Document | Document Title |
---|---|
US10848797B2 |
Broadcast signal transmitting apparatus, broadcast signal receiving apparatus, method for transmitting broadcast signal, and method for receiving broadcast signal
An apparatus for receiving a broadcast signal, includes a receiver configured to receive the broadcast signal including physical layer signaling data, signaling data, content data and service guide information, wherein the signaling data is included in a signal frame indicated by the physical layer signaling data, wherein the signaling data includes mapping information between a service and a PLP, and information supporting channel scanning and service acquisition, wherein the service guide information includes a service fragment having information about the broadcast service and a content fragment having information about content data of the broadcast service, wherein the content fragment further includes a content-level PrivateExt element having component information of the content data, wherein the component information includes information for a component in the broadcast service, and wherein the component is one of a video component, an audio component, and a closed caption component (CC). |
US10848796B2 |
Transmitting method, receiving method, transmitting device, and receiving device
A transmitting method includes: inputting, per unit time, a plurality of transfer packets less than or equal to a predetermined number; and transmitting, per the unit time, the plurality of transfer packets that have been input, in a state where definitions compliant with a receiving buffer model are satisfied. Each of the plurality of transfer packets includes a variable-length packet header and a variable-length payload. The definitions compliant with the receiving buffer model are predetermined for guaranteeing a buffering operation of a receiving device, and specify converting a first packet into a second packet and outputting the second packet from a buffer of the receiving device at a predetermined extraction rate. The first packet is included in the transfer packets received and includes a variable-length packet header and a variable-length payload. The second packet has a fixed-length packet header that is extended. |
US10848794B2 |
Digital data streaming using server driven adaptive bitrate
A method and system for server driven adaptive transcoding is provided. A transcoding server computer may initially receive a first portion of a particular media file from a media file repository. The transcoding server computer may transcode the first portion of the particular media file into a first transcoded media segment of a first quality and send the first transcoded segment to a client computing device. The transcoding server computer may receive a second portion of the particular media file from the media file repository, transcode the second portion of the particular media file into a second transcoded media segment of a second quality different than the first quality, and send the second transcoded media segment to the client computing device. |
US10848792B2 |
System and method for providing audience-targeted content triggered by events during program
A system for providing adjunct content into a video stream based on significant events, audience data, user data, and program content data. The system includes a server configured to host an analyzer and a broadcast engine. The analyzer is configured to receive event data associated with a program and to analyze the event data to detect a triggering event based on detection criteria. In response to detection of the triggering event, the analyzer is configured to select adjunct content to be provided with the program based on selection criteria. The selection criteria includes at least one of a triggering event type of the triggering event or a program content type of the program. The broadcast engine is configured to transmit the selected adjunct content along with program content of the program to a device associated with a user of an audience of the program. |
US10848783B2 |
Significance map encoding and decoding using partition selection
Methods of encoding and decoding for video data are describe in which significance maps are encoded and decoded using non-spatially-uniform partitioning of the map into parts, wherein the bit positions within each part are associated with a given context. Example partition sets and processes for selecting from amongst predetermined partition sets and communicating the selection to the decoder are described. |
US10848777B2 |
Interleaved watermarking
In one embodiment, a system includes a Headend apparatus including a watermark processor to generate secondary video streams from sections of a primary video stream, group the secondary video streams in groups of at least two secondary video streams, the secondary video streams including units of data for use in watermarking across cryptoperiods in an end-user device which selects one secondary video stream in each group for rendering as part of a composited video stream in order to embed units of data of an identification in the composited video stream, wherein in each cryptoperiod, the watermark processor is operative to generate different groups of the secondary video streams from different non-overlapping portions of the primary video stream, and an encryption processor to generate control words, encrypt each secondary video stream with a different control word, and change the control word of each secondary video stream every cryptoperiod. |
US10848775B2 |
Memory layout for JPEG accelerator
A device includes a memory configured to store image data and an image coding unit implemented in circuitry. The image coding unit is configured to store a first portion of a set of context information in memory of the image coding unit as an array representing a direct access table and store a second portion of the set of context information in a hash table. The image coding unit is further configured to determine whether a context value for context-based coding of a value of an instance of a syntax element for a block of image data is stored in the array or in the hash table, retrieve the context value from either the array or the hash table according to the determination, and context-based code the value of the instance of the syntax element using the context value. |
US10848770B2 |
Moving picture coding apparatus, moving picture coding method and recording medium on which program for moving picture coding is recorded
An information processing apparatus includes a memory and a processor which changes a frame rate in a period of moving picture data to a first set value of the frame rate, codes respective pictures in the period to obtain a code amount according to the first set value, calculates a cumulative value of a code amount of each kind of pictures different in applicable coding processing regarding the respective pictures included in the period, calculates a ratio of the cumulative value, estimates a change tendency of a difficulty level of coding of respective pictures in a next period after the period based on transition of the frame rate and transition of the ratio of the cumulative value, and obtains a second set value of the frame rate and a third set value of a bit rate applied to the next period according to the change tendency of the difficulty level. |
US10848764B2 |
Arithmetic decoding device, image decoding apparatus, arithmetic coding device, and image coding apparatus
There is provided a terminal device capable of efficiently performing communication in a communication system in which a base station device and the terminal device communicate with each other. The terminal device that communicates with the base station device by using a plurality of aggregated cells recognizes that a serving cell is stopped in a first state, recognizes that the serving cell is started in a second state, and switches from the first state to the second state based on a received PDCCH. |
US10848760B2 |
Encoding device, decoding device, encoding method, and decoding method
An encoding device which further improves coding technique includes processing circuitry and memory. By using the memory, the processing circuitry: performs filtering on a pixel value of a current reference sample to be processed included in reference samples located on a left of or above a current block to be predicted, using pixel values of the reference samples; generates a prediction image by performing intra prediction using the filtered pixel value of the current reference sample. When performing the filtering, the processing circuitry: determines a weight for each reference sample, based on a distance between the reference sample and the current reference sample and a difference in pixel value between the same; and performs filtering on the pixel value of the current reference sample by weighted addition using each of the pixel values of the reference samples and the weight determined for each reference sample. |
US10848757B2 |
Method and apparatus for setting reference picture index of temporal merging candidate
The present invention relates to a method and apparatus for setting a reference picture index of a temporal merging candidate. An inter-picture prediction method using a temporal merging candidate can include the steps of: determining a reference picture index for a current block; and inducing a temporal merging candidate block of the current block and calculating a temporal merging candidate from the temporal merging candidate block, wherein the reference picture index of the temporal merging candidate can be calculated regardless of whether a block other than the current block is decoded. Accordingly, a video processing speed can be increased and video processing complexity can be reduced. |
US10848752B2 |
Method of operating a light field 3D display device having an RGBG pixel structure, and light field 3D display device
In a method of operating a light field three-dimensional (3D) display device having an RGBG pixel structure, multi-view image data including RGB data at multiple points of view are received, RGB rearrangement data including R sub-pixel data, G sub-pixel data, and B sub-pixel data are generated from the multi-view image data by extracting two adjacent ones of the R sub-pixel data at a same pixel row at a same point of view, by extracting two adjacent ones of the G sub-pixel data at a same pixel row at different points of view, and by extracting two adjacent ones of the B sub-pixel data at a same pixel row at a same point of view, RGBG data are generated by performing RGB-to-RGBG data conversion on the RGB rearrangement data, and a 3D image is displayed using the RGBG data. |
US10848750B2 |
Display panel, stereoscopic image display panel, and stereoscopic image display device having pixel layout based on arrangement of lens array to be used therewith
A stereoscopic image display panel includes a display panel including a unit pixel that includes pixels, where each of the pixels emits light based on a data signal, and a lens array including a lens that is located on the display panel in accordance with a location of the unit pixel. Each of the pixels includes a light-emitting element that is located near a center of an area of the unit pixel and a pixel driving circuit that drives the light-emitting element. |
US10848749B2 |
Display apparatus with multi-direction sound generation
A display apparatus includes a display panel configured to display a first image in a first direction and configured to display a second image in a second, different direction, a sound output unit including sound output modules to output a sound, and a sound focusing unit. The sound focusing unit is configured to receive first and second audio signals synchronized with video data signals of the first image and the second image, apply a direction focusing weight to the first and second audio signals, and to provide the sound output modules with a sound signal having the direction focusing weight applied thereto. Furthermore, the sound output unit is configured to receive the sound signal corresponding to the sound output modules, to output a first sound corresponding to the first image in the first direction, and to output a second sound corresponding to the second image in the second direction. |
US10848745B2 |
Head-mounted display tracking system
A head-mounted display (HMD) is configured to capture images and/or video of a local area. The HMD includes an imaging assembly and a controller. The imaging assembly includes a plurality of cameras positioned at different locations on the HMD and oriented to capture images of different portions of a local area surrounding the HMD. The controller generates imaging instructions for each camera using image information. The imaging instructions cause respective midpoints of exposure times for each camera to occur at a same time value for each of the captured images. The cameras capture images of the local area in accordance with the imaging instructions. The controller determines a location of the HMD in the local area using the captured images and updates a model that represents a mapping function of the depth and exposure settings of the local area. |
US10848737B2 |
Overlay processing method in 360 video system, and device thereof
A 360 image data processing method performed by a 360 video receiving device, according to the present invention, comprises the steps of: receiving 360 image data; acquiring information and metadata on an encoded picture from the 360 image data; decoding the picture on the basis of the information on the encoded picture; and rendering the decoded picture and an overlay on the basis of the metadata, wherein the metadata includes overlay-related metadata, the overlay is rendered on the basis of the overlay-related metadata, and the overlay-related metadata includes information on a region of the overlay. |
US10848736B2 |
Electronic apparatus equipped with detachable image pickup apparatuses, image pickup apparatus, control method for electronic apparatus, and storage medium storing control program for electronic apparatus
An electronic apparatus that is capable of obtaining a correct base length even if at least one of photographing modules is attached to any slot different from an original slot at any timing. First and second photographing modules are respectively attached to any two of attachment regions of a body of the electronic apparatus. A photographing unit photographs in a compound eye mode using the photographing modules. An obtaining unit obtains two pieces of coordinate information about optical axes of the photographing modules from the photographing modules. A storage unit stores positional information about the attachment regions. A calculation unit calculates a base length by obtaining the coordinate information about the optical axes and the positional information about the attachment regions in a case where one of a state of the photographing modules and a state of the body of the electronic apparatus changes. |
US10848733B2 |
Image generating device and method of generating an image
An image generating device includes a rendering section that renders test images each representing an image when a space including an object to be displayed is viewed from one of a plurality of candidate reference viewing points; a candidate reference viewing point evaluation section that evaluates an importance value for the candidate reference viewing points as a function of at least their comparative coverage of points in the space; and an update section that changes the position of one or more candidate reference viewing points that have a low importance value, obtains a re-evaluation from the candidate reference viewing point evaluation section, and does not revert the position of a candidate reference viewing point if its comparative coverage of points in the space has increased. |
US10848731B2 |
Capturing and aligning panoramic image and depth data
This application generally relates to capturing and aligning panoramic image and depth data. In one embodiment, a device is provided that comprises a housing and a plurality of cameras configured to capture two-dimensional images, wherein the cameras are arranged at different positions on the housing and have different azimuth orientations relative to a center point such that the cameras have a collective field-of-view spanning up to 360° horizontally. The device further comprises a plurality of depth detection components configured to capture depth data, wherein the depth detection components are arranged at different positions on the housing and have different azimuth orientations relative to the center point such that the depth detection components have the collective field-of-view spanning up to 360° horizontally. |
US10848729B2 |
Method and apparatus for conversion of HDR signals
Described are concepts, systems and techniques related to processing an input video signal intended for a first display to produce an output signal appropriate for a second display. The concepts, systems and techniques include converting using one or more transfer functions arranged to provide relative scene light values and remove or apply rendering intent of the input or output video signal, wherein the removing or applying rendering intent alters luminance. |
US10848727B2 |
Image processing device, information generation device, and information generation method
A correction information generation section 50 emits measurement light having uniform intensity onto a polarized image acquisition section 20 acquiring a polarized image. Further, on the basis of a measured polarized image acquired from the polarized image acquisition section 20, the correction information generation section 50 generates variation correction information for correcting sensitivity variations caused in the measured polarized image due to difference in polarization direction, and causes a correction information storage section 30 to store the generated variation correction information. A correction processing section 40 then corrects the sensitivity variations caused in the polarized image acquired by the polarized image acquisition section 20 due to the difference in polarization direction by using the pre-generated variation correction information stored in the correction information storage section 30. Therefore, the polarized image outputted from the correction processing section 40 becomes a high-quality polarized image with, for example, its sensitivity variations corrected. |
US10848721B2 |
Laser projection device and laser projection system
The present disclosure provides a laser projection device and a laser projection system. The laser projection device comprises an optical fiber scanner and a MEMS scanning mirror; an optical fiber is disposed on the optical fiber scanner and the optical fiber is used to deliver laser beams needed by projection; the optical fiber scanner drives the optical fiber to scan in a first plane and enables the laser beam to project to the MEMS scanning mirror; and the MEMS scanning mirror makes scanning movement about a first axis and reflects the laser beam to a predetermined area to form a projection image; wherein the first axis is located in the first plane, or the first axis is parallel to the first plane. The present disclosure achieves laser projection by enabling the optical fiber scanner and the MEMS scanning mirror to scan simultaneously in different directions. |
US10848716B2 |
Content-aware computer networking devices with video analytics for reducing video storage and video communication bandwidth requirements of a video surveillance network camera system
Disclosed are systems and methods for reducing video communication bandwidth requirements of a video surveillance network camera system that includes network communication paths between network video cameras producing video streams of scenes observed by the network video cameras and content-aware computer networking devices analyzing by video analytics video visual content of the video streams to provide managed video representing, at specified quality levels, samples of the scenes observed. Distribution of the managed video consumes substantially less network bandwidth than would be consumed by delivery through network communication paths a video stream at the specified quality level in the absence of analysis by the video analytics. |
US10848714B1 |
Systems and methods for detecting leakage using inertial devices
Systems and methods using inertial devices for generating reports associated with tests detecting leakage from cable network systems at subscribers' premises are disclosed. |
US10848712B1 |
User-defined media source synchronization
Within environments, such as audio-video environments, users may synchronize output of multiple media source(s). To synchronize the output of the media source(s), users may define setting(s) associated with outputting the media source(s) at one or more devices. For example, the user may delay or accelerate the output of audio and/or video sources. Interfaces presented on one or more of the devices may allow the user to change the settings. For environments including multiple users, each user may define setting(s) associated with each user to synchronize output of their associated media source(s). Recommendations may be provided to users, that when implemented, attempt to synchronize the media sources. |
US10848709B2 |
Artificial intelligence based image data processing method and image processing device
An image data processing method includes receiving, from an image sensor, frame image data of a frame at a first resolution, reducing a resolution of the frame image data to a second resolution, performing image recognition on the frame image data to determine one or more regions of interest (ROI) and a priority level of each of the one or more ROIs, and extracting portions of the frame image data corresponding to the one or more ROIs. The method further includes modifying a resolution of the portions of the frame image data corresponding to the one or more ROIs based on the priority level of the ROIs, and combining the resolution-modified portions of the frame image data corresponding to the one or more ROIs with the frame image data at the second resolution to generate output frame image data. |
US10848708B2 |
Method and processor for streaming video processing
The invention provides methods of video processing in an efficient and/or low latency fashion and suitable for use in a streaming environment. Therefore the present invention relates to a system for video processing, a video image processor or a method of generating an output image by performing processing on an input image, wherein the processing is characterized in that it achieves the effect of a plurality of first unit image process steps, the method comprising the steps of performing sequentially one or a plurality of second image process filtering steps on said input image to generate said output image, wherein at least one of said second image process filtering steps achieves the effect of at least two, three, four, or five of said first image process steps. |
US10848707B2 |
Remotely accessed virtual recording room
An audio/video stream recording, storage, and delivery system 10 utilizes an Internet-based browser connection. The system 10 includes recording software 20, storage memory 30, a code generator 40, and a user interface 50. Preferably, the recording software 20 is located on the host back end 60 where it processes and records audio and video material that originates from the user front end 70 and is streamed to the host back end. The storage memory 30, which is also located on the host back end 60, stores the recorded audio and video material. The user interface 50 to the system provides a user located at the user front end 70 with remote access to a virtual recording room. The user interface 50 further enables the user to record audio and video material streamed from the user front end 70 by activating the recording software 20 located on the host back end 60. This is accomplished without requiring recording functionality on the user front end 70. The code generator 30 produces code associated with the recorded audio and video material. This code can be easily copied and pasted to an additional location 80, such as an auction website. Activating the code pasted at the additional location 80 provides access to the recorded audio and video material from the additional location while allowing the recorded audio and video material to remain stored at the host back end 60. |
US10848706B2 |
System and circuit for display power state control
A system and circuit for television power state control are disclosed. In one embodiment, a power management circuit communicatively controls television or set-top box components including a signal processing circuitry, a screen, and a visual indicator. The power management circuit selectively alternates the television between three states: powered ON/operating state (first state); power standby state (second state); and no/low power state (third state). Utilized with a television in a commercial or residential application, the system and circuit are employed to provide accelerated turn-on time to receive an image for user interaction, while providing sufficient control to maintain energy power savings. |
US10848703B2 |
Digital CDS readout with 1.5 ADC conversions per pixel
A CMOS image sensor comprises an array of pixels. A column of the pixel array is coupled to a readout column. The readout column is couple to a readout circuitry (RC) that reads out image data from the pixel array. The RC comprises two sampling switches which are coupled to a 2-column successive approximation register (SAR) analog-to-digital converter (ADC). The 2-column SAR ADC comprises a differential comparator, a local SAR control, and two digital-to-analog converters (DACs). The two sampling switches are coupled between two readout columns and two inputs of the differential comparator, respectively. An image readout method reads two pixels with three conversions through the RC. The RC is operated by the local SAR control to set the two DACs based on comparator output, and upon which a reset digital value is obtained and stored. An overall reduced algorithm calculation is achieved herein. |
US10848702B2 |
Solid-state imaging device
A solid-state imaging device according to an embodiment includes: plural pixels, plural readout circuits, a control circuit, and a driving circuit. The plural pixels have light receiving elements. The plural readout circuits are connected to each of the plural pixels, and read out the charges accumulated by the light receiving elements. The control circuit gives a readout instruction to a readout pixel serving as a readout target out of the plural pixels. The driving circuit gives a driving instruction for driving a first constant current source provided in the readout circuit of the readout pixel and a second constant current source provided in a readout circuit of a corresponding pixel associated with the readout pixel out of the plural pixels. |
US10848699B2 |
Visible light communication sensor and visible light communication method
A visible light communication sensor and visible light communication method are provided. The visible light communication sensor includes a comparator, a sensing unit, and a first ramp signal generator. The comparator includes a first input terminal, a second input terminal, and an output terminal. The sensing unit is coupled to the first input terminal of the comparator. The sensing unit is configured to sense a visible light communication signal to output a sensing signal to the first input terminal of the comparator. The first ramp signal generator is coupled to the second input terminal of the comparator and is configured to output the first ramp signal to the second input terminal of the comparator. The comparator outputs a comparison result signal via the output terminal according to the voltage values of the first input terminal and the second input terminal. |
US10848698B2 |
Image capturing apparatus and control method thereof
An image capturing apparatus comprises: an image sensor; a light shielding member; a thermometer that measures temperature of the image sensor; and a controller that controls the image sensor so as to perform continuous shooting to obtain a plurality of images. The controller determines a number of images to be shot in the continuous shooting, determines, before starting the continuous shooting, whether or not to shoot a black image with the image sensor being shielded from light by the light shielding member based on the temperature measured by the thermometer and the determined number of images to be shot, and in a case where it is determined to shoot a black image, controls to shoot a black image every time an image is shot in the continuous shooting. |
US10848693B2 |
Image flare detection using asymmetric pixels
A method for processing an image includes obtaining a set of pixel values captured from a pixel array during an image capture frame. The set of pixel values includes pixel values for a set of asymmetric pixels having different directional asymmetries. The method further includes detecting, using the pixel values for at least the asymmetric pixels and the different directional asymmetries of the asymmetric pixels, a directionality of image flare; and processing an image defined by the set of pixel values in accordance with the detected directionality of image flare. In some embodiments, image flare may be distinguished from noise using the set of pixel values. |
US10848688B1 |
Inspection system for locating a lost object fallen from a conveyor belt
An inspection system for locating a lost object fallen from a conveyor belt includes a conveyor belt, a camera and a data processing device. The conveyor belt is configured for moving the object placed on the conveyor belt. The camera is configured for being arranged on the conveyor belt, for capturing an image of a surrounding of the conveyor belt while being moved by the conveyor belt, and for transmitting the captured image to the data processing device for recognizing the lost object in the transmitted image. |
US10848676B2 |
Semiconductor device and electronic device
An object of the present disclosure is to continue optical image stabilization even in the case where a correcting lens is positioned near a mechanical end. An optical image stabilization module used to control a camera module adjusts the position of a correcting lens and the like used for optical image stabilization while executing the optical image stabilization during an exposure period. An image distortion accompanying the position adjustment of the correcting lens can be corrected by, for example, an electronic image stabilization module. |
US10848673B2 |
Image stabilization control apparatus, image capturing system, control method, and recording medium
An image stabilization control apparatus that causes a first correction unit included in a first device and a second correction unit included in a second device that is able to communicate with the first device, to cooperate with each other so as to correct, when image capturing is performed, an influence of shake of these device on image capturing. The apparatus acquires information regarding a shake and a focal length related to the image capturing and assigns a correction task, which is the task of performing correction regarding an influence of shake, to the first correction unit and the second correction unit, based on the information regarding the acquired focal length. The apparatus assigns the correction task to only one of the first correction unit and the second correction unit when the focal length satisfies a predetermined condition. |
US10848669B2 |
Electronic device and method for displaying 360-degree image in the electronic device
A method for displaying a 360-degree image in an electronic device, and an electronic device thereof are disclosed. The apparatus includes a display, and a at least one processor connected operatively to the display. The at least one processor is configured to acquire 360-degree image data and metadata corresponding to the 360-degree image data, and display an object including a first indicator and a second indicator on the display by using the metadata. The first indicator indicates an angle of view or capturing x-direction along a horizontal direction in a three-dimensional (3D) model space for a first area of the 360-degree image data, and the second indicator indicates an angle of view or capturing y-direction along a vertical direction in the 3D model space. |
US10848667B2 |
Reducing smoke occlusion in images from surgical systems
A system for improving imaging during a surgical procedure includes an image sensor coupled to a controller. The image sensor is coupled to capture a video, including a first image frame with a smoke occlusion due to surgical smoke, of the surgical procedure. The first image frame includes a plurality of pixels each having an imaged color representing a view of the tissue affected by the smoke occlusion. The controller stores instructions that when executed causes the system to perform operations. The operations include determining an estimated true color of each of the plurality of pixels. The estimated true color is closer to an unoccluded color of the tissue than the imaged color. The operations also include generating, in response to determining the estimated true color, a desmoked first image frame with a reduced amount of the smoke occlusion relative to the first image frame. |
US10848662B2 |
Image processing device and associated methodology for determining a main subject in an image
Provided is an image processing device including a global motion detection unit configured to detect a global motion indicating a motion of an entire image, a local motion detection unit configured to detect a local motion indicating a motion of each of areas of an image, and a main subject determination unit configured to determine a main subject based on the global motion and the local motion. |
US10848661B2 |
Devices, methods, and graphical user interfaces for capturing and recording media in multiple modes
A device displays a camera user interface including a live view from a camera. While displaying the live view from the camera: the device records media images that are captured by the camera, while continuing to display the live view from the camera; and the device further displays representations of a plurality of media images that were recorded while displaying the live view from the camera as frames scrolling across the display in a first direction. |
US10848660B2 |
Imaging apparatus, imaging module, and control method of imaging apparatus
The focus detection accuracy is improved in an imaging apparatus that detects focus of each of a plurality of lenses.A main side focus control section detects, as a main side in-focus position, a main side lens position where focus is achieved in a main side detection region inside a main side image. A parallax acquisition section acquires parallax proportional to a distance by finding the distance on the basis of the main side in-focus position. A subordinate side detection region setup section sets a subordinate side detection region position in a subordinate side image on the basis of the parallax and the main side detection region position. A subordinate side focus control section detects, as a subordinate side in-focus position, a subordinate side lens position where focus is achieved in the subordinate side detection region. |
US10848657B2 |
Camera module having a slim overall structure and portable device comprising same
A camera module according to one embodiment of the present invention comprises: a lens moving mechanism comprising a base; a printed circuit board (PCB), the outer top surface of which is coupled with the base and the inner top surface of which is coupled with a filter; an image sensor coupled with the inner bottom surface of the PCB; and a flexible printed circuit board (FPCB) coupled with the outer bottom surface of the PCB and surrounding the image sensor, wherein the PCB and FPCB can be coupled to each other and electrically connected by means of a conductive adhesive. |
US10848656B2 |
Camera module
A camera module includes: a lens module disposed in a housing and a stop module coupled to the lens module. The stop module includes apertures having different diameters from each other so as to selectively change an amount of light incident on the lens module, a magnet portion to select any one of the apertures by movement of the magnet portion, and a coil disposed on the housing facing the magnet portion to move the magnet portion. |
US10848655B2 |
Heat extraction architecture for compact video camera heads
Compact camera heads as used in inspection systems having improved thermal extraction architectures are disclosed. Methods for assembling a camera head and associated components having improved thermal extraction architectures are also disclosed. |
US10848654B2 |
Oblique scanning aerial cameras
A scanning camera for capturing a set of oblique images along a curved scan path on an object plane within an area of interest, each image of the set of images associated with a viewing angle and a viewing direction relative to the object plane, the scanning camera comprising an image sensor; a lens; a scanning mirror; and a drive coupled to the scanning mirror; wherein the drive is operative to rotate the scanning mirror about a spin axis according to a spin angle; the spin axis is tilted relative to a camera optical axis; the scanning mirror is tilted relative to both the camera optical axis and the spin axis and positioned to reflect an imaging beam into the lens, a viewing angle and a viewing direction of the imaging beam relative to the object plane varying with the spin angle; the camera optical axis is tilted at an oblique angle relative to the object plane; the lens is positioned to focus the imaging beam onto the image sensor; and the image sensor is operative to capture each image by sampling the imaging beam at a corresponding value of the spin angle corresponding to the viewing angle and the viewing direction of the image. |
US10848652B2 |
Camera module including plural driving units having different magnetic field directions
A camera module is disclosed herein, including a housing, a lens unit arranged in the housing and including at least one lens, a first driving unit arranged adjacent to a first surface inside the housing and configured to move the at least one lens in a direction along an optical axis, and a second driving unit arranged adjacent to the first surface inside the housing to move the lens unit in a direction perpendicular to the optical axis, where the first driving unit forms a first magnetic field oriented in a first direction, and wherein the second driving unit forms a second magnetic field oriented in a second direction intersecting the first direction at a pre specified angle. |
US10848650B2 |
Sensor housings, modules, and luminaires incorporating the same comprising a heat sink integrated with one or more walls defining a cavity accepting a sensor
Sensor housings, modules, and luminaires comprising the same are provided. The sensor housings and modules set forth herein have improved heat sinking abilities for dissipating heat from a sensor while simultaneously facilitating thermal isolation of the sensor. Briefly, a sensor housing described herein comprises a cavity for housing a sensor and a heat sink. The heat sink is configured to dissipate heat from the sensor housing and thermally isolate the sensor housing from other heat generating components, such as other portions of a luminaire. |
US10848647B1 |
Composite environment filmmaking devices, systems, products and methods
Devices, systems and methods, for use in filmmaking involving a composite environment, are disclosed that provide tracking markers for image acquisition and allow, during post processing, for use of the tracking markers to ascertain camera movement during filming and compositing of to-be-inserted images into shots obtained by a cinematic camera without having to remove the tracking markers from the primary images that are composited. |
US10848645B2 |
Film transport apparatus controller and related methods
Methods and systems are presented for controlling a film transport apparatus of a film reel scanner. In one embodiment, a system is provided including a line scanning camera, a supply reel motor, a take-up reel motor, and a plurality of capstan motors. A control system may then be configured to receive and dynamically adjust position information from these motors. The control system may then provide the dynamically adjusted position information to a plurality of controllers, which may then generate control signals for the supply reel motor, the take-up reel motor, and the at least a subset of the capstan motors. |
US10848644B2 |
Image processing apparatus, image processing method, and non-transitory computer-readable storage medium
An image processing apparatus comprises: an obtaining unit configured to obtain a dynamic range of a captured image on captured image data; a determination unit configured to determine a dynamic range of a printed product when viewed obtained by printing the captured image based on the captured image data, based on printing information on viewing of the printed product; and a conversion unit configured to perform conversion processing for luminance of the captured image data to the dynamic range determined by the determination unit from the dynamic range obtained by the obtaining unit. |
US10848639B2 |
Image forming apparatus, image forming system, and error notification method
An image forming apparatus, to which terminals are connected, comprises an image forming unit, a detector that detects an error, and a controller that, when the error is detected, specifies a portable terminal through which an operation to eliminate the error is requested, transmits a request to the specified terminal, and transmits a notification that notifies of an occurrence of the error to each terminal other than the specified terminal. The terminal that has received the request displays information representing an error type and information promoting an elimination of the error, and the terminal that has received the notification displays not the information that promotes the elimination of the error, but the information representing the error type. |
US10848636B2 |
Image reading apparatus
An image reading apparatus includes an optical unit through which a light from a document passes, an image sensor configured to receive the light from the document via the optical unit, and a first holding member configured to hold the optical unit and the image sensor. The first holding member has an opening and a second holding member is fitted in the opening. The optical unit is disposed on the second holding member and the second holding member is positioned with respect to the first holding member with a gap between the first holding member and the second holding member and fixed to the first holding member by an adhesive that fills the gap. |
US10848633B2 |
Entering non-execution mode when no identifiable nearby terminal exists
An information processing apparatus includes a first wireless communication unit that establishes first wireless communication with a terminal apparatus by a first wireless communication method, a second wireless communication unit that establishes, by a second wireless communication method, third wireless communication with an access point of a wireless communication network that establishes second wireless communication with the terminal apparatus by the second wireless communication method, and a control unit that controls a mode based on whether or not driving power is supplied from a battery. |
US10848632B2 |
Image processing apparatus capable of feeding electric powers in compliance with the USB-PD standard
An image processing apparatus has a normal mode and a power saving mode as a power consumption mode. In the normal mode in which an image processor requires electric power supply, a direct voltage output by an AC-DC converter is supplied to the image processor. A voltage according to a power feed request from an external device connected to an USB connector is output by a variable output DC-DC converter via a power-feed terminal. In the power saving mode in which the electric power supply for the image processor in unnecessary, the voltage according to the power feed request from the external device connected to the USB connector is output by the AC-DC converter without routing through the variable output DC-DC converter. |
US10848631B2 |
Reading device and image forming apparatus
A reading device is configured to detect an edge position of a target object to be conveyed in a conveyance direction. The edge position is a position of an edge of the object in a width direction intersecting the conveyance direction. The reading device includes a sensor device, an adder, and an edge position detector. The sensor device includes a pixel array including a plurality of elements arranged in the width direction. The adder is configured to add detection signals output from the elements at respective positions in the width direction. The edge position detector is configured to detect the edge position on basis of a position at which an output of the adder changes to a value larger than a threshold. Each element is configured to output a detection signal based on a reception amount of light in one of different wavelength bands. |
US10848627B2 |
Electronic apparatus supporting creation of e-mail, image forming apparatus, e-mail creation support method, and computer-readable non-transitory recording medium with e-mail creation support program stored thereon
An electronic apparatus includes a storage device, an image reading device, and a controller. The controller detects, from a text included in an image of a document read by the image reading device, a first prescribed word, extracts a text portion of a predetermined length continuous before or after the first prescribed word detected, calculates, by keyword groups stored in the storage device, a number representing matching between the keyword belonging to a keyword group and a character string included in the text portion extracted, reads out from the storage device an address associated with the keyword group having a largest number in the number representing the matching, and creates an e-mail a destination address of which is the address read out. |
US10848625B1 |
Heat detection system for monitoring of over-heating in an apparatus
A system and process provide an improvement to monitoring over-heating of components in an apparatus. Embodiments include a thermal sensor which may be coupled with a filter. A controller may store over-heat values for components in the apparatus. In response to a sensor signal detecting an over-heat threshold exceeded, the controller may trigger an alert. Detection of an over-heating event may trigger shutdown of the component or the entire device or system before damage occurs or escalates to other components. In some embodiments, the range of detection by sensors monitoring the same component may be extended by coupling each sensor with a different filter so that a wider range of heat signatures are available. Aspects of the method may select which sensor/filter combination has a best range of detection based on the number of pixels registering over or under a threshold value. |
US10848623B2 |
Split billing for a user across multiple billing systems
The disclosed system provides a facility for split billing for a single user on multiple billing systems. The disclosed system activates the user on each respective billing system using a unique pairing, such as an international mobile subscriber identity that identifies the user, and a mobile station international subscriber directory number that identifies a particular user device. As device data is routed through a telecommunication network via each access point name (APN), the network generates call detail records (CDRs), which include an indication of the APN used. The CDRs are routed to a mediations platform that uses the received APN information to route each CDR to the appropriate target billing system. For example, CDRs identifying a APN may be routed to a telematics billing system, which then generates a bill that is sent to a car dealership. |
US10848622B2 |
Control information for public switched telephone network (PSTN) using blockchain system
Signaling system for public switched telephone network (PSTN) using a blockchain system. In one embodiment, a method is provided. The method includes determining that a phone call related operation between a first telecommunications operator and a second telecommunications operator has been requested. A public switched telephone network (PSTN) comprises the first telecommunications operator and the second telecommunications operator. The method also includes updating, by a node of a blockchain system, a distributed ledger to indicate that the phone call related operation between the first telecommunications operator and the second telecommunications operator has been requested. The method further includes analyzing the distributed ledger to determine if the phone call related operation has been approved. The method further includes proceeding with the phone call related operation in response to determining that the phone call related operation has been approved. |
US10848614B2 |
Personalized cloud of mobile tasks
A dynamically created and automatically updated personalized cloud of mobile tasks may be displayed on an interactive visual display via a personalized cloud generator application. The personalized cloud generator application may receive and/or capture information representing a mobile task performed by a mobile computing device user. The personalized cloud generator application may then store the information and determine a relevance of a given performed mobile task. If the relevance of the performed mobile task meets a prescribed threshold, the personal cloud generator application may display a selectable visual representation (e.g., selectable icon) of the performed mobile task. Given a user's activity, the visual representation may be automatically updated (displayed, removed, moved, resized, etc.) based on the information received and/or captured. Subsequent selection of the displayed visual representation allows quick and easy access or performance of the associated mobile task. |
US10848613B2 |
System architecture for a wearable device
Apparatuses and methods that generate and send interactive elements to a plurality of wearable electronic devices are discussed. One or more mobile applications and one or more remote backend servers may cooperate to send information in the interactive elements to the instances of the time synchronous application resident in their wearable electronic device in order to bring different types of content such as timely and relevant data, events, and notifications to a user of that wearable electronic device without the user's intervention to actively retrieve the different types of content. The interactive elements may be generated and sent from any of i) a public application programming interface hosted on a server, ii) one or more mobile applications resident on one or more mobile computing devices, and iii) one or more remote backend servers. In addition, these sources may merely send content and commands for the interactive elements to the public application programming interface. |
US10848612B2 |
System and method for mobile device to automatically disable fingerpring unlock when user is sleeping
A device includes a processing component, a user interface component, a locking component, a biometric parameter unlock component, a detecting component and a sleep bypass component. The processing component performs a processing function. The user interface component instructs the processing component to perform the processing function. The locking component prevents the user interface component from instructing the processing component to perform the processing function. The biometric parameter unlock component detects a biometric parameter of the user and disables the locking component to enable the user interface component to instruct the processing component to perform the processing function. The detecting component generates a sleep signal based on a detected sleeping parameter of the user indicating that the user is asleep. The sleep bypass component disables biometric parameter unlock component based on the sleep signal. |
US10848610B1 |
Apparatus to alarm drivers when an infant is left in a vehicles unattended
A child car seat safety system that relies on short distance wireless connections between a driver's cell phone, a vehicle and a wireless enabled car seat. A mobile app running on the driver's cell phone closely monitors state transitions of the system, evaluates different combination of connection status, filters out normal situations, precisely identify dangerous scenario and alarm the driver. This three-party system avoids many false alarms and other short-comings of other designs, and can provide reliable services to safe lives. |
US10848609B2 |
Information processing method, storage medium, and information processing device
User checking for execution of pairing of an information processing device and a communication device is executed with an appropriate condition. On the basis of advertise information transmitted from a printer as the communication device, it is determined whether the printer is registered in the information processing device. In a case where the printer is a registered printer that is registered in the information processing device, it is checked with a user whether to execute the pairing. A predetermined process for pairing of communication between the printer and the information processing device is executed in a case where the execution of the pairing is directed by the user or in a case where the printer is the registered printer that is registered in the information processing device. |
US10848607B2 |
Cycling hearing device and bicycle system
A cycling hearing device has: a stereo sound source unit; left and right vibration sources which conduct a stereo sound source from the stereo sound source unit to the left and right ears respectively without closing either of the left and right external auditory meatus; a notifier that notifies publicly that the left and right external auditory meatus are not closed; a helmet part; and a chin strap part fitted to the helmet part. The left and right vibration sources are cartilage conduction vibration sources respectively. The vibration sources are provided in the chin strap part, and the notifier is an external appearance structure in which the vibration sources conduct vibration to the ear cartilage without closing the external auditory meatus. |
US10848606B2 |
Divided display of multiple cameras
A handheld wireless transceiver (e.g. a “smart phone”) is claimed which has cameras in one, two, or three sides such as a left, front, and/or right side. The transceiver has a display divided vertically along a top portion thereof into three sections. Each section displays a version of output from a respectively positioned camera (left, middle, right). Depending on a detected distance of an object to each camera, an alert/alarm is indicated on the corresponding part of the screen to warn a user of the device of a collision with a nearby object, such as while walking. This display is required to be shown, in some embodiments, when one is “texting”. |
US10848605B2 |
Terminal
A terminal is provided, in accordance with the embodiments of the present discloser. The terminal includes a support, a display panel, a camera module and a sensor module. The display panel is opposite to the support. The camera module and the sensor module are disposed on the support. The display panel defines at least one recess. The sensor module and the camera module are disposed adjacently for determining a distance between the terminal and an external object. |
US10848603B2 |
Foldable mobile device
An embodiment of the disclosure involves a foldable mobile device. The foldable mobile device includes a housing having a first portion and a second portion foldable around a folding axis of the housing to allow a folded state of the device; an antenna operatively assembled to the housing; and a display mounted on a front side of the first portion and a front side of the second portion. The first portion has a first plate configured on a back side of the first portion opposite to the front side of the first portion, a contacting structure defined on the first plate. The second portion has a second plate configured on a back side of the second portion opposite to the front side of the second portion. When the mobile device operates is folded, the first plate and the second plate are conductively coupled with each other via the contacting structure. |
US10848601B2 |
Header modification for supplementary services
Handling supplementary services offered in association with Internet Protocol multimedia services based on particular policies is described. In an example, server(s) can receive, from a first user device, a policy associated with handling one or more communications directed to a particular identifier. The server(s) can subsequently receive a communication from a second user device, the communication being associated with a header identifying the particular identifier as the intended recipient of the communication. The server(s) can determine whether the policy is to be applied to the communication and, based at least partly on determining that the policy is to be applied to the communication, the server(s) can update the header based at least in part on the policy. The server(s) can transmit the communication based at least in part on the header, thereby transmitting the communication pursuant to the policy. |
US10848600B2 |
Wireless configuration and programming of automotive aftermarket peripheral interfacing modules
Vehicles typically include a communication system for communicating with and controlling devices and sensors installed in the vehicle. The vehicle may include a radio head unit. The head unit other devices and may provide functionality sensors installed in the for controlling vehicle. Devices and sensors installed in a vehicle may operate using incompatible communication protocols. An interface may be provided that detects the communication protocol used by a device/sensor and locates an information exchange protocol. The information exchange protocol may be executed by the interface. The information protocol may translate one communication protocol into another communication protocol. Translating communication protocols may allow two (or more) otherwise incompatible devices/sensors to work together and be integrated into a vehicle. |
US10848594B1 |
System, method, and computer program for multiple orchestrator service fulfillment
A system, method, and computer program product are provided for multiple orchestrator service fulfillment. In use, a first orchestrator receives a request to fulfill a service. The first orchestrator divides the service into a plurality of sub-services, and selects a second orchestrator to fulfill one or more of the plurality of sub-services. The first orchestrator then sends to the second orchestrator a request to fulfill the one or more of the plurality of sub-services. |
US10848592B2 |
Personalizing user experience in a gaming network
The present disclosure describes methods and system for personalizing user experience in a gaming network. In particular, the user experience is personalized based on how users are characterized based on their interactions with the gaming network. By using the characterizations, the users are assigned labels that publicly identify the user experience, interest, and proficiency with various video games. Communities are then established based on users having the same labels. Lastly, user generated content can be characterized and promoted based on the characterizations to the appropriate communities. |
US10848590B2 |
System and method for determining a contextual insight and providing recommendations based thereon
A system, method, and computer-readable medium for providing recommendations based on a user interest. The method includes: generating at least one signature for at least one multimedia content element; querying, based on the generated at least one signature, a user profile to identify the user interest related to the at least one multimedia content element; generating at least one contextual insight based on the user interest, wherein each contextual insight indicates a user preference; searching for at least one content item that matches the at least one contextual insight; and causing a display of the at least one matching content item as a recommendation. |
US10848589B2 |
Method and apparatus for receiving profile by terminal in mobile communication system
A method for receiving profile information by in a communication system according to an embodiment of the present disclosure to solve the above-described problem comprises the steps of: transmitting, to a predetermined server, a first request message including an identifier related to the terminal and information related to a standby server; transmitting, to the standby server, a second request message including identifier information related to the terminal; and receiving, from the standby server, a first response message including server information for profile reception. According to the embodiment of the present disclosure, it is possible to effectively carry out an opening of an eUICC terminal and a device change, and flexibly manage a transfer server for profile download. In addition, it is possible to flexibly install and manage a communication provider's remote installation of a profile in the eUICC terminal. |
US10848588B2 |
Reverse proxy server for an internet of things (“IoT”) network
Apparatus and methods for a reverse proxy server are provided. The reverse proxy server may provide compatibility and security for nodes on an IoT network. A reverse proxy server may normalize inter-node communications. A reverse proxy server may identify an IoT node and upon identification of the node, determine native communication protocol(s) specific to the node. The reverse proxy server may encapsulate data transmitted via the native communication protocol. The reverse proxy server may impose a principal-agent relationship. For example, the reverse proxy server may be a principal of one or more nodes (agents) on the IoT. The reverse proxy server may enforce security protocols on all agents. An agent (e.g., node) may be required to route all communications to other IoT devices through the principal (e.g., reverse proxy server). An IoT network may include more than one reverse proxy server. Each agent may have one or more principals. |
US10848587B2 |
Content distribution network supporting popularity-based caching
A content delivery network may provide content items to requesting devices using a popularity-based distribution hierarchy. A central analysis system may determine popularity data for a content item stored in a first caching device. At a later time, the central analysis system may determine that a change in the popularity data is beyond a threshold value. The central analysis system may then transmit an instruction to move the content item from the first caching device to a second caching device in a different tier of caching devices than the first caching device. The central analysis system may update a content index to indicate that the content item has been moved to the second caching device. A user device may then be redirected to request the content item directly from the second caching device. |
US10848586B2 |
Content delivery network (CDN) for uploading, caching and delivering user content
The disclosure relates to a system, methods, devices and nodes for managing shared user content. The system comprises a wireless device which is operative to upload the content to be shared to a Content Delivery Network (CDN) Delivery and Caching Node (DCN), which in turn is operative to cache and deliver the shared user content to other wireless devices and network nodes. The system further comprises a CDN management node, operative to manage the storage of the shared user content in the CDN DCN and a network node operative to instruct the wireless device to store the shared user content to the CDN DCN and to retrieve the shared user content from the CDN DCN. |
US10848578B1 |
Systems and methods for content delivery
A system includes at least one hardware processor and a memory storing instructions that, when executed by the at least one hardware processor, cause the at least one hardware processor to perform operations including receiving consumption data associated with a user consuming content on one or more user computing devices, determining a preference associated with content consumption of the user based on the received consumption data, the preference including one or more of a delivery time, a computing device of the one or more user computing devices, and a venue, receiving a new content item, determining one or more of a target delivery time, a target computing device of the one or more user computing devices, and a target venue based on the determined preference, and transmitting the new content item to the target computing device for presentation to the user. |
US10848576B2 |
Network function (NF) repository function (NRF) having an interface with a segment routing path computation entity (SR-PCE) for improved discovery and selection of NF instances
A network function (NF) repository function (NRF) suitable for use in a 5G mobile network utilizing segment routing (SR) is described. The first interface of the NRF may be an Nnrf interface with a service discovery function. The second interface of the NRF may be for use with a SR path information obtaining function for interfacing with a SR path computation entity (SR-PCE). The service discovery function may be further configured to discover NF instances based on identifying an NF instance being associated with SR path information that accords to least one service, application, or subscription requirement obtained according to the discovery request. |
US10848572B2 |
Internet cloud-hosted natural language interactive messaging system server collaboration
Provided are methods, systems, and computer-program products for server collaboration. For example, a method can include receiving, by a first bot server from a messaging application, a hypertext transfer protocol (HTTP) post call message associated with a session. The first bot server sends a transfer request to transfer the session to a second bot server. A timer can be set for completing the operations associated with the session by the second bot server. If the timer expires and the first bot server determines the operations have yet to be performed, the first bot server transmits another transfer request to transfer the session from the second bot server to the first bot server, whereby the first bot server then performs the operations. |
US10848568B1 |
System and method for managing power of remote and virtual desktops
Disclosed are systems and methods for computer power management. In one aspect, a method comprises determining whether a frame rate at a client device is greater than a predetermined threshold value, determining whether the frame rate has remained constant, when the frame rate is greater than the predetermined threshold value and when the frame rate has remained constant, activating a poll mode at the client device, otherwise: activating a push mode at the client device to preserve power at the server, and executing reception of content for display at the client device from the server according to the activated mode. |
US10848567B1 |
Remote support for IoT devices
A support agent uses a user interface within a web browser to support a remote internet of things (IoT) device in proximity to a user operating a smartphone having a proxy app installed thereon. The agent establishes a peer to peer connection between the smartphone proxy app and the agent user interface, such as with WebRTC. The proxy app scans for the IoT device and establishes a wireless connection between the smartphone and the IoT device. The agent by issuing instructions from the agent user interface to the smartphone proxy app is able to solicit or receive data from the IoT device, and to thereby adjust, configure, or diagnose the status of the IoT device. The proxy app may also establish video, voice or chat peer to peer communications with the agent, allowing the user to assist the agent in diagnosing the status of the IoT device. |
US10848564B2 |
Device specific remote disabling of applications
Systems and methods are disclosed herein to allow a service provider supporting applications running on a client device to remotely disable the applications, features of the applications, or sessions of the applications running on the client device. The service providers may initiate the disable action automatically upon the detection of certain events on or through the client device without requiring user input. The disable action is specific for the client device. In one embodiment, the service provider collects information associated with the application and with the remote client device that runs the application to conduct one or more transactions with the service provider. The service provider determines from the collected information a feature set of the application to disable on the client device. The service provider disabling remotely the feature set of the application on the client device without affecting any other client devices that run the application. |
US10848563B2 |
On-device, application-specific compliance enforcement
Examples herein describe systems and methods for on-device, application-specific compliance enforcement. An example method can include receiving, at a user device, an application having a compliance engine. The user device can also store a compliance rule that applies to the received application. The compliance rule can specify a condition and a remedial action for the application. The user device can execute the application. The application can determine, using the compliance engine within the application, whether the condition is present. The determination can be made regardless of whether the device has internet or cellular connectivity. Based on determining that the condition is present, the application can perform the remedial action. |
US10848562B1 |
Test system for the mobile IoT network and test method using such a test system
An active test system (1) for a mobile IoT network (2) providing connectivity and services to mobile IoT (MIoT) devices of low power wide area (LPWA) technologies is presented. The test system has at least one test probe (3) connected to the MIoT network (2) via an LTE-Uu interface (5) and/or at least one test probe connected to the MIoT network via an S1 interface. A central test unit (5a) is connected (8) to the at least one test probe (3) via a wireless backhaul network or a fixed IP network (7). A SIM multiplexer (12) is provided to transfer SIM data to the at least one test probe (3) in test fields. A test system with enhanced capabilities assure mobile IoT experience. |
US10848559B2 |
Malware scan status determination for network-attached storage systems
Malware scan status determination for network-attached storage systems is provided herein. A data storage system as described herein can include a memory that stores computer executable components and a processor that executes computer executable components stored in the memory. The computer executable components can include a data creation component that creates a scan status data structure associated with a network-attached storage (NAS) device, the scan status data structure comprising respective records that indicate a file identifier and a malware scan status for respective files stored on the NAS device, and a data update component that updates a record in the scan status data structure corresponding to a target file stored on the NAS device in response to receiving a malware scan result for the target file. |
US10848558B2 |
Method and apparatus for file management
A method in an electronic device is provided, the method including: connecting to a storage device; transmitting a first file to the storage device; when the first file is transmitted to the storage device, generating, a second file based on the first file and replacing the first file with the second file, wherein the second file is an optimized version of the first file. |
US10848557B2 |
Server-side selective synchronization
A content management system can maintain the entirety of a user account's content library. As a default behavior, updates made to the content library when accessed from any client device authorized by the user account, including adding, modifying, and/or deleting content items, can be synchronized across all other authorized client devices. A user can opt out of the default behavior and specify, for each authorized client device, certain portions of the content library that the content management system should or should not synchronize. |
US10848553B2 |
System and method for real-time secure multimedia streaming over a decentralized network
The present invention relates to systems and methods suitable for real-time streaming over a decentralized or centralized network. In the decentralized network, the present invention relates to a system and method that utilizes a block-chain distributed network to securely and reliably stream multimedia in real-time. In the centralized network, the present invention utilizes a centralized stream manager to manage nodes within the distributed network to securely and reliably stream multimedia in real-time. |
US10848551B2 |
Information processing apparatus, parallel computer system, and method for control
In a parallel computer system having multiple information processing apparatuses, a first information processing apparatus includes circuitry configured to wait for calculation target data from each of one or more other information processing apparatuses being included in the plurality of information processing apparatus; carry out an average calculation that calculates an average value of a plurality of calculation target data including the waited calculation target data; and transmit the calculated average value to a second information processing apparatus being one of the plurality of information processing apparatuses and being different from the other information processing apparatuses. This configuration makes it possible to achieve highly-precise collective average calculation without requiring bit expansion. |
US10848548B2 |
User status reports provided by an entertainment access system
An entertainment access system is provided that enables a user to request and receive status reports that present current information concerning a wide variety of items pertaining to the user's devices, entertainment content and usage rights in a standard, predictable and consistent manner that enhances rather than hinders the user experience. In some illustrative examples, the user can request the status report from one of his devices that is registered with the entertainment access system. The entertainment access system responds by collecting and formatting the status information so that is can be conveniently displayed or otherwise rendered on the registered device. For instance, if the request is received from a cell phone device, which generally has a relatively small screen, the information may be presented in a relatively abbreviated format. On the other hand, if the request is received from the user's personal computer, the information may be presented by the entertainment access system to the personal computer in a more detailed or entirely different format than when the information is to be presented to a cell phone device. |
US10848547B2 |
Monitoring system and method
A system includes a management apparatus including a registration unit configured to register information which includes identification information of a device to be targeted for monitoring and is used for managing the device, wherein the management apparatus manages a communication history of one or more communications that were performed from each device to the management apparatus, and, in a case where there are one or more devices information about which is not registered by the registration unit and the managed communication history about which indicates that one or more communications were performed, extracts a device which satisfies a predetermined condition from among the one or more devices and performs processing for inhibiting a communication that is performed from the extracted device. |
US10848538B2 |
Synchronized source selection for adaptive bitrate (ABR) encoders
Synchronized source selection for adaptive bitrate (ABR) encoders may be provided. First, a first adaptive transport stream (ATS) that is aligned with a second ATS produced by a second device may be provided from a first source by a first device. The first device may be fed from the first source. Next, an indication that the second device switched from being fed from the first source to being fed from a second source may be received. In response to receiving the indication, the first device may be switched from being fed from the first source to being fed from the second source. The first ATS that is aligned with the second ATS produced by the second device may then be produced from the second source by the first device. |
US10848533B2 |
Remotely configurable wireless broadcast device
The system and method of the present disclosure relates to a remotely configurable wireless broadcast device connected to a network. The device includes a network connected computer and a proxy that interfaces with one or more non-network connected broadcast devices. The wireless broadcast device monitors the non-network connected broadcast devices and periodically reports the status for each of the devices. A server, remotely located from the configurable wireless broadcast device, receives and processes the status reports. The status reports may also be monitored by a user via a common user interface connected to the server. After processing the status reports, the server sends configuration data, including updated or modified information, back to the wireless broadcast device instructing the device to configure the non-network connected devices. |
US10848531B2 |
Method and apparatus for sharing content
A method and an apparatus for sharing content are provided. Information about at least one content is transmitted to an external device. Information about associated content that have been searched for by the external device based on the transmitted information about the at least one content is received from the external device. Content to share with a second user device are selected from among the associated content based on a predetermined condition. Information about the selected content is transmitted to the second user device. |
US10848530B2 |
Conference system and method for interworking between audio conference and web conference
A conference system and a method for interworking between an audio conference and a web conference in the system are provided. The method for interworking between an audio conference and a web conference according to one embodiment of the present disclosure includes recognizing, at an audio conference server, an access of a host terminal to an audio conference and activating the audio conference, transmitting, at the audio conference server, a notification of activation of the audio conference to a web conference server, and activating, at the web conference server, a web conference corresponding to the audio conference according to the notification of activation of the audio conference. |
US10848528B2 |
Managing data communications based on phone calls between mobile computing devices
An example method comprises receiving, by at least one computing device, a first notification from a first mobile computing device and a second notification from a second mobile computing device. The method may further comprise determining, based at least in part on a comparison of the first notification to the second notification, that the first mobile computing device has initiated a phone call with the second mobile computing device. The method may additionally comprise responsive to determining that the first mobile computing device has initiated the phone call with the second mobile computing device, sending, a first message to the first mobile computing device using a first data connection, and sending, a second message to the second mobile computing using a second data connection, wherein the first message and the second messages each indicate that the first and second mobile computing devices are able to exchange application data. |
US10848521B1 |
Malicious content analysis using simulated user interaction without user involvement
Techniques for detecting malicious content using simulated user interactions are described herein. In one embodiment, a monitoring module monitors activities of a malicious content suspect executed within a sandboxed operating environment. In response to detection of a predetermined event triggered by the malicious content suspect requesting a user action on a graphical user interface (GUI) presented by the malicious content suspect, simulating, a user interaction module simulates a user interaction with the GUI without user intervention. An analysis module analyzes activities of the malicious content suspect in response to the simulated user interaction to determine whether the malicious content suspect should be declared as malicious. |
US10848515B1 |
Predictive model for overall network security risk
A stochastic model is described for cybersecurity using a host access attack graph to determine network security risk. The model uses Markov chains in conjunction with vulnerability metrics to analyze risks associated with a number of different types of computing devices in various types of networks. The model can be used to identify critical nodes in a host access attack graph where attackers may be most likely to focus. Based on that information, a network administrator can make appropriate, prioritized decisions for system patching. Further, a flexible risk ranking technique is described, where the decisions made by an attacker can be adjusted using a bias factor. The model can be generalized for use with complicated network environments. |
US10848512B2 |
Threat mitigation system and method
A computer-implemented method, computer program product and computing system for: receiving updated threat event information concerning a computing platform; enabling the updated threat event information for use with one or more security-relevant subsystems within the computing platform; and retroactively applying the updated threat event information to previously-generated information associated with the one or more security-relevant subsystems. |
US10848510B2 |
Selecting network security event investigation timelines in a workflow environment
Techniques and mechanisms are disclosed that enable network security analysts and other users to efficiently conduct network security investigations and to produce useful representations of investigation results. As used herein, a network security investigation generally refers to an analysis by an analyst (or team of analysts) of one or more detected network events that may pose internal and/or external threats to a computer network under management. A network security application provides various interfaces that enable users to create investigation timelines, where the investigation timelines display a collection of events related to a particular network security investigation. A network security application further provides functionality to monitor and log user interactions with the network security application, where particular logged user interactions may also be added to one or more investigation timelines. |
US10848507B1 |
Reactive virtual security appliances
Methods and systems for monitoring network activity. Various embodiments may deploy virtual security appliances to a certain location or with a specific configuration based on data regarding previous attacks and attacker activity. Accordingly, the deployed virtual security appliance(s) are better suited to gather more useful behavior regarding threat actor behavior and attacks. |
US10848504B2 |
Device and method for detecting attack in network
An attack detection device includes: a receiver configured to receive messages that are periodically transmitted from a communication device in a network; and a processor. The processor predicts a number of messages to be received by the receiver in a specified monitor range based on a transmission cycle of the messages so as to generate a predicted value. The processor counts a number of messages received by the receiver in the specified monitor range so as to generate a count value. The processor detects an attack in the network according to a result of a comparison between the predicted value and the count value. |
US10848502B2 |
Detection and prevention of hostile network traffic flow appropriation and validation of firmware updates
Aspects of the present disclosure relate to systems and methods for partitioning an OS or hypervisor utilized on a computing device from the process of proxy control. For example, a proxy may be installed on a separation kernel or firmware on a computing device that routes all data traffic received via a network connection to a cloud which performs various services such as IP reputation management, URL reputation detection and validation, malicious file filtering through potential malware detection. |
US10848500B2 |
Systems and methods for group-based mobile device management
A method includes sending, from a mobile device management (MDM) server, a group list to a mobile device, the group list indicating a plurality of MDM groups that are available to the mobile device for enrollment. The method also includes receiving, at the MDM server, a join group request from the mobile device. The join group request indicates a group of the plurality of MDM groups. The method also includes, in response to receiving the join group request, updating, at the MDM server, group membership data to indicate that the mobile device is added to the group. The method further includes identifying, based on the group membership data at the MDM server, an action associated with the group. The method also includes sending a command from the MDM server to the mobile device to perform the action. |
US10848499B2 |
System and method for role mining in identity management artificial intelligence systems using cluster based analysis of network identity graphs
Systems and methods for embodiments of a graph based artificial intelligence systems for identity management are disclosed. Embodiments of the identity management systems disclosed herein may utilize a network graph approach to analyzing identities or entitlements of a distributed networked enterprise computing environment. Specifically, in certain embodiments, an artificial intelligence based identity management systems may utilize the peer grouping of an identity graph (or peer grouping of portions or subgraphs thereof) to identify roles from peer groups or the like. |
US10848496B2 |
System and method for secure individual identification across multiple disparate entities
An entity communicates with a central authority to issue an asset to an individual. The asset has associated therewith a distinct URI or “unique ID”. The asset uniquely identifies the individual to the issuing entity and to other entities in communication with the central authority. Select data about the individual obtained by one or more entities is stored in the central authority or in a network memory in communication therewith using the Resource Description Framework, which allows for this data to be queried by the entities with increased efficiency. |
US10848490B2 |
Cloud device identification and authentication
Methods and apparatuses for authentication and/or provisioning of wireless network devices, and in particular, methods and apparatuses for authentication and/or provisioning of wireless network devices that are communicating with and may be monitored and/or controlled by a remote (e.g., cloud) server. |
US10848485B2 |
Method and apparatus for a social network score system communicably connected to an ID-less and password-less authentication system
A technique is provided in which entities, such as companies, connect to a universal social network score server in the cloud, to request therefrom a social network score about an entity. The social network score depicts how many social network sites were visited by the entity, if the entity is visible on the Internet or social network sites, if the entity is active on the social network sites, and, if so, how active. Also described are techniques with which to access a user's web applications, where the user registers and signs on to an aggregator system using any supported login identity provider username and password. The system also automatically creates a system secret username and secret, highly securely generated password, both of which are unknown and inaccessible to the user. The system also maps the login identity provider user name to the secret user name and password for subsequent usage. |
US10848481B1 |
Systems and methods for revocation management in an AMI network
Systems and methods for certificate revocation management for advanced metering infrastructure networks are provided. An accumulation manager can be used to accumulate certificate revocation list (CRL) information and determine an accumulator value and a proof value based on the accumulated CRL information using a plurality of functions. These values can be sent on to smart meters, which can then use them for authentication purposes. |
US10848480B2 |
Systems, apparatus, and computer program products integrating simple certificate enrollment protocol into network device management
A system, method, computer program product and apparatus provide an improvement to administration and management of security certificates in enterprise scale networks. An exemplary embodiment integrates a network device manager (NDM) with Simple Certificate Enrollment Protocol (SCEP) for administration and management of network equipment and for handling certificates for enterprise-scale implementation. The network device manager may control the settings and is configured to communicate with the firmware of end devices. The SCEP thus has a medium in the network device manager through which the SCEP features can be communicated to the end devices. In an exemplary embodiment, aspects of the system may for example, automatically check expiration of and renew certificates that are expiring. |
US10848479B2 |
Enabling encrypted communications between a user and a third party hosting service via a proxy server
A domain name registrar may provide a service for a domain name registrant to automatically and without further action by the domain name registrant (other than possibly paying for the service) enable secure socket layer (SSL) for a domain name to a third party hosting service, even when the domain name registrar does not own or control the third party hosting service. The invention allows a user (that may or may not be the domain name registrant) to use the domain name registered to the domain name registrant to communicate with a domain name registrant account (possibly a website) on the third party hosting service via a proxy server. The communication between the user and the proxy server may be encrypted such as by the SSL protocol. |
US10848478B2 |
Secure endpoint authentication credential control
Methods, systems, and devices for secure endpoint authentication credential control are described. An endpoint agent may receive an indication from an operating system of an endpoint device that the operating has received authentication credentials from a user. The endpoint agent may be housed in the endpoint device, and may detect a change between the received set of authentication credentials and a previous version of authentication credentials. Based on this detection, the endpoint agent may transmit the received authentication credentials to a central server. The central server may transmit the authentication credentials to an information technology (IT) resource which requires user authentication prior to granting access to a user. |
US10848475B2 |
Method, device and system for network-based remote control over contactless secure storages
A typical system environment comprises a terminal device, a secure storage subsystem, and an interconnectivity component. The terminal device has a network connectivity subsystem enabled for data connectivity with a wireless communications network. The secure storage subsystem has a secure storage memory for securely storing contents and is enabled for local RF connectivity through a local RF communication subsystem. The secure storage subsystem is operable as a contactless smartcard in accordance with any contactless technology. The interconnectivity component is adapted to enable communication of the secure storage subsystem through the network connectivity subsystem with the network. The interconnectivity component is further configured to detect that messages received from the network are destined for the secure storage subsystem and is configured to supply that identified messages to the secure storage subsystem. The messages enable exercising control over the secure storage subsystem in that the messages comprise one or more instructions to be processed by a secure memory controller of the secure storage subsystem. |
US10848474B2 |
Firmware validation for encrypted virtual machines
Systems and methods for firmware validation for encrypted virtual machines are disclosed. An example method may include receiving, by a processing device, a request to launch a virtual machine on a host machine; starting, on the host machine, the virtual machine comprising a first firmware and a second firmware; performing, using the first firmware, a first validation process to authenticate the virtual machine with a server of a guest owner; and performing, using the first firmware, a second validation process to validate the second firmware of the virtual machine. In some embodiments, the first firmware includes a shim firmware. In some embodiments, the second firmware includes BIOS or UEFI. |
US10848472B2 |
Method and WLAN controller for managing authentication data of STA
A method includes determining, by a first wireless local area network (WLAN) controller, that a first access point (AP) is an edge AP when a first STA associates with the first AP, where the edge AP is an AP neighboring to another AP, and the other AP and the edge AP are respectively managed by different WLAN controllers, and sending, by the first WLAN controller, authentication data of the first STA to at least one WLAN controller. |
US10848470B2 |
LPI/LPD communication systems
In a wireless communication system, a secure communication link is provided by producing a set of reference symbol values selected from a modulation symbol constellation; generating a linear transformation operator from information to be transmitted to a receiver; applying the linear transformation operator to the set of reference symbol values, thereby distorting the reference symbol values with respect to the information, to produce a linear transformation signal; and transmitting the linear transformation signal to the receiver. The receiver decodes the linear transformation signal to receive the information. |
US10848466B2 |
Method, server and storage medium for data distribution
A method for data distribution includes: receiving a request for data distribution sent from a terminal; searching for raw association network data, wherein the raw association network data includes a set of nodes and a set of edges existing between the nodes; searching for a corresponding user grade according to a user identifier carried in the request for data distribution, and determining a privacy budget parameter corresponding to the user grade; determining the distributing probability distribution corresponding to the raw association network data to be distributed according to a pre-constructed Laplace Model and the determined privacy budget parameter; selecting an arbitrary value within the distributing probability distribution as a distributing probability for each network edge of the set of edges, generating a random number between 0 to 1 for each network edge, comparing the random number to the distributing probability, and distributing the corresponding network edge when the distributing probability is greater than the random number. |
US10848460B2 |
System and method of providing a controlled interface between devices
A method of using a controlled interface for managing data communicated between a first device and a second device. The method includes storing a first low-level protocol address and a second low-level protocol address in the controlled interface, receiving from the first device a first signal at a first part of the controlled interface, the first signal having first high-level addressing data, stripping the high-level addressing data to yield a first payload, associating the low-level protocol address with the first payload, transmitting the low-level addressed payload to a second part of the controlled interface, stripping, at the second part of the controlled interface, the low-level protocol address associated with the low-level addressed payload, associating a second high-level addressing data to the payload and transmitting the high-level addressed payload from the second part of the controlled interface to the second device. |
US10848458B2 |
Switching device with migrated connection table
A method including providing: a switching device including a main mapping unit configured to provide a main mapping which maps virtual addresses to direct addresses; management logic configured to store a connection tracking table stored in memory and configured for storing a plurality of connection mappings each including a virtual-to-direct mapping from a virtual address to a direct address; and a migrated connection table stored in memory and configured for storing a plurality of migrated connection mappings each including a virtual-to-migrated-direct mapping from a virtual address to a migrated direct address. Upon receiving an indication that a direct address has changed: when the indication that a direct address has changed includes an indication that a direct address stored in one or more connection mappings in the connection tracking table is not active, copying the one or more connection mappings from the connection tracking table to the migrated connection table, when the indication that a direct address has changed includes an indication that a new direct address has become active, creating one or more connection mappings in the migrated connection table, and altering the main mapping in accordance with the direct address change. |
US10848453B2 |
Name composition assistance in messaging applications
A method includes identifying, at an electronic device a candidate name responsive to user input indicating a salutational trigger during composition of a body of a message of a messaging application. Identifying the candidate name including at least one of: parsing a recipient-specific portion of a recipient message address of the message; parsing a display name associated with the recipient message address; parsing a content of the message body; parsing an attachment name associated with an attachment field of the message; identifying the candidate name from a contact record selected from a contacts database based on a recipient-specific portion of a recipient message address of the message; and parsing user-readable content of an application from which composition of the message was triggered. The method further includes facilitating composition of a recipient name in the body of the message based on the candidate name. |
US10848449B2 |
Token-based message exchange system
Techniques are disclosed relating to exchanging tokens for processing messages. A first system may access information identifying a first requested amount of tokens for a message to be processed by a second system. The first system may cause a first transaction to be written to a distributed ledger that records a transfer of the first requested amount from an account of the first system to an account of the second system. The first system may send a message to the second system. The first system may provide information identifying a second requested amount of tokens for a message to be processed by the first system. The first system may process a message from a third system in response to verifying that there is a second transaction that records a transfer of the second requested amount from an account of the third system to the account of the first system. |
US10848444B2 |
Email-based access to secure information
An information management system may store information related to tasks to be performed by workers in an organization. Workers in the organization may communicate with the information management system using email messages. The information management system may not require a login or authentication procedure, and workers may interact with the information management system without the need to log in to the information management system. The information management system may receive an email message from a worker that indicates a request for a report. The information management system may determine whether to transmit the report to the worker based on whether the worker is appropriately registered with the information management system, and/or whether the worker has administrative privileges. The information management system, in response to a positive determination, may transmit the report to the email address from which the requesting email message was sent. |
US10848443B2 |
Chatbot socialization
Embodiments of the disclosure provide systems and methods for utilizing chatbots to support interactions with human users and more particularly to using multiple chatbots from different communication channels and/or in different domains to support an interaction with a user on a single communication channel and/or in a single domain. Generally speaking, embodiments of the present disclosure are directed to allowing multiple chatbots that operate on different communication channels and/or in different domains to socialize amongst one another. This socialization of chatbots operating on different communication channels and/or in different domains allows each chatbot to call upon one another to help engage in a transaction with a customer. In addition to facilitating a communication session in which two or more chatbots are socialized together to help prepare coherent responses to user inputs, the socialization of chatbots can also facilitate the automated training of chatbots. |
US10848442B2 |
Heterogeneous packet-based transport
For secure transport, when receiving a plurality of packets from a root complex where contents of each packet from the plurality of packets organized in accordance with a first protocol, a sequence number is added to each packet and a packet type is identified. Every packet in the first plurality of packets is encrypted and encapsulated into at least one packet organized in accordance with a second protocol to form a second plurality of packets organized in accordance with the second protocol. All the packets from the second plurality of packets are sent via a plurality of connections so that each connection from the plurality of connections only transports packets from the second plurality of packets that encapsulate packets from the first plurality that have a same packet type. |
US10848439B2 |
Method for operating an industrial automation system communication network comprising a plurality of communication devices, and control unit
Method for operating a communication network that includes a communication devices and form part of an industrial automation system, wherein control units control functions of associated communication devices, where a prescribable proportion of system resources of an associated communication device is provide for a prescribable resource use duration for each control unit, when prescribable synchronization events occur, the control units synchronously detect state variables of the communication devices and adjust them to one another, the control units additionally determine, for at least one past resource use duration, how a determination time available for a path determination influences quality criterion changes for communication network paths to be determined, and determine a first correction value synchronization events based on the quality criterion changes, and the control units determine a second correction value for the synchronization events if inconsistent state variables are determined when the state variables are adjusted to one another. |
US10848437B2 |
Quality of service control method and device for software-defined networking
Example quality of service (QoS) control methods and apparatus for software defined network (SDN) are described. One example method includes determining a flow entry that includes QoS information. The QoS information is used to indicate a QoS processing rule that includes a QoS parameter. The QoS processing rule is used to instruct to perform QoS control on a data packet according to the QoS parameter. The flow entry is sent to a forwarding plane device, so that the forwarding plane device obtains the QoS processing rule, and performs QoS control on a target packet according to the QoS parameter in the QoS processing rule, where the target packet is a data packet that matches the flow entry. |
US10848436B1 |
Dynamic bitrate range selection in the cloud for optimized video streaming
Selecting an optimal bitrate range is disclosed. A request for content from a first client is received. An optimal subset of bitrates for the first client is determined. The optimal subset of bitrates for the first client is determined based at least in part on one or more real-time quality measures. A different optimal subset of bitrates is determined for a second client. An indication of the optimal subset of bitrates determined for the first client is provided to the first client. The first client is configured to obtain content according to the indication of the optimal subset of bitrates. |
US10848435B2 |
Method and system for administering multiple domain management authorities on a mobile device
A method for administering multiple management agents on a mobile device, the method receiving, at a policy manager on the mobile device, a policy from each of the multiple management agents; determining a current state of the mobile device; and consolidating the policies based on rules within the policy manager and the current state of the mobile device. |
US10848433B2 |
Method for distributing available bandwidth of a network amongst ongoing traffic sessions run by devices of the network, corresponding device
The invention concerns a device of a network configured for implementing a method for distributing available bandwidth of said network (N1) amongst ongoing traffic sessions of devices (C1, C2, C3) of the network (N1). Said device comprises: —a communication module (2) to collect status messages from devices (C1, C2, C3) of the network running at least one traffic session; —a ranking module (5) configured to rank said ongoing traffic sessions according to parameters of devices and traffic sessions retrieved from status messages; —a calculator (6) configured to determine bandwidth to be allocated to each ranked traffic session in function of the available bandwidth, a rank of the ranked traffic sessions and a type of the ranked traffic session; —a comparator (7) able to check whether the determined bandwidth to be allocated to a traffic session of the device is different from zero. |
US10848427B2 |
Load balanced access to distributed endpoints using global network addresses and connection-oriented communication session handoff
Systems and methods are described to enable the load-balanced use of globalized network addresses, addressable throughout a network to access a network-accessible service. A set of global access points are provided, which advertise availability of the globalized network addresses. The access points enable rapid use of connection-oriented communication sessions by conducting an initialization phase of the sessions locally on the access point. Session context information is then handed off to an endpoint for the service, which can provide the service through the already-established sessions. To avoid breaking sessions due to changes in network routing, each access point can apply a uniform selection criteria for endpoints, such that if client traffic is routed to a different access point, that access point redirects the traffic to the same endpoint previously servicing the traffic via an established session. |
US10848420B2 |
Dynamic forwarding features in network elements
A network element dynamically adjusts the forwarding plane based on a received packet. The network element receives a packet that is formatted according to a packet type. The network element determines whether the network element is configured to process the packet type. Responsive to a determination that that network element is not configured to process the packet type, the network element sends packet information to a network controller. The network element receives at least one packet handling module that includes instructions for processing the packet type of the received packet. Installing the at least one packet handling module on the network element configures the network element to process the packet type. The network element processes the packet according to the instructions in the at least one packet handling module. |
US10848419B2 |
Data transmission method, communication network and master participant
Data transmission in a communication network is performed via a transmission path with which a master participant and at least one slave participant communicate. The master participant outputs messages on the data transmission path with which the slave participants exchange data on the fly. The messages output by the master participant contain datagrams which comprise a control data field and a payload field, where the control data field has a command field and an address field. In the case that at least one message has at least one datagram which is a write datagram in which the command field defines the data transmission procedure to be performed by a slave participant with the payload field as a write procedure, at least the control data field of a further datagram is arranged between the control data field of the write datagram and the payload field of the write datagram. |
US10848413B2 |
Self-expansion of a layer 3 network fabric
The technology disclosed herein enables an L3 network fabric including one or more spine switches having a leaf-spine topology to be self-expanded. In a particular embodiment, a method provides transferring one or more probe messages from each of the spine switches. The probe messages detect whether new computing nodes have been attached to the communication network. The method further provides receiving a reply to at least one of the probe messages. The reply identifies a new computing node that is not yet included in the L3 fabric. In response to the reply, the method provides confirming physical network interfaces of the spine switches indicate valid connections to one or more new leaf switches of the new computing node, using L3 discovery protocols to ensure the connections conform to the leaf-spine topology, and transferring probe packets between the spine switches and leaf switches, including the new leaf switches, of computing nodes connected thereto to confirm configuration of all connections between the spine switches and the leaf switches of the computing nodes. Moreover, the method provides configuring L3 protocols for routing communications exchanged with the new computing node. |
US10848411B2 |
Test system and method for triggering or searching in input data decoded with a user defined protocol
A test system for triggering or searching in input data decoded with a user defined protocol is provided. The test system comprises a processor and a display. The processor is configured to control the display to display a graphical user interface (GUI), and to receive input data. The GUI is configured to provide an input structure for a user to define protocol layer frames for decoding the input data. Based on the defined protocol layer frames, the processor is configured to generate a set of trigger or search options, and to control the display to display the set of trigger or search options. |
US10848410B2 |
Ranking service implementations for a service interface
Techniques for ranking service implementations for a service interface are disclosed. Each module that includes a service implementation may be referred to as a “service provider module.” The ranking of the service implementations, for the particular service interface, may be based on modular information. Modular information includes information associated with module dependencies and/or service dependencies corresponding to one or more of a candidate set of service provider modules. Additionally or alternatively, the ranking of the service implementations, for the particular service interface, may be based on statically-available information and/or dynamically-available information associated with one or more of a candidate set of service implementations. |
US10848407B2 |
Efficient density based geo clustering
Methods and systems for mapping a plurality of client devices includes identifying a plurality of points distributed in a network space and sorting the points by latitude to generate a first list of points. A cluster window is defined for each point in the first list with a size defined by a clustering distance. The cluster window for a point includes a plurality of other points with a latitude that are within the clustering distance from the point. A density score is computed for each point in the cluster window and a second list is generated in accordance to the computed density score of the points within the cluster window starting with a point with highest density score. A cluster is created for a first point in the second list with the first point as the cluster center and including points that are within a Haversine distance from the cluster center of the cluster. The points in the network space are used to create a plurality of clusters with each cluster modeling a geographical area within the network space with client devices in the area exhibiting similar network characteristics. |
US10848406B2 |
Methods, systems, and apparatus to generate information transmission performance alerts
An alert system and method are provided to identify and characterize real-time information transmission anomalies in high-frequency global and local traceroute data. The system includes active network sensors and/or collector devices, which collect traceroute data associated with transmissions to different points in a computer network and provide the traceoute data to a master server. The traceroute data is obtained by the active network sensors by sending probing data packets to numerous computing target devices located locally with respect to the target device and/or globally. The master server determines one or more anomalies from the received traceroute data and characterizes the anomaly in terms of type, severity, location, affected Domain Name System (DNS) server and/or Internet Service Provider (ISP). |
US10848404B2 |
LAN cable conductor energy measurement, monitoring and management system
A LAN cable conductor monitoring system includes an IoT device with a number of IoT input ports that are each connected to a network switch output port. The IoT device measures the current passing through each connected network switch output port, and passes the signals on to their respective cable conductors. A number of temperature sensors positioned at various points on the pass temperature readings back to the IoT device. If the temperature readings or current readings for a given network switch output port exceed predefined limits, the IoT device imposes PoE (Power over Ethernet) current constraints on the network switch. |
US10848401B2 |
System and method of identifying internet-facing assets
A method includes receiving a seed at a computing device. The method further includes identifying, based on first domain name system (DNS) data, first border gateway protocol (BGP) data, first whois data, or a combination thereof, a plurality of first internet-facing assets related to the seed. The method further includes identifying, based on second DNS data, second BGP data, second whois data, or a combination thereof, a plurality of second internet-facing assets related to at least one of the first internet-facing assets. The method further includes generating a graphical user interface (GUI) that includes a list of internet-facing assets related to the seed, where the list includes the plurality of first internet-facing assets and the plurality of second internet-facing assets. |
US10848400B2 |
Network entity for monitoring a plurality of processes of a communication system
A network entity for monitoring a plurality of processes of a communication system includes: a receiver, configured to receive communication data of the plurality of processes of the communication system; a processor, configured to: capture a process characteristic for each process on the basis of the communication data and to allocate the respective process to a process level of a process hierarchy according to the captured process characteristic; and check a process status for each process in order to detect a process with a critical process status; and a display, configured to illustrate the process levels of the process hierarchy and to graphically highlight a process level to which the process with the critical process status is allocated. |
US10848398B2 |
Method, apparatus, and system for optimizing performance of a communication unit by a remote server
Described herein are apparatus, system, and method for optimizing performance of one or more communication units by a remote server. The method comprises: collecting data from the one or more communication units; generating a policy, for each of the one or more communication units, based on the collected data; and sending the policy to each of the one or more communication units, wherein the policy comprises conditions for operation of the one or more communication units, wherein the one or more communication units implement the policy according to time-varying data. The system comprises: one or more communication units; and a server operable to communicate with the one or more communication units, wherein the server comprises: a memory; and a processor, coupled to the memory, and operable to perform the method discussed above. |
US10848397B1 |
System and method for enforcing compliance with subscription requirements for cyber-attack detection service
A system featuring a cloud-based malware detection system for analyzing an object to determine whether the object is associated with a cyber-attack. Herein, subscription review service comprises a data store storing subscription information. The subscription information includes identifier for the customer and one or more identifiers each associated with a corresponding customer submitter operable to submit an object to the cloud-based malware detection system for analysis. The first customer submitter receives credentials provided by the subscription review service to establish communications with the cloud-based malware detection system. The first customer submitter includes a first submitter identifier that comprises (i) enforcement logic that enforces compliance with a plurality of requirements of the subscription to the cloud-based malware detection system and (ii) reporting logic that transmits a result of the analysis of the object by the cloud-based malware detection system in determining whether the object is associated with a cyber-attack. |
US10848393B2 |
Communication method, apparatus, and system
This application provides a communication method, an apparatus, and a system. The method includes: receiving, by a first management unit, a network component notification message sent by a second management unit, where the network component notification message carries tenant service instance information and status information of a network component, the tenant service instance information is corresponding to the status information of the network component, and the status information includes fault information and/or performance information; and determining, by the first management unit, status information of a network slice instance based on the network component notification message, where the status information of the network slice instance is corresponding to the tenant service instance information, and the network slice instance includes the network slice component. The communication method in embodiments of this application can improve network slice management efficiency. |
US10848390B2 |
Prioritized rule set identification and on-demand constrained deployment in constrained network devices
In one embodiment, a method comprises a management device, in a constrained network comprising constrained network devices, identifying for each constrained network device all available rules for execution by the corresponding constrained network device; the management device generating a prioritized rule set for each constrained network device, each prioritized rule set having selected available rules ordered relative to priority of execution by the corresponding constrained network device relative to a corresponding device context and a corresponding network context of the corresponding constrained network device; and the management device executing, for each constrained network device, a corresponding constrained deployment of the corresponding prioritized rule set based on identifying, from the corresponding prioritized rule set, a lifetimed rule set relative to the corresponding device context and network context, and supplying the lifetimed rule set to the corresponding constrained network device. |
US10848386B2 |
Method and apparatus for automatic identification of an outage of a network node
A method for identifying automatically an inner node within a hierarchical network causing an outage of a group of leaf nodes at the lowest hierarchical level, the method including providing an outage state matrix representing an outage state of leaf nodes at the lowest hierarchical level; decomposing the state matrix into a first probability matrix indicating for each inner node the probability that the inner node forms the origin of an outage at the lowest hierarchical level of the hierarchical network and into a second probability matrix indicating for each leaf node at the lowest hierarchical level of the hierarchical network the probability that an inner node forms a hierarchical superordinate node of the respective leaf node at the lowest hierarchical level of the hierarchical network and evaluating the first probability matrix to identify the inner node having caused the outage of the group of leaf nodes. |
US10848385B2 |
Circuit board for a server system and server system
The application relates to a circuit board for a server system. The circuit board is adapted to be installed either in a server of a first type or in a server of a second type different from the first type. The circuit board includes connections for receiving assembly groups and a controller to provide a counting order to the connection depending on the server in which the circuit board is connected being a first type or a second type. |
US10848384B2 |
Method for determining parallel process paths in process data
A computer-implemented method is provided for determining parallel process paths in process data. In a first step, a status hierarchy is generated from process steps stored in a storage means, wherein the process steps are read from the storage means and are added to the status hierarchy, and wherein for each added process step, a predecessor/successor relation is added to at least one further process step to the status hierarchy. In a second step, a process hierarchy of the process instance comprising nodes and edges is deduced from the process steps stored in the status hierarchy and the respective predecessor and/or successor relations. |
US10848382B1 |
Systems and methods for network asset discovery and association thereof with entities
A system for discovering digital assets and determining an association between the assets and an entity analyzes publicly available information about entities of interest and dataset(s) generated via network observations from devices using the digital assets. Additional attributes included in the network observations dataset(s) and metadata from such observations may be used to enhance the correctness of the identified entity-asset associations. Network observations dataset(s) may be monitored on an on-going basis to provide current entity-asset associations. |
US10848377B2 |
Access point instantiation of a mesh network
Systems and methods address automatic reconfiguration of one or more access points (APs) within a wireless local area network (WLAN). The disclosed automatic reconfiguration may take place responsive to detection of a wired uplink failure of an AP. For example, the device experiencing failure may establish a wireless communication path to use as a mesh link with a remote wireless access point. Depending on network configuration type, a master in a master/slave configuration or a controller may direct the remote wireless access point to become a mesh portal to support the newly established mesh link. As a result, support of network communication for the plurality of wireless remote clients of the AP experiencing failure may be continued by the failed AP. Reconfiguration may take place without interruption of services for client devices or forcing client devices to form a new network association with a different AP. |
US10848369B2 |
Service interruption reporting
There is provided mechanisms for service interruption reporting of a multicast bearer for group communications. A method is performed by a client node. The method comprises obtaining instruction from a control node of the multicast bearer, where the instruction instructs whether or not the client node is to report service interruption of the multicast bearer. The method comprises detecting service interruption of the multicast bearer. The method comprises selectively reporting the service interruption to the control node in accordance with the instruction. |
US10848368B1 |
Method and system for peer-to-peer operation of multiple recording devices
In an embodiment, a method includes receiving a first status message from a first recording device. The first status message includes a first recording identifier. The method further includes determining to initiate a second recording on a particular recording device based, at least in part, on the first status message and configuration settings. In addition, the method includes initiating a second recording on the particular recording device. Furthermore, the method includes creating a second recording identifier. The method also includes storing information related to the first recording identifier and the second recording identifier in a metadata file. Additionally, the method includes transmitting a second status message for receipt by other recording devices. The second status message includes the second recording identifier. |
US10848366B2 |
Network function management method, management unit, and system
Embodiments of the present invention relate to a network function management method, a management device, and a system. The method includes: obtaining, by a second management device, sharing information of a network function, where the sharing information of the network function is used to indicate whether the network function can be shared by at least two network slices; sending, by the second management device, the sharing information of the network function to a first management device; and orchestrating, by the first management device, the network function based on the sharing information of the network function. It can be learned from the above that the embodiments of the present invention provide a specific solution to choosing to provide a network slice with a shared network function or an exclusive network function, thereby facilitating network function maintenance and management. |
US10848363B2 |
Frequency division multiplexing for mixed numerology
A base station may utilize frequency division multiplexing (FDM) techniques to signal synchronization signal (SS) blocks and downlink transmissions (e.g., data/control transmissions). The base station may configure a configuration for a bandwidth part (BWP) of a carrier for downlink transmissions. The BWP configuration may include a transmission attribute (e.g., a subcarrier spacing (SCS)) for downlink transmissions within the BWP. The base station may transmit a grant for a downlink transmission to a user equipment (UE). In some cases, the downlink transmission may be scheduled for a set of resources that overlap in time with a SS block for the carrier. The base station may transmit downlink transmissions within the BWP using transmission attributes configured for the BWP and/or using SS block transmission attributes, depending on capabilities of the UE, on whether the time resources of the downlink transmission that are FDMed with the SS block, etc. |
US10848361B2 |
Carrier independent signal transmission and reception
Certain aspects of the present disclosure provide techniques for carrier independent signal transmission and reception. Certain aspects provide a method for wireless communication. The method includes applying, at a device, a phase correction to a first signal to compensate for a difference between a first zero tone location comprising a first frequency and a second zero tone location comprising a second frequency. The method further includes one of: transmitting the first signal after applying the phase correction; or receiving the first signal prior to applying the phase correction. |
US10848359B2 |
Virtual symbol splitting techniques in wireless communications
Techniques are described that provide for virtual symbol splitting for uplink and/or downlink wireless transmissions. A wireless transmitter, such as a UE or a base station, may identify a pilot signal and a payload to be transmitted in a full symbol. The transmitter may format the pilot signal and the payload into separate sub-symbols that are nested within the first full symbol, with each sub-symbol including an associated sub-symbol cyclic prefix, and the full symbol including a full symbol cyclic prefix. |
US10848355B2 |
Methods and systems for cognitive radio spectrum monitoring
Cognitive radios by dynamically detecting available channels and changing their transmission or reception parameters allow increased concurrent wireless communications within a given spectrum band. It would be beneficial for such cognitive radios to exploit orthogonal frequency division multiplexing (OFDM) and accordingly establishing a spectrum monitoring technique suitable for OFDM-based cognitive radios an essential element for this. The inventors have established a technique allowing for the detection of the reappearance of the primary user within a reception period within an OFDM-based cognitive radio network and beneficially does so quickly without requiring received bit decoding and allows for different signal chain impairments to be considered. Further, the technique is applicable to address other important OFDM challenges for cognitive radios such as power leakage as well as extending the embodiments of the invention to multiple antenna systems. |
US10848354B2 |
Combined data and timing information
A measurement apparatus for providing digital data to a controller, including an Analog-to-Digital Converter (ADC) configured to transform an analog signal into a modulated digital data stream; an event detector configured to generate event indication data based on an event related to the analog signal or the digital data; and a communication interface configured to combine the modulated digital data stream and the event indication data into one or more communication frames, and to transmit the one or more communication frames to the controller. |
US10848353B1 |
Multi-tap decision feedback equalizer (DFE) architecture with split-path summer circuits
Embodiments include apparatuses, methods, and systems including a decision feedback equalizer (DFE). The DFE includes a first summer circuit, a second summer circuit, a decision circuit, and a tap-delay line including a number of delay elements. The first summer circuit is to add together an analog signal and a first set of weighted feedback taps {h(j+1), . . . h(m)} of time delayed signals of a detected symbol to generate a first summand. The second summer circuit is to add together a second set of weighted feedback taps {h(k+1), h(n)} of time delayed signals of the detected symbol to generate a second summand. The decision circuit is to receive at least the first summand and the second summand, to generate the detected symbol based on a sum including the first summand and the second summand. Other embodiments may also be described and claimed. |
US10848350B1 |
Split-path equalizer and related methods, devices and systems
This disclosure provides a split-path equalizer and a clock recovery circuit. More particularly, clock recovery operation is enhanced, particularly at high-signaling rates, by separately equalizing each of a data path and an edge path. In specific embodiments, the data path is equalized in a manner that maximizes signal-to-noise ratio and the edge path is equalized in a manner that emphasizes symmetric edge response for a single unit interval and zero edge response for other unit intervals (e.g., irrespective of peak voltage margin). Such equalization tightens edge grouping and thus enhances clock recovery, while at the same time optimizing data-path sampling. Techniques are also disclosed for addressing split-path equalization-induced skew. |
US10848346B2 |
Private alias endpoints for isolated virtual networks
In accordance with a designation of a private alias endpoint as a routing target for traffic directed to a service from within an isolated virtual network of a provider network, a tunneling intermediary receives a baseline packet generated at a compute instance. The baseline packet indicates a public IP (Internet Protocol) address of the service as the destination, and a private IP address of the compute instance as the source. In accordance with a tunneling protocol, the tunneling intermediary generates an encapsulation packet comprising at least a portion of the baseline packet and a header indicating the isolated virtual network. The encapsulation packet is transmitted to a node of the service. |
US10848344B2 |
Service sending method and apparatus, service receiving method and apparatus, and network system
The present disclosure relates to a service sending method and apparatus, and a service receiving method and apparatus. One example service sending method includes obtaining, by a network device, a first data stream and a second data stream, and inserting the first data stream into the second data stream to generate a third data stream. The third data stream includes a first information block and a second information block, the first information block is used to carry the first data stream, the second information block is used to carry a first data stream distribution indication map, the first data stream distribution indication map is used to indicate a location of the first information block, and the second information block is identified by using a preset map block type. |
US10848334B2 |
Automatic transitions in automation settings
Various aspects and embodiments of automation in tenancy transitions are described. Among other aspects or features of the embodiments, a computing device in an automation or gateway hub receives and stores automation settings from an automation management service environment over time. The automation settings can include different settings for various states of occupancy of a rental unit or dwelling. For example, the automation settings can include a first set of tenant-defined automation settings, which can be defined by a tenant while the dwelling is occupied by the tenant, and a second set of property-manger-defined vacancy automation settings for use after the tenant vacates the dwelling. The automation or gateway hub can determine whether a transition in tenancy has occurred for the dwelling (e.g., when the tenant moves out) and, in response to the transition, load the vacancy automation settings into one or more home automation devices of the dwelling. |
US10848329B2 |
Power over ethernet device level ring bridge
The present disclosure discloses a hybrid Power over Ethernet/Device Level Ring network in which power is delivered to connected devices on the same cable in which data are delivered, and the devices are configured to connect to the network in a daisy-chain fashion. The network of the disclosure may be configured to operate as a token ring. According to a further aspect of the present disclosure, a hybrid PoE/DLR network switch and a hybrid PoE/DLR network device for such a PoE/DLR hybrid network are disclosed. |
US10848321B2 |
Systems and methods for authenticating a user based on biometric and device data
A data controller (DC) system including one or more data controller (DC) computing device for authenticating a user is provided. The DC system is configured to receive first crypto key data associated with a first transaction including encrypted on-device biometric data, and a first account identifier, store the first crypto key data as historical crypto key data, and receive an authentication request message for a second transaction including second crypto key data which includes a second account identifier. The DC system is further configured to correlate the second crypto key data to the historical crypto key data, match the first account identifier to the second account identifier, determine a fraud score for the second transaction, automatically generate an authentication response message including the fraud score, and transmit the authentication response message. |
US10848319B2 |
System for issuing certificate based on blockchain network, and method for issuing certificate based on blockchain network by using same
A method for issuing certificates based on a blockchain network is provided. The method includes steps of: an authentication-supporting server, (a) if personal information on a user is acquired, (i) instructing a user device to generate a public and a private key of the user and transmit the public key to the authentication-supporting server, (ii) storing the certificate including the public hey as corresponding to the personal information, and (iii) determining whether one of current anchoring conditions is satisfied; (b) if it is, generating a root hash value by a Merkle tree operation on leaf nodes including hash values of the certificates stored after a previous anchoring condition is satisfied; and (c) one of (c-1) storing the transaction including the root hash value in a distributed database on the blockchain network and (c-2) instructing a blockchain node to store the transaction in the distributed database, and acquiring a transaction ID. |
US10848318B2 |
System for authenticating certificate based on blockchain network, and method for authenticating certificate based on blockchain network by using same
A method for authenticating a specific user by using certificates including a specific certificate of the specific user based on a blockchain network is provided. The method includes steps of: an authentication-supporting server, (a) on condition that a transaction is stored in a distributed database on the blockchain network from when a previous anchoring condition is satisfied to when a current anchoring condition is satisfied, wherein the transaction includes a root hash value created by a Merkle tree operation to leaf nodes having hash values of the certificates and the certificates including public keys of users, root hash identification information, and a transaction ID for locating the transaction on the distributed database are stored in the authentication-supporting server as corresponding to the specific user, if authentication of the specific user is requested, confirming validity of the specific certificate; and (b) if the specific certificate is valid, authenticating the specific user. |
US10848316B1 |
Non-contact vehicle measurement system
A vehicle measurement station utilizing one or more displacement sensors disposed on each opposite side of an inspection region of a vehicle inspection lane to acquire displacement measurement data along associated measurement axes. At least a portion of the displacement measurement data is associated with the outermost wheel assemblies on an axle of a moving vehicle passing through the inspection region, and utilized to determine one or more vehicle characteristics, such as an axle total toe condition. |
US10848313B2 |
Methods and systems for network security using a cryptographic firewall
A method is performed at a security device. The method includes establishing a network connection with a client system. After establishing the network connection, the security device receives a first packet from the client system. The first packet includes an identifier, a first counter value, and a first one-time password hash generated by the client system. Based on the identifier received, the security device retrieves from a trusted data store the seed and a second counter value. If the first counter value is larger than the second counter value, the security device generates a second one-time password hash based on the identifier, the first counter value, and the seed. In accordance with a determination that the first and second one-time password hashes match, the security device grants, to the client system, access to one or more network resources protected by the security device via the network connection. |
US10848308B2 |
Method and system for distributed cryptographic key provisioning and storage via elliptic curve cryptography
A method for distributing multiple cryptographic keys used to access data includes: receiving a data signal superimposed with an access key request, wherein the access key request includes at least a number, n, greater than 1, of requested keys; generating n key pairs using a key pair generation algorithm, wherein each key pair includes a private key and a public key; deriving an access private key by applying the private key included in each of the n key pairs to a key derivation algorithm; generating an access public key corresponding to the derived access private key using the key pair generation algorithm; and electronically transmitting a data signal superimposed with a private key included in one of the n key pairs for each of the n key pairs. |
US10848306B2 |
Method and system of implementing security algorithm and decryption algorithm by using reconfigurable processor
The present disclosure provides a system and method of implementing a security algorithm using a reconfigurable processor, the method including: determining a plurality of sub-algorithms for constructing the security algorithm; and configuring the reconfigurable processor to implement the security algorithm according to a first configuration information of each sub-algorithm of the plurality of sub-algorithms and a first combination configuration information indicating a combination connection relationship of each of the sub-algorithms. The present disclosure also provides a system and method of implementing a decryption algorithm using a reconfigurable processor. Configuration of the reconfigurable processor according to the present disclosure can enable the security of the security algorithm and the security of the security algorithm implementation process to be ensured, the security risks of the sensitive data management and the risk of side channel attacks can be prevented, and the security is extremely high. |
US10848302B2 |
Network security framework for wireless aircraft communication
Embodiments of the invention include techniques for implementing a network security framework for wireless aircraft communication, where the techniques include receiving a key index sequence over a first communication link, and transmitting a subset of the key index to one or more nodes. The techniques also include generating a random encryption key based at least in part on the subset of the key index sequence, encrypting data using the random encryption key, and transmitting the encrypted data over a second communication link. |
US10848301B1 |
DNS-based public key infrastructure for digital object architectures
One embodiment of the present application sets forth a computer-implemented method for establishing trust for handles used to identify digital objects in a digital object architecture (DOA) by associating a first attester identifier with a first attester from a trusted public key infrastructure (PKI), identifying a first digital object public key for a first digital object, generating, by the first attester, a first digital object identity attestation that associates the first digital object public key with a handle identifier for the first digital object, wherein the handle identifier is external to the trusted PKI, and generating a first attester identity attestation attesting that the first attester is authentic, where the first attester identity attestation includes the first attester identifier. |
US10848295B2 |
Mobile terminal performing system damage avodiance in multi-communication system
A mobile terminal according to the present invention includes a transceiver to operate in a first communication system and a second communication system, a first antenna to transmit or receive a first signal of the first communication system, a second antenna to transmit or receive a second signal of the second communication system, and a signal attenuator module to perform signal attenuation for the first signal on a path between the second antenna and a low noise amplifier (LNA) of the second communication system, whereby system damage in a non-synchronized state between the first and second communication systems can be avoided. |
US10848292B2 |
Method and apparatus of transmitting ACK/NACK
A method and device for transmitting or receiving an Acknowledgement/Negative-ACK (ACK/NACK) signal in a wireless communication system are discussed. The method of transmitting includes receiving scheduling information from a base station through a physical downlink control channel; receiving a data unit from the base station through a physical downlink shared channel based upon the scheduling information; determining an uplink resource index for transmitting the ACK/NACK signal for the data unit; and transmitting the ACK/NACK signal to the base station by using an uplink resource indicated by the uplink resource index, wherein the uplink resource index is determined by using index modification information, a smallest value of resource indexes used for the physical downlink control channel, and a value transferred from an upper layer, and wherein the index modification information is signaled through the physical downlink control channel. |
US10848288B2 |
Multi-user null data packet (NDP) ranging
A first communication device prompts a plurality of second communication devices to transmit, during a contiguous time period reserved for a range measurement exchange, respective first null data packets (NDPs) at respective times. The first communication device receives first NDPs from at least some of the second communication devices during the contiguous time period, and transmits one or more second NDPs to the plurality of second communication devices. The first communication device uses reception of the first NDPs and transmission of the one or more second NDPs to determine respective ranges between the first communication device and respective second communication devices. |
US10848286B2 |
Techniques for multi-cluster uplink transmissions
Various aspects described herein relate to techniques for multi-cluster uplink transmissions in wireless communications systems. A method, a computer-readable medium, and an apparatus are provided. In an aspect, the method comprises receiving, by a user equipment (UE), information of one or more sounding reference signal (SRS) patterns, generating, by the UE, one or more rate matching parameters based on the information, and transmitting, by the UE, an uplink signal based on the generated one or more rate matching parameters. |
US10848279B2 |
Method for sharing network resources made accessible by a set of access gateways
A method for sharing network resources made accessible by plural access gateways (AG). An AG requester sends a resource request to neighbouring AGs as potential helpers. Each potential helper decides whether to cooperate with the requester based on a reputation score calculated by the potential helper for the requester. The reputation score calculated by each potential helper for the requester is indicative of the requester's behaviour in response to past resource requests received from that potential helper. If the potential helper decides to cooperate, it sends a resource offer to the requester. The requester then selects its helper as the potential helper which sent the best offer, and sets up a resource sharing session with the helper. The requester then updates the reputations scores of a helper and potential helpers based on the disposition to cooperate and reliability they exhibited. |
US10848278B2 |
Methods and apparatus for wireless communications over subsets of contiguous subcarriers
Methods for wireless communications over a wideband carrier are provided. Time-frequency resources of the wideband carrier within a transmission time interval are divided into multiple time-frequency resource blocks. Each of the time-frequency resource blocks corresponds to a group of contiguous subcarriers of the wideband carrier and orthogonal frequency division multiplexing symbols. Data streams may be scheduled to be transmitted in different time-frequency resource blocks, and may be destined for different user equipments or the same user equipment. Baseband processing operations may be performed on data streams scheduled in different time-frequency resource blocks independently from one another. Separate control channels or one common control channel may be configured for data transmissions in different time-frequency resource blocks. |
US10848273B2 |
Apparatus and method for decoding using cyclic redundancy check in wireless communication system
The disclosure is related to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE).A method for operating a first device in a wireless communication system includes receiving information bits and distributed cyclic redundancy check (CRC) bits from a second device, and decoding the information bits and the distributed CRC bits, wherein the information bits and the distributed CRC bits are decoded by using a successive cancellation list decoding scheme that uses a parity check matrix determined based on a linear combination of rows of a predetermined parity check matrix, or by using a successive cancellation flip decoding scheme that uses the distributed CRC bits. |
US10848268B2 |
Forward packet recovery with constrained network overhead
Disclosed herein are systems and methods for forward packet recovery in a communication network with constrained network bandwidth overhead. In exemplary embodiments, a target byte protection ratio is determined. Error correcting frames are dynamically generated by a first processor such that error correcting information can be generated to approximate the target byte protection ratio. The data packets and error correcting information are then transmitted across one or more communication networks to a second processor. The second processor can use the error correcting information to regenerate or replace data packets missing or corrupted in transmission across one or more communication networks. |
US10848263B2 |
Methods for reducing data errors in transceiving of a flash storage interface and apparatuses using the same
The invention introduces a method for reducing data errors in transceiving of a flash storage interface, performed by a processing unit of a first side, comprising: continuously monitoring data frames and/or control frames from a second side; and triggering a TX (transmission) data rate adjustment when information of the data frame and/or the control frame indicates that the lowest layer of the second side detects errors from received data. |
US10848258B2 |
Coordinating reference signals in wireless communication
Various reference signal (RS) designs and arrangements for interference coordination and management in wireless communication are disclosed. Reference signals may be included in uplink (UL) and downlink (DL) transmissions for facilitating data demodulation and other purposes, and the locations of the reference signals within any given slot may depend on various factors. In some aspects of this disclosure, reference signals included in UL and/or DL transmissions of neighboring cells may be aligned in time and/or frequency to improve interference control and coordination between devices operating in different cells. |
US10848252B1 |
Method and system for near-field reconstruction in indirect far-field systems
A method for near-field reconstruction in indirect far-field systems is provided. The method comprises the steps of measuring a reference antenna for orthogonal field components in a direct spherical near-field system at a well geometrically defined distance (R0), measuring the reference antenna for orthogonal field components in an indirect far-field system and optimizing the orthogonal field components in the indirect far-field system with respect to the orthogonal field components in the direct spherical near-field system. |
US10848251B2 |
Channel quality measurement in unlicensed deployments
The extension of NB-IoT and eMTC communications into the unlicensed spectrum introduces a number of problems associated with channel quality measurement and reporting. A method, apparatus, and computer readable medium are presented that provide a technique for channel quality measurement and reporting that addressed such problems. A UE apparatus measures a CQI measurement for each of a plurality of groups of hopping frequencies, wherein a set of hopping frequencies is grouped into the plurality of groups and reports a CQI for each of the plurality of groups. A base station may configure the UE for CQI reporting and may receive a CQI for each of a plurality of groups of hopping frequencies, wherein a set of hopping frequencies is grouped into the plurality of groups. The set of hopping frequencies comprise frequencies in an unlicensed spectrum. |
US10848248B2 |
Methods and systems for multi-level beacon tone modulation of an optical data signal
Methods and systems are described for communicating an optical data signal. An example method may comprise receiving data. The example method may comprise modulating the data to generate a modulated data signal. The modulated data signal may comprise a first level modulated with a first beacon tone and a second level modulated with a second beacon tone. The second level may be modulated in phase with the first level. The method may comprise transmitting an optical signal comprising the modulated data signal. |
US10848246B2 |
Method and system for an optical connection service interface
Methods and systems for an optical connection service interface may include, in an optical data link comprising an optical fiber coupling first and second transceivers, generating a signal for the transceivers at a low frequency, and communicating, utilizing the optical fiber, an optical data signal at a high frequency and an Optical Connection Service interface (OCSi) signal at an intermediate frequency. An optical signal may be modulated at the intermediate frequencies for the OCSi, and may be modulated and communicated to the second transceiver. The communicated modulated signal and the optical data signal may be detected utilizing a photodetector in the second transceiver. The detected optical signal may be demodulated, and an optical power of the optical data signal may be configured based on the demodulated signal. |
US10848243B2 |
Stimulated brillouin scattering (SBS) suppression in an optical communications system
Techniques for transmitting an optical signal through optical fiber with an improved cost effective stimulated Brillouin scattering (SBS) suppression include externally modulating a light beam emitted from a light source with a high frequency signal. The light beam is also modulated externally with an RF information-carrying signal. The high frequency signals are at least twice a highest frequency of the RF signal. The high frequency signals modulating the light source can be gain and phase adjusted by the first set of gain and phase control circuit to achieve a targeted spectrum shape. The adjusted high frequency signals then are split, providing a portion of the split signals to modulate the light source and another portion of the split signals to the second set of phase and gain control circuit for adjusting a phase/gain. The output of second set of phase and gain control circuits can be applied to the external modulator to eliminate intensity modulation caused by the corresponding high frequency signals that modulate the light source. The spread spectrum for SBS suppression or the optical transmitter's SNR is further improved by cancelling a beat between SBS suppression modulation tones and out of band distortion spectrum of information bearing RF signal. |
US10848242B2 |
System and method for providing optically coding of information combining color and luminosity
An active optical machine-readable tag that is addressable and readable within a line-of-sight of a reader device equipped with a camera, at substantially large distances. The active optical tag and the camera-based reader may use a method of asynchronous communication reducing the flicker associated with the low-frequency optical carrier to a level hardly noticeable by people. The method of transmitting data may include determining length of a repetitive time period not longer than time resolution of a human eye, emitting a first sequence of light pulses within the time period, the light pulses including pulses of complementary colors and pulses of different levels of luminosity; and determining the order of the colors and levels of luminosity of the first sequence of light pulses emitted within the time period to represent a symbol, and to achieve perceived chromaticity and luminosity that is substantially constant to a human eye. |
US10848240B2 |
Method for extracting optical line fault section by applying super-resolution algorithm
Disclosed is a method of extracting a faulty section of an optical path using a super resolution algorithm. The method includes generating a MUSIC spectrum by applying a MUSIC algorithm or an improved MUSIC algorithm to a received signal. Pieces of data on the received signal are divided into predetermined unit groups, and the MUSIC algorithm or the improved MUSIC algorithm is performed only on a unit group in which a signal corresponding to a reflection event occurs, among the predetermined unit groups. |
US10848239B2 |
System and method for backscatter-based cooperative communication in wireless-powered heterogeneous network
A system for backscatter-based cooperative communication in a wireless-powered heterogeneous network includes a low-power access point, a hybrid access point, and Internet of Things (IoT) devices. The low-power access point transmits an unmodulated carrier. The hybrid access point is in communication with a primary device using a signal. Internet of Things (IoT) devices harvest energy of the unmodulated carrier and the signal, and each of the IoT devices sequentially transmits information to the hybrid access point through a bistatic backscatter communication-based cooperation mode or non-cooperation mode using the harvested energy. |
US10848238B1 |
Evolved packet system over non-LTE radio access network
A communication device includes a session and mobility management block configured to interface with a mobility management entity (MME) of an evolved packet core (EPC) of an evolved packet system (EPS). An access non-LTE air interface circuit is configured to communicate with an access network gateway. An EPS inter-working functional block including mapping and coordination logic is configured to map and coordinate a plurality of functionalities associated with the access non-LTE air interface circuit into corresponding functionalities associated with the session and mobility management block. |
US10848237B1 |
Spectrum sharing for a terrestrial-satellite hybrid environment
Various arrangements for spectrum sharing among a terrestrial network and a non-terrestrial network are presented herein. The terrestrial network may assign a first bandwidth part of a channel for use for communication between a plurality of user equipment (UE) and the terrestrial network when a high signal strength is present. The terrestrial network may assign a second bandwidth part for use for communication between the plurality of UE and the terrestrial network when a low signal strength is present. The second bandwidth part can overlap with the first bandwidth part. A third bandwidth part can be assigned for use for communication between the plurality of UEs and the non-terrestrial network. The third bandwidth part can overlap with the first bandwidth part but not the second bandwidth part. |
US10848235B2 |
Systems and methods for using adaptive coding and modulation in a regenerative satellite communication system
Techniques are described for implementing adaptive coding and modulation (ACM) in regenerative satellite systems to adapt the modulation and/or FEC coding of transmitted waveforms to the conditions of the link. In a first implementation, ACM is implemented on an uplink from a terminal to a regenerative satellite. In this implementation, an uplink modulation and coding combination (ModCod) is estimated by the transmitting terminal based on the quality of signals received from the regenerative satellite on the downlink. In a second implementation, ACM may be implemented on a downlink from a regenerative satellite to a terminal. In this implementation, a transmit terminal may insert a field in a transmitted packet header that indicates a downlink ModCod to be used by the regenerative satellite when transmitting packets to a receiving terminal. The regenerative satellite may reencode and remodulate the packet using the ModCod indicated in the field of the packet header. |
US10848231B2 |
User equipment measurements for new radio
Methods, systems, and storage media are described for user equipment (UE) measurements for new radio (NR). Other embodiments may be described and/or claimed. |
US10848230B2 |
Recovery from beam failure
The present invention generally relates to wireless communication, more particularly, relates to recovery from beam failure in a wireless access network where beamforming technique is used in communication between network elements. According to one aspect of the present invention, there is provided a method for recovery from beam failure in a wireless access network accessed by a user equipment (UE). The method comprises: at the wireless access network, determining whether the beam failure occurs on the basis of presence of a response from the UE during communicating between the wireless access network and the UE via a first beam; and if it is determined that the beam failure occurs, communicating with the UE via an available beam selected from the first beam and one or more second beams. |
US10848229B2 |
Uplink control information
Embodiments of the present disclosure relate to methods, devices, apparatuses and computer readable storage media for Uplink Control Information (UCI) design. The method comprises determining, at a terminal device, a matrix comprising a set of non-zero linear combination coefficients for quantizing a channel between the terminal device and a network device, the matrix having spatial components and frequency components; shifting the frequency components of the matrix circularly, such that a target coefficient of the set of non-zero linear combination coefficients is located in a frequency component with a predetermined index of the frequency components in a shifted matrix; generating a first indication indicating the spatial component associated with the target coefficient in the matrix; and transmitting, to the network device, uplink control information comprising the first indication. In this way, a new solution for designing the UCI may reduce the overhead for reporting the parameters in the UCI. |
US10848228B2 |
Modulation and coding scheme and channel quality indicator for high reliability
Certain aspects of the present disclosure provide techniques and apparatus for determining a modulation and coding scheme (MCS) and channel quality indicator (CQI) for ultra-reliable low latency communications (URLLC). An exemplary method generally includes receiving a channel quality indicator (CQI) from a user equipment (UE) and retrieving parameters from a modulation and coding scheme (MCS) table using the CQI, wherein the table has entries corresponding to different spectral efficiency (SE) values selected to allow the BS to efficiently allocate resources at low SE values to achieve at least a target block error rate (BLER). The method also includes sending a transmission to the UE based on the retrieved parameters. |
US10848227B2 |
Optimal utilization of multiple transceivers in a wireless environment
Switching between and/or combining various multi-transceiver wireless communication techniques based on a determined characteristic of a network or a wireless link is described herein. As an example, a characteristic such as signal to noise ratio (SNR), multi-path scattering, available bandwidth, or the like, can be determined. The characteristic can then be compared with suitable thresholds for various multi-transceiver communication techniques, such as MIMO, multi-channel concatenation, channel diversity, and so on. Based on a comparison of the characteristic and the thresholds, a suitable multi-transceiver technique can be selected and implemented for the wireless link. Accordingly, a network can provide increased data rates and/or channel quality from a multi-transceiver technique that is most suited to prevailing conditions of the wireless network/link. |
US10848225B2 |
Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
A multiple antenna system (MAS) with multiuser (MU) transmissions (“MU-MAS”) exploiting inter-cell multiplexing gain via spatial processing to increase capacity in wireless communications networks. |
US10848220B2 |
Compressing and decompressing beamspace coefficients
It is provided a method for compressing beamspace coefficients to be applied when transferring data between a radio network node and a specific user device, the method being performed in a coefficient encoder and comprising the steps of: obtaining beamspace coefficients, wherein each beamspace coefficient comprises a complex value and a direction; determining at least one cluster based on proximity, in a complex plane, of the complex values of the beamspace coefficients; determining, for each beamspace coefficient, a cluster to which it belongs; determining a representative complex value for each one of the at least one cluster; outputting the representative complex values for each cluster; and outputting, for each beamspace coefficient, an identity of the cluster to which the beamspace coefficient belongs. |
US10848218B2 |
Fast beam refinement phase for periodic beamforming training
Certain aspects of the present disclosure provide methods and apparatus for enhancing a beamforming training procedure. For example, an apparatus for wireless communications may include a processing system configured to generate a first transmit beamforming refinement frame, a first interface configured to output the first transmit beamforming refinement frame for transmission to a wireless node, wherein a first portion of the first transmit beamforming refinement frame is output for transmission via a first transmit beamforming sector and further wherein training fields of the first transmit beamforming refinement frame are output for transmission via two or more second transmit beamforming sectors, and a second interface configured to obtain a first feedback frame from the wireless node indicating one of the second transmit beamforming sectors. The apparatus may be configured to use the indicated second transmit beamforming sector for communication with the wireless node. |
US10848217B2 |
Network node and a wireless communication device for random access in beam-based systems
Embodiments herein relate to a method performed by a wireless communication device 615, for performing random access. The wireless communication device 615 is configured with a first Random-Access (RA) configuration. The method comprises obtaining an indication of a failure of a beam-tracking process. The method further comprises adapting the RA configuration of the wireless communication device 615 based on the obtained indication, wherein the adapting comprises switching from the first RA configuration to a second RA configuration having more frequently occurring RA resources than the first RA configuration. The method further comprises transmitting, to a network node 611, 612, a RA message using a RA resource, which RA resource is based on the adapted RA configuration. Embodiments herein further relate to a method performed by a serving network node 611, as well as a wireless communication device 615 and a serving network node 611 for performing the methods. |
US10848214B2 |
Mechanism and procedure of base station selection based on uplink pilot and distributed user-proximity detection
A method and apparatus is disclosed herein for base station selection based on uplink pilot and distributed user-proximity detection. In one embodiment, the method comprises performing uplink pilot configuration for a plurality of user terminals over a set of common resource elements, including generating a plurality of pilot patterns for the plurality of user terminals, where each of the plurality of pilot patterns comprises at least one zero-power resource element and at least one non-zero-power resource element and at least one zero-power resource element allocated to each different one of the plurality of user terminals has a different position in the pilot pattern. |
US10848211B2 |
Group MIMO
This disclosure relates to performing grouped MIMO communications in a cellular communication system. A cellular base station may select a precoding matrix for transmitting a downlink signal to a wireless device via a MIMO channel. The selected precoding matrix may have unequal weights for different MIMO subchannels. The downlink signal may be precoded using the selected precoding matrix. The precoded downlink signal may be transmitted to the wireless device via the MIMO channel. The wireless device may receive and decode the downlink signal. |
US10848207B2 |
Methods and apparatus for orthogonal stream spatial multiplexing
Methods and apparatus for orthogonal stream spatial multiplexing. In one embodiment, a method includes splitting and modulating a data stream into n MIMO RF spatial streams and coupling them to corresponding switchable polarization antenna elements controlled via orthogonal binary codes for transmission. Each transmitted stream manifests as time-varying-polarization-orthogonal to the other n−1 spatial streams. The method includes reception of the streams at their destination using corresponding antenna elements controlled by the same set of orthogonal codes. Thus, each of the n transmitted spatial streams is polarization-match-filtered, unambiguously separated and individually recovered from all the others upon reception for subsequent demodulation and MIMO spatial recombination into the original data stream. Thus, n MIMO spatial streams emanating from a common source and featuring equal amplitude and bandwidth but bearing distinct data and exhibiting mutually orthogonal time varying polarization will propagate mutually interference-free on the same frequency channel to a single destination. |
US10848199B1 |
Systems and methods for communicating data over satellites
Systems for communicating data through a satellite are disclosed. The systems generally include a terrestrial radio, such as a chirp spread spectrum modulator. The terrestrial radio is configured to uplink data to one or more satellites. The one or more satellites are configured to receive the data from the terrestrial radio. In addition, the systems include terrestrial receivers, such as one or more chirp spread spectrum receivers, positioned at ground level, which are configured to receive the data from the one or more satellites. |
US10848192B2 |
Energy aware wireless power harvesting device
Methods and devices are provided. One device includes persistent memory, a microcontroller and a power source configured to generate power in response to ambient energy received at a first frequency during a cycle of energy harvesting. The power is transferred to a power storage cell such that when the power storage cell has an amount of power the microcontroller performs processing. The microcontroller selects and runs code routines based on the power available and stores associated state data into the persistent memory. During one or more additional cycles of energy harvesting, the device uses the generated power to retrieve state data from persistent memory and continue processing. The processing is related to assembling a payload and to process a wireless transmission of a payload over a second frequency. |
US10848191B2 |
Multi-signal instantaneous frequency measurement system
A Multi-Signal Instantaneous Frequency Measurement, MIFM, system comprising a front end adapted to shift and combine signal spectra of different sub-frequency bands (SFBs) of a received wideband signal (WBS) into an intermediate frequency band (IFB) having an instantaneous bandwidth (IBW), wherein each shifted SFB signal spectrum is marked individually with SFB marking information associated with the respective sub-frequency band (SFB) and a digital receiver (3) having the instantaneous bandwidth (IBW) configured to process the shifted SFB signal spectra within the intermediate frequency band (IFB) using the SFB marking information to resolve any frequency ambiguity caused by the shifting and combining of the SFBs signal spectra. |
US10848189B2 |
Method for curing and embedding an antenna in a composite part
A method of making a part comprising stacking a plurality of uncured composite sheets to form an uncured composite stack. The method also comprises interposing a resistor wire between an adjacent two of the uncured composite sheets of the uncured composite stack. The method further comprises applying heat to the uncured composite stack externally of the uncured composite stack to at least partially cure the plurality of uncured composite sheets. The method additionally comprises transmitting an electric current through the resistor wire to generate heat, from the resistor wire, internally within the uncured composite stack to at least partially cure the plurality of uncured composite sheets. Applying heat to the uncured composite stack externally and generating heat internally converts the plurality of uncured composite sheets into a plurality of cured composite sheets and converts the uncured composite stack into a cured composite stack. |
US10848187B2 |
Reducing harmonic leakage in wireless communications using switching
Disclosed herein are wireless transceivers with switches to reduce harmonic leakage. The devices are configured to transmit and receive signals in a first frequency band and a second frequency band. The devices selectively decouple a power amplifier from a duplexer to reduce harmonic leakage into a receiving system. The decoupling is accomplished using a switch, the switch being operated responsive to a band select signal indicating the second frequency band as a receive band but not a transmission band and the first frequency band as a transmission band where the first frequency band has at least one harmonic that lies within a downlink sub-band of the second frequency band. |
US10848184B2 |
Method for controlling storage device with aid of error correction and associated apparatus
A method for decoding an error correction code and an associated decoding circuit are provided, where the method includes the steps of: calculating a set of error syndromes of the error correction code, where the error correction code is a t-error correcting code and has capability of correcting t errors, and a number s of the set of error syndromes is smaller than t; sequentially determining a set of coefficients within a plurality of coefficients of an error locator polynomial of the error correction code according to at least one portion of error syndromes within the set of error syndromes for building a roughly-estimated error locator polynomial; performing a Chien search to determine a plurality of roots of the roughly-estimated error locator polynomial; and performing at least one check operation to selectively utilize a correction result of the error correction code as a decoding result of the error correction code. |
US10848182B2 |
Iterative decoding with early termination criterion that permits errors in redundancy part
An apparatus includes an interface and a decoder. The interface is configured to receive a code word, produced in accordance with an Error Correction Code (ECC) represented by a set of parity check equations. The code word includes a data part and a redundancy part, and contains one or more errors. The decoder is configured to hold a definition of a partial subgroup of the parity check equations that, when satisfied, indicate that the data part is error-free with a likelihood of at least a predefined threshold, to decode the code word by performing an iterative decoding process on the parity check equations, so as to correct the errors, and during the iterative decoding process, to estimate whether the data part is error-free based only on the partial subgroup of the parity check equations, and if the data part is estimated to be error-free, terminate the iterative decoding process. |
US10848181B2 |
Transmitting apparatus and signal processing method thereof
A transmitting apparatus and a receiving apparatus are provided. The transmitting apparatus includes an encoder configured to generate a low density parity check (LDPC) codeword by performing LDPC encoding, an interleaver configured to interleave the LDPC codeword, and a modulator configured to modulate the interleaved LDPC codeword according to a modulation method to generate a modulation symbol. The interleaver performs interleaving by dividing the LDPC codeword into a plurality of groups, rearranging an order of the plurality of groups in group units, and dividing the plurality of rearranged groups based on a modulation order according to the modulation method. |
US10848179B1 |
Performance optimization and support compatibility of data compression with hardware accelerator
One embodiment provides a computer implemented method of data compression using a hardware accelerator. A first thread pool for compression jobs, and a first polling thread is allocated for polling the status of a hardware accelerator. A compression thread is retrieved from the first thread pool in response to a compression request from a file system. Multiple source data buffers from the file system are aggregated into a compression unit, and a scatter gather list and destination buffer are submitted to the hardware accelerator. A checksum of result data is calculated from the destination buffer. A zlib header is added to the result data, and the checksum is added as a zlib footer to the result data. |
US10848177B2 |
Reducing power needed to send signals over wires
Methods and apparatus are described. A method, implemented in a decoder, includes receiving two or more signals from an encoder over two or more respective wires. At least one of the two or more signals includes at least one code that was recoded by the encoder. The decoder receives a recoding table. The recoding table provides a mapping indicating the recoding for each code that was recoded by the encoder in the received two or more signals. The decoder decodes the two or more received signals using the received recoding table. |
US10848176B1 |
Digital delta-sigma modulator with non-recursive computation of residues
A delta-sigma modulator (DSM) with non-recursive computation of delta-sigma residues comprising: an input port for receiving a digital input signal; a residue calculation circuit coupled to the input port for calculating delta-sigma residues non-recursively; and a DSM output calculation circuit coupled to the output of the residue calculation circuit for generating an output of the DSM. |
US10848175B2 |
Temperature sensing with bandgap sensor input to sigma-delta ADC
In some examples, a sigma-delta analog-to-digital converter (ADC), comprises a first set of switches configured to receive a first voltage signal; a second set of switches coupled to the first set of switches at a first node and a second node, the second set of switches configured to receive a second voltage signal; an integrator including a first input sampling capacitor coupled to the first node and a second input sampling capacitor coupled to the second node, wherein the integrator configured to generate a first output signal. The sigma-delta ADC further comprises a comparator coupled to the integrator and configured to generate a second output signal based on the first output signal; and a controller unit having a first counter, a second counter, and a processor, the controller unit coupled to the first and second sets of switches, the integrator, and the comparator. |
US10848173B2 |
Analog-to-digital converter correcting frequency characteristics and semiconductor device including the same
An analog-to-digital converter (ADC) includes a modulator configured to oversample an input signal generated from an output signal of a transducer; and a filter configured to perform a decimation operation on an output from the modulator and a frequency characteristics correction operation according to a filter control signal on the output from the modulator, wherein the frequency characteristics correction operation is performed to complement a frequency characteristics of the output signal of the transducer such that overall frequency characteristics of the transducer and the filter be flat in a signal band. |
US10848172B2 |
Forcing and sensing DACs sharing reference voltage
An IC can include shared reference voltage buffer circuitry having an amplifier circuit. A commonly-routed amplifier shared output voltage node can be shared between at least two digital-to-analog converters (DACs) respectively via at least first and second individually routed traces from the shared output voltage node to respective first and second local reference voltage nodes at the DACs. Respective first and second routing trace resistances can be based on current draw of the corresponding DAC, such as to provide an equal voltage drop across the first and second routing resistances. This can help avoid voltage contention or conflict at the shared output voltage node from forcing/sensing the voltages at the first and second local reference voltage nodes. In a further example, at least one of the first and second individually routed traces can include a binary tree hierarchical routing arrangement of at least some of the DACs. |
US10848169B2 |
Receiver signal chains with low power drivers and driver optimization
Non-idealities of input circuitry of a receiver signal chain can significantly degrade the overall performance of the receiver signal chain. To meet high performance requirements, the input circuitry is typically implemented with power hungry circuitry in a different semiconductor technology from the analog-to-digital converter that the input circuitry is driving. With suitable optimization techniques, performance requirements on the input circuitry can be reduced while meeting target performance of the receiver signal chain. Specifically, optimization techniques can compensate for input frequency-dependent properties and/or amplitude-dependent properties of the input circuitry. In some cases, reducing performance requirements on the input circuitry means that the input circuitry can be implemented in the same semiconductor technology as the analog-to-digital converter. |
US10848166B1 |
Dual mode data converter
Techniques for saving operating power of an analog-to-digital converter (ADC) are provided. In an example, a circuit can include an ADC configured to provide a multiple-bit digital representation of an analog input during a first mode of operation and an output configured to provide a single bit representation of a first comparison of the analog input signal to a second analog signal during a second mode of operation. In certain examples, the circuit can include an encoder configured to provide the multiple-bit digital representation during the first mode and to power down during the second mode of operation. |
US10848162B2 |
Semiconductor apparatus including clock generation circuit and semiconductor system using the same
A semiconductor apparatus may be provided. The semiconductor apparatus may include a clock generation circuit. The clock generation circuit may be configured to receive data clock signals and generate internal clock signals in both a first and second operation mode. |
US10848161B2 |
Reference monitors with dynamically controlled latency
Apparatus and methods for clock synchronization and frequency translation are provided herein. Clock synchronization and frequency translation integrated circuits (ICs) generate one or more output clock signals having a controlled timing relationship with respect to one or more reference signals. The teachings herein provide a number of improvements to clock synchronization and frequency translation ICs, including, but not limited to, reduction of system clock error, reduced variation in clock propagation delay, lower latency monitoring of reference signals, precision timing distribution and recovery, extrapolation of timing events for enhanced phase-locked loop (PLL) update rate, fast PLL locking, improved reference signal phase shift detection, enhanced phase offset detection between reference signals, and/or alignment to phase information lost in decimation. |
US10848160B2 |
Devices, systems, and methods for reducing jitter in control systems
A system for reducing jitter in a motion control system which includes at least one drive device programmed or configured to receive data associated with a time base of a controller device in the motion control system, determine the frequency of the time base of the controller device based on the data associated with the time base of the controller device, determine a frequency adjustment to be made to a time base of the at least one drive device based on the frequency of the time base of the controller device, adjust a frequency of the time base of the at least one drive based on the frequency adjustment, and provide data associated with the time base of the at least one drive device. |
US10848152B2 |
Optically isolated micromachined (MEMS) switches and related methods comprising a light transmitting adhesive layer between an optical receiver and a light source
Optically isolated micromachined (MEMS) switches and related methods are described. The optically isolated MEMS switches described herein may be used to provide isolation between electronic devices. For example, the optically isolated MEMS switches of the types described herein can enable the use of separate grounds between the receiving electronic device and the control circuitry. Isolation of high-voltage signals and high-voltage power supplies can be achieved by using an optical isolator and a MEMS switch, where the optical isolator controls the state of the MEMS switch. In some embodiments, utilizing optical isolators to provide high voltages, the need for electric high-voltage sources such as high-voltage power supplies and charge pumps may be removed, thus removing the cause of potential damage to the receiving electronic device. In one example, the optical isolator and the MEMS switch may be co-packaged on the same substrate. |
US10848148B2 |
Motor drive switch control with adaptive slew rate monitoring
An electronic circuit includes a first switch driver, a second switch driver, and a switch node coupled to the first and second switch drivers, and configured to couple to a motor. The electronic circuit also includes slew rate measurement circuitry coupled to the switch node and configured to measure a slew rate of switching operations at the switch node. The electronic circuit also includes a controller coupled to the first switch driver, to the second switch driver, and to the slew rate measurement circuitry, and configured to compare a measured slew rate provided by the slew rate measurement circuitry with a target slew rate, and to selectively adjust control signals to at least one of the first and second switch drivers based on a comparison result. The first and second switch drivers are configured to drive switches to power the motor based on the control signals. |
US10848147B2 |
High performance I2C transmitter and bus supply independent receiver, supporting large supply voltage variations
One or more embodiments are directed to inter-integrated circuit (I2C) transmitters, receivers, and devices that utilize a stable reference voltage for driving a pre-driver of the transmitter and for driving a first input stage of the receiver. One embodiment is directed to a device A device that includes an inter-integrated circuit (I2C) transmitter and an I2C receiver. The I2C transmitter includes a driver coupled to an I2C data line, and a pre-driver coupled to a variable first supply voltage, a second supply voltage, and a reference voltage. The pre-driver is configured to output a control signal to a control terminal of the driver. The I2C receiver includes a first stage coupled to the I2C data line, the variable first supply voltage, the second supply voltage, and the reference voltage. |
US10848144B2 |
Switching control circuit
A switching control circuit that controls on/off of a switching element is provided to efficiently disperse EMI noise due to high-speed switching, the switching control circuit includes a gate driver, a variable capacitance element connected to a gate of the switching element, and a capacitance changing circuit that randomly changes a capacitance of the variable capacitance element. |
US10848141B2 |
Methods and devices to improve switching time by bypassing gate resistor
Implementing a series gate resistor in a switching circuit results in several performance improvements. Few examples are better insertion loss, lower breakdown voltage requirements and a lower frequency corner. These benefits come at the expense of a slower switching time. Methods and devices offering solutions to this problem are described. Using a concept of bypassing the series gate resistor during transition time, a fast switching time can be achieved while the above-mentioned performance improvements are maintained. |
US10848140B1 |
Method and system for detecting clock failure
System and method for detecting clock failure are disclosed. The system includes a pulse train generator, a delay circuit, and a failure detection circuit. The pulse train generator receives an input clock and generates a pulse train including a plurality of pulses aligned with a set of rising edges and a set of falling edges of the input clock. The delay circuit delays the input clock by a first time-interval to generate a first delayed clock. The failure detection circuit receives the pulse train and the first delayed clock from the pulse train generator and the delay circuit, respectively, and generates a clock detection signal that transitions from a first logic state to a second logic state based on a failure in the input clock. |
US10848133B2 |
Low power RC oscillator with switched bias current
An oscillator includes a constant current generator configured to generate a constant current by maintaining a predetermined potential difference between both a first end and a second end of a resistor, and an oscillating element configured to output a clock signal corresponding to a charge and discharge cycle of a capacitor based on a bias current corresponding to the constant current. |
US10848124B2 |
Piezoelectric transducer device with resonance region
According to one configuration, an acoustical device includes a piezoelectric substrate and at least one curved electrode. Material on a surface of the piezoelectric substrate defines boundaries of a resonance region. The curved electrode is disposed on the piezoelectric substrate in the resonance region and is operable to receive a voltage input signal through a first conductive waveguide. When present, the voltage input signal causes generation and conveyance of acoustical waves from the curved electrode into the resonance region. The acoustical device optionally includes a second curved electrode in the resonance region, which converts the acoustical waves present in the resonance region to an output voltage signal. |
US10848120B2 |
Multilayer LC filter
A multilayer body includes a first inductor and a second inductor provided in a first planar region, and a third inductor and a fourth inductor provided in a second planar region when viewed in a lamination direction of dielectric layers of the multilayer body. When the multilayer body is viewed in a direction perpendicular or substantially perpendicular to the lamination direction of the dielectric layers, the first inductor and the fourth inductor are provided in a first thickness region, and the second inductor and the third inductor are provided in a second thickness region. |
US10848115B2 |
Chopper stabilized amplifier
There is provided a chopper stabilized amplifier with an input bias current reduced. The chopper stabilized amplifier includes a main amplifier and a correction circuit. The correction circuit includes a second gm amplifier of a full differential type. A first selector and the second gm amplifier are coupled to each other without DC blocking capacitors. The differential input state of the second gm amplifier is configured with a depletion-type transistor. |
US10848111B2 |
Power amplifier circuit
A power amplifier circuit includes lower-stage and upper-stage differential amplifying pairs, a combiner, first and second inductors, and first and second capacitors. First and second signals are input into the lower-stage differential amplifying pair. The upper-stage differential amplifying pair outputs first and second amplified signals. The combiner combines the first and second amplified signals. The lower-stage differential amplifying pair includes first and second transistors. A supply voltage is supplied to the collectors of the first and second transistors. The first and second signals are supplied to the bases of the first and second transistors. The upper-stage differential amplifying pair includes third and fourth transistors. A supply voltage is supplied to the collectors of the third and fourth transistors. The emitters of the third and fourth transistors are grounded via the first and second inductors and are connected to the first and second transistors via the first and second capacitors. |
US10848109B2 |
Bias modulation active linearization for broadband amplifiers
A power amplifier circuit for broadband data communication over a path in a communication network can reduce or avoid gain compression, provide low distortion amplification performance, and can accommodate a wider input signal amplitude range. A dynamic variable bias current circuit can be coupled to a differential pair of transistors to provide a dynamic variable bias current thereto as a function of input signal amplitude. Bias current is increased when input signal amplitude exceeds a threshold voltage established by an offset or level-shifting circuit. The frequency response of the bias current circuit can track the full frequency content of the input signal, rather than its envelope. Gain degeneration can be modulated in concert with the bias current modulation to stabilize amplifier gain. |
US10848106B2 |
Wide dynamic range auto-AGC transimpedance amplifier
An automatic gain control (AGC) transimpedance amplifier (TIA) uses a differential structure with feedback PIN diodes to adjust the loop gain of the amplifier automatically to maintain stability over a wide dynamic range when converting optical power using a photodiode to an electrical signal. A stable DC current derived from the photodiode current sets the voltage gain of the amplifier. The use of ultra-linear long carrier lifetime PIN diodes assures the transimpedance feedback resistance is linear. The AGC function adjusts the gain of the TIA to provide a linear stable differential transresistance controlled by the photodiode current; a linear stable AGC function using current supplied by the photodiode; an improvement of about 10 db of the transresistance dynamic range; and reduces the need for internal and external circuitry needed to provide the same function. The TIA is applicable to CATV optical systems which have very strict linearity requirements. |
US10848102B2 |
Crystal oscillator
Provided is a crystal oscillator, including: a crystal; an oscillating circuit including a first oscillating transistor and a second oscillating transistor, where the first oscillating transistor and the second oscillating transistor are configured to provide transconductance for starting oscillation and maintaining oscillation of the crystal; a first driving circuit configured to generate a stable reference current; and a second driving circuit, configured to supply an operating voltage to the oscillating circuit and make an operating current of the first oscillating transistor and the second oscillating transistor be a stable current according to the reference current, where the operating voltage is used to control the first oscillating transistor and the second oscillating transistor to operate in a sub-threshold region. |
US10848101B2 |
Output buffer for single-pin crystal oscillators
An output buffer for an oscillator circuit and associated methodology. The output buffer has inverters and at least one negative feedback loop coupled to corresponding inverters. The negative feedback loop of the circuit is disabled in response to a control signal until one or more of a defined level of oscillation and a defined period of time is reached during start-up of the oscillator circuit, and is thereafter enabled. At least one of the inverters has at least one second negative feedback loop coupled to the corresponding inverter. An amount of feedback provided by the second negative feedback loop is adjustable in response to a control signal, where a first feedback level is present until a defined level of oscillation and/or a defined period of time is reached during start-up, a second feedback level is thereafter present in, and the first feedback level is less than the second feedback level. |
US10848095B2 |
Solar power generation assembly and method for providing same
The present invention relates to a solar power generation assembly and method for providing same involving an array of solar generating modules on a dual-incline structure, which can achieve high energy yields over a wide range of azimuths/orientations. The assembly consists of canopy wings providing for the dual-incline structure, where, depending on specifications, the canopy wings can differ in length, width, angle of inclination, structural material and solar module or other material mounted on the surface. The canopy wings may be pivoted or hinged to enhance the energy generation and/or other functional benefits of the assembly or system, including display elements, advertising, rainwater/precipitation and snow drainage and collection and energy transmission. The assembly or system is modular and may be assembled in a long continuous configuration in which the inclination, width and tilt of the canopy wings may vary of a long distance to maintain substantially consistent energy yields as the assembly or system orientation changes. |
US10848094B2 |
Solar panel float and connected member thereof
The present invention provides a solar panel float in which an increase in the number of components is prevented and which is easy to assemble. A float for mounting a solar panel is provided with: an annular float portion; a first support portion that supports an edge on one side of the solar panel; and a second support portion that supports an edge on the other side of the solar panel. The first support portion includes a first support plate portion rising from a wall surface on one side of an inner periphery of the annular float portion. The first support plate portion is formed of a cut-and-raised piece that has been cut and raised, from a flat plate portion integrally formed so as to close the inner periphery during molding of the annular float portion, using a lower-side portion of the flat plate portion as a bending-fulcrum point. |
US10848093B2 |
Electrical power steering with two controllers using uniform steering angle control
According to one or more embodiments, a motor control system includes a first controller computing a first torque command using a first closed loop. The motor control system further includes a second controller computing a second torque command using a second closed loop. Both, the first controller and the second controller, compute the respective first torque command and the second torque command using a uniform calculation in which a pseudo/leaky integrator Ki s + ɛ in s domain (s is Laplace variable) is used and integrator state is calculated as Ki*∫0te(τ)exp(∈τ−∈t)dτ, in time domain, which is implemented by discretization methods in electric control unit (ECU), where e is a tracking error, Ki is a predetermined integral parameter, and ε is a configurable parameter. The motor control system further includes a motor that receives a torque command for generating corresponding amount of torque based on the first torque command and the second torque command. |
US10848091B2 |
Motor unit and multi-motor system
A motor assembly includes a motor, a control circuit to generate a control signal, a motor driving circuit to cause a current to flow in the motor based on the control signal, a storage to store a first identifier uniquely identifying itself and a second identifier uniquely identifying another motor assembly within the communications network, and a communication circuit. The communication circuit transmits a data frame, in which the first identifier indicates a transmitting end, the second identifier indicates a receiving end, and a request are stored. The communication circuit receives from the other motor assembly a data frame including the second identifier indicating a transmitting end, the first identifier indicating a receiving end, and a request. In response the communication circuit transmits a data frame including the second identifier indicating a receiving end added thereto and the first identifier indicating a transmitting end added thereto. |
US10848090B2 |
Control methodology to reduce motor drive loss
A system for reducing at least one of motor loss or motor drive loss in a vehicle. The system includes a motor designed to convert electrical energy into torque. The system also includes a sensor designed to detect motor data corresponding to at least one of a motor torque or a motor speed of the motor. The system also includes a memory designed to store testing data including optimized current commands for multiple combinations of motor torques that were determined during testing of the motor or a similar motor. The system also includes a speed or torque controller coupled to the motor, the sensor, and the memory and designed to receive a speed or torque command and to determine a current command signal usable to control the motor based on the speed or torque command, the testing data, the detected motor data, and an artificial intelligence algorithm. |
US10848089B2 |
Motor drive device and control method for motor drive device
An abnormality diagnostic unit of a motor drive device has an inverter that supplies AC power to an electric motor, and a current measuring means for measuring a DC bus current of the inverter, calculates an estimated upper q-axis current limit and an estimated lower q-axis current limit based on a diagnostic q-axis voltage command value obtained by subjecting a q-axis voltage command value to an absolute value process. The abnormality diagnostic unit calculates a diagnostic q-axis current measurement based on: a q-axis current measurement calculated based on an output of the current measuring means; and sign information of the q-axis voltage command value. Then, the abnormality diagnostic unit determines whether the current measuring means is abnormal based on duration of deviation of the diagnostic q-axis current measurement from a normal range defined by the estimated upper q-axis current limit and the estimated lower q-axis current limit. |
US10848082B2 |
Driving device and driving method for motor, cooling device and electronic machine
The present disclosure provides a driving device with a low cost and/or a simple advance angle control for a motor. A voltage zero crossing detecting unit 314 is configured to detect an induced voltage generated from a coil with a specific phase of a fan motor 202 being zero of a voltage zero crossing point. A detection period setting unit 316 is configured to set at least one detection period synchronously with the voltage zero crossing point. A coil voltage detection comparator 302 is configured to compare a terminal voltage generated from one end of the coil with the specific phase with a threshold voltage, and generate a coil voltage detection signal S3 indicating a comparison result. A current phase detecting unit 318 is configured to generate a phase detection signal S8 indicating a relationship between the coil current flowing through the coil with the specific phase and a phase of an induced voltage based on a level of the coil voltage detection signal S3 in the detection period. A driving signal synthesis unit 308 is configured to generate a driving control signal S5 based on the phase detection signal S8. |
US10848073B2 |
Motor drive apparatus equipped with discharge circuit of capacitor of DC link
A motor drive apparatus includes a converter configured to convert AC power from an AC power supply into DC power and then output the DC power to a DC link, a capacitor provided in the DC link, an inverter configured to convert DC power in the DC link into AC power for motor drive, a discharge circuit which is provided in parallel with the capacitor in the DC link, and is selectively switched between a discharge operation of discharging DC power in the DC link by electrically connecting the discharge circuit and the capacitor to each other, and a non-discharge operation of cutting electric connection between the discharge circuit and the capacitor, and a discharge circuit drive unit configured to perform switch drive of the discharge operation and the non-discharge operation of the discharge circuit by using DC power of the DC link as drive power for the switch drive. |
US10848072B2 |
Power supply control device, power conversion system, and power supply control method
A power supply control device according to one or more embodiments may be provided, in which a power conversion device has a configuration in which a resonant circuit is provided on an output side of a matrix converter using switching circuits including snubber elements so as to perform AC-AC conversion of output from a multi-phase AC power supply. The power conversion device is controlled to make an amplitude of an output current, a phase of the output current and an instantaneous reactive power as close to a control target as possible. The amplitude and the phase of the output current and the instantaneous reactive power are derived based on: an input voltage and a phase of a multi-phase current input to the power conversion device; and characteristics of the resonant circuit. |
US10848071B2 |
Highly reliable and compact universal power converter
A universal power converter of the present application may include a link stage between an input stage and an output stage that operates at a higher frequency than the frequency of the input power source. As a result, a more compact capacitor may be used, thus reducing the size of the power converter. In some embodiments, the link stage may be a partially resonant link that permits zero current switching (ZCS). ZCS operation may reduce switching losses during operation. Universal power converters of the present application utilizing ZCS may be implemented using naturally commutated switches, such as silicon controlled rectifiers (SCRs), instead of transistor switches. Such power converters utilizing SCRs may be more reliable than power converters utilizing transistor switches. Additionally, control circuitry required to operate such power converters may be simplified. Accordingly, a more compact, efficient, and reliable universal power converter may be achieved. |
US10848066B1 |
Controller for a DC/DC converter
Described is a controller for a DC/DC converter of a type having N power stages, where N is a natural number greater or equal to 2. The controller comprises a decision maker module, a proportional-integral-derivative (PID) or proportional-integral (PI) control module and a transient compression control module. The decision maker module determines a first steady state mode of operation and a second transient mode of operation and is configured to switch control between said first steady state mode of operation to said second transient mode of operation when an operating parameter of one of the N power stages exhibits a predetermined operating condition relative to a predetermined operating limit and/or a predetermined, calculated or selected threshold. The PID or PI module regulates the operating parameter during said first steady state mode of operation. The transient compression control module limits any overshoot, undershoot or imbalances of the operating parameter levels during said second transient mode of operation. |
US10848061B2 |
Switching power converter
An apparatus may include a power converter having a power supply input for receiving an input power supply voltage generated by a power supply, an output for generating an output voltage to a load, and a power inductor coupled between the power supply input and the output may and further include an energy storage element coupled to the power supply input, the power inductor, and the output such that operation of the power inductor is split temporally between delivering energy to the energy storage element and delivering energy to the load, and operation of the energy storage element is split temporally between delivering energy to the load and receiving energy from one or both of the power supply and the load. |
US10848057B2 |
Synchronous sampling DC link voltage control for microinverters
A two-stage microinverter for coupling a PV panel to a power grid includes a DC/DC converter stage having an input for coupling to the PV panel and a DC/AC inverter stage that has an output for coupling to the grid, with at least one DC link capacitor between the DC/DC converter and DC/AC inverter stage. A synchronous controller that includes a loop compensator coupled to a mixer is between an analog-to-digital converter (ADC) and a phase-locked loop (PLL) for coupling to an output voltage from the grid. The ADC receives a DC link voltage from the DC link capacitor. An output of the PLL is for controlling a timing of sampling by the ADC of the DC link voltage so that the ADC samples the DC link voltage when an AC component of a ripple voltage on the DC link voltage intersects an average value of the DC link voltage. |
US10848056B1 |
System and method for improving power factor and THD of a switching power converter
A system for improving a power factor (PF) of a power converter in signal communication with a rectifier and an electromagnetic interference capacitor is disclosed. The system includes a controller and a threshold detector. The threshold detector is configured to measure and compare a rectified voltage against a threshold voltage and the controller is configured to set the power converter to a stop-mode. The power converter is set to the stop-mode at a stop-time that is less than a first zero-crossing time. The controller is further configured to set the power converter to a run-mode at a time that is past the first zero-crossing time. |
US10848051B2 |
Synchronizing hiccup over-current protection of multiphase switching converters
A multiphase switching converter includes a first switching converter circuit including a power stage coupled to a DC voltage supply and a controller. The controller includes an over-current (OC) circuit that can detect an OC event and, upon detecting the OC event, set a command signal to a preset low value and provide a first hiccup signal. A synchronization circuit can generate a second hiccup signal based on the command signal of the OC circuit satisfying a first reference threshold value, and a sampled portion of an output voltage of the power stage satisfying a second reference threshold value. A hiccup timer can be triggered by one of the first hiccup signal or the second hiccup signal to start a hiccup pulse in response to being triggered. |
US10848047B2 |
Method and long-stator linear motor for transferring a transport unit at a transfer position
In order to implement a transfer position in a long-stator linear motor, in which position a transport unit is magnetically steered in order to be deflected from a first transport sections to a second transport section, a stator current is impressed into the drive coils interacting with the transport unit on a first side of the transport unit in the transfer area in order to generate the steering effect on this first side, which stator current either generates only an electromagnetic lateral force or causes only a braking force against the movement direction of the transport unit, or only a combination thereof. |
US10848044B1 |
Linear electromagnetic actuator
The invention is an electromagnetic inertial force generator that provides a linear output with improved compactness and reliability because it has no radial gaps and only on pair of axial gaps. Radial permanent magnet rings are directly in contact with inner and outer flux cylinders to provide magnetic bias. The magnetic bias flux flows across two axial air gaps to a supporting flux return structure. A current conducting coil drives magnetic flux across the same axial air gaps. The magnetic bias flux is in opposite directions across the two air gaps while the coil flux across the two gaps is in the same direction. The combination of bias flux and coil flux cancels in one gap and add in the other gap producing a net force on an inertial mass and an equal and opposite force on the supporting structure. The resulting force is linear with current through the drive coil. |
US10848042B2 |
Brushless direct current motor for power tools
A brushless electric motor includes a stator and a rotor. The stator includes a core defining a plurality of stator teeth, a first end cap proximate a first end of the core, a second end cap proximate a second end of the core, and a plurality of coils disposed on the respective stator teeth. The stator also includes a plurality of coil contact plates overmolded within one of the first end cap or the second end cap that short-circuit diagonally opposite coils on the stator. |
US10848040B2 |
Electrical power generating system
This present disclosure discloses an electrical power generating system, comprising a mechanical energy input, a direction transferring module, a first electromagnetic rotation module, a second electromagnetic rotation module and a power storage module. The direction transferring module is connected with the mechanical energy input. Moreover, the direction transferring module comprises a first output and a second output. The first output and the second output are deposed on two sides of the direction transferring module respectively. The first electromagnetic rotation module is connected with the first output, and the second electromagnetic rotation module is connected with the second output. On the other hand, the power storage module connects to the first electromagnetic rotation module and the second electromagnetic rotation module simultaneously. |
US10848039B2 |
Method of manufacturing laminated rotor core
A method of manufacturing a rotor core having a plurality of core members stacked together includes determining weight imbalances for the plurality of core members with respect to a central axis of the rotor core; combining the weight imbalances of the plurality of core members to determine a weight distribution of the rotor core; and displacing the weight imbalances of one or more of the plurality of core members to adjust a position of the weight distribution of the rotor core with respect to the central axis. |
US10848034B2 |
Control and power module for brushless motor
An electronic module is provided for a power tool having an electric motor. The electronic module includes a printed circuit board (PCB) being substantially disc-shaped; power switches mounted on the PCB forming an inverter bridge circuit for driving the electric motor; a controller mounted on the PCB and configured to control a switching operation of the power switches; positional sensors mounted on the PCB substantially equidistantly from a center of the PCB within the control portion and in communication with the controller to provide positional signals related to a rotational position of the electric motor to the controller; and a module housing arranged to receive the PCB therein. The module housing includes a planar portion in parallel to the PCB and openings disposed in the planar portion angularly around a center of the module housing to receive the positional sensors therein. |
US10848028B2 |
Rotor of rotating electric machine
A detachment prevention portion extending in a circumferential direction of a flange portion of a bobbin from a neck portion of a locking portion provided so as to extend radially outward from the flange portion is formed such that a length by which the detachment prevention portion extends to one side in the circumferential direction is longer than a length by which the detachment prevention portion extends to another side in the circumferential direction. Accordingly, interference between cover portions and a field coil winding or between the cover portions and a winding jig for the winding during operation of winding a lead wire of the winding can be inhibited while electric insulation between a field coil and claw-shaped magnetic poles is ensured. |
US10848026B2 |
Electric linear actuator
Provided is an electric linear actuator that enables reduction of the mounting space and reduction of costs. An electric motor of this electric linear actuator is an axial gap motor including a stator and a rotor which are disposed such that orientations of magnetic poles which generate interlinkage flux which contributes to torque generation are parallel to the rotation axis of the electric motor. Further, a linear motion mechanism and the electric motor are disposed in line along the same axis which serves as the axis of a rotation input and output shaft of the linear motion mechanism. First and second coil terminals have extended portions extended in the outer-diameter side in the radial direction with respect to the rotation axis, and the extended portions are electrically connected to a control device through a wiring mechanism. |
US10848025B2 |
Permanent magnet brushless motor having high winding factor, and design and fault-tolerant control methods thereof
A permanent magnet brushless motor has a stator, an armature winding, a rotor, and a permanent magnet. The stator is provided with an armature groove. The armature winding is placed in the armature groove. The stator and the rotor are spaced apart by an air gap; the permanent magnet is attached to the surface of the rotor, and is magnetized by a Halbach array structure. The motor is an eight-phase motor, and phases are evenly distributed at a phase belt angle of 45°. The motor and the proposed control algorithm have good fault-tolerant effects, and the average torque after fault tolerance is basically consistent with that in normal operation. |
US10848020B2 |
Motor stator assembly, motor and electric vehicle having the same
The utility model discloses a motor stator assembly, a motor and an electric vehicle having the motor. The motor stator assembly comprises a stator iron core and at least two sets of symmetrical three-phase windings, which are arranged to wind the stator iron core respectively, wherein phase differences among three phases Ui, Vi and Wi of each set of the three-phase windings are a 120° electrical angle, and i is the set number of the three-phase windings. In order to address the problem of high output power of drive system, the motor stator assembly uses two sets of three-phase windings having a symmetrical spatial arrangement, and each set of windings is considered as an independent unit and is controlled via a power device respectively; finally, the output powers are superimposed so that the capacity of the inverter is increased while also avoiding problems of equalized current and over-voltage. |
US10848019B2 |
Motor
A motor includes: a stator that includes a teeth iron core and a yoke iron core; a rotor housed in the stator; an output-side flange; a projection disposed at the yoke iron core, the projection projecting on an output side of the motor with respect to an end surface of the teeth iron core; and a concave portion disposed at the output-side flange, the concave portion at which the projection is disposed, the concave portion contacting an inner peripheral surface of the projection. |
US10848016B2 |
Magnetic powder dust core with entirely buried coil or magnet
A direct-current electric motor (an electrically powered machine) is a 3-pole brush-equipped direct-current electric motor which is provided with an armature (a rotor), a field element (a stator), a shaft, a commutator, a brush, a bracket, and an end plate. Of these, the armature (an armature) is provided with a dust core configured with a compressed powder compact formed of magnetic powder, and a coil buried in the dust core. On the other hand, the field element is provided with a field magnet which generates a magnetic flux, and a yoke housing which supports the field magnet and also functions as a housing. |
US10848013B2 |
Wireless power reception device and wireless power transmission system
A wireless power reception device includes: a power receiving coil coupled to a transmitting coil; a first rectifier circuit rectifies AC voltage supplied from the receiving coil and outputs to a load; a first capacitor connected between 11th and 12th output terminals respectively on high and low potential sides among output terminals in the first rectifier circuit and the first rectifier circuit and the load; a second rectifier circuit connected to the receiving coil parallel to the first and rectifies AC voltage supplied from the receiving coil; a second capacitor connected between 21st and 22nd output terminals respectively on the high and low potential sides among second rectifier circuit output terminals; a second voltage detecting circuit detects voltage between the 21st and 22nd output terminals; and a position detecting circuit detects the receiving coil position relative to the power transmitting coil by voltage detected by the second voltage detecting circuit. |
US10848012B2 |
Electromagnetic connectors for an industrial control system
An electromagnetic connector is disclosed that is configured to form a first magnetic circuit portion comprising multiple coils disposed about a first core member. The electromagnetic connector is configured to mate with a second electromagnetic connector that is configured to form a second magnetic circuit portion comprising a coil disposed about a second core member. When the electromagnetic connector is mated with the second electromagnetic connector, the first core member and the second core member are configured to couple the multiple coils of the electromagnetic connector to the coil of the second electromagnetic connector with a magnetic circuit formed from the first magnetic circuit portion and the second magnetic circuit portion. The magnetic circuit is configured to induce a signal in a first coil of the multiple coils and the coil of the second electromagnetic connector when a second coil of the multiple coils is energized. |
US10848011B2 |
Apparatus and method for detecting foreign object in wireless power transmitting system
The present invention provides an apparatus and method for detecting a foreign object in a wireless power transmitting system. The wireless power transmitting apparatus measures an initial transmission power transmitted from the primary core block and performs foreign object detection on the basis of the initial transmission power, once it is found that an initial voltage of an output terminal of the wireless power receiving apparatus connected to an external load is within the range of a reference voltage. By performing foreign object detection while a wireless power receiving apparatus is in an initial setting completion state, before the output of the wireless power receiving apparatus is turned on, delay in detecting foreign objects may be reduced, and a risk due to heating of a foreign object may be avoided. |
US10848009B2 |
Rectifier and rectenna device
The rectifying device converts high-frequency power input from an input terminal into direct current power and outputs the direct current power from an output terminal. The rectifying device includes a rectifier that converts the high-frequency power into the direct current power, and an impedance changer having one end connected to a connection point of the rectifier and the output terminal and the other end to which reference voltage is applied such that impedance varies while having a negative correlation with respect to an absolute value of voltage of the direct current power. When the absolute value of the voltage of the direct current power is greater than a predetermined value that is lower than reverse withstand voltage of the rectifying element included in the rectifier, the impedance of the impedance changer as viewed from the rectifier is a value regarded as corresponding to a short circuit. |
US10848006B2 |
Conferencing system
A method of charging wireless peripheral devices within a conferencing system. The method includes, with a conference controller, identifying a plurality of sets of peripheral devices in communication with the conference controller, and wirelessly charging the sets of peripheral devices based on a number of policies that define prioritization of charging of the sets of peripheral devices. |
US10848005B1 |
Digital shunt regulation for a wireless-power receiver
A receiver is energized by wireless power from a coil antenna. A matching network tunes the receiver to a resonant frequency and a bridge and capacitor generate an output voltage. The output voltage is divided and compared to a reference voltage. An asynchronous digital controller increases a digital count when the compare result is true, but decreases the digital count when the compare result is false. A current-steering Digital-to-Analog Converter (DAC) shunts a current from the output that is a function of the digital count. The asynchronous digital controller, comparator, and DAC do not use a system clock, so the digital feedback to the shunt current operates when the target output voltage is reached, preventing over-voltage when waiting for the system clock to begin pulsing. The digital count is compared to a digital threshold to recover transmitted Amplitude-Shifted-Keyed (ASK) data. |
US10848002B2 |
Microrobot propulsion apparatus based on wireless power transfer including multipurpose inverter and method of manufacturing the same
Disclosed are a microrobot propulsion apparatus based on wireless power transmission and a method of manufacturing the same. The microrobot propulsion apparatus according to one embodiment of the present disclosure may include a coil part for outputting a time-varying magnetic field or a static magnetic field applied to a microrobot including a coil for receiving power and a coil for an electromagnet, and a multipurpose inverter including a static magnetic field path portion allowing the coil part to output the static magnetic field and a time-varying magnetic field path portion allowing the coil part to output the time-varying magnetic field. |
US10847994B2 |
Data center power distribution system
A system includes a direct current uninterruptible power supply (DC UPS) that receives an alternating current (AC) power input and provides a first DC power output. The system also includes a power distribution unit (PDU). The PDU receives the first DC power output from the DC UPS. The PDU converts the first DC power output into a second DC power output that supplies power to at least one component of information technology equipment (ITE) via a DC mating connector. |
US10847993B2 |
Portable charging device built into a watch and watch band
A portable charging device is built into a watch and watch band. A foldable flexible solar panel array is stored under the watch band in a thin flat condition allowing the user to wear the solar panel and watch band together. The charging electronics and rechargeable battery are located within the watch housing under a standard watch assembly. A charging cable can be extended from the side of the watch housing and can be plugged into a smart phone or other electronic device for the purpose of recharging. The solar panel array can be folded out in a lit environment to recharge the battery located within the watch housing. In this way, a person can recharge their phone or other electronic device while on the go by plugging it into the wearable watch and watch band. |
US10847992B2 |
Apparatus for a solar pathway light
An apparatus includes a light emitting diode for at least illuminating a pathway. A rechargeable storage device provides a discharge current to the light emitting diode. A solar panel supplies a charging current to the rechargeable storage device during exposure of scattered light of at most 900 foot-candles. The ratio of the charging current to the discharge current is greater than 0.5. A safety device protects the rechargeable storage device from substantial overcharging during exposure of direct sunlight. A recharging switch supplies the charging current to the rechargeable storage device during a charging mode. A discharging switch supplies the discharge current to the light emitting diode during an illumination mode. A low light sensor effects a switching between the charging mode and the illumination mode. |
US10847982B2 |
Battery control system
A battery control system including a secondary battery within which gas is generated with use, and a controller configured to control charging/discharging of the secondary battery. In the controller, a measurer is configured to measure a resistance of the secondary battery, and a stop director is configured to stop charging/discharging of the secondary battery when the resistance of the secondary battery has exceeded a predetermined resistance threshold. |
US10847980B2 |
Battery module
A battery module includes a secondary battery, temperature detection unit that detects temperature information about the secondary battery, and a control device that controls charging and discharging of the secondary battery on the basis of the temperature information detected by the temperature detection unit. In the battery module, a level difference (recess) is provided on the surface of at least one of the secondary battery and the temperature sensor such that a space is formed at least at a central portion of a contact region at which the temperature sensor of the temperature detection unit and the secondary battery come into contact with each other. As a result, a space in which foreign matter can be accommodated can be formed, and accordingly the temperature information about the secondary battery can be detected with high precision by suitably bringing the temperature sensor and the secondary battery into contact with each other. |
US10847979B2 |
Charging and communication system
A charging and communication system includes a potential output terminal for supplying power to a to-be-charged device; a first controller for generating a first control signal; and a first potential switching module for switching a first potential and a second in response to the first control signal. At least one of the first potential and the second potential is a charging potential, so as to supply power to the to-be-charged device. The first potential and the second potential are not equal, so as to communicate information to the to-be-charged device. The complexity of the hardware circuit structure is reduced. The stability and reliability of the circuit structure is improved. |
US10847978B2 |
Method of improving battery recharge efficiency by statistical analysis
A rechargeable battery installed in a battery powered device is charged using a separate battery charging device. A charging signal is provided from the battery charging device to the battery powered device. The charging signal includes energy to charge the battery during a charging session. In the battery charging device from the battery powered device, a plurality of values of a charging parameter is received. The values reflect an amount of energy being received by the battery powered device from the charging signal provided by the battery charging device. In the battery charging device, the plurality of values of the charging parameter received from the battery powered device are analyzed. In the battery charging device, the charging signal is adjusted based on the analyzing. |
US10847975B2 |
Conservation voltage reduction system and methods using constant impedance load and constant power load technique
This disclosure describes techniques to evaluate power usage and characteristics on a power distribution system. The power distribution system may include local distribution systems as well as transmission systems. Additionally, this disclosure describes techniques to evaluate the effectiveness of Conservation Voltage Reduction (CVR), for example, by using two variable characteristics to model a power load as a sum of a constant impedance load and a constant power load. |
US10847974B2 |
Device and method for estimating a voltage distribution along a power distribution line in a high-voltage system
The power distribution system management device according to the present invention includes a communication unit that receives measurement values from a plurality of high-voltage sensors that each measure a voltage and a power flow of a power distribution line in a high-voltage system, and receives, from a plurality of smart meters that each measure an amount of power, information on the amount of power; and a voltage control unit that sections the power distribution line between two high-voltage sensors among the plurality of high-voltage sensors into a plurality of sections to estimate a voltage distribution along the power distribution line based on two of the measurement values received from the two high-voltage sensors and on the amount of power of each of the sections. |
US10847973B2 |
Method for controlling an electrical energy distribution network, energy distribution network and control unit
A method for controlling an electrical energy distribution network includes connecting at least one first distribution network of a first voltage level which comprises a plurality of network nodes to a power line of the at least one first distribution network, wherein a first part of the network nodes comprises energy consumers, a second part of the network nodes comprises energy generators, and a third part of the network nodes comprises both energy consumers and energy generators. A local unit of each of the network nodes records first energy quantity information which represents a measured energy quantity, and provides second energy quantity information which represents a tradable energy quantity. The method also includes transforming, by a device coupling the at least one first distribution network to a second distribution network, the first voltage level of the at least one first distribution network with a second voltage level of the second distribution network for an exchange of energy between the at least one first and second distribution network that is carried out, based on the first and second energy quantity information, between the network nodes within one of the at least one first distribution network and/or across different ones of the at least one first distribution network. |
US10847972B2 |
Method and system for optimizing power generated by a photovoltaic system
In one embodiment, a photovoltaic (PV) power generation system includes a plurality of PV arrays coupled to an automatic switchbox that connects the one or more PV arrays in series or in parallel with each other based at least in part on output voltage of the switchbox.In this embodiment, the automatic switchbox monitors the output voltage and ensures that the output voltage is within a predetermined operational range. If the output voltage exceeds a first predetermined voltage, then the array switchbox electrically couples one or more PV arrays in parallel with each other, which reduces the output voltage within the predetermined operational range. If the output voltage falls below a second predetermined voltage, the switchbox connects one or more PV arrays in series with each other, which increases the output voltage to within the predetermined range. |
US10847969B2 |
Constant power protection circuit and constant power protection method
A constant power protection circuit includes a voltage conversion circuit, a current detection circuit, a voltage detection circuit, a power setting circuit, a voltage feedback circuit, an addition circuit, a current feedback circuit, and a signal isolation unit. When an output voltage of the voltage conversion circuit is larger than a voltage of the voltage detection circuit and an output current of the voltage conversion circuit is larger than a current of the current detection circuit, the power setting circuit provides a comparison signal to the current feedback circuit, the current feedback circuit outputs a feedback signal to the signal isolation unit. According to a signal outputted from the signal isolation unit, the voltage conversion circuit enables a constant power mode. |
US10847968B2 |
Differential protection method and system
Provided are a differential protection method and system, applied to a multi-terminal T-connection transmission line. The method includes: selecting two slaves without a connection and connecting the two slaves to construct a slave group; determining a target slave and an auxiliary slave in the slave group, where a first communication path is connected along a channel one, a channel two and a channel three, and a second communication path is connected along the channel three, the channel two and the channel one; transmitting, by the target slave, two frames of messages, and acquiring a delay difference between a transceiving delay of the first communication path and a transceiving delay of the second communication path, where a first frame of messages is transmitted to the target slave via the first communication path, a second frame of messages is transmitted to the target slave via the second communication path. |
US10847965B2 |
Circuit interruption device with thermal protection
A thermal protection switch device may include: a power circuit that includes a phase line and a neutral line; a current sensor electrically connected to the phase line to detect the current flow in the phase line; a temperature sensor thermally coupled to the phase line to detect the temperature of the phase line; and another temperature sensor thermally coupled to the neutral line to detect the temperature of the neutral line. The device also includes a trip circuit configured to interrupt the phase line when activated and a controller configured to receive output signals from the above current and temperature sensors. The controller may activate the trip circuit to interrupt the phase line in response to determining that certain conditions have occurred. |
US10847963B2 |
Safety circuit arrangement for failsafe shutdown of an electrically driven installation
Safety circuit arrangement for failsafe shutdown of an electrically driven installation, comprising a safety switching device, having a safety switching relay that is configured to close or disconnect a power supply path to the installation in a failsafe manner, and a signaling device, having an actuator and a signal generator that is connected to the safety switching device by a first line. The actuator of the signaling device is interchangeable between first and second defined states and the signal generator is configured to generate a first clock signal on the first line only when the actuator is in the first defined state. Furthermore, the safety switching device is configured to draw electrical power from the first clock signal that is greater than or equal to the defined actuating power of the safety switching relay and to convert said electrical power to direct current for actuating the safety switching relay. |
US10847962B2 |
Cable gland comprising a slip on grommet
The invention relates to a cable gland with a grommet comprising a tubular base body made from an elastic material and extending in a direction of a cable gland axis from a first outer end to a second outer end. The tubular base body has at least one flow channel arranged between the first and the second outer end and extending in circumferential direction along an inner surface of the tubular base body. At least one filling hole extends from said flow channel radially outwards through the tubular base body to fill an inner space of the tubular base body with an adhesive. A first circumferential sealing lip arranged in the region of the first outer end and a second circumferential sealing lip arranged in the region of the second outer end to seal an inner space of the tubular base body when mounted on a cable with respect to the cable. |
US10847958B1 |
Connector for electrical conduit and method of use
A connector for an electrical conduit is configured to make a 90-degree turn behind drywall and tight spaces, while enabling a wire to be pulled therethrough. The connector comprises a hollow, circumferentially-enclosed, one-piece electrical conduit connector body. Electrical conduit connector body includes a connector end having a first annular portion. First annular portion has a first inner diameter and a first centerline. Electrical conduit connector body also includes a receiving end comprising a second annular portion having a second inner diameter smaller than the first inner diameter. Electrical conduit connector body also includes a second centerline that is perpendicular to, and intersecting the first centerline. Juxtapositioned between is an oblique frustroconical hollow section with a third centerline intersecting, and forming an angle of 45 degrees to the first centerline. The frustroconical hollow section tapers in two opposite directions and in two perpendicular planes. |
US10847957B2 |
Exterior structure for wire harness, manufacturing method thereof, and wire harness
An exterior structure for a wire harness is provided with a pipe that has an electric wire insertion space that allows an electric wire to be inserted through the inside of the pipe. The pipe includes a diameter reduction portion that is defined by an inward deformation of the pipe in a diameter direction that narrows the electric wire insertion space. In the diameter reduction portion, the clearance between (i) the electric wire that is inserted through the electric wire insertion space of the pipe and (ii) the inner circumferential surface of the pipe can be reduced or eliminated, which suppresses rattling of the electric wire. |
US10847955B1 |
System, method and apparatus for spray-on application of a wire pulling lubricant
A system, method, and apparatus lubricating a wire or cable during manufacturing, wherein the wire is aligned with an entry to a spraying enclosure and passes through a first seal of the spraying enclosure. Lubricant is sprayed onto the wire inside of the spraying enclosure while the unapplied, but sprayed, lubricant is collected at the bottom of the spraying enclosure. The wire passes through a second seal of the spraying enclosure, is aligned, and exits from the spraying enclosure. |
US10847952B2 |
Processing apparatus, method for manufacturing molded product, and method for manufacturing spark plug electrode
A processing apparatus for processing a workpiece by transferring the workpiece between a ram and a die block. At least one recessed die of a plurality of dies molds the workpiece into a bottomed tubular shape by a punch. A punch, among a plurality of punches, that has entered the recessed die exits from the recessed die with the formed workpiece being attached to the punch, together with the workpiece. Since the workpiece is transferred from the die block to the ram when the punch exits from the die, a step of moving the ram forward relative to the die block to transfer the workpiece from the die block to the ram can be omitted accordingly. |
US10847951B1 |
Spark plug with a plug cover for improving fuel economy
A spark plug includes: a center electrode; a ground electrode that is provided such that a gap for spark discharge is formed between the center electrode and the ground electrode; and a plug cover covering the center electrode and the ground electrode to form an auxiliary chamber. The plug cover is provided with plural through holes. A relationship of 80 |
US10847945B2 |
Phase shifter for an optical phase-sensitive amplifier
An FBG element is configured to apply a phase shift to at least one of an input optical signal, a first pump light, and an idler signal between stages of a phase sensitive amplifier. The FBG element is apodized using a trapezoidal apodization function over the length of the first FBG element to enable tuning of the phase shift over a range of 2π radians. |
US10847944B2 |
Method for monitoring a crimping process
Method for monitoring a crimping process including arranging an end fitting or coupling in an intended position between a first and second crimping jaw and initiating the crimping process, continuously detecting the position of the first and second jaw in relation to the other and the applied pressure and store the detected information in a control unit; comparing the detected information regarding position and applied pressure against predetermined characteristics determined for a crimping process with the desired quality; and if the detected information differs from the predetermined characteristics determined for a crimping process with the desired quality more than a predetermined value send alert to indicate that the crimping process not has the desired quality. |
US10847943B2 |
4-way indent tool
A 4-way indent tool includes a indenter actuator cam arm being movable between an unactuated position and an actuated position to actuate four indenters to crimp a terminal. The 4-way indent tool includes a drive assembly movable along the drive screw between a retracted position and an advanced position. The drive assembly has a drive nut on a drive screw and a coupler operably coupled between the drive nut and the indenter actuator cam arm. The coupler moves the indenter actuator cam arm. The coupler has a spring loaded coupling between the drive nut and the indenter actuator cam arm compressed as the coupler is moved between the retracted position and the advanced position. |
US10847940B2 |
Contact device
A contact device for transmitting electrical energy from a preferably spatially fixed busbar to a tap-off bar, movable along the busbar, including: at least one connecting housing, the busbar being mechanically connected to the tap-off bar by connecting housing, at least one combi clip, the combi clip brought into engagement with part of the outer periphery of the connecting housing in a mechanically releasable manner and establishing a mechanical connection between the connecting housing and a connecting bracket. |
US10847934B2 |
Electrical connectors for flat circuits
In one example an electrical connector is disclosed, which may include a housing and a plurality of electrical contacts disposed in the housing for engaging with corresponding connecting terminals provided on a flat circuit. The housing may include a front portion defining an elongated opening and a rear portion opposite the front portion. The rear portion may define a visible area. The flat circuit may be inserted in the housing from the elongated opening and extended into the visible area. |
US10847932B2 |
Lever-type connector
A connector includes a housing (14) with a lever (18) that is rotatable between an initial position and a connection end position for connection to a mating housing (12). The lever (18) includes a resilient piece (30) cantilevered parallel to the outer surface (16) of the housing (14). A projecting wall (38) projects toward the resilient piece (30) from a peripheral wall (32) surrounding the resilient piece (30). The resilient piece (30) has a locking surface (40A) extending toward a base of the resilient piece (30), and the housing (14) has a locked surface (22A) extending toward a tip of the resilient piece (30). The resilient piece (30) enters a clearance between the projecting wall (38) and the outer surface of the housing (14) when the lever (18) is urged from the initial position to the connection end position with the locking surface (40A) locked to the locked surface (22A). |
US10847929B2 |
Connector cage and electronic device including a push plate
A connector cage includes a cage including an insertion slot from which a module is inserted into the cage; a heat sink which is arranged on a wall of the cage, the heat sink configured to be positioned at a contact position and a separate position with respect to the inserted module, move between the contact position and the separate position, and slide in an insertion direction in which the module is inserted in the cage; a first spring which causes the heat sink to move to the contact position; a protrusion which is provided on the side wall or the heat sink; a push plate extending from the heat sink, and which is pushed by the inserted module; and a hollow which is provided in the heat sink or the wall, and into which the protrusion moves. |
US10847926B2 |
Housing lid for a field device of automation technology for wireless transmission of information
The invention relates to a housing lid for a field device comprising a screw thread, a receiving and transmitting unit, a battery unit, and a communication interface. The screw thread secures the housing lid to the field device. The receiving and transmitting unit is embodied wirelessly to receive information produced by at least one external unit and to transmit information produced by the field device to the external unit. The battery unit supplies the receiving and transmitting unit and/or the field device with electrical energy. The communication interface is in electrical contact with the battery unit, with the receiving and transmitting unit and via a corresponding communication interface of the field device with the field device. |
US10847924B2 |
Contact device and contact system
A contact device comprises an outer housing delimiting a first inner space, an inner housing delimiting a second inner space and arranged in the first inner space, a contact element arranged in the second inner space, a first sealing element arranged between the inner housing and the outer housing, and a second sealing element arranged between the contact element and the inner housing. The first sealing element seals the first inner space from an environment of the contact device. The second sealing device seals the second inner space from the environment. |
US10847919B2 |
Electrical outlet safety device
An electrical outlet safety device includes a main body having electrical and ground contacts for receiving electrical current. At least one receptacle having a pair of electric slots and a ground aperture for receiving the prongs of an electric plug are provided along the front wall. A plurality of channels is disposed along the inside surface of the front wall for receiving a generally T-shaped safety tab. The tab is positioned within the channels and maintained in a closed position by a spring wherein the body of the tab obstructs the slots and aperture. Insertion of two prongs from an electric plug moves the tab from the closed position to the open position whereby the prongs are able to connect to internal circuitry to receive electrical current from the electrical source. |
US10847916B2 |
Connector
A connector includes a cylindrical connector housing having a retainer and a terminal accommodating chamber in which a terminal is to be inserted. The retainer has first and second flat plate portions, a side plate portion, and a front plate portion. The retainer is attached to the cylindrical connector housing along an attaching direction. A temporary engagement projection and a main engagement projection are provided on a housing outer surface of the cylindrical connector housing so as to be arranged in parallel each other and extend along a direction substantially perpendicular to the attaching direction of the retainer. The temporary engagement projection has a height from the housing outer surface higher than that of the main engagement projection. |
US10847915B2 |
Electrical contact and electric component socket
An electrical contact and an electric component socket, in which a plurality of protruding portions come in contact with a terminal of an electric component, ensuring to prevent the defect of a large flaw formed on the terminal as well as improve durability of the electrical contact. An electrical contact 15 includes a contacting portion 31 which comes in contact with a terminal 2a of an electric component 2. The contacting portion 31 includes a plurality of convex portions 38 around a center 31b of a tip portion 31a of the contacting portion 31. The convex portion 38 has a plurality of protruding portions 35 on a tip of a mountain-shaped portion of the convex portion 38. The electrical contact 15 is configured to bring the plurality of protruding portions 35 into contact with the terminal 2a to achieve the electrical connection to the electric component 2. |
US10847912B2 |
Broadband socket connector, broadband plug connector, and system thereof
A broadband connector system is provided. Said broadband connector system comprises a broadband socket connector comprising a socket strip conductor element comprising a socket lateral dimension, and a broadband plug connector comprising a plug strip conductor element comprising a plug lateral dimension. In this context, the broadband socket connector is connectable to the broadband plug connector, wherein the socket lateral dimension is greater or equal to the plug lateral dimension. |
US10847911B2 |
Electrical connector for FFC/FPC
An electrical connector for receiving an FFC/FPC includes an insulating housing, a plurality of conductive terminals, a pair of retaining pins, and a metal cover. The insulating housing includes a main body and a pair of shoulder parts. Each shoulder part has a guiding bump, and a pre-pressing board. An oblique-entry space is formed between the guiding bump and the pre-pressing board. The pair of retaining pins are respectively fixed in the pair of shoulder parts. A bottom end of the retaining pin is exposed from the bottom surface of the insulating housing. The metal cover is slidably disposed on the top surface of the insulating housing, and includes a top pressing plate and a pair of side sliding rails. A front end of the top pressing plate has a pressing rib. The metal cover is movably arranged between an initial position and a pressed position. |
US10847906B2 |
Connection switching device
A connection switching device is provided which connects a plug, having a plug pin connected to an inspecting circuit, to a receptacle connector connecting an antenna and a transmission/reception circuit, and switches a connection to a parallel connection where the inspection circuit is connected to the antenna and to the transmission/reception circuit. The receptacle connector includes a first contact, a second contact, and a normally closed terminal that is brought into elastic contact with the first contact and the second contact. The plug includes a first plug pin being brought into contact with the first contact, a second plug pin being brought into contact with the second contact, and an insulating projection being inserted between at least one of the first and second contacts and the normally closed terminal to insulate between the at least one of the first and second contacts and the normally closed terminal. |
US10847905B2 |
Electrical connection system with an additional leaf spring
The invention relates to an electrical connection system (7) for an electrical device, such as an electrical terminal block, said electrical connection system (7) comprising: a conductive bar (21) including an electrical contact region (45) arranged to cooperate with a conductive portion (13′) of an electrical conductor (13) in a connected position, and an engagement zone (35) arranged to engage with a portion (15′) of a support rail (15) in an engaged position; a leaf spring (23); and a retaining device (49) arranged to maintain the engaged position with the portion (15′) of the support rail (15), said retaining device (49) comprising an additional leaf spring (57) equipped with an additional clamping member (57″) arranged to engage with the portion (15′) of the support rail (15) in the engaged position. |
US10847904B2 |
Electric wire with terminal and method of manufacturing electric wire with terminal
An electric wire with terminal includes: an electric wire including a core wire having a plurality of element wires, and a covering that covers the core wire in a state in which an end portion of the core wire is exposed; and a crimp terminal including a core wire crimping portion crimped to the core wire in a state in which a distal end of the core wire protrudes to the outside. A distal end of the core wire has a bonding portion at which element wires are bonded together, and the bonding portion is formed by shearing and deforming distal ends of the element wires. |
US10847900B2 |
Antenna array and radar device using thereof
The present disclosure provides the antenna array and the radar device including at least one first antenna arranged in one direction; at least one second antenna spaced apart from the first antenna; at least one shared antenna arranged between the first antenna and the second antenna; a first input-output terminal connected to the first antenna; a second input-output terminal connected to the second antenna; and a connector including a first port connected to the first antenna, a second port connected to the second antenna, a third port connected to the shared antenna, and a connecting portion connected to the first port, the second port and the third port; wherein a signal input to one of the first port and the second port is transmitted to the other port through a first path and a second path, and wherein the signal passed through the first path and the second path are matched at the other port. According to the present disclosure, it is possible to provide the antenna array and the radar device that can be efficiently disposed in a limited space to maximize spatial advantage. |
US10847898B2 |
Antenna and a method for measuring two orthogonal polarizations
The invention relates to a dual orthogonally polarized antenna and to a method for measuring two orthogonal polarizations. The orthogonally polarized antenna includes a first antenna and a second antenna for measuring two orthogonal polarizations, each of the two antennas having a phase center. Additionally, a first lens constructed with two different radii of curvature, is placed around the dual orthogonally polarized antenna. |
US10847897B2 |
Direction finder antenna system
A direction-finding antenna system is described. The direction-finding antenna system comprises a plurality of tapered dipole antenna elements arranged in circular array around a central axis. Each tapered dipole antenna element comprises a pair of rectangular elongated antenna elements mounted radially from said central axis and configured to be curved such that a distance between said pair of rectangular elongated antenna elements is larger at periphery of the system with respect to center thereof. |
US10847896B2 |
Antenna array system
The present disclosure provides an antenna array system that includes a plurality of antenna array units and a processor. The antenna array units are evenly arranged in different orientations, where each antenna array unit comprises a plurality of antenna elements with different azimuth angles, and the different azimuth angles of the antenna elements in the each antenna array unit form a vector, where the vectors corresponding to the antenna array units constitute a vector matrix that matches a predetermined rule. The processor is electrically connected to the antenna array units. |
US10847895B2 |
Passive frequency multiplexer
A passive frequency multiplexer includes a beam forming network lens including a plurality of input terminals and a plurality of output terminals; a transmission line for transmitting a signal to the beam forming lens; and a plurality of couplers arranged in series along the transmission line, each of the plurality of couplers comprising an input terminal, an output terminal, and a coupled output terminal, each of the coupled output terminals of the plurality of couplers being coupled to a respective one of the input terminals of the beam forming network lens. |
US10847890B2 |
Low-loss and flexible transmission line-integrated antenna for MMWave band
Disclosed is a low-loss and flexible transmission line-integrated antenna for an mmWave band. The low-loss and flexible transmission line-integrated antenna includes an antenna and a transmission line integrated with the antenna. Here, the antenna includes a dielectric substrate formed of a dielectric having a certain thickness on a ground plate, a signal conversion portion which is formed on the dielectric substrate and converts an electrical signal of a mobile communication terminal into an electromagnetic signal and radiates the electromagnetic signal into the air or receives an electromagnetic signal in the air and converts the electromagnetic signal into an electrical signal of the mobile communication terminal, and an electricity feeding portion formed on the dielectric substrate and connected to the signal conversion portion. |
US10847881B2 |
Dual-band antenna with notched cross-polarization suppression
A dual-band antenna with notched cross-polarization suppression can include a symmetrical feed tab, a short circuit leg electrically coupled to the symmetrical feed tab, and symmetrical arms electrically coupled to and extending from opposing sides of the short circuit leg. When a signal with a first frequency energizes the symmetrical feed tab, a combination of the symmetrical feed tab and the short circuit leg can form a first radiating section, but when a signal with a second frequency energizes the symmetrical feed tab, the symmetrical arms can form a second radiating section. The symmetrical feed tab and the symmetrical arms can be oriented such that symmetry of the symmetrical feed tab and the symmetrical arms can yield a cumulative cross-polarization distribution derived from radiation from surface currents on the symmetrical feed tab and the symmetrical arms that theoretically vanishes at a plurality of points in an azimuth plane. |
US10847880B2 |
Antenna element spacing for a dual frequency electronically scanned array and related techniques
Systems and methods described herein are directed towards a radar system and a dual frequency electronically scanned array (ESA) capable of transmitting and receiving radio frequency (RF) signals at least two frequencies. The ESA includes a plurality of antenna elements which form a first effective aperture at a first radio frequency (RF) frequency and operational over a first scan range and which form a second effective aperture at a second radio frequency (RF) frequency and operational over a second scan angle. The first and second scan ranges are complementary so as to provide the radar system having an overall scan range. The plurality of antenna elements are spaced apart from each other by an amount related to at least one of the first and second scan ranges and/or one or more operating frequencies of the radar system. |
US10847876B2 |
Antenna system coupled to an external device
An antenna system is integrated into a cover or accessory and adapted to couple to an antenna in a host device to improve transmission and reception of signals. The antenna system can be passive or active, with the active antenna system designed to amplify coupled signals on the integrated antenna elements in the cover or accessory. Single or multiple frequency bands can be improved with the integrated antenna system, and multiple antennas in the host device can be coupled to and improved. The antenna system can couple to the existing antennas in the host device by capacitive coupling, i.e. no physical contact required, or a connector can be designed into the cover or accessory containing the integrated antenna system that makes contact to electrical ground of the host device or power supply signals or other control signals. |
US10847870B2 |
Frequency reconfigurable MIMO antenna with UWB sensing antenna
A dielectric substrate for a configurable antenna has an upper surface and an opposing lower surface. An upper conductor patch is disposed on the upper surface of the substrate and a lower conductor patch is disposed on the lower surface of the substrate. A sensing antenna is formed in the upper conductor patch. An upper set of slot antennas is formed in the upper conductor patch and a lower set of slot antennas is formed in the lower conductor patch. Each of the slot antennas is loaded with a variable reactance component. |
US10847868B2 |
Handrail mountable wireless components installation apparatus and method
A handrail mountable wireless components installation apparatus and related method of installation are disclosed. The apparatus/method includes a shell having two parts, a wireless components housing and a lid; and a chassis for the fixedly but detachable mounting within the shell of the wireless electronic components necessary to provide a WiFi signal, as for example a router and an antenna, the chassis equipped with two sets of brackets. One set of brackets provides the anchoring means for the fastening of the lid onto the housing. The second set of brackets allows the enclosure to be mounted on the handrail. Optionally, the chassis is provided with a mounting plate for the mounting of a router and an opening capable of accommodating an antenna without impeding the flow of the antenna signal. Optionally, the weather resistant handrail mountable wireless components installation apparatus also comprises a gasket. |
US10847860B2 |
Superconducting resonating cavity and method of production thereof
A superconducting radio frequency (SRF) cell includes a body defining a hollow cavity having a first iris at a first end of the body, a second iris at a second end of the body, an axis that extends between the first and second irises and an equator around the axis between the first and second irises. The body includes a first weld seam around the axis at a location on the body spaced from the equator. A method for producing the SRF cavity includes: (a) providing a first-partial cell including a first cell welding edge; (b) providing a second-partial cell including a second cell welding edge; (c) positioning the first- and second-partial cells with the first and second cell welding edges facing toward each other; and (d) welding the first- and second-partial cells together at a position other than the equator of the body. |
US10847857B2 |
Method and apparatus for integrated shielded circulator
An RF circulator in combination with a RF integrated circuit, the RF integrated circuit having a plurality of RF waveguide or waveguide-like structures in or on the RF integrated circuit, the RF circulator comprising a disk of ferrite material disposed on a metallic material disposed on or in the RF integrated circuit, the disk of ferrite material extending away from the RF integrated circuit when disposed thereon, the metallic portion having a plurality of apertures therein adjacent the disk of ferrite material which, in use, are in electromagnetic communication with the disk of ferrite material and with the plurality of RF waveguide or waveguide-like structures, the disk of ferrite material being disposed in a metallic cavity. |
US10847853B1 |
Broadband windows
Broadband windows that transmit light simultaneously across several spectral bands are disclosed. |
US10847852B2 |
Hybrid electrochemical cell
Disclosed is a hybrid electrochemical cell with a first conductor having at least one portion that is both a first capacitor electrode and a first battery electrode. The hybrid electrochemical cell further includes a second conductor having at least one portion that is a second capacitor electrode and at least one other portion that is a second battery electrode. An electrolyte is in contact with both the first conductor and the second conductor. In some embodiments, the hybrid electrochemical cell further includes a separator between the first conductor and the second conductor to prevent physical contact between the first conductor and the second conductor, while facilitating ion transport between the first conductor and the second conductor. |
US10847850B2 |
Cooling plate for secondary battery and secondary battery module including the same
The present invention relates to a flat plate type cooling plate for a secondary battery, which includes a plurality of cooling parts spaced apart from each other in a longitudinal direction within the cooling plate and a plurality of reinforcement ribs disposed on inner surfaces of the cooling parts. The cooling plate for the secondary battery according to the present invention may be minimized in deformation due to an external impact and stimulation when the cell module is penetrated and thus reduce an influence on unit cells due to the deformation of the cooling plate to suppress an occurrence of short-circuit in the unit cells of the cell module, thereby improving safety of the battery. Also, heat generated during charging and discharging may be effectively released to prevent the battery from being deteriorated in capacity characteristic and improve lifespan characteristics of the battery and reliability of battery performance. |
US10847846B2 |
Methods for determining and controlling battery expansion
Methods and systems for detecting and compensating for expansion of rechargeable batteries over time. An expansion detector may be coupled to or positioned proximate a rechargeable battery to monitor for expansion thereof. After expansion exceeding a selected threshold is detected, the expansion detector may report the expansion to an associated processing unit. The processing unit may undertake to arrest further rechargeable battery expansion by modifying or changing one or more characteristics of charging and/or discharging circuitry coupled to the rechargeable battery. For example, the processing unit may charge the rechargeable battery at a lower rate or with reduced voltage after detecting expansion. |
US10847843B2 |
Electrolyte for a nickel-iron battery
Providing is a battery comprising an iron anode, a nickel cathode, and an electrolyte comprised of sodium hydroxide, lithium hydroxide and a soluble metal sulfide. In one embodiment the concentration of sodium hydroxide in the electrolyte ranges from 6.0 M to 7.5 M, the amount of lithium hydroxide present in the electrolyte ranges from 0.5 to 2.0 M, and the amount of metal sulfide present in the electrolyte ranges from 1-2% by weight. |
US10847839B2 |
Non-aqueous electrolytes for lithium batteries
An electrochemical cell includes a cathode active material, lithium metal, a separator, and an electrolyte comprising a lithium salt, an organic aprotic solvent and a fluorinated sulfone represented by Formula II: |
US10847835B2 |
Battery management system for battery banks with a small number of cells
A battery management system monitors and controls the state of charge of a plurality of battery cells with a single data transceiver line. A sense board coupled to each cell monitors the battery cell voltage and temperature and reports the cell voltage in series, according to the location in series. A data request signal is sent by the control device of the battery management system through the single data transceiver line to initiate battery cell data transmission. The first battery cell in the series sends the first battery data upon receiving the data request signal and each subsequent battery cell in the series sends their respective battery data after a predetermined delay time set by two quaternary bits formed by a pair of voltage dividers. The state of charge may be displayed in real time on a graphical or numerical display. |
US10847828B2 |
Electrochemical cell stack
An electrochemical cell stack according to a second aspect of the present invention includes an electrochemical cell and a manifold supporting a base end of the electrochemical cell. The electrochemical cell includes an electric conductive support substrate and a power generation unit disposed on the support substrate. Additionally, a gas flow path is provided in the support substrate. The power generation unit includes an anode disposed on a first main surface of the support substrate, a cathode, and a solid electrolyte layer disposed between the anode and the cathode. Additionally, the solid electrolyte layer contains a zirconia-based material as a main component thereof. The solid electrolyte layer includes a base end portion positioned on a side of the base end and a separated portion positioned separated from the base end. The base end portion includes a first area covering within 3 μm from an anode side surface, and a second area provided on the first area. An intensity ratio of tetragonal zirconia to cubic zirconia in a Raman spectrum in the first area is greater than an intensity ratio of tetragonal zirconia to cubic zirconia in the Raman spectrum in the second area. |
US10847826B2 |
Polymer electrolyte fuel cells and production method thereof
A fuel cell includes: an electrolyte membrane; a fuel-side catalyst layer placed on one surface of the electrolyte membrane; an oxidant-side catalyst layer placed on another surface of the electrolyte membrane; a fuel-side gas-diffusion layer placed on a main surface of the fuel-side catalyst layer; an oxidant-side gas-diffusion layer placed on a main surface of the oxidant-side catalyst layer; a pair of separators that hold the fuel-side gas-diffusion layer and the oxidant-side gas-diffusion layer therebetween; a frame that surrounds outer peripheries of the fuel-side gas-diffusion layer and the oxidant-side gas diffusion layer; a fuel-side seal member placed on a main surface of the fuel-side gas-diffusion layer; and an oxidant-side seal member placed on a main surface of the oxidant-side gas-diffusion layer. In the fuel cell, no spaces are provided between the fuel-side gas-diffusion layer and the fuel-side catalyst layer and between the oxidant-side gas-diffusion layer and the oxidant-side catalyst layer. |
US10847825B2 |
Chloralkali process
A method of the type where a brine solution is converted to an alkali metal hydroxide solution within a diaphragm cell, and the resulting cell liquor from the diaphragm cell is introduced to one or more fuel cells for the conversion of the alkali metal hydroxide to form electricity, the improvement comprising regulating the conversion of alkali metal hydroxide within the fuel cell to a conversion of less than 90%, and then subsequently concentrating the alkali metal hydroxide concentration from the anolyte stream of the fuel cell. |
US10847823B2 |
Fuel cell stack inlet flow control
A duct for a fuel cell module includes an upper duct hood having an inlet configured to receive reactant gas from a supply duct, the upper duct hood defining a first tapered portion and a second tapered portion. The duct further includes a lower duct hood fluidly coupled to the upper duct hood, the lower duct hood defining at least one outlet. In a side view, the second tapered portion is tapered inwardly in a downstream direction. In a top view, the first tapered portion is tapered inwardly in a downstream direction, and the second tapered portion is tapered outwardly moving downstream. |
US10847821B2 |
Temperature detecting device and insertion hole structure of base
A temperature detecting device is equipped with an insertion hole structure for guiding a case which is inserted from outside into a holder that covers an outer wall of a battery cell, to the outer wall of the battery cell. In this insertion structure, a plurality of load distribution portions, specifically a first structure and a second structure, are formed at the periphery of an opening of an insertion hole. The load is generated upon abutment on a foreign matter that is about to enter through the insertion hole toward the battery cell. The load distribution portions distribute and release a load to the periphery of the opening. |
US10847817B2 |
Method for determining a content of a gas component in a gas mixture conveyed in a recirculating manner via a fuel cell
The invention relates to a method to determine a content of a gas component in a gas mixture delivered recirculating through an anode chamber (12) or a cathode chamber (13) of a fuel cell (10), wherein the delivery takes place via a delivery device (26) functioning according to the positive displacement principle. The invention also relates to a fuel cell system (100) configured to execute the method.According to the invention, the content of the gas component is determined depending on geometric parameters (V, ξ) and operating parameters (n, U, I) of the delivery device (26), as well as on thermodynamic state variables (p, T) of the gas mixture. The sought target quantity, for example a hydrogen component of an anode gas, can thus be determined in a simple and robust manner from quantities that are already known or measured. |
US10847816B2 |
Fuel cell
A fuel cell includes a power-generation channel provided on a surface of a cathode-side separator which faces a MEA and a cooling channel provided on a surface of the cathode-side separator opposite to the MEA. Air flows through the power-generation channel and the cooling channel. The cooling channel is separated from the power-generation channel by a side wall. The cross-sectional area of the power-generation channel on the air outlet side is smaller than that of the power-generation channel at a position upstream of the air outlet side, and the cross-sectional area of the cooling channel on the air outlet side is larger than that of the cooling channel at a position upstream of the air outlet side. A through-hole is provided in a side wall that separates the power-generation channel from the cooling channel. |
US10847810B2 |
Nanostructures for lithium air batteries
Provided herein are lithium-air battery cells comprising nanostructured (e.g., nanofiber) anode, cathode, and/or separator/electrolyte components. |
US10847807B2 |
Flexible, planar, double sided air breathing microscale fuel cell
Flexible air-breathing microscale fuel cells are produced using ion exchange polymer membranes without silicon substrates or other rigid components. The microscale fuel cells provide long-life energy supply sources in portable electronics due to reduced volume, high energy density, and low cost. More particularly, the microscale fuel cell has a direct hydrogen flow-through porous anode electrode with a pair of air-breathing cathodes. |
US10847806B2 |
Electrochemical device and method of preparing the same
An electrochemical device including a positive electrode current collector; a first protruding portion including a plurality of positive electrodes in electrical contact with the positive electrode current collector, and a first dented portion disposed between each positive electrode of the plurality of positive electrodes; an electrolyte layer including a second protruding portion and a second dented portion respectively disposed on the first protruding portion including the plurality of positive electrodes and the first dented portion disposed between each positive electrode of the plurality of positive electrodes; and a negative electrode current collector layer including a third protruding portion and a third dented portion respectively disposed on the second protruding portion and the second dented portion of the electrolyte layer. |
US10847804B2 |
Carbon nanosphere modified current collector for lithium metal battery and method for preparing the same
The present invention related to a method for preparing carbon nanospheres modified current collector and its application in metal secondary battery. The said method includes the preparation of carbon nanospheres modified current collector by chemical vapor deposition process and the process for loading metal into the modified current collector as an anode. Comparing with the bare Ni, the said anode with modified current collector demonstrates enhanced stripping/plating efficiency, well confinement of Li dendrite, stable long lifespan and strengthen safety. |
US10847797B2 |
Cathode active material and fluoride ion battery
A main object of the present disclosure is to provide a novel cathode active material that may be used for a fluoride ion battery. The present disclosure achieves the object by providing a cathode active material used for a fluoride ion battery, comprising a composition represented by Pb2−xCu1+xF6, wherein 0≤x<2. |
US10847793B2 |
Negative active material for rechargeable lithium battery and rechargeable lithium battery comprising same
A negative active material for a rechargeable lithium battery includes a lithium titanate compound represented by Chemical Formula 1, where R, a Raman spectrum intensity ratio (I(F2u)/I(F2g)) of an F2u peak in a range of about 200 cm−1 to about 300 cm−1 relative to an F2g peak in a range of about 400 cm−1 to about 550 cm−1 is greater than or equal to about 0.7. Li4+xTi5−yMzO12−n Chemical Formula 1 In Chemical Formula 1, −0.2≤x≤0.2, −0.3≤y≤0.3, 0≤z≤0.3, −0.3≤n≤0.3, and M is selected from Mg, Al, Ca, Sr, Cr, V, Fe, Co, Ni, Zr, Zn, Si, Y, Nb, Ga, Sn, Mo, W, Ba, La, Ce, Ag, Ta, Hf, Ru, Bi, Sb, As, and a combination thereof. |
US10847791B2 |
Negative electrode active material and power storage device
A power storage device with high capacity is provided. Alternatively, a power storage device with excellent cycle characteristics is provided. Alternatively, a power storage device with high charge and discharge efficiency is provided. Alternatively, a power storage device with a long lifetime is provided. A negative electrode active material includes a first region and a second region. The first region includes at least one element selected from Si, Mg, Ca, Ga, Al, Ge, Sn, Pb, Sb, Bi, Ag, Zn, Cd, As, Hg, and In. The second region includes oxygen and the same element as the one included in the first region. The crystallite size of the element included in the first region is larger than or equal to 1 nm and smaller than or equal to 10 nm. |
US10847790B2 |
Functionalised electrochemically active material and method of functionalisation
An electrochemically active material comprising a surface is provided, wherein at least part of the surface is functionalised with a grafted heteroatom-functionalised oligomer. A method of functionalising the surface with the oligomer is also provided. |
US10847784B2 |
Negative electrode active material for lithium ion secondary battery and method for producing same
A negative electrode active material for the lithium ion secondary battery contains silicon oxide that is obtained by heat-treating, under an inert gas atmosphere, a hydrogen silsesquioxane polymer (HPSQ) obtained by allowing hydrolysis of a silicon compound represented by formula (1) and then a condensation reaction of the resulting material, contains Si, O and H, and has, in an infrared spectrum, a ratio (I1/I2) in the range of 0.01 to 0.35 with regard to intensity (I1) of peak 1 at 820 to 920 cm−1 due to a Si—H bond to intensity (I2) of peak 2 at 1000 to 1200 cm−1 due to a Si—O—Si bond, and is represented by general formula SiOxHy (1 |
US10847771B2 |
Cooling arrangement for a vehicle battery system
Provided is a vehicle including: an internal battery pack that has an internal battery module and an internal case housing the internal battery module, and is disposed inside the vehicle; and an external battery pack that has an external battery module and an external case housing the external battery module, and is disposed outside the vehicle, wherein an air exchange rate of the internal case is higher than an air exchange rate of the external case. |
US10847769B2 |
Vehicular power source device equipped with service plug protection cover
A vehicular power source device includes: a case incorporating a battery; a service plug coupled to the battery incorporated in the case; and a protection cover of the service plug. The protection cover includes: a covering portion of the service plug; a fixing board fixed to the case via a fastener; and an opening board disposed to be adjacent to the fixing board and providing a gap to the case. In addition, the fixing board includes: a fixing portion fixed onto the case via the fastener; a linking portion linking the fixing portion to the covering portion; and a breaking portion. The breaking portion is provided in the fixing portion or in a boundary portion between the fixing portion and the linking portion, and a breaking strength of the breaking portion is lower than that of the linking portion. |
US10847763B2 |
Packaging material for power storage device, packaging case for power storage device, and power storage device
A packaging material for a power storage device includes a heat resistant resin layer 2 as an outer layer, a sealant layer 3 as an inner layer, and a metal foil layer 4 arranged between these layers. The sealant layer 3 is composed of one layer or a plurality of layers. The innermost layer 7 of the sealant layer contains a random copolymer containing propylene as a copolymerization component and another copolymerization component other than propylene, a roughening material, and a lubricant. The roughening material is composed of particles containing a thermoplastic resin. The center line average roughness Ra of the surface 7a of the innermost layer 7 is 0.05 μm to 1 μm. It can provide a packaging material for a power storage device which is excellent in formability and hard to generate white powder on the surface. |
US10847761B2 |
Rectangular secondary battery and assembled battery using the rectangular secondary battery
A rectangular secondary battery includes a rectangular outer packaging body that has an opening; a sealing plate that seals the opening of the rectangular outer packaging body; and an electrode body that is arranged inside the rectangular outer packaging body and that includes a positive electrode plate and a negative electrode plate. A gas exhaust valve is formed at a center portion of the sealing plate in the longitudinal direction. In the longitudinal direction of the sealing plate, a first identification code is provided closer than the gas exhaust valve to one end portion of the sealing plate. In the longitudinal direction, a second identification code is provided closer than the gas exhaust valve to the other end portion of the sealing plate. The first identification code and the second identification code include identical information. |
US10847757B2 |
Carbon enabled vertical organic light emitting transistors
Devices, structures, materials and methods for carbon enabled vertical light emitting transistors (VLETs) and light emitting displays (LEDs) are provided. In particular, architectures for vertical polymer light emitting transistors (VPLETs) for active matrix organic light emitting displays (AMOLEDs) and AMOLEDs incorporating such VPLETs are described. Carbon electrodes (such as from graphene) alone or in combination with conjugated light emitting polymers (LEPs) and dielectric materials are utilized in forming organic light emitting transistors (OLETs). Combinations of thin films of ionic gels, LEDs, carbon electrodes and relevant substrates and gates are utilized to construct LETs, including heterojunction VOLETs. |
US10847755B2 |
Method for producing a display device, and display device
The invention relates to a method for producing a thin and substantially fracture-resistant display device comprising a display, wherein an upper layer having a surface facing an observer is arranged on light-emitting luminous surfaces of the display, wherein micro-passages for transmitting generated light from the light-emitting luminous surfaces of the display are formed in the upper layer and form micro-openings in the surface facing an observer, wherein a substantially planar surface facing the observer is created on the upper layer, and wherein creating the substantially planar surface comprises processing the surface of the display device facing the observer by means of a laser and/or by means of machining in order to produce the substantially planar surface. Furthermore, the invention relates to a display device. |
US10847750B2 |
Bendable display apparatus utilizing an organic layer
A display apparatus includes a substrate, a display layer on the substrate and including a plurality of display devices, and an encapsulation layer on the substrate and including a first inorganic layer, a second inorganic layer, and an organic layer between the first inorganic layer and the second inorganic layer, wherein the organic layer includes a first organic layer patterned to have a plurality of islands and a second organic layer filling gaps between the plurality of islands. |
US10847749B2 |
Lighting apparatus using organic light emitting diode
A lighting apparatus using an organic light emitting diode comprises a first anode and a second anode respectively disposed in an emission zone and a non-emission zone of an emission area defined at a substrate; a first insulating layer disposed on the second anode; an organic layer and a primary cathode disposed on the first anode; a secondary cathode disposed on the insulating layer and laterally connected to the primary cathode; and an encapsulating material disposed above the substrate, wherein the organic layer is disposed only between the primary cathode and the secondary cathode in the emission zone. |
US10847745B2 |
Light emitting display device with conductive protection layers that are apart from each other
An organic light emitting display device has a plurality of first electrodes, intermediate layers, and second electrodes that correspond to a plurality of pixel areas. The first electrodes are spaced from one another, the second electrodes are spaced from one another, and the intermediate layers are spaced from one another. A conductive protection layer is formed over the second electrodes, and a connection electrode layer is formed over the conductive protection layer and electrically connecting the second electrodes. |
US10847738B2 |
Nanocomposite coatings for perovskite solar cells and methods of making the same
An aspect of the present disclosure is a method that includes, in a first mixture that includes a metal alkoxide and water, reacting at least a portion of the metal alkoxide and at least a portion of the water to form a second mixture that includes a solid metal oxide phase dispersed in the second mixture, applying the second mixture onto a surface of a device that includes an intervening layer adjacent to a perovskite layer such that the intervening layer is between the second mixture and perovskite layer, and treating the second mixture, such that the solid metal oxide phase is transformed to a first solid metal oxide layer such that the intervening layer is positioned between the first solid metal oxide layer and the perovskite layer. |
US10847731B2 |
Organic light emitting diode device and manufacturing method thereof
Provided is an OLED device and a manufacturing method thereof. The OLED device includes: a flexible substrate having signal electrodes embedded on a surface of one side of the flexible substrate and a thin film transistor layer and a pixel unit layer prepared on a surface of the other side; both a first driving chip and a flexible circuit board are disposed on a back surface of the flexible substrate; signal traces in the thin film transistor layer and the pixel unit layer are connected to corresponding signal electrodes through vias, and the signal electrodes are connected to the first driving chip. |
US10847722B2 |
Buried low-resistance metal word lines for cross-point variable-resistance material memories
Variable-resistance material memories include a buried salicide word line disposed below a diode. Variable-resistance material memories include a metal spacer spaced apart and next to the diode. Processes include the formation of one of the buried salicide word line and the metal spacer. Devices include the variable-resistance material memories and one of the buried salicided word line and the spacer word line. |
US10847716B1 |
Method for manufacturing a phase change memory device having a second opening above a first opening in the dielectric layer
A phase change memory device includes a bottom electrode, a bottom memory layer, a top memory layer, and a top electrode. The bottom memory layer is over the bottom electrode. The bottom memory layer has a first height and includes a tapered portion and a neck portion. The tapered portion has a second height. A ratio of the second height to the first height is in a range of about 0.2 to about 0.5. The neck portion is between the tapered portion and the bottom electrode. The top memory layer is over the bottom memory layer. The tapered portion of the bottom memory layer tapers in a direction from the top memory layer toward the neck portion. The top electrode is over the top memory layer. |
US10847711B2 |
Methods of manufacturing integrated circuits using isotropic and anisotropic etching processes
A method of fabricating a magnetoresistive device includes etching a magnetoresistive stack using a first etching process to form one or more sidewalls, and etching the stack using a second etching process after forming the one or more sidewalls. Wherein, the second etching process may be relatively more isotropic than the first etching process. |
US10847709B1 |
Semiconductor device and method for fabricating the same
A semiconductor device includes: a magnetic tunneling junction (MTJ) on a substrate; a first inter-metal dielectric (IMD) layer around the MTJ; a metal interconnection on and directly contacting the MTJ; a second IMD layer on the first IMD layer and around the metal interconnection; and a metal oxide layer on the second IMD layer and around the metal interconnection. |
US10847703B2 |
Thermoelectric conversion element, thermoelectric conversion module, and electrical device
A thermoelectric conversion module includes a module main body having a length direction and a height direction which is perpendicular to the length direction. The module main body include a row of alternating first and second thermoelectric conversion elements each of which is elongated in the height direction and has upper and lower surfaces. First and second electrodes are connected to respective ones of the plurality of first and second thermoelectric conversion elements. An insulator covers both the upper and lower surfaces of the first and second thermoelectric conversion elements. A lower heat transfer plates is provided on the lower part of the insulator 13 and an upper heat transfer plate is provided on the upper part of the insulator. |
US10847701B2 |
Semi-flexible lighting module
Lighting modules and methods of manufacturing the same. The lighting module described herein may include a flexible printed circuit board substrate, light emitting diodes mounted on one side of the printed circuit board substrate, and thermally-conductive substrate plates opposite of the light emitting diodes to provide structural support and thermal management. |
US10847700B2 |
Package, light emitting device, method of manufacturing package, and method of manufacturing light emitting device
A package includes a first lead, a first molded body, a second lead, and a second molded body. The first lead includes a first portion which has a first recess portion or a first through hole passing through the first portion. The second lead is provided on the first lead to be bonded to the first lead such that a bonding side surface faces to the first lead. The second lead includes a second portion which overlaps with the first portion and which has a second recess portion on the bonding side surface or a second through hole passing through the second portion. The second recess portion communicates with the first through hole. The second through hole communicates with the first recess portion. The second molded body fills the first through hole and the second recess portion, or fills the first recess portion and the second through hole. |
US10847692B2 |
Foil structure with generation of visible light by means of LED technology
A foil structure with generation of visible light via LED technology has a carrier foil and an LED chip for generation of UV light. The LED chip is disposed on a first portion of the carrier foil and is provided with a light output face for emission of the UV light. The foil structure further has a color reaction layer for conversion of the UV light into the visible light, wherein the color reaction layer is disposed on a second portion of the carrier foil. The carrier foil is folded over in such a way that the second portion of the carrier foil is disposed above the first portion of the carrier foil and the color reaction layer is disposed above the LED chip or in a manner laterally offset relative to the LED chip. |
US10847690B2 |
LED package structure with phosphor encapsulant layer
An LED package structure with phosphor encapsulant layer includes an LED chip, a first encapsulant layer, and a second encapsulant layer; the first encapsulant layer covers the LED chip mixed with a first type phosphor having an excitation emission peak wavelength in a first wavelength range; the second encapsulant layer covers a first encapsulant layer mixed with a second type phosphor having an excitation emission peak wavelength in a second wavelength range. At least one of the first type phosphor and the second type phosphor is distributed in the corresponding first encapsulant layer or the corresponding second encapsulant layer in a state where the bottom concentration is higher than the top concentration. |
US10847683B2 |
Package and light emitting device
A package includes a first electrode and a second electrode that are located at a bottom portion of a bottomed recess, and a first resin securing the first electrode and the second electrode in place and forming a part of the bottomed recess. The first electrode has a first outer lead having a first indentation at a tip in a plan view. The second electrode has a second outer lead having a second indentation at a tip in a plan view. The first resin has at least a portion between the first electrode and the second electrode located at the bottom portion of the bottomed recess, wall portions structuring lateral walls of the bottomed recess, and flange portions having the same thickness as a thickness of the first outer lead and different outward widths from the wall portions on both sides of the first outer lead in a plan view. |
US10847682B2 |
Electrode structure of light emitting device
A light-emitting device, comprising: a substrate; a semiconductor stacking layer comprising a first type semiconductor layer on the substrate, an active layer on the first semiconductor layer, and a second semiconductor layer on the active layer; and an electrode structure on the second semiconductor layer, wherein the electrode structure comprises a bonding layer, a conductive layer, and a first barrier layer between the bonding layer and the conductive layer; wherein the conductive layer has higher standard oxidation potential than that of the bonding layer. |
US10847681B2 |
Method for manufacturing micro light emitting device by minimizing mask processes, and micro light emitting device
Provided are a micro LED and a method for manufacturing the same. When the micro LED is manufactured, an n-electrode and a protective layer formed on the micro LED is made of a variable resistance material that is a transparent material, and a voltage greater than a unique threshold voltage of the variable resistance material is applied to the variable resistance material on an area of the protective layer formed on the p-type semiconductor layer to form a conductive filament in the variable resistance material, thereby forming a transparent electrode. Thus, the micro LED according to the present invention may be produced with lower cost and higher productivity by omitting the mask process for forming the transparent electrode in the prior art. |
US10847679B2 |
Nitride semiconductor light emitting device, ultraviolet light emitting module
This invention provides a nitride semiconductor light emitting device in which current concentration is suppressed without excessively increasing resistance at a low cost without increasing a manufacturing process.The planar shape of a mesa portion configuring a nitride semiconductor light emitting device is a shape containing a convex-shaped tip portion 352b formed by a curved line or a plurality of straight lines and a base portion 352a continuous to the convex-shaped tip portion 352b, in which an obtuse angle is formed by adjacent two straight lines in the convex-shaped tip portion formed by the plurality of straight lines. The first electrode layer 4 has visible outlines 411 and 412 along a visible outline 302 of the mesa portion through a gap 9 in planar view. The relationship between a gap W1 in the convex-shaped tip portion 352b and a gap W2 in the base portion 352a is W1> W2. |
US10847673B2 |
Coupling a semiconductor component to a target substrate by transfer printing
The disclosure is related to a method for producing at least one semiconductor component coupled to a target substrate, where a coupon comprising one or more constituent layers of the at least one semiconductor component is transferred to the target substrate by transfer printing. The coupon is embedded in a portion of a support layer thereby forming an enlarged coupon provided with solid alignment markers on the underside thereof. Corresponding hollow alignment markers exist on the location of the target substrate where the coupon is to be placed. The alignment markers engage to thereby align the coupon to the target location. The disclosure is equally related to a device assembly obtainable by the method. |
US10847669B1 |
Photodetection element including photoelectric conversion structure and avalanche structure
A photodetection element includes: a photoelectric conversion structure that contains a first material having an absorption coefficient higher than an absorption coefficient of monocrystalline silicon for light of a first wavelength, for which monocrystalline silicon exhibits absorption, and generates positive and negative charges by absorbing a photon; and an avalanche structure that includes a monocrystalline silicon layer, in which avalanche multiplication occurs as a result of injection of at least one selected from the group consisting of the positive and negative charges from the photoelectric conversion structure. The first material includes at least one selected from the group consisting of an organic semiconductor, a semiconductor-type carbon nanotube, and a semiconductor quantum dot. |
US10847668B2 |
Avalanche photodiode
An avalanche photodiode includes a first-conductivity-type semiconductor layer; a first second-conductivity-type semiconductor layer; a second second-conductivity-type semiconductor layer; a third second-conductivity-type semiconductor layer; a fourth second-conductivity-type semiconductor layer; a fifth second-conductivity-type semiconductor layer.The first-conductivity-type semiconductor layer and the second second-conductivity-type semiconductor layer form an avalanche junction. The first and third second-conductivity-type semiconductor layers are electrically connected together via the fourth second-conductivity-type semiconductor layer such that the semiconductor substrate and the first-conductivity-type semiconductor layer are electrically isolated from each other. |
US10847667B2 |
Optoelectric devices comprising hybrid metamorphic buffer layers
In one aspect, semiconductor structures are described herein. A semiconductor structure, in some implementations, comprises a first semiconductor layer having a first bandgap and a first lattice constant and a second semiconductor layer having a second bandgap and a second lattice constant. The second lattice constant is lower than the first lattice constant. Additionally, a transparent metamorphic buffer layer is disposed between the first semiconductor layer and the second semiconductor layer. The buffer layer has a constant or substantially constant bandgap and a varying lattice constant. The varying lattice constant is matched to the first lattice constant adjacent the first semiconductor layer and matched to the second lattice constant adjacent the second semiconductor layer. The buffer layer comprises a first portion comprising AlyGazIn(1-y-z)As and a second portion comprising GaxIn(1-x)P. The first portion is adjacent the first semiconductor layer and the second portion is adjacent the second semiconductor layer. |
US10847664B2 |
Optical package and method of producing an optical package
An optical package is proposed comprising a carrier, an optoelectronic component, an aspheric lens, and a reflective layer. The carrier comprises electrical interconnections and the optoelectric component is arranged for emitting and/or detecting electromagnetic radiation in a specified wavelength range. Furthermore, the optoelectric component is mounted on the carrier or integrated into the carrier and electrically connected to the electric interconnections. The aspheric lens has an upper surface, a lateral surface, and a bottom surface and the bottom surface is arranged on or near the optoelectric component. The aspheric lens comprises a material which is at least transparent in the specified wavelength range. The reflective layer comprises a reflective material, wherein the reflective layer at least partly covers the lateral surface of the aspheric lens, and wherein the reflective material is at least partly reflective in the specified wavelength range. |
US10847662B2 |
Method of cleaning an exposed surface of a back contacted solar cell by depositing and removing a sacrificial layer
A method is provided for creating an interdigitated pattern for a back-contacted solar cell, including deposition of a first passivation layer stack including a-Si of a first doping type, patterning the first passivation layer stack by using a first dry etching process to create one or more regions including the a-Si of the first doping type and one or more exposed regions of the surface, cleaning the one or more exposed regions of the surface from contaminants remaining from the first dry etching process, and depositing a second passivation layer stack including a-Si of a second doping type different from the first doping type to create the interdigitated pattern together with the patterned first passivation layer stack. The cleaning may include depositing a sacrificial layer at least on the exposed regions of the surface, and removing the sacrificial layer by a second dry etching process, at a temperature not exceeding 250° C. |
US10847660B2 |
Trench semiconductor device having multiple active trench depths and method
A method of forming a semiconductor device includes providing a region of semiconductor material comprising a major surface. A termination trench is provided extending from a first portion of the major surface into the region of semiconductor material to a first depth and has a first width. A first active trench is provided extending from a second portion of the major surface into the region of semiconductor material to a second depth and has a second width less than the first width. A second active trench is provided extending from a third portion of the major surface into the region of semiconductor material to a third depth and has a third width less than the first width. A first conductive material is provided adjoining a fourth portion of the major surface, which is configured as a Schottky barrier. The selected trench depth difference alone or in combination with other features provides a semiconductor device having improved performance characteristics. |
US10847658B2 |
Fast recovery inverse diode
An inverse diode die has a high reverse breakdown voltage, a short reverse recovery time Trr, and is rugged in terms of reverse breakdown voltage stability over long term use in hard commutation applications. The die has an unusually lightly doped bottomside P type anode region and also has an N− type drift region above it. Both regions are of bulk wafer material. An N+ type contact region extends down into the drift region. A topside metal electrode is on the contact region. A P type silicon peripheral sidewall region laterally rings around the drift region. A topside passivation layer rings around the topside electrode. A bottomside metal electrode is on the bottom of the die. The die has a deep layer of hydrogen ions that extends through the N− drift region. The die also has a shallow layer of ions. Both ion layers are implanted from the bottomside. |
US10847656B2 |
Fabrication of non-planar IGZO devices for improved electrostatics
Embodiments of the invention include non-planar InGaZnO (IGZO) transistors and methods of forming such devices. In an embodiment, the IGZO transistor may include a substrate and source and drain regions formed over the substrate. According to an embodiment, an IGZO layer may be formed above the substrate and may be electrically coupled to the source region and the drain region. Further embodiments include a gate electrode that is separated from the IGZO layer by a gate dielectric. In an embodiment, the gate dielectric contacts more than one surface of the IGZO layer. In one embodiment, the IGZO transistor is a finfet transistor. In another embodiment the IGZO transistor is a nanowire or a nanoribbon transistor. Embodiments of the invention may also include a non-planar IGZO transistor that is formed in the back end of line stack (BEOL) of an integrated circuit chip. |
US10847655B2 |
Semiconductor device
A semiconductor device includes an oxide semiconductor layer above an insulating surface, a source electrode in contact with a side surface of the oxide semiconductor layer, a drain electrode in contact with a side surface of the oxide semiconductor layer, a gate insulating film above the oxide semiconductor layer, the source electrode, and the drain electrode, and, a gate electrode overlapping with the oxide semiconductor layer interposed by the gate insulating film. The gate electrode is arranged above and outside of the source electrode and the drain electrode. |
US10847654B2 |
Method to induce strain in 3-D microfabricated structures
Methods and structures for forming strained-channel finFETs are described. Fin structures for finFETs may be formed in two epitaxial layers that are grown over a bulk substrate. A first thin epitaxial layer may be cut and used to impart strain to an adjacent channel region of the finFET via elastic relaxation. The structures exhibit a preferred design range for increasing induced strain and uniformity of the strain over the fin height. |
US10847650B2 |
Semiconductor structure and associated fabricating method
A semiconductor structure is disclosed. The semiconductor structure includes: a substrate; an isolation region adjacent to the drain region; a gate electrode over the substrate and further downwardly extends into the substrate, wherein a portion of the gate electrode below a top surface of the substrate abuts the isolation region; and a source region and a drain region formed in the substrate on either side of the gate structure. An associated method for fabricating the semiconductor structure is also disclosed. |
US10847649B2 |
Semiconductor device
According to one embodiment, a semiconductor device includes first, second, and third semiconductor regions, first, second, and third electrodes, and a first insulating portion. The first semiconductor region includes first and second partial regions. A first direction from the second partial region toward the second semiconductor region crosses a second direction from the second region toward the first partial region. The third semiconductor region is provided between the second partial region and the second semiconductor region in the first direction. The first insulating portion includes a first insulating region provided between the third semiconductor region and the first electrode in the second direction, a second insulating region provided between the first partial region and the first electrode in the first direction, and a third insulating region provided between the first partial region and the first insulating region in the first direction. |
US10847648B2 |
Semiconductor device
According to one embodiment, a semiconductor device includes first and second electrodes, first, second, and third semiconductor regions, a gate electrode, first, and second conductive parts. The first semiconductor region includes a first region and a second region. The second semiconductor region is provided on the first region. The third semiconductor region is provided on the second semiconductor region. The second electrode is provided on the third semiconductor region. The gate electrode opposes the second semiconductor region in a second direction. The first conductive part is provided on the second region and is provided in a plurality in a third direction. The first conductive parts are arranged with the gate electrode in the second direction. The second conductive part is provided on the second region, and arranged with the gate electrode and the first conductive parts in the third direction. |
US10847646B2 |
Semiconductor device
According to one embodiment, a semiconductor device includes a first electrode, a first semiconductor region, a second semiconductor region, a third semiconductor region, a conductive portion, a gate electrode, and a second electrode. The second semiconductor region is provided on the first semiconductor region. The third semiconductor region is provided selectively on the second semiconductor region. The conductive portion is provided inside the first semiconductor region. The gate electrode is separated from the conductive portion in a first direction. The gate electrode includes a first portion and a second portion. The first portion is provided on the conductive portion. A lower surface of the first portion is positioned higher than a lower end of an interface between the second semiconductor region and the third semiconductor region. The second portion opposes the first semiconductor region, the second semiconductor region, and the third semiconductor region in a second direction. |
US10847645B2 |
Transistor structures having a deep recessed P+ junction and methods for making same
A transistor device having a deep recessed P+ junction is disclosed. The transistor device may comprise a gate and a source on an upper surface of the transistor device, and may include at least one doped well region, wherein the at least one doped well region has a first conductivity type that is different from a conductivity type of a source region within the transistor device and the at least one doped well region is recessed from the upper surface of the transistor device by a depth. The deep recessed P+ junction may be a deep recessed P+ implanted junction within a source contact area. The deep recessed P+ junction may be deeper than a termination structure in the transistor device. The transistor device may be a Silicon Carbide (SiC) MOSFET device. |
US10847639B2 |
Method and structure for forming dielectric isolated FinFET with improved source/drain epitaxy
Described herein is a FinFET device in which epitaxial layers of semiconductor material are formed in source/drain regions on fin portions. The fin portions can be located within a dielectric layer that is deposited on a semiconductor substrate. Surfaces of the fin portions can be oriented in the {100} lattice plane of the crystalline material of the fin portions, providing for good epitaxial growth. Further described are methods for forming the FinFET device. |
US10847638B2 |
Increasing source/drain dopant concentration to reduced resistance
A method includes recessing a semiconductor fin to form a recess, wherein the semiconductor fin protrudes higher than isolation regions on opposite sides of the semiconductor fin, and performing a first epitaxy to grow a first epitaxy layer extending into the recess. The first epitaxy is performed using a first process gas comprising a silicon-containing gas, silane, and a phosphorous-containing gas. The first epitaxy layer has a first phosphorous atomic percentage. The method further includes performing a second epitaxy to grow a second epitaxy layer extending into the recess and over the first epitaxy layer. The second epitaxy is performed using a second process gas comprising the silicon-containing gas, silane, and the phosphorous-containing gas. The second epitaxy layer has a second phosphorous atomic percentage higher than the first phosphorous atomic percentage. |
US10847635B2 |
Vertical integration scheme and circuit elements architecture for area scaling of semiconductor devices
Vertical integration schemes and circuit elements architectures for area scaling of semiconductor devices are described. In an example, an inverter structure includes a semiconductor fin separated vertically into an upper region and a lower region. A first plurality of gate structures is included for controlling the upper region of the semiconductor fin. A second plurality of gate structures is included for controlling the lower region of the semiconductor fin. The second plurality of gate structures has a conductivity type opposite the conductivity type of the first plurality of gate structures. |
US10847626B2 |
Stacked III-V semiconductor component
A stacked III-V semiconductor component having a p+ region with a top side, a bottom side, and a dopant concentration of 5·1018-5·1020 N/cm3, a first n− layer with a top side and a bottom side, a dopant concentration of 1012-1017 N/cm3, and a layer thickness of 10-300 μm, an n+ region with a top side, a bottom side, and a dopant concentration of at least 1018 N/cm3, wherein the p+ regions, the n− layer, and the n+ region follow one another in the stated order, are each formed monolithically, and each comprise a GaAs compound or consist of a GaAs compound, the n+ region or the p+ region is formed as the substrate layer, and the n− layer comprises chromium with a concentration of at least 1014 N/cm3 or at least 1015 N/cm3. |
US10847625B1 |
Indium-gallium-nitride structures and devices
InGaN layers characterized by an in-plane lattice constant within a range from 3.19 to 3.50 Å are disclosed. The InGaN layers are grown by coalescing InGaN grown on a plurality of GaN regions. The InGaN layers can be used to fabricate optical and electronic devices for use in light sources for illumination and display applications. |
US10847624B2 |
Methods and apparatus to form GaN-based transistors during back-end-of-the-line processing
Methods and apparatus to form GaN-based transistors during back-end-of-line processing are disclosed. An example integrated circuit includes a first transistor formed on a first semiconductor substrate. The example integrated circuit includes a dielectric material formed on the first semiconductor substrate. The dielectric material extends over the first transistor. The example integrated circuit further includes a second semiconductor substrate formed on the dielectric material. The example integrated circuit also includes a second transistor formed on the second semiconductor substrate. |
US10847622B2 |
Method of forming source/drain structure with first and second epitaxial layers
A field effect transistor includes a channel made of germanium and a source/drain portion. The source/drain portion includes a germanium layer, an interfacial epitaxial layer over the germanium layer, a semiconductor layer over the interfacial epitaxial layer, and a conducting layer over the semiconductor layer. The interfacial epitaxial layer contains germanium and an element from the semiconductor layer and has a thickness in a range from about 1 nm to about 3 nm. |
US10847616B2 |
Semiconductor device, method of manufacturing semiconductor device, and semiconductor package
A semiconductor device includes: semiconductor layer having first and second surfaces; first base region of first conductivity type formed in the semiconductor layer; second base region of second conductivity type adjacent to the first base region and formed in the semiconductor layer; first surface region of the second conductivity type selectively formed in the first base region; second surface region of the first conductivity type selectively formed in the second base region separate from the first base region; gate electrode facing portion of the first base region between boundary between the first and second base regions and the first surface region and portion of the second base region between the boundary and the second surface region, the gate electrode extending across the boundary; first and second electrodes connected to the first and second surface regions respectively; and third electrode connected in common to the first and second base regions. |
US10847611B2 |
Semiconductor device including patterns and layers having different helium concentrations and method of fabricating the same
A semiconductor device includes a substrate including a first active pattern and a second active pattern, a device isolation layer filling a first trench between the first and second active patterns, the device isolation layer including a silicon oxide layer doped with helium, a helium concentration of the device isolation layer being higher than a helium concentration of the first and second active patterns, and a gate electrode crossing the first and second active patterns. |
US10847608B2 |
Semiconductor device and method for manufacturing semiconductor device
A p anode layer is formed on one main surface of an n− drift layer. N+ cathode layer having an impurity concentration more than that of the n− drift layer is formed on the other main surface. An anode electrode is formed on the surface of the p anode layer. A cathode electrode is formed on the surface of the n+ cathode layer. N-type broad buffer region having a net doping concentration more than the bulk impurity concentration of a wafer and less than the n+ cathode layer and p anode layer is formed in the n− drift layer. Resistivity ρ0 of the n− drift layer satisfies 0.12V0≤ρ0≤0.25V0 with respect to rated voltage V0. Total amount of net doping concentration of the broad buffer region is equal to or more than 4.8×1011 atoms/cm2 and equal to or less than 1.0×1012 atoms/cm2. |
US10847605B2 |
Methods and apparatus for high voltage integrated circuit capacitors
High voltage integrated circuit capacitors are disclosed. In an example arrangement, A capacitor structure includes a semiconductor substrate; a bottom plate having a conductive layer overlying the semiconductor substrate; a capacitor dielectric layer deposited overlying at least a portion of the bottom plate and having a first thickness greater than about 6 um in a first region; a sloped transition region in the capacitor dielectric at an edge of the first region, the sloped transition region having an upper surface with a slope of greater than 5 degrees from a horizontal plane and extending from the first region to a second region of the capacitor dielectric layer having a second thickness lower than the first thickness; and a top plate conductor formed overlying at least a portion of the capacitor dielectric layer in the first region. Methods and additional apparatus arrangements are disclosed. |
US10847604B1 |
Systems and methods for providing capacitor structures in an integrated circuit
A capacitor includes a first metal layer over a substrate, a second metal layer over the first metal layer, and first and second cells. Each cell is electrically coupled to first and second buses. Each cell includes first plurality and second plurality of fingers in the first metal layer, and third plurality and fourth plurality of fingers in the second metal layer. The first plurality of fingers extend in a first direction parallel to a top surface of the substrate and are electrically coupled to the first bus. The second plurality of fingers extend in the first direction and are electrically coupled to the second bus. The third plurality of fingers extend in a second direction parallel to the top surface of the substrate and are electrically coupled to the first bus. The second direction is different from the first direction. The fourth plurality of fingers extend in the second direction and are electrically coupled to the second bus. |
US10847591B1 |
Display panel and manufacturing method thereof
A display panel according to an embodiment of the inventive concept includes a base substrate on which a pixel area and a surrounding area adjacent to the pixel area are defined, a pixel defining layer which is disposed on the base substrate and on which a plurality of openings corresponding to the pixel area are defined, and a plurality of light emitting layers disposed in the plurality of openings, respectively. Here, the pixel defining layer includes a first pixel defining portion, a second pixel defining portion disposed between the light emitting layers and the first pixel defining portion, and a third pixel defining portion that covers the first pixel defining portion and the second pixel defining portion and includes a spaced portion that exposes a portion of the first pixel defining portion. |
US10847586B2 |
Display device and method of fabricating the same
A display device may include a display panel including a base layer, in which a display area with a central area and an edge area enclosing the central area is provided, a pixel definition layer having an opening, and an encapsulation layer covering the base layer, and an anti-reflection member including a light-blocking portion overlapping the pixel definition layer and a color filter portion overlapping the opening. The encapsulation layer may include a first portion overlapping the central area and a second portion overlapping the edge area and connected to the first portion. The light-blocking portion may include a first light-blocking pattern disposed on the first portion and covered with the color filter portion and a second light-blocking pattern disposed on the second portion and on the color filter portion. |
US10847585B2 |
Organic light emitting display device including a sound generating apparatus
Embodiments of the present disclosure relate to an organic light emitting display device which directly vibrates an organic light emitting display panel to generate sound, and includes: an organic light emitting display panel including a light emitting layer including an organic light emitting material layer and an encapsulation layer disposed at one side of the light emitting layer; and a sound generating actuator in direct contact with the organic light emitting display panel to vibrate the organic light emitting display panel to generate sound. Especially, the organic light emitting display panel is a bottom emission type device, and thus can prevent generation of a weighted color mixing phenomenon in a wide viewing angle at the time of panel vibration and reduce the thickness or weight of the panel to thereby enhance the sound generation characteristic. |
US10847578B1 |
Three-dimensional resistive memories and methods for forming the same
A three-dimensional resistive memory is provided. The three-dimensional resistive memory includes a resistive switching pillar, an electrode pillar disposed within the resistive switching pillar, a stack of bit lines adjacent to the resistive switching pillar, a plurality of sidewall contacts between each of the bit lines and the resistive switching pillar, and a selector pillar extending through the stack of bit lines. The bit lines are separated vertically from each other by an insulating layer. The selector pillar contacts each of the sidewall contacts. |
US10847575B2 |
Method and related apparatus for improving memory cell performance in semiconductor-on-insulator technology
In some embodiments, a semiconductor device is provided. The semiconductor device includes a semiconductor substrate having a first semiconductor material layer separated from a second semiconductor material layer by an insulating layer. A first access transistor is arranged on the first semiconductor material layer, where the first access transistor has a pair of first source/drain regions having a first doping type. A second access transistor is arranged on the first semiconductor material layer, where the second access transistor has a pair of second source/drain regions having a second doping type opposite the first doping type. A resistive memory cell having a bottom electrode and an upper electrode is disposed over the semiconductor substrate, where one of the first source/drain regions and one of the second source/drain regions are electrically coupled to the bottom electrode. |
US10847574B2 |
Semiconductor memory device and fabrication method thereof
The disclosure provides a semiconductor memory device including a substrate having a memory cell region and an alignment mark region; a dielectric layer covering the memory cell region and the alignment mark region; conductive vias in the dielectric layer within the memory cell region; an alignment mark trench in the dielectric layer within the alignment mark region; and storage structures disposed on the conductive vias, respectively. Each of the storage structures includes a bottom electrode defined from a bottom electrode metal layer, a magnetic tunnel junction (MTJ) structure defined from an MTJ layer, and a top electrode. A residual metal stack is left in the alignment mark trench. The residual metal stack includes a portion of the bottom electrode metal layer and a portion of the MTJ layer. |
US10847564B1 |
Charge release layer to remove charge carriers from dielectric grid structures in image sensors
Various embodiments of the present disclosure are directed towards an image sensor including a charge release layer. A photodetector is disposed within a semiconductor substrate. An etch stop layer overlies the photodetector. A color filter overlies the etch stop layer. A dielectric grid structure surrounds the color filter. The charge release layer is sandwiched between the dielectric grid structure and the etch stop layer. The charge release layer surrounds the color filter and comprises a conductive material. The charge release layer directly contacts the color filter. |
US10847561B2 |
Solid-state imaging element and method for manufacturing the same, and electronic device
The present technology relates to a solid-state imaging element that is capable of suppressing occurrence of flares, ghosts, and color-mixing, and is capable of suppressing occurrence of stains caused by moisture and a method for manufacturing the same, and an electronic device. The solid-state imaging element includes a pixel in which a single-layered anti-reflective film is formed on a surface of a microlens and a pixel in which a double-layered anti-reflective film is formed on the surface of the microlens. For example, the present technology is applicable to a rear surface irradiation-type solid-state imaging element. |
US10847556B2 |
Solid-state imaging apparatus and imaging apparatus
A solid-state imaging apparatus includes a plurality of high-sensitivity pixels that are arranged in a matrix, and perform a photoelectric conversion at a predetermined sensitivity; a plurality of low-sensitivity pixels that are arranged in a matrix in gaps between the plurality of high-sensitivity pixels, and perform a photoelectric conversion at a lower sensitivity than the predetermined sensitivity; and a signal processor that generates a pixel signal by (i) detecting a difference signal between a signal from the plurality of high-sensitivity pixels and a signal from the plurality of low-sensitivity pixels, and (ii) correcting the signal from the plurality of high-sensitivity pixels using the difference signal. |
US10847553B2 |
Method of forming a multilayer structure for a pixelated display and a multilayer structure for a pixelated display
A method of forming a multilayer structure for a pixelated display and a multilayer structure for a pixelated display is provided. The method comprising providing a first wafer comprising first layers disposed over a first substrate, said first layers comprising non-silicon based semiconductor material for forming p-n junction LEDs (light emitting devices); providing a second partially processed wafer comprising silicon-based CMOS (Complementary Metal Oxide Semiconductor) devices formed in second layers disposed over a second substrate, said CMOS devices for controlling the LEDs; and bonding the first and second wafers to form a composite wafer via a double-bonding transfer process. |
US10847552B2 |
Electronic modulating device
An electronic modulating device is provided. The electronic modulating device includes a first modulating unit. The first modulating unit includes a first transistor including a channel arranged in an extending direction. The first modulating unit also includes a first modulating electrode electrically connected to the first transistor and arranged in a first longitudinal direction. The electronic modulating device also includes a second modulating unit. The second modulating unit includes a second transistor including a channel arranged in the extending direction. The second modulating unit also includes a second modulating electrode electrically connected to the second transistor and arranged in a second longitudinal direction that is different from the first longitudinal direction. The first included angle between the extending direction and the first longitudinal direction is different from a second included angle between the extending direction and the second longitudinal direction. |
US10847550B2 |
Semiconductor device and manufacturing method of the same
An insulating film provided between adjacent pixels is referred to as a bank, a partition, a barrier, an embankment or the like, and is provided above a source wiring or a drain wiring for a thin film transistor, or a power supply line. In particular, at an intersection portion of these wirings provided in different layers, a larger step is formed there than in other portions. Even when the insulating film provided between adjacent pixels is formed by a coating method, thin portions are problematically partially formed due to this step and the withstand pressure is reduced. In the present invention, a dummy material is arranged near the large step portion, particularly, around the intersection portion of wirings, so as to alleviate unevenness formed thereover. The upper wiring and the lower wiring are arranged in a misaligned manner so as not to align the end portions. |
US10847539B2 |
Three-dimensional memory devices having through stair contacts and methods for forming the same
Embodiments of three-dimensional (3D) memory devices having through stair contacts (TSCs) and methods for forming the same are disclosed. In an example, a method for forming a 3D memory device is disclosed. A dielectric stack including a plurality of interleaved dielectric layers and sacrificial layers is formed on a substrate. A staircase structure is formed on one side of the dielectric stack. A dummy hole extending vertically through the staircase structure and reaching the substrate is formed. A spacer having a hollow core is formed in the dummy hole. A TSC in contact with the substrate is formed by depositing a conductor layer in the hollow core of the spacer. The TSC extends vertically through the staircase structure. |
US10847538B2 |
Methods of forming an array of elevationally-extending strings of memory cells
A method of forming an array of elevationally-extending strings of memory cells comprises forming conductively-doped semiconductor material directly above and electrically coupled to metal material. A stack comprising vertically-alternating insulative tiers and wordline tiers is formed directly above the conductively-doped semiconductor material. Horizontally-elongated trenches are formed through the stack to the conductively-doped semiconductor material. The conductively-doped semiconductor material is oxidized through the trenches to form an oxide therefrom that is directly above the metal material. Transistor channel material is provided to extend elevationally along the alternating tiers. The wordline tiers are provided to comprise control-gate material having terminal ends corresponding to control-gate regions of individual memory cells. Charge-storage material is between the transistor channel material and the control-gate regions. Insulative charge-passage material is between the transistor channel material and the charge-storage material. A charge-blocking region is between the charge-storage material and individual of the control-gate regions. |
US10847534B2 |
Staircase structures for three-dimensional memory device double-sided routing
Embodiments of staircase structures for three-dimensional (3D) memory devices double-sided routing are disclosed. In an example, a 3D memory device includes a substrate, a memory stack disposed above the substrate and including conductor/dielectric layer pairs stacked alternatingly, and an array of memory strings each extending vertically through an inner region of the memory stack. An outer region of the memory stack includes a first staircase structure disposed on the substrate and a second staircase structure disposed above the first staircase structure. First edges of the conductor/dielectric layer pairs in the first staircase structure along a vertical direction away from the substrate are staggered laterally away from the array of memory strings. Second edges of the conductor/dielectric layer pairs in the second staircase structure along the vertical direction away from the substrate are staggered laterally toward the array of memory strings. |
US10847532B2 |
Joint opening structures of three-dimensional memory devices and methods for forming the same
Joint opening structures of 3D memory devices and fabricating method are provided. A joint opening structure comprises a first through hole penetrating a first stacked layer and a first insulating connection layer, a first channel structure at the bottom of the first through hole, a first functional layer on the sidewall of the first through hole, a second channel structure on the sidewall of the first functional layer, a third channel structure over the first through hole, a second stacked layer on the third channel structure, a second insulating connection layer on the second stacked layer, a second through hole penetrating the second stacked layer and the second insulating connection layer, a second functional layer disposed on the sidewall of the second through hole, a fourth channel structure on the sidewall of the second functional layer, and a fifth channel structure over the second through hole. |
US10847529B2 |
Substrate processing method and device manufactured by the same
Provided is a substrate processing method that may prevent the non-uniformity of the thickness of landing pads deposited on each step in the process of selectively depositing a landing pad in a vertical NAND device having a stepped structure. The substrate processing method includes stacking, a plurality of times, a stack structure including an insulating layer and a sacrificial layer and etching the stack structure to form a stepped structure having an upper surface, a lower surface, and a side surface connecting the upper surface and the lower surface. The method also includes forming a barrier layer on the stepped structure, forming a mask layer on the barrier layer and exposing at least a portion of the barrier layer by etching at least a portion of the mask layer with a first etching solution The method further includes etching the exposed barrier layer with a second etching solution and etching the mask layer with a third etching solution. |
US10847521B2 |
Layout pattern of a static random access memory
A layout pattern of a static random access memory (SRAM) preferably includes a first inverter and a second inverter. Preferably, the first inverter includes a first gate structure extending along a first direction on a substrate, in which the first gate structure includes a gate of a first pull-up device (PL1) and a gate of a first pull-down device (PD1). The second inverter includes a second gate structure extending along the first direction on the substrate, in which the second gate structure includes a gate of a second pull-up device (PL2) and a gate of a second pull-down device (PD2) and the gate of the PD1 is directly under the gate of the PD2. |
US10847519B2 |
Semiconductor device having low-k spacer and method for fabricating the same
A method for fabricating a semiconductor device includes forming a line structure including a first contact plug on a semiconductor substrate and a conductive line on the first contact plug, forming a low-k layer having a first low-k, which covers a top surface and side walls of the line structure, performing a converting process on the low-k layer to form a non-converting portion adjacent to side walls of the first contact plug and maintains the first low-k and a converting portion adjacent to side walls of the conductive line and having a second low-k that is lower than the first low-k, and forming a second contact plug which is adjacent to the first contact plug with the non-converting portion therebetween while being adjacent to the conductive line with the converting portion therebetween. |
US10847518B2 |
Semiconductor devices, memory dies and related methods
A semiconductor substrate is provided. Active areas and trench isolation regions are formed. The active areas extend along a first direction. Buried word lines extending along a second direction are formed in the semiconductor substrate. Two of the buried word lines intersect with each of the active areas, separating each of the active areas into a digit line contact area and two cell contact areas. Buried digit lines extending along a third direction are formed above the buried word lines. An upper portion of the trench isolation region is removed to form an L-shaped recessed area around each of the cell contact areas. The L-shaped recessed area exposes sidewalls of the cell contact areas. An epitaxial silicon growth process is then performed to grow an epitaxial silicon layer from the exposed sidewalls and a top surface of each of the cell contact areas, thereby forming enlarged cell contact areas. |
US10847517B2 |
Method for forming semiconductor device having a multi-thickness gate trench dielectric layer
A semiconductor device includes a semiconductor substrate having a gate trench including of an upper trench and a lower trench. The upper trench is wider than the lower trench. A gate is embedded in the gate trench. The gate includes an upper portion and a lower portion. A first gate dielectric layer is between the upper portion and a sidewall of the upper trench. The first gate dielectric layer has a first thickness. A second gate dielectric layer is between the lower portion and a sidewall of the lower trench and between the lower portion and a bottom surface of the lower trench. The second gate dielectric layer has a second thickness that is smaller than the first thickness. |
US10847515B2 |
Semiconductor devices with nanowires and methods for fabricating the same
A semiconductor device may include a substrate, a first nanowire, a second nanowire, a first gate insulating layer, a second gate insulating layer, a first metal layer and a second metal layer. The first gate insulating layer may be along a periphery of the first nanowire. The second gate insulating layer may be along a periphery of the second nanowire. The first metal layer may be on a top surface of the first gate insulating layer along the periphery of the first nanowire. The first metal layer may have a first crystal grain size. The second metal layer may be on a top surface of the second gate insulating layer along the periphery of the second nanowire. The second metal layer may have a second crystal grain size different from the first crystal grain size. |
US10847513B2 |
Buried interconnect conductor
Various examples of a buried interconnect line are disclosed herein. In an example, a device includes a fin disposed on a substrate. The fin includes an active device. A plurality of isolation features are disposed on the substrate and below the active device. An interconnect is disposed on the substrate and between the plurality of isolation features such that the interconnect is below a topmost surface of the plurality of isolation features. The interconnect is electrically coupled to the active device. In some such examples, a gate stack of the active device is disposed over a channel region of the active device and is electrically coupled to the interconnect. In some such examples, a source/drain contact is electrically coupled to a source/drain region of the active device, and the source/drain contact is electrically coupled to the interconnect. |
US10847511B2 |
Devices including control logic structures, electronic systems, and related methods
A semiconductor device includes a stack structure comprising decks. Each deck of the stack structure comprises a memory element level comprising memory elements and control logic level in electrical communication with the memory element level, the control logic level comprising a first subdeck structure comprising a first number of transistors comprising a P-type channel region or an N-type channel region and a second subdeck structure comprising a second number of transistors comprising the other of the P-type channel region or the N-type channel region overlying the first subdeck structure. Related semiconductor devices and methods of forming the semiconductor devices are disclosed. |
US10847505B2 |
Multi-chip semiconductor package
A semiconductor package includes a first die; a first redistribution structure over the first die, the first redistribution structure being conterminous with the first die; a second die over the first die, a first portion of the first die extending beyond a lateral extent of the second die; a conductive pillar over the first portion of the first die and laterally adjacent to the second die, the conductive pillar electrically coupled to first die; a molding material around the first die, the second die, and the conductive pillar; and a second redistribution structure over the molding material, the second redistribution structure electrically coupled to the conductive pillar and the second die. |
US10847503B2 |
Optoelectronic component and method for producing an optoelectronic component
The invention relates to an optoelectronic component comprising at least one optoelectronic semiconductor chip which is designed to generate or detect electromagnetic radiation, a carrier on which the semiconductor chip is arranged, a first encapsulation body into which the optoelectronic semiconductor chip is embedded, and a second encapsulation body, wherein the first encapsulation body has a first thickness above the semiconductor chip and has a second thickness laterally spaced from the semiconductor chip, the first thickness is less than the second thickness, a third thickness of the first encapsulation body between the first thickness and the second thickness is minimal, and the second encapsulation body is arranged on the first encapsulation body. |
US10847499B2 |
Stacking integrated circuits containing serializer and deserializer blocks using through via
Methods and systems for stacking multiple chips with high speed serializer/deserializer blocks are presented. These methods make use of Through Via (TV) to connect the dice to each other, and to the external pads. |
US10847496B2 |
Chip wiring method and structure
A chip connection method and structure are provided. The method includes: providing a first connection line and a second connection line on a substrate, wherein, in the thickness direction of the substrate, a distance between the first connection line and the chip is smaller than a distance between the second connection line and the chip; providing the chip on a top surface of the substrate, the chip being provided with at least two chip pins; and providing the substrate with a second through hole corresponding to the second connecting line and provided therein with a second conductive layer, at least one chip pin being electrically connected to the first connection line, and at least one of the remaining chip pin being corresponding to a first opening of the second through, and the second conductive layer electrically connecting the chip pin and the second connection line. |
US10847493B2 |
Bump-on-trace interconnect
Disclosed herein is a bump-on-trace interconnect with a wetted trace sidewall and a method for fabricating the same. A first substrate having conductive bump with solder applied is mounted to a second substrate with a trace disposed thereon by reflowing the solder on the bump so that the solder wets at least one sidewall of the trace, with the solder optionally wetting between at least half and all of the height of the trace sidewall. A plurality of traces and bumps may also be disposed on the first substrate and second substrate with a bump pitch of less than about 100 μm, and volume of solder for application to the bump calculated based on at least one of a joint gap distance, desired solder joint width, predetermined solder joint separation, bump geometry, trace geometry, minimum trace sidewall wetting region height and trace separation distance. |
US10847488B2 |
Semiconductor package having multi-tier bonding wires and components directly mounted on the multi-tier bonding wires
A semiconductor package includes a carrier substrate having a top surface, a semiconductor die mounted on the top surface, a plurality of bonding wires connecting an active surface of the semiconductor die to the top surface of the carrier substrate, an insulating material encapsulating the plurality of bonding wires, a component mounted on the insulating material, and a molding compound covering the top surface of the carrier substrate and encapsulating the semiconductor die, the plurality of bonding wires, the component and the insulating material. |
US10847487B2 |
Anisotropic electrically conductive film and connection structure
An anisotropic electrically conductive film includes electrically conductive particles disposed in an electrically insulating adhesive layer. The particles are arranged at a predetermined pitch along first axes, arranged side by side, and are substantially spherical. The particle pitch at the first axes and the axis pitch of the first axes are both greater than or equal to 1.5D, D being an average particle diameter of the particles. Directions of all sides of a triangle formed by a particle (P0), which is one of the electrically conductive particles at one of the first axes, an electrically conductive particle (P1), which is at the one of the first axes and adjacent to the particle (P0), and an electrically conductive particle (P2), which is at another one of the first axes that is adjacent to the one of the first axes, are oblique to a film width direction of the conductive film. |
US10847478B2 |
Method of forming an electronic device structure having an electronic component with an on-edge orientation and related structures
A method of forming an electronic device structure includes providing an electronic component having a first major surface, an opposing second major surface, a first edge surface, and an opposing second edge surface. A substrate having a substrate first major surface and an opposing substrate second major surface is provided. The second major surface of the first electronic component is placed proximate to the substrate first major surface and providing a conductive material adjacent the first edge surface of the first electronic component. The conductive material is exposed to an elevated temperature to reflow the conductive material to raise the first electronic component into an upright position such that the second edge surface is spaced further away from the substrate first major surface than the first edge surface. The method is suitable for providing electronic components, such as antenna, sensors, or optical devices in a vertical or on-edge. |
US10847475B2 |
Advanced crack stop structure
An integrated circuit (IC) structure includes an active area of the IC structure insulator positioned over a substrate. The active area includes an interconnection structure comprised of a first plurality of levels. Each of the interconnect structure levels including an interlayer dielectric (ILD) layer, a barrier layer disposed over the ILD and a conductor metal layer over the barrier layer. The structure also includes a crack stop area which includes a crack stop structure having a second plurality of levels. The interconnect and crack stop structures have an equal number of levels. A third plurality of the crack stop structure levels include a high modulus layer unique to the respective crack stop structure level as compared to the corresponding interconnect structure level. |
US10847466B2 |
Field-effect transistor, method of manufacturing the same, and radio-frequency device
There is provided a field-effect transistor including: a gate electrode; a semiconductor layer having a source region and a drain region with the gate electrode in between; contact plugs provided on the source region and the drain region; first metals stacked on the contact plugs; and a low-dielectric constant region provided in a region between the first metals along an in-plane direction of the semiconductor layer and provided at least in a first region below bottom surfaces of the first metals along a stacking direction. |
US10847458B1 |
BEOL electrical fuse and method of forming the same
A BEOL eFuse is provided that includes a fuse element-containing layer having an entirely planar topmost surface. An upper portion of the fuse element-containing layer including the entirely planar topmost surface is present above a topmost surface of a second interconnect dielectric material layer, and a lower portion of the fuse-element containing layer is present in an opening that is formed in the second interconnect dielectric material layer and has a surface that contacts a first electrode structure that is partially embedded in a first interconnect dielectric material layer which underlies the second interconnect dielectric material layer. A second electrode structure that is present in a third interconnect dielectric material layer that overlies the second interconnect dielectric material layer contacts a portion of the planar topmost surface of the fuse-element-containing layer. |
US10847457B2 |
Semiconductor device and method
A structure and method for the formation and use of fuses within a semiconductor device is provided. The fuses may be formed within the third metal layer and are formed so as to be arranged perpendicularly to active devices located on an underlying semiconductor substrate. Additionally, the fuses within the third metal layer may be formed thicker than an underlying second metal layer. |
US10847455B2 |
Power module and power device
A power module and a power device having the power module are disclosed. The power device includes a main board. The power module is inserted in the main board and includes a PCB, a magnetic element, a primary winding circuit and at least one secondary winding circuit. The magnetic element is provided on the PCB and includes a core structure, a primary winding and at least one secondary winding. The core structure has a first side and a second side opposite to each other, and a third side and a fourth side opposite to each other. The primary winding circuit is provided on the PCB and positioned in the vicinity of the first or second side of the core structure. The secondary winding circuit is provided on the PCB and positioned in the vicinity of the third or fourth side of the core structure. |
US10847451B2 |
Device for mounting semiconductor element, lead frame, and substrate for mounting semiconductor element
A device for mounting a semiconductor element includes a metal plate serving as a base, a roughened silver plating layer with acicular projections, formed on at least either of: (a) top faces; and (b) faces that form concavities or through holes between the top faces and bottom faces; of the metal plate, and a reinforcing plating layer covering, as an outermost plating layer, an outer surface of the acicular projections in the roughened silver plating layer. The roughened silver plating layer has a crystal structure in which the crystal direction <101> occupies a largest proportion among the crystal directions <001>, <111>, and <101>. An outer surface of the reinforcing plating layer is shaped to have acicular projections with a surface area ratio of 1.30 or more and 6.00 or less to the corresponding smooth surface, as inheriting the shape of the acicular projections in the roughened silver plating layer. |
US10847448B2 |
Semiconductor device and method of manufacturing the same
A semiconductor device includes a semiconductor element, a first conductor bonded to an upper surface of the semiconductor element via a first solder layer, and a second conductor bonded to an upper surface of the first conductor via a second solder layer. The first conductor includes at least one groove formed in a stacking direction of the semiconductor element, the first conductor, and the second conductor on a side surface adjacent to the upper surface of the first conductor. |
US10847447B2 |
Semiconductor device having planarized passivation layer and method of fabricating the same
A semiconductor device includes a semiconductor substrate divided into a pad region and a cell region and having an active surface and an inactive surface opposite to the active surface, a plurality of metal lines on the active surface of the semiconductor substrate, passivation layers on the active surface of the semiconductor substrate, and a plurality of bumps in the cell region. The passivation layers include a first passivation layer covering the plurality of metal lines and having a non-planarized top surface along an arrangement profile of the plurality of metal lines, and a second passivation layer on the non-planarized top surface of the first passivation layer and having a planarized top surface on which the plurality of bumps are disposed. |
US10847446B2 |
Construction of integrated circuitry and a method of forming an elevationally-elongated conductive via to a diffusion region in semiconductive material
A construction of integrated circuitry comprises a trench isolation region in semiconductive material. The trench isolation region comprises laterally-opposing laterally-outermost first regions which comprise a first material and a second region laterally-inward of the first regions. The second region comprises a second material of different composition from that of the first material. A diffusion region is in the uppermost portion of the semiconductive material directly against a sidewall of one of the first regions. Insulator material is above the trench isolation region and the diffusion region. An elevationally-elongated conductive via is in the insulator material and extends to the diffusion region and the trench isolation region. The conductive via laterally overlaps the diffusion region and the one first region. The conductive via is directly against a top surface of the diffusion region, is directly against an upper portion of a sidewall of the diffusion region, and is directly against a laterally-outer sidewall of the second material of the second region of the trench isolation material. Other embodiments, including method, are disclosed. |
US10847443B2 |
Front-to-back bonding with through-substrate via (TSV)
Methods for forming a semiconductor device structure are provided. The method includes bonding a first wafer and a second wafer, and a first transistor is formed in a front-side of the first semiconductor wafer. The method further includes thinning a front-side of the second wafer and forming a second transistor in the front-side of the second wafer. |
US10847442B2 |
Interconnect assemblies with through-silicon vias and stress-relief features
A semiconductor device in accordance with some embodiments includes a substrate structure and a conductive interconnect extending through at least a portion of the substrate structure. The conductive interconnect can include a through-silicon via and a stress-relief feature that accommodates thermal expansion and/or thermal contraction of material to manage internal stresses in the semiconductor device. Methods of manufacturing the semiconductor device in accordance with some embodiments includes removing material of the conductive interconnect to form the stress-relief gap. |
US10847438B2 |
Bonding sheet and manufacturing method thereof, and heat dissipation mechanism and manufacturing method thereof
A CNT-metal composite structure is formed by forming a plurality of CNTs which stand side by side from a base substance, forming a sheet-shaped support film which covers upper ends of the CNTs, and filling gaps each present between adjacent ones of the CNTs with a metal. By this structure, highly reliable bonding sheet and heat dissipation mechanism which are very excellent in heat dissipation efficiency, and manufacturing methods of these are realized. |
US10847437B2 |
Semiconductor device
An object is to provide a technique capable of increasing a heat radiation property in radiating a heat generated in a shunt resistance. A semiconductor device includes: a container body having a space with an opening; a semiconductor chip, a shunt resistance, and a circuit pattern disposed in the space in the container body; a partition member; a first cover; and a second cover. The partition member separates the space in the container body into a first space and a second space. The first cover covers a part of the opening corresponding to the first space, and the second cover covers a part of the opening corresponding to the second space. At least one hole through which the second space and outside of the container body are communicated with each other is formed in the second cover or by the second cover. |
US10847430B2 |
Method of feature exaction from time-series of spectra to control endpoint of process
Methods and systems for using a time-series of spectra to identify endpoint of an etch process. One method includes accessing a virtual carpet that is generated from a time-series of spectra for an etch process. A polynomial with coefficients represents the virtual carpet. The method includes processing a fabrication etch process on a fabrication wafer and generating a carpet defined from a time-series of spectra while processing the fabrication etch process. While the processing the fabrication etch process and generating the carpet, comparing portions of the carpet and the virtual carpet to identify an endpoint metric of the fabrication etch process. |
US10847426B2 |
FinFET devices and methods of forming the same
Provided are FinFET devices and methods of forming the same. A FinFET device includes a substrate, a first gate strip and a second gate strip. The substrate has at least one first fin in a first region, at least one second fin in a second region and an isolation layer covering lower portions of the first and second fins. The first fin includes a first material layer and a second material layer over the first material layer, and the interface between the first material layer and the second material layer is uneven. The first gate strip is disposed across the first fin. The second gate strip is disposed across the second fin. |
US10847418B2 |
Formation method of damascene structure
A method for forming a semiconductor device is provided. The method includes forming a first dielectric layer over a semiconductor substrate and forming a first conductive feature extending into the first dielectric layer. The first conductive feature has a planar top surface. The method also includes forming a second dielectric layer over the first conductive feature. The method further includes forming a hole in the second dielectric layer to expose the planar top surface of the first conductive feature. In addition, the method includes partially removing the first conductive feature from the planar top surface of the first conductive feature to form a curved surface of the first conductive feature. The method further includes forming a second conductive feature to fill the hole after the curved surface of the first conductive feature is formed. |
US10847417B1 |
Methods of forming interconnect structures in semiconductor fabrication
A method includes forming a first conductive feature and a second conductive feature adjacent the first conductive feature in a first dielectric layer, where the first dielectric layer includes a first dielectric material, and forming a dielectric feature in the first dielectric layer, where the dielectric feature contacts sidewalls of the first and the second conductive features and where the dielectric feature includes a second dielectric material different from the first dielectric material. The method further includes forming a second dielectric layer over the first dielectric layer, where the second dielectric layer includes a third dielectric material different from the second dielectric material, and forming a third conductive feature in the second dielectric layer, where the third conductive feature contacts a sidewall of the dielectric feature and either a top surface of the first conductive feature or a top surface of the second conductive feature. |
US10847415B2 |
Self-aligned gate contact
The disclosed technology generally relates to semiconductor devices, and more specifically to electrical contacts to a transistor device, and a method of making such electrical contacts. In one aspect, a method of forming one or more self-aligned gate contacts in a semiconductor device includes providing a substrate having formed thereon at least one gate stack, where the gate stack includes a gate dielectric and a gate electrode formed over an active region in or on the substrate, and where the substrate further has formed thereon a spacer material coating lateral sides of the at least one gate stack. The method additionally includes selectively recessing the gate electrode of the at least one gate stack against the spacer material, thereby creating a first set of recess cavities. The method additionally includes filling the first set of recess cavities with a dielectric material gate cap. The method additionally includes etching at least one via above the at least one gate stack and through the dielectric material gate cap, where etching the at least one via comprises selectively etching against the spacer material, thereby exposing the gate electrode. The method further includes forming, in the at least one via, a gate contact electrically connecting the gate electrode. |
US10847413B2 |
Method of forming contact plugs for semiconductor device
A semiconductor device and a method of forming the same are provided. A method includes forming a gate over a semiconductor structure. An epitaxial source/drain region is formed adjacent the gate. A dielectric layer is formed over the epitaxial source/drain region. An opening extending through the dielectric layer and exposing the epitaxial source/drain region is formed. A conductive material is non-conformally deposited in the opening. The conductive material fills the opening in a bottom-up manner. |
US10847411B2 |
Conductive feature formation and structure
Generally, the present disclosure provides example embodiments relating to conductive features, such as metal contacts, vias, lines, etc., and methods for forming those conductive features. In an embodiment, a structure includes a first dielectric layer over a substrate, a first conductive feature in the first dielectric layer, a second dielectric layer over the first dielectric layer, a second conductive feature in the second dielectric layer, and a blocking region disposed between the first conductive feature and the second conductive feature. The second conductive feature is disposed between and abutting a first sidewall of the second dielectric layer and a second sidewall of the second dielectric layer. The blocking region extends laterally at least from the first sidewall of the second dielectric layer to the second sidewall of the second dielectric layer. |
US10847406B2 |
Method for manufacturing a display device
An apparatus for manufacturing a display device includes a first jig including a first side, the first side having a concave groove for receiving a cover window, wherein the cover window includes a first planar portion, a first curved portion and a second curved portion, wherein the first and second curved portions are disposed at opposite ends of the first planar portion in a first direction, a second jig including a planar side for receiving a display panel, wherein when the second jig is moved in a second direction crossing the first direction with the display panel on the planar side, the display panel is disposed between the first and second curved portions of the cover window, and a pair of third jigs for supporting the first and second curved portions of the cover window. |
US10847405B2 |
Method for manufacturing semiconductor device
A semiconductor device manufacturing method includes: (A) orienting an upper surface of a semiconductor element which has the upper surface and a suction surface of a collet which has a suction hole so that the upper surface of the semiconductor device and the suction surface of the collet face each other, the upper surface including a first region and a second region, the second region lying higher than the first region; (B) bringing the suction surface of the collet into contact with a part of the second region of the semiconductor element; and (C) picking up the semiconductor element using the collet while the collet sucks in air between the first region and the suction surface via the suction hole, wherein in (B), an entirety of an uppermost surface of the second region is in contact with a region of the suction surface exclusive of the suction hole. |
US10847402B2 |
Bond protection around porous plugs
A method and structure for a bonding layer are disclosed. The bonding structure includes a first portion surrounding an opening in a body defining a dam thereabout. A second portion surrounds the first portion. The first portion is formed from a material resistant to degradation from exposure to a process gas. The second portion is formed from a different material than the material of the first portion. The first portion further includes one or more additives to change properties thereof. |
US10847401B2 |
Wafer holding apparatus and baseplate structure
A wafer holding apparatus includes an electrostatic chuck configured to clamp an object, a baseplate made of aluminum and configured to support the electrostatic chuck, a water pathway portion disposed in contact with or inside the baseplate and made of a metal having higher corrosion resistance than aluminum, and a water pathway disposed inside the water pathway portion and having an entire wall surface thereof constituted by the water pathway portion, wherein the baseplate and the water pathway portion are directly bonded to each other. |
US10847399B2 |
Movable structure and film forming apparatus
A movable structure includes a processing chamber configured to perform processing under a vacuum environment; a fixed portion disposed in the processing chamber; a movable portion that is movable with respect to the fixed portion; a transmission/reception module provided at the fixed portion and having a hermetically sealed structure; and a sensor module provided at the movable portion and having a hermetically sealed structure. The transmission/reception module and the sensor module perform transmission and reception of signals in a non-contact manner. |
US10847394B2 |
Wafer container with a seal
A wafer container includes a container body and a door. The container body has a pair of upright side walls, a top wall, a bottom wall and a rear wall cooperatively defining a container space with a front access opening. The door is removably engaged with the container body to close and seal the front access opening, and includes a front door panel, a rear door panel, and sealing means which is disposed at a periphery of the front door panel and configured to seal the gap between the door and the container body when the door is engaged with the container body to close the front access opening. |
US10847393B2 |
Method and apparatus for measuring process kit centering
Embodiments disclosed herein include a sensor wafer. In an embodiment, the sensor wafer comprises a substrate, wherein the substrate comprises a first surface, a second surface opposite the first surface, and an edge surface between the first surface and the second surface. In an embodiment, the sensor wafer further comprises a plurality of sensor regions formed along the edge surface, wherein each sensor region comprises a self-referencing capacitive sensor. |
US10847389B2 |
Systems and methods for annealing semiconductor structures
Systems and methods are provided for annealing a semiconductor structure. In one embodiment, the method includes providing an energy-converting structure proximate a semiconductor structure, the energy-converting structure comprising a material having a loss tangent larger than that of the semiconductor structure; providing a heat reflecting structure between the semiconductor structure and the energy-converting structure; and providing microwave radiation to the energy-converting structure and the semiconductor structure. The semiconductor structure may include at least one material selected from the group consisting of boron-doped silicon germanium, silicon phosphide, titanium, nickel, silicon nitride, silicon dioxide, silicon carbide, n-type doped silicon, and aluminum capped silicon carbide. The heat reflecting structure may include a material substantially transparent to microwave radiation and having substantial reflectivity with respect to infrared radiation. |
US10847386B2 |
Method of forming a bulk article and semiconductor chamber apparatus from yttrium oxide and zirconium oxide
Disclosed herein is a ceramic article or coating useful in semiconductor processing, which is resistant to erosion by halogen-containing plasmas. The ceramic article or coating is formed from a combination of yttrium oxide and zirconium oxide. |
US10847377B2 |
Method of achieving high selectivity for high aspect ratio dielectric etch
Various embodiments herein relate to methods and apparatus for etching a feature in a substrate. Often, the feature is etched in the context of forming a DRAM device. The feature is etched in dielectric material, which often includes silicon oxide. The feature is etched using chemistry that includes WF6. Although WF6 is commonly used as a deposition gas (e.g., to deposit tungsten-containing film), it can also be used during etching. Advantageously, the inclusion of WF6 in the etch chemistry can increase the etch rate of the dielectric material, as well as increase the selectivity of the etch. Unexpectedly, these benefits can be realized without any increase in capping. |
US10847368B2 |
EUV resist patterning using pulsed plasma
A coating layer is deposited on a patterned feature on a first portion of a substrate. A second portion of the substrate outside the patterned feature is etched. The etching and the depositing are performed in a single pulsed plasma process using at least one of a pulsed source power signal and a pulsed bias power signal. |
US10847364B2 |
Laminated body and semiconductor device
A laminated body of an embodiment includes: a silicon layer; a first beryllium oxide layer on the silicon layer; and a diamond semiconductor layer on the first beryllium oxide layer. |
US10847363B2 |
Method of selective deposition for forming fully self-aligned vias
Methods are provided for selective film deposition. One method includes providing a substrate containing a dielectric material and a metal layer, the metal layer having an oxidized metal layer thereon, coating the substrate with a metal-containing catalyst layer, treating the substrate with an alcohol solution that removes the oxidized metal layer from the metal layer along with the metal-containing catalyst layer on the oxidized metal layer, and exposing the substrate to a process gas containing a silanol gas for a time period that selectively deposits a SiO2 film on the metal-containing catalyst layer on the dielectric material. |
US10847357B2 |
Structured biological samples for analysis by mass cytometry
Apparatus and methods for delivering biological samples to an ICP source of a mass cytometer are disclosed. Biological material is disposed on a plurality of discrete sites on a carrier. The plurality of discrete sites are configured to retain biological material and to release the biological material upon application of energy. The carrier is positioned in proximity to a gas conduit and upon release from the discrete sites, the biological material becomes entrained in a gas flow, which delivers discrete portions of biological material through the conduit to the ICP source for analysis by mass cytometry. The apparatus and methods can provide a continuous stream of discrete portions of biological material to a mass cytometer or mass spectrometer. |
US10847354B2 |
Rapid authentication using surface desorption ionization and mass spectrometry
The present disclosure relates generally to rapid authentication methods using surface desorption ionization and mass spectrometry detection. In particular, the disclosure relates to rapid methods of authentication of commercial or consumer products using portable, low cost ambient ionization and a single quadrupole mass spectrometer. |
US10847351B2 |
Plasma chamber with tandem processing regions
A method and apparatus for processing substrates in tandem processing regions of a plasma chamber is provided. In one example, the apparatus is embodied as a plasma chamber that includes a chamber body having a first chamber side with a first processing region and a second chamber side with a second processing region. The chamber body has a front wall and a bottom wall. A first chamber side port, a second chamber side port, and a vacuum port are disposed through the bottom wall. The vacuum port is at least part of an exhaust path for each of the processing regions. A vacuum house extends from the front wall and defines a second portion of the vacuum port. A substrate support is disposed in each of the processing regions, and a stem is coupled to each substrate support. Each stem extends through a chamber side port. |
US10847350B2 |
Heat treatment apparatus
A heat treatment apparatus includes: a rotation table installed in a vacuum container, the rotation table mounting a substrate in a mounting area formed in one surface side of the rotation table and revolving the substrate; a heater that heats the rotation table; a plasma processing part that generates a plasma in a plasma generation region, which is formed in the one surface side of the rotation table at a region through which the substrate passes, and processes the substrate; a temperature measurement terminal installed in the rotation table at a region, which passes through a position facing the plasma generation region when the rotation table is rotated, the temperature measurement terminal outputting a temperature measurement result of the rotation table as an electric signal; and a conductive plasma shield part installed to cover the temperature measurement terminal when viewed from the plasma generation region. |
US10847349B2 |
Moving focus ring for plasma etcher
A semiconductor manufacturing method and semiconductor manufacturing tool for performing the same are disclosed. The semiconductor manufacturing tool includes a plasma chamber, a mounting platform disposed within the plasma chamber, a focus ring disposed within the plasma chamber, and at least one actuator mechanically coupled to the focus ring and configured to move the focus ring vertically. The actuator is configured to move the focus ring vertically when a plasma is present in the plasma chamber. |
US10847346B2 |
High voltage resistive output stage circuit
Some embodiments include a high voltage, high frequency switching circuit. The switching circuit may include a high voltage switching power supply that produces pulses having a voltage greater than 1 kV and with frequencies greater than 10 kHz and an output. The switching circuit may also include a resistive output stage electrically coupled in parallel with the output and between the output stage and the high voltage switching power supply, the resistive output stage comprising at least one resistor that discharges a load coupled with the output. In some embodiments, the resistive output stage may be configured to discharge over about 1 kilowatt of average power during each pulse cycle. In some embodiments, the output can produce a high voltage pulse having a voltage greater than 1 kV and with frequencies greater than 10 kHz with a pulse fall time less than about 400 ns. |
US10847339B2 |
Hydrogen generator for an ion implanter
A terminal for an ion implantation system is provided, wherein the terminal has a terminal housing for supporting an ion source configured to form an ion beam. A gas box within the terminal housing has a hydrogen generator configured to produce hydrogen gas for the ion source. The gas box is electrically insulated from the terminal housing, and is further electrically coupled to the ion source. The ion source and gas box are electrically isolated from the terminal housing by a plurality of electrical insulators. A plurality of insulating standoffs electrically isolate the terminal housing from an earth ground. A terminal power supply electrically biases the terminal housing to a terminal potential with respect to the earth ground. An ion source power supply electrically biases the ion source to an ion source potential with respect to the terminal potential. Electrically conductive tubing electrically couples the gas box and ion source. |
US10847337B2 |
Side inject designs for improved radical concentrations
In one example, a chamber inlet assembly includes a chamber inlet, an outer coupling for a delivery line, and an inner coupling for a processing region of a processing chamber. The inner coupling and the outer coupling are on inner and outer ends, respectively, of the chamber inlet, wherein a cross-sectional area of the inner coupling is larger than a cross-sectional area of the outer coupling. The chamber inlet assembly also includes a longitudinal profile including the inner and outer ends and a first side and a second side, the first and second sides being on opposite sides of the chamber inlet, wherein a shape of the longitudinal profile comprises at least one of triangular, modified triangular, trapezoidal, modified trapezoidal, rectangular, modified rectangular, rhomboidal, and modified rhomboidal. The chamber inlet assembly also includes cassette including the chamber inlet and configured to set into a side wall of the processing chamber. |
US10847333B2 |
Circuit breakers including dual triggering devices and methods of operating same
A circuit breaker includes a first electrical contact and a second electrical contact moveable between an open state and a closed state; an armature, wherein movement of the armature from a first position to a second position initiates the first electrical contact and the second electrical contact to move from the closed state to the open state; a first electromagnetic device configured to move the armature from the first position to the second position in response to being energized by a first signal; and a second electromagnetic device configured to move the armature from the first position to the second position in response to being energized by a second signal and in response to generation of the first signal and the first electrical contact and the second electrical contact still being in the closed state. Other circuit breakers and methods of operating circuit breakers are disclosed. |
US10847325B2 |
Advanced dielectric energy storage device and method of fabrication
A Dense Energy Ultra Cell (DEUC), a dielectric energy storage device and methods of fabrication therefor are provided. A DEUC element is fabricated using print technologies that deposit dielectric energy storage layers (406) and insulating layers (404) together being interleaved between electrode layers (403). The dielectric energy storage layers are created from a proprietary solution to enable printing of dielectric energy storage layers with high permittivity and a high internal resistivity to retain charge. The insulating layers (404) can be applied within the dielectric energy storage layers (406) bifurcating the dielectric energy storage layers for increased resistivity. As part of the fabrication process, the material deposition printer can apply multiple print heads each with different inks and materials (1301, 1302) to form composite material (1303) in the printed layers. |
US10847323B2 |
Photoelectric conversion element and solar cell
A photoelectric conversion element including a first electrode, an electron transport layer on the first electrode, a charge transfer layer, and a second electrode is provided. The electron transport layer includes an electron transport compound, and the electron transport compound carries a compound represented by the following formula (1) and a compound represented by the following formula (2): where each of X1 and X2 independently represents oxygen atom, sulfur atom, or selenium atom; R1 represents methine group; R2 represents an alkyl group, an aryl group, or a heterocyclic group; each of R3 independently represents an acidic group; m represents an integer of 1 or 2; and each of Z1 and Z2 independently represents a group forming a cyclic structure; R5—R4—COOH Formula (2) where R4 represents an aryl group or a heterocyclic group; and R5 represents an alkyl group, an alkoxy group, an alkenyl group, an alkylthio group, or an aryl ether group. |
US10847320B2 |
Multilayered ceramic capacitor, mounting structure of circuit board having thereon multilayered ceramic capacitor, packing unit for multilayered ceramic capacitor
There is provided a multilayered ceramic capacitor, including: a ceramic body; an active layer including a plurality of first and second internal electrodes; an upper cover layer; a lower cover layer formed below the active layer, the lower cover layer being thicker than the upper cover layer; first and second external electrodes; at least one pair of first and second internal electrodes repeatedly formed inside the lower cover layer, wherein, when A is defined as ½ of an overall thickness of the ceramic body, B is defined as a thickness of the lower cover layer, C is defined as ½ of an overall thickness of the active layer, and D is defined as a thickness of the upper cover layer, a ratio of deviation between a center of the active layer and a center of the ceramic body, (B+C)/A, satisfies 1.063≤(B+C)/A≤1.745. |
US10847319B2 |
Capacitor component
A capacitor component in which in a cross section (a L-T cross section) of a body in length and thickness directions, a distance between internal electrodes in a central portion of the body is closer than a distance between the internal electrodes in ends of the internal electrodes, and in a cross section (a W-T cross section) of the body in width and thickness directions, a distance between the internal electrodes in a central portion of the body is farther than a distance between the internal electrodes in ends of the internal electrodes may be provided. |
US10847315B2 |
Multilayer ceramic capacitor having internal electrode layers with particular distribution of crystal grains and manufacturing method thereof
A multilayer ceramic capacitor includes: a multilayer structure in which each of dielectric layers and each of internal electrode layers are alternately stacked, a main component of the dielectric layers being ceramic, a main component of the internal electrode layers being a metal, wherein: a number of crystal grain boundary of the main component of the internal electrode layer is 1/μm or more in an extension direction of the internal electrode layer; and the internal electrode layers include a grain of which a main component is ceramic. |
US10847311B2 |
Antenna device for near field wireless communication and portable terminal having the same
An antenna device for near field wireless communication which may be mounted at a part of a Black Mark (BM) region of a window, and a portable terminal having the same are provided. The antenna device for near field wireless communication mounted in the portable terminal having a BM region, includes: a plurality of flexible printed circuit board layers stacked at a partial region of a lower portion of the BM region, a plurality of conductive antenna patterns of a loop type provided for the plurality of flexible printed circuit board layers, respectively, and a plurality of through holes through which adjacent conductive antenna patterns are connected to each other among the plurality of conductive antenna patterns of a loop type such that the plurality of conductive antenna patterns are electrically connected to each other so as to define one loop antenna. |
US10847308B2 |
Coil component
A coil component includes: an internal coil including a coil body and first and second lead portions; and first and second external electrodes electrically connected to the internal coil. At least one of the first and second lead portions may include first and second lead wires and at least one extension wire connected to at least one of the first and second lead wires and directly connected to the external electrode. |
US10847305B2 |
Coil component
Disclosed herein is a coil component that includes an insulating substrate, a first coil part formed on the first surface of the insulating substrate, and a second coil part formed on the second surface of the insulating substrate. At least an innermost turn of the first coil part is radially separated by spiral-shaped slits into three or more conductor parts. At least an innermost turn of the second coil part is radially separated by spiral-shaped slits into three or more conductor parts. Inner peripheral ends of respective innermost to outermost conductor parts of the three or more conductor parts of the first coil part are connected to inner peripheral ends of the respective outermost to innermost conductor parts of the three or more conductor parts of the second coil part. |
US10847304B2 |
InFO coil on metal plate with slot
A structure includes an encapsulating material, and a coil including a through-conductor. The through-conductor is in the encapsulating material, with a top surface of the through-conductor coplanar with a top surface of the encapsulating material, and a bottom surface of the through-conductor coplanar with a bottom surface of the encapsulating material. A metal plate is underlying the encapsulating material. A slot is in the metal plate and filled with a dielectric material. The slot has a portion overlapped by the coil. |
US10847301B2 |
Electronic component
An electronic component includes an element body, a conductor provided on the element body, a plating layer provided on the conductor, and a glass layer provided on the conductor along an outer edge of the plating layer. |
US10847296B2 |
Vibration generating device
A vibration generating device includes an electromagnet including a coil and a magnetic core around which the coil is wound; a permanent magnet; a casing to which the electromagnet or the permanent magnet is fixed; and an elastic body in which the electromagnet or the permanent magnet is held. The vibration generating device generates a vibration by relatively moving the electromagnet and the permanent magnet by energizing the coil. The casing has a polyhedral structure made of a plate material, and includes a first surface in which a gap portion is provided and another surface in which an extension portion is provided. The vibration generating device further includes a reinforcement portion that is formed by the extension portion extending from the another surface toward the first surface, thereby being fitted into the gap portion and flush with the first surface. |
US10847295B2 |
Device, system and method for obtaining a magnetic measurement with permanent magnets
A magnetic field device, with a first magnet, a first ferromagnetic element positioned adjacent to the first magnet, a second magnet, a second ferromagnetic element positioned adjacent to the second magnet and relative to the first ferromagnetic element to create a gap between the first ferromagnetic element and the second ferromagnetic element, and a third magnet positioned between the first ferromagnetic element and the second ferromagnetic element and within the gap. |
US10847289B2 |
Method for fabricating a functionally-graded monolithic sintered working component for magnetic heat exchange and an article for magnetic heat exchange
An article for magnetic heat exchange includes a functionally-graded monolithic sintered working component including La1-aRa(Fe1-x-yTyMx)13HzCb with a NaZn13-type structure. M is one or more of the elements from the group consisting of Si and Al, T is one or more of the elements from the group consisting of Mn, Co, Ni, Ti, V and Cr and R is one or more of the elements from the group consisting of Ce, Nd, Y and Pr. A content of the one or more elements T and R, if present, a C content, if present, and a content of M varies in a working direction of the working component and provides a functionally-graded Curie temperature. The functionally-graded Curie temperature monotonically decreases or monotonically increases in the working direction of the working component. |
US10847288B2 |
High fidelity feedthrough system
A system for the manufacturing of high-fidelity insulated components is described. Per field requirements, components crafted via the process are hermetically sealed, and are configured to employ appropriately matched materials in accordance with their inherent properties of thermal expansion. A pin, glass insulator, and ferule are present. As opposed to conventional insulated components which employ stainless steel as an inefficient conductor, the unique matching process of the system provides for the use of copper and silver alloys to maximize efficiency while maintaining a hermetic seal. Specific glass is selected in accordance with the desired alloy in order to maintain similar degrees of expansion and contraction per temperature variations. |
US10847281B2 |
Power cable and power adaptor including same
A power cable and a power adaptor including the same are disclosed. The disclosed power adaptor comprises: an adaptor body; and a cable connected to the adaptor body, wherein the cable includes a plurality of conducting wires, which are arranged to be spaced in parallel to one another, and an outer skin, made of a transparent material, surrounding the plurality of conducting wires. |
US10847276B2 |
Method for controlling a pressurized water nuclear reactor during stretchout
A method for controlling a pressurized water nuclear reactor is provided, including core producing thermal power, sensors for acquiring the mean temperature of the primary coolant and for calculating the thermal power, actuators for controlling the axial distribution of power, the control method including: a first control phase for controlling the reactor during normal operation by controlling the mean temperature of the primary coolant so as to make it correspond to a reference temperature profile (Pref) dependent on the thermal power of the reactor; and a second control phase, referred to as stretchout, that occurs after normal operation of the reactor in order to control the reactor in stretchout by controlling the axial distribution of power, the mean temperature varying freely in a temperature range delimited by an upper limit and a lower limit. |
US10847269B2 |
Combined neutron shield and solenoid
Neutron shielding for the central column of a tokamak nuclear fusion reactor. The neutron shielding comprises an electrically conductive neutron absorbing material. The neutron shielding is arranged such that the electrically conductive neutron absorbing material forms a solenoid for the initiation of plasma within the tokamak. |
US10847266B1 |
Systems and methods for tracking goals
Disclosed herein are systems and methods for determining and tracking a goal associated with user's health. The method determines a goal of a user. The method generates a goal file based on the goal and generates a social networking campaign file comprising data from the goal file and predetermined criteria for achieving the goal. The method receives social contacts of the user and determines social contacts to invite to the social networking campaign. The method transmits a request to each determined social contact to join the social networking campaign. The method updates the social networking campaign file with data representing the social contacts. The method monitors goal progress data, determines an extent to which the goal progress data satisfies predetermined criteria in the goal file, and generates instructions to update a goal progress score accordingly. |
US10847265B2 |
Systems and methods for responding to healthcare inquiries
Techniques for responding to a healthcare inquiry from a user are disclosed. In one particular embodiment, the techniques may be realized as a method for responding to a healthcare inquiry from a user, according to a set of instructions stored on a memory of a computing device and executed by a processor of the computing device, the method comprising the steps of: classifying an intent of the user based on the healthcare inquiry; identifying the intent as a need to obtain a dermatological diagnosis or treatment; soliciting, from the user and via the computing device, an image of the user's skin area to be diagnosed or treated; instantiating an image classification system to identify a dermatological disease from the image; and presenting one or more medical recommendations to the user based on the identified dermatological disease. |
US10847264B2 |
Resource management in a multi-modality medical system
Generally, the present disclosure is directed to managing shared resources in a multi-modality medical system. A multi-modality medical system acquires, stores, processes, and displays data associated with a plurality of different medical modalities. Although different, independent modules within the medical system handle different modality workflows, such modules rely on common resources in the system. The method and systems described herein coordinate usage of the common resources, such as a display viewport, among the independent modality modules. For example, a token-based, locking scheme is utilized to exclusively assign a shared resource to a single modality component. This locking scheme prevents, for example, resource deadlocks from occurring during a patient procedure, thus enhancing patient safety. This scheme also ensures, for example, that one diagnostic step in a patient procedure is completed before a second diagnostic step is started, and that all workflow operations halt in the event of an error. |
US10847263B2 |
Head mounted video and touch detection for healthcare facility hygiene
A system and method tracks touches in a healthcare environment in order to analyze paths of transmission and contamination for the purpose of eliminating and containing transmission of colonizing, drug-resistant pathogens. Touches are identified and tracked with the use of recording devices. Each touch is logged and a touch graph is generated to identify transmission paths. |
US10847261B1 |
Methods and systems for prioritizing comprehensive diagnoses
A system for prioritizing comprehensive diagnoses includes a classification module. The classification module is configured to receive a user identifier entered by a comprehensive advisor located on a graphical user interface operating on a processor, retrieve a user biological marker from a biological marker database, receive classification training data, generate a naïve Bayes classification algorithm utilizing the classification training data to output a biological marker classification label. The system includes a priority treatment module. The priority treatment module is configured to receive a plurality of user comprehensive diagnoses, select a treatment training set, generate using a supervised machine-learning model a treatment model, evaluate one or more prioritized treatment facets, generate a treatment instruction set, and display the treatment instruction set on a graphical user interface. |
US10847260B1 |
Proximity-based mobile-device updates of electronic health records
A system, method, and computer-readable media are provided for facilitating clinical decision making, and in particular, decision making based on a third party's clinical situation by determining and providing useful, up-to-date information, such as patient-related information to a decision maker. In one embodiment, a user first identifies an information item concerning a patient. Based on that item, a set of related information items is determined and prioritized, and a reference pointer, which identifies the set of related information, is generated. The reference pointer is communicated to the user's mobile device. Subsequently, the user's mobile device requests information from the set of information items associated with the reference pointer, and provides information authorization information. Following authentication of the user's credentials, updates of information from the set of information items may be communicated to the user's mobile device as they become available. |
US10847257B2 |
Bit vector record linkage
Methods, systems, and computer-readable media are provided for facilitating record matching and entity resolution and for enabling improvements in record linkage. A power-spectrum-based temporal pattern-specific weight may be incorporated into record linkage methods to enhance the record linkage accuracy and statistical performance. For example, in embodiments, a value-specific weight may be calculated from a population-based frequency of field-specific values or dichotomized values of selected phenotypic variables, and provides an opportunity to capture and measure the relative importance of specific values found in a field. A phenotypic bit-vector “fingerprint” pattern-specific weight or Bayesian power spectrum weight may be determined and incorporated into record linkage methods. |
US10847254B2 |
Artificial intelligence based stable materials discovery process
An existing materials database (EMDB) is a compilation of inorganic materials with composition and crystal structures known from prior experimental synthesis and characterization reports, or from ab initio or other computational studies, and includes a composition, structure, and stability value for each material. A hypothetical materials database (HMDB) is an extremely large compilation of materials of unknown stability and synthesizability, with no explicitly available or accessible prior experimental or computational report of their structure-composition combinations. An automated process for efficiently expanding the size of an EMDB includes a cyclical sub-process in which a rapid algorithm provides preliminary stability estimates for hypothetical materials selected from an HMDB, and those materials with a favorable stability prediction undergo a full ab initio analysis to obtain quantitative stability values and are then added to the EMDB. During each iteration of the cyclical sub-process, the rapid algorithm is trained on the EMDB, so that it becomes more effective at providing preliminary stability estimates with each iteration, as the EMDB expands. |