Document Document Title
US10834475B1 Managing encoding parameters
A video packaging and origination service can include one or more encoder components that receive content for encoding and transmitting to requesting entities. Responsive to a request for content, an encoder can be configured with a set of adjustable parameters that depend on the specific format of encoding. To implement watermarking, the encoder dynamically modifies or biases one or more of the parameter values such that the modified parameter values can represent watermarking data.
US10834468B2 Method, system, and non-transitory computer readable medium for audio feedback during live broadcast
Provided is a method, system, and non-transitory computer-readable recording medium for delivering audio feedback of a viewer to a caster during a live broadcast. A method implemented on a computer system includes providing a live broadcast by receiving broadcast content transmitted from an electronic device of a caster, and by streaming the received broadcast content to each of electronic devices of a plurality of users through a communication session established between an account of the caster and accounts of the plurality of users; receiving an audio feedback about the live broadcast from an electronic devices of a user during the live broadcast; and delivering the audio feedback to the electronic device of the caster.
US10834461B1 Electronic apparatus, control method, and program
An electronic apparatus includes: a system processing unit configured to execute system processing based on a system; a person detection unit configured to detect a change from a first detection state in which a person is present within a predetermined detection range to a second detection state in which no person is present; an operation control unit configured to instruct the system processing unit to cause the operating state of the system to make a transition to a first operating state when the change from the first detection state to the second detection state is detected by the person detection unit; and a prohibition control unit configured to instruct the operation control unit to prohibit the transition to the first operating state when the change from the first detection state to the second detection state is detected by the person detection unit.
US10834459B2 Information processing terminal and system
An information processor includes: a user information acquiring unit acquiring user information for identifying a user; a display; a viewing time measuring unit measuring a viewing time during which a previously-registered user views contents information on the display; and a controller. The controller determines whether the user is the registered user, based on the user information and registered user information for identifying the registered user. When the user is the registered user, the controller causes the display to display the contents information, causes the viewing time measuring unit to measure the viewing time, compares a cumulative viewing time that is a total of the viewing times cumulated within a period of time with a viewing limit time that is a previously-set upper limit of the cumulative viewing time, and gives the registered user a warning when the cumulative viewing time is equal to or longer than the viewing limit time.
US10834455B2 Integrating real-time text with video services
In one example, real-time text (RTT) communications are integrated with video services. For instance, one method for integrating RTT communications with video services includes receiving a real time text call intended for a recipient in a home network, forwarding the real time text call to a first device in the home network, receiving a signal to redirect the real time text call to a second device in the home network that is different from the first device, and forwarding the real time text call to the second device, in response to the signal.
US10834450B2 Digital content audience matching and targeting system and method
Digital content is indexed and available to be provided to a target audience based upon possible interest. Components and/or sensors detect audience-related data indicative of the target audience, possible audience interest, audience behavior, and other audience-related factors. Components and/or sensors detect device-related data indicative of available devices to which available content may be sent, transmission paths for the content, and related factors. An analysis and matching engine matches the available content to the target audience and one or more of the devices and selects content, devices, and transmission paths for directing the selected content for an enhanced audience experience.
US10834447B2 Method and apparatus for determining obstructions based on satellite receive signals
A satellite digital broadcast systems transmits signals from a geosynchronous satellite to a plurality of geographically dispersed receivers. Each receiver measures a receive signal level and transmits a value representing the level to a data center. The data center analyses data received from a plurality of receivers in order to determine a size, shape, and velocity of propagation of an obstruction. The data center then predicts which receivers will experience signal disruptions based on the obstruction and the velocity of propagation of the obstruction. The data center transmits instructions to receivers that will be affected by the obstruction.
US10834444B2 Transmitting apparatus, transmission method, receiving apparatus, and reception method
Convenience in a decoding process on a receiver side for when a predetermined number of high-quality-format image data is transmitted together with basic-format image data is achieved. A base stream including, as an access unit, encoded image data for each picture of basic-format image data, and a predetermined number of enhanced streams, each including, as an access unit, encoded image data for each picture of high-quality-format image data are generated. Here, a predictive coding process is performed on image data in high-quality format by referring to the image data in basic format or image data in another high-quality format, by which an enhanced stream is generated. Then, information indicating decoding order is added to each access unit of the enhanced streams. A container in a predetermined format that includes the base stream and the predetermined number of enhanced streams is transmitted.
US10834443B2 Method and system for transmitting alternative image content of a physical display to different viewers
The present invention relates to a method and a system for transmitting alternative image content of a physical display to different viewers, comprising: generating at least two different sets of image data, each set of image data comprising a sequence of individual images; displaying the images of said at least two sets of image data in a time-sliced multiplexed manner at a high frame rate on said physical display; generating at least one video stream of a scene which includes said physical display, said video stream consisting of video frames captured synchronously with the displaying of the images of one of said at least two sets of image data on said physical display, said captured video frames are transmitted to at least one video output at a standard frame rate, said video output being a physical video output of an intermediate processing unit or the physical video output of at least one camera unit; and transmitting said video stream to a sub-set of said viewers. The present invention also relates to a control interface implementing the claimed method.
US10834438B2 User control of replacement television advertisements inserted by a smart television
A method is performed using a smart TV, which receives from a television signal source device a television signal feed encoding primary television content and then presents that content. The smart TV receives data via the computer network, including first data representing a to-be-replaced portion of the primary television content and second data representing secondary television content. Using the second data, the smart TV automatically presents the secondary television content in place of the to-be-replaced television content. The method includes the smart TV: (a) automatically monitoring, during presentation of the secondary television content, the television signal feed and comparing it with the first data; and (b) automatically altering presentation of the secondary television content in accordance with a user-control action with respect to the television signal source device, in response to detecting any difference between the television signal feed and the first data indicative of that user-control action.
US10834436B2 Video classification using user behavior from a network digital video recorder
Particular embodiments provide a system to determine ad segments in a video asset to enable subsequent ad replacement in video programs. The system is included in a multiple service operator (MSO) system that broadcasts video programs via a broadcast schedule. The MSO may not know the location of the ad segments in the video asset. To determine the ad segments, the MSO uses a classifier to classify video program segments and advertisements in the video asset. The classifier may be integrated with an nDVR system. By integrating with the nDVR system, particular embodiments may determine user behavior information, such as trick play commands, from the nDVR system. The classifier may use the user behavior information to detect ad segments in the video asset. In one embodiment, the classifier may fuse outputs from different detectors to detect and validate ad segments in the video program.
US10834435B2 Display apparatus and content display method thereof
A display apparatus is provided. The display apparatus includes: a display configured to display a content; a buffer configured to store data corresponding to a predetermined reproduction section of the content with reference to a current reproduction time of the content; and a processor configured to, in response to a command to display a specific reproduction time of the content being received, determine a reproduction position of the content corresponding the specific reproduction time based on a position corresponding to the predetermined reproduction section based on a position relationship between the specific reproduction time and the current reproduction time, or to determine the reproduction position of the content corresponding to the specific reproduction time based on at least one of a start position and an end position of the content.
US10834434B2 Methods and apparatus to reduce audio streaming latency between audio and Gigabit Ethernet subsystems
Example methods, apparatus, systems and articles of manufacture to reduce audio streaming latency between audio and Gigabit Ethernet subsystems are disclosed herein. An example integrated circuit disclosed herein to process an audio stream associated with an endpoint device on a network includes an Ethernet subsystem to access the network and an audio subsystem to process audio data associated with the audio stream. The disclosed example integrated circuit also includes a direct hardware path between the Ethernet subsystem and the audio subsystem to exchange audio data between the Ethernet subsystem and the audio subsystem without the audio data being processed by a first software driver that is to provide access to the Ethernet subsystem or a second software driver that is to provide access to the audio subsystem.
US10834432B2 Method, device and system for in-sequence live streaming
The invention discloses a method, device and system for in-sequence live streaming, belonging to the technical field of computers. The method includes receiving a terminal type of a streamer terminal sent by the streamer terminal during the in-sequence live streaming; determining a target transcoding mode corresponding to the terminal type of the streamer terminal according to the pre-stored corresponding relation between the terminal type and the transcoding mode; and receiving live streaming data sent by the streamer terminal, transcoding the live streaming data according to the target transcoding mode, and sending the transcoded live streaming data to a viewer terminal of a live streaming room to which the streamer terminal belongs. By the invention, the user can use the mobile terminal to conduct in-sequence live streaming.
US10834426B2 Image processing device and method
The present disclosure relates to an image processing device and method which are capable of suppressing a reduction in an increase in coding efficiency. A receiving unit that receives an encoded bitstream including a syntax element related to an inter-image process and an analyzing unit that analyzes the syntax element received by the receiving unit in a state in which a value of the syntax element is restricted when the bitstream is a bitstream encoded based on a profile for encoding a still image are provided. For example, the present disclosure can be applied to an image processing device.
US10834424B2 Method and device for compressing image, and electronic device
The present disclosure provides a method and a device for compressing an image, and an electronic device. The method includes: acquiring a resolution of the display screen and a resolution of an image to be compressed; detecting whether the resolution of the image to be compressed is greater than the resolution of the display screen; and when the resolution of the image to be compressed is greater than the resolution of the display screen, compressing the resolution of the image to be compressed to a target resolution according to the resolution of the display screen, a difference between the target resolution and the resolution of the display screen being within a preset resolution range.
US10834422B1 Moving picture coding device, moving picture coding method and moving picture coding program, and moving picture decoding device, moving picture decoding method and moving picture decoding program
A temporal merging motion information candidate generation unit derives, when information indicating whether or not to derive a temporal merging motion information candidate shared for all prediction blocks in a coding block is information indicating the derivation of a temporal merging motion information candidate shared for all the prediction blocks in the coding block, a temporal merging motion information candidate shared for all the prediction blocks in the coding block from a prediction block of a coded picture different from a picture having a prediction block subject to coding. A merging motion information candidate list construction unit generates a plurality of merging motion information candidates including a temporal merging motion information candidate.
US10834420B2 Method and apparatus for encoding/decoding video signal
A method of decoding a video signal according to the present invention may include: determining whether or not change in brightness is present between a current video including a current block and a reference video of the current video; when it is determined that change in brightness is present between the current video and the reference video, determining weight prediction parameter candidates of the current block; determining a weight prediction parameter of the current block on the basis of index information specifying any of the weight prediction parameter candidates; and performing prediction for the current block on the basis of the weight prediction parameter.
US10834413B2 Fast and accurate block matching for computer generated content
A set of software applications configured to perform interframe and/or intraframe encoding operations based on data communicated between a graphics application and a graphics processor. The graphics application transmits a 3D model to the graphics processor to be rendered into a 2D frame of video data. The graphics application also transmits graphics commands to the graphics processor indicating specific transformations to be applied to the 3D model as well as textures that should be mapped onto portions of the 3D model. Based on these transformations, an interframe module can determine blocks of pixels that repeat across sequential frames. Based on the mapped textures, an intraframe module can determine blocks of pixels that repeat within an individual frame. A codec encodes the frames of video data into compressed form based on blocks of pixels that repeat across frames or within frames.
US10834411B2 Display driver circuit supporting operation in a low power mode of a display device
A display driver circuit configured to drive a display panel includes a memory, a decoder, and a controller. The memory stores first data using data from outside of the display driver circuit. The decoder decodes the stored first data. The controller generates compression data using the decoded first data. While an image based on the decoded first data is displayed on the display panel, when second data based on the data from the outside are not stored in the memory after the first data are stored in the memory, the controller controls the decoder such that the decoder does not operate and controls the memory such that the compression data are stored in the memory.
US10834409B2 System and method of implementing multiple prediction models for local illumination compensation
A method is provided for inter-coding video in which coding units can be encoded using multiple local illumination compensation (LIC) values to more accurately and efficiently transmit and render video. In the method, two or more LIC values can be established for a single coding unit (CU) such that the CU can be coded using multiple LIC values instead of a single LIC value as employed in present systems.
US10834408B2 Image encoding/decoding method and apparatus using intra-screen prediction
Disclosed is a decoding method which uses an intra-screen prediction. A decoding method which uses an intra prediction performed in a decoding apparatus comprises the steps of: receiving a bit stream; obtaining decoding information from the received bit stream; generating a prediction block for a current block to be decoded using the obtained decoding information; and restoring the current block by adding a residual block obtained from the bit stream and the prediction block. Accordingly, a compression ratio of an image can be improved.
US10834406B2 Device-consistent techniques for predicting absolute perceptual video quality
In various embodiments, a perceptual quality application determines an absolute quality score for encoded video content viewed on a target viewing device. In operation, the perceptual quality application determines a baseline absolute quality score for the encoded video content viewed on a baseline viewing device. Subsequently, the perceptual quality application determines that a target value for a type of the target viewing device does not match a base value for the type of the baseline viewing device. The perceptual quality application computes an absolute quality score for the encoded video content viewed on the target viewing device based on the baseline absolute quality score and the target value. Because the absolute quality score is independent of the viewing device, the absolute quality score accurately reflects the perceived quality of a wide range of encoded video content when decoded and viewed on a viewing device.
US10834404B2 Image encoding/decoding method and recording medium for same
The present invention relates to a method of performing motion compensation by using motion vector prediction. To this end, a method of decoding an image may include: generating multiple motion vector candidate lists according to an inter-prediction direction of a current block; deriving multiple motion vectors for the current block by using the multiple motion vector candidate lists; determining multiple prediction blocks for the current block by using the multiple motion vectors; and obtaining a final prediction block for the current block based on the multiple prediction blocks.
US10834403B2 Adaptive control system for media encoder using accumulation parameter
A data processing system for calibrating a media codec comprising a sequence of time-stamped frames and comprising: an encoder subsystem configured to perform encoding in accordance with one or more encode parameters; a decoder subsystem; and a calibration system comprising: a data store for storing an encoded media stream; and a calibration monitor configured to, on the media codec entering a calibration mode, cause: the decoder subsystem to decode the encoded media stream so as to generate a decoded media stream; the encoder subsystem to re-encode said decoded media stream; and the re-encoded media stream to pass back into the decoder subsystem; the calibration monitor being configured to, through variation of the encode parameters of the encoder subsystem, identify maximal encode parameters corresponding to the greatest steady-state demand on the media codec that permits decoding of the sequence of time-stamped frames at a rate in accordance with their associated timestamps.
US10834389B2 Method and apparatus for omnidirectional video coding with adaptive intra most probable modes
In omnidirectional videos, only some intra prediction directions may be relevant for intra prediction. For example, for a video generated from an equi-rectangular mapping, only the horizontal directions may be relevant for intra prediction around the poles. To improve compression efficiency, we propose to reduce the number of possible directions, based on the location of the block to be encoded or decoded in the frame. In various embodiments, we may adapt the derivation of the MPM in order to take into account the reduction of intra directions depending on geometric distortions. The encoding method can also be adapted to reduce the number of modes to estimate for a block in omnidirectional videos. The coding of the syntax elements representing the intra direction can also be improved.
US10834386B2 Method and apparatus for processing video signal
A method for decoding a video according to the present invention may comprise: determining an intra prediction mode of a current block, determining, based on the intra prediction mode, a first reference sample of a prediction target sample included in the current block, generating a first prediction sample for the prediction target sample using the first reference sample, and generating a second prediction sample for the prediction target sample using the first prediction sample and a second reference sample located at a position different from the first reference sample.
US10834381B1 Video file modification
A method and system for modifying a video file is provided. The method includes continuously receiving a video stream. A video frame of the video stream is divided into viewport portions each including an associated meta data portion. An eye focus of a user with respect to a first viewport portion is detected and a resulting importance score is determined for each viewport portion. Viewing trajectories for viewing each viewport portion are determined and a first group of viewport portions and a second group of viewport portions are determined. A payoff matrix associated with the viewing trajectories is generated and a best possible decision for the user with respect to viewing the viewport portions is generated. A third group of viewport portions is determined and presented with respect to the best possible decision.
US10834379B2 2D-to-3D video frame conversion
A wide spread adoption of 3D videos and technologies is hindered by the lack of high-quality 3D content. One promising solution to address this problem is to use automated 2D-to-3D conversion. However, current conversion methods, while general, produce low-quality results with artefacts that are not acceptable to many viewers. Creating a database of 3D stereoscopic videos with accurate depth is, however, very difficult. Computer generated content can be used to generate high-quality 3D video reference database for 2D-to-3D conversion. The method transfers depth information from frames in the 3D reference database to the target frame while respecting object boundaries. It computes depth maps from the depth gradients, and outputs a stereoscopic video.
US10834375B2 Method and apparatus for transmitting and receiving metadata for coordinate system of dynamic viewpoint
A 360-degree video data processing method performed by a 360-degree video reception apparatus according to an embodiment of the present invention includes: receiving information on 360-degree video data; obtaining information on an encoded picture and metadata from the information on the 360-degree video data; decoding the encoded picture based on the information on the encoded picture; and rendering the decoded picture based on the metadata, wherein the metadata comprises a dynamic global coordinate system rotation flag representing whether relative rotation angles between a common reference coordinate system of a dynamic viewpoint and a global coordinate system are changed.
US10834374B2 Method, apparatus, and device for synthesizing virtual viewpoint images
The disclosure is directed to methods, apparatuses, and devices for synthesizing virtual viewpoint images that are configured for acquiring an original image set, performing stereo matching to original images to obtain a first disparity map set, performing optimization processing to each first disparity map in the first disparity map set to obtain a second disparity map set, determining whether each second disparity map in the second disparity map set has a third disparity map with deep tomography to obtain a first determination result, if the first determination result indicates existence of the third disparity map, segmenting a portion with deep tomography to obtain a corresponding foreground disparity map and a corresponding background disparity map, mapping the second disparity map without deep tomography, the foreground disparity map, the background disparity map, and the portion without deep tomography in the third disparity map according to a first virtual viewpoint to obtain a first virtual viewpoint image set, and fusing first virtual viewpoint images to obtain a to-be-synthesized viewpoint image. Adoption of the methods, apparatuses, and devices for synthesizing virtual viewpoint images enhances synthesis accuracy and improves the user viewing experience.
US10834373B2 Augmented windows
The windowless prototypes of various evacuated tube transportation (ETT) based transportation systems, such as Hyperloop-based transportation systems, has the negative feel of an enclosed space. The lack of any kind of outside reference, the unknown sounds and the tremendous speed of the capsule/pod would surely cause anxiety with several passengers. A representation of the outside world shown within the pod/capsule using augmented windows alleviates this claustrophobic environment. At least for the closest passenger to the window, the illusion of looking out on a landscape is achieved using such augmented windows.
US10834370B2 Image processing apparatus, image processing method, and non-transitory computer readable medium for color conversion
An image processing apparatus includes an acceptance unit and a color conversion property creation unit. The acceptance unit accepts sets of image information each of which is composed of image information of an image before color conversion and image information of an image after color conversion. The color conversion property creation unit creates a color conversion property for color conversion of an image on the basis of pieces of image-capture setting information that are set for image-capture conditions used when the images before color conversion are captured.
US10834368B2 Kind of partially reliable transmission method based on hidden Markov model
This invention discloses a kind of reliable data transmission method based on hidden Markov model that specific to video transmission quality enhancement over lossy satellite links. It uses HMM model to forecast retransmission rate and adopts the network packet loss rate to reflect the network performance. The underlying network packet loss rate is used as the hidden state of HMM model and the retransmission rate is used as the observation state. By analyzing the historically transmitted data sessions, APRT establishes the relationship between the hidden state transition probability and the emission probability. Then, a robust and efficient retransmission rate prediction is obtained. This invention takes into full consideration of high BER in satellite network channels and adjusts the reliable level according to the satellite network channel characteristics so as to make tradeoff between instantaneity and quality. Consequently, it guarantee the QoS and QoE of video stream.
US10834365B2 Audio-visual monitoring using a virtual assistant
A function of a user-controlled virtual assistant (UCVA) device, such as a smart speaker, can be augmented using video or image information about an environment. In an example, a system for augmenting an UCVA device includes an image sensor configured to monitor an environment, a processor circuit configured to receive image information from the image sensor and use artificial intelligence to discern a presence of one or more known individuals in the environment from one or more other features in the environment. The system can include an interface coupled to the processor circuit and configured to provide identification information to the UCVA device about the one or more known human beings in the environment. The UCVA device can be configured by the identification information to update an operating mode of the UCVA device.
US10834362B2 Wireless network camera systems
Apparatus, systems and techniques associated with battery powered wireless camera systems are provided. In an example, a system includes a battery powered wireless camera including an internal battery to provide energy and an image capture module to capture images. Further, the battery powered wireless camera includes a low-bandwidth radio transceiver which may wirelessly communicate with a base station and a micro switch, and may receive commands for operation of the battery powered wireless camera. The battery powered wireless camera also includes a high-bandwidth radio transceiver which may wirelessly communicate with the base station. If the high-bandwidth radio transceiver is powered down, the image capture module may store captured images. If the micro switch triggers activation, the high-bandwidth radio transceiver may power up and transmit the captured images to the base station. In an example, the low-bandwidth radio transceiver may wirelessly communicate with the base station over a low-bandwidth radio link.
US10834361B2 Information processing apparatus, information processing method, and recording medium
To provide a mechanism capable of realizing more comfortable communication by connecting spaces to each other while permitting asymmetry.There is provided an information processing apparatus including: a determination unit that determines adjustment parameters of space information asymmetrically with respect to bidirectional disclosure between a plurality of users communicating with each other on the basis of disclosure settings of the space information regarding each of the plurality of users; and an output control unit that outputs output information to the user, the output information including the space information regarding a user of a communication counterpart processed on the basis of the adjustment parameters and information indicating determination reasons of the adjustment parameters.
US10834360B1 Virtual environment generation for collaborative building assessment
Systems and methods for facilitating virtual collaboration between users within virtual environments are disclosed. A plurality of users access a collaborative virtual environment system using interface devices to establish a virtual collaboration session in which users communicate via a bidirectional real-time communication channel and interact within a virtual environment. Annotations or other user interactions within the virtual environment are automatically propagated to each user in the virtual collaboration session in order to facilitate collaboration. Data from such virtual collaboration sessions may be captured for later use.
US10834357B2 Continuous video capture glasses
A set of glasses frames includes electronic components for video capture and is configured to continuously capture video in a twenty-second loop. On the frames is a capture button that, when pressed, causes the electronic circuitry to store the prior twenty seconds and the following twenty seconds, for a total of forty seconds of video in non-transitory memory. The electronic circuitry in the frames also includes a Bluetooth radio and a Wi-Fi radio, enabling the frames to communicate with a mobile device, and more particularly to provide the saved twenty-second video clips to an app running on the mobile device. The app allows for storage of the video clips on the phone, editing of the video clips, upload of the video clips to the Internet, and configuring user-adjustable settings on the electronic circuitry of the glasses.
US10834356B1 System, apparatus and method for providing remote tuner options in a vehicle entertainment system
In one example, a remote tuner module includes: a first tuner to receive, process and demodulate a first radio frequency (RF) signal to output an analog audio signal, and to receive and process a second RF signal to output a first downconverted modulated signal; a second tuner to receive and process the second RF signal to output a second downconverted modulated signal; a demodulator circuit coupled to the first and second tuners to demodulate and link the first and second modulated signals, to output a linked demodulated signal. The remote tuner module may further include a gateway circuit coupled to at least the demodulator circuit to output the analog audio signal and the linked demodulated signal.
US10834355B2 Barrage message processing
Approaches presented herein enable displaying a barrage message. Specifically, one or more objects and location information for each object in a frame of a video are identified. A barrage message to be displayed in the frame of the video is obtained. The barrage message is displayed without covering any object in the frame.
US10834349B2 Solid-state image sensor, image capturing apparatus and image capturing method
A solid-state image sensor comprises: a plurality of pixels each provided with a sensor unit that generates a pulse signal at a frequency corresponding to a frequency of reception of photons; a first counter that counts a number of pulses generated by the sensor unit; and an output unit that outputs a signal corresponding to a count value counted by the first counter in a case where change in the number of pulses detected per unit time is greater than a threshold.
US10834341B2 Systems and methods for simultaneous capture of two or more sets of light images
Described herein are systems and methods that provide effective way for simultaneous capture of infrared and non-infrared images from a single camera. In embodiments, a filter comprises at least two types of filters elements: (1) an infrared filter type that allows infrared light to pass through the filter element; and (2) at least one non-infrared filter type that allows light in a visible spectrum range or ranges to pass through the filter element. In embodiments, the filter elements form a pattern of the infrared filter elements and the non-infrared filter elements and is positioned relative to a camera's array of sensor cells to form a correspondence between sensor cells and filter elements. In embodiments, signals captured at the camera's sensor cells may be divided to form an infrared image and a visible light image that were captured simultaneous, which images may be used to determine depth information.
US10834340B1 Bolometer pixel readout integrated circuit including trigger sense circuit
A thermal imaging system includes a pixel array having a plurality of pixel groups. Each pixel group including a plurality of pixel rows and a trigger sense circuit including a pixel group input line in signal communication with the plurality of bolometer pixels pixel row containing a plurality of bolometer pixels. The pixel group further includes a selector switch that selectively establishes an electrical connection between the pixel group and the trigger sense circuit. The selector switch operates in a first state to disconnect the pixel group from the pixel group input line while connecting the pixel group to the integration unit such that the integration unit generates the image, and a second state to disconnect the pixel group from the integration unit while connecting the pixel group to the pixel group input line such that the trigger sense circuit monitors the pixel group for a high temperature bolometer.
US10834337B2 Dynamic frame rate controlled thermal imaging systems and methods
A thermal imaging apparatus and a method of improving image quality in a thermal image video sequence imaging a scene, determining one or more of an image detail level, a degree of image motion and/or an image signal level of one or more captured thermal images; determining, based on one or more of the image detail level, the degree of image motion and/or the image signal level, an adapted frame rate for the capturing of one or more subsequent thermal images for the video sequence; capturing one or more subsequent thermal images at the adapted frame rate to improve the image quality in the video sequence.
US10834336B2 Thermal imaging of aircraft
A thermal imaging system is provided. The system can include one or more thermal imaging devices, and a turn event controller in operative communication with the one or more thermal imaging devices. The turn event controller can be configured to obtain one or more vehicle parameters associated with an aerial vehicle and obtain one or more thermal images associated with the aerial vehicle during at least one phase of a turn of the aerial vehicle at an airport. The turn event controller can also be configured to process the one or more thermal images based on the one or more vehicle parameters to detect anomalies associated with the turn of the aerial vehicle, and generate, in response to detecting one or more anomalies, one or more signals indicative of the one or more anomalies.
US10834332B2 Synthesizing spatially-aware transitions between multiple camera viewpoints during minimally invasive surgery
Disclosed are systems, devices, and methods for synthesizing spatially-aware transitions between camera viewpoints. An exemplary method includes receiving images of a surgical site from a first camera, tracking a position of a robotic arm including a second camera coupled thereto, tracking the pose of the second camera, receiving images of the surgical site from the second camera that are different from the images received from the first camera as the robotic arm is moved to different positions, comparing a pose from which at least one of the images received from the second camera were captured to a pose from which at least one of the images received from the first camera were captured, generating a transition between the compared images, and displaying the transition when switching between displaying images received from the first and second cameras.
US10834331B2 Blurring a digital image
A method is disclosed for processing at least a portion of an input digital image comprising rows of pixels extending in two mutually perpendicular directions over a 2D field. The method comprises defining a kernel for processing an image, the kernel comprising at least one row of contiguous elements of the same non-zero value (such rows being referred to herein as equal-valued kernel regions), the equal-valued kernel regions, if more than one, extending parallel to one another. For each pixel in at least selected parallel rows of pixels within the image portion, the cumulative sum of the pixel is calculated by adding a value of the pixel to the sum of all preceding pixel values in the same row of the image portion. The kernel is convolved with the image portion at successive kernel positions relative to the image portion such that each pixel in each selected row is a target pixel for a respective kernel position. For each kernel position, the convolving is performed, for each equal-valued kernel region, by calculating the difference between the cumulative sum of the pixel corresponding to the last element in the equal-valued kernel region and the cumulative sum of the pixel corresponding to the element immediately preceding the first element in the region, and summing the differences for all equal-valued kernel regions. The differences sum is scaled to provide a processed target pixel value.
US10834321B2 Focusing method, device and storage medium
A focusing method includes acquiring a current frame image through a camera; performing through an image stabilization algorithm a uttering compensation on the current frame image acquired by the camera to form a compensated image, wherein the image stabilization algorithm is used to perform electronic anti-jittering processing; performing through a statistic value algorithm a statistic value operation on the compensated image, to obtain statistic value information of the compensated image; determining focusing data to be used to move the camera to a focus position, according to the statistic value information; and adjusting a position of the camera according to the focusing data, to achieve focusing.
US10834318B2 Automatic photographing method and terminal based on use posture
The present invention relates to photographing technologies of terminals, and provides a photographing method and a terminal, so as to resolve an existing problem of complex operations when a user photographs. The method is applied to a mobile terminal equipped with at least one camera, and includes: determining, by the mobile terminal, whether the mobile terminal meets a preset condition, where the preset condition may include matching of a posture feature of the mobile terminal with a standard posture feature that is used to represent a posture feature of the mobile terminal when a user uses a first camera to photograph; and if the mobile terminal determines that the mobile terminal meets the preset condition, starting the first camera to photograph.
US10834315B2 Image transfer apparatus and moving image generating system for transferring moving image data
An imaging apparatus having no synchronization support function by a time code and to cut down a system cost, in synchronizing respective moving images in the case of outputting and displaying moving images input from a plurality of imaging apparatuses through network transmission. A vertical synchronization signal input from a particular imaging apparatus among a plurality of imaging apparatuses is used as a reference to select frame image data items from moving image data input from the plurality of imaging apparatuses, and the selected frame image data items are integrated into a single stream and sent. Even in a case where the plurality of imaging apparatuses captures videos asynchronously, it becomes possible to select, from the respective moving images, frame images with a small imaging timing difference on the basis of the vertical synchronization signal of the particular imaging apparatus.
US10834313B2 Plenoptic sub aperture view shuffling with improved resolution
A system and method for generating high resolution images using a plenoptic camera having a main lens in front of an array of microlenses and an image sensor, characterized in that it comprises: capturing a first set of images in a first unexcited state of operation by using a birefringent medium disposed between a said main lens and an said array of microlenses, said unexcited state of said birefringent medium providing an ordinary ray to each pixel; causing said first unexcited state to become a second excited state by applying a voltage across said birefringent medium; capturing a second set of images in said second excited state, said excited state of said birefringent medium splitting the light from said main lens into an ordinary ray and an extraordinary ray, said extraordinary ray being shifted by a distance of one half-pixel from the ordinary ray on said image sensor; subtracting pixel value associated with said first set of images from at least two times the pixel value associated with said second set of images, and generating a final set of images with high resolution from said subtraction and said first set of images.
US10834310B2 Multi-camera post-capture image processing
Image processing can include storing a first image of a scene captured by a first camera, storing a second image of the scene captured by a second camera, and storing a first user-composed image. The first user-composed image can be derived from at least one of: (a) the first image and (b) the second image. The image processing can further include: receiving a second command to edit the first user-composed image, editing the first user-composed image, and saving the edited first user-composed image as a second user-composed image.
US10834309B2 Lens control apparatus and control method for tracking moving object
Based on information corresponding to a state of an object at a first time, information corresponding to the state of the object at a second time after the first time is estimated. The information corresponding to the state of the object at the second time is calculated by correcting the estimated information corresponding to the state of the object at the second time based on a focus detection result detected by a focus detection unit at the second time. Based on the information corresponding to the state of the object at the second time and information of time from the second time to a third time after the second time, an image plane position at the third time is predicted. Based on the image plane position predicted by a first prediction unit, driving of a focus lens is controlled.
US10834308B2 Real time controller switching
An imaging system may include a sample stage having a surface to support a sample to be scanned by the imaging system; an optical stage having an objective lens, the optical stage being positionable relative to the sample stage; an actuator physically coupled to at least one of the sample stage and the optical stage to move the sample stage relative to the optical stage; a servo circuit to control the actuator; a first set of control parameters to control the servo circuit; a second set of control parameters to control the servo circuit; and a servo control circuit to apply the first set of control parameters to the servo circuit when the imaging system is operating in a first mode of operation and to apply the second set of control parameters to the servo circuit when the imaging system is operating in a second mode of operation.
US10834299B2 Electronic apparatus
An electronic apparatus includes a housing in which an opening is formed, a microphone disposed inside the housing and configured to collect sound from the opening, a light emitter disposed inside the housing and configured to emit light from the opening, and a buffer member configured to block the opening. The buffer member has a base portion, a first portion facing the microphone, and a second portion facing the light emitter. The first portion is a cut portion of the base portion. The second portion is a portion protruding from the base portion.
US10834295B2 Attention mechanism for coping with acoustic-lips timing mismatch in audiovisual processing
Embodiments of the present systems and methods may provide techniques for handling acoustic-lips timing mismatch in audiovisual processing. In embodiments, the context-dependent time shift between the audio and visual streams may be explicitly modeled using an attention mechanism. For example, in an embodiment, a computer-implemented method for determining a context-dependent time shift of audio and video features in an audiovisual stream or file may comprise receiving audio information and video information of the audiovisual stream or file, processing the audio information and video information separately to generate a new representation of the audio information, including information relating to features of the audio information, and a new representation of the video information, including information relating to features of the video information, and mapping features of the audio information and features of the video information using an attention mechanism to identify synchronized pairs of audio and video features.
US10834293B2 Image processing device, storage medium, display apparatus and image processing method
An image processing device and method for a display device are disclosed, and the image processing device includes a color gamut conversion unit; the color gamut conversion unit is configured to perform processing on an input signal inputted into the display device to allow a display operation according to a color gamut range of the display device to be converted into a display operation according to a color gamut range of the input signal when the display device displays the input signal.
US10834290B2 Methods, systems, and devices for delivering image data from captured images to devices
Computationally implemented methods and systems include acquiring a device-based encrypted image that is an image that has previously been encrypted through use of a particular device code associated with an image capture device configured to capture the image, wherein the image includes a representation of a feature of an entity, decrypting the device-based encrypted image in response to an indication that the image has been approved for decryption, and creating a client-based encrypted image through encryption of the decrypted image through use of a particular client code that is associated with a client that is linked to the image capture device configured to capture the image. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
US10834289B2 Detection of steganography on the perimeter
A method to detect a plurality of steganography based information embedded in a multimedia file associated with an online computer environment is provided. The method may include detecting the multimedia file entering or exiting an online environment associated with a network or an organization. The method may also include comparing a stored hashed version of the detected multimedia file to the detected version of the multimedia file. The method may also include comparing a stored perceptual hashed version of the detected multimedia file to the detected version of the multimedia file based on the detected multimedia file not matching the stored hashed version of the detected multimedia file. The method may further include assigning a flag attribute to the detected multimedia file based on the detected multimedia file matching the stored perceptual hashed version of the detected multimedia file.
US10834287B1 Obscuring marker-outlined free-form areas of a document
A method for eliminating one or more outlined sections of a document before printing is described herein. The method comprising receiving an input image of the document including the one or more outlined sections and a user input indicating color information of one or more outlines, identifying the one or more outlines and the one or more outlined sections of the image, obtaining the one or more outlined sections associated with the one or more outlines of the image, and outputting an output image to be printed, wherein the one or more outlined sections are eliminated from the output image of the document.
US10834286B1 System and method for determining recipient information from a document
A system and method for determining where to send a document from information printed on the document includes a scanner configured to scan a document, and a processor configured to use optical character recognition on the scanned document to determine recipient contact information. The processor generates a user-selectable list of one or more of the determined recipients and receives a user selection of one or more recipients to receive the document. The processor then transmits the document to the selected recipients using a modality suitable to the recipient's contact information, which includes faxing the document to the recipient when the recipient's contact information is a fax number, emailing the document to the recipient when the recipient's contact information is an email address, and transmitting the document when the recipient is a network file server.
US10834280B2 Image forming apparatus
An image forming apparatus includes an apparatus body, a sheet stacking portion on which a sheet discharged from the apparatus body is to be stacked, an extension member, and an upper device. The extension member is rotatable about a rotating fulcrum between a first position at which the extension member is stored in the sheet stacking portion and a second position at which the extension member extends to downstream of the sheet stacking portion in a sheet discharge direction in which the sheet is discharged from the apparatus body. The upper device is disposed above the rotating fulcrum of the extension member and is supported to be openable by the apparatus body. The upper device in a closed state regulates a rotation of the extension member from the first position toward the second position.
US10834279B1 System and method for assisted control of document processing devices
A system and method for assisted multifunction peripheral user operations employs portable user data devices, such as smartphones or tablets, as an interface for visually impaired users. An application running on the user's device senses when it is proximate to a multifunction peripheral in accordance with a Bluetooth beacon. The user is notified on their device that the nearby multifunction peripheral is configured for audio interaction via the device. When the user accepts the notification, their device is automatically paired with the multifunction peripheral and the user's interactions and instructions can be audio or speech-based via the user's portable device.
US10834275B2 Image forming apparatus and method of controlling and accessing print job
An image forming apparatus includes a display device that displays information and an image forming device that forms an image on a sheet. The image forming apparatus can cause the image forming device to form an image on the basis of a file acquired from an external system that manages files in a directory having a hierarchical structure. The image forming apparatus includes at least one controller that functions as a unit that acquires information which is information of a printable file of files managed by the external system and which includes at least storage directory information of the printable file, a unit that causes the display device to display a folder tree screen based on the storage directory information, and a unit that causes the image forming device to perform image formation based on a file selected on the folder tree screen.
US10834273B2 Method to create a secure distributed data validation system using a distributed storage system and artificial intelligence
Methods and apparatus for validating paper forms are provided. A node can receive paper-form data from a paper form that has first and second data items (DIs). The node can: determine first and second metadata for the first and second DIs respectively, determine respective first and second validation entities (VEs) to validate respective values of the first and second DIs based on the respective first and second metadata, where the first and second VEs can differ, provide a user interface (UI) including a display of the first DI, receive a validation status for the first DI via the first UI from the first VE, select a first distributed storage system (DSS) associated with the first DI, and record the value of the first DI and the validation status in the first DSS. The node can generate an output related to the paper-form data based on the first DSS.
US10834272B2 Reading device, image forming apparatus including same, and reading method
A reading device includes an imaging element and correcting circuitry. The imaging element is configured to receive light from an object selectively irradiated with visible light or invisible light. The correcting circuitry is configured to apply correction processing based on a difference in an optical characteristic between an invisible light region and a visible light region to an image signal in the invisible light region output from the imaging element and output the image signal corrected.
US10834269B2 Specialized secondary compartment in a mobile device
A computer-implemented method includes identifying critical data on a primary storage of a mobile device, where the primary storage is powered by a primary battery component. The critical data is backed up from the primary storage to a secondary storage. A charge level of the primary battery component is detected. It is determined that the charge level of the primary battery component is less than a minimum threshold. The mobile device is switched from a primary mode to a secondary mode, based on the charge level being less than the minimum threshold. A secondary battery component powers the secondary storage in the secondary mode, and the critical data is accessible on the secondary storage in the secondary mode.
US10834268B2 Inserting value into customer account at point of sale using a customer account identifier
A method of adding a value to a customer account is provided. A request to add a value to a customer account of a customer is received from a point of sale terminal. The request may comprise value identification data associated with the value and account identification data associated with the customer account. The customer account identification data may be entered at the point of sale. The request may be associated with a purchase of the value. The value may be caused to be added to the customer account. During subsequent value purchase transactions, additional value may be added to the account.
US10834267B2 Time-based nano-transaction system for reducing unsolicited communications
A telecommunications system for selectively connecting originator nodes to recipient nodes includes an account database with one or more accounts each associated with corresponding ones of the originator nodes and the recipient nodes. There is a contacts database with recipient contact lists each associated with a specific one of the accounts of the recipient nodes. A transaction processor is receptive to an incoming telecommunications initiation request, which includes a recipient node identifier and a nano-transaction payment submission defined at least by a payment amount. The transaction processor responsively directs the establishment of the telecommunications link between the one of the originator nodes and the one of the recipient nodes upon receipt of the telecommunications initiation request. The nano-transaction payment submission is settled based at least in part upon an active duration of the telecommunications link.
US10834266B2 Process-efficient generation of data records for data communications involving groups or aggregates of IoT devices
Methods, apparatus, and systems for the process-efficient generation of data records for data communications involving groups or aggregates of user equipment (UE), such as IoT devices, are described. In one illustrative example, for each one of a plurality of UEs associated with a group or aggregation identifier (ID), a request which includes data indicative of a network resource usage event of the UE is received and the data are stored in association with the group or aggregation ID. In response to identifying a predetermined condition, the data indicative of the network resource usage events associated with the group or aggregation ID are aggregated, and a request for generating a data record based on the aggregated data is sent to a data function for generating the data record. The generated data record (e.g. a CDR) may be stored for subsequent retrieval for reporting, analysis, network/communications management, or billing.
US10834263B2 Techniques for behavioral pairing in a contact center system
Techniques for behavioral pairing in a contact center system are disclosed. In one particular embodiment, the techniques may be realized as a method for behavioral pairing in a contact center system comprising: determining, by at least one computer processor communicatively coupled to and configured to operate in the contact center system, a plurality of contacts available for connection to an agent; determining, by the at least one computer processor, a plurality of preferred contact-agent pairings among possible pairings between the agent and the plurality of contacts; selecting, by the at least one computer processor, one of the plurality of preferred contact-agent pairings according to a probabilistic network flow model; and outputting, by the at least one computer processor, the selected one of the plurality of preferred contact-agent pairings for connection in the contact center system.
US10834260B1 Method and system for a scalable computer-telephony integration system
When an incoming call is received from a customer, various aspects may include receiving an indication of availability from several call agents within the computer-telephony integration system and presenting the indications of availability and identification information for each of the call agents on a display. A user control for searching the call agents may also be presented on the display for use by a first call agent to view an indication of availability for a particular call agent. The customer call may then be transferred from the first call agent to the particular call agent in response to the indication of availability identifying the particular call agent as available.
US10834257B1 Email alert for unauthorized call
Selective forwarding and blocking of calls directed to an alias phone number based on a whitelist, as well as email alerts triggered by phone calls from unauthorized originating numbers. More generally, the disclosed techniques enable an enterprise system to store contact phone numbers (i.e., alias phone numbers) for users while avoiding storing and managing personal phone numbers for the user. For example, the enterprise system may forward personal phone numbers to an aliasing server configured to generate alias phone numbers based on the personal phone number. The aliasing server may operate as a “middle man” that receives calls directed to the alias phone number and that forwards the calls to the personal phone number when appropriate. The enterprise system may store and maintain the alias phone numbers in lieu of the personal phone numbers.
US10834255B1 Target injection safe method for inlining large call tables
A method redirecting an indirect call in a call table to direct call includes the steps of: recording frequencies of calls in a frequency table; updating a search trampoline to cache, as direct calls, calls of the call table that are most frequently made according to the recorded calls in the frequency table; receiving a request to perform one of the calls in the call table; performing a search of the search trampoline to determine whether or not the requested call is cached in the search trampoline; if the requested call is cached in the search trampoline, performing the requested call that is cached in the search trampoline; and if the requested call is not cached in the search trampoline, performing the requested call by accessing the call via the call table.
US10834254B2 System and method for utilizing customer data in a communication system
Systems and methods for utilizing customer data in a communication system are provided. In exemplary embodiments, customer records at a customer data warehousing system are accessed. Customer data from the customer records are extracted and associated with a customer identifier. The customer data is then stored to an indexed database, the extracted customer data being indexed according to the identifier. When an incoming communication is received, the communication system will determine a communication identifier of the incoming communication. A lookup and matching process is then performed using the communication identifier in the indexed customer information database. If a matching customer identifier is found, associated customer data may be retrieved and used to provide enhanced communication system services including communication routing and customer data alerts.
US10834253B1 System and method for protecting user information that is associated with a shipment
A server may assign a temporary phone number and an extension number to a shipment. The temporary phone number may be based on a geographic location of where the shipment is to be delivered. The extension number is associated with the shipment. The temporary phone number and extension number may be included on a shipping label rather than the user's phone number. During the delivery of the shipment, a delivery person may encounter a delivery issue, such as needing directions. The delivery person may call the temporary phone number and extension number and be connected to a user device. The delivery person may communicate the delivery issue, such as asking for directions to the user's residence. Upon delivery of the shipment, the server disassociates the temporary phone number and the extension number from the shipment.
US10834252B2 Transcribing audio communication sessions
A computer-implemented method to provide transcriptions of an audio communication session is disclosed. The method may include receiving audio data at a first device from a second device over a first wireless network connection of a first wireless network type and providing the audio data to a speaker of the first device for output of the audio data. The method may further include encoding the audio data at the first device based on a second wireless network type and transmitting the encoded audio data from the first device over a second wireless network of the second wireless network type.
US10834251B2 System and method detecting fraud using machine-learning and recorded voice clips
A system and method are disclosed for training a machine-learning model to detect characteristics of fraudulent calls. The machine-learning model is trained using audio clips, voice recognition, call handler feedback and general public knowledge of commercial risks to detect and divert fraudulent calls, thereby alleviating the burdens otherwise placed on call center service representatives.
US10834246B2 System, method, and article of manufacture to iteratively update an image displayed over a lock screen to provide a continuous glimpse into an application running in the background of the mobile device that is in a screen locked state
An application miming in the foreground of the mobile device is run in the background when the mobile device enters a screen locked state. A display may be activated while the mobile device remains in the screen locked state, and an image is rendered over a lock screen of the mobile device, where the image providing a glimpse into the application running in the background while the mobile device remains in the screen locked state. The image displayed over the lock screen is iteratively updated to provide a continuous glimpse into the application running in the background of the mobile device that is in the screen locked state, without having to unlock the mobile device.
US10834243B2 Mobile terminal
A mobile terminal including a display panel; a front window provided on a front surface of the display panel; and a plurality of micro-holes in the front window arranged in an array pattern and spaced a preset distance apart from an outer edge area of the front window.
US10834239B2 Method and system for implementing logical port classifications
The network control system of some embodiments implements logical port classifications to implement different features of logical networks onto a physical network. The network control system of some embodiments modifies flow entries at forwarding elements of the physical network to implement the logical network. The network control system classifies logical source and destination ports into disjoint equivalence classes for logical network flows in a virtualized network, and encodes this information in the tunneled traffic carrying the logical flow. The network control system of some such embodiments provides logical port classifications to minimize the necessary flow entries at each forwarding element of the physical network.
US10834238B2 Blockchain management using a device in a wireless telecommunication system
Devices in a wireless telecommunication system can implement a blockchain that is distributed among the devices. For example, a base transceiver station of the wireless telecommunication system can receive, from a mobile device, a wireless radio communication that includes information associated with a blockchain transaction. The base transceiver station can convert the information associated with the blockchain transaction into an internet protocol (IP)-based format. The base transceiver station can update the blockchain by propagating the formatted information to other base transceiver stations of the wireless telecommunication system through an IP-based network that is internal to the wireless telecommunication system.
US10834225B2 System for prefetching digital tags
Systems and methods described herein can take advantage of the caching abilities of the browser and the idle time of the user to prefetch tag libraries of one or more tags for execution in a subsequent content page. For example, these systems and methods can provide the ability to prefetch and not execute a tag library on a content page before it is required so the tag library is cached in the browser. When the browser hits the page that uses the tag library, the tag library can be quickly retrieved from memory and executed.
US10834224B2 Transaction log acceleration
Apparatuses, systems, methods, and computer program products are disclosed for transaction log acceleration. A log module is configured to determine transaction log records indicating a sequence of operations performed on data. A commit module is configured to send transaction log records to one or more volatile memory pages accessible over a network. Volatile memory pages are configured to ensure persistence of transaction log records. A storage module is configured to send transaction log records to a non-volatile storage device in response to an acknowledgment that one or more volatile memory pages store the transaction log records.
US10834220B2 Apparatus for providing cloud brokerage service based on multiple clouds and method thereof
Disclosed herein are an apparatus and method for providing a cloud brokerage service based on multiple clouds. The method includes receiving, by a cloud service broker, a request for a cloud service from a cloud service client, the cloud service broker being connected with the multiple cloud-computing systems; generating, by the cloud service broker, the cloud service complying with the request based on one or more services registered in a service catalogue of the cloud service broker; newly registering, by the cloud service broker, the generated cloud service in the service catalogue; and providing, by the cloud service broker, the newly registered cloud service to the cloud service client.
US10834218B2 Event information system classifying messages using machine learning classification model and pushing selected message to user
The present disclosure provides an event information push method performed at a computer system, the method including: collecting network messages from a social networking platform; performing aggregation on the network messages, to obtain corresponding event information; obtaining, for each piece of event information, one or more attributes from the corresponding category of network messages; obtaining, from an event information and user database, a user group corresponding to the one or more attributes of each piece of event information; and pushing each piece of event information to a user in the user group corresponding to the event information.
US10834216B2 Configuration of content site user interaction monitoring in data networks
A collection configuration management system can be used to manage one or more monitoring objects, such as tags, included in one or more content objects. The collection configuration management system can compartmentalize monitoring object configurations into a monitoring object bundle that may be executed as a result of loading the one or more content objects. The monitoring object bundle can be generated to include one or more monitoring objects, as well as monitoring object management loader functionality.
US10834213B2 System and method for measuring user engagement
A system for monitoring user engagement, comprising at least one hardware processor, configured to: receive from a plurality of sensors information about a sequence of interactions of a user with a software application during a time interval, the information comprising, for each of the sequence of interactions, a plurality of sensor output values of a plurality of engagement metrics reflecting the user's emotional attachment to the software application; compute a sequence of linearly uncorrelated principle components based on an outcome of principal component analysis (PCA) of the plurality of sensor output values of the plurality of engagement metrics; and select a first component from the sequence of linearly uncorrelated principle components to be a user engagement index representing engagement of the user with the application during the time interval according to the plurality of engagement metrics.
US10834205B2 Network appliance having forwarding traffic mode to reduce traffic loss and related methods
A network appliance is provided for establishing sessions between client devices and a network server(s) for exchanging network traffic therebetween. The network appliance may include a memory and a processor cooperating with the memory, with the processor being operable in a normal traffic mode and a forwarding traffic mode. The processor may be configured to establish new sessions for network traffic based upon new session requests from the client devices, and forward network traffic associated with prior existing sessions from the client devices to the network server(s). When in the forwarding traffic mode, the processor may forward network traffic not associated with a prior existing session or a new session request to the network server(s). When in the normal traffic mode, the processor may block network traffic not associated with a prior existing session or a new session request from reaching the network server(s).
US10834204B2 Transmitting display information based on communication protocols
Interruption of the distribution of display information is prevented. A message processing section, in a case where a connection has been established with a server which distributes display information to be displayed on a display device in synchronization with reproduction of content, processes a message from the server for controlling the distribution in accordance with a first protocol. A connection confirmation section confirms whether or not the connection has been established in accordance with a second protocol. A connection request section, in a case where the connection has not been established, requests establishment of the connection to the server in accordance with the second protocol.
US10834203B2 Method and device for establishing an end-to-end communication between two networks
The invention relates to a method for establishing an end-to-end communication between two networks, wherein: a message is received from one first network, this message having a first header and an application-data part; data of said first header is coded into a second header within the application data part, with the aid of a first coding scheme, so as to produce a modified application data part; said modified application data part is coded with the aid of a second coding scheme so as to produce a coded message; and this coded message is transmitted to a second network.
US10834201B2 Device identification and reconfiguration in a network
In an embodiment, a method includes detecting a set of domain name system (DNS) requests from a device in an Internet of Things (IoT) network. In an embodiment, a method includes identifying a set of identification information associated with the set of DNS requests. In an embodiment, a method includes predicting, based on the set of identification information, a device type of the device. In an embodiment, a method includes determining, in response to predicting the device type, a network configuration setting for the device type. In an embodiment, a method includes reconfiguring, in response to determining a network configuration setting, a network configuration of the device.
US10834199B2 Cloud authorized vehicle control
A vehicle includes a controller, programmed to responsive to receiving a command from a non-customer party, send an authorization request based on the command and a predefined vehicle parameter to a server; and responsive to receiving a signed command from the server, execute the signed command.
US10834197B2 Application management service
An application management service may be used to determine which agents of an application need to be installed and/or licensed on one or more smart sensors. The application management service may determine which agents are associated with a given application and may determine which agents are currently installed and/or licensed on the one or more smart sensors. The application management service may determine which agents are not currently installed or licensed on the one or more smart sensors and that are associated with the application and may cause those agents to be installed or licensed on the one or more smart sensors.
US10834191B2 Collaboration data proxy system in cloud computing platforms
In various embodiments, methods and systems for enhanced access to storage data based on a collaboration data proxy system are provided. A plurality of metadata tables on one or more peer nodes are referenced for data corresponding to a data request of a requesting node. The metadata tables indicate availability of chunks of data in the one or more peer nodes. A determination is made that the data corresponding to the data request is downloadable from the one or more node; the determination is based on the metadata tables. A download operation configuration instance is generated for a data request of a requesting node. The download operation configuration instance comprises configuration settings for downloading data corresponding to the data request from the one or more peer nodes. The chunk of data is downloaded from the corresponding one or more peer nodes where the chunk is located, using the configuration settings.
US10834189B1 System and method for managing workload in a pooled environment
An orchestrator for assigning clients to storage gateway pools includes a persistent storage and a processor. The persistent storage includes workload to pool mappings. The processor obtains a data storage request for data from a client of the clients; identifies a workload type associated with the data; selects a storage gateway pool of the storage gateway pools using the identified workload type and the workload to pool mappings; and assigns the selected storage gateway pool to service the data storage request.
US10834188B2 Distribution of data in cloud storage based on policies maintained in metadata
Provided are a method, a system, and a computer program product in which metadata associated with data is maintained, wherein the metadata indicates whether storage of the data is restricted geographically. A controller receives a request to store the data in cloud storage comprising a plurality of cloud servers located in a plurality of geographical locations. The controller determines where to store the data in the cloud storage, by interpreting the metadata.
US10834187B2 Method and device for data version comparison between trans-time zone sites
Techniques for providing data version comparison between trans-time zone sites. One example method includes target data and a corresponding time stamp is received from each trans-time zone site. Each of the time stamps are based on a respective time zone of a sending trans-time zone site from which the target data and the time stamp were received. Each of the received time stamps are modified based on the respective time zone of the sending trans-time zone site for the time stamp and a time zone of the central server. The received target data is compared from each of the trans-time zone sites to stored target data based on the modified corresponding time stamp. A latest version of the target data is stored by the central server having a modified corresponding time stamp that is greater than each of the other modified corresponding time stamps.
US10834186B2 Disaster recovery switchover method and system, and node
A disaster recovery switchover system, the disaster recovery switchover system includes a production node, a redundancy node, and a recording node, the production node currently runs a first production service, and the method includes: receiving, by the recording node, first restoration information sent by the production node, where the first restoration information is information required for restoring the first production service to a latest running status of the first production service; and sending, by the recording node when determining that the first production service needs to be restored on the redundancy node, second restoration information to the redundancy node, where the second restoration information is information that is obtained according to the first restoration information and that is required to restore the first production service on the redundancy node, so that the redundancy node switches the first production service to the redundancy node according to the second restoration information.
US10834184B2 Sending a sensor node a request for sensor data that identifies another node to process the data
In accordance with an example embodiment of the present invention, there is provided an apparatus comprising at least one processor and computer program code, configured to cause the apparatus to at least transmit to a sensor node a request for processed sensor data, the request comprising an identity of a second node capable of processing sensor data, and receive a message enabling access to the processed sensor data, wherein the second node is comprised in the same peer network as the apparatus. The apparatus may also be configured to receive from the second node an indication that the second node has data processing capability it is willing to provide.
US10834177B2 System and method for dynamic activation of real-time streaming data overflow paths
A method, computer program product, and computer system for defining, on at least one processor, one or more potential overflow paths for processing at least a portion of a data load through a plurality of stream operators deployed on a plurality of computing devices. Embodiments may include determining, on the at least one processor, a conditional availability for each computing device of the plurality of computing devices. Embodiments may also include identifying, on the at least one processor, a change in one or more of a configuration of the plurality of computing devices and the at least a portion of the data load. Embodiments may further include dynamically activating, on the at least one processor, one or more potential overflow paths in response to the identified change based upon, at least in part, the conditional availability for each computing device of the plurality of computing devices.
US10834175B2 System and method for constructing content site visitor profiles
Embodiments of the systems described herein can implement one or more visitor stitching processes. Visitor stitching can include, among other things, one or more processes by which multiple visitors that may appear distinctly independent may be merged into a new single united visitor profile due to the leveraging of one or more unique persistent identifiers.
US10834172B2 Download control device
When download operations get started in unison in conformity to RSS metafile delivery time-and-date information, the traffic is temporarily concentrated to a server, resulting in the risk of a system failure or else. In addition, it is inevitable to periodically check whether an RSS file on Web server is updated or not; so, users must delete update-unnecessary RSS files from those objects to be monitored. In view of this, the periodical update check timing of download control information is dispersed, thereby scattering download requests to the server. The download control information is provided with the information indicating whether such download control information is put under update management and/or expire time-and-date information in case the update management is to be done, whereby an information processing apparatus performs, based on the information, erase processing of the download control information when the download processing is completed.
US10834170B2 Cloud authenticated offline file sharing
Described embodiments provide systems and methods for transferring a file. A sender device configured to transfer a file to a receiver device may send an identifier of the receiver device and a public key to a server via a first network. The sender device may receive, via the first network prior to disconnecting from the first network, a session token from the server. The session token and the public key may be sent to the receiver device via the first network. The sender device may detect, after receiving the session token, a peer-to-peer (P2P) wireless network established by the receiver device. The P2P wireless network may broadcast a service set identifier (SSID) with a network key encrypted using the public key. The sender device may connect, using the network key, to the P2P wireless network to transfer the file to the receiver device via the P2P wireless network.
US10834161B2 Dash representations adaptations in network
Systems and methods relating to delivery of an alternate representation of a requested segment of a media content item to a terminal device are disclosed. In one embodiment, a system comprises a terminal device and a network node. The terminal device is configured to send a request for a first representation of requested media content, and receive a response to the request comprising a second representation of the requested media content, where the second representation of the requested media content is different than the first representation of the requested media content. The network node is configured to receive the request from the terminal device for the first representation of the requested media content, select the second representation of the requested media content, and send the response to the terminal device comprising the second representation of the requested media content.
US10834159B2 Standardized hot-pluggable transceiving unit providing a cloud gateway functionality
Standardized hot-pluggable transceiving unit implementing a cloud gateway functionality. The transceiving unit receives a source video IP flow. At least one processing unit in the housing executes a HTTP client and a conversion function. The HTTP client establishes a connection with a HTTP server hosted by a cloud video server, and receives the source video IP flow from the HTTP server of the cloud video server via the first connector. The source video IP flow uses one of the HTTP or the HTTPS protocol. The conversion function generates a video stream based on the source video IP flow, and the video stream is outputted by the transceiving unit. Alternatively, the transceiving unit receives a source video stream converted in a video IP flow by the conversion function, and the HTTP client uploads the video IP flow to the HTTP server of the cloud video server.
US10834154B1 Dynamic configuration of stream parameters based on modulation scheme
This disclosure provides methods, devices and systems for signaling modulation schemes and stream parameters such that the modulation schemes and stream parameters can be adapted dynamically while maintaining an existing wireless connection. Some implementations include signaling, via a first channel, a set of stream parameters that govern communications on a second channel when a particular modulation scheme is used to modulate the packets transmitted via the second channel. A transmitting device may select a respective set of stream parameters for each of multiple modulation schemes. For example, in addition to an initial modulation scheme and set of stream parameters, the transmitting device can select alternative modulation schemes and sets of stream parameters that are optimized for the respective modulation schemes. The transmitting device signals the modulation schemes and the respective sets of stream parameters via the first channel in advance of switching modulation schemes for the second channel. The transmitting device is enabled to change the modulation scheme and the set of stream parameters on the fly by including an indication of the modulation scheme in the next packet it transmits via the second channel.
US10834153B2 System level signaling of SEI tracks for media data streaming
In one example, a device for retrieving media data includes one or more processors implemented in circuitry and configured to parse system level information of a media bitstream encapsulating a video elementary stream, the system level information indicating that the video elementary stream includes one or more supplemental enhancement information (SEI) messages and payload types for each of the SEI messages, extract the one or more SEI messages and the payload types from the system level information, and send the one or more SEI messages and the payload types to one or more other processing units of the device.
US10834145B2 Providing of recommendations determined from a collaboration session system and method
A method, computer program product, and computer system for monitoring, at a computing device, at least a portion of a collaboration session provided by one or more participants of the collaboration session. At least the portion of the collaboration session is analyzed to determine a recommendation associated with at least the portion of the collaboration session. A source for information associated with the recommendation is searched based upon, at least in part, analyzing at least the portion of the collaboration session. At least one participant of the one or more participants is presented the recommendation and the information associated with the recommendation.
US10834142B2 Artificial intelligence assisted rule generation
A method improves a security of a computer system by building a new set of rules for the computer system. One or more processors input a plurality of client profiles to an artificial intelligence (AI) system, where the plurality of client profiles are based on an analysis of respective client environments comprising client assets and an intrusion detection alert history of a plurality of clients. The processor(s) match a new client profile to a respective client profile from the plurality of client profiles. The processor(s) build a new set of rules for the new client based on a similarity measure of the new client profile to the respective client profile. The processor(s) subsequently receive information indicating that a violation of the new set of rules has occurred and then execute a security feature of the computer system in order to resolve the violation of the new set of rules.
US10834141B1 Service-level authorization policy management
Systems and methods are described to identify and correct inaccurate or non-compliant access policies for an authorization service that uses such policies to control access to instances of one or more network-accessible services. Each service can implement one or more instances on behalf of individual service users, which users can author an access policy to control whether requests to access the instances are allowed or disallowed at the authorization service. The access policies can be authored according to policy guidelines established by the service. If the policy guidelines of a service change (e.g., are updated to a new version), the authorization service can detect policies non-compliant with the changed guidelines, and notify service users of the non-compliant policies. The authorization service may further notify users of modifications or transformations to bring access policies into compliances with changed policy guidelines.
US10834133B2 Mobile device security policy based on authorized scopes
A technique to enforce mobile device security policy is based on a “risk profile” of the individual device, where the risk profile is fine-grained and based on the types of applications installed on the device, the services they are accessing, and the operation(s) the user granted the device authorization to perform. Thus, the approach takes into account not only the actual applications installed on the device (and those actively in use), but also the services those applications are accessing, and the scope of operations the user has granted the device authorization to perform. By combining this information to create the risk profile, a suitable security policy, including one that does not unnecessarily degrade device usability, may then be applied.
US10834132B2 Implementing and optimizing secure socket layer intercept
Provided are methods and systems for intercepting encrypted data packets. A system for intercepting encrypted data packets includes a first device and a second device. The first device serves a client-side data traffic associated with a client device and the second device serves a server-side data traffic associated with a server. The first device is configured to intercept at least one encrypted data packet. The first device is further configured to decrypt the encrypted packet to produce at least one decrypted data packet. The first device provides the decrypted data packet to one or more monitoring devices for inspection of the decrypted data packet. The second device is configured to receive, from the one or more monitoring devices, the at least one decrypted data packet. The second device is further operable to re-encrypt the decrypted data packet to produce the at least one encrypted data packet.
US10834130B2 Detection of malicious attempts to access a decoy database object based on connection type
A method by a security system for detecting malicious attempts to access a decoy database object in a database. The database includes database objects accessible by clients of the database called database clients. The method includes detecting access to a decoy database object of the database is being attempted by a database client over a connection to the database, where the decoy database object is a database object that is created for the purpose of deceiving an attacker as opposed to being a legitimate database object, determining that the connection is of an application connection type, where the application connection type is a type of connection over which queries generated by a database client are submitted, and responsive to the determination that the connection is of the application connection type, causing an alert to be generated.
US10834126B2 Method and system for processing forged TCP packet
A method for processing forged TCP packets is provided. The method utilizes a window size field in a header of a to-be-processed TCP packet and a window scaling factor to calculate a receive window value of the TCP packet for comparison with an actual receive window value. Further, based on a degree of deviation between the comparison result and a threshold, whether the to-be-processed TCP packet is forged is determined, such that the probability of finding and discarding the forged TCP packet is improved.
US10834123B2 Generating data clusters
Techniques are disclosed for prioritizing a plurality of clusters. Prioritizing clusters may generally include identifying a scoring strategy for prioritizing the plurality of clusters. Each cluster is generated from a seed and stores a collection of data retrieved using the seed. For each cluster, elements of the collection of data stored by the cluster are evaluated according to the scoring strategy and a score is assigned to the cluster based on the evaluation. The clusters may be ranked according to the respective scores assigned to the plurality of clusters. The collection of data stored by each cluster may include financial data evaluated by the scoring strategy for a risk of fraud. The score assigned to each cluster may correspond to an amount at risk.
US10834122B2 Prevention of majority attacks
An example operation may include one or more of connecting, by a participating blockchain (BC) node, to a blockchain network configured to store a plurality of packages, selecting and downloading, by the participating BC node, a package containing a random code variant identified by a unique identifier (ID), executing, by the participating BC node, the package to calculate an outcome associated with the variant ID, receiving, by the participating BC node, votes on outcomes associated with the variant ID and votes on outcomes associated with different variant IDs from other nodes of the blockchain network, and analyzing, by the participating BC node, the votes to determine if the votes on the outcomes associated with the variant ID are different from the votes on the outcomes associated with the different variant IDs.
US10834117B2 Enhanced data security through uniqueness checking
A system records use of values used in cryptographic algorithms where the values are subject to uniqueness constraints. As new values are received, the system checks whether violations of a unique constraint has occurred. If a violation occurs, the system performs actions to mitigate potential compromise caused by exploitation of a vulnerability caused by violation of the uniqueness constraint.
US10834115B2 Methods and systems for providing security for page framing
Techniques for analyzing a page to be presented by a browser running on a computing platform. The page is disabled. The page is tested to determine if the page is framed by a second page. The page is enabled if the testing indicates that the page is not framed by a second page. Each level of a hierarchy of framed pages is inspected to determine whether each level is authorized. The page is enabled if the inspecting indicates that each level of the hierarchy of framed pages is authorized.
US10834111B2 Method and system for email phishing attempts identification and notification through organizational cognitive solutions
Embodiments of the present invention may detect, identify, and notify of email phishing attacks. For example, a method may comprise constructing at least one behavioral model for an organization based on features extracted from a plurality of email messages and based on information relating to the organization, including analyzing behavioral patterns of emails in the organization, analyzing a plurality of new email messages using the behavioral model to determine non-binary scores representing analysis of features of the messages, including behavioral patterns of the new emails in the organization with regard to the features, determining whether any of the plurality of new email messages are malicious email messages based on the non-binary scores for the new email messages indicating that the new email messages deviate from the behavioral patterns of emails in the organization included in the behavioral model, and transmitting a notification that a message is a malicious email message.
US10834102B2 Client-side attack detection in web applications
A client comprising a web browser is provided. The client is configured to: run an application in the web browser, the application comprising a sensor including sensor JavaScript code, wherein running the application comprises executing the sensor JavaScript code as the first JavaScript code in the web browser to activate the sensor; and wherein the sensor is configured to: gather data with respect to the application at runtime; and check predetermined application-specific rules against the gathered data for detecting client-side attacks at runtime.
US10834101B2 Applying bytecode obfuscation techniques to programs written in an interpreted language
In an embodiment, a computer system configured to improve security of client computer interacting with server computers comprises one or more processors; a digital electronic memory storing a set of program instructions which when executed using the one or more processors cause the one or more processors to: process a first set of original instructions that produce a first set of outputs or effects; generate a first set of interpreter instructions that define a first interpreter; generate a first set of alternate instructions from the first set of original instructions, wherein the first set of alternate instructions is functionally equivalent to the first set of original instructions when the first set of alternate instructions is executed by the first interpreter; send, to the first client computer, the first set of alternate instructions and the first set of interpreter instructions.
US10834099B2 Identifying a file using metadata and determining a security classification of the file before completing receipt of the file
A security platform may determine, during receipt of a file, metadata associated with the file. The file may be intended for a client device. The security platform may compute, based on the metadata and during the receipt of the file, a hash associated with the file. The security platform may identify, during the receipt of the file, a stored hash that matches the hash associated with the file. The security platform may determine a security classification of the file based on information associated with a security classification corresponding to the stored hash. The security classification of the file may be determined before the receipt of the file is complete. The security platform may selectively permit, based on the security classification of the file, the client device to complete a receipt of the file.
US10834098B2 Using a story when generating inferences using an adaptive trust profile
A system, method, and computer-readable medium are disclosed for monitoring actions of an entity. In various embodiments the monitoring includes: monitoring a plurality of electronically-observable actions of the entity, the plurality of electronically-observable actions of the entity corresponding to a plurality of events enacted by the entity; associating the plurality of events enacted by the entity with a story; and, using the story to derive an inference regarding the entity.
US10834096B2 Methods and systems for controlling access to a protected resource
A method for regulating access to a protected resource is disclosed. The method includes: receiving, from a client application executing on a first device, a first signal including a request to obtain an access token for accessing a protected resource, the request including: a client identifier uniquely identifying the client application; a user identifier uniquely identifying an end user of the client application; and a public key associated with the end user; in response to validating the request, transmitting, to the client application on the first device, a second signal including an access token for accessing the protected resource; receiving, from a web server associated with the protected resource, a third signal including a request to validate a bearer token submitted by the client application to the web server, the bearer token including a digital signature; validating the bearer token, the validating including verifying the digital signature using the public key; and in response to validating the bearer token, sending to the web server a fourth signal including a notification that the bearer token is valid.
US10834095B2 Post-commit validation in a distributed ledger
An example operation may include one or more of receiving a request for performing a post-commit validation of a chain of blocks on a distributed ledger, the chain of blocks being encrypted using an encryption key, requesting cooperation from one or more auditor nodes associated with the distributed ledger, each auditor node comprising a partial secret of a decryption key corresponding to the encryption key, and, in response to receiving partial secrets from a minimum threshold of auditor nodes, recovering the decryption key based on the received partial secrets, decrypting the chain of blocks based on the recovered decryption key, and validating content included within the chain of blocks.
US10834090B2 System, device, and method for detection of proxy server
Devices, systems, and methods of detecting whether an electronic device or computerized device or computer, is communicating with a computerized service or a trusted server directly and without an intermediary web-proxy, or indirectly by utilizing a proxy server or web-proxy. The system searches for particular characteristics or attributes, that characterize a proxy-based communication session or channel and that do not characterize a direct non-proxy-based communication session or channel; or conversely, the system searches for particular characteristics or attributes, that characterize a direct non-proxy-based communication session or channel and that do not characterize a proxy-based communication session or channel; and based on these characteristics, determines whether or not a proxy server exists and operates.
US10834089B2 Dynamic filtering of posted content
Systems and methods for dynamic filtering of content posted to a social network are disclosed. In aspects, a method of the system includes generating, by a computing device, a user profile list for a user of a social network, the user profile list including data regarding the user's preferences with respect to undesirable content; monitoring, by the computing device, a content post on the social network to determine if the content post includes the undesirable content, the content post being displayed to the user through a social network interface; determining, by the computing device, that the content post includes the undesirable content; and effecting a change in the display of the content post in accordance with one or more predetermined display rules based on the determining that the content post includes the undesirable content.
US10834086B1 Hybrid cloud-based authentication for flash storage array access
Providing authorization and authentication in a cloud for a user of a storage array includes: receiving, by a storage array access module from a client-side array services module, a token representing authentication of user credentials and authorized access privileges defining one or more storage array services accessible by the user, where the token is generated by a cloud-based security module upon authentication of the user credentials and identification of authorized access privileges for the user; receiving, by the storage array access module from the user, a user access request to one or more storage array services; and determining, by the storage array access module, whether to grant the user access request in dependence upon the authorized access privileges represented by the token.
US10834085B2 Method and apparatus for speeding up ACL rule lookups that include TCP/UDP port ranges in the rules
A hardware access control list (ACL) table is used to evaluate a received network packet to identify a first rule key portion in the hardware ACL table having a first address range indicator value that matches with an address value in the network packet, and the first rule key portion is then used to search a software-maintained list of extended check nodes linked with the first rule key portion to identify a first extended check node having a first address range value that matches with the address value in the network packet and to select one or more actions contained in the first extended check node to be performed by the networking element.
US10834084B2 Privileged identity authentication based on user behaviors
Embodiments can provide a method for accessing an endpoint, including: receiving, from a privileged user, a request for accessing the endpoint; providing, by a user behavior analytics device, a risk score with respect to the privileged user, wherein the risk score is calculated based on at least one action performed by the privileged user. If the risk score is lower than a first predefined value, providing access to the endpoint for the privileged user. If the risk score is higher than a second predefined value, denying the request for accessing the endpoint. If the risk score is between the first predefined value and the second predefined value, performing at least one of: providing, by a privileged identity management server, a multi-factor authentication against the privileged user; and rerouting the request for accessing the endpoint for approval.
US10834076B2 Website hosting provider database associating a temporary access code and an internet related activity of a user
An Internet resource provider (IRP) may authenticate a user and, upon a successful authentication, allow the user to perform one or more actions on webpages that are within an account of the user. The IPR may store the most recent actions of the user in a temporary access code (TAC) database. If the user has a problem, the user may select a TAC button on a webpage within the account of the user. The IPR may generate a TAC, store the TAC in association with the recent activities of the user in the TAC database and transmit the TAC to the user. The user may contact and provide the TAC to a customer support service center. The customer support service center may authenticate the user based solely on the TAC and determine the one or more recent actions of the user in the TAC database. The customer support service center may provide assistance to the user based at least partially on the one or more recent actions of the user.
US10834070B1 Remote logging agent for accessing application server log data
A remote logging agent is provided for accessing application log data from one or more servers. One method comprises: obtaining a logging configuration file for an application that identifies one or more servers associated with the application, a communication protocol and authentication credentials for accessing the identified servers, a path where log data is stored on the identified servers, and a storage destination for storing log data obtained from the identified servers; establishing, using a logging agent, a connection to the identified servers using the communication protocol and the authentication credentials, wherein the logging agent is distinct and remote from the application and the identified servers; obtaining, using the logging agent, the log data from the identified servers using the path; and storing, using the logging agent, the log data from the identified servers in the one storage destination specified for storing the obtained log data.
US10834068B1 System and method for receiving information among computer systems without enabling log ins if the user identifiers are compromised
A system and method allows a matching system to mediate requests for information among different computer systems without storing information that can be used to log into those computer systems.
US10834065B1 Methods for SSL protected NTLM re-authentication and devices thereof
A method, non-transitory computer readable medium, and device that assists with SSL protected NTLM reauthentication includes receiving a connection reset message from a web application server. The received connection reset message is forwarded to the client computing device. A recent request including connection data to access a web application is received on a new connection as a response to the forwarded connection reset message from the client computing device. Next, it is determined whether the received recent request to access the web application including the connection data is identical to a stored connection data. The client computing device is re-authenticated and granted access to the requested web application to when the connection data is determined to be identical to the stored connection data.
US10834063B2 Facilitating provisioning of an out-of-band pseudonym over a secure communication channel
Facilitation of out-of-band pseudonym provisioning for a subscriber of a device is provided herein. In one embodiment, a method comprises: receiving, by a device comprising a processor, one way authentication data from a secure server; transmitting, by the device, to the secure server, via a secure communication channel, an identifier for a subscriber of the device, wherein the transmitting is performed based on the receiving the one way authentication data from the secure server; and receiving, by the device from the secure server, a pseudonym, wherein the pseudonym enables access by the device to an authentication device at a first time.
US10834060B2 File sharing and policy control based on file link mechanism
A method, a computing system and a computer program product are provided. A link for use by a user to access a file is created. Content of the file is encrypted using a common key. The common key is encrypted using a public key of the user and is registered in the link. Access rights regarding the file are set for the user and registered in the link. The link includes information for use by the user to access the file when the access rights indicate that the user is authorized to access the file.
US10834056B2 Dynamically controlling firewall ports based on server transactions to reduce risks
Methods and devices for opening a firewall port for a specified time period are provided. A data packet having a source address and a destination address beyond a firewall transmitted from a process source is intercepted by an interceptor. Responsive to determining, based on the source address, that a firewall port is not open, buffering the data packet. A request comprising an identifier, a protocol identifier, and a time period the firewall port is to be open is transmitted to a firewall controller. The firewall controller authenticates the request based on the identifier and opens a firewall port determined based on the protocol identifier. The interceptor receives an open firewall port notification indicating that the firewall port has been opened and transmits the data packet through the firewall port to the destination address. The firewall controller closes the firewall port when the time period has expired.
US10834052B2 Monitoring device and method implemented by an access point for a telecommunications network
A monitoring method implemented by an access point for a network that can maintain an address association table is described. The method can include selecting at least two entries in the address association table, storing at least one predetermined characteristic obtained over a predefined period of time for each inflow and each outflow associated with the selected entries, and comparing, for at least one pair of selected entries, at least one stored characteristic for an inflow associated with one of the entries of the pair with the at least one corresponding stored characteristic for an outflow associated with the other entry of the pair. If, for at least one pair of entries, the comparison step indicates that an inflow associated with one of the entries of the pair transports an application content of the same nature as an outflow associated with the other entry of the pair, a risk of fraud can be detected.
US10834051B2 Proxy server-based malware detection
Disclosed are various embodiments for malware detection by way of proxy servers. In one embodiment, a proxied request for a network resource from a network site is received from a client device by a proxy server application. The proxied request is analyzed to determine whether the proxied request includes protected information transmitted in an unsecured manner. It is then determined whether the network resource comprises malware based at least in part on an execution of the network resource or whether the proxied request includes the protected information transmitted in the unsecured manner. The proxy server application refrains from sending data generated by the network resource to the client device in response to the proxied request when the network resource is determined to comprise the malware.
US10834044B2 Domain name system operations implemented using scalable virtual traffic hub
Connectivity is enabled between a first and second isolated network using a virtual traffic hub that includes a decision master node responsible for determining a routing action for a packet received at the hub. At the hub, a determination is made that a particular domain name system (DNS) message being directed to a first resource in the first isolated network is to include an indication of a second resource in the second isolated network. The second resource is assigned a network address within a private address range of the second isolated network, which overlaps with a private address range being used in the first isolated network. The hub causes a transformed version of the network address to be included in the DNS message delivered to the first resource.
US10834042B2 Inference of location where each textual message was posted
A method for inferring a location where each textual message was posted by a test user method includes partitioning an area into a plurality of sub-areas, associating textual messages posted by training users with respective sub-areas where each textual message was posted, extracting a keyword characterizing each sub-area among one or more keywords obtained from each textual message posted by the training users associated with each sub-area, constructing a feature vector of the given sub-area based on each extracted keyword, computing a transition probability for the given sub-area by time-series of location information associated with the textual messages posted by the training user, computing a plurality of scores of each location, using the feature vector, where each textual message was posted by the test user, and computing, based on the plural scores and the transition probability, time-series of locations where each textual message was posted by the test user.
US10834039B2 Messaging system
A messaging system for both generating and receiving message data, which breaks up a sent message and displays it as a time sequence of message parts on the receiving user's device. Breaks in the sent message are defined by delimiters, which are inserted into the message data by the user on the generate device and are detected by the receiving device. Delimiters or other part of the message data determine the time period for each part of the message. The first part of the message is displayed on the receiving user's device for the time period associated with that part. Once the time period for the first message part has expired, the next message part is displayed in addition to the preceding part. This continues until the whole sent message is displayed, thus creating a timeline of message parts for the receiving user.
US10834031B2 Information exchange method, client, and apparatus
An information exchange method, a client, and an apparatus where the method includes obtaining, by an email client, a receiver email address and email description information of a current email; determining, by the email client, whether an instant messaging account bound to the receiver email address satisfies a pre-stored session initiation condition; and if the instant messaging account bound to the receiver email address satisfies the session initiation condition, sending, by the email client, the receiver email address and the email description information to an instant messaging client in to which a sender instant messaging account is logged, so that the instant messaging client requests an instant messaging server to create a session including the sender instant messaging account and a receiver instant messaging account, and the instant messaging client sends, in the session, an instant messaging message including the email description information.
US10834030B2 Variable undo-send delay time
A computer-based communications system is provided. In aspects of the invention, the computer-based communications system is configured to adjust a time period for delaying a message from being sent by a user. A message is drafted by a user to be sent to a recipient. A selection is received for send the message to the recipient. A time period is adjusted for sending the message to the recipient based on user-centric considerations where the time period for delaying sending the message is not explicitly specified by the user. The message is delayed being sent for the time period. After the time period, the message is sent to the recipient.
US10834029B2 Automatic modification of message signatures using contextual data
In automatically modifying message signatures, a system extract message content from the message text from a sender to a recipient. Using at least the message content, the system determines: a relationship context capturing a nature of the relationship between the sender and the recipient, a temporal context capturing temporal features of the message content, a historical context capturing a nature of electronic interactions between the sender and the recipient over time, and a tone category capturing a primary tone and strength of the primary tone of the message content. The system selects a signature template associated with contextual data that includes the relationship, temporal, and historical contexts and the tone category. The signature template includes a set of sections where a signature is modified by inserting section values associated with the contextual data into the set of sections. The modified signature is inserted into the message text.
US10834027B2 Protection of sensitive chat data
Particular embodiments described herein provide for a system that can be configured to communicate chat session data during a chat session to a first display of a first electronic device, communicate the chat session data during the chat session to a second display of a second electronic device, receive sensitive data during the chat session from the first electronic device, and protect the sensitive data from being displayed on the second display during the chat session without breaking continuity of the chat session.
US10834023B2 Distributed FPGA solution for high-performance computing in the cloud
A data processing system, method and device. A device can include a plurality of data cards having host interface connectors initially configured to transmit signals according to a first communication protocol and data card connectors that communicate with external devices using a different communication protocol. The data cards are converted so that the host interface connectors also transmit signals using the second communication protocol. The plurality of data cards are interconnected so that signals can be routed through the data cards to provide desired data processing functions. A cross-point switch fabric allows the signals to be routed to the appropriate data card or cards. Multiple devices can be interconnected to provide a distributed data processing grid providing access to the data processing functions for external devices that do not communicate using the first communication protocol.
US10834022B2 Resource configuration using topology diagram
Methods and systems of configuring resources are described. A processor may receive a request to employ a set of resources to perform a task. The processor may display a topology diagram that includes image objects representing the requested resources and input objects associated with configurable resources. The processor may receive parameter values entered via the input objects of the topology diagram displayed on the user interface. The processor may validate that the set of parameter values is acceptable. The processor may, in response to the validating, configure the at least one configurable resource with the set of parameter values. The processor may output a notification indicating that the requested set of resources configured with the set of parameter values is capable of performing the task.
US10834020B1 Scalable network overhead for contested environments
Sending network data. A method includes transmitting data on a communication link, in an environment. A network control overhead portion of the data is allocated to network control overhead data packets for controlling how data is transmitted on the communication link. A user data portion of the data is allocated to user data packets for transmitting data between users of nodes on the communication link. A change in data capacity of the communication link is identified. As a result, a change is made in the network control overhead portion of the data, changing at least one of frequency of network control overhead data packets or size of network control overhead data packets to attempt to maintain a predetermined proportion factor for the network control overhead portion as compared to the user data portion. The network control overhead portion of the data is transmitted according to the change.
US10834019B2 Increased network resources in exchange for sharing of device resources
An indicator can be received from a client device. The indicator can indicate an agreement by a user of the client device to share device resources of the client device with an entity distinct from the client device and distinct from the user of the client device. Responsive to receiving from the mobile device the indicator, and responsive to receiving a message from a sharing agent of the mobile device indicating that that no user inputs are received by the mobile device over a particular duration of time and that video content is not being streamed to the mobile device, a client access agent can access the shared resources, data to be processed by the shared device resources can be communicated to the mobile device, and a level of a quality of service provided by a communication network to the mobile device can be increased.
US10834014B2 Systems and methods for establishing a user purpose fulfillment computing platform
A system, method, and computer-readable storage medium configured to facilitate user purpose in a computing architecture.
US10834009B2 Systems and methods for predictive scheduling and rate limiting
Systems and methods are disclosed for enhancing network performance by using modified traffic control (e.g., rate limiting and/or scheduling) techniques to control a rate of packet (e.g., data packet) traffic to a queue scheduled by a Quality of Service (QoS) engine for reading and transmission. In particular, the QoS engine schedules packets using estimated packet sizes before an actual packet size is known by a direct memory access (DMA) engine coupled to the QoS engine. The QoS engine subsequently compensates for discrepancies between the estimated packet sizes and actual packet sizes (e.g., when the DMA engine has received an actual packet size of the scheduled packet). Using these modified traffic control techniques that leverage estimating packet sizes may reduce and/or eliminate latency introduced due to determining actual packet sizes.
US10834008B2 Arbitration of multiple-thousands of flows for convergence enhanced ethernet
In one embodiment, a method includes receiving a plurality of flows, each flow comprising packets of data and assigning a service credit to each of the plurality of flows. In addition, the method includes assigning a weight parameter to each of the plurality of flows, and selecting a flow from a head of a first control queue unless the first control queue is empty or there is indication that the first control queue should be avoided. A flow is selected from a head of a second control queue in response to a determination that the first control queue is empty or there is indication that the first control queue should be avoided. Additionally, the method includes providing a number of units of service to the selected flow. Moreover, the method includes decreasing the selected flow's service credit by an amount corresponding to the number of units of service provided thereto.
US10834003B2 Systems and methods for adaptive bandwidth throttling
Aspects of the current patent document include systems and methods to adaptive bandwidth throttling, for example, for use in data backup systems and data recovery systems. In embodiments, bandwidth estimation can be performed while sending data. In embodiments, the bandwidth estimation is used in data backups to send data to be backed up. In embodiments, a server performs network bandwidth estimation by receiving relatively small data packets and estimating bandwidth until bandwidth reliability conditions are satisfied.
US10834002B2 Systems and methods for pacing data flows
A method includes examining a first data packet transmitted to a first network equipment from a second network equipment. A data flow type of the first data packet is determined. If the data flow type is determined to be the first type of data flow, determining a delivery throughput of the first data packet to the first network equipment over a data flow path. The determined delivery performance of the first data packet is compared to an expected peak data throughput capacity for a data packet transmitted to the first network equipment from the second network equipment. Transmission of data packets to the first network equipment is paced if the comparison of the determined delivery performance and the expected peak data throughput capacity indicates a congestion exists over the data flow path.
US10833997B2 System and method of adaptive congestion management
A system and method for adaptive congestion management uses measurements of usage of each edge network segment both per-customer and for each edge network segment as a whole. The technique then processes these measurements to determine what changes to make to allowed transfer rates to alleviate congestion. Adaptive congestion management also uses these measurements to determine when to remove any restrictions on transfer rates in the case that the edge network segment is no longer congested.
US10833995B2 Method and apparatus for datacenter congestion control based on software defined network
Embodiments of the present invention provide a congestion control method and apparatus based on a software defined network SDN, and an SDN controller. The method comprises: obtaining a packet_in message sent by a switch; determining a data packet included in the packet_in message; performing a first congestion control processing for a network where the SDN controller is located based on a topological structure and link information of the network when the data packet is a handshake information SYN packet for requesting to establish a TCP connection; performing a second congestion control processing for the network based on the link information when the data packet is a finish information FIN packet for responding to disconnection of a TCP connection; deleting information of a TCP connection stored in a database and corresponding to the data packet when the data packet is an FIN packet requesting to disconnect a TCP connection. As compared with the prior art, by using the solutions according to the embodiments of the present invention, the SDN controller may improve fairness of the bandwidth between each data flow, and reduce TCP retransmission and timeout caused by the highly burst short traffic, and achieve the control of the TCP Incast congestion existing in the datacenter.
US10833994B2 Enhanced local access in mobile communications
A hybrid user equipment and advanced user equipment data offloading architecture is provided. In this hybrid architecture, the advanced user equipment includes a backhaul link to a telecommunication network and/or the Internet. The user equipment can send and receive data through the advanced user equipment using the backhaul link.
US10833993B2 Channel bonding
A system and method for channel bonding is disclosed. The system and method enable transmission of data across multiple connections using multiple network interfaces. Further, the system and method are configured to handle slow or problematic connections and are configured to dynamically modify the bit rate of one or more media data streams.
US10833992B1 Associating route tables with ingress traffic to logically isolated networks
Route tables may be associated with ingress traffic for logically isolated networks. A routing device at the edge of a logically isolated network may receive a route to include in a route table that is associated with ingress traffic to the logically isolated network to forward the ingress traffic to a network appliance hosted in the logically isolated network. Network packets received at the edge routing device may have a destination of a computing resource hosted in the logically isolated network. The edge routing device may identify the route in the route table to override the destination in the network packet with the network appliance and forward the network packet to the network appliance according to the route.
US10833986B2 Service function chaining SFC-based packet forwarding method, apparatus, and system
A service function chaining (SFC)-based packet forwarding method, an apparatus, and a system, where the packet forwarding method includes receiving, by a first service function forwarding node, a packet forwarding rule from a control node, where the packet forwarding rule indicating a mapping relationship between a match item of traffic characteristic information of a packet and route prefix information, receiving, by the first service function forwarding node, a first packet, where a header of the first packet carries traffic characteristic information of the first packet, determining, by the first service function forwarding node based on the packet forwarding rule, target route prefix information corresponding to the traffic characteristic information of the first packet, determining, by the first service function forwarding node, target next-hop information based on the target route prefix information, and forwarding the first packet based on the target next-hop information.
US10833984B1 Integrated access backhaul network metric exchange for 5G or other next generation network
In a 5G network, an adaptation layer of a child integrated access backhaul (IAB) node can send a quality metric to its parent IAB node. The quality metric can indicate to the parent IAB node, information that may not be readily available to the parent IAB node. Such a quality metric can be transmitted by the child IAB node to the parent IAB node via a header field of an adaptation layer packet data unit (PDU) on an uplink channel of an IAB link. Thus, the parent IAB node can make a more efficient routing decision based on data, to which otherwise, the parent IAB node may not ordinarily be privy.
US10833983B2 Intelligent medical escalation process
A medical network service can replace or supplement some or all of an expensive internally staffed clinical facility network with a cloud-based networking service. The medical network service in certain embodiments can provide networking services via software as a service technologies, platform as a service technologies, and/or infrastructure as a service technologies. The medical network service can provide these services to large existing clinical facilities such as metropolitan hospitals as well as to smaller clinical facilities such as specialized surgical centers. The medical network service can replace and/or supplement existing IT networks in hospitals and other clinical facilities and can therefore reduce costs and increase security and reliability of those networks. In addition, the medical network service can provide synergistic benefits that can improve patient outcomes and patient care. In addition, a medical edge router can provide redundant communications features for transmitting patient data to the medical network service.
US10833980B2 Router device using flow duplication
A method and apparatus for routing a plurality of session packets across a network toward a destination modifies each packet to include a sequence number that is different from the sequence number of other packets in the plurality of packets. Accordingly, at this point, each of the plurality of packets is transformed into a corresponding plurality of processed packets. The method also duplicates the plurality of processed packets to produce a corresponding plurality of duplicated packets. Next, the method forwards the plurality of processed packets toward the destination using a first stateful path through the network, and correspondingly forwards the plurality of duplicated packets toward the destination using a second stateful path through the network. In preferred embodiments, the first stateful path is different from the second stateful path. For example, the two paths may be entirely distinct in that they share no common intermediary elements.
US10833978B2 Integrated wireline and wireless access using software defined networking
An integrated wireless and wireline access system that uses software defined networking is provided to deliver communication services to user equipment via a variety of network access technologies. The software defined networking system can dynamically choose which network access technology to use to deliver services to the user equipment based on network conditions, quality of service concerns, and user equipment context. The user equipment can have different addresses based on the network access technology, and the software defined networking can redirect communications that are directed to a first address associated with the device on a first network to a second address associated with the same device on a second network.
US10833975B2 Operations processing of multiple-protocol packets by packet switching devices in a network
In one embodiment, improved operations processing of multiple-protocol packets is performed by a node connected to a network. Received is a multiple-protocol (MP) packet that has multiple protocol headers, each having an operations data field. The operations data field of a first protocol header includes first protocol ordered operations data. Operations data is cohered from the operations data field of each of multiple protocol headers into the operations data field of a second protocol header resulting in the operations data field of the second protocol header including ordered MP operations data evidencing operations data of each of the multiple network nodes in a node traversal order taken by the MP packet among multiple network nodes. The ordered MP operations data includes said first protocol ordered operations data cohered from the operations data field of the first protocol header.
US10833974B2 Dynamic configuration of routing paths in a data network
A method for selecting routing paths of data packets in a data network including plural communication links and routing apparatuses. The method includes: calculating and assigning to the communication links respective communication links' costs; calculating, for at least two different routing paths, respective routing path overall costs, which depend on the communication links' costs assigned to communication links making up such routing path; selecting, among the at least two different routing paths, the routing path having the lower routing path overall cost; causing a new data packet to be routed in the data network over the selected routing path, and collecting measures indicative of at least one performance parameter indicating a performance of previous transmissions of data packets from origin end points of the data network to destination end points of the data network, and using the collected measures for calculating the communication links' costs.
US10833973B1 Enabling selection of a bypass path from available paths in an open shortest path first (OSPF) domain and an intermediate system to intermediate system (ISIS) domain
A network device receives an attribute identifying paths associated with an open shortest path first (OSPF) domain of a network and an intermediate system to intermediate system (ISIS) domain of the network, and provides the attribute to other network devices of the network. The network device receives traffic destined for one of the other network devices of the network, and determines that a primary path is unavailable for routing the traffic to the one of the other network devices. The network device selects a secondary path from the paths identified by the attribute. The secondary path is selected based on determining that the primary path is unavailable, and the secondary path is associated with the OSPF domain or the ISIS domain of the network. The network device provides the traffic to the one of the other network devices via the secondary path.
US10833972B2 Automatically selecting an optimized communication channel for communications with a deflect in an overlay network
In accordance with one or more preferred implementations, an overlay network in the form of a dispersive virtual network is implemented utilizing data deflects to implement and facilitate routing in a data plane and call processing deflects to implement and facilitate routing in a control plane. Various nodes in the dispersive virtual network, such as end devices running dispersive virtual networking client software, establish communication channels to these deflects running dispersive virtual networking protocols transported by user datagram protocol (UDP) frames, transmission control protocol (TCP) streams, and hypertext transfer protocol (HTTP) streams. In accordance with one or more preferred implementations, software allows nodes in a dispersive virtual network to automatically detect the channel types that are available at the time the node must initiate a new session, and automatically configure the most efficient communication channel without requiring input from an end user or from a network administrator.
US10833965B2 Method and apparatus for the repercussion-free capture of data
A method and an apparatus for repercussion-free capture of data from at least one device is provided, which is arranged in a first network having a high security requirement, in a second network having a low security requirement, containing a requesting unit, which is arranged within the first network and is designed to request data from the at least one device in accordance with a request profile, a monitoring unit, which is arranged within the first network and is designed to monitor data that have been sent by the at least one device in response to the request and to transmit said data to an evaluation unit, an evaluation unit, which is arranged in the second network and is designed to compare the monitored data with the data expected on the basis of the request profile, and an alarm unit.
US10833964B2 Visual analytical method and system for network system structure and network communication mode
The present disclosure provides a visual analytical method for a network system structure and a network communication mode including following steps: pre-processing network traffic flow log data; dividing and analyzing network nodes by utilizing a visualization technology according to the pre-processed data, and combining a user interaction to determine server nodes and client nodes in the network nodes; performing a visual analysis on traffic flow and an access situation of the server nodes to determine a server function category according to the determined server nodes; and presenting and analyzing the network communication mode through the visualization technology according to the determined server nodes, the client nodes and the server function category. The present disclosure further provides a visual analytical system for the network system structure and the network communication mode.
US10833949B2 Extension resource groups of provider network services
At a network manager of an extension resource group of a provider network, a message comprising a command to launch a compute instance is received at an address which is part of a first network configured at a premise external to the provider network. The extension resource group includes a first host at the external premise. Within a second network configured at the external premise, the first host is assigned an address within a second address range. Addresses within the second range are also assigned to hosts within the provider network. The command is transmitted to the first host, and a compute instance is instantiated.
US10833948B2 Zero configuration networking on a subnetted network
Methods and apparatus are described for implementing service discovery protocols on subnetted zero configuration networks. A process for managing service advertisement across a plurality of subnets may comprise: collecting service advertisements on a local network level by designated network devices; sending listings of services from each of the designated devices to a master network device; sending a table of services for the plurality of subnets from the master device to all of the designated devices on the plurality of subnets; creating by each of the designated network devices for the corresponding subnet a service discovery proxy table listing the service advertisements on the subnets of the plurality of subnets beyond the subnet corresponding to the designated device; and periodically transmitting by each of the designated devices on the corresponding subnets service advertisements for the services of the corresponding service discovery proxy table.
US10833942B2 Behavioral based device clustering system and method
One or more embodiments are directed behavioral based device clustering. A network traffic log of devices in the network is received. Features of devices are extracted from the network traffic log and aggregated into an aggregated feature matrix on a per device basis. By applying a topic modeling algorithm to the aggregated feature matrix, the devices are clustered into device groups according to behavior groups. A device is assigned to the device group to create an assignment.
US10833941B2 Controlling network traffic using acceleration policies
Concepts and technologies are disclosed herein for controlling network traffic using acceleration policies. According to various embodiments of the concepts and technologies disclosed herein, an acceleration application can be executed by a device for analyzing data requests, determining if the data communications requested by way of the request can be delayed, accelerated, or otherwise modified (“shifted”) based upon policies and/or network operating conditions. In some embodiments, the acceleration application can be configured to access acceleration policies that can define how certain traffic is to be shifted. The acceleration application also can be configured to obtain and analyze network data to determine network operating conditions and determine, based upon the determined conditions, if traffic is to be shifted based upon the network operating conditions.
US10833939B2 Providing positive confirmation of a mobile or portable computer wipe
An approach is disclosed that transmits, from a transmitting device, a wipe instruction to a target device. Execution of the wipe instruction erases a data from the target device. After transmission of the wipe instruction, the approach monitors the target device to gather post-wipe instruction data from the target device. The post-wipe instruction data includes connectivity data detected from the target device. The post-wipe instruction data is analyzed with the analysis determining whether the wipe instruction executed successfully on the target device.
US10833933B2 Systems and methods for optimizing a cloud deployed service based on performance metrics of the cloud service
Various systems and methods for managing container and virtual machine locations for a cloud deployed service are described herein. A system includes a configuration generator to: obtain a plurality of constraints from a constraint database; generate a plurality of configuration plans, each of the plurality of configuration plans including the plurality of constraints, each of the plurality of constraints having a value selected from a range of permissible values for the respective constraint; and transmit the plurality of configuration plans to an orchestrator system, the orchestrator system to sequentially instantiate a cloud service based on multiple configuration plans of the plurality of configuration plans; and a performance evaluator to: measure a performance metric of the cloud service as instantiated by each of the multiple configuration plans; and coordinate with the orchestrator system to optimize the performance of the cloud service.
US10833926B2 Touchless secure bootstrapping of IoT devices
Systems and methods for automatically and securely connecting internet of things (IoT) devices to one or more networks. The system can include a bootstrap server and a configuration database to enable configuration settings for a plurality of IoT devices to be stored and accessed. The bootstrap server can configure an appropriate digital security certificate for an IoT device requesting access to the network. The bootstrap server can then provide a bootstrapping message to the IoT device including the digital certificate and other data. A device management server can then provide a device management message to the IoT device to provide one or more of a final configuration, applications, and software or firmware updates. The system replaces the current system, which is substantially manual, with an essentially “touchless” system that requires little or no input from the user or service provider technicians.
US10833923B2 Dynamic multiple access for distributed device communication networks with scheduled and unscheduled transmissions
Disclosed herein are systems and networks comprising a network operations server application for improving a packet-switched communications network, the application configured to: receive data from data source nodes; provide a management console allowing a user to configure a network multi-access protocol for: i) a node, ii) a type of node, iii) a group of nodes, iv) a type of data packet from a node, v) a type of data packet from a type of node, vi) a type of data packet from a group of nodes, or vii) a specific instance of a data packet from a node, the network multi-access protocol a scheduled or random access protocol; and dynamically create channel assignments to allocate bandwidth of the network among channels based on the configured network multi-access protocols to prevent network saturation and minimize data collisions in the packet-switched network.
US10833920B1 Network device maintenance
A method to access a device may include obtaining, at a first device, data over a short-range wireless network from a second device. The data may originate at a remote system that sends the data to the second device through a network connection over a wide area network. The method may also include in response to a fault at the second device, obtaining, at the first device from the remote system, a maintenance command for the second device. The maintenance command may be obtained by the first device over an analog voice network. The method may also include directing, from the first device to the second device, the maintenance command over the short-range wireless network to enable the second device to perform the maintenance command.
US10833919B2 Node device operation method, work status switching apparatus, node device, and medium
This application discloses a node device operation method, a work status switching apparatus, a node device, and a medium, and relates to the field of network technologies. The method includes: receiving voting requests of a plurality of node devices, a quantity of the plurality of node devices being greater than half a quantity of node devices in a system; obtaining cycle length information and latest log indexes from the voting requests of the plurality of node devices if a current node device operates in a leader state; and switching a current work status from the leader state to a follower state or a candidate state if all the cycle length information in the voting requests of the plurality of node devices is greater than cycle length information of the current node device and all the latest log indexes in the voting requests of the plurality of node devices are not less than a latest log index of the current node device. This application enables that a first sub-cluster and a second sub-cluster can be combined into one system to work together, thereby improving the operational reliability of the system.
US10833916B1 Live monitoring with most valuable action to trigger automation
A system may include one or more processors disposed within a management network. An end-user network may contain agent instances and one or more servers, where the one or more servers are operable to: (i) receive communications to the end-user network, and (ii) assign agent instances to service the communications. The one or more processors may be configured to perform one or more tasks. These tasks may include receiving, from the end-user network, data associated with the processes of the one or more servers; determining, based on a specification, operations to be performed by the one or more servers, wherein the specification is defined by the end-user network and comprises logical directives, each directive containing conditions that, if satisfied by the received data, define the operations; and providing, to the one or more servers, the operations.
US10833912B2 Methods, devices, servers, apparatus, and systems for wireless internet of things applications
The present teaching relates to wireless Internet of Things. In one example, a time reversal client is disclosed. The time reversal client comprises a processor, a memory communicatively coupled with the processor, and a set of instructions, when executed by the processor based on the memory, that cause the time reversal client to perform the following steps: communicatively coupling with a time reversal server through a network, obtaining a set of channel state information (CSI), wherein the set of CSI is captured when at least one probing signal is sent from the wireless transmitter to the wireless receiver through a wireless multipath channel associated with a space, and causing the set of CSI to be sent to the time reversal server through the network.
US10833910B1 Opportunistic use of different modulation schemes
Techniques are directed to opportunistically communicating using a modulation scheme that is other than the preferred modulation scheme, to update communication metric data for the second modulation scheme, such as a modulation scheme that has not been used as much as the first modulation scheme. The second modulation scheme may be associated with a higher data rate than the preferred modulation scheme. If communication using the second modulation scheme is successful, subsequent communication may be carried out exclusively using the second modulation scheme, and the communication metrics may develop such that the second modulation scheme becomes the preferred modulation scheme.
US10833901B2 Signal select in underground line location
A transmitter and receiver for performing a signal select algorithm are provided. A transmitter for providing a signal on a line to be located includes at least one direct digital synthesizer, the direct digital synthesizer producing two component frequencies in response to an input square wave signal; and a feedback loop providing the input square wave.
US10833900B2 Joint estimation of communication channel effects in communication receivers
A receiver signal is sampled at a sampling rate equivalent to a chip rate at which chips of a known signal are timed. The resulting receiver signal samples are segmented into receiver signal segments, which are filtered by respective matched filters that are matched to known signal segments segmented from the known signal. Indexes are assigned to elements of the resulting filter response sequences to define an array thereof. Frequency transforms are computed of elements of the filter response sequences in respective columns of the array. Indexes are assigned to elements of the resulting frequency response sequences to define another array thereof. Channel effects imparted on a radio signal are jointly estimated from characteristics of the other array at which at least one local maximum is located.
US10833899B2 Low power physical layer driver topologies
System, methods and apparatus are described that facilitate transmission of data, particularly between two devices within electronic equipment. Transmission lines are selectively terminated in an N-phase polarity encoded transmitter when the transmission lines would otherwise be undriven. Data is mapped to a sequence of symbols to be transmitted on a plurality of wires. The sequence of symbols is encoded in three signals. A first terminal of a plurality of terminals may be driven such that transistors are activated to couple the first terminal to first and second voltage levels. The first terminal may further be driven such that a dedicated transistor is activated to couple the first terminal to an intermediate voltage level.
US10833897B2 Employing modulation layer mapping to improve performance of MIMO communication systems
The disclosed subject matter relates to employing modulation layer mapping to improve the performance of multiple-input and multiple-output (MIMO) communication systems. In one embodiment, a method comprises determining, by a device comprising a processor, codeword information in association with establishment of a wireless communication link with a network device of a wireless communication network, wherein the device and the network device are configured to communicate via the communication link using a MIMO communication scheme. The determining the codeword information comprises determining a code rate and determining a number of modulation indexes for the code rate based on signal-to-noise ratios respectively associated with channel layers included in the MIMO communication scheme. The method further comprises sending, by the device, the codeword information to the network device via a control channel of the wireless communication link.
US10833895B2 Receiver with selectable digital equalization filter options
A device includes a receiver having analog front-end circuitry and a digital signal processing (DSP) circuit. The DSP circuit is configured to select one of a plurality of digital equalization (DEQ) filter options and to perform DEQ operations based on the selected DEQ filter option, wherein the DSP circuit is configured to select one of the plurality of DEQ filter options based on a channel length estimate and a plurality of different sets of DEQ filter coefficients predetermined for different channel lengths.
US10833892B2 Bridged local area network communication between a device and a cellular access network node
A bridge communicates a link layer frame between a device and a cellular access network node, the link layer frame comprising a portion including a header and data of an upper layer protocol layer instance in the device or the cellular access network node. The header includes identification information to identify which of a plurality of upper layer protocol layer instances the data is associated with.
US10833891B2 Methods and systems for transmitting information packets through tunnel groups at a network node
The present invention discloses methods and systems for sending information packets from a first network node to a second network node. An aggregated tunnel is established between the first network node and the second network node. An information packet is determined whether to be sent according to profile condition(s) of the aggregated tunnel and then according to a selected policy. When a selected policy is selected and the information packet is sent through a tunnel according to the selected policy. When no policy is selected, the information packet is sent through one of a first group of tunnels. When no profile is selected, the information packet is sent through a network interface of the first network node.
US10833889B2 Method and device for monitoring control systems
A method for monitoring control systems, a device for monitoring control systems and a corresponding computer program product, wherein the control system has at least one communication network and at least two communication end points connected to the communication network, which communication end points exchange data via the communication network, wherein the data exchanged between the communication end points is acquired and after comparing the currently acquired data with previously acquired data, an alert is raised when new data is acquired. As a result, a monitoring is provided which recognizes errors particularly quickly and reliably in the context of communication in control systems, in particular in industrial control systems. These errors may subsequently be coupled with a quality management to determine whether quality losses correlate with such recognized errors.
US10833881B1 Distributing publication messages to devices
A technology is described for distributing a publication message. An example method may include receiving a message at a first device gateway to broadcast to devices subscribed to a broadcast topic. The first device gateway maintains a first subscription table indicating which devices connected to the first device gateway are subscribed to the broadcast topic. The first device gateway distributes the message to the devices indicated in the first subscription table as being subscribed to the broadcast topic. In addition, the first device gateway may distribute the message to a second device gateway which maintains a second subscription table indicating which devices connected to the second device gateway are subscribed to the broadcast topic, and the second device gateway distributes the message to the devices indicated in the second subscription table as being subscribed to the broadcast topic.
US10833878B2 Integrated circuit with parts activated based on intrinsic features
A fixed logic integrated circuit is disclosed. The integrated circuit comprises a unique code generator configured to generate a code having a value which is intrinsically unique to the integrated circuit, an enrolment pattern generator configured to generate an enrolment pattern based on the unique code. The integrated circuit is configured to transmit the enrolment pattern to an external enrolment device and to receive enabling data from the external enrolment device. Optionally, the integrated circuit may include memory for storing remotely-generated enabling data. The integrated circuit comprises a configuration file generator configured to generate configuration data using the remotely-generated enabling data and the unique code, and a feature activation module configured to activate and/or disable features of the integrated circuit and/or customise the integrated circuit in dependence upon the configuration data.
US10833872B2 Industrial control system redundant communication/control modules authentication
A set of redundant industrial control system communications/control modules includes at least a first communications/control module and a second communications/control module. The first and second communications/control modules are configured to perform an authentication sequence including: transmitting a request datagram from the first communications/control module to the second communications/control module, the request datagram including a first nonce, a first device authentication key certificate, and a first identity attribute certificate; transmitting a response datagram from the second communications/control module to the first communications/control module, the response datagram including a second nonce, a first signature associated with the first and second nonces, a second device authentication key certificate, and a second identity attribute certificate; and transmitting an authentication datagram from the first communications/control module to the second communications/control module when the response datagram is valid, the authentication datagram including a second signature associated with the first and second nonces.
US10833871B2 System and method for deterministic signing of a message using a multi-party computation (MPC) process
A method for signing a message, comprising performing a first Multi-Party Computation (MPC) process by multiple parties to compute a pseudorandom function, an input of the first MPC process comprises shares of a private signing key, each share is held by each party, the message is an input value to the pseudorandom function. The output of the first MPC process comprises multiple pairs of shares, each party holding a pair of shares, wherein each pair comprises a first value used for the MPC signing process and a second verifying value used for verifying correctness of the values provided by the multiple parties for the MPC signing process, and computing the signature on the message by performing an MPC signing protocol on the message, the MPC signing protocol receives as input shares of the output of the pseudorandom function from the multiple parties, and the message to be signed.
US10833863B2 Device provisioning service
A computing device is provisioned to be remotely managed by a current owner. The device has an initial cryptographic basis of trust, and an owner identifier that facilitates establishment of communication with the current owner of the device. The ownership may change one or more times while the device may remain inoperative. Later, the device receives a transfer-of-ownership indication, which it verifies against the initial basis of trust to establish a new current owner. The device may then communicate with a device management service of the new current owner based on the transfer-of-ownership indication.
US10833862B2 Identity registration method and device
The present application provides identity registration and authorization methods using biometric feature information of user. In one example method, a terminal device receives biometric feature information of a user that is to be verified in association with a service processing request. The terminal device can then match the received biometric feature information to be verified with a pre-stored biometric feature of the user, where the pre-stored biometric feature of the user is associated with a corresponding identifier. In response to matching the received biometric feature information to be verified to a particular pre-stored biometric feature of the user, a private key store is searched for a private key associated with the identified of the particular pre-stored biometric feature of the user. In response to determining that no private is associated with the identifier, a user identity of the user is registered with a server.
US10833859B2 Automating verification using secure encrypted phone verification
A encrypted verification system and method includes detecting an attempt to access a service requiring multi-factor authentication from a first user computing device, requesting a trusted platform module (TPM) public key of a second user computing device, the second user computing device being coupled to the first user computing device, generating a nonce in response to receiving the TPM public key of the second user computing device, sending the nonce for signature by a TPM private key of the second user computing device, receiving a signed nonce, wherein the signed nonce is signed by the TPM private key and decrypted using the TPM public key of the second user computing device, and determining that a value of the signed nonce matches a value of the nonce to authenticate the first user computing device and allowing access to the service.
US10833850B2 Encryption system and method
A key management tool comprises a memory, an interface, a compatibility engine, a validation engine, a distribution engine, and a verification engine. The compatibility engine is configured to determine that the first device is compatible with the key management tool, the validation engine is configured to validate the first device, and the distribution engine is configured to communicate a first temporary key to the first device. The verification engine is configured to perform a first set of one or more checks on the first device after the first temporary key is communicated to the first device, the distribution engine is further configured to communicate a first permanent key to the first device if the first device passes the first set of one or more checks, and, subsequent to the communication of the first permanent key, the interface is configured to receive a request for a second permanent key.
US10833849B2 Unified secure device provisioning
Systems and methods for provisioning secure terminals for secure transactions are disclosed herein. A disclosed method includes generating a key using a key generator element on a secure terminal and sending a key validation request for the key from the secure terminal to a provisioning device. The method also includes parsing the key validation request and generating a key validation for the key and a trusted time stamp on the provisioning device. The method also includes sending, from the provisioning device, the key validation and the trusted time stamp to the secure terminal. The method also includes setting a clock on the secure terminal using the trusted time stamp and storing the key validation at the secure terminal.
US10833845B2 Guarantee of ledger immutability
An example operation may include one or more of connecting, by an attester node, to a blockchain network A configured to store hashes of blocks A, coupling, by the attester node, the blockchain network A with a blockchain network B configured to store hashes of blocks B, receiving, by the attester node, a request from the blockchain network A to send a hash of a block A produced at a time t1 (AHash_1) to the blockchain network B, confirming, by the attester node, that the blockchain network A has stored a hash of a block B produced at a time t0 (BHash_0), sending, by the attester node, the AHash_1 to the blockchain network B to be stored, receiving, by the attester node, a hash of the block B produced at the time t1 (BHash_1) from the blockchain network B, confirming, by the attester node, that the blockchain network B has stored a hash of a block A produced at the time t0 (AHash_0), and providing, by the attester node, the BHash_1 to the blockchain network A to be stored, wherein the t0 is less than the t1.
US10833843B1 Managing blockchain access
Techniques are described for managing access to data stored in a blockchain, and for managing the communication of blockchain data to other entities. A private key may be generated and issued to an external entity to enable the external entity to access an internal (e.g., private blockchain). The external entity may be an external (e.g., public) blockchain, device, process, or user that is outside an internal network. The key may be associated with metadata that includes constraints, conditions, or rules governing access to the blockchain. An authorized entity may employ the key to request access to the blockchain via access management module(s), and the access management module(s) may employ the metadata to determine whether to approve the request. The access management module(s) may also employ rules governing outbound communication of data from internal blockchain(s) to external entities.
US10833842B2 Wireless audio system with multipoint connectivity using DECT or bluetooth
A wireless audio system is provided that includes plurality of transmitters that digitizes and encrypts audio signals in compliance with a defined protocol standard. A plurality of listening apparatuses receive the audio signals and process the audio signals for listening within the listening apparatuses, wherein each transmitter is designated an identifier to facilitate selection and connection to one or more listening apparatuses with the desired transmitter simultaneously.
US10833839B1 Low voltage differential signal transmitter, method for generating a low voltage differential signal, and data transmission device
The present disclosure discloses a low voltage differential signal transmitter, a method for generating a low voltage differential signal, and a data transmission device, the low voltage differential signal transmitter includes a controller and a physical layer chip connected with each other, the controller is configured to receive a first clock signal, process the first clock signal to obtain a second clock signal, read a first data signal under drive of the second clock signal, and output a third clock signal and a second data signal; the physical layer chip is configured to receive the first clock signal and the signals output by the controller, sample the third clock signal and the second data signal according to the first clock signal, and output a serial low voltage differential clock signal and a serial low voltage differential data signal.
US10833838B1 Precise time synchronization for communication devices in networks
Techniques for employing precise transmission capabilities of a physical (PHY) layer to transmit time-synchronization beacons at an edge-of-field-resolution increment of a field of MAC layer frame. In some examples, the PHY layer may transmit beacons with a greater precision than permitted by lower-resolution MAC layer header fields. The communication protocol may specify the size of the field that is populated with timing information at a first precision. However, the PHY layer may be capable of transmitting with a second precision that is greater than the first precision. Thus, to virtually increase the time-synchronization resolution of the beacons, the beacons may be transmitted by the PHY layer at an edge-of-field resolution of the MAC layer header field. In this way, the first precision of the timing information in the MAC layer header field is virtually increased to the second precision of the PHY layer.
US10833835B2 Method and device for transmitting information
A method and device for transmitting information, for solving the problem that at present there is no solution configured to use a group common physical downlink control channel (PDCCH) to transmit information related with a group of terminals. In the embodiments of the present disclosure, a base station determines information of a group of terminals to be sent; and the base station uses, within a set of resources of a group common PDCCH corresponding to the group of terminals, a fixed subcarrier space or different subcarrier spaces to send the information of the group of terminals.
US10833832B2 Communication device and a method for full duplex scheduling
A communication device and a method for determining an information from a second device including setting an initial beamforming pattern is provided. The initial beamforming pattern includes a beamforming direction and a corresponding beamforming area for each of the plurality of antenna ports, including determining a concerned direction interval based on overlapping beamforming areas of adjacent pairs of the plurality of antenna ports, receiving a signal from the second device, measuring a signal gain from the signal on each of the plurality of antenna ports, determining which concerned direction interval the second device occupies based on an antenna port having the highest signal gain and on one of the adjacent pair of antenna ports to the antenna port having the highest signal gain having a higher signal gain, and determining the information from the second device based on the determined concerned direction interval.
US10833829B2 Method of transmitting ACK/NACK message in wireless communication system and terminal using same method
The present invention relates to a Vehicle-to-X (V2X) operation method performed by a V2X terminal in a wireless communication system. Provided is the method comprising: receiving, from a base station, unicast data and multicast data, and transmitting, to the base station, an acknowledgment (ACK)/negative acknowledgement (NACK) for the unicast data and ACK/NACK for the multicast data, wherein the unicast data is data for the V2X terminal and the multicast data is data for a plurality of V2X terminals comprising the V2X terminal.
US10833827B2 V2X control and data channel indication during LBT
Aspects of the disclosure relate to mechanisms for encoding and transmitting an encoded channel indication that indicates a starting sub-channel and a number of sub-channels for a transmission over a vehicle-to-everything (V2X) carrier. The encoded channel indicator may be transmitted within at least one symbol of a listen-before-talk (LBT) section of a slot.
US10833823B2 Adaptive demodulation reference signals in wireless communication systems
The described technology is generally directed towards adapting the demodulation reference signal sent in a wireless resource data block based on channel estimation performance. In general, if the demodulation reference signal received was not successfully able to be used to demodulate the resource data block, the demodulation reference signal density can be increased up to a maximum density, which costs resource elements but improves the channel estimation accuracy. If the demodulation reference signal received was able to be used to demodulate the resource data block, the demodulation reference signal density can be decreased down to minimum density, which saves resource elements for data. The network device can use HARQ ACK/NACK data (e.g., a current count or counted over a time period) to determine channel estimation performance, and/or the user equipment can recommend a demodulation reference signal density change.
US10833822B2 System and method for MA signature assignment based on UE group separation
In a wireless communication system, user equipments (UEs) may be partitioned into different groups, e.g. based on spatial separation. UEs may use multiple access (MA) signatures that have low or no correlation to each other if the UEs are in the same group. The MA signatures used by one group of UEs may be more correlated with the MA signatures used by another group of UEs. If the UEs are partitioned into the different groups based on spatial separation, then the spatial separation between the different groups may assist in increasing the reliability of detection if two UEs in different groups use correlated MA signatures.
US10833821B2 Method and apparatus for generating pilot tone in orthogonal frequency division multiplexing access system, and method and apparatus for estimating channel using it
The present invention relates to a pilot tone generating method and apparatus of an orthogonal frequency division multiple access system and method, and a channel estimation method and apparatus using the same. The channel estimation apparatus includes a pilot tone extracting unit for extracting a pilot tone, which is inserted within a frame with data tone, masked with an orthogonal code; a pilot tone unmasking unit for unmasking of the pilot tone extracted from the pilot tone extracting unit by using an orthogonal code information; and a channel estimation operating unit for estimating a channel by calculating an average of the pilot tones which is unmasked in the unmasking unit.
US10833815B2 Method and apparatus for performing sidelink communication based on data link in NR V2X
Provided herein are a method for performing wireless communication by a first apparatus and an apparatus for supporting the same. The method may include the steps of receiving a service from a second apparatus, through a data link including multiple data paths, and determining whether or not to transmit a sidelink hybrid automatic repeat request (SL HARQ) feedback being related to the service to the second apparatus. Herein, based on Quality of Service (QoS) requirements of a service being transmitted through the multiple data paths, the data link may include the multiple data paths.
US10833811B2 Systems and methods for user equipment cooperation with sidelink HARQ feedback
Methods and devices utilizing sidelink transmission between user equipment (UEs) for HARQ retransmission are provided. The sidelink HARQ retransmissions include data from the initial transmission or an outer coded version thereof. HARQ feedback from the targeted receiver of the initial transmission may identify code block groups and/or individual code blocks the target receiver did not successfully decode. A UE that has not successfully decoded an entire transport block, may still cooperate in HARQ retransmission for the targeted receiver of the transport block by retransmitting at least a subset of the code block groups that it was able to successfully decode for the transport block.
US10833810B2 Method for executing HARQ in wireless communication system and device therefor
The present specification discloses a method for executing a hybrid automatic request (HARQ) in a wireless communication system, the method, which is executed by a terminal, comprising the steps of: receiving an initial HARQ packet corresponding to a specific HARQ process ID (PID) from a first base station via a first wireless link; receiving a retransmission HARQ packet corresponding to the HARQ PID from a second base station via a second wireless link; combining the initial HARQ packet and the retransmission HARQ packet; decoding the combined HARQ packet; and, on the basis of the result of the decoding, determining whether to transmit HARQ feedback via the first wireless link.
US10833808B1 Multicast error detection and recovery
Multicast error detection and recovery may be provided. A join request for a multicast stream may be sent from a first network node to a second network node. The join request may be sent over a first link of a plurality of links between the first network node and the second network node. A redirect message indicating that the second network node cannot accommodate the join request may be received by the first network node from the second network node. In response to receiving the redirect message, the join request for the multicast stream may not be sent on a second link of the plurality of links by the first network node to the second network node. And in response to receiving the redirect message, an alternate upstream network node may be determined by the first network node to send the join request for the multicast stream to.
US10833805B2 BISS protocol data decoding method and interface system
There are provided a method and an interface system for Bidirectional Synchronous Serial (BISS) protocol data decoding. The method includes: an MA drive module receiving an enable signal en and transmitting an MA clock signal to an SL receiving module, and then the SL receiving module detecting a trigger signal of SL; when a start bit of the SL is detected by the SL receiving module, the SL receiving module reading SL data; after the SL data is read, the SL receiving module transmitting a done signal to the MA drive module to stop operation of the MA drive module and transmitting a did signal to a CRC check module; and after the did signal is received by the CRC check module, the CRC check module performing CRC check on the SL data and outputting a correct position value after the check is completed.
US10833804B2 Receiver and method for processing a signal thereof
A receiver is provided. The receiver includes: a first decoder configured to decode a superposition-coded signal by using a parity check matrix to generate Low Density Parity Check (LDPC) information word bits and first parity bits corresponding to a first layer signal; an encoder configured to encode the LDPC information word bits and the first parity bits to generate second parity bits, or encode the LDPC information word bits to generate the first parity bits and the second parity bits, by using the parity check matrix; and a second decoder configured to decode a signal which is generated by removing the first layer signal, corresponding to the LDPC information word bits, the first parity bits, and the second parity bits, from the superposition-coded signal, to reconstruct bits transmitted through the second layer signal.
US10833802B2 Communication method for ethernet passive optical network and apparatus
An optical line terminal or an optical network unit first obtains link communication quality of both a first physical link and a second physical link between the optical line terminal and the optical network unit, performs FEC encoding on the first physical link by using a first FEC code, and performs FEC encoding on the second physical link by using a second FEC code. The link communication quality of the first physical link is higher than that of the second physical link, and encoding performance of the second FEC code is higher than that of the first FEC code. Based on the foregoing technical solutions, a FEC encoding type may be selected flexibly based on communication quality of different physical links. FEC encoding having relatively low FEC encoding performance is used for a link in a good state, to reduce overheads, bandwidth, and energy consumption.
US10833799B2 Message correction and dynamic correction adjustment for communication systems
A device and method for receiving communications with dynamic data correction, the method including receiving at a receiving device a data packet from a sending device, the data packet including a header, and a data payload including one or more message blocks and corresponding redundancy blocks; recognizing, via pre-configuration of the receiving device, that there are redundancy blocks to receive along with the one or more message blocks and reading in the message blocks and corresponding redundancy blocks; determining that at least one of the message blocks is defective (e.g., corrupt, missing, etc.); processing one or more of the redundancy blocks to correct the defective message blocks; and optionally sending a response message to the sending device. The method may further include identifying which message blocks are defective and sending a request for, and receiving, redundancy blocks corresponding to the identified defective message blocks.
US10833794B2 Data transmission boosting system
A data transmission boosting system includes a boosting server and a client boosting device, wherein the boosting server and the client boosting device are connected to the internet respectively. The client boosting device further includes a data receiving module, a classifying module, and a transmitting module. The data receiving module receives data packets from at least one terminal device. The classify module classifies the data packets as data packets to be boosted, non-boosting data packets, or unknown data packets. The transmitting module transmits the data packets classified as the data packets to be boosted to the boosting server through the internet, and transmits the data packets classified as the non-boosting data packets to the internet.
US10833792B2 Overlapped multiplexing-based modulation and demodulation method and device
An overlapped multiplexing-based modulation and demodulation method and device are disclosed. In the modulation method, a precoding structure is used, and a transmit end first performs parity check product code-based coding on an input information sequence, generates a factor graph for a coding result and according to a coding rule, then performs overlapped multiplexing-based modulation and coding, and transmits a coded signal by using an antenna. In the demodulation method, a signal is transmitted by using a channel, and after receiving the signal by using an antenna, a receive end first performs digital signal processing, including processes such as synchronization and equalization, then performs overlapped multiplexing-based demodulation and decoding, and finally performs factor graph-based belief propagation decoding on a decoding result, to finally obtain a decoded sequence. In this application, a product code-based decoding method is used, a parity check code is used as a subcode, and a belief propagation idea of the factor graph is applied to a decoder end. Therefore, a parity check product code in a simple structure is used. In addition, in the method, the factor graph is used in a decoding process, thereby reducing operation complexity.
US10833791B1 Reducing interference from channel holders in an optical link
Systems and methods are provided for reducing interference when optical signals are added. One embodiment includes a method for adding an optical channel for communicating data and having a bandwidth within an optical spectrum for transmission along an optical link of an optical network. The method includes creating a lower frequency holding zone having a lower frequency bandwidth adjacent to the bandwidth of the added optical channel and including at least one lower frequency sub-slice having a power spectral density that varies throughout the lower frequency sub-slice. Also, the method includes creating a higher frequency holding zone having a higher frequency bandwidth adjacent to the bandwidth of the added optical channel and including at least one higher frequency sub-slice having a power spectral density that varies throughout the higher frequency sub-slice. The lower frequency holding zone and the higher frequency holding zone are dynamically configured with respect to fiber and channel requirements.
US10833788B2 Accessing a cell utilizing a multiple beam network
Methods are disclosed which can be performed by a network node for sending to a wireless device a first synchronization signal and an associated information message, for synchronization of the wireless device with the network node. The network node and the wireless device operate in a wireless communications network. The network node sends the first synchronization signal in N OFDM symbols within a subframe, at least once in a time and frequency position in every one of the N OFDM symbols. N is equal or larger than 2. For each sending of the first synchronization signal, the network node sends an associated information message at a pre-defined time and frequency position in an OFDM symbol. The pre-defined time and frequency position is relative to the time and frequency position of the first synchronization signal. The associated information message is associated with the first synchronization signal.
US10833782B1 Facilitating desired placement of a small cell
Methods and systems for facilitating placement of a small cell in a network are provided. A small cell may be positioned such that it is communicatively coupled to a macro cell to provide a relay backhaul to a wireless network. The small cell may be configured to provide feedback of some form when the small cell is moved from a suitable location, to facilitate desired placement and use of the small cell. The feedback may be in the form of a change in functionality of the one or more feedback components.
US10833776B2 Communication system and communication method, and receiver
A communication system of the disclosure includes: a transmitter that includes a first transmitting electrode and a second transmitting electrode, and causes a transmission signal to be generated between the first transmitting electrode and the second transmitting electrode; and a receiver including a first receiving electrode, a second receiving electrode, and a determiner, in which the first receiving electrode and the second receiving electrode each receive the transmission signal through a communication path that includes a human body, and the determiner determines that communication is valid in a case where a reception signal, generated between the first receiving electrode and the second receiving electrode, has a prescribed polarity, and determines that the communication is invalid in a case where the reception signal has a polarity different from the prescribed polarity.
US10833775B1 Techniques for magnetic shielding of an optical isolator to maintain nominal magnetic flux density and a transmitter or transceiver system implementing same
In general, the present disclosure is directed to a transmitter optical subassembly (TOSA) module for use in an optical transceiver or transmitter that includes a magnetically-shielded optical isolator to minimize or otherwise reduce magnetization of TOSA components. An embodiment of the present disclosure includes a TOSA housing with magnetic shielding at least partially surrounding an optical isolator, with the magnetic shielding reflecting associated magnetic energy away from components, such as a metal TOSA housing or components disposed therein, that could become magnetized and adversely impact the magnetic flux density of the magnetic field associated with the optical isolator.
US10833772B1 Demodulation-based mono-bit receiver for Nyquist zone disambiguation
A system for Nyquist zone disambiguation of a received broadband RF signal is disclosed. The system includes continuous-wave (CW) and pulsed photonic sources whose outputs may be combined into a single input. Both CW and pulsed components of the combined photonic input are modulated by sampling the received RF input signal. The system includes hybrid couplers for IQ demodulation of the modulated combined photonic signal. The system demultiplexes the demodulated inphase and quadrature differential photonic signals into their CW and pulsed component signals. The pulsed component signals may be digitized by narrowband multibit analog-digital converters (ADC) while the CW component signals are digitized by high speed low latency mono-bit ADCs to determine frequency components (e.g., bandwidth information) and other spectrum information of the RF input signal.
US10833770B2 Optical fiber nonlinearity compensation using neural networks
Aspects of the present disclosure describe systems, methods and structures for optical fiber nonlinearity compensation using neural networks that advantageously employ machine learning (ML) algorithms for nonlinearity compensation (NLC) that advantageously provide a system-agnostic model independent of link parameters, and yet still achieve a similar or better performance at a lower complexity as compared with prior-art methods. Systems, methods, and structures according to aspects of the present disclosure include a data-driven model using the neural network (NN) to predict received signal nonlinearity without prior knowledge of the link parameters. Operationally, the NN is provided with intra-channel cross-phase modulation (IXPM) and intra-channel four-wave mixing (IFWM) triplets that advantageously provide a more direct pathway to underlying nonlinear interactions.
US10833767B2 Self-homodyne carrier multiplexed transmission system and method for coherent optical links
Embodiments herein provide a self-homodyne coherent optical transmission system (Self-Homodyne system) where an optical carrier is polarization multiplexed with a modulated signal and is transmitted over the optical fiber. An Adaptive polarization control is used by the receiver for simplifying a signal processing in the receiver. Analog processing may be used for implementing LO less receiver. Transmitter uses a phase modulated carrier in place of an unmodulated carrier.
US10833766B2 Monitoring equipment for an optical transport system
A landing station whose monitoring equipment employs a depolarized light source for generating the supervisory optical signals that are used to monitor certain performance characteristics of the corresponding submerged fiber-optic cable plant. In some embodiments, the depolarized light source operates to provide amplified spontaneous emission (ASE) within the bandwidths of the supervisory wavelength channels, with the supervisory optical signals being generated by modulating the provided ASE. In some other embodiments, the depolarized light source operates to generate a supervisory optical signal by modulating two carrier waves having (i) mutually orthogonal polarizations and (ii) different respective carrier wavelengths both of which are within the bandwidth of the corresponding supervisory wavelength channel. The use of such depolarized light sources can advantageously reduce the negative impact of the supervisory wavelength channels on the payload wavelength channels with respect to that observed under at least some conventional monitoring schemes.
US10833760B2 Coverage enhancement mode switching for wireless communications using shared radio frequency spectrum
Described techniques provide for switching a user equipment (UE) between different coverage enhancement (CE) modes, such as between a non-CE mode and a CE mode. A UE may determine that a CE mode switch is to be performed and may initiate the mode switching. The UE may compare signal qualities of signals from one or more base stations against one or more threshold values and determine that a switch from a CE mode to a non-CE mode, or from a non-CE to CE mode, is to be performed. In some cases, a UE may be in idle mode and switch between CE modes, or may perform a cell reselection to a different base station. In other cases, a UE may be in connected mode and may declare a radio link failure to initiate a mode switch. A base station may initiate mode switching based on radio link monitoring of UEs.
US10833757B1 Systems and methods for mitigating adjacent satellite interference
Systems and methods of mitigating signal interference in communications involving an antenna array can include determining a radiation pattern of the antenna array in communication with a first communication device. The method can include determining that a power level or gain of the antenna array in a direction pointing to a second communication device exceeds a predefined threshold value, using the radiation pattern of the antenna array and a position of the second communication device. The method can include identifying one or more antenna elements among a plurality of antenna elements of the antenna array to be powered off or applying non-uniform weighting to the antenna elements to distort the radiation pattern of the antenna array in a way to reduce the power level or gain of the antenna array in the direction pointing to the second communication device.
US10833754B2 Network repeater system
A system is described where antenna beam steering techniques are implemented to optimize time and frequency channel resources in wireless communication systems where repeaters are used. Beam steering modes of the antenna systems in the repeaters as well as the nodes are optimized to improve system capacity and load balancing. Client devices in a wireless LAN system can be configured to work as repeaters, with the repeaters containing a beam steering capability. The beam steering capability can be implemented in one or multiple nodes and repeaters in the communication system.
US10833751B2 Facilitation of user equipment specific compression of beamforming coefficients for fronthaul links for 5G or other next generation network
Precoding coefficients can be compressed based on user equipment signal interference to noise ratio or path loss in front haul cloud radio access network systems. For example, a baseband unit can compute a precoder matrix from an estimated channel associated with an uplink signal. Once the baseband unit computes the channel, it can determine the coefficients for the linear combination of the basis vectors, which are known at the baseband unit and the radio unit as well. The baseband unit can estimate the path loss and the signal interference to noise ratio and determine the basis vectors. The baseband unit can then compress the coefficients and transmit the coefficients to the radio unit. When the radio unit receives the compressed coefficients, the radio unit can reconstruct the precoder matrix and apply to reference signals and data traffic channels.
US10833748B2 Determining channel state information in 5G wireless communication systems with phase tracking
The disclosed subject matter relates to techniques for determining channel state information (CSI) in New Radio (NR) access communication systems with phase tracking. In one embodiment, a method is provided that comprises receiving, by a device comprising a processer, configuration information from a network device of a wireless communication network indicating that a PTRS protocol has been configured for wireless communications between the device and the network device. The method further comprises, determining, by the device, a resource density of resource elements of the wireless communication network allocated for the phase tracking reference signal protocol, determining, by the device, CSI based on the resource density, and reporting, by the device, the CSI to the network device.
US10833747B2 Mechanisms for reduced density CSI-RS
According to some embodiments, a method for use in a network node of transmitting channel state information reference signals (CSI-RS) comprises: transmitting, to the wireless device, an indication of the subset of PRBs that the wireless device should use to measure CSI-RS; and transmitting CSI-RS on the indicated subset of PRBs. According to some embodiments, a method for use in a wireless device of receiving CSI-RS comprises: receiving an indication of a subset of PRBs that the wireless device should use to measure CSI-RS associated with an antenna port; and receiving CSI-RS on the indicated subset of PRBs. In some embodiments, the indication of the subset of PRBs that the wireless device should use to measure CSI-RS comprises a density value and a comb offset.
US10833744B2 Network initiated reselection of transmitter and receiver configurations
A network initiated procedure is introduced for updating an SS-BPL once the gNB TX beam and wireless device RX beam start to become misaligned due to movement/rotation of the wireless device. When the gNB measures and determines that a re-establishment of the SS-BPL should be performed, the gNB transmits a trigger signal to the wireless device to update the SS-BPL. In one embodiment, the trigger signal may initiate a new SS block measurement by the wireless device, and a transmission of an uplink signal (e.g., a PRACH transmission) to indicate to the gNB the new preferred SS block and thus a new SS-BPL. In another embodiment, the gNB determines a new SS block for the wireless device and indicates directly in a message from gNB to wireless device an SS block selected by the gNB to use for SS-BPL in subsequent transmissions.
US10833736B2 Hybrid beamforming method for beam-based cooperative transmission, and apparatus for the same
A hybrid beamforming based cooperative transmission system may comprise comprising a centralized processor (CP), access nodes (ANs) connected to the CP, and fronthaul links connecting the CP to the ANs. The CP may provide an outer precoding matrix for a first AN of the ANs, which is derived from global statistical channel state information (CSI) generated from local statistical CSI collected from the ANs, to the first AN via the fronthaul link; and the first AN may configure a radio frequency (RF) precoder of the first AN based on the outer precoding matrix, and configure a digital precoder of the first AN based on local instantaneous effective CSI between the first AN and first terminals to be served by the first AN.
US10833735B2 Method and device for receiving signal in wireless communication system to which multiplex transmission technique is applied
A method and device for receiving a signal in a wireless communication system to which a multiplex transmission technique is applied are provided. The wireless communication system proposed herein suggests a method for increasing the receipt reliability of a terminal with respect to a multiplex transmission activation indicator indicating the start of multiplex transmission. Particularly, a terminal checks the receipt of a multiplex transmission activation indicator transmitted, from a first base station, for every predetermined subframe. If the terminal succeeds in receiving the multiplex transmission activation indicator, an ACK signal associated with the multiplex transmission activation indicator is transmitted to the first base station. Here, the multiplex transmission activation indicator indicates that the first base station and a second base station are capable of transmitting the same data for a predetermined time together.
US10833732B2 System for extending the range of near field communication of an electronic device to communicate with an object over a user skin
Disclosed is a system which extends NFC near field communication over a user's skin by converting electromagnetic signals into modulated alternating electric fields and vice versa. A modified patch is attached to an NFC device, which gets energized from its electromagnetic resonance which may contain data. The patch uses the energy to create an alternating electric field which couples into and spreads over a user's skin. The user may approach or touch objects which then get energized by the alternating electric field. The objects have a tag which modulates the electric field with data back over the user's skin to the patch, which then demodulates the data to modulate the NFC communication of the NFC device for further processing.
US10833730B1 Method and apparatus for providing power to a waveguide system
Aspects of the subject disclosure may include, providing, by a power supply of a communication device, energy to a transmitter of the communication device, wherein the power supply directly obtains the energy from a transmission medium via a capacitive divider and a DC converter, and wherein the communication device includes an insulator that electrically insulates the transmission medium from a utility structure supporting the communication device; generating, by the transmitter of the communication device, a signal; and inducing according to the signal, by a coupler of the communication device, an electromagnetic wave that propagates along the transmission medium without requiring an electrical return path. Other embodiments are disclosed.
US10833722B1 Method and system for providing a programmable logic device having a configurable wireless communication block field
A semiconductor device contains an integrated circuit (“IC”) capable of being selectively programmed to perform one or more logic functions. The device, in one embodiment, includes multiple logic blocks (“LBs”), a routing fabric, and a configurable wireless communication block (“WCB”). The configurable LBs is able to be selectively programmed to perform one or more logic functions. The routing fabric is used to route information between the configurable LBs and input/output ports based on a routing configuration signals. The configurable WCB, having a control circuit and a built-in transceiver, is configured to facilitate transmitting information between the IC and an external system via a wireless communications network.
US10833714B2 Multi-card user equipment and service processing method thereof
A multi-card user equipment and a method for processing its service are provided. The method includes, when receiving service request corresponding to a first subscriber identity card, implementing data transmission channel between user equipments and a network which is corresponding to the first subscriber identity card to process the service request; the data transmission channel corresponding to at least two of the subscriber identity cards shares a common wireless connection. With the method, providing services for multiple cards at the same time can be available, meanwhile hardware cost and complexity is decreased, and wireless transmission resources is saved.
US10833711B2 System, apparatus and method for concurrent reception of multiple channels spaced physically in radio frequency spectrum
In one embodiment an apparatus includes: a mixer to downconvert a radio frequency (RF) spectrum including at least a first RF signal of a first channel of interest and a second RF signal of a second channel of interest to at least a first second frequency signal and a second second frequency signal; a first digitizer to digitize the first second frequency signal to a first digitized signal, the first digitizer configured to operate as a low-pass analog-to-digital converter (ADC); a second digitizer to digitize the second second frequency signal to a second digitized signal, the second digitizer configured to operate as a band-pass ADC; and a digital processor to digitally process the first digitized signal and the second digitized signal.
US10833709B2 Interleaving and mapping method and deinterleaving and demapping method for LDPC codeword
An interleaving and mapping method and a deinterleaving and demapping method for an LDPC codeword are provided. The interleaving and mapping method comprises: performing first bit interleaving on a parity bits part of the LDPC codeword to obtain interleaved parity bits; splicing an information bit part of the codeword and the interleaved parity bits into a codeword after the first bit interleaving; dividing the codeword after the first bit interleaving into multiple consecutive bit subblocks in a predetermined length, and changing the order of the bit subblocks according to a corresponding permutation order (bit-swapping pattern) to form a codeword after second bit interleaving; dividing the codeword after the second bit interleaving into two parts, and writing the two parts into storage space in a column order respectively and reading the two parts from the storage space in a row order respectively to obtain a codeword after third bit interleaving.
US10833707B2 Error trapping in memory structures
Embodiments include methods, systems and circuits for operating an error trapping logic circuit in a memory device. Aspects include receiving, during a first clock cycle, data and check bits for the data from a memory location and determining, during the first clock cycle, whether the data includes any error by calculating an error syndrome from the data and the check bits. Aspects also include determining, during a second clock cycle, a type of the error based on a full decoding of the error syndrome. Aspects further include determining whether to store the data, the check bits and the error syndrome in trap registers of the error trapping logic circuit based on an operating mode of the error trapping logic circuit and the type of the error.
US10833704B1 Low-density parity check decoder using encoded no-operation instructions
Low-density parity check (LDPC) decoder circuitry is configured to decode an input codeword using a plurality of circulant matrices of a parity check matrix for an LDPC code. Multiple memory banks are configured to store elements of the input codeword. A memory circuit is configured for storage of an instruction sequence. Each instruction describes for one of the circulant matrices, a corresponding layer and column of the parity check matrix and a rotation. Each instruction includes packing factor bits having a value indicative of a number of instructions of the instruction sequence to be assembled in a bundle of instructions. A bundler circuit is configured to assemble the number of instructions from the memory circuit in a bundle. The bundler circuit specifies one or more no-operation codes (NOPs) in the bundle in response to the value of the packing factor bits and provides the bundle to the decoder circuitry.
US10833702B1 Interpolation search to find arbitrary offsets in a compressed stream
Interpolated search is provided for navigating a compressed file to identify a desired offset in an uncompressed version of the file by: determining a low point and a high point in an uncompressed version of a stream corresponding to a compressed version of the stream that is divided into a plurality of chunks; calculating an average compression ratio between the low point and the high point; interpolating a position in the compressed version of a desired offset in the uncompressed version to identify a bifurcation chunk of the plurality of chunks that includes the interpolated position; reading an offset of the bifurcation chunk; and in response to determining that the desired offset is within a threshold distance of the offset of the bifurcation chunk, decompressing the compressed version from the bifurcation chunk until the desired offset is output.
US10833696B1 Successive-approximation type AD converter and pipeline type AD converter
There is provided a successive-approximation type AD converter and a pipeline type AD converter without delay due to sample hold. A successive-approximation type AD converter 1 includes: receiving circuits configured to output the analog input signal according to the received analog input signal; subtractors configured to calculate subtraction signals between the analog input signal in each of n successive conversions and comparison signals obtained by DA-converting the control values by DA converters; comparators configured to determine a high-low relationship between the voltages of the subtraction signals and the reference voltage; a control circuit configured to update the control values so that the comparison signals approach the analog input signal based on the comparison results; and an output register configured to output the digital output signal based on the comparison results of the comparators.
US10833695B2 Analog-to-digital converter
A system includes an analog-to-digital converter receiving input signals. One particular input signal has a particular analog value, and the analog-to-digital converter uses a fixed reference to convert the particular analog value to a particular digital value. The analog-to-digital converter uses the particular analog value as a reference for converting the analog values of the remaining input signals.
US10833694B2 Circuits and methods for time-delay to digital converters
In accordance with some embodiments, polarity-coincidence, adaptive time-delay estimation (PCC-ATDE), mixed-signal techniques are provided. In some embodiments, these techniques use 1-bit quantized signals and negative-feedback architectures to directly determine a time-delay between signals at analog inputs and convert the time-delay to a digital number.
US10833693B2 Time-interleaved analog-to-digital converter system
It is provided a provided a time-interleaved analog-to-digital converter (ADC) system comprising an input port configured to receive an analog signal, an ADC-array comprising M, M≥2, ADCs arranged in parallel. Each ADC is configured to receive and to convert a portion of the analog signal into a digital signal at a sample rate fs. The ADC-system further comprises a reference ADC configured to receive and to convert the analog signal into a digital reference signal at an average sampling rate fref lower than fs. Each sampling instant of the reference ADC corresponds to a sampling instant of an ADC in the array of ADCs, and the ADC to select for each reference ADC sampling instant is randomized over time. The ADC-system also comprises a correction module configured to adjust the digital signal outputs of the ADC-array into a corrected digital output signal based on samples of the digital reference signal and the digital signals from the corresponding selected ADCs. It is also provided a method for time-interleaved analog-to-digital conversion.
US10833692B1 Small low glitch current mode analog to digital converters for artificial intelligence
Single-stage and multiple-stage current-mode Analog-to-Digital converters (iADC)s utilizing apparatuses, circuits, and methods are described in this disclosure. The disclosed iADCs can operate asynchronously and be free from the digital clock noise, which also lowers dynamic power consumption, and reduces circuitry overhead associated with free running clocks. For their pseudo-flash operations, the disclosed iADCs do not require their input current signals to be replicated which saves area, lowers power consumption, and improves accuracy. Moreover, the disclosed methods of multi-staging of iADCs increase their resolutions while keeping current consumption and die size (cost) low. The iADC's asynchronous topology facilitates decoupling analog-computations from digital-computations, which helps reduce glitch, and facilitates gradual degradation (instead of an abrupt drop) of iADC's accuracy with increased input current signal frequency. The iADCs can be arranged with minimal digital circuitry (i.e., be digital-light), thereby saving on die size and dynamic power consumption.
US10833690B2 Kickback compensation for a capacitively driven comparator
An analog-to-digital converter (ADC) includes a comparator, a voltage reference circuit, a first capacitive digital-to-analog converter (CDAC), and a second CDAC. The first CDAC includes a plurality of capacitors. Each of the capacitors of the first CDAC includes a top plate coupled to a first input of the comparator, and a bottom plate switchably coupled to an output of the voltage reference circuit. The second CDAC includes a plurality of capacitors. Each of the capacitors of the second CDAC includes a top plate coupled to a second input of the comparator, and a bottom plate switchably coupled to a ground reference.
US10833689B2 Method and circuit for compensating for the offset voltage of electronic circuits
The present invention corresponds to a method and a circuit for compensating the offset voltage of electronic circuits, where the circuit implementing the method comprises: a dynamic comparator (1); a phase detector (6) connected to the dynamic comparator (1), the phase detector (6); a finite-state machine (9) connected to the phase detector (4), a first digital-analog converter (12) connected to an output of the finite-state machine (9); a second digital-analog converter (13) connected to another output (11) of the finite-state machine (9); a polarization block (14) with a first input (15) connected to the output of the first digital-analog converter (12) and a second input (16) connected to the output of the second digital-analog converter (13); where the polarization block (14) polarizes an electronic circuit (17) and the dynamic comparator (1), the phase detector (6), and the finite-state machine (9) are connected to a clock signal (3). The method is characterized by the following steps: a) connecting a dynamic comparator to the output of the electronic circuit; b) measuring the phase change of the dynamic comparator outputs of step a by means of a phase detector; c) controlling the output signals of a finite-state machine according to the phase detector output of step b, which can be coded “forward”, “backward” or “in phase”; c) converting the output of the finite-state machine of step c to an analog signal using two digital-analog converters; d) connecting the output of the two digital-analog converters of step d to the control terminal of the electronic circuit polarization block; and, e) modifying the polarization current of the electronic circuit polarization block by means of the output signals of the two digital-analog converters connected in step e.
US10833686B2 Programmable VCO, method of calibrating the VCO, PLL circuit with programmable VCO, and setup method for the PLL circuit
The PLL circuit comprises a phase/frequency detector (302), a loop filter (304, 306), a VCO (308) and a feedback loop (320). The VCO can be electrically disconnected from the PLL and comprises a programmable trimming circuit (316) and a current-controlled oscillator (318). For calibration the VCO is electrically disconnected from the loop filter and from the feedback loop, a constant reference voltage is applied to the voltage input (IN), a center frequency programming code (L) is applied to the trimming circuit, the center frequency programming code is iteratively adjusted until a desired center frequency is obtained, a gain programming code (K) is applied to the trimming circuit while the adjusted code is still applied, and the gain programming code is iteratively adjusted until a desired gain is obtained. Then the VCO is connected to the PLL, which is then ready for normal operation.
US10833682B1 Calibration of an interpolative divider using a virtual phase-locked loop
A clock generator includes an interpolative divider including a phase interpolator and a multi-modulus divider. The interpolative divider is configured to generate an output clock signal based on a clock signal, a control code, and a phase interpolator calibration signal. The clock generator includes a calibration circuit configured to generate the phase interpolator calibration signal based on the clock signal, the output clock signal and a phase interpolator code. The calibration circuit includes a phase-locked loop configured to generate a digital phase error signal based on a reference timestamp signal and a timestamp signal based on the clock signal and the output clock signal. The calibration circuit includes an adaptive loop configured to generate the phase interpolator calibration signal based on the digital phase error signal.
US10833679B2 Multi-purpose interface for configuration data and user fabric data
An integrated circuit device may include a programmable fabric die having programmable logic fabric and configuration memory that may configure the programmable logic fabric. The integrated circuit device may also include a base die that may provide fabric support circuitry, including memory and/or communication interfaces. The first die and the second die may be coupled using a multi-purpose interface that may allow communication between the first die and the second die. The multi-purpose interface may allow concurrent access to the base die by the programmable logic fabric and the configuration memory by using multiple channels over the multi-purpose interface.
US10833676B2 Switching element
A switching element for the contactless activation of an electric-motor adjustment drive of a motor vehicle, in particular an electric-motor-operated liftgate, having a profile strip, which extends in a longitudinal direction. The profile strip has a channel, which extends in the longitudinal direction and which transitions into a slit, which extends in the longitudinal direction. An electrode is arranged within the channel. The invention further relates to an electric-motor-operated liftgate having a switching element and to a method for creating a switching element.
US10833672B2 Driving circuit for high-side transistor, switching circuit, and controller for DC/DC converter
A driving circuit for an N-channel or NPN-type high-side transistor includes: a level shift circuit configured to level-shift an input signal; and a buffer configured to drive the N-channel or NPN-type high-side transistor according to an output of the level shift circuit, wherein the level shift circuit includes: a differential conversion circuit of an open drain type configured to convert the input signal into a differential signal; a latch circuit configured to perform a state transition with a differential output of the differential conversion circuit as a trigger; and an assist circuit configured to inject an assist current into the latch circuit in synchronization with the input signal.
US10833666B1 PWM controlled analog signal
A voltage proportional to a pulse width modulation (PWM) duty cycle is generated, using a low pass filter (LPF). A 2nd or higher order LPF is provided, giving a 90×(2n+1) degree phase shift for (n=0, 1, 2, . . . ), so that the sampling timing at the latter stages can be at the rising and/or falling edge of the PWM input signal. A switched capacitor circuit after the 2nd or higher order LPF is provided, removing a voltage ripple on an LPF output, and using a smaller device area.
US10833665B2 Phase error correction for clock signals
A multi-phase clock generator circuit includes a phase reference generator circuit configured to generate a phase reference signal in response to a phase selection signal and a peak ramp signal. A phase error correction circuit is configured to provide an error signal based on a synchronization clock signal and a multi-phase clock signal. The error signal is applied to the phase reference signal to correct for phase errors in the multi-phase clock signal. A comparator is configured to compare a ramp signal and the phase reference signal to produce the multi-phase clock signal.
US10833663B2 Circuits with low-pass filters and differential amplifiers
A circuit comprises a first set of serially-connected inverters comprising an input port, the first set of serially-connected inverters comprising a first subset of serially-connected inverters, the first subset of serially-connected inverters odd in number and comprising an input port and an output port; a first low-pass filter comprising an input port coupled to the output port of the first subset of serially-connected inverters, and an output port; a second low-pass filter comprising an input port coupled to the input port of the first subset of serially-connected inverters, and an output port; and a first differential amplifier comprising a first input port coupled to output port of the first low-pass filter, a second input port coupled to the output port of the second low-pass filter, and an output port coupled to the input port of the first set of serially-connected inverters.
US10833660B2 Ring oscillator, controlling circuit and methods for realignment
A controlling circuit for ring oscillator is provided. First and second transistors of a first conductive type are coupled in series and between a node and a first power source. Third and fourth transistors of a second conductive type are coupled in parallel and between the node and a second power source. The node is coupled to a delay chain of the ring oscillator. The second and third transistors form a pseudo pass-gate inverter. An input of the pseudo pass-gate inverter is configured to receive an output signal of the delay chain. The first and fourth transistors are controlled by a realignment signal. When the realignment signal is in a realignment state, the first transistor is turned off and the fourth transistor is turned on, and when the realignment signal is in a normal state, the first transistor is turned on and the fourth transistor is turned off.
US10833653B1 Voltage sensitive delay
Aspects of the invention include a circuit including a power circuit having an amplifier, a resistor, a current source, and a first node, one end of the resistor being configured to couple to a power supply, the first node being coupled to an opposite end of the resistor, a first input terminal of the amplifier, and the current source. A voltage sensitive circuit includes a logic gate coupled to both a second input terminal of the amplifier and an output terminal of the amplifier at a second node.
US10833650B1 Reconfigurable MEMS devices, methods of forming reconfigurable MEMS devices, and methods for reconfiguring frequencies of a MEMS device
A MEMS device including an active layer having a first surface and a second surface is provided. A first electrode and a second electrode, and at least one reconfigurable electrode segment are arranged over the first surface of the active layer. At least one reconfiguration layer is arranged over the second surface of the active layer. The at least one reconfigurable electrode segment and the at least one reconfiguration layer overlaps. One or more via contacts are disposed through the active layer configured to couple the at least one reconfigurable electrode segment and the at least one reconfiguration layer. The at least one reconfiguration layer is coupled to a reconfiguration switch for reconfiguring electrical connections to the at least one reconfigurable electrode segment. The MEMS device is configured to generate different resonant frequencies by reconfiguring the electrical connections to the at least one reconfigurable electrode segment using the reconfiguration switch.
US10833649B2 Acoustic wave element and communication apparatus
In an IDT electrode of an acoustic wave element which includes first electrode fingers and second electrode fingers connected to potentials which are different from each other and arranged spaced apart from each other, the first electrode fingers includes first tip parts, and either of the first electrode fingers and the second electrode fingers includes, at a tip area extending along a direction of propagation of an acoustic wave and overlapping with the first tip parts, increase sections in which electrode volumes per unit lengths in a direction of extension of the first electrode fingers and the second electrode fingers are larger in comparison with that of the center area in which the electrode fingers intersect.
US10833642B2 Amplifier flicker noise and offset mitigating systems and methods
A system includes an amplification circuit and offset calibration circuit. The amplification circuit includes a modulation circuit operable to modulate a received signal, an amplifier operable to amplify the modulated signal, and a modulation circuit operable to demodulate the amplified signal. The offset calibration circuit includes a logic circuit operable to set a control signal and adjust the control signal based on an output of the amplification circuit, where the output is based on the demodulated signal, and a compensation signal generator operable to generate a compensation signal based on the control signal to compensate for an offset associated with the amplification circuit, and apply the compensation signal on the amplification circuit to adjust the output of the amplification circuit. The offset calibration circuit in conjunction with the application circuit reduces flicker, offset, and offset drift, and also suppresses the upmodulate ripple due to chopping.
US10833641B2 Methods and apparatus for an amplifier circuit
Various embodiments of the present technology may comprise methods and apparatus for an amplifier circuit. Methods and apparatus for an amplifier circuit according to various aspects of the present invention may comprise a first cross-connect circuit configured to receive an input signal at an input terminal and transmit the input signal to an input stage circuit. The amplifier circuit may further comprise a second cross-connect circuit connected between the input stage circuit and an output stage circuit, and a voltage adjustment circuit connected to the input stage circuit. Each cross-connect circuit may comprise a plurality of switches.
US10833640B2 Buffer circuit, clock dividing circuit including the buffer circuit, and semiconductor device including the buffer circuit
A buffer circuit may include: an amplifying circuit configured to change, based on a first input signal and a second input signal, voltage levels of a first output node and a second output node in a range between a first power voltage and a second power voltage; a latch circuit configured to latch the voltage levels of the first output node and the second output node; a first variable load configured to adjust, based on a reset signal, an amount of current provided by a first power voltage terminal at the first power voltage to the first output node; a second variable load configured to adjust, based on the reset signal, an amount of current provided by the first power voltage terminal to the second output node; and a reset circuit configured to drive the first output node to the second power voltage based on the reset signal.
US10833638B2 High-efficiency power amplifier system for wireless power transmitters
One example device for providing wireless power includes a power supply; a power amplifier coupled to the power supply, the power amplifier comprising a first switch and a second switch coupled to the power supply and to a common switch output, and a pulse-width modulator (“PWM”) coupled to the power amplifier, the PWM configured to substantially simultaneously toggle each of the first and second switches between open and closed states, and to maintain the first and second switches in opposite open and closed states; a controller coupled to the power supply and the PWM, the controller configured to: receive a sensor signal indicating an impedance of a load; determine a duty cycle of the PWM based on the sensor signal; and adjust an output voltage of the power supply based on the duty cycle of the PWM.
US10833637B2 Charge-pump tracker circuitry
Charge-pump tracker circuitry is disclosed having a first switch network configured to couple a first capacitor between a voltage input terminal and a ground terminal during a first charging phase and couple the first capacitor between the voltage input terminal and a pump output terminal during a first discharging phase. A second switch network is configured to couple the second capacitor between the voltage input terminal and the ground terminal during a second charging phase and couple the second capacitor between the voltage input terminal and the pump output terminal during a second discharging phase. A switch controller is configured to control the first switch network and the second switch network so that the first discharging phase and the second discharging phase are in unison in a parallel mode and so that the first discharging phase and the second discharging phase alternate in an interleaved mode.
US10833636B2 Method for improving linearity of radio frequency power amplifier, compensation circuit and communications terminal
A method for improving the linearity of a radio frequency power amplifier, a compensation circuit (307) for implementing the method, and a communications terminal with the compensation circuit (307). In the method, a compensation circuit (307) is connected between a base (a3) and a collector (b3) of a transistor of a common emitter amplifier (306), in order to neutralize the impact of a variation in capacitance between the base (a3) and the collector (b3) of the transistor (306) according to a radio frequency signal. No additional direct-current power consumption is needed, and degradation in performance of other radio frequency power amplifiers can be avoided. The corresponding compensation circuit (307) can be easily integrated with a main amplification circuit, without affecting other performance of the main amplification circuit, and provides high adjustability.
US10833635B2 Optimizing power efficiency of a power amplifier circuit to reduce power consumption in a remote unit in a wireless distribution system (WDS)
Embodiments of the disclosure relate to optimizing power efficiency of a power amplifier circuit to reduce power consumption in a remote unit in a wireless distribution system (WDS). A power amplifier circuit is provided in the remote unit to amplify a received input signal associated with a signal channel(s) to generate an output signal at an aggregated peak power. In this regard, a control circuit is configured to analyze at least one physical property related to the signal channel(s) to determine a maximum output power of the power amplifier circuit. Accordingly, the control circuit configures the power amplifier circuit according to the determined maximum output power. By configuring the maximum output power based on the signal channel(s) in the input signal, it may be possible to optimize the power efficiency of the power amplifier circuit, thus helping to reduce the power consumption of the remote unit.
US10833633B2 Circuit and method for controlling a crystal oscillator
A crystal oscillator circuit that can be controlled for fast start-up and for efficient operation is disclosed. The control includes adjusting a voltage applied to a body terminal of a transistor in order to control the amplification of the crystal oscillator. The amplification can be increased, relative to a motional resistance of the crystal oscillator, at start-up to reduce a start-up time necessary for oscillation. The amplification can also be decreased in order to maintain oscillation after start-up more efficiently. In some implementations, the transistor for control is a fully depleted silicon on insulator (FDSOI) transistor that accommodates a wide range of body bias voltages.
US10833631B2 Amplifier bandwidth calibration of continuous time circuit
The present invention provides a continuous time circuit including an amplifier and a RC calibration circuit. In the operations of the continuous time circuit, the amplifier is configured to amplify an input signal to generate an output signal, and the RC calibration circuit is configured to adjust a capacitance of a compensation capacitor of the amplifier according to a RC product measurement result.
US10833628B2 Failure diagnostic method and failure diagnostic device of solar cell string
A technique that ensures proper failure diagnosis of a solar cell string. A failure diagnostic method and a failure diagnostic device of the solar cell string include an impedance measure, an analyzer, and a determination processor. The analyzer obtains the inductance of the solar cell string based on a relational expression containing an impedance, an inductance, and a frequency in a predetermined equivalent circuit of the solar cell string, and the frequency characteristic of the first impedance measured by the impedance measure. The determination processor conducts failure diagnose for the solar cell string based on the inductance obtained by the analyzer.
US10833627B2 Electrically conductive module of solar cell terminal box
The present invention discloses an electrically conductive module of a solar cell terminal box. The electrically conductive module comprises an insulation body, conducting strips and a diode chip, wherein there are two and only two conducting strips. The two conducting strips are electrically connected through the diode chip. The diode chip is located inside the insulation body. Each of the two conducting strips is provided with a through hole. The two side edges, which are fixed with the conducting strips, of the insulation body overlap with the through holes. A connection region between the insulation body and each of the conducting strips is only a region between the end portion of the corresponding through hole and the edge of the conducting strip. A part of each through hole is located inside the insulation body, and the remaining part of the through hole is located outside the insulation body and forms an enclosed busbar welding hole together with two side edges of the insulation body. The connection regions between the insulation body and the conducting strips are just the four smaller regions between the end portions of the through holes and the edges of the conducting strips, which can effectively prevent the insulation body from suffering the acting force exerted by the external force through the conducting strips, and avoid the phenomenon that the body is damaged or excessively stressed, etc.
US10833622B2 Hybrid transmission wiring verification
In an electrified vehicle having a synchronous traction motor, an inverter is connected to stator windings by three power cables. If these cables are accidentally connected to the wrong windings, the resulting torque will not match the desired torque, and may even be in the wrong direction. To avoid this problem, a test is performed any time that the cables may have been unplugged and re-connected. The inverter is commanded to generate a rotating magnetic field while the rotor is held stationary, resulting in a positive and a negative response current. A relationship between a phase angle of the negative response current and the rotor position indicates which cables are connected to which windings. If the cables are incorrectly connected, the controller disables the motor and informs an operator which cables to swap to achieve correct connection.
US10833618B2 Variable torque motor/generator/transmission
The present disclosure is directed to an electric generator and motor transmission system that is capable of operating with high energy, wide operating range and extremely variable torque and RPM conditions. In accordance with various embodiments, the disclosed system is operable to: dynamically change the output “size” of the motor/generator by modularly engaging and disengaging rotor/stator sets as power demands increase or decrease; activate one stator or another within the rotor/stator sets as torque/RPM or amperage/voltage requirements change; and/or change from parallel to series winding configurations or the reverse through sets of 2, 4, 6 or more parallel, three-phase, non-twisted coil windings with switchable separated center tap to efficiently meet torque/RPM or amperage/voltage requirements.
US10833616B1 Gas turbine engine generator power management control system
A power management system may include an energy source and a generator driven by a gas turbine engine to output generator power to a common bus. A source power converter is electrically coupled between the energy source and the common bus. A controller circuitry includes an adaptive filter to filter a power signal indicative of power consumption of a variable load on the common bus, and outputs a filtered signal as a load demand signal to the generator. A source demand error signal is also output to control the source power converter to supply power from the energy source to the common bus. The controller circuitry is further configured to automatically adjust the adaptive low pass filter in accordance with the power consumption of the dynamic load and the load demand signal of the generator.
US10833615B2 Methods for controlling a voltage present at an electric fan
Methods for controlling a voltage present at an electric fan during a startup of the fan are disclosed herein. The fan serves to generate a flow of air for cooling a device. The method includes applying an output voltage of a power supply, which serves to supply voltage to the device, to the fan; and switching on and switching off the output voltage of the power supply applied to the fan by a switch pulse-width-modulated-controlled by a control unit so that the Root Mean Square value of the current flowing through the fan is less than a startup current of the fan.
US10833613B2 Inverter control apparatus and motor drive system
An inverter control apparatus and a motor drive system includes an inverter main circuit that drives a synchronous motor; an electric-current detector that detects an electric current flowing between the inverter main circuit and the synchronous motor; a command generator that generates an electric-current command value of an output electric current that is output from the inverter main circuit to the synchronous motor, in accordance with a torque command that is supplied externally; and an electric-current controller that generates a voltage command value for the inverter main circuit so that the electric-current command value and a detected electric-current value detected in the electric-current detector are equal to each other. The command generator generates the electric-current command value so that a fundamental wave current that is equal to or greater than a threshold is supplied to the synchronous motor, in driving the inverter main circuit.
US10833612B2 Electric working machine
An electric working machine includes an inverter and a controller. The controller switches a current conduction pattern via the inverter and performs a PWM control of a conduction current to a brushless motor. The controller includes switching patterns as the current conduction pattern switched for every commutation timing. The switching patterns include different on and off states for different switching elements. The controller sequentially switches a switching pattern synchronously with a period of the PWM control, detects a rotational position of a brushless motor from a magnitude relation between inductances of the brushless motor produced by switching the switching pattern, and sets the commutation timing.
US10833608B2 Vibration actuator and electronic apparatus using vibration actuator
A vibration actuator, which is capable of being miniaturized or obtaining stable drive performance, moves a vibration body and a contact body relatively. The vibration actuator includes a support member that supports the vibration body. The support member includes a vibration section joined to the vibration body, a first fixing section and a second fixing section that are provided on opposite sides of the vibration body for fixing the support member at a predetermined position, a first support section that connects the vibration section with the first fixing section to support the vibration body, a second support section that connects the vibration section with the second fixing section to support the vibration body, and conduction members that extend from the vibration body to the first fixing section, extend from the vibration body to the second fixing section, and supply electric power to the vibration body.
US10833604B1 Power converter device
A power converter device includes a first phase-shift full-bridge circuit, a second phase-shift full-bridge circuit, a detector circuit, and a control circuit. The control circuit controls the first phase-shift full bridge circuit and the second phase-shift full bridge circuit. The control circuit disables the second phase-shift full-bridge circuit when the output current is less than a first predetermined value. The control circuit enables the second phase-shift full-bridge circuit when the output current is equal to or greater than the first predetermined value. The control circuit controls a synchronous switching circuit of the second phase-shift full-bridge circuit to operate in a traditional control mode when the output current is equal to or greater than a second predetermined value and a duty cycle of a phase-shift switching circuit is equal to or greater than a third predetermined value. The second predetermined value is greater than the first predetermined value.
US10833603B2 Method of controlling paralleled passive front-end rectifiers with and without inter-leaving
Embodiments herein relate to a method of controlling a three-phase paralleled passive front-end drive connectable to a three phase alternating current power source. The method includes connecting a coupling reactance to the rectifier bridge, the coupling reactance configured to transfer power from the rectifier to a first direct current (DC) bus, coupling the first DC bus to a second DC bus, and connecting a first inverter to the first DC bus and connecting a second inverter to the second DC bus. The method also includes connecting a first controller to the first inverter and the second inverter, the first controller configured to generate control signals to cause the first inverter and the second inverter to generate a plurality of motor excitation signals respectively, and combining the plurality of motor excitation signals from the first inverter with the plurality of motor excitation signals from the second inverter.
US10833602B2 Common line communication in cascaded inverters
A method in a power inverter system (100) is disclosed, wherein the power inverter system comprises a central unit (130) and a plurality of switching units (110) operable in an inverter mode in which they are individually switched so as to produce a combined output voltage waveform and AC (VOUT) transmitted in a common line (120), and operable in a communication mode in which the switching units are switched so as to produce a communication signal, the communication signal being transmitted in the common line to the central unit. The method comprises operating at least some of the switching units in the inverter mode such that they are switched in response to switching commands of a command signal produced by the central unit, and between two consecutive switching commands of the command signal, operating at least one of the switching units in the communication mode.
US10833600B2 Single-stage multi-input forward DC-DC chopper type high-frequency link's inverter with series simultaneous power supply
A single-stage multi-input forward DC-DC chopper type high-frequency link's inverter with series simultaneous power supply includes a multi-input single-output combined isolated bidirectional forward DC-DC chopper, a plurality of input filters connected to non-common ground and a common output filter circuit. The plurality of input filters and the output filter circuit are connected by the multi-input single-output combined isolated bidirectional forward DC-DC chopper. Each input end of the multi-input single-output combined isolated bidirectional forward DC-DC chopper is connected to output ends of each input filter in a one-to-one correspondence. The output ends of the multi-input single-output combined isolated bidirectional forward DC-DC chopper are connected to the output filter circuit. The inverter has multiple input sources connected to non-common ground, the power is supplied in a time-sharing or simultaneous manner, a high-frequency electrical isolation is performed between the output and the input.
US10833599B2 Highly interleaved converter for reliable power processing
This specification discloses a novel power converter comprising a large array of interleaved converter channels. As a system, these channels provide high reliability through redundancy. The embodiments described herein solve a reliability and cost issues in converting electrical energy to alternating current (AC) power, with particular application to string inverters for solar power applications.
US10833597B2 Hub device and power supply method thereof
A hub device and a power supply method thereof are provided. The hub device includes a power input port, first and second power output ports, a power management circuit and a controller. When first and second electronic devices are respectively connected to the first and second power output ports, the controller determines an input electric power from at least one default supply power of the power adapter based on first operating power information of the first electronic device and second operating power information of the second electronic device, so as to control the power adapter to provide the input electric power to the power input port. The power management circuit receives the input electric power to generate first and second operating power, so as to output the first operating power to the first power output port and output the second operating power to the second power output port.
US10833595B2 Semiconductor device with upper and lower switching devices and isolation transformer
Provided is a semiconductor device that has a configuration provided with: a driving unit for driving an upper switching element and a lower switching element according to a control signal for controlling the driving of the upper switching element and the lower switching element, which are connected in series to constitute a bridge circuit; an insulating unit having an insulating transformer; and a package for sealing at least a part of the insulating unit and the driving unit. The insulating unit transmits a signal corresponding to the control signal to the driving unit side while insulating the signal.
US10833590B2 Magnetically coupled galvanically isolated communication using lead frame
An integrated circuit package includes a lead frame and an encapsulation that substantially encloses the lead frame. The lead frame further includes a first conductor comprising a first conductive loop and a second conductor galvanically isolated from the first conductor, proximate to and magnetically coupled to the first conductive loop to provide a communication link between the first and second conductor. The second conductor includes a first conductive portion, a second conductive portion, and a wire coupling together the first conductive portion and the second conductive portion.
US10833588B2 Voltage converter power stage
A power stage of a voltage converter, including: a series capacitor having a first terminal coupled to a first switch node; a pair of second high-side switches coupled in series between a second switch node and a second terminal of the series capacitor; and a bias switch coupled between the first switch node and a middle node between the second high-side switches, wherein during operation, a voltage across each of the second high-side switches and the bias switch is less than a supply voltage.
US10833587B1 Control circuit having extended hold-up time and conversion system having extended hold-up time
A control circuit having extended hold-up time is coupled to a bus path of a conversion circuit. The control circuit includes a bypass circuit, an energy storage capacitor, and an auxiliary power circuit. The auxiliary power circuit supplies an energy storage voltage to the energy storage capacitor according to a working voltage provided by the conversion circuit. When a bus voltage of the bus path is less than or equal to the energy storage voltage, the energy storage voltage is supplied to the bus path through the bypass circuit so that the bus voltage is greater than or equal to a predetermined voltage within a hold-up time.
US10833586B2 System and method for extending the maximum duty cycle of a step-down switching converter without maximum duty control
The invention proposes a system and method for extending the maximum duty cycle of a step-down switching converter to nearly 100% while maintaining a constant switching frequency. The system includes a voltage mode or current mode step-down converter driven by a leading edge blanking (LEB) signal, which operates at the desired switching frequency. More particularly, the LEB signal is connected to a slope generator and/or a current sensing network. In each switching cycle, the LEB signal forces the slope signal and/or current sensing signal to reinitiate, thereby achieving a constant switching frequency and disassociating the switching frequency of the converter from the error voltage VCOMP. Corresponding methods for how to extend the maximum duty cycle of a step-down switching converter while maintaining a constant frequency are also disclosed.
US10833585B2 Scalable switched capacitor integrated buck (SCIB) regulator for high conversion step down application
Described herein is a technology for implementing a scalable SCIB regulator for high conversion step down application. Particularly, the SCIB is configured to include stacked input switch circuits with parallel-connected output switch circuits. The input switch circuits are stacked with or without DC shift switch circuits in between. Furthermore, the input voltage is stepped down to a biasing voltage by input switch circuits and then is regulated to one or more output voltages having one or more independent and predetermined values by output switch circuits. The input switch circuits, output switch circuits and DC shift switch circuits can be modified for scalable power capability and ease of control and manufacturing.
US10833576B2 Signal processor, filter, control circuit for power converter circuit, interconnection inverter system and PWM converter system
A signal processor is configured to perform a process equivalent to performing a series of fixed-to-rotating coordinate conversion, a predetermined process and then rotating-to-fixed coordinate conversion, while maintaining linearity and time-invariance. The signal processor performs a process given by the following matrix G: G = [ F ⁡ ( s + j ⁢ ⁢ ω 0 ) + F ⁡ ( s - j ⁢ ⁢ ω 0 ) 2 F ⁡ ( s + j ⁢ ⁢ ω 0 ) - F ⁡ ( s - j ⁢ ⁢ ω 0 ) 2 ⁢ j - F ⁡ ( s + j ⁢ ⁢ ω 0 ) - F ⁡ ( s - j ⁢ ⁢ ω 0 ) 2 ⁢ j F ⁡ ( s + j ⁢ ⁢ ω 0 ) + F ⁡ ( s - j ⁢ ⁢ ω 0 ) 2 ] where F(s) is a transfer function representing the predetermined process, ω0 is a predetermined angular frequency and j is the imaginary unit.
US10833575B2 Method of forming a semiconductor device
In one embodiment, a controller for a power supply may be configured to operate as a quasi-resonant controller while operating in a discontinuous current mode and to operate as one of a pulse width or pulse frequency modulation controller while operating in a continuous current mode. The controller may have an embodiment that varies a frequency of the switching drive signal around a center frequency while operating in the continuous current mode, and varies a value of a current sense signal but not vary the frequency of the switching drive signal around a center frequency while operating in the discontinuous current mode.
US10833568B2 Generator grounding strap module
A generator grounding module selectively mountable to a support bracket and selectively engageable with a rotor includes a plate member movable along a mounting axis to selectively attach the generator grounding module to the support bracket, the plate member movable between a first position and a second position in which the plate member is substantially fixed with respect to the support bracket. A mounting block is movable along the mounting axis with respect to the plate member, a grounding strap is coupled to the mounting block and is movable between a disengaged position and an engaged position in which the grounding strap contacts the rotor, and a biasing assembly is connected to the plate member and the mounting block and operable to bias the mounting block along the mounting axis toward the plate member, wherein the plate member is fixedly attached to the support bracket when in the second position and the biasing assembly biases the grounding strap into the engaged position.
US10833566B2 Inverter integrated motor
An inverter integrated motor having a frame, a motor body, a cap, a fan, an inverter, and a heat transfer module is provided. The motor body is received in the frame, and a heat dissipation passage is formed between them, the motor body is covered and closed by the cap, and the cap and the motor body are presented in a continuous form. The inverter is attached on an outer side surface of the frame. The heat transfer module is located between the cap and the fan and thermally connected to the inverter. Airflow is generated by the fan to flow through the heat transfer module and exchange heat therewith, and the airflow then flows into the heat dissipation passage along the cap. Accordingly, an attached additional fan for the inverter is not necessary.
US10833564B2 Electric machine temperature sensor
An electric machine includes a stator having hairpin windings with at least first and second phases and a neutral bridge attached to the at least first and second phases. The neutral bridge defines a planar body and a mounting feature extending from an upper surface of the body and cooperating with the body to define an opening. A temperature sensor of the electric machine includes an insertion portion having a sensing element. The insertion portion is received in the opening.
US10833563B1 Multi-facet partial air deflector
A totally-enclosed fan-cooled motor, including a stator provided in a closed motor housing, a rotor provided to the stator and mounted to a rotation shaft, a pair of bearings for holding a drive side and a non-drive side of the shaft, an external fan provided on the non-drive side of the shaft and outside the motor for sending wind to the motor housing, an air deflector mounted to an endplate disposed on the drive side located on an outer side of the bearing and the endplate holding the drive side of the shaft, outside the motor and proximal the bearing for cooling the bearing holding the drive side of the shaft. The air deflector includes a plurality of faceted surfaces at obtuse angles to one another about a periphery of the air deflector to deflect wind across the endplate and the drive side bearing.
US10833555B2 Motor for reducing a repulsive force
A rotary motor capable of reducing repulsive force is disclosed. The rotary motor comprises a housing, a stator located in the housing and configured to have a shape of a cylinder on which a central part is penetrated, and a rotator configured to rotate in the stator. Here, the stator rotates clockwise or counterclockwise.
US10833554B2 Circulation pump assembly
A circulation pump assembly, with a wet-running electrical drive motor (4), includes a pump casing (6) as well as a motor housing (22) which is connected to the pump casing (6). The motor housing (22) is a combined stator and electronics housing that accommodates a stator (18) of the drive motor (4) as well as motor electronics (34). The motor housing (22), at a first axial end (24) facing the pump casing (6), is closed by an air gap sleeve (16) of the drive motor. The motor housing (22), at a second axial end (26) which is away from the pump casing (6), includes an opening (42) closed by a cover (28). An interior of the motor housing (22), in a region adjacent the first axial end (24), is filled with a potting mass (40) surrounding the stator (18) and the motor electronics (34).
US10833552B2 Motor lead connector for ingress protected motor
An electric motor having a rotor, a stator, a case at least partially enclosing the rotor and the stator, and a lead connector. The lead connector includes a body having a base, a terminal end, and an intermediate portion extending between the base and the terminal end. The lead connector also includes a first sealing interface extending substantially circumferentially about the intermediate portion and a second sealing interface abutting the case.
US10833551B2 Stator of rotating electrical machine
A stator of a rotating electrical machine that can realize productivity growth, compared with a conventional technique is provided. A stator of a rotating electrical machine includes a slot; a plurality of coils disposed within the slot; and an insulator disposed around the coils within the slot. The insulator has an outer peripheral portion that surrounds the plurality of coils; and a bent portion that extends from the outer peripheral portion between the coils and that is folded back on a tip end.
US10833549B2 Rotary electric machine
In the armature winding of a rotary electric machine, in a series coil portion group, the numbers of turns of conducting wire in the coil portions that have an electrical angular phase difference of θk that satisfies θ1<θkθm are different than the numbers of turns of conducting wire in the θ1 and θm coil portions, and are also different than the numbers of turns of conducting wire in the coil portions that are adjacent to the θk coil portions on two sides in a circumferential direction of the stator core, and phases of the θk coil portions are also different than phases of each of the coil portions that are adjacent to the θk coil portions on the two sides in the circumferential direction.
US10833547B2 Liquid cooled pole wedge
A wedge for use between poles of a generator for supporting windings of the poles includes a plurality of outer walls. The wedge also includes at least one fluid orifice extending through at least one of the plurality of outer walls and configured to receive a fluid from a shaft of the generator and to allow the fluid to flow through the at least one of the plurality of outer walls to reduce a temperature of the windings.
US10833545B2 Rotor for hybrid homopolar machine
There is provided an electric machine that includes a rotor comprising a pole and magnet assemblies divided axially in a first subsection and a second subsection. Each of the first and second subsections includes poles and magnets, and the poles and magnets of the first subsection are offset from the poles and magnets of the second subsection.
US10833544B2 Stator, motor, compressor, and refrigeration air conditioner
A stator includes a first core including a plurality of non-oriented electromagnetic steel sheets stacked in layers and having an insertion hole penetrating the plurality of non-oriented electromagnetic steel sheets in an axial direction of the stator and a second core arranged in the insertion hole and including a plurality of oriented electromagnetic steel sheets stacked in layers. The first core has a side wall part adjoining a side surface of the second core extending in the axial direction of the stator, and the side wall part has an opening part that exposes the side surface of the second core.
US10833543B2 Stator assembly
A stator core and method of forming a stator assembly for an electric machine, including a cylindrical stator core, a set of posts extending radially inward from the stator core defining a set of slots between adjacent posts, and a set of windings formed by conductive wire wound in a fewer than all of the set the slots, defining a first subset of wound slots and a second subset of empty slots.
US10833542B2 Hinged stator core
The present invention discloses a hinged stator core. The hinged stator core consists of a plurality of individual iron cores each comprising teeth on an inner side and a yoke on an outer side; two adjacent individual iron cores are connected by a hinge structure comprising a hinge and a hinge slot fitted with the hinge, with both the hinge and the hinge slot being arranged on the yoke of the individual iron core; the hinge and the hinge slot are arranged on a side, which rotates about a rotor shaft clockwise and/or on a side, which rotates about a rotor shaft counterclockwise, of the yoke of the individual iron core; the hinge consists of a fitting segment fitted with the hinge slot and a connecting segment for connecting the fitting segment with the yoke; the fitting segment has a circular or segmental shape along a radial cross-section of the rotor shaft; the hinge slot has an arced shape along the radial cross-section of the rotor shaft; and both a center of a circle of the fitting segment of the hinge and a center of a circle of the hinge slot are in the circumference of a circle taking a center of the stator core as its center. The present invention has the advantages of convenient manufacturing and processing, more convenient wire winding, and high integrity of the magnetic circuit.
US10833541B2 Tooth-wound stator assembly
There is provided a stator and a method of making the same. For example, there is provided a stator that includes a single piece yoke and a set of teeth mounted on an inner surface of the single piece yoke. Each tooth is pre-wound with a coil and includes a tail portion configured to secure the tooth on the inner surface. Furthermore, at least two teeth of the set of teeth are mounted on the single piece yoke at a slot opening distance of less than about 35%.
US10833539B2 Mobile terminal, communications module and control method of mobile terminal
A mobile terminal includes a communication controller configured to detect a wireless tag in a mobile environment and a wireless charging controller configured to receive power wirelessly, and control the communication controller to determine whether the wireless tag is in the mobile environment, in response to receiving a wake-up power signal from a wireless power transfer apparatus.
US10833534B2 Power transmitting device and power receiving device
A power transmitting device is configured to perform a “power transmission frequency adjustment control” applied to adjust a power transmission frequency representing a frequency of power to be transmitted. A power receiving device is configured to perform a “resonance frequency adjustment control” applied to adjust a resonance frequency of a power receiving unit contactlessly receiving the power transmitted from the power transmitting device. The power transmitting device uses control information received from the power receiving device to determine whether the power receiving device has a function of performing the resonance frequency adjustment control applied to adjust the resonance frequency of the power receiving unit. When the power receiving device has the function of performing the resonance frequency adjustment control, the power transmitting device selects one of the power transmission frequency adjustment control and the resonance frequency adjustment control that has a higher resolution.
US10833532B2 Method and system for managing a power grid
A smart grid for improving the management of a power utility grid is provided. The smart grid as presently disclosed includes using sensors in various portions of the power utility grid, using communications and computing technology to upgrade an electric power grid so that it can operate more efficiently and reliably and support additional services to consumers. The smart grid may include distributed intelligence in the power utility grid (separate from the control center intelligence) including devices that generate data in different sections of the grid, analyze the generated data, and automatically modify the operation of a section of the power grid. Further, the intelligent devices in the power utility grid may cooperate together to analyze and/or control the state of the power grid. Finally, the distributed intelligence may further include distributed storage.
US10833527B2 Discharge circuit and power storage device
A discharge circuit includes: a first transistor connected to power storage; an operational amplifier for controlling an output current of the first transistor; and the current mirror circuit connected to the operational amplifier. The current mirror circuit includes a second transistor connected to a non-inverting input terminal of the operational amplifier, and a third transistor connected to the power storage.
US10833524B2 Disconnecting supply of electric charging current
In an embodiment, disconnecting a supply of an electrical charging is described. In an embodiment, a device comprises: a reception configured to receive an electric current. A supply configured to supply an electric current out from the device in a connection with charging a battery of an electrical device. Connectors configured to connect the device between a power unit, which supplies the electric current to the reception,and the electrical device. A switch configured to disconnect at least one of the electrical currents. A control unit configured to control the switch, wherein the control unit comprises a timer configured to control the switch according to a predetermined timing function. A housing, wherein a movement of the housing is configured to generate a stimulus that is configured to the switch for connecting the at least one of the electrical currents and reset the timer.
US10833523B2 Electricity storage element charging method and electricity storage device
A two-terminal circuit having a relatively high series degree is configured by connecting a plurality of electricity storage elements to each other, and charging of the electricity storage elements is started by injecting a current into this two-terminal circuit. After the connection of the electricity storage elements is changed to reduce the series degree and a voltage variation among the electricity storage elements is solved at a predetermined timing, a connection change is made to configure a two-terminal circuit having a high series degree again and charging is continued. Each electricity storage element can be charged in a short time while voltages are balanced among the electricity storage elements.
US10833521B2 Formation method for preparing a fast-charging lithium ion cell
Methods, systems and battery modules are provided, which increase the cycling lifetime of fast charging lithium ion batteries. During the formation process, the charging currents are adjusted to optimize the cell formation, possibly according to the characteristics of the formation process itself, and discharge extents are partial and optimized as well, as is the overall structure of the formation process. During operation, voltage ranges are initially set to be narrow, and are broadened upon battery deterioration to maximize the overall lifetime. Current adjustments are applied in operation as well, with respect to the deteriorating capacity of the battery. Various formation and operation strategies are disclosed, as basis for specific optimizations.
US10833516B2 Charging port module for mobile electronic device and mobile electronic device including charging port module
A charging port module for a mobile electronic device and a mobile electronic device including the charging port module. The charging port module includes a housing including at least one opening; a heating element disposed on the housing; and a plurality of electrodes contacting the heating element.
US10833515B2 Automatic charging device for an AGV on an automated container terminal and charging method therefor
An automatic charging device for an AGV on an automated container terminal and a charging method using the same are disclosed. The automatic charging device comprises a vehicle-mounted device and a ground device. The vehicle-mounted device comprises RFID read-write coils, a charging connector buffer device, a charging connector, a power measuring module, a vehicle charging controller and a vehicle-mounted wireless module. The ground device comprises an RFID label array, a power panel, a conductive groove, a pressure sensor, an electromagnet, a ground charging controller and a ground wireless module. The hook shaped charging plug, the charging connector buffer device and the power panel with the electromagnet improve success rate of connection between the power supply and the plug, and improve AGV working efficiency. RFID technology is used for positioning the charging region with high reliability. The pressure sensor and the safety cover ensure safety of the charging process and prevent electric leakage.
US10833512B2 Cell balancing with local sensing and switching
A system and method for cell balancing within a battery module includes local sensing and switching at each of the battery cells. A switching circuit is associated with each one of the battery cells to connect or functionally disconnected the battery cell from the battery module. A module controller generates one or more parameter threshold values as maximum operating values for each of the battery cells. Each cell has a cell controller associated therewith to monitor one or more cell parameters, which are communicated to a summing module via a shared monitoring line, averaged, and communicated to the module controller. The cell controllers each receive a parameter threshold value via a shared control line and command the associated switching circuit to functionally disconnect and to bypass the battery cell if the cell parameter exceeds the corresponding parameter threshold value. Methods of checking the battery module are also provided.
US10833508B2 Active power distribution network multi-time scale coordinated optimization scheduling method and storage medium
An active power distribution network multi-time scale coordinated optimization scheduling method and storage medium are provided. The method includes the following steps: performing long-time scale optimization scheduling of an active power distribution network; performing short-time scale rolling optimization scheduling on the basis of MPC of the active power distribution network according to an optimization result of the long-time scale optimization scheduling of the active power distribution network. By using a model prediction control method, taking the long-time scale optimization scheduling result as a reference, and performing short-time scale rolling correction, the optimization scheduling of the active power distribution network is achieved, thereby reducing unfavorable influences of prediction precision of a distributed power supply and a low-voltage load on the optimization scheduling.
US10833496B2 Configurable enclosure
A configurable enclosure including a cover operably attached to a base. The base includes a wall disposed along a perimeter of a bottom surface and a bottom surface having first and second removable portions configured to be peeled away from the base portion to create an opening through the bottom surface. Moreover, the bottom surface includes thin sections located between first and second tracks that extend around outer edges of each of the removable portions. Actuators are operably attached to the first and second tracks, wherein through actuation of the actuator, the removable portions peel away from the base to create an opening through the bottom surface.
US10833495B2 Monolithic electrical connection harness with adapted rigidity
The invention relates to a monolithic electrical connection harness (1) having an adapted rigidity traveling along a determined path, including a flexible insulating casing (2a to 2c) inserting shielded electrical connection cables (C1 to C3) to constitute a bundle (F1 to F3), devices (S1 to S3) for holding the ends (Z1 to Z3) of the flexible casing (2a to 2c) on rear connections (R1 to R3) integrating the end zones (E1 to E3) of the cables (C1 to C3) In this harness (1), a reinforcing sheath (6) surrounds the cable bundle (F1 to F3) and is made up of one or more layers (61 to 63) of composite material made from a flexible matrix in polymer material in which a ply of fibers for reinforcing in robustness and/or stiffness is draped along the cable bundle (F1 to F3), the reinforcing fibers being assembled in each ply in a shape chosen from between a unidirectional web, a multidirectional web and a fabric of wires formed from braided fibers.
US10833493B2 Device and method for removing a sheath of electrical conductors
A method of removing an inner sheath of electrical conductors of a multicore cable (K) having a film located between a shielding or an insulation and the inner conductors. The method comprising the steps of clamping of the cable (K), cutting of the inner sheath, establishing a connection with a pull-off means (5), and subsequently pulling off a cut or a cut-off sheath in a longitudinal direction of the cable (K).
US10833490B2 Control board
This control board has buses stored in a bus chamber extending in the vertical direction with respect to a floor surface inside a housing and power is supplied to stored devices from the buses. The control board includes an inlet which is provided on the bus chamber and through which cooling air is taken in, a device inlet provided on the stored devices and opposed to a bus chamber outlet provided on the bus chamber, a device outlet provided on the front side of the stored devices, and a door portion outlet provided on a door on the front side and opposed to the device outlet.
US10833486B1 Spark plug
A spark plug having excellent ignitability including a rod-shaped center electrode; a ground electrode that includes a facing portion facing a front end portion of the center electrode and forms a discharge gap between the facing portion and the front end portion of the center electrode; an insulator; a metal shell; and a cover portion that covers, from a front end side of the spark plug, the front end portion of the center electrode and the facing portion of the ground electrode to form a pre-chamber and includes injection holes that are through holes.
US10833480B2 Diffusion blocking layer for a compound semiconductor structure
A method of fabricating a gain medium includes growing a p-type layer doped with zinc on a substrate, growing an undoped layer including one or both of InP or InGaAsP on the p-type layer, growing a region that includes multiple quantum wells (MQWs) on the undoped layer, and growing an n-type layer on the region. The undoped layer has a thickness that is sufficient to prevent Zn diffusion from the p-type layer into the region during subsequent growth or wafer fabrication steps.
US10833479B2 Light-emitting element and method for manufacturing the same
A light-emitting element includes a mesa structure in which a first compound semiconductor layer of a first conductivity type, an active layer, and a second compound semiconductor layer of a second conductivity type are disposed in that order, wherein at least one of the first compound semiconductor layer and the second compound semiconductor layer has a current constriction region surrounded by an insulation region extending inward from a sidewall portion of the mesa structure; a wall structure disposed so as to surround the mesa structure; at least one bridge structure connecting the mesa structure and the wall structure, the wall structure and the bridge structure each having the same layer structure as the portion of the mesa structure in which the insulation region is provided; a first electrode; and a second electrode disposed on a top face of the wall structure.
US10833478B2 Waveguide structure and optical system with waveguide structure
The inventive waveguide structure comprises a first waveguide region having a constant first width adapted to guide electromagnetic waves mode sustainably along its longitudinal axis; a second waveguide region adapted to guide electromagnetic waves mode sustainably along its longitudinal axis, wherein the longitudinal axis of the first waveguide region and the longitudinal axis of the second waveguide region form a common longitudinal axis of the waveguide structure, wherein a first end face of the first waveguide region and a first end face of the second waveguide region are aligned with each other, the width of the first end face of the second waveguide region corresponding to the first width, and the width of the second waveguide region along its longitudinal axis widens from the first end face to a second end face to a second width greater than the first width.
US10833476B2 Surface-mountable semiconductor laser, arrangement with such a semiconductor laser and operating method for same
A surface-mountable semiconductor laser and an arrangement with such a semiconductor laser are disclosed. In one embodiment, the semiconductor laser is includes a semiconductor layer sequence having at least one generation region between a p-side and an n-side, at least two contact surfaces for external electrical contacting of the p-side and the n-side, wherein the contact surfaces are located on the same side of the semiconductor layer sequence in a common plane so that the semiconductor laser are contactable without bonding wires, at least one of a plurality of conductor rails extending from a side with the contact surfaces across the semiconductor layer sequence and a plurality of through-connections running at least through the generation region, wherein the generation region is configured to be pulse operated with time-wise current densities of at least 30 A/mm2.
US10833465B2 Mobile device with edge activation
A mobile device with edge activation is provided. The mobile device comprises: a housing; a data capture component; an actuator disposed on a side of the housing and configured to activate the data capture component when actuated; a display, disposed within the housing; a touch screen disposed on the display; a tactile indicator at the housing between the actuator and the touch screen; and, an activation area of the touch screen, adjacent the tactile indicator, the activation area configured to initiate a digital location for activating the data capture component when touch input is received at the activation area.
US10833464B2 Outlet connection schema for a PDU
A power distribution unit including an elongate housing and a power input penetrating said elongate housing. The power input can comprise a ground buss wire, a neutral buss wire and at least one line buss wire. A plurality of electrical outlets can be disposed along the housing. Each electrical outlet can comprise a receptacle and a plurality of spaced apart outlet pins protruding from the receptacle. The plurality of outlet pins can include a ground outlet pin receiving the ground buss wire, a neutral outlet pin receiving the neutral buss wire, and a line outlet pin receiving the line buss wire.
US10833458B2 Temperature sensor assembly for an electrical connector
An electrical connector including a housing having a terminal channel with a power terminal in the terminal channel. The electrical connector includes a temperature sensor assembly positioned in the chamber. The temperature sensor assembly includes a sealing pad holding the power terminal and a thermal shunt held by the sealing pad. A temperature sensor is coupled to the thermal shunt. The sealing pad is electrically insulative and has a terminal opening receiving the power terminal. The sealing pad is thermally coupled to the power terminal and thermally coupled to the thermal shunt. The thermal shunt has a thermal conductivity higher than a thermal conductivity of the sealing pad. The temperature sensor monitors the temperature of the power terminal through a thermal path defined by the sealing pad and the thermal shunt.
US10833457B2 Directional in-line suspended PCB power sensing coupler
An in-line suspended power sensor coupling configuration situated within a high frequency transmission line housing that allows forward, reverse, and sampling voltage elements to all be produced simultaneously on one double sided printed circuit board (PCB). The power sensor coupling allows for calibrated coupling responses across a much wider frequency range with a single PCB assembly, as opposed to the need to cover equivalently sized frequency ranges with multiple individually fabricated coupling element assemblies.
US10833446B2 Complex electrical connection device
It is aimed to provide a complex electrical connection device capable of efficiently shorting and connecting wires to each other by a compact structure. The complex electrical connection device includes first and second connectors (C1, C2). The first connector (C1) includes first shorting female terminals (TS1), mutual connection female terminals (TM1) and a first connector housing (H1). The second connector (C2) includes second shorting female terminals (TS2), mutual connection male terminals (TM2), a shorting female terminal (SA) having first and second male terminal portions (31A, 32A) capable of respectively connecting the first and second shorting female terminals (TS1, TS2), and a second connector housing (H2) for holding this shorting member. The second connector housing (H2) holds the mutual connection male terminals (TM2) at positions where the mutual connection terminals (TM1, TM2) are connectable to each other and holds the second shorting female terminals (TS2) at positions where the second shorting female terminals (TS2) are connected to the second male terminal portions (32A).
US10833443B2 Connector
A connector including a plurality of electrically conducting contacts and fitted to another connector, the connector includes: a fixing insulator having a frame shape; a plurality of metal fittings that are disposed at both ends of the fixing insulator in a contact array direction in which the contacts are arrayed, and that are provided inside the fixing insulator; and a movable insulator that is disposed inside the fixing insulator, that is connected to the fixing insulator through elastic deformation portions of the contacts, and that is movable at least in a direction perpendicular to a fitting direction of the fitting with the other connector by elastic deformation of the elastic deformation portions, both ends of the movable insulator in the contact array direction facing the respective metal fittings.
US10833442B2 Electrical connector with aligned contacting points between CPU and PCB
An electrical connector includes an insulative housing and a plurality of contacts retained in the housing. Each of the contacts includes a vertical main body with retaining structure thereon, a mounting section split from the bottom portion of the main body with a horizontal pad at the end, a first transverse section extending from the top portion of the main body in a first transverse direction, an upward section extending upward from one end of the transverse direction, a second transverse section extending from an upper end of the upward section in a second transverse direction opposite to the first transverse direction, a curved contacting section extending from the end of the second transverse section, and a downward tip section formed at a free end of the contact section.
US10833441B2 Electrical contact
An electrical contact includes a main body, a supporting arm extending upwardly from an upper edge thereof, and a spring arm extending curvedly and upwardly from a lower edge thereof with a contacting region at a free end. The spring arm will contact the supporting arm when the spring arm is downwardly pressed by the CPU. A solder part is sidewardly connected to a downward extension formed on a lower portion of the main body and located beside the spring arm, and includes a vertical section extending from the side edge of the downward extension, a horizontal solder pad extending from a lower edge of the vertical direction wherein a curved joint is formed between the downward extension and the vertical section for easy adjusting the angle formed between the downward extension and the vertical section, thus being adapted to fit different CPUs and PCBs.
US10833440B2 Electric contact with roller contact bodies on opposing sides and plug connection having such a contact
An electric contact for an electrical plug connection includes a receptacle open against a plugging direction and adapted to receive a mating contact in the plugging direction and a plurality of roller contact bodies made of an electrically conductive material and projecting into the receptacle. The roller contact bodies are rotatably held on at least a pair of opposing sides of the receptacle and each form a part of a contact surface adapted to contact the mating contact.
US10833438B1 Apparatus for surface mount connectors
Apparatus including an elongated body to couple with a surface mount connector to reduce or prevent deformation of the surface mount connector during soldering of the surface mount connector to a substrate, the surface mount connector including a connector housing having a first end portion and a second end portion. In one implementation, the elongated body may include: a first body end portion forming a first tab insertable into a first portion of a socket defined by the first housing end portion; and a second body end portion forming a second tab insertable into a second portion of the socket defined by the second housing end portion.
US10833436B2 Interdigitated power connector
An electrical connector carries large amounts of electrical current between two circuit boards with low resistance and low self-inductance by means of an interdigitated anode and cathode, thereby providing low dynamic voltage loss. The connector also may include, near where power will be consumed, an interposer board with on-board capacitance to provide even lower dynamic voltage loss. The connector has application to delivering low-voltage, high-current power from a power supply on a first board to electronics on a second board: the low resistance provides low voltage drop for a load current that is constant, while the low inductance and the capacitors provide low voltage fluctuation for a load current that changes. These issues are of great importance, for example, in designing high-performance computers.
US10833431B2 Keyed cable and connector system
A universal cable system includes a cable, which may include a keyed profile and an optional, integrated pull cable for low-voltage applications in residential and commercial structures, both old and new construction, which may further includes a connector, which does not require individual splicing of the wires from the cable. The connector may be self-crimping or crimped with a tool. During installation of the connector onto the cable, conductors in the connector may be simultaneously spliced to the wires of the cable during crimping.
US10833429B2 Conductive terminal and connector assembly
A conductive terminal includes a support frame defining a receiving space, a pair of first clamping arms arranged in the receiving space, and a pair of second clamping arms arranged in the receiving space. A pair of first clamping portions are disposed at a pair of ends of the first clamping arms. The first clamping portions are adapted to clamp a conductor of a wire inserted in a first insertion direction and electrically connect the wire with the conductive terminal. A pair of second clamping portions are disposed at a pair of ends of the second clamping arms. The second clamping portions are adapted to clamp the conductor of the wire inserted in a second insertion direction different from the first insertion direction and electrically connect the wire with the conductive terminal.
US10833423B2 Dual polarized notch antenna having low profile stripline feed
In this novel geometry, the 3D radiator unit cell has been designed with flat sided unit cells. Each 3D radiator unit cell incorporates a curf border of sacrificial material. This border permits independent sub-array size and shape. It also allows a gap between sub-arrays while retaining contiguous unit cell spacing giving flexibility to array size, shape and line replaceable unit capabilities.
US10833419B1 Waveguide fed stripline antenna
An apparatus may include a substrate assembly having a first side and a second side. The apparatus may further include a waveguide antenna element positioned on the first side of the substrate assembly. The apparatus may also include a first reference ground plane positioned on the first side of the substrate assembly. The apparatus may include a microstrip line positioned within the substrate assembly. The apparatus may further include a stripline positioned within the substrate assembly and electrically coupled to the microstrip line, the first reference ground plane overlapping the stripline. The apparatus may also include a second reference ground plane positioned on the second side of the substrate assembly and overlapping both the microstrip line and the stripline. The apparatus may include a stripline antenna element positioned on the second side of the substrate assembly and enclosed by the second reference ground plane.
US10833418B2 Antenna structure
An antenna structure includes a dipole antenna element and a floating metal element. The floating metal element is disposed adjacent to the dipole antenna element. The vertical projection of the dipole antenna element at least partially overlaps the floating metal element. The floating metal element is configured for fine-tuning the radiation pattern of the antenna structure and to increase the operation bandwidth of the antenna structure.
US10833417B2 Filtering dielectric resonator antennas including a loop feed structure for implementing radiation cancellation
Systems and methods which provide filtering dielectric resonator antenna (FDRA) configurations implementing radiation cancellation are disclosed. Embodiments of a FDRA provide implementations of dielectric resonator antennas (DRAs) which are configured with a loop feed structure facilitates radiation cancellation to provide radiation nulls at frequencies outside of a desired passband to thereby implement radiation cancellation for filtering functionality of the FDRA. FDRAs of embodiments may be variously polarized, such as to provide linear polarization or circular polarization.
US10833415B2 Radio frequency circuit board with microstrip-to-waveguide transition
A radio frequency (RF) printed circuit board (PCB) including a ground plane, a microstrip transmission line, a patch antenna element, a waveguide, and a dielectric lens. The RF PCB includes a first substrate having a top surface on which the patch antenna element is disposed, the patch antenna element including a slot aperture. The microstrip transmission line is disposed between the first substrate and a second substrate, and is configured to be electromagnetically coupled to the patch antenna element through the slot aperture. The ground plane is disposed on a third substrate and is electromagnetically coupled to the microstrip transmission line. The waveguide includes an aperture attached to the top surface and encloses the patch antenna element. The waveguide is configured to be electromagnetically coupled to the patch antenna element. The dielectric lens is disposed on the patch antenna element and extends into the aperture of the waveguide.
US10833413B2 Communication device
A communication device comprises a plurality of antennas, a sensing unit, a plurality of radio frequency circuits, and a sensing module. The sensing unit is electrically connected to the ground through at least one grounding capacitor, and the sensing unit is further configured to isolate and be coupled to each antenna. Each the radio frequency circuit is electrically connected to the corresponding each antenna. The sensing module is electrically connected to the sensing unit through an inductor, wherein the sensing module is used to sense the distance between the sensing unit and an external object by the sensing unit, and the sensing module generates a distance signal according to the distance.
US10833412B2 Antenna arrangement for circularly polarized satellite radio signals on a vehicle
An antenna arrangement for the reception of circularly polarized satellite radio signals having a free space wavelength λ and a frequency f comprises at least one circularly polarized satellite reception antenna positioned above an electrically conductive base surface whose outline is inscribed by a circle K about its phase center PZ having a relative antenna radius ra/λ<0.15. A director is present that comprises a horizontal electrical conductor that has two conductor ends and that is guided over a director length Ld at a director height hd above the conductive base surface. The horizontal electrical conductor is angled at its two conductor ends and extends from there as vertical conductor in each case toward the conductive base surface.
US10833410B2 Electronic device antennas having multiple signal feed terminals
An electronic device may include a conductive housing and an antenna. The antenna may include an arm formed from a first segment of the housing. A gap may separate the first segment from a second segment. Respective first and second slots may separate an antenna ground from the first and second segments. The antenna may have a first positive antenna feed terminal on the first segment and a second positive antenna feed terminal on the second segment. A transmission line may include a signal conductor having a first branch coupled to the first positive antenna feed terminal and a second branch coupled to the second positive antenna feed terminal. A switch may be interposed on the second branch for switching the antenna between a first mode in which the second slot is directly fed and a second mode in which the second segment is indirectly fed by the first segment.
US10833406B2 Antenna assembly with a dielectric resonator antenna array
A dielectric resonator antenna array system includes a first array of a plurality of dielectric resonator antennas arranged in a first orientation and that forms a first beam, and a second array of a plurality of dielectric resonator antennas arranged in a second orientation, that is different from the first orientation, and that forms a second beam. Further, a dielectric resonator antenna array system includes a first array of a first type of plurality of dielectric resonator antennas arranged in a predetermined orientation and that forms a first beam, and a second array of a second type of plurality of dielectric resonator antennas arranged in the predetermined orientation and that forms a second beam.
US10833404B1 Scrolling reconfigurable arrays
A scrollable reflectarray antenna system and methods for reconfiguring electromagnetic (EM) characteristics of the reflectarray antenna are provided. The reconfigurable reflectarray antenna includes a flexible substrate; a plurality of reflectarray patterns disposed on a surface of the flexible substrate, each reflectarray pattern comprising a plurality of reflectarray elements; and an actuator system coupled with the flexible substrate. The actuator system is configured to scroll the flexible substrate to different operational positions such that when layout of the plurality of reflectarray patterns is changed, at least one EM characteristic of the reflectarray antenna is reconfigured. In a predetermined operational position, an aperture of the reflectarray is formed by two reflectarray patterns that are optimized to direct an illuminating beam in a new direction.
US10833402B2 Software defined antenna using controllable metamaterials
A reconfigurable antenna system includes an antenna array; a set of metamaterial panels configured to surround the antenna array; a control unit, coupled to each of the metamaterial panels, for selectively addressing each of the metamaterial panels to control separately at least one property of each of the metamaterial panels; and a receiver coupled to the antenna array and to the control unit. The control unit is configured to monitor signal reception by the antenna array via the receiver and to establish a set of configurations of the metamaterial panels to produce a pattern of reception according to a set of prespecified criteria that include a set of azimuthal and elevational ranges characterizing the configurations. Optionally, the system further includes a transmitter coupled to the antenna array and to the control unit.
US10833401B2 Phased array antennas having decoupling units
A base station antenna includes a panel that has a ground plane, first and second arrays that have respective first and second sets of linearly arranged radiating elements mounted on the panel, and a decoupling unit positioned between a first radiating element of the first array and a first radiating element of the second array. The decoupling unit includes at least a first sidewall that faces the first radiating element of the first array, a second sidewall that faces the first radiating element of the second array and an internal cavity that is defined in the region between the sidewalls. The first and second sidewalls are electrically conductive and electrically connected to the ground plane.
US10833393B2 Antenna adjustment method, adjustment apparatus, controller, and terminal
The present disclosure relates to an antenna adjustment method, an antenna adjustment device, a controller and a terminal. The method includes: determining adjustment information for adjusting an antenna in a metal casing of a terminal; and adjusting the antenna according to the determined adjustment information.
US10833392B1 Reconfigurable foldable and/or origami passive arrays
Passive antenna arrays and methods of using and fabricating the same are provided. A passive antenna array can include a substrate that is capable of being folded and a plurality of antenna elements disposed on the substrate. The substrate can have predefined folding lines such that the substrate can be folded into different positions. The antenna elements can be separated from each other by the folding lines in the substrate. The passive antenna array can exhibit dual band operation and can change its frequency by changing its shape.
US10833387B2 Magnetic resonance imaging device, power amplifier module and power combiner
A power combiner comprises a first transmission line or lumped circuit element, a second transmission line or lumped circuit element, a third transmission line or lumped circuit element, a fourth transmission line or lumped circuit element and a balance capacitive element (Cbal) or balance inductive element (Lbal). The first transmission line or lumped circuit element is coupled to a first port. The second transmission line or lumped circuit element is coupled between the first transmission line or lumped circuit element and a common port. The third transmission line or lumped circuit element is coupled to a second port. The fourth transmission line or lumped circuit element is coupled between the third transmission line or lumped circuit element and the common port. The balance capacitive element (Cbal) or the balance inductive element (Lbal) is coupled between a connection point between the first transmission line or lumped circuit element and the second transmission line or lumped circuit element and a connection point between the third transmission line or lumped circuit element and the fourth transmission line or lumped circuit element. Further provided are a power amplifier module and a magnetic resonance imaging device.
US10833380B2 Holographic mode conversion for transmission lines
The present disclosure provides systems and methods associated with mode conversion for electromagnetic field modification. A mode converting structure (holographic metamaterial) is formed with a distribution of dielectric constants chosen to convert an electromagnetic radiation pattern from a first mode to a second mode to attain a target electromagnetic radiation pattern that is different from the input electromagnetic radiation pattern. A solution to a holographic equation provides a sufficiently accurate approximation of a distribution of dielectric constants that can be used to form a mode converting device for use with one or more transmission lines, such as waveguides. One or more optimization algorithms can be used to improve the efficiency of the mode conversion.
US10833378B2 Vehicle battery pack, a system for cooling a battery pack and a cooling plate for use in the system
A system for controlling the temperature of a rechargeable electric battery pack for a vehicle includes a plurality of rechargeable electrochemical storage cells disposed in rows of one or more cells each. The system includes two heat exchanger plates for each of the rows of one or more cells. Each heat exchanger plate is configured to allow heat transfer fluid to flow internally thereof and a first of two heat exchanger plates for one of the rows is configured to allow heat transfer fluid to flow in a first general direction. A second of the two heat exchanger plates for the row is configured to allow heat transfer fluid to flow in a second general direction. The first and second general directions are substantially different to one another.
US10833376B2 Battery with life estimation
A battery module includes a housing. The battery module also includes a cell stack disposed in the housing and including a battery cell. The battery module also includes a force gauge in mechanical communication with the cell stack and configured to measure a force generated by a swelling of the cell stack. The battery module also includes a control module configured to receive data indicative of the force and to estimate a remaining usable life of the battery module based on the data.
US10833371B2 Wound-type cell
A wound-type cell includes a first electrode plate; a second electrode plate; a separator, disposed between the first electrode plate and the second electrode plate; a first electrode tab electrically connected to the first electrode plate; and a second electrode tab electrically connected to the second electrode plate, in which the separator includes a third winding start end, the third winding start end is folded back to an inner side in a thickness direction and is disposed between the first electrode tab and the second electrode tab in a length direction.
US10833367B2 Nonaqueous electrolyte secondary battery
A nonaqueous electrolyte secondary battery is provided, including: a positive electrode (10) that includes a lithium-manganese oxide as a positive electrode active material; a negative electrode (20) that includes SiOX (0≤X<2) in which at least a part of a surface is covered with carbon, or a Li—Al alloy as the negative electrode active material; and an electrolytic solution (50) that contains propylene carbonate (PC), ethylene carbonate (EC), and dimethoxy ethane (DME) as an organic solvent in a range of {PC:EC:DME}={0.5 to 1.5:0.5 to 1.5:1 to 3} in terms of a volume ratio, and at least one of lithium bis(fluorosulfonyl)imide (LiFSI) and lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) as a supporting salt in a total amount of 0.6 to 1.4 (mol/L).
US10833366B2 Lithium titanate cell
The embodiment relates to the field of electrolyte selection in lithium ion cells which may employ Li4Ti5O12 compounds as negative electrode material and LiPF6 as the ionic salt component in the cell electrolyte solution. The embodiment further relates to improvements in lithium ion cell performance as a result of selection of specific formulation of electrolyte for lithium ion cells.
US10833364B2 Lithium-ion secondary battery
Lithium ion secondary batteries are disclosed that include a positive electrode comprising a lithium nickel composite oxide as a positive electrode active material and a separator consisting of one or more layers selected from polyimide layer, polyamide layer, the battery having a low self-discharge failure rate even after long term storage. The lithium ion secondary batteries can include a positive electrode comprising a lithium nickel composite oxide and a separator consisting of one or more layers selected from polyimide layer, polyamide layer, and polyamide imide layer, wherein the battery comprises an acid and/or an acid anhydride in an electrolyte solution and/or a member in contact with the electrolyte solution.
US10833363B2 Electrolyte and electrochemical device
The present application relates to an electrolyte and an electrochemical device comprising the electrolyte. The electrolyte comprises a dinitrile compound, a trinitrile compound, and propyl propionate, wherein, based on the total weight of the electrolyte, the content X of the nitrile compound and the content Y of the trinitrile compound meet the conditions represented by Formula (1) and Formula (2): {about 2 wt %≤(X+Y)≤about 11 wt % . . . (1), about 0.1≤(X/Y)≤about 8 . . . (2)}. The electrolyte of the present application is capable of effectively inhibiting the increase in DC internal resistance of an electrochemical device so that the electrochemical device has excellent cycle and storage performance.
US10833362B2 Secondary battery including electrolyte having an unsaturated cyclic ester carbonate
A secondary battery is provided. The secondary battery includes a cathode; an anode; and an electrolytic solution, wherein the anode comprises an anode active material layer, wherein the anode active material layer comprises a carbon material, wherein the anode active material layer has a thickness from about 40 micrometers to about 100 micrometers, and wherein the electrolytic solution comprises an unsaturated cyclic ester carbonate represented by Formula (2): where R5 and R6 are selected from the group consisting of a hydrogen group, an alkyl group, an alkyne group, and an aryl group.
US10833360B2 Protective anode coatings for high energy batteries
Materials for coating a metal anode in a high energy battery, anodes coated with the materials, and batteries incorporating the coated anodes are provided. Also provided are batteries that utilize the materials as electrolytes. The coatings, which are composed of binary, ternary, and higher order metal and/or metalloid oxides, nitrides, fluorides, chlorides, bromides, sulfides, and carbides limit the reactions between the electrolyte and the metal anode in a battery, thereby improving the performance of the battery, relative to a battery that employs a bare anode.
US10833358B2 Porous carbon having connecting mesopores and electrode
To provide a non-aqueous electrolyte electricity-storage element including a positive electrode including a positive-electrode active material capable of inserting and releasing anions, a negative electrode including a negative-electrode active material capable of inserting and releasing cations, and a non-aqueous electrolyte, wherein the positive-electrode active material is porous carbon having pores having a three-dimensional network structure, and wherein a changing rate of a cross-sectional thickness of a positive electrode film including the positive-electrode active material defined by Formula (1) below is less than 45%.
US10833356B2 Kinetically fast charging lithium-ion battery
Rechargeable lithium-ion batteries that have a high-capacity and a fast charge rate are provided. The lithium-ion batteries contain an anode structure that is of unitary construction and includes a non-porous region and a porous region including a top porous layer (Porous Region 1) having a first thickness and a first porosity, and a bottom porous layer (Porous Region 2) located beneath the top porous layer and forming an interface with the non-porous region. At least an upper portion of the non-porous region and the entirety of the porous region are composed of silicon, and the bottom porous layer has a second thickness that is greater than the first thickness, and a second porosity that is greater than the first porosity.
US10833349B2 Energy storage device
An energy storage device includes: an electrode assembly which includes: an approximately rectangular positive electrode; an approximately rectangular negative electrode which is stacked alternately with the positive electrode; and a strip-like elongated separator having a base material layer and an inorganic layer which is made to overlap with the first base material layer, wherein the elongated separator is arranged between the positive electrode and the negative electrode, and the base material layer of the elongated separator faces the negative electrode in an opposed manner between the positive electrode and the negative electrode.
US10833348B2 Subunit of a battery module, battery module comprising such a subunit and method for producing same
A subunit of a battery module (2), comprising a first receiving element (3) and a second receiving element (4) which are connected to each other, forming at least one first receiving space (7) and at least one second receiving space (8), wherein the first receiving space (7) and the second receiving space (8) are separated from each other, and at least one battery cell stack (5) or at least one battery cell (6) is arranged in the first receiving space (7), and the second receiving space (8) is configured for receiving a temperature-control fluid (9).
US10833345B2 Materials for high-performance aqueous organic redox flow batteries
Quinones and related compounds for use in flow batteries are provided. Many of these compounds are found to mitigate the effects of crossover in a flow battery. Other structure for improving battery performance is provided.
US10833343B2 Air-water concentration cell
An air-water concentration cell is provided as follows. A cathode electrode is formed of a first material for catalyzing an oxygen reduction reaction (ORR). An anode electrode is formed of a second material for catalyzing an oxygen evolution reaction (OER). A proton conductive membrane is interposed between the cathode electrode and the anode electrode. A fuel reservoir is interposed between the proton conductive membrane and the anode electrode. The fuel reservoir contains water. The water of the fuel reservoir is in contact with the anode electrode and the proton conductive membrane.
US10833341B2 Non-catalytic hydrogen generation process for delivery to a hydrodesulfurization unit and a solid oxide fuel cell system combination for auxiliary power unit application
A non-catalytic hydrogen generation process is provided that supplies hydrogen to a hydrodesulfurization unit and a solid oxide fuel cell system combination, suitable for auxiliary power unit application. The non-catalytic nature of the process enables use of sulfur containing feedstock for generating hydrogen which is needed to process the sulfur containing feed to specifications suitable for the solid oxide fuel cell. Also, the non-catalytic nature of the process with fast dynamic characteristics is specifically applicable for startup and shutdown purposes that are typically needed for mobile applications.
US10833337B2 Electrochemical device and method for producing an electrochemical unit for an electrochemical device
An electrochemical device is provided that includes a stack of a plurality of electrochemical units that succeed one another in a stacking direction and each include an electrochemically active membrane electrode assembly, at least one gas diffusion layer and a bipolar plate having at least one flow field, in which at least one flow field is sealed off simply and reliably and the occurrence of parasitic flows is prevented, wherein at least one bipolar plate has at least one edge web, which borders a flow field of the bipolar plate and is in contact with a gas diffusion layer adjacent to the bipolar plate, and wherein the electrochemical device further includes at least one flow field seal element that seals off the flow field bordered by the edge web and is in contact with the edge web and in contact with the gas diffusion layer.
US10833335B2 Stainless steel substrate
The present disclosure provides a stainless steel substrate used for a fuel cell separator that comprises Nb and is excellent in corrosion resistance. The embodiments relate to a stainless steel substrate used for a fuel cell separator, comprising Nb in a solid solution state, and comprising substantially no precipitate of a Nb-containing intermetallic compound.
US10833329B2 Nickel-based active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including positive electrode including the nickel-based active material
Provided are a nickel-based active material for a lithium secondary battery, a method of preparing the nickel-based active material, and a lithium secondary battery including a positive electrode including the nickel-based active material. The nickel-based active material includes at least one secondary particle that includes at least two primary particle structures, the primary particle structures each including a porous inner portion and an outer portion having a radially arranged structure, and the secondary particle including at least two radial centers.
US10833323B2 Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing negative electrode material for non-aqueous electrolyte secondary battery
A negative electrode active material for a non-aqueous electrolyte secondary battery, wherein the negative electrode active material includes negative electrode active material particles, the negative electrode active material particles include a silicon compound particle which includes a silicon compound including oxygen, the silicon compound particle includes a Li compound, and the silicon compound particle is adhered with a phosphate salt in an outermost surface layer thereof. With this, the negative electrode active material which is high in the capacity and the stability to aqueous slurry as well as excellent in the cycle characteristic and the first efficiency can be provided.
US10833322B2 Positive electrode active material containing lithium composite oxide and lithium composite oxyfluoride, and battery including positive electrode containing positive electrode active material
A positive electrode active material contains a lithium composite oxide and a lithium composite oxyfluoride. The lithium composite oxyfluoride covers at least part of the surface of the lithium composite oxide. The lithium composite oxyfluoride is represented by a composition formula LiαMe2βOγFδ, where Me2 represents at least one selected from the group consisting of Mn, Co, Ni, Fe, Al, Cu, V, Nb, Mo, Ti, Cr, Zr, Zn, Na, K, Ca, Mg, Pt, Au, Ru, and W; and 1.0≤α≤2.1; 0.8≤β≤1.3; 1.5≤γ≤2.9; and 0.1≤δ≤1.5. The crystal structure of the lithium composite oxyfluoride belongs to space group Fm-3m.
US10833321B2 Cathode materials for lithium ion batteries
A process of forming a coated cathode active material include preparing a cathode material precursor by co-precipitation; coating the cathode material precursor with an electrochemically inert coating material precursor by precipitation to form a coated cathode material precursor; lithiating the coated cathode material precursor with a lithium source material to form a lithiated coated cathode material precursor; and sintering the lithiated coated cathode material precursor to form a cathode active material coated with an electrochemically inert material.
US10833320B2 Poly(9,9-dioctylfluorene-co-fluorenone-co-methylbenzoic ester), carbon nanotubes, and sulfur nanocomposite, electrode and lithium-fulfur battery including the same
The present invention provides for a composition of matter comprising: poly(9,9-dioctylfluorene-co-fluorenone-co-methylbenzoic ester)(PFM), carbon nanotubes (CNT), and sulfur particles nanocomposite, wherein the nanocomposite is porous. The present invention also provides for an electrode comprising: poly(9,9-dioctylfluorene-co-fluorenone-co-methylbenzoic ester)(PFM), carbon nanotubes (CNT), and sulfur particles nanocomposite, wherein the nanocomposite is porous. The present invention also provides for a lithium sulfur (Li—S) battery comprising: an electrode comprising poly(9,9-dioctylfluorene-co-fluorenone-co-methylbenzoic ester)(PFM), carbon nanotubes (CNT), and sulfur particles nanocomposite, wherein the nanocomposite is porous.
US10833318B2 Three-dimensional architected pyrolyzed electrodes for use in secondary batteries and methods of making three-dimensional architected electrodes
In an aspect, an electrode for an electrochemical cell comprises: a structure having a nano- or micro-architected three-dimensional geometry; said structure comprising one or more active carbon allotrope materials; wherein said structure is characterized by an average density less than or equal to 2.3 g cm−3 and an average specific strength (strength-to-density ratio) greater than or equal to 0.004 GPa g−1 cm3. Also disclosed herein are methods for making an electrode for an electrochemical cell, and methods for making an electrochemical cell.
US10833317B2 Positive-electrode active material and battery
A positive-electrode active material contains a compound that has a crystal structure belonging to a space group FM3-M and that is represented by the composition formula (1) and a lithium ion conductor, LixMeyOαFβ  (1) wherein Me denotes one or two or more elements selected from the group consisting of Mn, Co, Ni, Fe, Al, B, Ce, Si, Zr, Nb, Pr, Ti, W, Ge, Mo, Sn, Bi, Cu, Mg, Ca, Ba, Sr, Y, Zn, Ga, Er, La, Sm, Yb, V, and Cr, and the following conditions are satisfied. 1.7≤x≤2.2 0.8≤y≤1.3 1≤α≤2.5 0.5≤β≤2
US10833316B2 Battery
Provided is a battery including: a positive electrode containing a positive electrode active material; a negative electrode; and an electrolyte solution containing a nonaqueous solvent. The positive electrode active material contains a compound represented by composition formula (1) below and having a crystal structure belonging to space group FM3-M: LixMeyOαFβ. (1) Here, Me is one or two or more elements selected from the group consisting of Mn, Co, Ni, Fe, Al, B, Ce, Si, Zr, Nb, Pr, Ti, W, Ge, Mo, Sn, Bi, Cu, Mg, Ca, Ba, Sr, Y, Zn, Ga, Er, La, Sm, Yb, V, and C. x, y, α, and β satisfy the following conditions: 1.7≤x≤2.2, 0.8≤y≤1.3, 1≤α≤2.5, and 0.5≤β≤2, respectively. The nonaqueous solvent includes at least one solvent selected from hydrofluoroethers, phosphazenes, phosphates, and perfluoropolyethers.
US10833312B2 Pressing device for electrode plate and manufacturing method for electrode plate
A pressing device for an electrode plate has a free roll, which is in contact with one surface of an electrode plate, and a nipping bar that presses the electrode plate against the free roll when conveyance of the electrode plate is stopped. On a surface of the nipping bar on an electrode plate side, a concave surface is formed, which has a curvature matching a curvature of a curve of an outer surface of the electrode plate on the free roll. A first angle of the concave surface, which is seen from a central axis of the free roll when the nipping bar is in a pressed state, is included in a second angle of a contact region between the electrode plate and the free roll. A size of a first angle region is within a range of 10˜80% of a size of the second angle.
US10833311B2 Method of making an anode structure containing a porous region
An anode structure for rechargeable lithium-ion batteries that have a high-capacity are provided. The anode structure, which is made utilizing an anodic etching process, is of unitary construction and includes a non-porous region and a porous region including a top porous layer (Porous Region 1) having a first thickness and a first porosity, and a bottom porous layer (Porous Region 2) located beneath the top porous layer and forming an interface with the non-porous region. At least an upper portion of the non-porous region and the entirety of the porous region are composed of silicon, and the bottom porous layer has a second thickness that is greater than the first thickness, and a second porosity that is greater than the first porosity.
US10833303B2 Composite end plate and battery module
The disclosure relates to a composite end plate and a battery module. The composite end plate comprises: a base plate comprising a first surface and a second surface disposed opposite to each other, wherein the base plate is arranged such that the first surface faces a battery; and a rigid insert, wherein the rigid insert and the base plate are made of different materials, the rigid insert is made of metal material, the rigid insert is arranged at a bottom portion of the base plate, and at least a part of the rigid insert is arranged at the second surface and extends in a length direction of the second surface. According to embodiments of the disclosure, the composite end plate comprises the base plate and the rigid insert made of different materials.
US10833301B2 Through silicon via energy storage devices
A method for forming a semiconductor includes forming at least one trench in a silicon substrate. The at least one trench provides an energy storage device containment feature. An electrical and ionic insulating layer(s) is formed on a top surface of the substrate and sidewalls of the trench. A plurality of vias is formed through a base of the trench. The plurality of vias is filled with a metal material. A trench base current collector at the base of the trench and backside current collector at the backside of the substrate are formed from the metal material. These current collectors enable electric and thermal conductive planarization and device isolation through the substrate. A plurality of energy storage device layers is formed over the trench base current collector, and a topside current collector is formed over the plurality of energy storage device layers. A protective encapsulation layer may then be formed.
US10833300B2 Battery for a handheld machine tool and method for producing a battery for a handheld machine tool
The battery unit according to the invention for a handheld machine tool comprises a number of battery cells, with at least one of the battery cells being embodied as an isolation battery cell, and showing a fire protection jacket comprising an intumescent material. The fire protection jacket surrounds the isolation battery cell at least partially such that the isolation battery cell is surrounded by the fire protection jacket at a predetermined temperature such that the isolation battery cell is thermally insulated.
US10833297B2 Jelly roll tape for rechargeable battery and rechargeable battery having the same
A jelly roll tape for a rechargeable battery and a rechargeable battery having the same are disclosed. In one aspect, the jelly roll tape includes a first adhesive layer configured to develop an adhesive property based at least in part on a reaction with an electrolytic solution and a second adhesive layer formed on at least one surface of the first adhesive layer. The second adhesive layer is formed at least partially of a rubber-based material.
US10833296B2 Thin film solid-state microbattery packaging
Systems and/or techniques associated with a solid-state microbattery packaging system are provided. In one example, a device comprises a substrate layer and a tape substrate layer. The substrate layer is associated with a set of solid-state microbattery components. The tape substrate comprises a releasable adhesive material and a polymer sealing material. A conductive surface associated with the set of solid-state microbattery components is disposed on the releasable adhesive material of the tape substrate layer.
US10833295B2 Battery cell and battery
An aspect of the present application provides a battery cell including an electrode assembly and a package bag accommodating the electrode assembly, the electrode assembly includes a first end surface and a second end surface disposed opposite to the first end surface, and the battery cell further includes a support assembly disposed between the electrode assembly and the package bag, and the support assembly has a cavity disposed opposite to the first end surface or the second end surface. Another aspect of the present application provides a battery. The purpose of the present application is to increase the storage amount of the electrolyte in the battery cell and the battery.
US10833294B2 Display panel and display device
The present disclosure relates to the technical field of display technology, and provides a display panel and a display device for increasing a light transmittance and improving a transparent display effect of the display panel. The display panel includes a display layer having a light-transmitting region and a light-emitting region. The display panel also includes a first light adjustment layer disposed on a first surface of the display layer. With respect to light propagating into the display layer via the first surface, at least one portion of the light, which is directed towards the light-emitting region, is redirected by the first light adjustment layer to pass through the light-transmitting region.
US10833291B2 Display device
An electroluminescent device includes a lower structure and a flexible encapsulation multilayer. The lower structure may have an emission area and a peripheral area surrounding the emission area. The flexible encapsulation multilayer may be disposed on the emission area and the peripheral area. The peripheral area may include an inorganic surface portion having a closed shape continuously surrounding the display area and comprising one or more inorganic materials. The flexible encapsulation multilayer may include a lower surface comprising only one or more inorganic materials. The lower surface of flexible encapsulation multilayer may be in direction contact with the inorganic surface portion.
US10833290B2 Encapsulation method of organic light emitting diode device and encapsulation structure encapsulated using same
An encapsulation method of an organic light emitting diode (OLED) device is provided. The encapsulation method includes steps of a substrate formed with the OLED device; forming at least an encapsulation film on a surface of the OLED device; and bonding a pre-formed barrier layer to an edge region of the encapsulation film. By bonding the pre-formed barrier layer to the edge region of the encapsulation film, the disclosure can achieve effects of improving an ability of moisture and oxygen resistance of the edge region of the OLED device, thereby improving reliability of encapsulation of the OLED device and prolonging lifetime of the OLED device.
US10833288B2 Display apparatus
A display apparatus including a substrate having an active area and a sealing area surrounding the active area; a display unit disposed on the active area of the substrate and including a plurality of organic light-emitting devices; and a sealing member including a first portion, a second portion, and a third portion, the third portion disposed between the first portion and the second portion and connecting the first portion to the second portion.
US10833277B2 Heterocyclic compound and organic light emitting diode comprising same
The present specification provides a heterocyclic compound and an organic light emitting device comprising the same.
US10833268B2 Resistive memory crossbar array with a multilayer hardmask
Devices and/or methods that facilitate forming a resistive memory crossbar array with a multilayer hardmask are provided. In some embodiments, a resistive random access memory (RRAM) can comprise a multilayer hardmask comprising three layers, an interlayer oxide between a first layer of silicon nitride and a second layer of silicon nitride. In other embodiments, an RRAM can comprise a multilayer hardmask comprising two layers, a layer of an oxide on a layer of silicon nitride.
US10833261B2 Phase-change material (PCM) RF switch with top metal contact to heating element
In fabricating a radio frequency (RF) switch, a phase-change material (PCM) and a heating element, underlying an active segment of the PCM and extending outward and transverse to the PCM, are provided. Lower portions of PCM contacts for connection to passive segments of the PCM are formed, wherein the passive segments extend outward and are transverse to the heating element. Upper portions of the PCM contacts are formed from a lower interconnect metal. Heating element contacts are formed cross-wise to the PCM contacts. The heating element contacts can comprise a top interconnect metal directly connecting with terminal segments of the heating element. The heating element contacts can comprise a top interconnect metal and intermediate metal segments for connecting with the terminal segments of the heating element.
US10833259B2 Method of manufacturing phase-change material (PCM) radio frequency (RF) switch using a chemically protective and thermally conductive layer
A radio frequency (RF) switch includes a heating element, an aluminum nitride layer situated over the heating element, and a phase-change material (PCM) situated over the aluminum nitride layer. An inside segment of the heating element underlies an active segment of the PCM, and an intermediate segment of the heating element is situated between a terminal segment of the heating element and the inside segment of the heating element. The aluminum nitride layer situated over the inside segment of the heating element provides thermal conductivity and electrical insulation between the heating element and the active segment of the PCM. The aluminum, nitride layer extends into the intermediate segment of the heating element and provides chemical protection to the intermediate segment of the heating element, such that the intermediate segment of the heating element remains substantially unetched and with substantially same thickness as the inside segment.
US10833256B2 Magnetic tunnel junction element and method for manufacturing same
A magnetic tunnel junction element includes, in a following stack order, an underlayer formed of a metal material, a fixed layer formed of a ferromagnetic body, a magnetic coupling layer formed of a nonmagnetic body, a reference layer formed of a ferromagnetic body, a barrier layer formed of a nonmagnetic body, and a recording layer formed of a ferromagnetic body, or alternatively, the magnetic tunnel junction element includes, in a following stack order, a recording layer formed of a ferromagnetic body, a barrier layer formed of a nonmagnetic body, a reference layer formed of a ferromagnetic body, a magnetic coupling layer formed of a nonmagnetic body, an underlayer formed of a metal material, and a fixed layer formed of a ferromagnetic body, wherein the fixed layer is formed and stacked after performing plasma treatment to a surface of the underlayer having been formed.
US10833253B2 Low magnetic moment materials for spin transfer torque magnetoresistive random access memory devices
A magnetoresistive random access memory device (MRAM) device is described. The MRAM device has a stack arrangement in which a tunnel barrier layer is formed over a magnetizable reference layer, a metal layer is formed over the tunnel barrier layer, a free layer of a magnetizable material is formed over the metal layer, and an oxide layer is formed over the free layer as a cap layer. The resulting MRAM device has a thin free layer that exhibits a low magnetic moment.
US10833249B2 Magnetic memory cell of current programming type
A memory cell, including a stack of: a conductive layer of a conductive material including a first chemical element; an oxide layer sufficiently thin to allow the flowing of a current by tunnel effect; and a conductive ferromagnetic layer having a programmable magnetization and including a second chemical element, wherein the oxide layer includes the first and second chemical elements.
US10833248B2 Method for preparing a sol-gel solution which can be used for preparing a barium titanate ceramic doped with hafnium and/or with at least one lanthanide element
The invention relates to a method for preparing a sol-gel solution which can be used to prepare a barium titanate ceramic doped with hafnium and/or with at least one lanthanide element, comprising the following steps: a) a step to place a first mixture comprising a barium carboxylate and a diol solvent in contact with a second mixture comprising a titanium alkoxide and a hafnium alkoxide and/or an alkoxide of a lanthanide element in a monoalcohol solvent; b) a step to distil the mixture resulting from step a) to remove at least part of the monoalcohol solvent; c) a step to add acetic acid, under heat, to the distilled mixture of step b).
US10833240B2 Thermalization of cryogenic quantum circuits
In an embodiment, a device includes a substrate having a thickness, wherein the thickness is a function of energy dissipation of a particle. In an embodiment, the device includes a thermal layer, formed on the substrate, of a first material that exhibits at least a threshold level of thermal conductivity, wherein the threshold level of thermal conductivity is achieved at a cryogenic temperature range in which a quantum circuit operates, and wherein any intervening material exhibits at least a second threshold level of thermal conductivity, wherein the threshold level of thermal conductivity is achieved at a cryogenic temperature range in which a quantum circuit operates.
US10833236B2 P-type thermoelectric conversion material, thermoelectric conversion module, and method of manufacturing p-type thermoelectric conversion material
Provided are a p-type thermoelectric conversion material, a thermoelectric conversion module, and a method of manufacturing a p-type thermoelectric conversion material that are capable of obtaining high thermoelectric conversion characteristics. The p-type thermoelectric conversion material has a full Heusler alloy having a composition represented by the following General Formula (1) and has a relative density of 85% or more, FexTiyMAaMBb . . . (1), wherein in Formula (1), MA is one element selected from the group consisting of Si, Sn, and Ge, MB is one element selected from the group consisting of Al, Ga, and In, and x, y, a, and b are numbers set so that x+y+a+b=100, a+b=z, 500, and b>0 in atom %, respectively.
US10833235B2 Light source, method of manufacturing the light source, and method of mounting the light source
A light source includes a light emitting element configured to emit a light; a mounting substrate; and a ceramic substrate having a light emitting element mounted thereon and being bonded to the mounting substrate via a plurality of metal bumps made of gold, copper, a gold alloy, or a copper alloy. A method of manufacturing a light source includes forming a plurality of metal bumps on a mounting substrate; providing a ceramic substrate having at least one light emitting element mounted thereon; and bonding the mounting substrate and a ceramic substrate to each other via the metal bumps.
US10833229B2 Display device using semiconductor light emitting element and method for manufacturing same
The present invention relates to a display device and, particularly, to a display device using a semiconductor light emitting element. The display device according to the present invention comprises: a substrate at which a wire electrode is formed; a plurality of semiconductor light emitting elements electrically connected to the wire electrode; a plurality of fluorescent material layers for converting a wavelength of light; a wavelength converting layer which has a plurality of partition wall portions formed between the plurality of fluorescent material layers and is disposed to cover the plurality of semiconductor light emitting elements; and a color filter which has a plurality of filtering portions for filtering blue, green, and red colors, and is disposed to cover the wavelength converting layer, wherein at least one of the plurality of filtering portions is configured to have a width different from those of the other filtering portions.
US10833225B2 Micro assembled LED displays and lighting elements
The disclosed technology provides micro-assembled micro-LED displays and lighting elements using arrays of micro-LEDs that are too small (e.g., micro-LEDs with a width or diameter of 10 μm to 50 μm), numerous, or fragile to assemble by conventional means. The disclosed technology provides for micro-LED displays and lighting elements assembled using micro-transfer printing technology. The micro-LEDs can be prepared on a native substrate and printed to a display substrate (e.g., plastic, metal, glass, or other materials), thereby obviating the manufacture of the micro-LEDs on the display substrate. In certain embodiments, the display substrate is transparent and/or flexible.
US10833220B2 Micro light emitting diode device
A method for manufacturing a micro light emitting diode device is provided. A connection layer and epitaxial structures are formed on a substrate. A first pad is formed on each of the epitaxial structures. A first adhesive layer is formed on the connection layer, and the first adhesive layer encapsulates the epitaxial structures and the first pads. A first substrate is connected to the first adhesive layer. The substrate is removed, and a second substrate is connected to the connection layer through a second adhesive layer. The first substrate and the first adhesive layer are removed. The connection layer located between any two adjacent epitaxial structures are partially removed to form a plurality of connection portions. Each of the connection portions is connected to the corresponding epitaxial structure, and a side edge of each of the connection portions protrudes from a side wall surface of the corresponding epitaxial structure.
US10833217B2 Methods of making semiconductor radiation detector
Disclosed herein is an apparatus and a method of making the apparatus. The method comprises obtaining a plurality of semiconductor single crystal chunks. Each of the plurality of semiconductor single crystal chunks may have a first surface and a second surface. The second surface may be opposite to the first surface. The method may further comprise bonding the plurality of semiconductor single crystal chunks by respective first surfaces to a first semiconductor wafer. The plurality of semiconductor single crystal chunks forming a radiation absorption layer. The method may further comprise forming a plurality of electrodes on respective second surfaces of each of the plurality of semiconductor single crystal chunks, depositing pillars on each of the plurality of semiconductor single crystal chunks and bonding the plurality of semiconductor single crystal chunks to a second semiconductor wafer by the pillars.
US10833209B2 Conductive paste, method for producing same, and method for producing solar cell
A conductive paste including: a conductive powder containing silver; an indium powder; a silver-tellurium-coated glass powder; a solvent; and an organic binder, wherein the silver-tellurium-coated glass powder is a silver-tellurium-coated glass powder including a tellurium-based glass powder containing tellurium in an amount of 20% by mass or more, and a coating layer on a surface of the tellurium-based glass powder, the coating layer containing silver and tellurium as a main component.
US10833208B2 Method for manufacturing a cover for an electronic package and electronic package comprising a cover
A cover for an electronic package is manufactured by placing an optical insert, having opposite faces and configured to allow light radiation to pass therethrough, between two opposite faces of a cavity of a mold in a position such that said optical faces of the optical insert make contact with said opposite faces of the cavity of the mold. A coating material is injected into the cavity and around the optical insert. The coating material is set to obtain a substrate that is overmolded around the optical insert so as to produce the cover. An electronic package includes an electronic chip mounted to a support substrate with the cover formed by the overmolded substrate mounted to the support substrate.
US10833206B2 Microelectronic devices including capacitor structures and methods of forming microelectronic devices
A semiconductor structure includes a capacitor structure comprising an active region comprising opposing field edges parallel to a first horizontal direction and a gate region comprising opposing gate edges parallel to a second horizontal direction transverse to the first horizontal direction. The semiconductor structure also comprises a first dielectric material adjacent at least one of the opposing field edges or the opposing gate edges and a second dielectric material adjacent the active area and abutting portions of the first dielectric material. A height of the second dielectric material in a vertical direction may be less than the height of the first dielectric material. Semiconductor devices and related methods are also disclosed.
US10833204B2 Multiple width nanosheet devices
A technique relates to a semiconductor device. A first stack includes a first plurality of nanowires respectively coupled to first source and drain regions, and a second stack includes a second plurality of nanowires respectively coupled to second source and drain regions. First source and drain contacts couple to a first predefined number of the first plurality of nanowires. Second source and drain contacts to couple to a second predefined number of the second plurality of nanowires, wherein the first predefined number is different from the second predefined number.
US10833200B2 Techniques for forming vertical transport FET having gate stacks with a combination of work function metals
Techniques for reducing work function metal variability along the channel of VFET devices are provided. In one aspect, a method of forming a VTFET device includes: patterning fins in a wafer; forming bottom source/drains at a base of the fins and bottom spacers on the bottom source/drains; forming gate stacks over the fins including a gate conductor having a combination of work function metals including an outer layer and at least one inner layer of the work function metals; isotropically etching the work function metals which recesses the gate stacks with an outwardly downward sloping profile; isotropically etching the at least one inner layer while covering the outer layer of the work function metals to eliminate the outwardly downward sloping profile of the gate stacks; forming top spacers above the gate stacks; and forming top source and drains at tops of the fins. A VTFET device is also provided.
US10833199B2 Nanowire transistor with source and drain induced by electrical contacts with negative Schottky barrier height
A nanowire transistor includes undoped source and drain regions electrically coupled with a channel region. A source stack that is electrically isolated from a gate conductor includes an interfacial layer and a source conductor, and is coaxially wrapped completely around the source region, extending along at least a portion of the source region. A Schottky barrier between the source conductor and the source region is a negative Schottky barrier and a concentration of free charge carriers is induced in the semiconductor source region.
US10833198B2 Confined source drain epitaxy to reduce shorts in CMOS integrated circuits
A method is presented for limiting lateral protrusion of neighboring epitaxial growths. The method includes masking an n-type field effect transistor (NFET) region of a semiconductor substrate with a first mask, forming first epitaxial source/drain regions in a p-type field effect transistor (PFET) region, where the first mask limits lateral growth of the first epitaxial source/drain regions in the PFET region toward the NFET region, masking the PFET region of the semiconductor substrate with a second mask, and forming second epitaxial source/drain regions in the NFET region, where the second mask limits lateral growth of the second epitaxial source/drain regions in the NFET region toward the PFET region.
US10833193B2 Semiconductor device, method of manufacturing the same and electronic device including the device
There are provided a semiconductor device, a method of manufacturing the same, and an electronic device including the device. According to an embodiment, the semiconductor device may include a substrate, and a first device and a second device formed on the substrate. Each of the first device and the second device includes a first source/drain layer, a channel layer and a second source/drain layer stacked on the substrate in sequence, and also a gate stack surrounding a periphery of the channel layer. The channel layer of the first device and the channel layer of the second device are substantially co-planar.
US10833189B2 Semiconductor device
In an inactive region of an active region, a gate pad, a gate poly-silicon layer, and a gate finger are provided at a front surface of a semiconductor substrate, via an insulating film. The gate poly-silicon layer is provided beneath the gate pad, sandwiching the insulating film therebetween. The gate pad, the gate poly-silicon layer, a gate finger, gate electrodes of a trench gate structure, a gate finger, and a second measurement pad are electrically connected in the order stated. As a result, the gate electrodes where parasitic resistance occurs and the gate poly-silicon layer where built-in resistance occurs are connected in series between the second measurement pad and the gate pad. A resistance value of the overall gate resistance that is a combined resistance of the built-in resistance and the parasitic resistance may be measured by the second measurement pad.
US10833188B2 Manufacturing method of semiconductor device and semiconductor device
First and second p-type semiconductor regions (electric-field relaxation layers) are formed by ion implantation using a dummy gate and side wall films on both sides of the dummy gate as a mask. In this manner, it is possible to reduce a distance between the first p-type semiconductor region and a trench and a distance between the second p-type semiconductor region and the trench, and symmetry of the first and second p-type semiconductor regions with respect to the trench can be enhanced. As a result, semiconductor elements can be miniaturized, and on-resistance and an electric-field relaxation effect, which are in a trade-off relationship, can be balanced, so that characteristics of the semiconductor elements can be improved.
US10833181B2 Single column compound semiconductor bipolar junction transistor with all-around base
A vertical, single column compound semiconductor bipolar junction transistor device includes an all-around extrinsic base. Aspect ratio trapping is employed during fabrication of the transistor device on a silicon substrate. Homojunction and heterojunction devices are formed using III-V materials with appropriate bandgaps. The emitter of the device may be electrically connected by a lateral buried metal contact.
US10833180B2 Self-aligned tunneling field effect transistors
Semiconductor devices and methods of forming the same include forming a doped drain structure having a first conductivity type on sidewalls of an intrinsic channel layer. An opening is etched in a middle of the channel layer. A doped source structure is formed having a second conductivity type in the opening of the channel layer.
US10833175B2 Formation of dislocation-free SiGe finFET using porous silicon
A semiconductor device that includes a fin structure having a porous core, and a relaxed semiconductor layer present on the porous core. The semiconductor device may further include a strained semiconductor layer that is substantially free of defects that is present on the strained semiconductor layer. A gate structure may be present on a channel region of the fin structure, and source and drain regions may be present on opposing sides of the gate structure.
US10833174B2 Transistor devices with extended drain regions located in trench sidewalls
A method of forming a transistor device where an extended drain region is formed by performing angled ion implantation of conductivity dopants of a first conductivity type into the sidewalls and bottom portion of a trench. The bottom portion of the trench is then implanted with dopants of a second conductivity type. Source and drain regions are formed on opposing sides of the trench including in upper portions of the trench sidewalls. A channel region is formed in a trench sidewall below the source region. The trench includes a control terminal structure. After formation of the transistor device, the net conductivity type of the bottom portion of the trench is of the first conductivity type.
US10833170B2 Low-k gate spacer and methods for forming the same
Embodiments of the present disclosure relate to a FinFET device having gate spacers with reduced capacitance and methods for forming the FinFET device. Particularly, the FinFET device according to the present disclosure includes gate spacers formed by two or more depositions. The gate spacers are formed by depositing first and second materials at different times of processing to reduce parasitic capacitance between gate structures and contacts introduced after epitaxy growth of source/drain regions.
US10833168B2 Complementary metal-oxide-semiconductor (CMOS) nanosheet devices with epitaxial source/drains and replacement metal gate structures
A method of forming complementary metal-oxide-semiconductor (CMOS) nanosheet devices is provided. The method includes forming at least two adjacent trimmed stacks of sacrificial sheet segments and semiconductor nanosheet segments on a substrate, with a dummy gate structure and sidewall spacers on each of the at least two adjacent trimmed stacks. The method further includes forming a protective cap layer over the trimmed stacks, and forming a sacrificial fill layer on the protective cap layer. The method further includes forming a recess through the sacrificial fill layer and protective cap layer between the stacks, depositing a recess liner in the recess, and forming a dielectric fill layer in the recess on the recess liner. The method further includes forming a capping layer on one of the trimmed stacks, removing the sacrificial fill layer from another one of the trimmed stacks, and forming a source/drain on the semiconductor nanosheet segments.
US10833163B2 Epitaxial structure of N-face group III nitride, active device, and method for fabricating the same with integration and polarity inversion
The present invention provides an epitaxial structure of N-face group III nitride, its active device, and the method for fabricating the same. By using a fluorine-ion structure in device design, a 2DEG in the epitaxial structure of N-face group III nitride below the fluorine-ion structure will be depleted. Then the 2DEG is located at a junction between a i-GaN channel layer and a i-AlyGaN layer, and thus fabricating GaN enhancement-mode AlGaN/GaN high electron mobility transistors (HEMTs), hybrid Schottky barrier diodes (SBDs), or hybrid devices. After the fabrication step for polarity inversion, namely, generating stress in a passivation dielectric layer, the 2DEG will be raised from the junction between the i-GaN channel layer and the i-AlyGaN layer to the junction between the i-GaN channel layer and the i-AlxGaN layer.
US10833162B2 Trenched bottom electrode and liftoff based molecular devices
A system and method for fabricating at least one of, a molecular device element and a TBELMD including depositing a first electrode material on an insulating substrate or layer, performing a photolithography process in the first electrode material, creating a trench component in the first electrode material with the photolithography process, determining a section of the electrode material to remove based on at least one of, a molecular device element and a TBELMD to be produced, removing the section of said first electrode material, oxidizing a portion of the first electrode material, creating a first insulator part from the oxidized portion of the first electrode material, in which the oxidized portion of the first electrode material includes at least a first electrode metal surface, depositing a second electrode material, and bridging the first and second electrode material.
US10833160B1 Field-effect transistors with self-aligned and non-self-aligned contact openings
Structures for a field-effect transistor and methods of forming a field-effect transistor. A sidewall spacer is arranged adjacent to a sidewall of a gate electrode, a source/drain region is arranged laterally adjacent to the sidewall spacer, and a contact is arranged over the source/drain region and laterally adjacent to the sidewall spacer. The contact is coupled with the source/drain region. A section of an interlayer dielectric layer is laterally arranged between the contact and the sidewall spacer.
US10833158B2 III-V segmented finFET free of wafer bonding
A technique relates to a semiconductor device. A stack is formed of alternating layers of inserted layers and channel layers on a substrate. Source or drain (S/D) regions are formed on opposite sides of the stack. The inserted layers are converted into oxide layers. Gate materials are formed on the stack.
US10833157B2 iFinFET
A technique relates to a semiconductor device. A stack includes two or more nanowires separated by a high-k dielectric material, the high-k dielectric material being formed on at least a center portion of the two or more nanowires in the stack. A separation space between the two or more nanowires is less than two times a thickness of the high-k dielectric material formed on a side wall of the two or more nanowires. A source or a drain formed on sides of the stack.
US10833156B2 Self-forming spacers using oxidation
A method of forming a self-forming spacer using oxidation. The self-forming spacer may include forming a fin field effect transistor on a substrate, the fin field effect transistor includes a gate on a fin, the gate is perpendicular to the fin; forming a gate spacer on the gate and a fin spacer on the fin, the gate spacer and the fin spacer are formed in a single step by oxidizing an exposed surface of the gate and an exposed surface of the fin; and removing the fin spacer from the fin.
US10833155B2 Vertical field effect transistor with top and bottom airgap spacers
A vertical field effect transistor (VFET) having a bottom airgap spacer located beneath a gate structure and a top airgap spacer located above the gate structure is provided. The top airgap spacer reduces overlap capacitance between the gate structure and a top source/drain structure of the VFET, while the bottom airgap spacer reduces the overlap capacitance and a coupling capacitance that is present between the gate structure and a bottom source/drain structure of the VFET.
US10833154B2 Electronic device including an insulating structure
An electronic device can include a substrate and an insulating structure. In an aspect, an anchor can include a portion of the substrate that extends into the insulating structure or a portion of the insulating structure that extends into the substrate. In another aspect, a process of forming an electronic device can include patterning a substrate to define a trench and a first anchor; and forming an insulating structure within the trench and adjacent to the first anchor. In a further aspect, a process of forming an electronic device can include patterning a substrate to define a trench having a sidewall and a first pillar spaced apart from the sidewall; doping the first pillar to change a conductivity type of the first pillar; and forming an insulating structure that surrounds the first pillar.
US10833153B2 Switch with local silicon on insulator (SOI) and deep trench isolation
The present disclosure relates to semiconductor structures and, more particularly, to a switch with local silicon on insulator (SOI) and deep trench isolation structures and methods of manufacture. The structure a structure comprises an air gap located under a device region and bounded by an upper etch stop layer and deep trench isolation structures.
US10833150B2 Fast recrystallization of hafnium or zirconium based oxides in insulator-metal structures
A method for converting a dielectric material including a type IV transition metal into a crystalline material that includes forming a predominantly non-crystalline dielectric material including the type IV transition metal on a supporting substrate as a component of an electrical device having a scale of microscale or less; and converting the predominantly non-crystalline dielectric material including the type IV transition metal to a crystalline crystal structure by exposure to energy for durations of less than 100 milliseconds and, in some instances, less than 10 microseconds. The resultant material is fully or partially crystallized and contains a metastable ferroelectric phase such as the polar orthorhombic phase of space group Pca21 or Pmn21. During the conversion to the crystalline crystal structure, adjacently positioned components of the electrical devices are not damaged.
US10833144B2 Semiconductor device packages including an inductor and a capacitor
A semiconductor device package includes a substrate, a first patterned conductive layer, a second patterned conductive layer, a dielectric layer, a third patterned conductive layer and a connector. The substrate has a top surface. The first patterned conductive layer is on the top surface of the substrate. The second patterned conductive layer contacts the first patterned conductive layer. The second patterned conductive layer includes a first portion, a second portion and a third portion. The second portion is connected between the first portion and the third portion. The dielectric layer is on the top surface of the substrate. The dielectric layer covers the first patterned conductive layer and surrounds the second portion and the third portion of the second patterned conductive layer. The first portion of the second patterned conductive layer is disposed on the dielectric layer. The third patterned conductive layer is on the second patterned conductive layer, and the connector is directly on the third patterned conductive layer.
US10833141B2 Display device
A display device includes a plurality of subpixels each including a transmission portion and a light emitting portion on a substrate, wherein the light emitting portion includes a driving transistor and an organic light emitting diode connected to the driving transistor, and an extension line extending from a drain electrode of the driving transistor and a first electrode of the organic light emitting diode are connected to each other in the transmission portion.
US10833128B2 Reducing junction leakage and occurrence of dark current at a contact portion of a solid-state image device
There is provided a solid-state imaging device including a semiconductor base element, an organic photoelectric conversion layer formed above the semiconductor base element, a contact hole formed in an insulating layer on the semiconductor base element, a conductive layer formed in the contact hole and electrically connecting a photoelectric conversion part which includes the organic photoelectric conversion layer with the semiconductor base element, and a contact portion which is formed by self-alignment with the conductive layer in the contact hole in the semiconductor base element, and connected to the conductive layer.
US10833127B2 Three-dimensional and planar memory device co-integration
A method for fabricating a semiconductor device including three-dimensional and planar memory device co-integration includes forming trenches within a horizontal electrode stack to expose portions of a conductive layer, forming vertical electrodes including conductive material within the trenches, forming a planar memory device stack across the device, and patterning the planar memory device stack to form a planar memory device.
US10833126B2 Three dimensional stacked semiconductor memory device
A semiconductor memory device may include: a plurality of row lines extended in parallel to each other in a first horizontal direction; a plurality of column line stacks extended in parallel to each other in a second horizontal direction perpendicular to the first horizontal direction, wherein each of the plurality of column line stacks includes a plurality of column lines extended in parallel to each other in a vertical direction; and a plurality of cell pillars that pass vertically through the column lines of the column line stacks, each of the plurality of cell pillars has a first end and a second end, wherein the first ends of the plurality of cell pillars are electrically coupled to the plurality of row lines, and the second ends of the plurality of cell pillars are floated. Each cell pillar includes a core and variable resistance memory layers.
US10833124B2 Semiconductor devices including data storage patterns
A semiconductor device is provided including a base insulating layer on a substrate; a first conductive line that extends in a first direction on the base insulating layer; data storage structures on the first conductive line; selector structures on the data storage structures, each of the selector structures including a lower selector electrode, a selector, and an upper selector electrode; an insulating layer in a space between the selector structures; and a second conductive line disposed on the selector structures and the insulating layer and extended in a second direction intersecting the first direction. An upper surface of the insulating layer is higher than an upper surface of the upper selector electrode.
US10833121B2 Vertical silicon-on-metal superconducting quantum interference device
Techniques related to vertical silicon-on-metal superconducting quantum interference devices and method of fabricating the same are provided. Also provided are associated flux control and biasing circuitry. A superconductor structure can comprise a silicon-on-metal substrate that can comprise a first superconducting layer, comprising a first superconducting material, between a first crystalline silicon layer and a second crystalline silicon layer. The superconducting structure can also comprise a first via comprising a first Josephson junction and a second via comprising a second Josephson junction. The first via and the second via can be formed between the first superconducting layer and a second superconducting layer, comprising a second superconducting material. An electrical loop around a defined area of the second crystalline silicon layer can comprise the first via comprising the first Josephson junction, the second via comprising the second Josephson junction, the first superconducting layer, and the second superconducting layer.
US10833117B2 Image sensor including a first and a second isolation layer
An image sensor is provided comprising a substrate comprising first and second surfaces opposite to each other. A first isolation layer is disposed on the substrate and forms a boundary of a sensing region. A second isolation layer is disposed at least partially in the substrate within the sensing region and has a closed line shape. A photoelectric conversion device is disposed within the closed line shape of the second isolation layer, and a color filter is disposed on the first surface of the substrate.
US10833116B2 Image sensor having PD bias patterns
An image sensor may include a photosensing region in a substrate and configured to generate photoelectrons in response to an incident light on the photodiode region, conductive bias patterns disposed to be spaced apart from one another and surrounding the photosensing region, and pixel isolation patterns that are spaced apart from and disposed in a periphery of the conductive bias patterns.
US10833113B2 Image sensor and method for fabricating the same
An image sensor is provided. The image sensor includes, a substrate including a light-receiving region and a pad region disposed around the light-receiving region, wherein the light-receiving region receives light to generate image data, a photoelectric conversion layer disposed on the light-receiving region of the substrate, an anti-reflection layer disposed on the photoelectric conversion layer and including a plurality of subsidiary anti-reflection layers, a microlens disposed on the anti-reflection layer, a delamination-preventing layer disposed on the pad region of the substrate, and a wiring layer disposed on the delamination-preventing layer, wherein a lowermost one of the subsidiary anti-reflection layers of the anti-reflection layer includes a first material composition and the delamination-preventing layer includes a second material composition different from the first material composition.
US10833112B2 Image sensor including transfer gates with projections extending from the sidewalls and method of fabricating the same
An image sensor includes a first transfer gate formed over a substrate, and including a first projection; a second transfer gate formed over the substrate, neighboring the first transfer gate, and including a second projection; and a floating diffusion formed in the substrate, and partially overlapping with the first transfer gate and the second transfer gate, wherein the first projection and the second projection face each other.
US10833111B2 Solid-state imaging apparatus
An inventive solid-state imaging apparatus is provided which can improve the efficiency of the electric carrier transfer from a photoelectric conversion portion to an electric-carrier accumulation portion. The solid-state imaging apparatus includes an active region having the photoelectric conversion portion, the electric-carrier accumulation portion, and a floating diffusion, and an element isolation region having an insulator defining the active region. In planer view, the width of the active region in the electric-carrier accumulation portion under a gate of the first transfer transistor is larger than the width of the active region in the photoelectric conversion portion under the gate of the first transfer transistor.
US10833104B2 Array substrate and its fabricating method, display device
The present disclosure provides a fabricating method of an array substrate, comprising: forming a pattern comprising a light shading member; spreading an organic material solution; solidifying the organic material solution, to form a buffer layer; forming a pattern of an active layer on the buffer layer, wherein a position of the active layer corresponds to a position of the light shading member; and forming a gate pattern, where the gate pattern is located on the active layer and is insulated from the active layer. Correspondingly, the present disclosure further provides an array substrate and a display device.
US10833103B2 Semiconductor memory device
A semiconductor memory device includes: a substrate; a plurality of first semiconductor portions arranged in a first direction intersecting a surface of the substrate; a first gate electrode extending in the first direction, the first gate electrode facing the plurality of first semiconductor portions from a second direction intersecting the first direction; a first insulating portion provided between the first semiconductor portions and the first gate electrode; a first wiring separated from the first gate electrode in the first direction; a second semiconductor portion connected to one end in the first direction of the first gate electrode and to the first wiring; a second gate electrode facing the second semiconductor portion; and a second insulating portion provided between the second semiconductor portion and the second gate electrode.
US10833102B2 Low power 2D memory transistor for flexible electronics and the fabrication methods thereof
Devices and methods of a transistor device that include a flexible memory cell. The flexible memory cell having a gate stack with sidewalls provided over a substrate. The gate stack including a metal gate layer provided over the substrate. A buffer layer provided over the metal gate layer. A ferroelectric layer provided over the buffer layer. A dielectric layer provided over the ferroelectric layer. Further, a two-dimensional (2D) material layer provided over a portion of a top surface of the dielectric layer. Source and drain regions provided on separate portions of the top surface of the dielectric layer so as to create a cavity that the 2D material layer are located.
US10833092B2 Methods of incorporating leaker-devices into capacitor configurations to reduce cell disturb, and capacitor configurations incorporating leaker-devices
Some embodiments include an integrated assembly having first electrodes with top surfaces, and with sidewall surfaces extending downwardly from the top surfaces. The first electrodes are solid pillars. Insulative material is along the sidewall surfaces of the first electrodes. Second electrodes extend along the sidewall surfaces of the first electrodes and are spaced from the sidewall surfaces by the insulative material. Conductive-plate-material extends across the first and second electrodes, and couples the second electrodes to one another. Leaker-devices electrically couple the first electrodes to the conductive-plate-material and are configured to discharge at least a portion of excess charge from the first electrodes to the conductive-plate-material. Some embodiments include methods of forming integrated assemblies.
US10833090B2 Methods, structures and devices for intra-connection structures
Systems and methods are provided for forming an intra-connection structure. A first gate structure and a first source/drain region adjacent to the first gate structure is formed on a substrate. A first dielectric material is disposed on the first source/drain region. A spacer material is formed on the first gate structure. The first dielectric material is removed to expose at least part of the first source/drain region. At least part of the spacer material is removed to expose at least part of the first gate structure. A first conductive material is formed between the first gate structure and the first source/drain region to electrically connect the first source/drain region and the first gate structure.
US10833089B2 Buried conductive layer supplying digital circuits
An embodiment may include a method of forming an integrated circuit. The method may include forming a first pair of transistors stacked vertically above a semiconductor substrate arranged substantially perpendicular to the plurality of layers. Each of the first pair of vertically stacked transistors are of the same type and are connected in series. The method may include forming a second pair of transistors connected in parallel and arranged substantially perpendicular to the plurality of layers. The second pair of transistors are a different type than the first pair of vertically stacked transistors. The method may include forming a power supply rail within the semiconductor substrate and arranged at one end of the first pair of vertically stacked transistors.
US10833081B2 Forming isolated contacts in a stacked vertical transport field effect transistor (VTFET)
Structures and methods that facilitate forming isolated contacts in stacked vertical transport field effect transistors (VTFETs). A pair of stacked VTFETs are formed on a substrate and isolated from each other. A via or hole is formed to extend to a drain of the second VTFET and a source of the first VTFET. The via is filled with a metal below the first VTFET to form the second contact. The second contact is capped with a non-conductive material and the remaining portion of the via is filled with metal to form the first contact. Alternatively, a via or hole is formed to extend to a source of the second VTFET and a source of the first VTFET. The second contact may serve as a local interconnect, a ground, or a voltage source connection.
US10833080B2 Semiconductor logic element and logic circuitries
Disclosed is a semiconductor logic element having a field effect transistor of the first conductivity type and a field effect transistor of the second conductivity type. A gate of the first FET is an input of the semiconductor logic element, a drain of the second FET is referred to as the output of the semiconductor logic element and a source of the second FET is the source of the semiconductor logic element. By applying applicable potentials to the terminals of the field effect transistors it is possible to influence the state of the output of the logic element. Also disclosed are different kinds of logic circuitries with the described logic element.
US10833076B2 Integrated circuit devices with non-collapsed fins and methods of treating the fins to prevent fin collapse
An integrated circuit device with a substrate and a plurality of fins is provided where the fin width is less than 11 nanometers, the fin height is greater than 155 nanometers and the spacing between any two neighboring fins is less than 30 nanometers and each of the fins is in a non-collapsed state. An integrated circuit device with a substrate and a plurality of fins is also provided where the fin width is less than 15 nanometers, the fin height is greater than 190 nanometers and the spacing between any two neighboring fins is less than 30 nanometers and each of the fins is in a non-collapsed state. A method for forming a fin-based transistor structure is also provided where a plurality of fins on a substrate are pre-treated with at least one of a self-assembled monolayer, a non-polar solvent, and a surfactant. One or more of these treatments is provided to reduce the adhesion and/or cohesive forces to prevent the occurrence of fin collapse.
US10833074B2 Semiconductor device and method
A process for manufacturing a semiconductor device and the resulting structure are presented. In an embodiment a source/drain region is grown. Once grown, the source/drain region is reshaped in order to remove facets. The reshaping may be performed using an etching process whereby a lateral etch rate of the source/drain region is larger than a vertical etch rate of the source/drain region.
US10833073B2 Vertical transistors with different gate lengths
Techniques for forming VFETs with differing gate lengths are provided. In one aspect, a method for forming a VFET device includes: patterning fins in a substrate, wherein at least one of the fins includes a vertical fin channel of a FET1 and at least another one of the fins includes a vertical fin channel of a FET2; forming a bottom source and drain; forming bottom spacers on the bottom source and drain; forming gates surrounding the vertical fin channel of the FET1 and FET2; forming top spacers on the gate; and forming top source and drains at the tops of the fins by varying a positioning of the top source and drains relative to at least one of the vertical fin channel of the FET1 and the FET2 such that the FET1/FET2 have an effective gate length Lgate1/Lgate2, wherein Lgate1>Lgate2. A VFET device is also provided.
US10833069B2 Logic gate designs for 3D monolithic direct stacked VTFET
Logic gate designs (e.g., NAND, NOR, Inverter) for stacked VTFET designs are provided. In one aspect, a logic gate device is provided. The logic gate device includes: at least one top vertical transport field-effect transistor (VTFET1) sharing a fin with at least one bottom VTFET (VTFET2); a power rail connected to a power contact of the logic gate device; and a ground rail, adjacent to the power rail, connected to a ground contact of the logic gate device. A method of forming a logic gate device is also provided.
US10833067B1 Metal resistor structure in at least one cavity in dielectric over TS contact and gate structure
A structure includes a first dielectric over a trench silicide (TS) contact and over a gate structure, and at least one cavity in the first dielectric. A metal resistor layer is on a bottom and sidewalls of the at least one cavity and extends over the first dielectric. A first contact is on the metal resistor layer over the first dielectric; and a second contact is on the metal resistor layer over the first dielectric. The metal resistor layer is over the TS contact and over the gate structure. Where a plurality of cavities are provided in the dielectric, a resistor structure formed by the metal resistor layer may have an undulating cross-section over the plurality of cavities and the dielectric.
US10833060B2 Semiconductor storage device
According to one embodiment a semiconductor storage device includes a housing, a first rigid board, a controller, a second rigid hoard, a first semiconductor memory component, and a first connection board. The first rigid board includes a plurality of first terminals on a surface of the first rigid board. The second rigid board includes a plurality of second terminals on a surface of the second rigid board. The first connection board is in a state in which at least a part of the first connection board is bent. The first connection board includes a first end portion and a second end portion. The first end portion includes a plurality of third terminals connected to the plurality of first terminals of the first rigid board. The second end portion includes a plurality of fourth terminals connected to the plurality of second terminals of the second rigid board.
US10833059B2 Integrated assemblies comprising vertically-stacked decks of memory arrays
Some embodiments include an integrated assembly having a base supporting first circuitry and first conductive lines. The first conductive lines extend along a first direction and are associated with the first circuitry. A deck is over the base and supports an array of memory cells and second conductive lines which are associated with the array of memory cells. The second conductive lines extend along a second direction which is substantially orthogonal to the first direction. Vertical interconnects extend from the deck to the base and couple the first conductive lines to the second conductive lines. Each of the vertical interconnects couples one of the first conductive lines to one of the second conductive lines. Each of the second conductive lines is coupled with only one of the first conductive lines.
US10833054B2 Smart pixel surface mount device package
Emitter panels and displays utilizing solid state packages and methods for fabricating the same are disclosed. One emitter panel comprises a raised barrier on a submount defining a plurality of cavities, each cavity having at least one LED in a pixel area. The panel is capable of receiving electrical signals for independently controlling the emission from the emitters. Solid state displays utilize the emitter panels mounted in relation to one another to generate a message or image. The panels comprise multiple pixels each having at least one light emitter, with each panel capable of receiving electrical signals for independently controlling the emission of at the pixels.
US10833050B1 Interposer, electronic substrate, and method for producing electronic substrate
An interposer is capable of efficiently reinforcing the connecting portion between an electronic component and a substrate. The interposer is used for mounting a first electronic component on a substrate and includes a sheet-shaped spacer having at least one through-hole and including a material that does not flow during reflow soldering and a resin portion that covers at least a part of the spacer and is flowable during reflow soldering, and the through-hole is configured to store a bump of the first electronic component.
US10833047B2 Apparatuses of bonding substrates and methods of bonding substrates
A substrate bonding apparatus includes a lower chuck, an upper chuck, an electric actuator on a central portion of the upper chuck, a pressure sensor, and a controller. The lower chuck may support a lower substrate, the upper chuck may face the lower chuck such that a lower surface of the upper chuck faces the upper surface of the lower chuck, and the upper chuck may support an upper substrate. The electric actuator may lower a bonding pin through the upper chuck to apply a pressure to the upper substrate supported on the upper chuck. The pressure sensor may be below the lower substrate supported on the lower chuck. The pressure sensor may sense a lowering pressure applied by the bonding pin to the pressure sensor in real time. The controller may control the lowering pressure applied by the bonding pin.
US10833044B2 Package-on-package assembly with wire bonds to encapsulation surface
Apparatuses relating to a microelectronic package are disclosed. In one such apparatus, a substrate has first contacts on an upper surface thereof. A microelectronic die has a lower surface facing the upper surface of the substrate and having second contacts on an upper surface of the microelectronic die. Wire bonds have bases joined to the first contacts and have edge surfaces between the bases and corresponding end surfaces. A first portion of the wire bonds are interconnected between a first portion of the first contacts and the second contacts. The end surfaces of a second portion of the wire bonds are above the upper surface of the microelectronic die. A dielectric layer is above the upper surface of the substrate and between the wire bonds. The second portion of the wire bonds have uppermost portions thereof bent over to be parallel with an upper surface of the dielectric layer.
US10833040B2 Semiconductor package
A semiconductor package includes a core member having a cavity penetrating through first and second surfaces, a semiconductor chip disposed in the cavity and having an active surface having connection, a passive component module disposed in the cavity, including a plurality of passive components and a resin portion encapsulating the plurality of passive components, and having a mounting surface from which connection terminals of the passive components are exposed, a connection member on the second surface and including a redistribution layer connected to the connection pads of the semiconductor chip and connection terminals of some of the plurality of passive components, connection terminals of the others of the plurality of passive components not being connected to the redistribution layer.
US10833037B2 Semiconductor device
A semiconductor device includes a semiconductor chip including a semiconductor substrate, an element formed in an element forming region of the semiconductor substrate, and a through-via penetrating across a front surface and a rear surface of the semiconductor substrate while avoiding the element forming region of the semiconductor substrate to form a conductive path between the front surface and the rear surface; a circuit component mounted on a circuit component connection surface at the same side as the front surface of the semiconductor substrate of the semiconductor chip; and an external connection members formed on the rear surface of the semiconductor substrate.
US10833036B2 Interconnect for electronic device
A semiconductor die includes a substrate and an integrated circuit provided on the substrate and having contacts. An electrically conductive layer is provided on the integrated circuit and defines electrically conductive elements electrically connected to the contacts. Electrically conductive interconnects coupled with respective electrically conductive elements. The electrically conductive interconnects have at least one of different sizes or shapes from one another.
US10833034B2 Semiconductor package
The present disclosure provides a semiconductor package, including a substrate, an active region in the substrate, an interconnecting layer over the active region, a conductive pad over the interconnecting layer, surrounded by a dielectric layer. At least two discrete regions of the conductive pad are free from coverage of the dielectric layer. A method of manufacturing the semiconductor package is also disclosed.
US10833033B2 Bump structure having a side recess and semiconductor structure including the same
The present disclosure, in some embodiments, relates to a bump structure. The bump structure includes a conductive layer and a solder layer. The solder layer is disposed vertically below and laterally between portions of the conductive layer along a cross-section. The conductive layer is continuous between the portions.
US10833032B2 Semiconductor device
A semiconductor device includes a protective layer, a redistribution pattern, a pad pattern and an insulating polymer layer. The protective layer may be formed on a substrate. The redistribution pattern may be formed on the protective layer. An upper surface of the redistribution may be substantially flat. The pad pattern may be formed directly on the redistribution pattern. An upper surface of the pad pattern may be substantially flat. The insulating polymer layer may be formed on the redistribution pattern and the pad pattern. An upper surface of the insulating polymer layer may be lower than the upper surface of the pad pattern. The semiconductor device may have a high reliability.
US10833030B2 Semiconductor device and method of manufacture
A redistribution layer with a landing pad is formed over a substrate with one or more mesh holes extending through the landing pad. The mesh holes may be arranged in a circular shape, and a passivation layer may be formed over the landing pad and the mesh holes. An opening is formed through the passivation layer and an underbump metallization is formed in contact with an exposed portion of the landing pad and extends over the mesh holes. By utilizing the mesh holes, sidewall delamination and peeling that might otherwise occur may be reduced or eliminated.
US10833028B2 Thin-film capacitor structure and semiconductor device including the thin-film capacitor structure
A thin-film capacitor structure (50) is joined to an electrode pad surface (2S) of an area array integrated circuit (2) having a plurality of electrode pads (3G, 3P, 3S) arranged in an area array on the electrode pad surface (2S). The thin-film capacitor structure (50) includes a thin-film capacitor (10) including a first sheet electrode (11), a second sheet electrode (13), and a thin-film dielectric layer (12) formed between the first sheet electrode (11) and the second sheet electrode (12), a first insulating film (21), a second insulating film (22), and a plurality of through holes (30P, 30G, 30S). The plurality of through holes (30P, 30G, 30S) are bored from the first insulating film (21) to the second insulating film (22) through the thin-film capacitor (10) and formed in positions corresponding to the plurality of electrode pads (3G, 3P, 3S).
US10833026B2 Integrated circuit with backside structures to reduce substrate warp
Some embodiments relate to a method. In this method, a semiconductor wafer having a frontside and a backside is received. A frontside structure is formed on the frontside of the semiconductor wafer. The frontside structure exerts a first wafer-bowing stress that bows the semiconductor wafer by a first bow amount. A characteristic is determined for one or more stress-inducing films to be formed based on the first bow amount. The one or more stress-inducing films are formed with the determined characteristic on the backside of the semiconductor wafer and/or on the frontside of the semiconductor wafer to reduce the first bow amount in the semiconductor wafer.
US10833023B2 Circuit module
A circuit module (100) includes an electronic component (30), a plurality of conductor posts (40), a mold layer (50) that seals a plurality of the electronic components (30) and the plurality of conductor posts (40), and a shield layer (60) on the mold layer (50). The electronic components (30) include a first electronic component (31) and second electronic components (32, 36). The plurality of conductor posts (40) includes a group of conductor posts (400) traversing between the first electronic component (31) and the second electronic components (32, 36). The shield layer (60) includes a slit (600) that, with respect to each conductor post (40) included in the group (400) of conductor posts, in a plan view, passes and extends between the conductor post (40) and the first electronic component (31), or between the conductor post (40) and the second electronic components (32, 36).
US10833022B2 Structure and method to improve overlay performance in semiconductor devices
In an exemplary method, a first layer is formed on a substrate. First overlay marks are formed in a first zone of the first layer. A non-transparent layer is formed on top of the first layer. At least a portion of the non-transparent layer is removed from an area above the first zone of the first layer. This provides optical access to the first overlay marks. A second layer is formed on top of the non-transparent layer. Second overlay marks are formed in a second zone of the second layer. Position information is obtained from each of the first overlay marks and the second overlay marks.
US10833021B2 Method for precisely aligning backside pattern to frontside pattern of a semiconductor wafer
A method comprises the steps of providing a semiconductor device wafer; forming a first plurality of alignment marks on a first side of the semiconductor device wafer; forming a first pattern of a first conductivity type; forming a second plurality of alignment marks on a second side of the semiconductor device wafer; forming a bonded wafer by bonding a carrier wafer to the semiconductor device wafer; forming a third plurality of alignment marks on a free side of the carrier wafer; applying a grinding process; forming a plurality of device structure members; removing the carrier wafer; applying an implanting process and an annealing process; applying a metallization process and applying a singulation process.
US10833019B2 Dual metal-insulator-semiconductor contact structure and formulation method
A method of making a semiconductor device includes forming a first source/drain trench and a second source/drain trench over a first and second source/drain region, respectively; forming a first silicon dioxide layer in the first source/drain trench and a second silicon dioxide layer in the second source/drain trench; forming a first source/drain contact over the first source/drain region, the first source/drain contact including a first tri-layer contact disposed between the first silicon dioxide layer and a first conductive material; and forming a second source/drain contact over the second source/drain region, the second source/drain contact including a second tri-layer contact disposed between the second silicon dioxide layer and a second conductive material; wherein the first tri-layer contact includes a first metal oxide layer in contact with the first silicon dioxide layer, and the second tri-layer contact includes a second metal oxide layer in contact with the second silicon dioxide layer.
US10833018B2 Semiconductor device with transistor local interconnects
A semiconductor device includes a substrate with first and second transistors disposed thereon and including sources, drains, and gates, wherein the first and second gates extend longitudinally as part of linear strips that are parallel to and spaced apart. The device further includes a first CB layer forming a local interconnect electrically connected to the first gate, a second CB layer forming a local interconnect electrically connected to the second gate, and a CA layer forming a local interconnect extending longitudinally between first and second ends of the CA layer. The first and second CB layers and the CA layer are disposed between a first metal layer and the substrate. The first metal layer is disposed above each source, drain, and gate of the transistors, The CA layer extends parallel to the first and second linear strips and is substantially perpendicular to the first and second CB layers.
US10833013B2 Memory device interconnects and method of manufacture
At integrated circuit memory device, in one embodiment, includes a substrate having a plurality of bit lines. A first and second inter-level dielectric layer are successively disposed on the substrate. Each of a plurality of source lines and staggered bit line contacts extend through the first inter-level dielectric layer. Each of a plurality of source line vias and a plurality of staggered bit line vias extend through the second inter-level dielectric layer to each respective one of the plurality of source lines and the plurality of staggered bit line contacts. The source lines and staggered bit line contacts that extend through the first inter-level dielectric layer are formed together by a first set of fabrication processes. The source line vias and staggered bit line contacts that extend through the second inter-level dielectric layer are also formed together by a second set of fabrication processes.
US10833012B2 Transistor structures having electrically floating metal layers between active metal lines
The present disclosure generally relates to semiconductor structures and, more particularly, to transistor structures and methods of manufacture. The structure includes active metal lines separated by electrically floating metal layers which have a width less than a width of the active metal lines.
US10833008B2 Method of forming a packaged semiconductor device using ganged conductive connective assembly and structure
A packaged semiconductor device has a die attach pad and leads disposed proximate to the die attach pad. Each lead has a lead bottom surface and a lead end surface. A semiconductor device attached adjacent to a top surface of the die attach pad, and a conductive clip is attached to the semiconductor device and at least one of the leads. The conductive clip comprises a first tie bar extending from a first side surface of the conductive clip. A package body encapsulates the semiconductor device, the conductive clip, portions of the leads, at least a portion of the first tie bar, and at least a portion of the die attach pad. Each lead end surface is exposed in a side surface of the package body, and an end surface of the first tie bar is exposed in a first side surface of the package body. A conductive layer is disposed on each lead end surface but is not disposed on the end surface of the first tie bar.
US10833004B2 Capacitive tuning circuit using RF switches with PCM capacitors and PCM contact capacitors
A capacitive tuning circuit includes radio frequency (RF) switches connected to an RF line. Each RF switch includes a phase-change material (PCM), a heating element underlying an active segment of the PCM and extending outward and transverse to the PCM, and RF terminals having lower metal portions and upper metal portions. Alternatively, the RF terminals can have a trench metal liner separated from a trench metal plug by a dielectric liner. At least one capacitor is formed in part by at least one of the lower metal portions, upper metal portions, or trench metal liner. The capacitive tuning circuit can be set to a desired capacitance value when a first group of the RF switches is in an OFF state and a second group of the RF switches is in an ON state.
US10833002B2 Connection structure and method of forming the same
Provided is a connection structure for a semiconductor package which includes: a first passivation layer having an opening; a first conductive pattern that penetrates the first passivation layer and protrudes upwardly from the first passivation layer; a second passivation layer on the first passivation layer and covering the first conductive pattern; a second conductive pattern on the second passivation layer and electrically connected to the first conductive pattern; a third passivation layer on the second passivation layer and covering the second conductive pattern; and an external terminal in the opening and electrically connected to the first conductive pattern, wherein the first conductive pattern is thicker than the second conductive pattern.
US10832999B2 Packaging methods for semiconductor devices comprising forming trenches in separation regions between adjacent packaging substrates
Packaging methods for semiconductor devices are disclosed. A method of packaging a semiconductor device includes providing a workpiece including a plurality of packaging substrates. A portion of the workpiece is removed between the plurality of packaging substrates. A die is attached to each of the plurality of packaging substrates.
US10832995B2 Power module
A power module (10) having a leadframe (20), a power semiconductor (30) arranged on the leadframe (20), a base plate (40) for dispersing heat generated by the power semiconductor (30) and a potting compound (50) surrounding the leadframe (20) and the power semiconductor (30), that physically connects the power semiconductor (30) and/or the leadframe (20) to the base plate(40).
US10832993B1 Packaged multichip device with stacked die having a metal die attach
A leadless multichip semiconductor device includes a metal substrate having a through-hole aperture with an outer ring for holding a bottom semiconductor die with an inner row and an outer row of metal pads. The bottom semiconductor die has a back side metal (BSM) layer on its bottom side and a top side with bond pads mounted top side up on the ring. A metal die attach layer is directly between the BSM layer and walls of the metal substrate providing a die attachment that fills a bottom portion of the aperture. Bond wires are between the inner metal pads and the bond pads. A top semiconductor die has top bond pads mounted top side up on a dielectric adhesive on the bottom semiconductor die. Pins connect the top bond pads to the outer metal pads. A mold compound provides isolation between adjacent ones of the metal pads.
US10832988B2 Integrated circuit having contact jumper
An integrated circuit includes first and second active regions extending in a first direction, a first gate line extending in a second direction substantially perpendicular to the first direction and crossing the first and second active regions, and a first contact jumper including a first conductive pattern intersecting the first gate line above the first active region and a second conductive pattern extending in the second direction above the first gate line and connected to the first conductive pattern.