structure includes a semiconductor substrate, a metal layer, a passivation layer, and a conductive structure. The metal layer is over the semiconductor substrate. The passivation layer is over the metal layer and includes an opening. The conductive structure is in contact with the metal layer in a patterned surface structure of the conductive structure through the opening of the passivation layer.
US10950563B2 Chip packages and methods for forming the same
A chip package for optical sensing includes a substrate, and a semiconductor device positioned on the substrate and coupled to the substrate through a first conducting element. Two molding processes are applied, to form a first colloid body on the substrate so as to cover the semiconductor device and, on the first colloid body, to form a second colloid body which covers an optical device. The optical device is electrically connected to the substrate through a second conducting element. The light transmittance of the second colloid body exceeds that of the first colloid body.
US10950560B2 Semiconductor module having slits and shunt resistor
Lands (11c and 11d) are parts of base plates (104c and 104d), and electrodes of a shunt resistor (103U) are put on and connected to the lands (11c and 11d). Slits (130 and 131) are formed in the lands (11c and 11d) to separate a main electric circuit in which a main current flows and control terminals (123 and 124) with which the electric potentials of the electrodes of the shunt resistor (103U) are detected. Leading end portions of the slits (130 and 131) extend to the vicinity of the electrodes of the shunt resistor (103U).
US10950559B2 Protected electronic integrated circuit chip
An electronic integrated circuit chip includes a semiconductor substrate with a front side and a back side. A first reflective shield is positioned adjacent the front side of the semiconductor substrate and a second reflective shield is positioned adjacent the back side of the semiconductor substrate. Photons are emitted by a photon source to pass through the semiconductor substrate and bounce off the first and second reflective shields to reach a photon detector at the front side of the semiconductor substrate. The detected photons are processed in order to determine whether to issue an alert indicating the existence of an attack on the electronic integrated circuit chip.
US10950556B2 EMI shielding structure in InFO package
A method includes forming a metal post over a first dielectric layer, attaching a second dielectric layer over the first dielectric layer, encapsulating a device die, the second dielectric layer, a shielding structure, and the metal post in an encapsulating material, planarizing the encapsulating material to reveal the device die, the shielding structure, and the metal post, and forming an antenna electrically coupling to the device die. The antenna has a portion vertically aligned to a portion of the device die.
US10950551B2 Embedded component package structure and manufacturing method thereof
An embedded component package structure including a dielectric structure and a component is provided. The component is embedded in the dielectric structure and is provided with a plurality of conductive pillars. The conductive pillars are exposed from an upper surface of the dielectric structure and have a first thickness and a second thickness, respectively, and the first thickness is not equal to the second thickness.
US10950547B2 Stacked IC structure with system level wiring on multiple sides of the IC die
Some embodiments of the invention provide a three-dimensional (3D) circuit that is formed by stacking two or more integrated circuit (IC) dies to at least partially overlap and to share one or more interconnect layers that distribute power, clock and/or data-bus signals. The shared interconnect layers include interconnect segments that carry power, clock and/or data-bus signals. In some embodiments, the shared interconnect layers are higher level interconnect layers (e.g., the top interconnect layer of each IC die). In some embodiments, the stacked IC dies of the 3D circuit include first and second IC dies. The first die includes a first semiconductor substrate and a first set of interconnect layers defined above the first semiconductor substrate. Similarly, the second IC die includes a second semiconductor substrate and a second set of interconnect layers defined above the second semiconductor substrate. As further described below, the first and second dies in some embodiments are placed in a face-to-face arrangement (e.g., a vertically stacked arrangement) that has the first and second set of interconnect layers facing each other. In some embodiments, a subset of one or more interconnect layers of the second set interconnect layers of the second die has interconnect wiring that carries power, clock and/or data-bus signals that are supplied to the first IC die.
US10950546B1 Semiconductor device including back side power supply circuit
A semiconductor device includes a substrate, a front side circuit disposed over a front surface of the substrate, and a backside power delivery circuit disposed over a back surface and including a back side power supply wiring coupled to a first potential. The front side circuit includes semiconductor fins and a first front side insulating layer covering bottom portions of the semiconductor fins, a plurality of buried power supply wirings embedded in the first front side insulating layer, the plurality of buried power supply wirings including a first buried power supply wiring and a second buried power supply wiring, and a power switch configured to electrically connect and disconnect the first buried power supply wiring and the second buried power supply wiring. The second buried power supply wiring is connected to the back side power supply wiring by a first through-silicon via passing through the substrate.
US10950543B2 Semiconductor device and method of manufacturing the same
The semiconductor device includes a first semiconductor substrate, a first wiring layer, a second wiring layer, a second semiconductor substrate, a first conductive portion, and a second conductive portion. The first wiring layer includes a first electrode pad and a first inductor electrically connected with each other. The second wiring layer includes a second inductor and a second electrode pad electrically connected with each other. The first conductive portion is formed in the second semiconductor substrate, the second wiring layer, and the first wiring layer so as to reach the first electrode pad from the back surface of the second semiconductor substrate. The second conductive portion is formed in the second semiconductor substrate and the second wiring layer so as to reach the second electrode pad from the back surface of the second semiconductor substrate. The first inductor and the second inductor are disposed so as to face each other.
US10950531B2 Semiconductor device package and method of manufacturing the same
A semiconductor device package includes a first dielectric layer, a conductive pad and an electrical contact. The first dielectric layer has a first surface and a second surface opposite to the first surface. The conductive pad is disposed within the first dielectric layer. The conductive pad includes a first conductive layer and a barrier. The first conductive layer is adjacent to the second surface of the first dielectric layer. The first conductive layer has a first surface facing the first surface of the first dielectric layer and a second surface opposite to the first surface. The second surface of the first conductive layer is exposed from the first dielectric layer. The barrier layer is disposed on the first surface of the first conductive layer. The electrical contact is disposed on the second surface of the first conductive layer of the conductive pad.
US10950530B2 Semiconductor device package and method of manufacturing the same
A semiconductor device package includes a first substrate, a second substrate, a first support element, a second support element and an electronic component. The first substrate has a first surface and a second surface opposite to the first surface. The first substrate has a conductive pad adjacent to the first surface of the first substrate. The second substrate is disposed over the first surface of the first substrate. The first support element is disposed between the first substrate and the second substrate. The first support element is disposed adjacent to an edge of the first surface of the first substrate. The second support element is disposed between the first substrate and the second substrate. The second support element is disposed far away from the edge of the first surface of the first substrate. The electronic component is disposed on the second surface of the first substrate. A projection line of a contact point between the second support element and the conductive pad on the second surface of the first substrate is physically spaced apart from a projection line of a lateral surface of the electronic component on the second surface of the first substrate.
US10950529B2 Semiconductor device package
A semiconductor device package includes a substrate, a first insulation layer and an electrical contact. The first insulation layer is disposed on the first surface of the substrate. The electrical contact is disposed on the substrate and has a first portion surrounded by the first insulation layer and a second portion exposed from the first insulation layer, and a neck portion between the first portion and the second portion of the electrical contact. Further, the second portion tapers from the neck portion.
US10950528B2 Chip package assembly and method for manufacturing the same
A chip package assembly and a method for manufacturing the same are provided. A die is attached to one of pins located around a chip carrier, so that an electronic component such as a diode is packaged in the chip package assembly and is electrically connected in series with other dies inside the package, thereby improving the degree of integration of the chip package assembly, and reducing a volume of the external circuit.
US10950526B2 Semiconductor device
A semiconductor device may include a first conductor plate, a first semiconductor element that is a sole semiconductor element disposed on a main surface of the first conductor plate, an encapsulant encapsulating the first semiconductor element and a first power terminal connected to the first conductor plate within the encapsulant and projecting from the encapsulant along a first direction. The main surface of the first conductor plate may include a first side located close to the first power terminal and a second side located opposite the first side with respect to the first direction. With respect to the first direction, a distance from the first semiconductor element to the first side may be larger than a distance from the first semiconductor element to the second side.
US10950523B2 Semiconductor devices having through electrodes and methods for fabricating the same
The semiconductor device includes a substrate including an integrated circuit and a contact that are electrically connected to each other, an insulation layer covering the substrate and including metal lines, and a through electrode electrically connected to the integrated circuit. The insulation layer includes an interlayer dielectric layer on the substrate and an intermetal dielectric layer on the interlayer dielectric layer. The metal lines include a first metal line in the interlayer dielectric layer and electrically connected to the contact, and a plurality of second metal lines in the intermetal dielectric layer and electrically connected to the first metal line and the through electrode. The through electrode includes a top surface higher than a top surface of the contact.
US10950521B2 Thermal interface material layer and package-on-package device including the same
Provided are a thermal interface material layer and a package-on-package device including the same. The package-on-package device may include a thermal interface material layer interposed between lower and upper semiconductor packages and configured to have a specific physical property. Accordingly, it is possible to prevent a crack from occurring in a lower semiconductor chip, when a solder ball joint process is performed to mount the upper semiconductor package on the lower semiconductor package.
US10950520B2 Electronic package, method for fabricating the same, and heat dissipator
An electronic package is provided. A heat dissipator is bonded via a thermal interface layer to an electronic component disposed on a carrier. The heat dissipator has a concave-convex structure to increase a heat-dissipating area of the thermal interface layer. Therefore, the heat dissipator has a better heat-dissipating effect.
US10950519B2 Integrated circuit package and method
In an embodiment, a device includes: an integrated circuit die; an encapsulant at least partially surrounding the integrated circuit die, the encapsulant including fillers having an average diameter; a through via extending through the encapsulant, the through via having a lower portion of a constant width and an upper portion of a continuously decreasing width, a thickness of the upper portion being greater than the average diameter of the fillers; and a redistribution structure including: a dielectric layer on the through via, the encapsulant, and the integrated circuit die; and a metallization pattern having a via portion extending through the dielectric layer and a line portion extending along the dielectric layer, the metallization pattern being electrically coupled to the through via and the integrated circuit die.
US10950515B2 Semiconductor device, manufacturing method of semiconductor device, and electronic apparatus
To prevent deterioration of light incident/emission environment in a semiconductor device in which a transmissive material is laminated on an optical element forming surface via an adhesive.The semiconductor device includes a semiconductor element manufactured by chip size packaging, a transmissive material which is bonded with an adhesive to cover an optical element forming surface of the semiconductor element, and a side surface protective resin which covers an entire side surface where a layer structure of the semiconductor element and the transmissive material is exposed.
US10950513B2 Method for integrating power chips and power electronics modules
The method comprises the steps of 1) producing first and second blanks (EB1, EB2) by laminating insulating and conductive inner layers (PP, CP, E1) on copper plates forming a base (MB1, MB2), at least one electronic chip (MT, MD) being sandwiched between the blanks, said blanks being produced such that their upper lamination surfaces have matching profiles, 2) stacking and fitting the blanks via their matching profiles, and 3) press-fitting the blanks to form a laminated sub-assembly for an integrated power electronics device. The method uses IMS-type techniques.
US10950510B2 Semiconductor device and method of fabricating the same
A semiconductor device includes a base substrate, a protruding structure on the base substrate, a porous film on a side surface and an upper surface of the protruding structure, and an air gap between at least a part of the side surface of the protruding structure and the porous film.
US10950509B2 Semiconductor device with integrated shunt resistor
A semiconductor device includes a first chip pad, a power semiconductor chip arranged on the first chip pad and including at least a first and a second power electrode, and a clip connected to the first power electrode. In this case, an integral part of the clip forms a shunt resistor and a first contact finger of the shunt resistor is embodied integrally with the clip.
US10950508B2 Ion depth profile control method, ion implantation method and semiconductor device manufacturing method based on the control method, and ion implantation system adapting the control method
An ion depth profile control method includes performing reinforcement learning, whereby a similarity between an ion depth profile and a box profile is output as a reward when the similarity is equal to or greater than a set criterion, the ion depth profile being an ion concentration according to a wafer depth in an ion implantation process, and the box profile being a target profile, obtaining at least one process condition of the ion implantation process as a result of the reinforcement learning, and generating a process recipe regarding the at least one process condition.
US10950507B2 Electrical testing method of interposer
An interposer is provided which includes: a substrate having a first surface with a plurality of first conductive pads and a second surface opposite to the first surface, the second surface having a plurality of second conductive pads; a plurality of conductive through holes penetrating the first and second surfaces of the substrate and electrically connecting the first and second conductive pads; and a first removable electrical connection structure formed on the first surface and electrically connecting a portion of the first conductive pads so as to facilitate electrical testing of the interposer.
US10950506B2 Forming single and double diffusion breaks
Fabrication methods and resulting structures for single and double diffusion breaks are provided. Aspects include forming one or more fins on a substrate, the substrate including a first region and a second region, forming a plurality of sacrificial gate structures over channel regions associated with the one or more fins, forming a single diffusion break cavity in the first region of the substrate, forming a double diffusion break cavity in the second region of the substrate, depositing a first dielectric material in the single diffusion break cavity, and depositing a second dielectric material in the double diffusion break cavity.
US10950503B2 Method of separating electronic devices having a back layer and apparatus
A method of singulating a wafer includes providing a wafer having a plurality of die formed as part of the wafer and separated from each other by spaces, wherein the wafer has first and second opposing major surfaces, and wherein a layer of material is formed along the second major surface. The method includes placing the wafer onto a carrier substrate. The method includes singulating the wafer through the spaces to form singulation lines after the placing the wafer on the carrier substrate, wherein singulating comprises stopping in proximity to the layer of material. The method includes applying a pressure to the entire wafer thereby separating the layer of material in the singulation lines, wherein applying the pressure comprises using a fluid. The method provide a way to batch separate layers of material disposed on wafers after singulating the wafers.
US10950502B2 Method of manufacturing a chip package
A method for manufacturing chip package is disclosed. The method includes providing a wafer having conductive bumps disposed on a first surface; forming a first adhesion layer and a first carrier board; thinning the wafer; forming a first insulating layer; forming a second adhesion layer and a second carrier board; heating the first adhesion layer to a first temperature to remove the first carrier board and the first adhesion layer; forming trenches; forming a third adhesion layer and a third carrier board; heating the second adhesion layer to a second temperature to remove the second carrier board and the second adhesion layer; forming a second insulating layer filling the trenches; heating the third adhesion layer to a third temperature to remove the third carrier board and the third adhesion layer; and dicing the first insulating layer and the second insulating layer along each trench.
US10950500B2 Methods and apparatus for filling a feature disposed in a substrate
Embodiments of methods and apparatus for filling a feature disposed in a substrate are disclosed herein. In some embodiments, a method for filling a feature disposed in a substrate includes (a) depositing a metal within the feature to a first predetermined thickness in a first process chamber; (b) depositing the metal within the feature to a second predetermined thickness in a second process chamber; (c) etching the metal deposited in (b) to remove an overhang of the metal at a top of the feature in a third process chamber different than the first and second process chambers; and (d) subsequent to (c), filling the feature with the metal in a fourth process chamber different than the first and third process chambers.
US10950492B2 Fabrication of vertical transport fin field effect transistors with a self-aligned separator and an isolation region with an air gap
A method of forming a vertical transport fin field effect transistor with self-aligned dielectric separators, including, forming a bottom source/drain region on a substrate, forming at least two vertical fins on the bottom source/drain region, forming a protective spacer on the at least two vertical fins, forming a sacrificial liner on the protective spacer, forming an isolation channel in the bottom source/drain region and substrate between two of the at least two vertical fins, forming an insulating plug in the isolation channel, wherein the insulating plug has a pinch-off void within the isolation channel, and forming the dielectric separator on the insulating plug.
US10950491B2 Method for transferring a useful layer
A useful layer is layered onto a support by a method that includes the steps of forming an embrittlement plane by implanting light elements into a first substrate, so as to form a useful layer between such plane and one surface of the first substrate; applying the support onto the surface of the first substrate so as to form an assembly to be fractured; applying a heat treatment for embrittling the assembly to be fractured; and initiating and propagating a fracture wave into the first substrate along the embrittlement plane. The fracture wave is initiated in a central area of the embrittlement plane and the propagation speed of the wave is controlled so that the velocity thereof is sufficient to cause the interactions of the fracture wave with acoustic vibrations emitted upon the initiation and/or propagation thereof, if any, are confined to a peripheral area of the useful layer.
US10950489B2 Devices and methods for radiation hardening integrated circuits using shallow trench isolation
Designs for radiation hardening CMOS devices and integrated circuits using shallow trench isolation (STI) improve total ionizing dose (TID) radiation response by reducing the leakage currents from source to drain associated with corners and sidewalls of trench insulator edges passing under the gate in an NMOS device while maintaining high breakdown voltage. A silicide block pattern is used in combination with pullback of N+ source and drain regions from at least a portion of these edges of the active region. Additional p-type implants along these edges further increase parasitic threshold voltages and enhance radiation hardness. A process for fabricating devices and integrated circuits incorporating these features is also provided. These techniques and processes are applied to exemplary low-voltage NMOS transistors having straight gates and to high-voltage annular-gate devices, as well as to device-to-device isolation in integrated circuits.
US10950486B2 Wafer tray
A wafer tray includes a tray main body and a plurality of wafer guides. The tray main body includes a major surface having a first diameter. A wafer placing region is defined on the major surface. A wafer having a second diameter smaller than the first diameter can be placed in the wafer placing region. The plurality of wafer guides is discretely disposed outside the wafer placing region and adjacent to an outline of the wafer placing region on the major surface. Each of the wafer guides includes a back surface fixed in contact with the major surface and a top portion higher than the major surface of the tray main body.
US10950479B2 Method for manufacturing light emitting device
A method of manufacturing a light emitting device is provided. Multiple light-emitting elements are formed on a substrate in a first density. A first transferring process is performed to transfer the light emitting elements to a transition carrier. The light-emitting elements are disposed on the transition carrier in a second density. The first density is greater than the second density. Multiple electronic devices are disposed on the transition carrier in correspondence with the light-emitting elements. An encapsulation layer is formed on the transition carrier to cover the light emitting elements and the electronic devices. Portions of the encapsulation layer are removed to form multiple package units including the light-emitting elements and the electronic devices. A second transferring process is performed to transfer the package units to an array substrate. The encapsulation layer is removed to expose the light emitting elements and the electronic devices. The light emitting elements and the electronic devices are electrically connected to the array substrate.
US10950476B2 Electronic device manufacturing load port apparatus, systems, and methods
A load port includes a panel including a back surface configured to face a front side of a housing of a factory interface. A groove formed in the back surface extends along an outer portion of the panel. The groove includes a flared base region and a neck region that extends to the flared base region. The load port further includes a seal seated in the groove. The seal is configured to engage the front side of the housing responsive to the panel being coupled to the front side of the housing.
US10950469B2 Semiconductor manufacturing apparatus and method of manufacturing semiconductor device
In one embodiment, a semiconductor manufacturing apparatus includes a polishing table configured to hold a polishing pad, a polishing head configured to hold a substrate to be polished by the polishing pad, and a polishing liquid feeder configured to feed a polishing liquid to the polishing pad. The apparatus further includes a heat exchanger configured to be placed on the polishing pad and control temperatures of the polishing pad and the polishing liquid, and one or more protruding portions provided on a side face or a bottom face of the heat exchanger.
US10950465B2 Method of cleaning substrate processing apparatus and system of cleaning substrate processing apparatus
Disclosed is a method of cleaning a substrate processing apparatus in which a substrate having a surface wet by a liquid is brought into contact with a supercritical fluid so as to perform a drying process of drying the substrate. The method includes a cleaning gas filling process and an exhausting process. The cleaning gas filling process fills a cleaning gas containing isopropyl alcohol in the substrate processing apparatus. The exhausting process exhausts the cleaning gas from an inside of the substrate processing apparatus after the cleaning gas filling process.
US10950463B2 Manufacturing trapezoidal through-hole in component carrier material
A method of manufacturing a component carrier is disclosed. The method includes providing an electrically insulating layer structure having a front side and a back side, wherein the front side is covered by a first electrically conductive layer structure and the back side is covered by a second electrically conductive layer structure, carrying out a first opening process, such as a first laser drilling, through the first electrically conductive layer structure and into the electrically insulating layer structure from the front side to thereby form a blind hole in the electrically insulating layer structure, and thereafter carrying out a second opening process, such as a second laser drilling, through the second electrically conductive layer structure and through the electrically insulating layer structure from the back side to thereby extend the blind hole into a through hole, in particular a laser through hole, with substantially trapezoidal shape.
US10950462B2 Diamond substrate producing method
A diamond substrate producing method includes a belt-shaped separation layer forming step of applying a laser beam to a diamond ingot as relatively moving the ingot and a focal point of the laser beam in a [110]-direction perpendicular to a (110)-plane, thereby forming a belt-shaped separation layer extending in the [110]-direction inside the ingot, an indexing step of relatively moving the ingot and the focal point in an indexing direction parallel to a (001)-plane and perpendicular to the [110]-direction, a planar separation layer forming step of repeating the belt-shaped separation layer forming step and the indexing step to thereby form a planar separation layer parallel to the (001)-plane inside the ingot, the planar separation layer being composed of a plurality of belt-shaped separation layers arranged side by side in the indexing direction, and a separating step of separating a substrate from the diamond ingot along the planar separation layer.
US10950453B2 Advanced etching technologies for straight, tall and uniform fins across multiple fin pitch structures
Embodiments of the invention describe semiconductor devices with high aspect ratio fins and methods for forming such devices. According to an embodiment, the semiconductor device comprises one or more nested fins and one or more isolated fins. According to an embodiment, a patterned hard mask comprising one or more isolated features and one or more nested features is formed with a hard mask etching process. A first substrate etching process forms isolated and nested fins in the substrate by transferring the pattern of the nested and isolated features of the hard mask into the substrate to a first depth. A second etching process is used to etch through the substrate to a second depth. According to embodiments of the invention, the first etching process utilizes an etching chemistry comprising HBr, O2 and CF4, and the second etching process utilizes an etching chemistry comprising Cl2, Ar, and CH4.
US10950451B2 Cutting apparatus
A cutting apparatus includes a cutting unit that cuts a workpiece included in a frame unit, an ultraviolet ray irradiation unit that irradiates the frame unit with ultraviolet rays, and a control unit. The control unit includes a processing mode registration section in which commands to be output to components. The processing mode registration section registers therein a command in a cutting apparatus mode that causes the cutting unit to cut the workpiece and a command in an ultraviolet ray irradiation apparatus mode that causes the ultraviolet ray irradiation unit to irradiate the frame unit with ultraviolet rays.
US10950450B2 Silicide films through selective deposition
Methods for forming silicide films are disclosed. Methods of selectively depositing metal-containing films on silicon surfaces which are further processed to form silicide films are disclosed. Specific embodiments of the disclosure relate to the formation of silicide films on FinFET structures without the formation of a metal layer on the dielectric.
US10950445B2 Deposition of metal silicide layers on substrates and chamber components
Embodiments of the present disclosure generally relate to methods and apparatus for depositing metal silicide layers on substrates and chamber components. In one embodiment, a method of forming a hardmask includes positioning the substrate having a target layer within a processing chamber, forming a seed layer comprising metal silicide on the target layer and depositing a tungsten-based bulk layer on the seed layer, wherein the metal silicide layer and the tungsten-based bulk layer form the hardmask. In another embodiment, a method of conditioning the components of a plasma processing chamber includes flowing an inert gas comprising argon or helium from a gas applicator into the plasma processing chamber, exposing a substrate support to a plasma within the plasma processing chamber and forming a seasoning layer including metal silicide on an aluminum-based surface of the substrate support.
US10950441B1 Low energy e-beam contact printing lithography
A method comprising contact-free positioning a template mask wafer having a template device pattern relative to a predetermined surface area section of a device pattern wafer. The template mask wafer includes a semitransparent layer. The method includes contact-free aligning one or more mask alignment marks of the template mask wafer with one or more alignment marks of the device pattern wafer and contacting the mask wafer on the device pattern wafer. The method includes transferring a template device pattern of the template mask wafer onto the predetermined surface area section of the device pattern wafer using an electron beam while heat conduction is distributed throughout the mask wafer to maintain a low temperature rise in the mask wafer during the transferring. A system is also provided.
US10950440B2 Patterning directly on an amorphous silicon hardmask
The invention herein includes enhancing the surface of an amorphous silicon hardmask through implantation of nonpolar, hydrophobic elements, resulting in increased hydrophobicity and increased resist adhesion of the amorphous silicon surface. According to the invention, implanting the hydrophobic elements may involve introduction of the hydrophobic elements into the surface of the amorphous silicon by way of low energy implantation and plasma treatment. The implanted hydrophobic element may be Boron, Xenon, Fluorine, Phosphorus, a combination thereof, or other hydrophobic elements. According to the invention, the surface of the amorphous silicon is enhanced with 10-15% hydrophobic element, however in other embodiments, this composition may be adjusted as needed. In any case, however, the invention herein includes maintaining an etch selectivity of the bulk amorphous silicon hardmask.
US10950437B2 Laser annealing method, laser annealing apparatus, and thin film transistor substrate
A laser annealing method is for irradiating an amorphous silicon film formed on a substrate 6 with laser beams and crystalizing the amorphous silicon film, wherein a plurality of first and second TFT formation portions 23, 24 on the substrate 6 are irradiated with laser beams at differing irradiation doses so as to crystalize the amorphous silicon film in the first TFT formation portions 23 into a polysilicon film having a crystalline state and crystalize the amorphous silicon film in the second TFT formation portions 24 into a polysilicon film having another crystalline state that is different from that of the polysilicon film in the first TFT formation portions 23.
US10950433B2 Methods for enhancing selectivity in SAM-based selective deposition
Methods of improved selectively for SAM-based selective depositions are described. Some of the methods include forming a SAM on a second surface and a carbonized layer on the first surface. The substrate is exposed to an oxygenating agent to remove the carbonized layer from the first surface, and a film is deposited on the first surface over the protected second surface. Some of the methods include overdosing a SAM molecule to form a SAM layer and SAM agglomerates, depositing a film, removing the agglomerates, reforming the SAM layer and redepositing the film.
US10950421B2 Using modeling for identifying a location of a fault in an RF transmission system for a plasma system
Systems and methods for identifying a location of a fault in an RF transmission system includes characterizing the RF transmission system and selecting one of the stage in the RF transmission system as an initial selected stage. An output of the initial selected stage can be measured in the characterized RF transmission system. The measured output of the initial selected stage is propagated through a baseline RF model and a point of deflection is identified in a resulting RF model of the RF transmission system.
US10950420B2 Atmospheric pressure plasma device
An atmospheric pressure plasma device including a plasma head; a gas tube configured to supply a gas to the plasma head; a flow rate controller configured to control a flow rate of the gas supplied to the gas tube; a pressure sensor arranged downstream of the flow rate controller and configured to detect a pressure in the gas tube; and a determining section configured to determine a state of the device based on how the pressure in the gas tube deviates from a standard value specified for each flow rate of the supplied gas. As a result, it is possible to determine the gas leakage of the atmospheric pressure plasma device. Further, it is possible to determine whether plasma is being generated in a favorable state.
US10950407B2 Electron gun
An electron gun comprising a cathode having an electron emitting surface and whose planar shape is circular; a heater; an anode being arranged to oppose the cathode; and a heat resistant member. The anode applies a positive potential relative to the cathode to extract electrons in a predetermined direction. The cathode has, in a central portion thereof, a through hole along a central axis of the cathode. The heat resistant member has a first portion to close the through hole and a second portion being positioned between the cathode and the heater.
US10950405B1 Locking an enclosed switch, a bus plug or a panelboard switch
An enclosed switch, a bus plug or a panelboard switch with means to lock them in an OFF position are provided. An enclosed switch comprises an operating handle with a first hole situated at a distal end and an enclosure including a cover. The operating handle is disposed external to the enclosure. The cover having a flange including a tab formed with a second hole that is configured to be aligned with the first hole of the operating handle in order to lock the enclosed switch in an OFF position without the use of a handle guard.
US10950403B2 Remote operated ground fault circuit breaker
A circuit interrupter electrically connects a line terminal to a load terminal in a closed condition and electrically disconnects the line terminal from the load terminal in the open condition. A controller includes a fault detector configured to detect a fault in an electrical signal in a load circuit, such that when a fault is detected on the load circuit, the fault detector causes actuation of the interrupter to the open condition. The controller is adapted to receive an off command, and in response to the off command, generate a simulated fault in the load circuit, such that the fault detector causes actuation of the interrupter to the open condition, such that one and the same interrupter is employed for both fault tripping and commanded tripping.
US10950401B2 Thermally triggered, mechanical switching device
The invention relates to a thermally triggered, mechanical switching device, consisting of a heat-sensitive means and a mechanical force-storage means, wherein the heat-sensitive means blocks or unblocks the movement path of a switching piece; furthermore, the switching piece is preloaded and held by the mechanical force-storage means, and comprising a housing that accommodates the aforementioned means. According to the invention, the housing is designed as a cartridge-shaped shell which receives a plunger in the interior thereof, which plunger is mounted in a movable manner through a first end-side opening in the housing and is supported against a fusible shaping part under pretension, wherein the fusible shaping part is arranged so as to cover a second opening, which is located opposite the first end-side opening, in such a way that, when the melting temperature of the fusible shaping part is reached, said fusible shaping part is displaced by the plunger and the plunger takes on a changed position.
US10950398B2 Four-way switch including malfunction prevention structure
A four-way switch including a knob configured to be tilted in four directions to perform a switching operation in the four directions; a housing to which the knob is attached in a tiltable manner; a stopper formed on a surface of the housing so as to protrude by a predetermined height, the stopper being configured to limit a downward motion of the knob by contacting a portion of a lower surface of the knob while the knob is tilted; a guide protrusion formed on the lower surface of the knob so as to protrude by a predetermined length; and a guide groove portion formed on the surface of the housing so as to protrude by a predetermined height so as to face the guide protrusion, the guide groove portion including a recess portion having a structure that engages with the guide protrusion.
US10950397B2 Switching and operating assembly of a switch
Embodiments disclosed provide a switching and operating assembly of a switch. The switch includes a switching assembly including a switching member adapted to move between at least two positions to control an operation state of the switch; and a driving member coupled to the switching member; an operating assembly separated from and detachably arranged on the switching assembly and operable to cause the driving member to rotate; and an elastic component arranged between the switching member and the driving member to hold the switching member in one of the at least two positions. By providing the switch including a switching assembly and an operating assembly separated from each other, any one of the switching assembly and the operating assembly can be replaced separately without changing the overall height of the switch. This significantly increases the flexibility to personalize the switch.
US10950394B2 Key switch with noise reduction capability
A key switch includes a base, a key cap, a supporting mechanism, a link bar and a buffer member. The key cap is disposed above the base. The supporting mechanism is connected to the key cap and the base to allow the key cap to move relative to the base upwardly and downwardly. The link bar includes a lower linking end. The buffer member and the base are two independent components. The buffer member is disposed on the base and made of material softer than material of the base. A restraining structure is formed on the buffer member. The lower linking end movably passes through the restraining structure. When the key cap moves relative to the base upwardly and downwardly, the lower linking end is driven to move within the restraining structure correspondingly, so as to reduce noise during movement of the lower linking end relative to the base.
US10950393B2 Switch assembly with front side removability
A switch assembly includes a panel defining an aperture therethrough and a switch subassembly having a switch housing. At least one tab extends from the housing, the tab having a first portion extending away from the housing and toward the back side of the panel to a projection, the projection spaced in a longitudinal direction from the back side of the panel and laterally outward of the aperture when the tab is in a relaxed state, and a second portion that extends from the projection in the longitudinal direction and terminates in a tab end disposed within the aperture. The tab end is accessible from the front side of the panel and the tab is sufficiently flexible such that flexing the tab end inwardly from the front side causes the projection to flex inwardly from the relaxed state to a point where the projection can pass through the aperture.
US10950392B2 High performance nano/micro composite fiber capable of storing electrical energy and method for fabricating thereof
Provided a nano/micro composite fiber of the present invention, capable of storing electrical energy, comprising (a) one or more pairs of microfiber bundles consisting of graphene or graphene/carbon nanotube as an electrode active material; (b) nanofiber web surrounding the microfiber bundles, wherein the nanofiber web is coated by one or more materials selected from the group consisting of metal, carbon nanotube, activated carbon and metal oxide nanoparticle; (c) an electrolyte layer surrounding the nanofiber web and filling inner void of the microfibers and nanofiber web; (d) an insulating film sheathing the electrolyte layer.
US10950389B2 Thin-film capacitor
A thin-film capacitor satisfies a relationship of CTE1>CTE2>CTE3 regarding a linear expansion coefficient CTE1 of a base, a linear expansion coefficient CTE2 of a capacitance unit, and a linear expansion coefficient CTE3 of a barrier layer. The inventors have newly found that in a case in which such a relationship is satisfied, when a temperature falls from a deposition temperature, cracking occurring in the capacitance unit of the thin-film capacitor is prevented, and cracking occurring in the barrier layer is also prevented.
US10950382B1 Autotransformer rectifier unit with multiple alternating current level outputs
An electric power system is provided that includes a three-phase to two twelve-phase transformer. The transformer includes first and second primary winding groupings, secondary winding groupings, and third, fourth, and fifth windings. The groupings can include sub windings. First primary winding groupings are coupled to form a wye configuration and coupled to second primary winding groupings and the windings. The first of the two twelve-phase outputs at the same voltage as the input voltage while the second twelve-phase output is at a lower voltage. Diode pairs are connected to each other, each diode pair having an inner connection connected to one of the outputs of the transformer and first and second ends respectively connected to a positive dc bus and a negative dc bus. The diode pairs operatively rectify the transformer output voltage to form a DC voltage with a reduced common mode voltage.
US10950381B2 Surface-mounted LC device
A surface-mounted LC device that includes a substrate having a first surface, multiple inductors formed on the first surface and formed respectively by multiple coiled conductor patterns, a first insulating layer covering the multiple coiled conductor patterns, and a capacitor that is formed on the first insulating layer by a planar electrode. Moreover, the planar electrode covers first zones in which portions of the coiled conductor patterns are adjacent to each other and current directions are opposite to each other in a plan view of the surface-mounted LC device.
US10950380B2 Coil electronic component and method of manufacturing the same
A coil electronic component includes a magnetic body, wherein the magnetic body includes a substrate, and a coil part including patterned insulating films disposed on the substrate, a first plating layer formed between the patterned insulating films by plating, and a second plating layer disposed on the first plating layer.
US10950378B2 Methods and systems for controlling electromagnetic field generators
Disclosed are methods and apparatus for controlling electromagnetic field generation system to generate dynamic magnetic fields. The method can comprise: establishing a dynamic model that describes open-loop dynamics of the electromagnetic field generation system and has an unified state-space form with time delay; configuring a controller based on the dynamic model; applying, by the controller, a control signal to the electromagnetic field generation system; detecting one or more feedback signals from the electromagnetic field generation system; and updating, by the controller, the control signal for controlling the electromagnetic field generation system, according to a reference signal corresponding to a desired dynamic magnetic field, one or more compensated feedback signals, and system states. To address time delay and modeling error and to estimate system states, a Kalman filter and a Smith predictor based compensator can be incorporated.
US10950373B2 Hot-pressed and deformed magnet comprising nonmagnetic alloy and method for manufacturing same
An R-TM-B hot-pressed and deformed magnet (here, R represents a rare earth metal selected from the group consisting of Nd, Dy, Pr, Tb, Ho, Sm, Sc, Y, La, Ce, Pm, Eu, Gd, Er, Tm, Yb, Lu, and a combination thereof, and TM represents a transition metal) of the present invention comprises flat type anisotropic magnetized crystal grains and a nonmagnetic alloy distributed in a boundary surface between the crystal grains, and thus the magnet of the present invention has an excellent magnetic shielding effect as compared with an existing permanent magnet since the crystal gains can be completely enclosed in the nonmagnetic alloy, so that a hot-pressed and deformed magnet with enhanced coercive force can be manufactured through a more economical process.
US10950370B2 Conductor cover applicator
Conductor cover applicators may define a mouth, or may incorporate movable jaws that open and close a mouth, for receiving a cable. The applicators may have a separator for spreading open a conductor cover, so that the cover can be fed through the applicator onto the cable. Methods of use and other variations are disclosed.
US10950362B2 Strontium sealed source
The disclosure pertains to a strontium-90 sealed radiological or radioactive source, such as may be used with treatment of the eye or other medical or industrial processes. The sealed radiological source includes a toroidal shaped strontium radiological insert within an encapsulation. The encapsulation includes increased shielding in the center thereof.
US10950360B2 Method for treating waste water from the decontamination of a metal surface, waste-water treatment device and use of the waste-water treatment device
A method for treating waste water from the decontamination of a metal surface in a primary coolant circuit of a nuclear reactor comprises discharging a predetermined amount of an oxidation solution from the primary coolant circuit into a reduction zone connected to the primary coolant circuit and reacting the oxidation solution with a reducing agent to form a reaction solution that is freed of oxidizing agent, and passing the reaction solution over an ion-exchange resin in order to form a desalinated solution, and returning the desalinated solution to the primary coolant and/or disposing of the desalinated solution. A waste water treatment apparatus for carrying out the method is also provided.
US10950357B2 Nuclear reactor protection systems and methods
A nuclear reactor protection system includes a plurality of functionally independent modules, each of the modules configured to receive a plurality of inputs from a nuclear reactor safety system, and logically determine a safety action based at least in part on the plurality of inputs, each of the functionally independent modules comprising a digital module or a combination digital and analog module, an analog module electrically coupled to one or more of the functionally independent modules, and one or more nuclear reactor safety actuators communicably coupled to the plurality of functionally independent modules to receive the safety action determination based at least in part on the plurality of inputs.
US10950356B2 Nuclear fuel containing recycled and depleted uranium, and nuclear fuel bundle and nuclear reactor comprising same
Nuclear fuels for nuclear reactors are described, and include nuclear fuels having a first fuel component of recycled uranium, and a second fuel component of depleted uranium blended with the first fuel component, wherein the blended first and second fuel components have a fissile content of less than 1.2 wt % of 235U. Also described are nuclear fuels having a first fuel component of recycled uranium, and a second fuel component of natural uranium blended with the first fuel component, wherein the blended first and second fuel components have a fissile content of less than 1.2 wt % of 235U.
US10950352B1 System, computer-readable storage medium and method of deep learning of texture in short time series
A computer-readable storage medium storing program instructions to perform a method of classification of short time series in order to detect a neurodegenerative disorder. The method includes receiving a plurality of sensor data collected from subjects with and without the neurodegenerative disorder over a period of a few seconds as the short time series, generating phase-space vectors from the plurality of sensor data in which each vector is a state of a dynamical system in space and time, transforming the phase-space vectors into a grayscale image representing recurrences of a state-space vector in the same area of the phase space, extracting temporal texture features of the grayscale image to obtain a multi-dimensional time series; inputting the multidimensional time series, without the grayscale image, to the Long Short Term Memory (LSTM) network, and classifying, by the LSTM network, the plurality of the sensor data as the neurodegenerative disorder or not.
US10950350B2 Skilled nursing facility patient triage system
The present disclosure pertains to a system for facilitating computer-assisted care for patients, including, for example, skilled nursing facility (SNF) patients at risk of clinical deterioration and/or in need of medical intervention relative to a larger SNF patient population. In some embodiments, the system determines care information scores for SNF patients using a first set of severity weights associated with individual components of the care information. The system determines SNF enhancement scores for the individual patients using a second set of severity weights associated with individual components of collected SNF enhancement information, wherein the second set of severity weights are heavier than the first set of severity weights such that the enhancement scores are weighted more heavily than the care information scores. The system combines the care information scores with the enhancement scores for patients to determine a combined score indicating risk of clinical deterioration and/or need for medical intervention.
US10950341B2 Integration of a point-of-care blood analyzer into a prehospital telemedicine system
A prehospital telemedicine system comprises a physiologic monitor; an electronic patient care reporting system (ePCR) system; and a point-of-care blood analyzer communicatively coupled to the physiologic monitor and the ePCR system. The point-of-care blood analyzer is configured to perform an analysis of a blood sample based on an indication of a need for a specific blood analysis provided by one of the physiologic monitor and the ePCR system, and to automatically transmit a result of the analysis to a remote data receiving system. The indication of a need for a specific blood analysis may be based upon any one of the following: vital signs data obtained for a patient by the physiologic monitor; and/or current documentation or past medical history captured on or available through the ePCR system.
US10950340B2 Process and arrangement for collecting and storing data related to a condition of an absorbent product
A process for collecting and storing data related to a condition of an absorbent product is disclosed. The process includes the steps of: receiving, in a server unit, measurement data related to said condition; storing said measurement data in a first database; adapting said measurement data to a format in which it can be utilized by at least one application program configured for analyzing said condition; storing the adapted measurement data in a second database; and providing access to said second database from at least one application program arranged for analyzing said measurement data. Also disclosed is an arrangement for collecting and storing incontinence-related data.
US10950339B2 Converting pump messages in new pump protocol to standardized dataset messages
Various techniques for facilitating communication with and across a clinical environment and a cloud environment are described. For example, a method for converting infusion pump messages having one format into standardized dataset messages having another format is described. When a connectivity adapter in the clinical environment detects a new pump protocol, the connectivity adapter may generate a message converter that can convert pump messages into standardized dataset messages. The message converter can be used to convert pump messages into standardized dataset messages. The standardized dataset messages may include information additional data or metadata not included in the pump messages.
US10950335B2 Health tracking device
A device may receive, from a plurality of sensors, sensor data relating to a user. The device may include a plurality of types of sensors including a spectrometer and one or more of an accelerometer, a heart rate sensor, a blood pressure sensor, a blood sugar sensor, a perspiration sensor, a skin conductivity sensor, or an imaging sensor. The device may process the sensor data, from the plurality of types of sensors, relating to the user to determine a health condition of the user. The device may provide, via a user interface, information identifying the health condition of the user based on processing the sensor data, from the plurality of types of sensors, relating to the user.
US10950333B2 Medication management
Medication management is facilitated at least by accessing at least a portion of data, the data may identify medication sets to be taken by a user according to a schedule including time periods. Each of the plurality of medication sets may be associated in the data with identification codes and at least one of the time periods. A medication message may be output identifying a particular medication set of the medication sets to be taken at a particular time period of the time periods. An input identification code may be received, and it may be determined whether the input identification code corresponds to the particular medication set. A warning message may be output in response to it being determined that the input identification code does not correspond to the particular medication set.