Document Document Title
US10827420B2 System and method for dynamically configurable air interfaces
A method of transmitting includes categorizing a transmission between the first device and a second device as one of a plurality of transmission types, and selecting an air interface from a plurality of air interface candidates in accordance with the transmission as categorized. The method also includes sending the transmission to the second device using the selected air interface.
US10827417B2 Wireless network access method and access apparatus
Embodiments of the present application provide a wireless network access method and a wireless network access apparatus, relating to the field of wireless communications technologies. The method comprises: listening to a request packet broadcasted by using a first low-power wireless communication protocol, and broadcasting access point information by using a second low-power wireless communication protocol, where the request packet is used for requesting to acquire the access point information, and the access point information is used by a user device to access a corresponding access point. According to the method and apparatus in the embodiments of the present application, a request packet broadcasted by using a low-power wireless communication protocol is listened to, and sending of the access point information is triggered according to the request packet or is actively initiated, which can implement simple, convenient, fast and automatic key distribution without human intervention, also does not need another supplementary means such as access to the Internet in advance or a backend cloud service, and is low in power consumption.
US10827415B2 Network awareness of device location
Systems and methods for managing a network are disclosed. One method can comprise detecting a triggering event at a node. Location information of the node can be transmitted to a routing device in response to the triggering event. Location information of the node can be transmitted to a management device. The management device can be configured to control an operation of one or more of the node and the routing device in response to the location information.
US10827412B2 Ultra-reliable communication reliability and detection in mobile networks
Methods and apparatus, including computer program products, are provided for ultra-reliable communications. In one aspect there is provided a method, which may include receiving, by a first user equipment, a reliability estimate for a communication link before the communication link is at least one of used or established between the first user equipment at a first location and a second user equipment at a second location; and at least one of using or establishing the communication link, when the received reliability estimate exceeds a threshold reliability. Related systems, articles of manufacture, and the like are also disclosed.
US10827410B2 System, apparatus and method for robust transmission of visual data through visual sensor network
The present invention is related to a method for routing image data from Camera Node to a Sink Node, where it May be processed in detail, in a Visual sensor network. In accordance with the present invention, wireless Intermediate Node are configured to route images based on first pass image encoding containing coarse image to the next wireless hop at a higher priority over the images based on the second pass encoding containing additional details of the images. The routing method for wireless Ad Hoc mobile and sensor network, periodically exchanges node status information to optimize the routing table, so that high priority image packets may reach the Sink Node in shortest possible path. The method ensures selection of high quality image packets for routing under the condition of collision and congestion to achieve optimal image quality receipt at the Sink Node.
US10827409B2 Method and apparatus for improving mobility in wireless communication system
The present disclosure relates to a communication method and system for converging a 5 th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.A method for a base station to perform communication in a wireless communication system includes transmitting an interface setup request message related to tracking area information to at least one mobility management entity (MME) in a first MME pool. The method includes identifying whether an interface setup response message related to the tracking area information is received from the at least one MME in the first MME pool, and storing mapping information between the tracking area information and the first MME pool if the interface setup response message is received.
US10827407B2 Handover method, terminal device, and network device
Embodiments of this application provide a handover method, a terminal device, and a network device. The method includes: obtaining, by a first terminal device, first identification information, where the first identification information includes identification information of at least one second terminal device; and performing, by the first terminal device, handover of the first terminal device and the at least one second terminal device based on the first identification information, where the handover is handover from a first network device to a second network device. According to the embodiments of this application, impact of signaling on a network side caused by simultaneous handover of a large quantity of terminal devices is reduced, and a service interruption time during handover is reduced, thereby effectively supporting simultaneous handover of a plurality of terminal devices.
US10827406B2 Method of cell redistribution for user equpment and user equipment using the same
The disclosure is directed to a method of cell redistribution for a UE and a UE using the same method. In one of the exemplary embodiments, the disclosure is directed to a method of cell redistribution for a UE. The method would include not limited to: acquiring an area information of a cell redistribution candidate for being redistributed from a camping cell to a target cell; performing a filtering procedure for the cell redistribution candidate based on the area information to determine a filtered cell redistribution candidate; performing a cell re-selection procedure to select the target cell from the filtered cell redistribution candidate; and attaching to the target cell.
US10827404B2 Controlling client connectivity during access point upgrades
A method includes obtaining client information from a set of access points. The client information indicates client devices detected by each access point in the set of access points. In some implementations, the method includes grouping the set of access points into a plurality of access point groups based on the client information. The grouping allows each client device to associate with an access point from at least two different access point groups. The method includes, for a first access point group of the plurality of access point groups, migrating the client devices associated with access points in the first access point group to access points in a second access point group of the plurality of access point groups. In some implementations, the method includes configuring the access points in the first access point group while maintaining configuration of the access points in the second access point group.
US10827403B2 Data transmission method, user equipment, base station, and system
A data transmission method, a user equipment (UE), a base station and a system are provided. The method includes maintaining transmission of data of a UE by an original base station in a handover process in which the UE hands over from the original base station to a target base station; and transmitting the data to the target base station by the original base station when maintaining the transmission of the data of the UE.
US10827400B2 Allocating radio resources in a cellular network
A method of allocating radio resources in a cellular network by a network node associated with a destination cell. Prior to a handover of a moving user equipment (UE) from an originating cell to the destination cell, receiving a moving user resource requirement and a predicted handover time for the moving UE, estimating a total resource requirement comprising a sum of the moving user resource requirement and an initial resource requirement comprising a sum of resource requirements of other UEs in the destination cell, determining whether a capacity of the destination cell is sufficient to provide for the total resource requirement. If the capacity is not sufficient, a decrement factor is determined for each UE in the destination cell by determining a required resource reduction using a difference between the capacity and the total resource requirement, determining a reduction factor for each UE in the destination cell by allocating a portion of the required resource reduction to each UE, determining a number of rescheduling events that will occur before the handover time and calculating the decrement factor for each existing UE by dividing the reduction factor by the number of rescheduling events and at each rescheduling event, and decrementing the resources available to each user equipment by the respective decrement factor. On handover, the moving UE is provided with an allocated radio resource equal to at least part of the moving user resource requirement.
US10827393B2 Voice call processing method and terminal device
The present disclosure provides a voice call processing method and a terminal device. The method includes: when a terminal meets at least one of two preset conditions, performing handover from a Long Term Evolution LTE network currently accessed by the terminal to a non-LTE standard network, and performing a circuit switched CS voice call process on the non-LTE standard network. The voice call processing method provided in embodiments of the present invention increases a voice call completion rate of a terminal and meets a user experience requirement.
US10827386B2 Device and method for integrating satellite data with terrestrial networks in a vehicle system
A base station device used with a vehicle includes a first transceiver which communicates with a first network, a second transceiver which communicates with a second network, and a third transceiver which communicates with devices within the vehicle. The base station device also includes a processor and a memory device that cause the base station device to: obtain types of traffic being transmitted or received by the devices within the vehicle, assign first priority values to the types of traffic being transmitted or received by each of the devices within the vehicle, assign second priority values to the devices within the vehicle; assign each of the types of traffic to the first transceiver or the second transceiver based on the first priority values and the second priority values, and redirect traffic to the first transceiver and to the second transceiver.
US10827385B2 Techniques for preamble puncturing
The present disclosure provides techniques for preamble puncturing in wireless local area networks (WLANs). In one implementation, an access point (AP) can identify, within a channel width, one or more bandwidth regions associated with incumbent technologies. The AP can broadcast or advertise, to a basic service set (BSS) initiated or started by the AP, a preamble puncture pattern in one or more management frames, the preamble puncture pattern being based on the bandwidth regions associated with incumbent technologies. In another implementation, an AP can identify a single user (SU) preamble puncture transmission, and can signal in a common portion of a SIG-B field of a multi-user (MU) PPDU format that a resource unit (RU) size is assigned to a same user to indicate the SU preamble puncture transmission. Although these techniques may be used in any frequency band, typical frequency bands may include, but are not limited to, a 2.4 GHz band, a 5 GHz band, and/or a 6 GHz band.
US10827384B2 Subframe selection for introducing short TTIs in TDD
Systems and methods are disclosed that relate to selecting Time Division Duplexing (TDD) subframes (SFs) where both downlink (DL) and uplink (UL) short Transmit Time Intervals (sTTIs) can be introduced without substantially affecting legacy TDD operations. In this regard, in some embodiments, a method of operation of a network node of a cellular communications network comprises partitioning a plurality of SFs into at least two sets of SFs. The at least two sets of SFs comprising a first set of SFs for legacy TDD transmissions and a second set of SFs for sTTI TDD transmissions. The method further comprises performing one or more telecommunications functions according to the at least two sets of SFs. In this manner, TDD sTTI transmissions can be performed without substantially affecting legacy TDD operations.
US10827383B2 Collision detection method
A wireless device may receive packets according to a protocol, such as Bluetooth, and may rapidly react to receive an interfering RF packet instead of dropping the first RF packet and the interfering RF packet, to decrease message delay due to collisions in high device density environments. When a received signal strength indicator (RSSI) difference between the interfering RF packet and the first RF packet exceeds a threshold, the device may detect the interfering packet and resync a portion of its circuitry to lock on to and receive the interfering packet. The wireless receiver may detect the interfering RF packet by detecting one or more of: a specific resync byte sequence, an increase in RSSI, or a phase shift. Additionally, a wireless device may add the specific resync byte sequence to an RF packet of a standard protocol.
US10827379B2 Terminal device, base station device, and method for controlling QoS
Disclosed are a terminal apparatus, a BS apparatus, and a QoS control method for realizing a service flow-based QoS control without an increase in complexity compared to the conventional bearer-based QoS control method and improving a response time of a service request by making a QoS control for an initial service flow generated according to the service request possible.
US10827374B2 Resource management indication method and apparatus with flexible manner of measurement
Embodiments of this application provide a resource management indication method and apparatus. The method includes: generating, by a base station, radio resource management RRM measurement manner indication information, where the RRM measurement manner indication information is used to indicate an RRM measurement manner; and sending, by the base station, the RRM measurement manner indication information to a terminal. In the embodiments of this application, the base station can flexibly indicate the RRM measurement manner to the terminal, so that a more proper RRM measurement manner is used, to improve measurement efficiency and reduce measurement overheads.
US10827372B2 Method and device for transmitting data within a vehicle
A method for transmitting data within a vehicle comprises evaluating a connection quality of a wireless connection between an antenna arranged external to the vehicle and a receiving unit of the vehicle, demodulating a signal received by the receiving unit, feeding the demodulated signal to a scaling unit, and providing an output data with the scaling unit having a data rate determined as a function of the connection quality.
US10827368B2 Dynamic network device selection for containerized application deployment
The present disclosure is directed to the dynamic selection and autonomous re-deployment of software-defined radio in wireless infrastructure. In some embodiments, the present disclosure is directed to a deployment manager that facilitates the dynamic selection and re-deployment of edge applications, e.g., in WAP infrastructure which the deployment are based on a pre-defined policy (e.g., Quality-of-Service (QoS), Quality of Experience policies (QoE), etc.).
US10827366B2 System and methods for monitoring performance of slices
Embodiments provide systems and methods for managing resources in networks which utilize network slicing. Embodiments include systems and methods for monitoring performance in networks which utilize network slicing when the resources of a network domain are allocated to more than one slice. Embodiments include systems and methods for monitoring performance when resources of a slice are controlled by different network operators/service providers. A domain manager can make the performance measurement data available per network allotment instance with an identifier indicating to which virtual network service the performance measurement data belongs.
US10827363B2 Systems and methods for performing a passive intermodulation mitigation audit at a wireless site
Systems and methods include obtaining data capture at a cell site utilizing any of an Unmanned Aerial Vehicle (UAV), a satellite, a multiple camera apparatus, a telescoping apparatus, and a camera; creating a model of the cell site based on the data capture; processing the model to perform a plurality of measurements; utilizing the plurality of measurements to identify potential Passive Intermodulation (PIM) issues at the cell site; and displaying the identified PIM issues for mitigation thereof.
US10827362B2 Method for detection of wireless broadband coverage holes
An apparatus and method that may determine, at a network entity, a first distance between a first base station and a second base station based on a handover indication received from user equipment. The method may further determine, by the network entity, a second distance between a point of signal loss and a point of signal acquisition of user equipment. The method may further estimate, by the network entity, one or more network coverage areas based upon the first distance and the second distance.
US10827360B2 Communication method, apparatus, and system
A communication method, including: receiving, by an access and mobility management function network element in a first public land mobile network, a registration request message from a terminal device; and when determining that a first condition is met, sending configured network slice selection assistance information of the first public land mobile network to the terminal device. The first condition includes either of the following: the registration request message is an initial registration request message, or the registration request message is sent after the terminal device moves from a second public land mobile network to the first public land mobile network.
US10827359B2 Mechanism for grouping a neighboring access point (AP) in a spatial reuse group (SRG)
This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer-readable media, for enabling a neighboring access point (AP) to reuse communication resources that are used by an existing spatial reuse group (SRG). In one aspect, an SR element including SR information can be generated. The SR information may indicate that a first group of STAs associated with a second AP may reuse resources of a wireless medium over which packets are transmitted by a second group of STAs associated with the first AP and may indicate a permitted OBSS threshold value for reuse of the resources over the first AP. In some implementations, a wireless apparatus may transmit the SR element that includes the SR information.
US10827358B2 Software-defined extended access network for internet-of-things for a 5G or other next generation network
A framework of abstraction of new and existing 5G radios can enhance capabilities of new and existing micro radios and other short range radio technologies to enable intelligent service delivery, dynamic access learning capability, and network slicing over 5G access networks. Enhancing layer communication for both control and user plane can be tunneled through the hosting layer and exploit a common transport provided by the hosting layer. The tunneling through the hosting layer can also enable the enhance capabilities to access the same radio management functions and can be orchestrated by the same core function. Additionally, provisioning processes can be reduced based on the types of Internet-of-things devices being previously connected to a software-defined networking device.
US10827357B2 Method for controlling service set for wireless LAN and apparatus therefor
The purpose of the present invention is to control a service set in a wireless communication system. The wireless communication system comprises: a first access point (AP) comprising a first wireless fidelity (WiFi) communication circuit for providing a first basic service set (BSS); and a second AP comprising a second WiFi communication circuit for providing a second BSS. The first WiFi communication circuit wirelessly receives, from a first mobile station, a first connection request including information on a wireless LAN standard of the first mobile station, wirelessly provides a second mobile station with at least a part of the information, wirelessly receives, from the second mobile station, an approval of a connection of the first mobile station thereto, and after receiving the approval, disconnects a first wireless connection from the first mobile station. The second WiFi communication circuit wirelessly receives an approval from the second mobile station, wirelessly receives a second connection request from the first mobile station, establishes a second wireless connection with the first mobile station on the basis of the approval, and exchanges data with the first mobile station through the second wireless connection. Other embodiments are also possible.
US10827356B2 Electronic device, vehicle system and method for safeguarding wireless data communication
An electronic device, having a communication module for wireless data communication with a further electronic device, which is distinguished in that the electronic device is configured to use at least one quantitative value in order to characterize a spatial reference of the electronic device to the further electronic device in order to secure the wireless data communication, with the further electronic device. Furthermore, an aspect of the invention relates to a vehicle system having at least one electronic device according to an aspect of the invention as well as a corresponding method.
US10827355B2 Systems and methods for reliably providing a control channel for communicating control information with automotive electronic control units
Systems and methods which provide reliable and resilient control channels for communicating control information with vehicle onboard systems using a control channel plane supporting migration of a control channel among various networks forming the control channel plane are described. The control channel plane of embodiments includes at least one data delivery network of a data network and at least one out-of-band network of a security network. Embodiments introduce an in-vehicle system into vehicles facilitating secure data communication between a centralized mobility management platform and the vehicles using a data network for data content communication and a security network for security enhancement with respect to the data network. The centralized mobility management platform and IVS may utilize the aforementioned control channel for control signaling with respect to such operations, wherein the control channel is migrated between various networks of the control channel plane to provide a reliable and resilient control channel.
US10827352B2 Multimedia content provisioning device, system and method
A multimedia content provisioning device, system and method. The device includes a network interface to communicatively couple to a communications network, to connect to one or more multimedia devices coupled to the communications network, to exchange media processing capabilities between the one or more multimedia devices after establishing a connection therebetween, to generate a list of broadcast media sources and provide the list to each of the one or more multimedia devices in which media processing capabilities are exchanged, to provide a list of broadcast media content receivable from a broadcast media source selected from the generated list at the one or more media devices, and to stream a broadcast media content to the one or more media devices at which a selection from the list of broadcast media content is made, the content being streamed according to the media processing capabilities received therefrom, and to display a multimedia content control user interface at the one or more media devices in which broadcast media content is being streamed.
US10827348B2 Data transmission method and apparatus
Embodiments of the present invention provide a data transmission method and a device. The method includes: receiving, by a mobile edge computing MEC network element, address information of a first communications device sent by the first communications device; and storing, by the MEC network element, the address information of the first communications device, where the address information of the first communications device is used to determine a destination address of an uplink data packet or a first downlink data packet of a terminal. In the embodiments of the present invention, the MEC network element receives address information of a communications device sent by the communications device, and stores the address information of the communications device.
US10827346B1 Method for providing roaming services in which the home network uses S8HR model for out-bound roaming while the visited network uses LBO model for in-bound roaming
A roaming method that enables the home network (HPMN) to use S8 Home Routed (S8HR) model for out-bound roaming while the visited network (VPMN) uses Local Breakout (LBO) model for in-bound roaming. An IMS Roaming Gateway (IR-GW) establishes an IMS bearer between the IR-GW and the home network's Packet Data Network Gateway (P-GW). The IR-GW replaces the source IP address on the SIP-Register message with the client IP address assigned to the UE by the HPMN P-GW. Upon receiving a SIP-Response message responsive to successful authentication of the UE with the HPMN, the IR-GW inserts its own IP address into the SIP-Response message and forwards it to the UE. IR-GW performs network address translation (NAT) between the source IP assigned to the UE by the VPMN and the client IP assigned to the UE by the HPMN.
US10827341B2 Method of environmental sensing through pilot signals in a spread spectrum wireless communication system
A method of environmental sensing through pilot signals in a spread spectrum wireless communication system is provided with a plurality of wireless terminals. The plurality of wireless terminals includes a plurality of multi-input multi-output (MIMO) radars and at least one base station. The plurality of terminals broadcasts a beacon pilot signals containing a terminal-specific information and encoded with a corresponding identifier. Using the corresponding identifier, an arbitrary radar from the plurality of MIMO radars separates the beacon pilot signal from an ambient signal. More specifically, the arbitrary radar compares the ambient signal to the corresponding identifier of each wireless terminal to identify at least one origin terminal. Subsequently, the arbitrary radar extracts the terminal-specific information from the beacon pilot signal of the origin terminal. The terminal-specific information is used to exchange data between the plurality of wireless terminals for autonomous driving.
US10827338B1 Scam mitigation back-off
A request is received to suspend providing scam protection to a user device that initiated an outgoing emergency voice call or an outgoing emergency communication message to a Public Safety Answering Point (PSAP). Scam protection for the user device is suspended for a predetermined time period, which allows the PSAP to make return emergency voice calls or send return emergency communication messages to the user device without the scam protection server marking the return emergency voice calls as a scam voice call or marking the emergency communication messages as a scam message during the predetermined time period.
US10827336B2 Using access control devices to send event notifications and to detect user presence
A method of using access control devices to send event notifications and to detect user presence includes receiving a notification of an event. The receiving is at an access control device in a wireless mesh network and the notification is initiated by an originating computer. The access control device is at a geographic location. The notification of the event is broadcasted at the access control device. An indication of a presence of a user at a mobile device within proximity of the access control device is received at the access control device. The receiving is in response to the broadcasting and to an action of the user at the mobile device. The indication of the presence of the user and the geographic location is transmitted to the originating computer via the wireless mesh network.
US10827335B1 Cognitive emergency management on a 5G telecom network
A self-learning 5G cognitive emergency-management system responds to a triggering condition by instructing a network to open an ad hoc channel to Internet of Things (IoT) devices associated with a mass assembly of users. The system begins tracking the movements of the assembly members by performing trilateration procedures on each user's IoT device. Using artificial intelligence or cognitive analytics, the system identifies and correlates patterns in the aggregated movements of the assembly with other tracked parameters received from the IoT devices and with contextual information retrieved from extrinsic sources. The system infers aggregated user sentiment from these correlations and determines whether the movements or sentiment suggest that an unexpected event is having an adverse impact on the assembly. If so, the system takes corrective action, such as notifying an emergency-management resource or transmitting information or instructions to the assembly members.
US10827334B2 Method and apparatus for connecting devices using Bluetooth LE technology
The present invention relates to a method and an apparatus for connecting adjacent devices using Bluetooth Low Energy (LE). In particular, a method performed in a first device comprises the steps of: receiving an advertisement message from at least one adjacent device, wherein the advertisement message includes information on a content type supported by the at least one adjacent device; transmitting, to the at least one adjacent device, a notification message for notifying a pop-up for a user of the first device on the basis of the advertisement message; and transmitting a connection request message for requesting connection to the at least one adjacent device according to an input of the user.
US10827327B2 Relay transmission method and system, and related device
Embodiments of this application disclose a relay transmission method and system, and a related device. The method includes: determining, by a relay terminal, a vehicle existing between a vehicle terminal i and a vehicle terminal j based on vehicle location information in received broadcast messages sent by N vehicle terminals; and when it is obtained through calculation that link quality of a communication link Rij used when the vehicle terminal i and the vehicle terminal j communicate with each other is lower than a preset threshold, forwarding, to the vehicle terminal j, a broadcast message sent by the vehicle terminal i, and forwarding, to the vehicle terminal i, a broadcast message sent by the vehicle terminal j. A relay forwarding function of the relay terminal avoids communication interruption or communication distance limitation caused by blocking due to dynamic and unpredictable factors such as a large vehicle within the Internet of vehicles, thereby improving reliability of message transmission within the Internet of vehicles.
US10827325B2 Method for transmitting and receiving data using heterogeneous radio access technology in communication system supporting vehicle-to-everything communication and apparatus for the same
An operation method of a terminal in a V2X communication system may include: transmitting, by the terminal, a first radio resource control (RRC) message to a base station supporting a first radio access technology (RAT), the first RRC message including information indicating that the terminal supports multiple RATs including at least a first RAT and a second RAT; receiving, by the terminal, a second RRC message from the base station, the second RRC message including information indicating that multi-RAT based operations are allowed; transmitting, by the terminal, a resource request message for requesting resource allocation for V2X communication to an access point supporting the second RAT when a channel busy ratio (CBR) measurement result is greater than or equal to a CBR threshold in a channel configured by the base station; receiving, by the terminal, from the access point a resource allocation message including resource allocation information in response to the resource request message; and transmitting, by the terminal, data to the access point using a radio resource indicated by the resource allocation message.
US10827321B2 Control information transmission method and apparatus
The present invention discloses a control information transmission method and an apparatus. In one solution of the present invention, control information that is sent by a control information sending device is associated with one of at least two transmission schemes, and the control information includes information used to indicate a transmission scheme type, so that a control information receiving device can determine the corresponding transmission scheme based on the control information.
US10827318B2 Method for providing emergency service, electronic device therefor, and computer readable recording medium
Disclosed is a 5G or pre-5G communication system for supporting a data transmission rate higher than that of a 4G communication system such as LTE, ultra-reliability and low latency, and large-scale device communication. A method for providing an emergency service according to one embodiment of the present disclosure comprises the steps of: receiving an emergency message; analyzing the received emergency message and extracting emergency-related information therefrom; acquiring emergency notification content, which corresponds to the extracted emergency-related information, among a plurality of emergency notification contents pre-stored in an electronic device; and providing the acquired emergency notification content. In addition, other embodiments are possible in the present disclosure.
US10827317B2 Method and system for bi-directional rich text, mobile broadcast messaging
In one aspect, a computerized method generating and managing a set of broadcast-application messages includes the step of providing a dashboard view that enables the creation of a broadcast-application message creation. The computerized method includes the step of receiving a user addressee instruction. The computerized method includes the step of receive a user reply instruction. The computerized method includes the step of receiving a rich-media content card with a set of broadcast-application message creation instructions. The computerized method includes the step of receiving, with the dashboard view, an aggregation of reply instructions. The computerized method includes the step of generating the broadcast application message generated using a set of tools presented by the dashboard view. The computerized method includes the step of communicating the broadcast application message to a designated addressee.
US10827309B2 Systems and methods for determining texting locations and network coverage
A method for receiving an emergency communication includes receiving a first portion of a first communication. The method also includes receiving a second portion of a second communication. The second communication may be a duplicate of the first communication. The method includes reconstructing the first communication using the first portion and the second portion.
US10827307B2 Variable ping rate for a location tracker
Disclosed are techniques for calculating a predicted location of a location tracking device. In an aspect, a wireless communications device detects a breach of a geofence made by the location tracking device, receives data representing a state of the location tracking device, the state of the location tracking device comprising at least a current location of the location tracking device and a velocity of the location tracking device, and determines, based on the data representing the state of the location tracking device, the predicted location of the location tracking device.
US10827306B2 Intelligent event information presentation method and terminal
An intelligent event information presentation method and terminal is provided for facilitating information utilization by processing various event information, intelligently generated in association with a function of the terminal. The event information presentation method of the present invention includes collecting event information; and presenting at least one of the collected event information, according to a current operation mode.
US10827304B2 Method for requesting transportation services
A method for safely and efficiently requesting transportation services through the use of mobile communications devices capable of geographic location is described. Individual and package transportation may be provided. New customers may be efficiently serviced, and the requester and transportation provider locations may be viewed in real time on the mobile devices.
US10827301B2 Techniques for adjacent channel interference mitigation
Techniques for adjacent channel interference mitigation are described. In one embodiment, for example, a user equipment (UE) may comprise logic, at least a portion of which is in hardware, the logic to associate the UE with a pico evolved node B (eNB) in a time-division duplex (TDD) picocell, identify an incongruent uplink (UL) sub-frame for the picocell, and select an enhanced UL transmit power for the incongruent UL sub-frame. Other embodiments are described and claimed.
US10827297B2 Multi-channel signal encoding method, multi-channel signal decoding method, encoder, and decoder
A multi-channel signal encoding method includes determining a downmixed signal of a first channel signal and a second channel signal in a multi-channel signal, and reverberation gain parameters corresponding to different subbands of the first channel signal and the second channel signal, determining a target reverberation gain parameter that needs to be encoded in the reverberation gain parameters corresponding to the different subbands of the first channel signal and the second channel signal, generating parameter indication information, where the parameter indication information is used to indicate a subband corresponding to the target reverberation gain parameter, and encoding the target reverberation gain parameter, the parameter indication information, and the downmixed signal to generate a bitstream.
US10827296B2 Switching rendering mode based on location data
Described herein are an apparatus, a computer program product, and a method for switching between rendering modes based on location data. The method can comprise based on location data indicative of a location of a user in an environment, causing rendering of audio content, via headphones worn by the user, to be switched from a first rendering mode, in which the audio content is rendered such that at least a component of the audio appears to originate from a first location that is fixed relative to the user, to a second rendering mode, in which the audio content is rendered such that at least the component of the audio content appears to originate from a second location that is fixed relative to the environment of the user. The method can further comprise causing rendering of additional audio content for the user via the headphones.
US10827295B2 Method and apparatus for generating 3D audio content from two-channel stereo content
For generating 3D audio content from a two-channel stereo signal, the stereo signal (x(t)) is partitioned into overlapping sample blocks and is transformed into time-frequency domain. From the stereo signal directional and ambient signal components are separated, wherein the estimated directions of the directional components are changed by a predetermined factor, wherein, if changes are within a predetermined interval, they are combined in order to form a directional centre channel object signal. For the other directions an encoding to Higher Order Ambisonics HOA is performed. Additional ambient signal channels are generated by de-correlation and rating by gain factors, followed by encoding to HOA. The directional HOA signals and the ambient HOA signals are combined, and the combined HOA signal and the centre channel object signals are transformed to time domain.
US10827293B2 Sound reproducing method, apparatus and non-transitory computer readable storage medium thereof
A sound reproducing method used in sound reproducing apparatus that includes the steps outlined below is provided. A sound signal is generated with a 3D sound generating process according to listener data and sound data. Pre-recorded sound data is retrieved to further generate a target distance function corresponding to the sound distance. A fixed head-related transfer function corresponding to a fixed distance is retrieved. A target head-related transfer function corresponding to the sound distance is generated by adapting the target distance function to the fixed head-related transfer function. The sound signal is reproduced by multiplying the sound signal by the target head-related transfer function.
US10827283B2 Flexible hearing aid circuit with motherboard and peripheral attachments
A hearing aid circuit includes a plurality of sub-circuits implemented as a plurality of flexible circuit boards. In various embodiments, the plurality of flexible circuit boards includes a motherboard that can be used with multiple hearing aid models and different peripheral boards that can provide different hearing aid models with their unique styles and/or functional features. In various embodiments, the hearing aid circuit is assembled in an automated process that connects the motherboard to one or more peripheral circuit boards using surface mount technology (SMT).
US10827282B2 Terminal assembly structure of MEMS microphone
The present disclosure provides a terminal assembly structure of a MEMS microphone, including a signal let out board disposed at a terminal and a silicon microphone disposed on the signal let out board. The silicon microphone includes a housing, a substrate forming an accommodation space with the housing, an MEMS chip and a waterproof member. The substrate is configured with a sound inlet connected to the outside. The waterproof member is sandwiched between the MEMS chip and the substrate. A position where the signal let out board corresponds to the silicon microphone is configured with an accommodation hole. The housing is accommodated in the accommodation hole. The substrate abuts a surface of the signal let out board and covers the accommodation hole. A surface of the substrate where the housing is assembled, is provided with at least one pad electrically connected with the signal let out board.
US10827281B2 Audio output device
In order to solve problems with an audio device that is difficult to machine and has an increased amount of wiring, the present invention provides an audio output device comprising: a first electrode layer including a plurality of rows of electrodes arranged in a first direction; a second electrode layer disposed on the back surface of the first electrode layer and including a plurality of rows of electrodes arranged in a second direction; a driving layer including a piezoelectric layer disposed between the first electrode layer and the second electrode layer and a support layer coupled to one of the front surface and the back surface of the piezoelectric layer; and a support plate coupled to the back surface of the driving layer and having a hollow portion formed in a region corresponding to each of intersections between the plurality of rows of electrodes in the first electrode layer and the plurality of rows of electrodes in the second electrode layer intersect.
US10827280B2 Apparatus for producing sound and vibration
The invention relates to a device for producing sound and vibration (10) for a user to hear and feel via surface contact, which comprises a damper mass plate (15) and an inertial actuator (16) attached thereto, which inertial actuator (16) comprises a damper mass (14), which is via a primary suspension (11) supported in a springing manner on the inertial actuator (16) to be moving substantially in one linear direction, which inertial actuator comprises a power source for the damper mass (14). The device (10) comprises a secondary suspension (12) and a mechanical limiter (13) for improving the performance of the inertial actuator and/or protecting it from external disturbances.
US10827279B2 Multi-function speaker
A multi-function speaker includes a frame having a receiving space, a magnetic circuit system, a vibration system, and an elastic member configured to suspend the magnetic circuit system in the receiving space. The frame includes two first side portions oppositely arranged, and two oppositely disposed second side portions connecting the two first side portions. The magnetic circuit system includes a lower plate, and a magnet assembly disposed on the lower plate.
US10827273B2 Dual loudspeaker enabled cooling
Electronics devices according to embodiments of the present technology may include a first loudspeaker and a second loudspeaker disposed in a housing. The housing may define a first internal volume between a first end of the housing and a backside of the first loudspeaker. The housing may define a second internal volume between a second end of the housing and a backside of the second loudspeaker. The first loudspeaker and the second loudspeaker may be positioned within the housing so a front side of the first loudspeaker faces a front side of the second loudspeaker. A duct may be defined by the housing, which may access the first internal volume at a first end and may access the second internal volume at a second end. The electronic device may also include a processor configured to deliver signals to the first loudspeaker and the second loudspeaker.
US10827269B1 System, method, and device for audio reproduction
System, device, and method for audio reproduction are provided. The system includes a media computing device and an electronic device connected such that their speakers can be used in combination in optimizing the audio reproduction of media being played or streamed. Each device can be portable and the audio reproduction can include virtual/spatial/surround audio reproduction. When connecting, the media computing device serves as a host and the electronic device serves as a slave for data communication. As such, the media computing device can process an audio signal into any portion for reproduction on any speaker. Further, when connecting and if needed, the electronic device serves as a host and the media computing device serves as a slave for power management. Depending on the system configuration, a suitable connection can be made via a wireless or single cable wired connection between the media computing device and the electronic device.
US10827265B2 Psychoacoustics for improved audio reproduction, power reduction, and speaker protection
A method for processing audio data for output to a transducer may include receiving an audio signal, filtering the audio signal with a fixed filter having fixed filter coefficients to generate a filtered audio signal, and outputting the filtered audio signal to the transducer. The fixed filter coefficients of the fixed filter may be tuned by using a psychoacoustic model of the transducer to determine audibility masking thresholds for a plurality of frequency sub-bands, allocating compensation coefficients to the plurality of frequency sub-bands, and fitting the fixed filter coefficients with the compensation coefficients allocated to the plurality of sub-bands.
US10827263B2 Adaptive beamforming
A system and method for adaptive beamforming, which is configured to process at least two input signals and to provide an output signal, wherein a first input signal of the at least two input signals includes a desired signal as a main component and a second input signal of the at least two input signals, include an undesired signal as main component, includes adaptive error processing the second input signal and at least one of the first input signal and the output signal to provide an estimated undesired signal representative of an estimate of undesired signal components included in the first input signal, and taking the difference between the estimated undesired signal and the first input signal to provide the output signal.
US10827259B2 Microphone assembly having a reconfigurable geometry
The disclosure relates to a microphone assembly (100) for acquiring a plurality of audio signals, wherein the microphone assembly (100) has a reconfigurable geometry so that the microphone assembly (100) may be configured to be embedded in or attached to a body. The microphone assembly (100) comprises: a plurality of digital microphones (101a-h) configured to convert the sound signal impinging on each digital microphone into a corresponding digital electrical signal, a digital signal processing unit (102) comprising a serial digital communication interface (102a) and a processor (102b), and a connecting and mounting structure configured to provide a flexible electrical connection and a flexible mechanical arrangement for the plurality of digital microphones (101a-h).
US10827255B2 Receiver module
The present invention provides a receiver module, including: a receiver having a frame with a body part, a vibration system and a front cover overlaid on the frame. The front cover includes a sound outlet, an extension part extending from the body part, and a through hole penetrating the extension part. The receiver module further includes a denoising part, a sound absorbing hole penetrating the denoising part away from the vibration system, and a microphone set on a surface of the denoising part away from one side of the vibration system. Sound waves of the front chamber is exported to a back of sound absorbing hole away from the denoising part and noise is absorbed and eliminated by the microphone.
US10827252B2 Earbud stability anchor feature
An earbud design is disclosed that is configured to sit securely within an ear of a user. The earbud can be secured within the ear by an anchoring feature formed from an elastomeric material. The anchoring feature has a size and shape in accordance with an interior geometry of an ear of a user. Because the anchoring feature positions the earbud with respect to the ear, geometries of the earbud can be focused upon audio performance and/or device aesthetics. In some embodiments, the earbud housing can have a linear design which allows an audio driver within the earbud housing to be positioned close to an opening defined by the earbud housing. In this way, acoustic degradation associated with a long audio path from the audio driver to the opening can be avoided.
US10827251B2 System with wireless earphones
Apparatus comprises adapter and speaker system. Adapter is configured to plug into port of personal digital audio player. Speaker system is in communication with adapter, and comprises multiple acoustic transducers, programmable processor circuit, and wireless communication circuit. In first operational mode, processor circuit receives, via adapter, and processes digital audio content from personal digital audio player into which adapter is plugged, and the multiple acoustic transducers output the received audio content from the personal digital audio player. In second operational mode, wireless communication circuit receives digital audio content from a remote digital audio source over a wireless network, processor circuit processes the digital audio content received from remote digital audio source, and the multiple acoustic transducers output the audio content received from the remote digital audio source.
US10827250B2 Audio headset having arm-to-yoke coupling features and related technology
A headset in accordance with an embodiment of the present technology includes a headpiece, an earpiece, a yoke rotatably connected to the earpiece, and an arm extending between the yoke and the headpiece. The yoke at least partially defines a channel including a constriction at which a transverse cross-sectional area of the channel is non-circular. The arm includes a foot at least partially disposed within the channel. The foot is shaped to move through the constriction or be blocked from moving through the constriction depending on a rotational position of the arm relative to the yoke. The headset further includes a plug at least partially disposed within the channel. The plug restricts rotation of the arm relative to the yoke and thereby prevents movement of the foot out of the channel and corresponding separation of the arm from the yoke.
US10827249B1 Wireless earbud
A wireless earbud including an outer housing, an internal assembly, and an inner housing. The outer housing and the inner housing may couple together to form a water tight enclosure for the internal assembly. The internal assembly may include components that carry out a function of the wireless earbud, such as printed circuit boards, network interfaces, batteries, loudspeakers, and so forth. The outer housing may also include a proximity sensor for receiving touch and/or antenna(s) for communicatively coupling the wireless earbud to other electronic devices. Additionally, the inner housing may include a charging module for the wireless earbud.
US10827229B2 Transmission and distribution of digital television signals
A system for the end-to-end delivery of digital television signals. In a preferred embodiment a digital television signal is: received from production equipment, typically in HD format at approximately 1.4 gigabits per second (Gbps); the received signal is transmitted to a venue point-of-presence; converted for transmission via a 270 Mbps local loop; transmitted to a fiber network point of presence/video service edge; packetized into TCP/IP packets in a video gateway; and routed to one or more destination addresses via the fiber network; received at one or more video service edge destinations; converted to a digital television format, typically SDI; and either transmitted via a second 270 Mbps local loop for delivery to a customer site and subsequent conversion to a 1.4 Gbps HD signal, or converted directly to a 1.4 Gbs HD signal at the receiving video service edge.
US10827228B2 Methods and systems for recommending providers of media content to users viewing over-the-top content based on quality of service
Methods and systems are described for recommending providers of media content to users viewing over-the-top content based on quality of service.
US10827219B2 Geolocationing system and method for use of same
A geolocationing system and method for providing awareness in a multi-space environment, such as a hospitality environment or educational environment, are presented. In one embodiment of the geolocationing system, a vertical and horizontal array of gateway devices is provided. Each gateway device includes a gateway device identification providing an accurately-known fixed location within the multi-space environment. Each gateway device includes a wireless transceiver that receives a beacon signal from a proximate wireless-enabled personal locator device. The gateway devices, in turn, send gateway signals to a server, which determines estimated location of the wireless-enabled personal locator device with transmitted signal strength modeling.
US10827215B2 Systems and methods for producing processed media content
A method includes receiving, at a network computing device, a recording request to generate processed media content from media content. The recording request includes settings. The settings indicate to replace a particular image in the media content with a substitute image. The method includes, after receiving the media content at the network computing device via a network, generating the processed media content. Generating the processed media content includes identifying the particular image in a frame of the media content and replacing the particular image with the substitute image. The method also includes sending the processed media content via the network to a memory device.
US10827209B2 Methods and apparatus for watermark outage detection
Methods, apparatus, systems and articles of manufacture are disclosed for watermark outage detection. Example methods include evaluating an onset time and duration of a detected watermark outage based on a model of expected watermark outages to determine whether the detected watermark outage corresponds to at least one of the expected watermark outages represented in the model. Example methods further include generating an alert in response to determining the detected watermark outage does not correspond to at least one of the expected watermark outages included in the model, and suppressing the alert in response to determining the detected watermark outage corresponds to the at least one of the expected watermark outages represented in the model.
US10827208B2 Transmitting method, receiving method, transmitting device and receiving device
A transmitting method according to one aspect of the present disclosure includes: encoding a video signal and generating encoded data including a plurality of access units; storing the plurality of access units in a packet in a unit that defines one access unit as one unit or in a unit defined by dividing one access unit, and generating a packet group; transmitting the generated packet group as data; generating first information and second information, the first information indicating a presentation time of a first access unit that is presented first among the plurality of access units, and the second information being used to calculate a decoding time of the plurality of access units; and transmitting the first information and the second information as control information.
US10827205B2 Video data storage system, operation method thereof, and retrieval server
The present disclosure provides a video data storage system, an operation method thereof, and a retrieval server. The video data storage system according to present disclosure includes an index server and at least two storage servers for storing video data. The index server stores a first mapping relationship between a camera identification code and a storage server identification code. Each of the storage server stores a second mapping relationship among a camera identification code, a time range of video data and a physical location of video data in the storage server. The operation method includes: making, by the index server, statistics of an operation hot value of video data operated by all clients, and determining the operation hot value of the video data is greater than a predetermined first threshold; if yes, sending, by the index server, a backup instruction to at least one storage server, to instruct the storage server to back up the video data and update the second mapping relationship. The present disclosure can protect the hottest data using a minimum amount of capacity and bandwidth.
US10827200B2 Mixed domain collaborative in-loop filter for lossy video coding
A video coding apparatus for encoding or decoding a frame of a video, the video coding apparatus comprising a frame reconstruction unit configured to reconstruct the frame, a parameter determination unit configured to determine one or more filter parameters, based on one or more first parameters which are based on the reconstructed frame and one or more second parameters which are based on codec signaling information, and a mixed-domain filtering unit configured to filter in a frequency domain and a pixel domain the reconstructed frame based on the determined filter parameters to obtain a filtered frame.
US10827197B2 Method and apparatus for encoding multilayer video and method and apparatus for decoding multilayer video
Provided is a multilayer video decoding method including obtaining a multilayer video bitstream; determining, based on the obtained multilayer video bitstream, whether or not a default reference type, in which at least one layer is inter-layer predicted by using at least one reference layer by default, is used; and inter-layer predicting the at least one layer by using the at least one reference layer according to the default reference type, based on the determining of whether or not the default reference type is used, and decoding an image including the at least one layer.
US10827196B2 Compound prediction for video coding
Generating a compound predictor block of a current block includes generating, for the current block, predictor blocks including a first predictor block formed of first predictor pixels. Using at least a subset of the first predictor pixels, a first modulation value for modulating a first weight to be applied to a first predictor pixel of the first predictor pixels is determined. The compound predictor block is generated using the first predictor pixel, the first weight, and the first modulation value.
US10827195B2 Method and apparatus for unifying adjacent merge candidates and non-adjacent merge candidates
An apparatus for video decoding includes receiving circuitry and processing circuitry. The processing circuitry decodes prediction information for a current block in a current picture from a coded video bitstream, the prediction information being indicative of a prediction mode that is based on an expanded motion vector candidate list. The processing circuitry expands the current block to generate an expanded block by iteratively (i) increasing a width of the current block by a first grid size and (ii) increasing a height of the current block by a second grid size until a number of iterations is equal to a value indicative of a maximum search round. The processing circuitry searches and locates, in the expanded block, a plurality of blocks and constructs, in response to the prediction mode, the expanded motion vector candidate list.
US10827190B1 Image compression selection based on interpretability loss estimation
A framework for estimating image interpretability degradation associated with image compression is provided. An image compression broker system can determine an image compression setting to achieve an interpretability task in accordance with available communication bandwidth or transmission time objectives. Estimating image interpretability degradation includes detecting edge points of an uncompressed image and determining gradients corresponding to the detected edge points; compressing in accordance with a compression parameter setting the uncompressed image to generate a compressed image and determining gradients corresponding to the edge points in the compressed image; determining from the gradients associated with the edge points gradient ratios; and estimating from the gradient ratios an image interpretability loss of the compressed image.
US10827182B2 Video encoding processing method, computer device and storage medium
A video coding processing method performed by a computing device includes: obtaining a percentage of intra-prediction blocks in an inter-predicted frame in a previous group of video frame sequences; determining, according to the percentage, whether a current video scene changes, and determining a target bit rate of an intra-coded frame in a current group of video frame sequences according to the percentage when determining that the current video scene changes; and coding the intra-coded frame according to the target bit rate.
US10827177B2 Method and device for encoding/decoding images
A method and a device for encoding/decoding images are disclosed. The method for encoding images comprises the steps of: deriving a scan type of a residual signal for a current block according to whether or not the current block is a transform skip block; and applying the scan type to the residual signal for the current block, wherein the transform skip block is a block to which transform for the current block is not applied and is specified on the basis of information indicating whether or not transform for the current block is to be applied.
US10827174B2 Method and apparatus for encoding video, and decoding method and apparatus
The present invention relates to a video encoding method and apparatus for setting and encoding quantization parameters, and to a video decoding method and apparatus for decoding and setting quantization parameters in a video encoding and decoding apparatus which uses blocks having various sizes and depths as encoding and decoding units.
US10827170B2 Method and device for coding POC, method and device for decoding POC, and electronic equipment
Provided are a method and a device for decoding a Picture Order Count (POC), and a method and a device for coding a POC, and electronic equipment. The method for decoding the POC includes that: parameters for Most Significant Bit (MSB) and Least Significant Bit (LSB) used in an alignment operation on the POC are acquired; an MSB value and an LSB value of a POC value of a current picture are determined according to the parameters for MSB and LSB; and the POC value of the current picture is calculated according to the MSB value and the LSB value. By means of the technical solution, the problems in the related art that the accuracy in decoding and outputting a multilayer video bitstream cannot be ensured and an extra overhead of network resources is increased in multilayer video coding and decoding processes are solved.
US10827168B2 Echolocate spectrum analyzer
This disclosure describes techniques for capturing radio frequency (RF) signal over the air, processing spectrum power data, and uploading data to a central data repository for analysis and reporting. Captured RF signals are filtered and amplified via a front-end module of a probe that includes a filter and a low noise amplifier (LNA). Output signals can be decoded into digital TV metadata and image captures via a TV tuner and spectrum power, and then analyzed via a software defined radio (SDR). Digital TV metadata and images, as well as SDR data, can be uploaded and collected at a server. The server processes collected spectrum data from SDR into spectrum reports. The server can also analyze collected digital TV metadata to identify with increased accuracy RF sources originating from transmitting TV facilities.
US10827165B2 Enhanced imaging for thin form factor head mounted displays and near light field displays
Systems, devices, and techniques related to thin form factor head mounted displays and near light field displays are discussed. Such devices may include a display to present elemental images, a primary lens array in an optical path between the display and a viewing zone of a user, the primary lens array to magnify elemental images to a viewing zone, and a secondary array of optical elements between the display and the primary lens array to concentrate elemental images from the display to the primary lens array.
US10827160B2 Method for transmitting data relating to three-dimensional image
Provided is a method for displaying a 3-dimensional (3D) image by a device. The method comprises the steps of: transmitting information on a viewport of the device to a server; receiving data about at least one second region corresponding to the viewport among a plurality of regions of a packed 2D image from the server; and displaying the 3D image based on the received data, wherein the packed 2D image is generated by modifying or rearranging at least a part of a plurality of regions of a 2D image projected from the 3D image, and wherein the at least one second region is identified based on an index of each of at least one first region corresponding to the viewport among the plurality of regions of the 3D image and information on a relationship between an index of each of the plurality of regions of the 3D image and an index of each of the plurality of regions of the packed 2D image.
US10827151B2 Rear obstruction detection
A method is provided using a system mounted in a vehicle. The system includes a rear-viewing camera and a processor attached to the rear-viewing camera. When the driver shifts the vehicle into reverse gear, and while the vehicle is still stationary, image frames from the immediate vicinity behind the vehicle are captured. The immediate vicinity behind the vehicle is in a field of view of the rear-viewing camera. The image frames are processed and thereby the object is detected which if present in the immediate vicinity behind the vehicle would obstruct the motion of the vehicle. The processing is preferably performed in parallel for a plurality of classes of obstructing objects using a single image frame of the image frames.
US10827149B2 Methods and systems for utilizing multi-pane video communications in connection with check depositing
Systems and methods are disclosed for establishing a video connection between a client device and a support terminal while enabling the support terminal to concurrently push display element triggers to the client device through a separate connection. In particular, a display element trigger can cause the client device to display, within a dual pane display of the client device, a display element within one pane and a video chat in another pane. The display element can include a check deposit element that enables a user of the client device to capture one or more images of a check and then transmit the image(s) for deposit by the support terminal during a video chat. The support terminal can analyze the image(s) of the check to identify check deposit data and then deposit the check accordingly while a support representative communicates with the user of the client device via the video chat.
US10827146B2 Systems for facilitating interactions between consumers and individuals having marketable public recognition
Systems and methods are disclosed for processing transactions and associated dated. In one exemplary implementation, there is provided a method for processing information associated with transactions involving a product, wherein the product may comprise an experience, a physical product, and/or a digital product. Moreover, illustrative methods may include performing processing associated with a plurality of subroutines, such as a first subroutine for handling an experience, a second subroutine for handling a physical and/or a digital product, and/or one more additional subroutines associated with fulfillment.
US10827143B2 CMOS image sensor clamping method with divided bit lines
An image sensor includes a pixel array including a plurality of pixels. A bit line is coupled to a column of pixels of the pixel array. The bit line is separated in to a plurality of portions coupled to the column of pixels. The portions of the bit line are electrically isolated from one another. A readout circuit is coupled to a first portion of the bit line coupled to a first portion of rows of pixels from the column of pixels to read image data from the first portion of rows of pixels from the column of pixels. The readout circuit is further coupled to a second portion of the bit line coupled to a second portion of rows of pixels from the column of pixels to read image data from the second portion of rows of pixels from the column of pixels.
US10827137B2 Alignment method and system for manufacturing mask integration framework
An alignment method for manufacturing a mask integration framework is disclosed. The alignment method includes establishing an absolute coordinate system by taking a center of a metal framework as an origin of coordinates, the center of the metal framework coinciding with a center of an array substrate serving as a reference, controlling the array substrate to move, such that an offset of coordinates of a pixel point under the absolute coordinate system with respect to a predetermined theoretical value is smaller than or equal to a predetermined error value, and transmitting the coordinates of the pixel point under the absolute coordinate system, after the array substrate moves, to a tension device. An alignment system for manufacturing mask integration framework is also disclosed.
US10827136B2 Thermal imaging camera and thermal imaging camera systems
A thermal imaging camera includes a fastening device, which is configured to be mechanically coupled with a fastening element of protective clothing of a user, to detachably fasten the thermal imaging camera to the protective clothing. The thermal imaging camera further includes a first interface as well as a second interface, which are each configured to output data of a thermal image. The thermal imaging camera further includes a control circuit, which is configured to detect a mechanical coupling of the second interface with a third interface of a display device and to output the data of the thermal image exclusively via the second interface as a result of the detection of the mechanical coupling. The control circuit is further configured to output the data of the thermal image via the first interface when the second interface is not coupled mechanically with the third interface.
US10827134B2 Decoder, encoder, and associated methodology for subtitle transmission and reception
A subtitle encoding device for transmitting a bitmap subtitle for insertion in an image using a progressive type scan including a controller configured to: indicate, in an interlace subtitle system, that a top field block length is zero; and provide the bitmap subtitle in a bottom field of the interlace subtitle system.
US10827129B2 Image processing apparatus and imaging apparatus
The present disclosure minimizes the degradation of image quality when an active image and a passive image are combined. The present disclosure provides an image processing apparatus that includes a correlation amount calculation section and a combination section. The correlation amount calculation section calculates the amount of correlation between the luminance of an active image captured by irradiating light and the luminance of a passive image captured without irradiating light. The combination section combines the luminance of the active image with the luminance of the passive image in accordance with the calculated amount of correlation. The above configuration minimizes the degradation of image quality when the active image and the passive image are combined.
US10827128B2 Camera module and electronic device using same
A camera module of minimal size but with zoom function includes a zoom assembly, a base, and a fixed focus assembly. The zoom assembly and the fixed focus assembly are fixed in the base. The zoom assembly is driven by piezoelectric element instead of voice coil motor and includes an actuator and an optical unit. The actuator defines a first receiving groove holding the optical unit in place over the first through hole. When powered, the piezoelectric element changes a shape of the optical unit to change a focal length of the zoom assembly. An electronic device including such a camera module is also provided.
US10827127B2 Zoom control device, imaging apparatus, control method of zoom control device, and recording medium
A subject detection unit of an imaging apparatus detects a subject image from an image. An automatic zoom control unit determines whether the subject detection unit detects the subject image in a specific region and performs first control such that a zoom magnification is controlled on a telephoto side based on a determination result when the subject image is not detected in the specific region. The automatic zoom control unit changes the first control to second control when the subject detection unit detects the subject image in the specific region, and controls the zoom magnification based on a reference size and a sequentially detected size of the subject image.
US10827119B2 Image capture apparatus and control method
An image capture apparatus includes a charge control unit that stops charging a battery with power supplied from a power supply apparatus, a voltage detecting unit that detects a voltage of the battery in a state where the charging of the battery is stopped, and a determining unit that determines whether the image capture apparatus is operable based on the detected voltage of the battery.
US10827116B1 Self calibration system for moving cameras
The present invention describes a system for calibrating a plurality of cameras in an area. The system functions by using moving objects to calibrate, in particular using people.In addition, the system implements automatic re-calibration in a specific way to reduce human intervention, cost and time.
US10827115B2 Mobile terminal and method of performing multi-focusing and photographing image including plurality of objects using the same
The present invention provides a mobile terminal and a method of capturing an image using the same. The mobile terminal controls a camera conveniently and efficiently to capture an image and performs focusing in various manners to capture an image. Accordingly, a user can obtain a desired image easily and conveniently.
US10827112B2 Image pickup device and electronic apparatus with an image plane phase detection difference detection pixel
The present disclosure relates to an image pickup device that enables inhibition of occurrence of color mixture or noise, and an electronic apparatus. The image pickup device of the present disclosure includes an image plane phase difference detection pixel for obtaining a phase difference signal for image plane phase difference AF. The image plane phase difference detection pixel includes: a first photoelectric conversion section that generates an electric charge in response to incident light; an upper electrode section that is one of electrodes disposed facing each other across the first photoelectric conversion section, the upper electrode section being formed on an incident side of the incident light on the first photoelectric conversion section; and a lower electrode section that is another of the electrodes disposed facing each other across the first photoelectric conversion section, the lower electrode section being formed on an opposite side of the incident side of the incident light on the first photoelectric conversion section, the lower electrode section being multiple-divided at a position that avoids a center of the incident light. The present disclosure is applicable to image sensors.
US10827102B2 Image processing apparatus
An image processing apparatus, which includes a first physical computing circuit, configured to receive a plurality of first analog signals output by an image sensor, and perform a convolution operation on the plurality of first analog signals to obtain a second analog signal. The plurality of first analog signals are in a one-to-one correspondence with a plurality of pieces of pixel data of a to-be-recognized image. The first physical computing circuit comprises at least one multiplication circuit array and at least one subtraction circuit, the at least one multiplication circuit array is in a one-to-one correspondence with the at least one subtraction circuit, a multiplication circuit in each multiplication circuit array comprises a differential pair transistor, each multiplication circuit array implements the convolution operation on the plurality of first analog signals using a plurality of multiplication circuits and a corresponding subtraction circuit.
US10827099B2 Image processing apparatus for determining a threshold for extracting an edge pixel based on a region corresponding to a surface facing an imaging device
An image processing apparatus includes a processor for acquiring an input image, calculating a fluctuation range of a gradation value of a pixel within a region corresponding to a document backing in the input image, determining a threshold, based on the fluctuation range, extracting an edge pixel corresponding to a boundary between a document and the document backing from the input image using the threshold, detecting a document region from the edge pixel, and an output device for outputting an image obtained by cutting a region corresponding to the document region from the input image.
US10827093B1 Systems and methods for intelligent copying of bound documents
The disclosure discloses methods and systems for intelligent copying of bound documents. The method includes receiving a selection of copying a bound document via a user interface. The user interface is presented to the user to input whether a starting page of the bound document for copying is a left-side page or a right-side page. Then, multiple pages of the bound document are scanned to generate corresponding scanned images. Finally, the generated scanned images are arranged in the same order as per the arrangement of pages in the original bound document.
US10827092B1 System that facilitates making mobile payments to multi-function printer using proximity network and payment server
A multi-function printer is coupled to a mobile device via a proximity network interface. The multi-function printer determines a workflow specified by a user of the mobile device. An ephemeral token associated with the workflow is sent to the mobile user device. The mobile device uses the ephemeral token to create a payment packet that is sent to a payment server which sends a receipt in response thereto. The multi-function printer receives the receipt from the mobile device and in response to receiving the receipt, obtains a list of payments from the payment server. The multi-function printer performs the workflow based on validating the receipt against the list of payments.
US10827088B2 Image forming apparatus which registers image to be used for controlling job and method for controlling image forming apparatus
An image forming apparatus that determines whether an image having coincidence with a registered image is included in an input image and controls execution of a job that uses the input image based on a result of the determination. The image forming apparatus includes an input unit that inputs a first image as a candidate of the registered image, an evaluation unit that evaluates whether the first image is suitable for use in the determination, and a control unit registers the first image as the registered image if the evaluation unit evaluates that the first image is suitable for use in the determination, and prevents the first image from being registered as the registered image if the evaluation unit evaluates that the first image is unsuitable for use in the determination.
US10827085B1 Machine learning device, screen prediction device, and controller
A machine learning device includes: a state observation unit that acquires a state vector sequence as a group of state vectors corresponding to a transition of operation screens responsive to a series of operations or change in a machine state; a training data acquisition unit that acquires training data containing input data and label data; and a learning unit that performs supervised machine learning using the training data to generate a learned model for predicting screen type data to be used next or on an occasion after the next by a user.
US10827081B2 Information processing system, server apparatus, and non-transitory computer readable recording medium that records an information processing program
Server receives a log from a client apparatus, the client apparatus generating the log after the client apparatus executes a function, the log including a function identifier identifying the function, execution start date-and-time and execution end date-and-time of the function, and a setting value of each of one or more setting items about the function, determines whether or not performance of the function identified by the function identifier included in the received log is lower than a certain criterion on a basis of the execution start date-and-time and the execution end date-and-time included in the received log, and if the server apparatus determines that the performance of the function is low, sends a setting value stored in the storage device to the client apparatus, the setting value being a setting value, with which the performance was high, of each of the one or more setting items about the function-low-in-performance.
US10827076B1 Echo path change monitoring in an acoustic echo canceler
An acoustic echo path change detector provides a monitoring process in an acoustic echo canceler that removes echo from a microphone signal using an adaptive echo path model that generates an echo estimate from a playback signal. The acoustic echo canceler removes the echo estimate from the microphone signal to provide an echo-canceled output signal. The path change detector receives the microphone signal, the echo estimate and the output signal and determines a rate of change of one or more statistical values dependent on the microphone signal, the echo estimate and the output signal. If the rate of change exceeds a threshold value, the echo path change detector generates an indication that causes a supervisory process to change adaptation of the adaptive echo path model to increase responsiveness to the change in the acoustic echo path, e.g., by increasing the step size.
US10827074B2 Enforcement of contact center communication session routing behaviors
Routing one or more routing characteristics of a communication session/or agent session are identified in real-time. For example, a routing characteristic is captured for a communication session (e.g., a voice call) as it goes into a contact center queue and then to an agent communication endpoint. The routing characteristics of the communication session/agent sessions is compared to one or more predefined routing characteristics that identify a wanted and/or unwanted communication session routing behavior/agent session in the contact center network. In response to identifying the wanted and/or unwanted communication session routing behavior in the contact center network, routing of the communication session and/or agent session in the contact center network are automatically changed.
US10827072B1 Immediate call reconnection to the same agent in a contact center
The technology disclosed herein enables a call to be immediately reconnected to the same agent of a contact center after the agent has been disconnected while the caller remains connected to the contact center. A method provides determining that a first agent system, operated by a first agent of the contact center, has been disconnected from a communication session between the first agent system and a first caller system, operated by a first caller, due to a non-recoverable error. The first caller system remains connected to the contact center. The method further provides generating identification information that identifies the communication session and generating a link to join the communication session that includes the identification information. The method also provides transferring the link to a second agent system operated by the first agent. The second agent system is connected to the communication session when the second agent system follows the link.
US10827068B1 Method and apparatus of processing caller responses
Disclosed is a method, apparatus, system and non-transitory computer program product configured to process user call responses and assign caller specific preferences to the user based on the caller's feedback. One example method of processing spoken words from a user of a calling platform may include operations, such as calling a user via a call processing device, and sending a call prompt message to the user after the user has answered the call, the call prompt message soliciting a user response. The user may respond and the response is received as a spoken call greeting from the user in response to the call prompt message. Other operations may include recording the spoken call greeting, and determining whether the spoken call greeting is indicative of a language preference. The system may process the user's word or utterances and assign language preferences to the user based on the user provided information.
US10827063B2 Automated call requests with status updates
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, relating to synthetic call status updates. In some implementations, a method includes determining, by a task manager module, that a triggering event has occurred to provide a current status of a user call request. The method may then determine, by the task manager module, the current status of the user call request. A representation of the current status of the user call request is generated. Then, the generated representation of the current status of the user call request is provided to the user.
US10827059B2 Detect presence of two people in a vehicle
A system for detecting when two people are in a vehicle. The system detects the presence of two warm bodies with one or two infrared cameras.
US10827058B2 Control method, control device, electronic device and storage medium
The present disclosure provides a control method of an electronic device. The electronic device includes a touch display screen and a proximity sensor. The proximity sensor is disposed under a display area of the touch display screen. The control method includes: keeping the proximity sensor deactivated; determining whether the touch display screen is shielded according to a signal output by the touch display screen; controlling the touch display screen to enter a black-out state and activating the proximity sensor when the touch display screen is shielded; and controlling a display state of the touch display screen according to detection data of the proximity sensor. The present disclosure also provides a control device, an electronic device, a storage medium and a computer device.
US10827057B1 Haptic device
The present haptic device is adapted for sending at least one message. The haptic device comprises a housing, a communication module located inside the housing, a touchpad and a processor. The touchpad is affixed to the housing. The touchpad captures a movement of a user and generates a signal corresponding to the captured movement. The processor is also located inside the housing. The processor receives the signal and instructs the communication module to transmit one of a plurality of stored messages corresponding to the captured movement. The transmitted message includes at least one predetermined recipient address and a message for the recipient.
US10827056B2 Silent dialing for emergency calls
Techniques for automatically initiating the transmission of a silent emergency message via a mobile computing device are provided. A mobile device may receive a plurality of indications of a plurality of external buttons of the mobile computing device being pressed over a time interval. Based on the plurality of indications, the mobile computing device may determine that two or more external buttons have been pressed in a fixed sequence over the time interval. In response to determining that the two or more external buttons of the mobile computing device have been pressed in the fixed sequence, the mobile computing device may silently transmit a message to a computing device associated with an emergency contact, without activating a display screen of the device or making sounds.
US10827054B2 Mobile terminal
The present invention provides a mobile terminal comprising: a terminal body including an opening region through which a sound is outputted; and a waterproof speaker module arranged adjacently to the opening region and outputting the sound, wherein the waterproof speaker module includes a speaker module forming the sound, a housing accommodating the speaker module and including a sound hole through which the sound is outputted, and a cover part connected to the housing so as to form a separation space in which the sound is outputted by the sound hole, and moved by a water pressure at least that of a certain reference pressure so as to cover the sound hole, thereby preventing the inflow of water into the speaker module.
US10827050B2 Electronic device and actuating mechanism thereof
The present disclosure discloses an actuating mechanism disposed in an electronic device, which includes an opening. The actuating mechanism comprises a moving member, a first lever, a second lever, a first shape memory alloy member and a second shape memory alloy member. The moving member corresponds to the opening and has a first limiting slot and a second limiting slot. The first lever has a first minor axis and a first major axis, and one end of the first major axis connects to the first limiting slot. The second lever has a second minor axis and a second major axis, and one end of the second major axis connects to the second limiting slot. One end of the first shape memory alloy member connects to the first minor axis. One end of the second shape memory alloy member connects to the second minor axis.
US10827049B2 Mobile terminal
A bar-type mobile terminal can include a wireless communication unit including one or more components which permit wireless communications between the bar type mobile terminal and a wireless communication system; a plurality of antennas configured to transmit or receive radio signals; a metallic frame having a front side and a rear side, the metallic frame including a base portion, an edge portion forming an appearance of the bar-type mobile terminal, an upper through hole disposed in an upper portion of the metallic frame, and a lower through hole disposed in a lower portion of the metallic frame; an upper non-metallic coupling disposed in the upper through hole of the metallic frame; a lower non-metallic coupling disposed in the lower through hole of the metallic frame; a window disposed on the front side of the metallic frame; a display module disposed between the window and the front side of the metallic frame; a first waterproof layer disposed between the window and a front side of the edge portion of the metallic frame; a cover disposed on the rear side of the metallic frame; a first printed circuit board (PCB) disposed between the cover and the rear side of the metallic frame, in which the wireless communication unit is mounted on the first PCB; and a second waterproof layer disposed between the cover and a rear side of the edge portion of the metallic frame.
US10827047B2 Housing, method for manufacturing housing, and mobile terminal having housing
A housing for a mobile terminal, a method for manufacturing the housing, and a mobile terminal having the housing are provided. The housing includes a substrate, at least one slot penetrating through the substrate in a thickness direction of the substrate, and a filling layer received in the at least one slot. The filling layer includes an insulating sub-layer and a printed sub-layer located on the insulating sub-layer.
US10827046B1 Assembly for folding and unfolding screen, and terminal
An assembly for folding and unfolding a screen and disposed in a terminal, includes: a folding and unfolding device, a first display screen, and a first antenna group. The first display screen is a flexible screen; the folding and unfolding device is configured to fold or unfold the first display screen by a change in structural form; and the first antenna group is disposed in the folding and unfolding device.
US10827040B2 System and method for enabling lossless interpacket gaps for lossy protocols
A communication device, method, and data transmission system are provided. An illustrative method is disclosed to include at least one data port and lossless IPG circuitry that operates on the transmit-side and/or receive-side of the data transmission system. The lossless IPG circuitry may include a lossless IPG insertion circuit and/or a lossless IPG removal circuit that work in cooperation with each other to ensure that data streams do not violate any predefined communication protocols or requirements thereof.
US10827039B1 Systems and methods for dynamic compression of time-series data
In an embodiment, a method includes receiving, from a data source, time-series data of a time-series data stream produced by the data source. The method further includes identifying a target compression algorithm for the time-series data, wherein the target compression algorithm is linked to the data source in memory pursuant to a dynamically-variable assignment. The method also includes compressing the time-series data using the target compression algorithm and transmitting the compressed time-series data to a destination. Furthermore the method includes periodically optimizing the dynamically-variable assignment in real-time as the time-series data is received.
US10827038B2 Application footprint recorder and synchronizer
Systems and methods for receiving, at a server computer, an indication that a user is exiting an application on a client device displaying a first document, causing a footprint of the first document to be stored, receiving, at the server computer, a request for a second document from the client device operated by the user, determining that the user is enrolled in a footprint services, retrieving a footprint associated with the user including information related to a document previously accessed by the user, causing information related to the footprint to be displayed to the user on the client device, receiving, from the client device operated by the user, a response to the information related to the footprint displayed to the user on the client device, determining, from the response, a request to display the document associated with the footprint, and causing the document associated with the footprint to be displayed to the user instead of the second document requested by the user.
US10827035B2 Data uniqued by canonical URL for rest application
Pieces of an entity's data set can be related with each other using a canonical Uniform Resource Locator (URL). If a server returns pieces of an entity's data record to a client within multiple separate REST-based responses, the client can discern from the canonical URL that those pieces relate to the same entity. In response to each REST-based request from a client, a server returns, with the client-requested data, a canonical URL that uniquely identifies that data's entity. A client can receive the canonical URL with the data that the server returns. If the canonical URLs returned along with data items in separate requests match, then the client determines that those data items pertain to the same entity. If the client determines that separately received data items pertain to the same entity, then the client can merge those data items together into a unified record that the client stores locally.
US10827033B1 Mobile edge computing device eligibility determination
Disclosed embodiments provide techniques for determining mobile device edge computing participation eligibility. Multiple mobile devices are identified for potential participation in an edge computing network. An eligibility score is computed for each mobile device of the plurality of mobile devices based on an estimated likelihood that the mobile device will remain within a predetermined distance of a local edge process server of an edge computing network for a duration exceeding a job time. One or more mobile devices are selected for participation in the edge computing network based on their respective eligibility scores.
US10827016B2 Resource processing method and apparatus
One example method includes receiving, by the one or more processors and from a user device, a request for a service, the request including a user identification of a user of the user device; determining, by the one or more processors, a consumption quantity of the service, the consumption quantity indicating a value associated with providing the service; determining, by the one or more processors, a pre-created general resource account associated with the user identification and including a total value that indicates an aggregated value of one or more sets of prepaid resources that belong to the user; and deducting, by the one or more processors, one or more prepaid resources from the total value of the general resource account, the one or more prepaid resources adding up to the value of the consumption quantity of the service, and in response, providing the service to the user device.
US10827015B2 System for automatically establishing operative communication channel with third party computing systems for subscription regulation
Embodiments of the invention are directed to a system, method, or computer program product for operative communication channel linkage between a user and subscription services for effective and efficient communicate with the third parties associated with the subscriptions. The invention eliminates the storage and processing requirement of a user device and allows a user system to use a single communication channel for communication for a centralized subscription regulation interface for subscription management and communications. The system identifies subscriptions from resource management sources and correlates the subscriptions to the subscription regulation interface for monitoring and trigger analysis based on locational and transactional user extraction.
US10827011B2 Presence enhanced co-browsing customer support
Script on a visitor's browser posts information about the visitor to a presence system. The script may post information such as the URL of the page being viewed by the visitor and any available information identifying the visitor. Agents connect to the presence system to detect visitors on the website. Any identifying information posted by the visitors to the presence system is captured into the agent CRM system to enable the agents to see, within the CRM system, which contacts known to the CRM system are currently on the website. The agent may signal the visitor through the presence system to initiate a co-browse session on which the agent can see the visitor's activities on the website. The co-browse session may be initiated by the agent without requiring the visitor to take action and optionally without the visitor's knowledge.
US10827008B2 Integrated user interface for consuming services across different distributed networks
User interface integration across multiple clouds is achieved by hosting UI extensions for different services in the same browser window. The UI extensions are initialized by a shell with any necessary security context for the corresponding cloud. The shell provides versioning so that the newest version of the UI is presented to users for all versions of a service. A connector in a local cloud provides translation between APIs across different clouds.
US10827005B2 Systems and methods of group automation for multi-chassis management
In accordance with embodiments of the present disclosure, a system may include a plurality of chassis, each chassis comprising a plurality of information handling systems and a private inter-chassis network configured to couple the plurality of chassis to one another. Each chassis of the plurality of chassis may be configured to advertise a message to the private inter-chassis network, the message comprising information regarding such chassis. The plurality of chassis may detect the presence of each other based on messages advertised from each chassis and the plurality of chassis may nominate a lead chassis from the plurality of chassis to serve as a single point of management of the system.
US10827004B2 Native viewer use for service results from a remote desktop
In one embodiment, a method includes establishing a session to a remote desktop determined for a user of a client device. The session allows the client device to remotely access the remote desktop to have one or more services performed for the user of the client device using resources of the remote desktop. The client device sends a request for a service in the one or more services to be performed on the remote desktop in the session and receives a result set determined from the service being performed by the remote desktop. A native viewer for the client device is determined based on a type of the result set. The native viewer is then invoked to display the result set.
US10827000B1 Context aware transactions performed on integrated service platforms
Certain aspects of the present disclosure relate to user access to an application service that references user account information and previous user action information. One example method may include receiving, via a receiver device, user input information to access an application, the user input information including at least one action request and authorizing the user to access the application. The method may also include storing the user input information as part of a contextual history information record in a database memory, generating a response message to the selected at least one action request based on the contextual history information, and forwarding the response message to the user via a transmitter device.
US10826997B2 Device linking method
Systems, methods, architectures, and computer program products for linking multiple devices are disclosed. In an example for linking a mobile device with a desktop device, an identifier of a mobile device can be received from a desktop computer. The identifier can be used to send a link to the mobile device. When the link is accessed, a code and a channel are generated. The mobile device is connected to the channel and the code is provided to the mobile device. The code is entered at the desktop device and the desktop device is connected to the channel responsive to the code being validated, thereby linking the desktop and mobile devices.
US10826993B2 Cloud resource provisioning using blueprint chaining
A system and method including organizing blueprints into a blueprint chain, the blueprint chain connecting the blueprints in an order, wherein a blueprint in the blueprint chain includes resources connected to form a schematic of a portion of an application, wherein a first resource of the blueprint is associated with a first provider and a second resource of the blueprint is associated with a second provider, identifying at least one cloud account suitable for provisioning the blueprint chain, wherein the at least one cloud account includes the first provider and the second provider, and generating an orchestration to provision an instance of the application, the orchestration including a plurality of provisioning steps based on the blueprint chain and a selected one of the at least one cloud account, wherein an ordering of the plurality of provisioning steps depends on the order of the blueprints in the blueprint chain.
US10826992B2 Collection folder for collecting file submissions via a customizable file request
A content management system for collecting files from one or more submitters in a collection folder. A collector, who generates the collection folder, can invite one or more submitters to submit one or more files to the collection folder via a customizable file request. The one or more submitters have limited rights to the collection folder. The limited rights can include uploading rights and prohibiting a submitter from viewing files that other submitters associated with the collection folder submitted. Thus, the collection folder is able to store files from the one or more submitters, but prevent them from viewing other's submissions.
US10826986B2 Information processing apparatus, merge method, and computer program product
An information processing apparatus includes a plurality of first-information acquiring units, a second-information acquiring unit, a merge unit, and a processing unit. Each of the plurality of first-information acquiring units is configured to acquire, from a corresponding cloud among a plurality of clouds that manage first information, the first information in a mode according to the cloud. The second-information acquiring unit is configured to acquire second information. The merge unit is configured to merge the first information acquired by any one of the first-information acquiring units with the second information acquired by the second-information acquiring unit. The processing unit is configured to perform processing based on merge information that is obtained by merging the first information and the second information.
US10826985B2 System and method for content tethering in an enterprise content management system
In accordance with an embodiment, described herein is a system and method for enabling content tethering for a content management system. A content tethering component can receive an indication to link (tether) content items of a content management system to one another, and associates the content items in a hierarchical structure according to the linking. Content items can exist and evolve independently, can be placed under different folder hierarchies, and can be managed by the same or different users. The hierarchical structure can indicate relationships between linked content items, and notify users associated with linked items in response to events (e.g., modifications or deletions) affecting those documents. A security data can be used to determine permissions and privileges for particular users with respect to particular items. In an embodiment, the content tethering component can be provided as a pluggable module for use with existing content management systems.
US10826984B2 Event stream processing
Systems and methods are provided to process an event stream using nodes arranged as a cluster in which the nodes are in a leader-follower relationship with one node being the leader at any given time. Tracking of node membership and leadership status can be conducted in a manager node for a variety of applications. Each node of the cluster can register in the manager node and can receive the same set of event streams as the other nodes of the cluster. The leader node can process an event of an event stream with the follower nodes tracking the processing by the leader node, where the leader node can publish the processed event. Leadership can be changed from the leader node to another node of the cluster based on a performance criterion of the leader node. Additional systems and methods can be implemented in a variety of applications.
US10826982B2 Packet processing architecture and method therefor
A packet processing architecture includes a plurality of packet processing stages, wherein at least one of the packet processing stages includes multiple next processing stage modules that are operably coupled to respective further processing stages, wherein the multiple next processing stage modules are dynamically configurable.
US10826972B2 Contextualized analytics platform
In an embodiment of the present disclosure, there is provided a computer-implemented method, wherein the computer is operable between a management server and at least one cloud server providing a cloud service, the method comprising: collecting management data related to the cloud service through a standard protocol for network management, wherein the standard protocol allows communication of the management data via a designated port; and sending at least part of the management data to the management server.
US10826969B2 Network file transfer including file obfuscation
A method and associated system. A server computer selects a re-ordering scheme for re-ordering chunks of an original file that includes N chunks. N is at least 2. The server computer divides the file into the chunks. The server computer re-orders the chunks according to the selected re-ordering scheme to form an obfuscated file that includes the re-ordered chunks. The selected re-ordering scheme specifies for each chunk in the original file a position of said each chunk in the obfuscated file. The re-ordering includes performing N iterations such that in iteration I the position of chunk I in the obfuscated file is determined to be the position of chunk I specified in the selected re-ordering scheme (I=1, 2, . . . N). The server computer sends, to a client computer, the obfuscated file along with a scheme access reference that enables the client computer to access the selected re-ordering scheme.
US10826965B2 Network monitoring to identify network issues
Various embodiments of systems, computer program products, and methods to monitor a network to identify network issues are described herein. In an aspect, requests are routed to access a sample application at predetermined time intervals via different defined network paths between a monitoring application unit and the sample application in a network. Response codes associated with execution of the requests are received from the sample application via the corresponding defined network paths. Execution results of the requests to include the response codes and execution time of the requests corresponding to the different defined network paths are recorded. Further, the execution results for a time period are analyzed to identify network issues in the network. Identifying the network issues includes identifying problematic network paths based on the analysis of the execution results, and identifying problematic network components in the problematic network paths by analyzing the problematic network paths.
US10826962B2 Techniques for dynamic shared compression
To realize some of the advantages discussed above, there is provided a computerized method for dynamic shared compression between a first node and at least a second node communicatively connected over a network. The method comprises receiving by the first node a first plurality of data inputs from the at least a second node. At least a pattern corresponding to the received first plurality of data inputs is continuously determined. Compression metadata corresponding to the at least a pattern are periodically generated. The compression metadata is stored in a memory. The compression metadata is provided to the at least a second node.
US10826961B2 Multimedia player device automatically performs an operation triggered by a portable electronic device
The present disclosure relates to computer and internet technology, and more particularly to an operating method, apparatus, and computer readable storage medium. The method comprises: obtaining an information processing result in accordance with user interest information; identifying a second terminal device associated with the user interest information; and transmitting the information processing result to the second terminal device via a communication connection established with the second terminal device, wherein the second terminal device performs a corresponding operation in accordance with the information processing result.
US10826958B2 Content server media stream management
Mechanisms are provided to manage media stream transmissions at a content server. A content server detects that a user on a device such as a mobile device has stopped playing a live media stream. The content server maintains information associating the user with the media stream and time information. When the content server detects that a user wishes to resume playing a media stream, the user can continue viewing the media stream from where stoppage occurred. In many instances, the content server stores many hours of live media stream data and allows a user to select a particular starting point.
US10826950B2 Selective service control to mobile IP network
Systems and methods are described for managing services of a computing device over a mobile network where requests for managed or unmanaged services are translated to corresponding IP addresses sent to the computing device and corresponding requests sent to the translated IP addresses are either permitted, rated, quality controlled or secured if the computing device has a valid data plan or is otherwise permissioned for using the mobile network, are denied if filtered and if the computing device does not have a valid data plan or is not otherwise permissioned and the request corresponds to the first address, and are permitted, rated, quality controlled or not secured even if the computing device does not have a valid data plan or is not otherwise permissioned if the request corresponds to the second address.
US10826943B2 Security controller
In one embodiment, a method includes receiving, by a security controller, a first security sequence generated by a network controller of a network and a second security sequence generated by a node of the network. The second security sequence is a security configuration of the node when the second security sequence was generated. The method also includes generating, by the security controller, a third security sequence and detecting, by the security controller, a discrepancy between the first security sequence, the second security sequence, and the third security sequence. In response to detecting the discrepancy, the method further includes determining, by the security controller, that the security configuration of the node has been modified.
US10826942B2 Creating security incident records using a remote network management platform
An example embodiment performed by a scoped software application executable on a computing device of a computational instance of a remote network management platform may involve: requesting and receiving, from an application database associated with a third-party software application, alert rules that trigger alerts when associated events occur in a managed network; receiving data representing selection of a set of the alert rules and, based on the data, requesting and receiving, from the application database, a set of past alerts that have been triggered by the set of the alert rules; using mapping data to map fields of the set of the past alerts to fields of a sample security incident record; displaying a preview region including the sample security incident record; using the mapping data to create security incident records that map to the set of the past alerts; and writing, to a security incident database, the security incident records.
US10826938B2 Systems and methods for aida based role models
The present disclosure describes systems and methods for using a model for a predetermined role for simulated phishing campaigns. A campaign controller communicates simulated phishing communications to one or more devices of a user using a model that the campaign controller selects from a plurality of models in a database that have been established for predetermined roles of a company. The model is selected based on one or more attributes of the user that are identified by the campaign controller. The campaign controller identifies one or more attributes of each user of a plurality of users for the simulated phishing campaign, and the campaign controller selects a respective model for each user based on the attributes of each user, wherein the models are not all the same for all of the users.
US10826933B1 Technique for verifying exploit/malware at malware detection appliance through correlation with endpoints
A technique verifies a determination of an exploit or malware in an object at a malware detection system (MDS) appliance through correlation of behavior activity of the object running on endpoints of a network. The appliance may analyze the object to render a determination that the object is suspicious and may contain the exploit or malware. In response, the MDS appliance may poll the endpoints (or receive messages pushed from the endpoints) to determine as to whether any of the endpoints may have analyzed the suspect object and observed its behaviors. If the object was analyzed, the endpoints may provide the observed behavior information to the appliance, which may then correlate that information, e.g., against correlation rules, to verify its determination of the exploit or malware. In addition, the appliance may task the endpoints to analyze the object, e.g., during run time, to determine whether it contains the exploit and provide the results to the appliance for correlation.
US10826932B2 Situation awareness and dynamic ensemble forecasting of abnormal behavior in cyber-physical system
A plurality of monitoring nodes may each generate a time-series of current monitoring node values representing current operation of a cyber-physical system. A feature-based forecasting framework may receive the time-series of and generate a set of current feature vectors using feature discovery techniques. The feature behavior for each monitoring node may be characterized in the form of decision boundaries that separate normal and abnormal space based on operating data of the system. A set of ensemble state-space models may be constructed to represent feature evolution in the time-domain, wherein the forecasted outputs from the set of ensemble state-space models comprise anticipated time evolution of features. The framework may then obtain an overall features forecast through dynamic ensemble averaging and compare the overall features forecast to a threshold to generate an estimate associated with at least one feature vector crossing an associated decision boundary.
US10826931B1 System and method for predicting and mitigating cybersecurity system misconfigurations
A computerized method for reconfiguring one or more malware detection systems each performing cybersecurity analyses on incoming data is described. The method involves receiving meta-information including metrics associated with a malware detection system. Based on the meta-information, a determination is made whether the malware detection system is operating at an optimal performance level. If not, results produced by conducting behavior analyses predicting operability of the malware detection system are determined and the results are provided as feedback to the malware detection system to update one or more configuration parameter values thereof.
US10826930B2 Systems and methods for parallelized custom data-processing and search
This invention provides systems and methods for data processing by means of an ongoing background process on an end-user's computer. As a user receives and generates data, files are analyzed. A container file is opened into the volatile memory and its contents (including data and metadata) are extracted, without requiring an index to be created. The extracted components are analyzed based on predefined characteristics.
US10826924B1 Computer security and methods of use thereof
Described herein are various methods of securing a computer system. One or more methods include starting a security process after basic functionality on a computer is initiated at startup. The security process performs one or more reviews, such as audits, of the computer to verify that there have not been unauthorized changes to the computer, such as to any settings or executable files.
US10826922B2 Using virtual sensors to accommodate industrial asset control systems during cyber attacks
In some embodiments, an industrial asset may be associated with a plurality of monitoring nodes, each monitoring node generating a series of monitoring node values over time that represent operation of the industrial asset. A threat detection computer may determine that an attacked monitoring node is currently being attacked. Responsive to this determination, a virtual sensor coupled to the plurality of monitoring nodes may estimate a series of virtual node values for the attacked monitoring node(s) based on information received from monitoring nodes that are not currently being attacked. The virtual sensor may then replace the series of monitoring node values from the attacked monitoring node(s) with the virtual node values. Note that in some embodiments, virtual node values may be estimated for a particular node even before it is determined that the node is currently being attacked.
US10826912B2 Timestamp-based authentication
Techniques for computer security, and more specifically timestamp-abased authentication, are described. Some implementations provide an authentication method that utilizes an authentication process that is shared as a secret between a first and second computing system. The process provides as output a number that is based on a timestamp. The first computing system executes the authentication process using a timestamp obtained from its clock. The resulting number is transmitted to the second computing system, possibly along with other authentication data, such as a username and/or password. In response, the second computing system executes the authentication process using a timestamp obtained from its clock. If the numbers generated by the first and second computing systems match, the first computing system is authenticated.
US10826911B2 Digital content access control
Access to a linked resource may be protected using a time-based transformation of links to the resource. A linked resource may be transmitted to a browser in a markup language page. Information indicative of a time-based transformation of a link may be transmitted to the browser in the markup language page, or separately from the markup language page. The time-based transformation may be applied to the transmitted link. The transformed link may be requested, and compared to a version of the link that has been transformed, using the time-based transformation with respect to the time the request is received.
US10826907B2 Dynamic passcodes in association with a wireless access point
A method includes receiving, at an access point, an access request from a first device after an expiration of a first passcode. The access request is encrypted based on the first passcode. The method includes making a determination by the access point before an expiration of a usage time of a first passcode usage list that an identifier of the first device is included in the first passcode usage list. The method also includes, in response to making the determination, generating, at the access point, data representing a second passcode by encrypting the second passcode using the first passcode; and sending the data representing the second passcode from the access point to the first device.
US10826906B2 System and computer-implemented method for controlling access to communicative motor
A system and computer-implemented method for controlling wireless access to the operations of communicative electric motors. An electronic processing element receives an authentication request from a remote access device via a wireless transceiver, approves the authentication request, including determining an associated access level from among a hierarchy of access levels, and grants access to a motor controller to perform actions allowed by the associated access level. Approving the request may be based on receiving a valid password, which may be calculated on the remote access device by a computer program using an electronic key, or by receiving information from an authentication hardware component associated with the device. The various access levels may allow for shutting off, read-only monitoring (of, e.g., temperature, vibration), controlling (e.g., speed), and programming (e.g., tap settings) operation of the motor, and controlling the authentication process (e.g., adding and removing users and assigning and changing access levels).
US10826905B2 Secure access to on-premises web services from multi-tenant cloud services
Methods, systems, and computer-readable media for using a multi-tenant web relay service to provide secure access to on-premises web services from a tenant-specific cloud service are described herein. In one or more embodiments, a multi-tenant web relay service may receive from a tenant-specific cloud service a connection request to an on-premises web service hosted within a tenant datacenter. The connection request may comprise data indicating a display-friendly name of the web service and the tenant datacenter. Responsive to receiving the request, the web relay service may forward the connection request to the on-premises web service via a rendezvous support service and a web relay agent. Responsive to receiving the connection request, the on-premises web service may generate a response which may be relayed back to the tenant-specific cloud service by the multi-tenant web relay service.
US10826904B2 Local verification of code authentication
Embodiments are directed to a computing device having execution hardware including at least one processor core, and non-volatile memory that stores verification module and a private symmetric key unique to the computing device. The verification module, when executed on the execution hardware, causes the execution hardware to perform pre-execution local authenticity verification of externally-supplied code in response to a command to launch that code. The local authenticity verification includes computation of a cryptographic message authentication code (MAC) of the externally-supplied code based on the private symmetric key, and verification of the MAC against a stored local authenticity verification value previously written to the non-volatile memory. In response to a positive verification of the of the MAC, execution of the externally-supplied code is permitted.
US10826892B2 Provisioning a device to be an authentication device
In certain embodiments, a web services system receives a request to provision a device, such as a telephone, as an authentication device. The web services system initiates display of an image communicating a key to allow the telephone to capture the image and to send key information associated with the key. The web services system receives the key and determines that the key information is valid. In response to the determination, the web services system sends a seed to the telephone to provision the telephone to be an authentication device. The telephone can use the seed to generate one-time passcodes to access a service of the web services system.
US10826888B2 Method for providing certificate service based on smart contract and server using the same
A method for providing a certificate registration service based on a smart contract, wherein the smart contract is source code compilable into executable byte code, is configured to perform procedures if particular conditions are satisfied, and wherein integrity is verified by a consensus, is provided. The method includes steps of: (a) acquiring a public key (PubA) of a user device, an (IdhashA) which is hashed personal information, and a (VcertA) which includes validity conditions, acquiring the smart contract corresponding to the validity conditions and byte code; (b) registering the PubA, the IdhashA and the byte code with a private blockchain database, and acquiring locating certificate information (PrivTxidA) in the private blockchain database; (c) registering the PrivTxidA and a state of the smart contract with State Database (SDB); and (d) acquiring and registering a hash value calculated using the PubA, the IdhashA and the byte code, and its neighboring hash value.
US10826881B2 Location-enforced data management in complex multi-region computing
A location-reporting request is sent by a processor to at least one remote server. The location-reporting request (i) requests processing of data away from a geo-location-aware client device and (ii) includes an instruction that instructs any available server to respond with a reported geographic location. An asserted geographic location is received from a remote server available to process the data responsive to the instruction in the location-reporting request. In response to determining that the asserted geographic location of the available remote server satisfies location-based data processing restrictions that regulate remote processing of the data away from the geo-location-aware client device, the asserted geographic location is verified using a geo-location assertion server. In response to a successful verification of the asserted geographic location of the available remote server, the data is sent to the available remote server to process.
US10826880B2 Apparatus for use in a can system
A CAN device is provided with an encryption function and a decryption function. The encryption function allows messages to be encrypted and put onto a CAN bus. The decryption function allows the messages on the CAN bus to be decrypted. The encryption and decryption functions share keys which change over the course of time.
US10826877B2 Secure service matching
There is disclosed in one example a computing apparatus to broker purchase of an item or service between a consumer and seller, including: a hardware platform including a processor; and a memory, including executable instructions to instruct the hardware platform to: receive an encrypted payload including a request from a consumer to purchase the item or service, the encrypted payload including information about the consumer; without exposing the information about the consumer to the seller, determine, based on the seller's availability to sell the item or service and the seller's preferences for selling the item or service, that the request matches the seller's availability and preferences; and send a notification that the seller will sell the item or service.
US10826876B1 Obscuring network traffic characteristics
The following description is directed to encrypting the characteristics of network traffic. In one example, a method can include receiving an unencrypted link layer packet including a first payload of a first size. The method can include encrypting the first payload of the unencrypted link layer packet. The method can include generating an encrypted link layer packet including a second payload. The second payload can include the encrypted payload and a variable length padding field so that the second payload of the encrypted link layer packet is a different size than the first size of the first payload. The encrypted link layer packet can then be transmitted.
US10826871B1 Managed network content monitoring and filtering system and method
A system and method for content request monitoring and filtering for a plurality of managed devices in a managed network uses a smart PAC file that is uniquely associated with a particular user using a particular managed device and a DNS look up to perform both the logging/monitoring of the content request and the filtering without a hardware appliance or partial proxying.
US10826870B2 Method, device and server for processing access request
The present disclosure relates to a network technology, and discloses a method, a device and a server for processing an access request. The method comprises: obtaining a response content corresponding to the access request from a source station according to a URL of the access request, when receiving the access request sent by a client terminal; adjusting domain names of at least two sub-resource requests in response content to be a same domain name of a preset protocol type, and returning adjusted response content to the client terminal; restoring, when receiving a sub-resource request having the same domain name, the domain name of the sub-resource request to an original domain name thereof; and obtaining a sub-resource content corresponding to the sub-resource request from the source station according to the original domain name of the sub-resource request, and returning the sub-resource content to the client terminal.
US10826869B2 Domain name resolution method, server and storage medium
A domain name resolution method includes: obtaining a domain name resolution request packet; caching the obtained domain name resolution request packet to a first cache area; modifying, in the first cache area, header data included in the cached domain name resolution request packet, to obtain header data of a domain name resolution reply packet corresponding to the cached domain name resolution request packet; extracting a requested record type and a domain name to be resolved in the cached domain name resolution request packet; searching a second cache area for pre-cached reply data that corresponds to the extracted domain name and that belongs to the extracted record type; and combining the pre-cached reply data with the domain name resolution request packet obtained through modification, to obtain a domain name resolution reply packet.
US10826866B2 Quality-based routing of electronic messages
Provided herein is a method of preparing a route for a new message through a plurality of networked nodes in an Internet Protocol-based network including calculating a recipient quality score based on a message engagement event with a past message, applying at least one model to determine a probability of the recipient engaging with the new message, based on at least one of the recipient quality score or the determined probability, determining a quality metric, and selecting the route from among a plurality of quality-specific tranches of available routes based on a prediction of the probability of engagement for the new message by applying a machine learning system to determine which route produces a greater likelihood of engagement for parameters of the new message than other routes. New messages for recipients with a first quality metric are sent using a different route than recipients with a second quality metric.
US10826859B1 Techniques for ephemeral messaging with a message queue
Techniques for ephemeral message are described. In one embodiment, an apparatus may comprise a delayed-action worker module operative to wake according to a wake timer; determine a current update object for a delayed-action cursor for a recipient update queue for a messaging system, the delayed-action cursor associated with an action delay for the recipient update queue; determine a delayed-action activity for the current update object; perform the delay-action activity for the current update object; determine a next update object for the delayed-action cursor for the recipient update queue; and determine a next wake timer for the delayed-action worker module based on the action delay and a creation time for the next update object. Other embodiments are described and claimed.
US10826858B2 Automatically providing a communication based on location information for a user of a social networking system
Systems and methods for automatically locating web-based social network members are provided. According to one embodiment, contact content including an associated GPS identifier and status for web-based social network members located at or near the same location automatically appears on a GPS-enabled device. A further exemplary system includes a GPS-enabled device configured to receive a GPS identifier and a status representing a location and a current state for a web-based social network member, a processing module that associates the received GPS-identifier and the received status, and a communications module that sends the associated GPS-identifier and status to a server comprising a web-based social network database. Contact content in a web-based social network database record in the web-based social network database is updated to include the associated GPS identifier and status for the web-based social network member.
US10826854B1 Message guardian
An apparatus, process, and computer program to prevent inappropriate messages originated from a client device is provided. A validation message that includes a message composed by a user may be received from a client device. A determination is made as to whether the composed message comprises data that matches with one or more inappropriate terms, phrases, and/or objects. A notification is sent to the client device when the composed message comprises data that matches with one or more inappropriate terms, phrases, and/or objects.
US10826852B2 Communication frequency optimization
A database server may receive or monitor user engagement metadata corresponding to a plurality of communication messages transmitted to the users. The database server analyzes the metadata to determine optimal transmission frequencies for digital communication messages based on engagement rates received in the user engagement metadata.
US10826849B2 Method and system for uploading data to cloud platform, gateway, and machine-readable medium
Provided are a method and a system for uploading data to a cloud platform, a gateway, and a machine-readable medium. In an embodiment, the method includes: receiving, by a gateway, at least two items of to-be-uploaded data from at least one data transmitting device; segmenting, by the gateway, the at least two items of to-be-uploaded data into at least two data blocks, each data block including at least one item of to-be-uploaded data; and uploading, by the gateway, the to-be-uploaded data included in the at least two data blocks to the cloud platform in a concurrent manner. Embodiments of the present solution can conveniently maintain a gateway.
US10826847B2 Port auto-negotiation method and device
A port auto-negotiation method and a device used for implementing port auto-negotiation between high-speed Ethernet devices are provided. The method performed by a first device includes: configuring a first port of the first device as four subports, where each of the four subports includes a differential transceiver channel; determining from the four subports, at least one subport whose differential transceiver channel operates normally, and selecting some or all of the at least one subport as a normal subport; sending capability information of the first port to a second device by using the normal subport, and receiving, by using the normal subport, capability information of a second port of the second device; and determining operating statuses of the four subports based on the capability information of the first port and of the second port.
US10826844B2 Transmission of tags and policies with data objects
Information for a data object can be prevented from loss for import and export operations across a trust boundary, such as may exist between environments under control of different legal entities. A set of dependencies, including information such as data tags and identifiers for applicable policies, can be embedded in a data object, such as directly in a header or in a digest or token of the data object. When the data object is transmitted across a trust boundary, such as to a destination bucket, the destination bucket can ensure that all dependencies are available and able to be enforced in the destination environment. If not, the request can be denied or the destination environment can contact the source environment to attempt to obtain and enforce the missing dependencies. At least some of the dependencies may also need to be transformed in the second environment.
US10826840B1 Multiple copies of stateful tables
Some embodiments provide a method for a packet processing pipeline of a network forwarding integrated circuit. The method stores two copies of a stateful table used by the packet processing pipeline. The stateful table is modified according to data processed by the packet processing pipeline. Upon receiving data to write to the stateful table, the method generates (i) a first copy of the received data along with an indicator for a first one of the copies of the stateful table and (ii) a second copy of the received data along with an indicator for a second one of the copies of the stateful table. The method sends the first copy of the received data into the packet processing pipeline before sending the second copy of the received data into the packet processing pipeline.
US10826837B2 Method and device for transmission of content
Embodiments relate to a method for transmission of content, executed by a content transmission device. The method includes receiving, from a client device, a content request specifying a requested content and at least one content reception deadline in an application layer part, encapsulating the requested content in a plurality of successive TCP segments; and sending the successive TCP segments to the client device by applying a congestion avoidance mechanism using a congestion window. The congestion window is determined by determining a minimum bitrate required for transmitting the requested content to the client device by the content reception deadline, determining a round-trip time between the content transmission device and the client device, and setting the congestion window equal to or greater than the product of the minimum bitrate and the round-trip time.
US10826833B1 System, method and apparatus for secondary network device detection
A computerized method performed by logic processing on a first network device is disclosed. The computerized method includes operations performed by a logic of a first network device includes detecting movement of the first network at a speed above a predetermined threshold and presence of a wireless transceiver, transmitting a message to the wireless transceiver that includes instructions for the wireless transceiver to perform a plurality of scans for additional network devices, receiving a set of lists corresponding to scans performed by the wireless transceiver, each of the set of lists indicating a first group of network devices detected by the wireless transceiver, determining a subset of the first set of the detected network devices present on each list of the set of lists, and responsive to the subset of the first set of the detected network devices exceeding a policy threshold limit, transmitting an alert.
US10826831B2 Dynamic protocol independent multicast load balancing
A method including receiving, at a first router of a plurality of routers, a first message from the plurality of routers. The first message includes a designated router priority and a weight for each respective router. Based on the designated router priorities, a designated router is elected and a one or more eligible group designated routers are determined. The method determines whether the first router is the designated router or the at least one eligible group designated router. If the first router is the designated router, the first router provides a second message to the remaining routers indicating the eligible group designated routers and their weights.
US10826829B2 Scalable handling of BGP route information in VXLAN with EVPN control plane
A method for programming a MAC address table by a first leaf node in a network comprising a plurality of leaf nodes is provided. Each leaf node comprises one or more Virtual Tunnel End Points (“VTEPs”) and instantiates a plurality of Virtual Routing and Forwarding elements (“VRFs”), with a corresponding Bridge Domain (“BD”) assigned to each VRF. The method includes obtaining information indicating one or more VTEP Affinity Groups (VAGs), each VAG comprising an identification of one VTEP per leaf node, obtaining information indicating assignment of each VRF to one of the VAGs, assigning each VAG to a unique Filtering Identifier (“FID”), thereby generating one or more FIDs, and programming the MAC address table, using FIDs instead of BDs, by populating the MAC address table with a plurality of entries, each entry comprising a unique combination of a FID and a MAC address of a leaf node.
US10826824B2 Propagation of routing information in RSVP-TE for inter-domain TE-LSPS
In one embodiment, a traffic engineering (TE) label switched path (LSP) is established between a head-end node in a local domain and a tail-end node in a remote domain. The TE-LSP spans one or more intervening domains located between the local domain and the remote domain. The head-end node sends a routing information request over the TE-LSP to a target node on the TE-LSP that is in the remote domain. The head end node receives routing information from the target node. The received routing information includes a list of address prefixes reachable by the target node. The head end node uses the received routing information to calculate routes reachable via the TE-LSP to the target node. The calculated routes have a next-hop interface set to be the TE-LSP. The calculated routes are inserted into a routing table of the head-end node.
US10826820B2 Routing network traffic based on DNS
A method may include receiving a domain name system (DNS) query at a network device, where the DNS query may be associated with a traffic flow identified for rerouting through an alternative path utilizing an alternative network device instead of a default path. The method may also include rewriting the DNS query such that the DNS query is routed through the alternative network device along the alternative path and to a DNS server associated with the alternative path. The method may additionally include receiving a DNS response from the DNS server, where a resource identified in the DNS response may be based on the DNS query coming through the alternative network device.
US10826812B2 Multiple quorum witness
One witness node may provide quorum witness functionality for multiple quorums concurrently (e.g., while multiple quorums are executing independently and simultaneously). An aggregated heartbeat message from a first quorum actor of the first quorum may include a first quorum heartbeat message that has a unique identifier for the first quorum. This identifier may allow update for the quorum data store with respect to the first quorum. The aggregated heartbeat message may also include information representing a second quorum heartbeat message from a second quorum actor of a second quorum. The second quorum heartbeat message may include a second unique identifier for the second quorum. The second identifier may allow an update for the quorum data store independently of the first update. More than two quorums may be supported by a single witness node by extracting individualized information from an aggregated heartbeat message.
US10826809B2 Multi-hop reflector sessions
A method for measuring and reporting performance parameters in a network having at least one originator for generating test protocol data units, and multiple reflectors for relaying the test protocol data units along successive segments of a test path in the network. The method generates the test protocol data units at the originator and transmits the test protocol data unit along a test path that includes multiple reflectors. Each reflector relays the test protocol data unit to the next reflector along the test path. Measurements of performance parameters are collected from the multiple reflectors in the test protocol data unit by inserting timestamps into the test protocol data unit at the originator and each of the reflectors to identify the departure and arrival times for each test protocol data unit at the originator and each of the reflectors in both the downstream and upstream directions along the test path.
US10826806B2 System for transmitting audio and/or video data and method for granting secured access
A system for transmitting audio and/or video data is described that comprises a functional unit configured to process the audio and/or video data and an error detection unit configured to detect an error in audio and/or video data processing. The system is configured to generate and transmit an access token configured to grant access at least to the functional unit when an error is detected. Further, a method for granting secured access is described.
US10826805B2 System and method for dynamic online backup optimization
Methods of optimizing transmission of data from a client to a remote data center are disclosed, as well as systems and computer program products related to the same. An exemplary method comprises: receiving data, at a first intervening data center, transmitted from a client and addressed to a terminal data center, wherein the first intervening data center and the terminal data center are selected from a plurality of connected data centers; and transferring the data, from the first intervening data center through one or more additional intervening data centers selected from the plurality of connected data centers, until the data reaches the terminal data center; wherein each data center in the plurality of data centers independently selects a connected data center to transfer the data to based upon the amount of latency and/or bandwidth available at the connected data center.
US10826804B2 Network-traffic-analysis-based suggestion generation
In one embodiment, a computer server running a social networking application aggregates raw local area network (LAN) traffic data received from one or more listening nodes in one or more LANs. The aggregated LAN traffic data is comprised of multiple entries, each of which includes a MAC address for a networked device, as well as an association between each MAC address and a user of a social networking system. The computer server may then detect, identify, and qualify recurring patterns when a particular user is on the same LAN as other users of the social networking system. Based upon the qualified patterns, the social networking system may suggest friend connections or other interactions on the social networking system to the particular user.
US10826803B2 Mechanism for facilitating efficient policy updates
Aspects of the subject technology relate to a system configured to receive, from a stream processing service, a first network snapshot segment. The first network snapshot segment is associated with metadata that is used to determine that at least one additional network snapshot segment associated with the output stream has not been previously received. The system is configured to request, from the stream processing service, the at least one additional network snapshot segment and generate a first network snapshot by compiling the first network snapshot segment and the at least one additional network snapshot segment.
US10826802B2 Managing network communication protocols
A computer system for managing network communication protocols comprises computer-executable instructions that configure the computer system to receive a dataset of information for network-based analytic elements. The dataset can comprise information received by a network-based destination of the analytic elements. The analytic elements may have been executed within a network-connected software application. The system can also be configured to identify a pattern within the dataset of information. Based upon the identified pattern, the system can create an analytic element rule that is configured to describe the identified pattern on at least a subset of network-based analytic elements that are executable within the network-connected software application. Additionally, the system can be configured to store, within a digital database, the analytic element rule, wherein the digital database comprises a set of analytic element rules for managing analytic elements within the network-connected software application.
US10826799B2 Apparatus for providing cloud service based on cloud service brokerage and method thereof
Disclosed herein are an apparatus and method for providing a cloud service based on cloud service brokerage. The method includes receiving, by a cloud service broker, a first request for a cloud service from a cloud service client, wherein the cloud service broker is connected with the multiple cloud-computing systems; providing, by the cloud service broker, a cloud service brokerage based on cloud services of the cloud-computing systems, wherein the cloud service brokerage enables the cloud service complying with the first request to be provided to the cloud service client; and monitoring, by the cloud service broker, a service level of the cloud service during provision of the cloud service and controlling, by the cloud service broker, the cloud service such that the service level satisfies conditions of the first request.
US10826798B2 Virtual network function bus-based auto-registration
A Network Functions Virtualization (NFV) system reads, from a data bus coupled to the NFV system, Virtual Network Function (VNF) parameters published to the data bus by a new VNF. The NFV system publishes, to the data bus based on the VNF parameters, instructions to multiple components of the NFV system defining which VNF capabilities of the new VNF are to be managed, controlled, or monitored by which of the multiple NFV system components. The multiple components of the NFV system control, manage, or monitor the new VNF based on the published instructions. The data bus can include a Data Movement as a Platform (DMaaP) system that publishes and subscribes to streams of records.
US10826797B2 System and method for processing network packets based on NFV for ensuring high availability
A system and method for processing network packets based on NFV for ensuring high availability are disclosed. The disclosed system may include: at least one server, where a multiple number of VNF's for performing particular service functions are formed in the at least one server, each of the VNF's including at least one VNF instance; and a control apparatus that sequentially selects an M number of VNF's and selects one VNF instance from each of the selected M number of VNF's to configure an SFC, where the control apparatus may calculate an availability cost ratio value associated with each of the at least one VNF instance within VNF i+1 with respect to a VNF instance selected from VNF i (i being an integer from 1 to M) and may select a VNF instance within the VNF i+1 corresponding to the maximum value among the availability cost ratio values.
US10826793B2 Verification and auditing in a content delivery framework
A computer-implemented method, operable in a system comprising multiple services, the services running on a plurality of devices, includes tracking first information about requests sent from at least one first service in a first collection of services to at least one second service in a second collection of services, the first collection of services being distinct from the second collection of services; tracking second information from the second collection of services about requests supposedly processed by the second collection of services; and reconciling the first information with the second information. The reconciling may be used to verify or audit information reported by the second collection of services.
US10826792B2 Updating electronic devices using a push model
Automatically updating electronic devices using a push model. A set of electronic devices may be selected for an update. A first plurality of devices of the set of devices for which the update is valid may be determined in accordance with a set of rules, e.g., safety check rules or business rules, where the determining is based on stored configuration information for each of the devices. Current configuration information and accessibility information may be received for each of the first plurality of devices, and based on the received current configuration information and accessibility information and the stored configuration information, a second plurality of devices of the set of devices for which the update is valid may be determined, where the second plurality is a subset of the first plurality. The update may be applied automatically to at least some of the second plurality of devices.
US10826791B2 Systems and methods for remote device viewing and interaction
A system and process are provided for remotely viewing a customer screen image and interacting with the customer's device (desktop, laptop, tablet or smartphone) using a standard web browser. In operation, an agent is provided with an account on a server, and can send a link and/or instructions to the customer to provide the agent with access to the customer device. An application installed on the customer device captures image frames to be shared and divides them into subsections, transmitting to the server only those sections that have changed relative to the previously transmitted frame. The agent's browser retrieves tiles from the server as they change, and displays them for the agent. The system and process enable the agent to obtain system information and remotely control various functions of the customer device when authorized by the customer.
US10826789B2 Adjusting triggers for automatic scaling of virtual network functions
A method performed by a processor in a network function virtualization infrastructure includes determining an amount of resources consumed by a virtual network function subsequent to a scaling of the amount of resources in response to an occurrence of a predefined trigger event, determining an amount of time elapsed between the predefined trigger event and a completion of the scaling, determining a key performance indicator value for the virtual network function subsequent to completion of the scaling, evaluating an efficiency of the predefined trigger event that triggers the scaling, based on the amount of resources consumed by the virtual network function subsequent to the scaling, the amount of time elapsed between the detection of the predefined trigger event and completion of the scaling, and the key performance indicator for the virtual network function subsequent to completion of the scaling, and adjusting the predefined trigger event based on the evaluating.
US10826788B2 Assurance of quality-of-service configurations in a network
Systems, methods, and computer-readable media for assurance of quality-of-service configurations in a network. In some examples, a system obtains a logical model of a software-defined network, the logical model including rules specified for the software-defined network, the logical model being based on a schema defining manageable objects and object properties for the software-defined network. The system also obtains, for each node in the software-defined network, a respective hardware model, the respective hardware model including rules rendered at the node based on a respective node-specific representation of the logical model. Based on the logical model and the respective hardware model, the system can perform an equivalency check between the rules in the logical model and the rules in the respective hardware model to determine whether the logical model and the respective hardware model contain configuration inconsistencies.
US10826786B2 Fast multi-scale point cloud registration with a hierarchical gaussian mixture
Point cloud registration sits at the core of many important and challenging 3D perception problems including autonomous navigation, object/scene recognition, and augmented reality (AR). A new registration algorithm is presented that achieves speed and accuracy by registering a point cloud to a representation of a reference point cloud. A target point cloud is registered to the reference point cloud by iterating through a number of cycles of an EM algorithm where, during an Expectation step, each point in the target point cloud is associated with a node of a hierarchical tree data structure and, during a Maximization step, an estimated transformation is determined based on the association of the points with corresponding nodes of the hierarchical tree data structure. The estimated transformation is determined by solving a minimization problem associated with a sum, over a number of mixture components, over terms related to a Mahalanobis distance.
US10826785B2 Data traffic monitoring tool
Methods, computing systems and computer program products implement embodiments of the present invention that include detecting, on a communications network in a computing facility including a first computer coupled to a second computer via the communications network, an input/output (I/O) request conveyed from the first computer to the second computer. Subsequent to detecting the I/O request, data traffic resulting from the second computer processing the I/O request is identified on the communications network, and network statistics are collected based on the I/O request and the data traffic. Upon detecting a performance degradation of the computing facility, the performance degradation greater than a predetermined amount, heuristics can be applied to the collected network statistics, to identify a cause of the performance degradation and to identify a remedy to the detected performance degradation. In some embodiments, the identified cause and the identified remedy can be presented to a user on a display.
US10826784B2 High definition, scalable network monitoring and debugging in real-time
A method includes, in a Network Interface Controller (NIC) that communicates over a network, generating indications pertaining to a performance of the NIC. The indications are classified with respect to severity. At least some of the indications, for which the severity exceeds a predefined severity threshold, are assembled in performance notification packets. The performance notification packets are sent over the network.
US10826782B2 Method and apparatus for initializing a controller module
The present disclosure relates to a method of initializing a set of controllable units in an electrical system. The method comprises: A) obtaining, by a controllable unit controller module in a sequence of the controllable units, a discovery message on a non-addressable data pathway; B) broadcasting on an addressable data bus, by the controllable unit controller module, an identity of the functional unit; C) transmitting the discovery message to another controllable unit controller module in the sequence of the controllable units by way of the non-addressable data pathway; and D) recording, by the system controller module, the broadcasted identity of the controllable unit.
US10826778B2 Device discovery service
Methods, systems, and computer program products for discovering network connected devices are described. A semantic query for a network connected device is parsed, with the semantic query identifying one or more capabilities of a desired network connected device. A network address of a network connected device satisfying the parsed semantic query is identified and a query response identifying the network address of the network connected device is provided.
US10826773B2 Method and system for sidelining of a network device
Embodiments of the invention may relate to methods, systems, and/or non-transitory computer readable mediums for sidelining Such sidelining may include making a first determination, by a first network device, that a first network device state has degraded and making a first request, based on the first determination, to receive a first sideline token from a network controller. The network controller, in response to the first request, may make a second determination that a remaining sideline token is available. The method may also include receiving, by the first network device and based on the second determination, the remaining sideline token from the network controller and initiating, by the first network device, a graceful offlining based on receiving the remaining sideline token.
US10826769B2 Data processing method and device
Embodiments provide a data processing method and device. A PCRF entity obtains subscription information of remote UE, and determines a QoS rule of relay UE according to the subscription information and service QoS of the remote UE, and the PCRF entity sends the QoS rule of the relay UE to a PGW, where the QoS rule is used by the PGW to modify or establish a bearer of the relay UE, and the bearer of the relay UE is used by the relay UE to forward data of the remote UE, thereby ensuring the service QoS of the remote UE.
US10826767B2 Systems and methods for automated governance, risk, and compliance
Systems and methods for configuration vulnerability checking and remediation are provided. The systems provided herein map vulnerability data with compliance data, such that automated compliance indication may be facilitated.
US10826765B2 System and method for configuring communication devices
A communication system that includes a base unit and one or more end units that communicate over a primary communication link using a first communication protocol and a secondary communication link using a second protocol. The secondary communication link may be a shorter range communication link than the primary communication link. The secondary communication link may be used to transmit and receive registration information, configuration settings, and status information between the end units and the base unit.
US10826764B2 Dynamic server allocation for automated server builds
Systems and methods for dynamically allocating a plurality of servers for use in a server build process is provided. The system may include a receiver module configured to receive at least one server build request including a requested time interval. The system may include an analysis module configured to determine if the requested time interval is greater than or less than a pre-determined threshold value and an availability status of each of the servers. The system may include a selection module configured to select a server configuration type. The server configuration type may be based on the determination of the requested time interval being greater than or less than the pre-determined threshold value. The configuration types may be selected from a group of pre-determined configuration types being one of a minimal server type, a tolerant server type and an optimal server type.
US10826763B2 Portable outdoor construction site data center
A portable construction site data center for off-site monitoring and supervision of construction sites and for on-site construction worker interface. The portable construction site data center has a housing that is resistant to outdoor elements, with a mounting platform for supporting the housing on any common construction site fixture such as a safety barrel or drum. The housing has dimensions and a weight that enable portability for hand carry. The housing has a keyboard, a display, a camera, interactive color LEDs, and an RFID transponder for worker interface, and a CPU with memory to process the worker interface data. A battery and solar cell power the system. An antenna allows the system to access to Wi-Fi, Bluetooth, and cellular network signals thus enabling the system to access, via the internet, remote and local digital devices.
US10826761B2 Ubiquitous collaboration in managed applications
Methods and systems for an ubiquitous collaboration feature in a managed application environment are described herein. The collaboration service and/or server may store session information and one or more configuration files for use in rendering the collaboration features in combination with managed applications executing on a user's computing device.
US10826759B2 Systems and methods for providing split control of multiple execution environments
The present disclosure describes systems, methods, and computer-readable storage media implementing techniques for providing split control of an execution environment. According to aspects of the disclosure, a first entity may be configured to exert control over presentation related aspects (e.g., the look and feel) of services provided by a second entity, while the second entity may exert control over backend processing and execution of the services. To facilitate the different portions of the split control, one or more servers may be configured to provide a first execution layer, a second execution layer, and a second execution layer control panel. The first execution layer may perform operations for executing the provisioning of the service. The second execution layer may perform operations for presenting the computing/execution environment for providing the service, and the second execution environment control panel may provide the first entity to customize/modify presentation related aspects of the computing/execution environment.
US10826758B2 Method and apparatus for control resource monitoring considering beam failure recovery in a wireless communication system
A method and apparatus are disclosed. The method includes the UE (User Equipment) being configured with a first CORESET (Control Resource Set). The method also includes the UE being configured with a second CORESET. The method further includes the UE transmitting a preamble for beam failure recovery in response to the UE detecting that beam failure occurs. And the method includes the UE monitoring and/or receiving a DCI scrambled by C-RNTI in the second CORESET in the second slot in response to transmitting the preamble for beam failure recovery. Furthermore, the method includes the UE prioritizing to receive and/or demodulate the DCI scrambled by C-RNTI in the second CORESET in the second slot, if the first number plus the third number exceeds the first maximum number or the second number plus the fourth number exceeds the second maximum number in the second slot.
US10826757B2 Operational analytics in managed networks
A computing system and method for remote monitoring and forecasting of performance of a managed network is disclosed. The computing system may be disposed within a remote network management platform and be configured for monitoring respective performance of each of a plurality of network entities of the managed network. For each network entity, an alert may be issued in response to determining that the monitored respective performance is below a respective threshold performance level. Based on analysis of a group of alerts, a likelihood may be determined that a different alert will be issued for the monitored performance of a particular network entity of the plurality for which no respective alert has yet been issued. In response to the likelihood exceeding a threshold, an alert prediction for the performance of the particular network entity may be issued together with a score corresponding to the likelihood.
US10826748B2 Service gateway for interactive television
A service gateway provides a proxy between a client protocol and a plurality of standard communication protocols. The service gateway provides asymmetrical routing, data compression and encryption to optimize client processing power and communication link bandwidth. The service gateway enables content translation between clients and service providers. The service gateway keeps track of client available memory and sequence numbers in messages to generate error codes when applicable. A store and forward message capability is provided along with abstract session identifiers. The service gateway supports user datagram protocol.
US10826743B2 Wireless communication device and wireless communication method
A wireless communication device which receives a data signal and a first control signal associated with the data signal from another wireless communication device, the wireless communication device includes a receiver configured to receive, from the another wireless communication device, a series of first frames having a first frame length through a first subband and a series of second frames having a second frame length through a second subband, the second frame length differing from the first frame length, and a processor configured to obtain the first control signal of the first frame through the first subband and the data signal associated with the first control signal of the second frames through the second subband, and specify which of the second frames includes the data signal, based on predetermined information included in the first control signal.
US10826725B1 System for scaling network address translation (NAT) and firewall functions
According to one embodiment, a network device may be adapted to operate within a virtual private cloud where network address translation (NAT) is performed through virtual machines and each network address translation is handled differently by a different NAT control logic unit. The network device features one or more hardware processors, and a memory that stores at least a plurality of network address translation (NAT) control logic unit and demultiplexer logic. The demuliplexer logic, when executed, receives an incoming message and, based at least in part on information within the incoming message, determines a selected NAT control logic unit to receive at least a portion of the information within the incoming message. The selected NAT control logic unit handles address translation for routing of a message based on the incoming message to a public network.
US10826723B1 Virtual network address space auto-migration
Techniques for virtual network address space auto-migration are described. An existing network address space of a virtual network can be automatically migrated to a new network address space. The new network address space can be added to the virtual network, new subnets can be added to the new network address space that mirror existing subnets, and new compute instances can be added to the new subnets that mirror existing compute instances. Subsequent to the auto-migration, the virtual network can be connected with another network that has an address space that conflicted with the previous network address space of the virtual network but not the new network address space.
US10826720B2 Switching device and determination method
A switching device is a switching device mounted on a vehicle and includes a plurality of communication ports connectable to cables for Ethernet communication, a circuit operated by using power supplied via each of the communication ports, an acquisition unit that acquires a measurement result for noise of the power supplied via each of the communication ports, and a determination unit that performs determination processing for determining whether or not power to be supplied via a corresponding one of the communication ports is to be output to the circuit based on the measurement result for noise acquired by the acquisition unit.
US10826717B2 System and methods for cloud-based monitoring and control of physical environments
Disclosed are systems and methods for cloud-based monitoring and control of physical environments. A system comprises a computing cloud with at least one processor configured to execute one or more application modules and a data analytics module for analyzing diagnostic and environmental metric data. The system further comprises a building server communicatively coupled with the computing cloud, at least one gateway communicatively coupled with the building server, and at least one system device communicatively coupled with the at least one gateway. The at least one system device generates environmental metric data for further analysis and display, and the data is communicated to the computing cloud by way of the at least one gateway and the at least one building server.
US10826714B2 Smart power adapter
The present invention is directed to device and method for monitoring power input to a networked device The device includes a housing; an optional power converter configured for AC to DC, AC to AC or DC to DC conversion; a controller enclosed in the housing and configured to send one or more notifications and receive one or more instructions from a remote server; a relay operably coupled to the controller; a first circuit electrically connecting the power converter to power mains; a second circuit electrically connecting the power converter to the relay; and a third circuit electrically connecting the relay to the networked device, wherein the controller is configured to determine alternating current status on the first circuit and a direct current status on the second circuit or the third circuit.
US10826709B1 Shared blockchain data storage
Disclosed herein are methods, systems, and apparatus, including computer programs encoded on computer storage media, for communicating and sharing blockchain data. One of the methods includes sending current state information associated with a current block of a blockchain to one or more shared storage nodes of the blockchain network; sending a hash value to the one of the one or more shared storage nodes for retrieving an account state stored in the historic state tree; receiving the account state in response to sending the hash value; and verifying, by the consensus node, that the account state is part of the blockchain based on the hash value.
US10826704B2 Blockchain key storage on SIM devices
The disclosure relates to storing a blockchain private key on a SIM device and securing the blockchain private key through multi-factor authentication. Various layers of security that controls access to the blockchain private key on the SIM device may be employed. These layers may include authentication of the user device on the cellular network using the SIM device, storage on a hidden partition of the SIM device that only a key applet executing on the SIM device or on a user device processor is aware of, storage of the blockchain private key in encrypted form, and/or use of the key applet to enforce credentialed access to the blockchain private key (e.g., the key applet obtains from the hidden partition and/or decrypts the blockchain private key only if a valid passcode is supplied to it).
US10826703B1 Distributed ledger system for identity data storage and access control
Techniques are described for providing delegated access to identity data stored on distributed ledger(s), in which the identity data can include image(s) of physical credential(s) and/or biometric data used to identify individual(s). An application programming interface (API) enables access to the identity data. In some instances, the access is provided to an obfuscated version of the identity data and/or to a hash or other digest of the identity data. The identity data is provided by the API according to the individual's delegation. The individual can specify rules that indicate the particular types of identity data that may be provided and/or used for particular purposes, and/or the particular entities authorized to request the identity data.
US10826690B2 Technologies for establishing device locality
Technologies for establishing device locality are disclosed. A processor in a computing device generates an identifier distinct to the computing device. The processor transmits the identifier to a management controller via a hardware bus in the computing device. The processor generates a key and encrypts the key with the identifier to generate a wrapped key. The processor transmits the wrapped key to the management controller. In turn, the management controller unwraps the key using the identifier. Other embodiments are described and claimed.
US10826687B2 Key management method used in encryption processing for safely transmitting and receiving messages
A key management method serves as an electronic control unit (ECU) in an onboard network system having a plurality of ECUs that perform communication by frames via a network. The method includes storing a shared key, acquiring a session key, and executing encryption processing using the session key. The method further includes executing inspection of a security state of the shared key stored in a case where a vehicle is in at least one of the following particular states: the vehicle is not driving and is an accessory-on state; a fuel cap of the vehicle is open, and the vehicle is not driving and is fueling; the vehicle is parked, which is indicated by the gearshift; the vehicle is in a stopped state before driving, which is indicated by the gearshift; and a charging plug is connected to the vehicle, and the vehicle is electrically charging.
US10826685B1 Combined blockchain integrity
One or more systems implement a plurality of blockchains to track event data. The plurality of blockchains are arranged in tiered form, and the content and/or integrity of blockchains in higher tiers depends on, or at least derives from, the content and/or integrity of the blockchains in lower tiers. Depending on the specific structure and implementation, assurances, verifications, and the like may be provided for services and other resources using such blockchains in a repeatable manner.
US10826681B1 Blockchain node initialization
A method comprises one or more of measuring metrics of a node during boot up, storing the metrics, generating a signature record from the stored metrics, and broadcasting the signature record when said node initializes a network connection.
US10826676B2 Efficient implementation of fixed-rate farrow-based resampling filter
Systems and method for resampling are provided. A method of resampling includes receiving a first sampled signal that is sampled at a first sample rate, where the first sample rate is a submultiple of a system clock rate for a Farrow filter. The method further includes resampling the first sampled signal, using the Farrow filter having a plurality of finite impulse response (FIR) filters and an arbitrary position interpolator, at a second sample rate to generate a second sampled signal. The interpolation factor for each sample of the second sampled signal is retrieved from at least one lookup table stored in memory and the first sample rate and the second sample rate are fixed and locked to a common frequency reference. The method further includes outputting the second sampled signal at the second sample rate.
US10826669B2 Radio transmission device and radio transmission method
It is possible to improve the CQI reception performance even when a delay is caused in a propagation path, a transmission timing error is caused, or a residual interference is generated between cyclic shift amounts of different ZC sequences. For the second symbol and the sixth symbol of the ACK/NACK signal which are multiplexed by RS of CQI, (+, +) or (−, −) is applied to a partial sequence of the Walsh sequence. For RS of CQI transmitted from a mobile station, + is added as an RS phase of the second symbol and − is added as an RS phase of the sixth symbol. A base station (100) receives multiplexed signals of ACK/NACK signals and CQI signals transmitted from a plurality of mobile stations. An RS synthesis unit (119) performs synthesis by aligning the RS phase of CQI.
US10826666B2 Communication apparatus and communication method thereof
This invention is directed to a terminal apparatus capable of preventing the degradation of reception quality of control information even in a case of employing SU-MIMO transmission system. A terminal (200), which uses a plurality of different layers to transmit two code words in which control information is placed, comprises: a resource amount determining unit (204) that determines, based on a lower one of the encoding rates of the two code words or based on the average value of the reciprocals of the encoding rates of the two code words, resource amounts of control information in the respective ones of the plurality of layers; and a transport signal forming unit (205) that places, in the two code words, the control information modulated by use of the resource amounts, thereby forming a transport signal.
US10826664B2 Reference signal sending method, related device, and communications system
Embodiments of present invention disclose a reference signal sending method. The method includes: determining a time-frequency resource occupied by a reference signal of at least one antenna port in a transmission unit, the transmission unit includes a first part and a second part, any symbol in the first part is different from any symbol in the second part, the time-frequency resource is on a single symbol or a plurality of consecutive symbols within the first part, reference signals of each antenna port occupy a same symbol, and the single symbol or each of the plurality of consecutive symbols carries a reference signal of at least one antenna port; and sending the reference signal to user equipment on the time-frequency resource. In the embodiments of present invention, a reference signal mapping rule and an antenna port mapping solution that are applicable to an NR MIMO system are formulated.
US10826662B2 Transmitter and method for formatting transmit data into a frame structure
A transmitter has a transmit chain that is configured to format transmit data into a frame structure that comprises signal blocks interspersed with training sequences for assisting a receive operation. The transmit chain is configured to insert two training sequences between a signal block and its following signal block in the frame structure. The transmitter also comprises a sequence generator configured to form the two training sequences, and in particular to form them such that a first of the training sequences is a negative of the second. Having one training sequence being the negative of the other helps to avoid the Direct Current (DC) subcarrier and provides good properties for channel estimation.
US10826661B2 Enhanced sounding reference signaling for uplink beam tracking
Apparatus, systems, and methods to implement enhanced sounding reference signaling for uplink (UL) beam tracking in communication systems are described. In one example, an apparatus of an evolved Node B (eNB) comprising processing circuitry to broadcast system information about one or more sets of uplink transmit time intervals and bandwidths available for a sounding reference signal (SRS) transmission from a first user equipment (UE), configure one or more UE-specific SRS processes for the first UE for uplink beam tracking, and configure one or more millimeter wave access points (mmW APs) to transmit a mmW signal to the first UE and receive a mmW signal from the first UE. Other examples are also disclosed and claimed.
US10826658B2 System and method for multi-carrier network operation
Methods, devices, and systems for multi-carrier network operation are disclosed. In one embodiment, a method of performing channel scrambling in a multi-carrier network, wherein the multi-carrier network includes a first component carrier (“CC”) and a second CC between a base station and a user equipment (“UE”) comprises receiving a Cell Radio Network Temporary Identifier (“C-RNTI”) and a cell identification (“ID”) for at least one of the first CC and the second CC; and using the RNTI and the cell ID to perform scrambling of information transmitted on at least one of the first CC and the second CC.
US10826655B2 HARQ systems and methods for grant-free uplink transmissions
Systems and methods are disclosed for performing hybrid automatic repeat request (HARQ) for grant-free uplink transmissions. Some of the systems and methods disclosed herein may address problems such as how to perform acknowledgement (ACK) and/or negative acknowledgement (NACK), how to determine and signal retransmission timing, how to determine the transmission/retransmission attempt and the redundancy version (RV), and/or how to perform the HARQ combining.
US10826654B2 Method and system for improving wireless link efficiency
One embodiment of the present invention provides a wireless system. During operation, the system can determine a set of contiguous virtual sequence numbers and a virtual traffic category indicator for a set of packets belonging to different traffic categories associated with a network protocol stack. Each packet includes an original sequence number and an original traffic category indicator. The system then generates an aggregate frame comprising modified packets of the set of the packets. The system modifies a respective packet by modifying a payload of the packet to include the original sequence number and the original traffic category indicator of the packet and modifying a header of the packet to include a virtual sequence number of the set of contiguous virtual sequence numbers and the virtual traffic category indicator. The system determines that a wireless medium for a wireless transceiver is available for transmitting the aggregate frame.
US10826652B2 Adaptive interleaver for wireless communication systems
The described technology is generally directed towards adaptive interleaving in network communications systems based on one or more conditions with respect to user equipment. When conditions such as the speed of the user equipment indicate that performance can be increased by interleaving the data traffic, data is transmitted to the user equipment using an adaptive interleaver in the coding chain of MIMO systems. The adaptive interleaver is not used when conditions indicate performance is unlikely to improve. Adaptive interleaving may be performed in the frequency domain, in the frequency and time domain, or the frequency time and space domain. Multiple interleavers with different interleaving patterns may be used in the frequency domain and in the frequency and time domain. Adaptive interleaving may be based on one or more various criteria corresponding to the condition data received from the user equipment.
US10826650B1 Method of and device for decoding multiple transmissions of time related data as well as a method of verifying a device for decoding multiple transmissions of time related data
A method of decoding multiple transmissions of time related data is provided. The method comprises receiving and recognizing separate data blocks, each data bock having data that comprises at least a code word assigned to a system frame number that depends on the transmission time of the respective data block; demodulating each data block in order to obtain IQ-samples, likelihood ratios or representatives thereof for each data block; accumulating the IQ-samples, likelihood ratios or representatives thereof to a sum that is forwarded to a single-block decoder; and decoding the sum, thereby obtaining decoding results. Further, a device for decoding multiple transmissions of time related data as well as a method of verifying a device for decoding multiple transmissions of time related data are described.
US10826644B2 Blocking jamming signals intended to disrupt communications
Jamming systems uses wireless signals (e.g., radio waves) to deliberately prevent a target from accurately receiving desired wireless signals. The examples herein disclose an anti-jamming system that mitigates an effect that jamming signals have on a radio receiver. To do so, the anti-jamming system generates a plasma shield in a region of space between the target and the jamming system. Plasma is opaque to electromagnetic energy meaning that radio signals, lasers, microwave energy, and the like are unable to pass through the plasma, and instead, are absorbed by the plasma. As such, the jamming signals emitted by the jamming system are absorbed by the plasma shield and do not interfere with the target's radio receiver.
US10826640B1 Base spreading code determination for a wireless communication protocol
In one aspect, a method includes: iteratively, for each of a plurality of code maps each formed based on one of a plurality of base spreading codes: determining, in a computing system, a plurality of metrics for the code map; and computing, in the computing system, a weighted sum for the code map based on at least some of the plurality of metrics. After this iterative operation, a first base spreading code associated with the weighted sum having an optimal value may be selected. This first base spreading code may be used to configure one or more wireless devices with the first base spreading code to cause the one or more wireless devices to communicate coded symbols using the first base spreading code.
US10826639B2 Communication method and communication apparatus
The present disclosure provides an orthogonal codes based code division multiplexing method of performing the code division multiplexing of demodulation reference signals in multiple layers of resource blocks by using orthogonal matrices, the method comprising: changing the order of chips in particular rows of a first orthogonal matrix to obtain a second orthogonal matrix with the changed order of chips; and multiplying the chips in respective rows of the second orthogonal matrix by the demodulation reference signals in corresponding layers of resource blocks correspondingly in the time direction to obtain code division multiplexing signals. The technical scheme of the present disclosure can improve the power jitter situation of downlink signals on the time, thereby the usage efficiency of the power amplifier at the base station side can be improved.
US10826637B2 Radio communication device and response signal spreading method
A radio communication device capable of randomizing both inter-cell interference and intra-cell interference. In this device, a spreading section primarily spreads a response signal in a ZAC sequence set by a control unit. A spreading section secondarily spreads the primarily spread response signal in a block-wise spreading code sequence set by the control unit. The control unit controls the cyclic shift amount of the ZAC sequence used for the primary spreading in the spreading section and the block-wise spreading code sequence used for the secondary spreading in the spreading section according to a set hopping pattern. The hopping pattern set by the control unit is made up of two hierarchies. An LB-based hopping pattern different for each cell is defined in the first hierarchy in order to randomize the inter-cell interference. A hopping pattern different for each mobile station is defined in the second hierarchy to randomize the intra-cell interference.
US10826636B2 Optical supervisory channel processing method and apparatus in optical network
An overhead processing technology in an optical network and an overheads processing method, including: generating, by a network device, an optical supervisory channel (OSC) frame, where the OSC frame includes a plurality of overhead code block units, each of the plurality of overhead code block units bears an overhead of one type, the OSC frame carries overhead identification information, the overhead identification information is used to identify overhead types of overheads born by the plurality of overhead code block units, and overheads include an optical transmission section overhead, an optical multiplex section overhead, and an optical tributary signal assembly overhead; and sending, by the network device, the OSC frame.
US10826635B2 Synchronization of adaptive filter switching and channel equalization in full duplex (FDX) cable modems
Synchronizing methods and architectures for cable modems to transmit and receive Full Duplex (FDX) resource block allocations (RBAs) using filter switching and coordinated updating of equalization coefficients. A cable modem including a block of switchable filters, an analog front end (AFE) and a PHY/MAC System on a Chip (SoC) tuner to, at least in part, provide signals to switch the switchable filters in accordance with the RBA changes and synchronize updating tuner equalizations to match filter switching in a coordinated manner by marking received data at the AFE.
US10826632B2 Broadcasting signal transmission apparatus, broadcasting signal receiving apparatus, broadcasting signal transmission method and broadcasting signal receiving method
The present invention provides a method for transmitting a broadcasting signal. A method for transmitting a broadcasting signal according to the present invention suggests a system capable of supporting a next generation broadcasting service in an environment which supports a next generation hybrid broadcast using a terrestrial broadcast network and an internet network. Furthermore, in an environment which supports a next generation hybrid broadcast, suggested is an efficient signaling scheme which can embrace both a terrestrial broadcast network and an internet network.
US10826630B2 Measuring device, system and method for wirelessly measuring radiation patterns
An inventive measuring device comprises a measuring unit, a communication unit and a control unit. The measuring unit is adapted to wirelessly receive a measuring signal transmitted by a device under test. The control unit is adapted to derive at least one measuring device, especially a signal level, from the received measuring signal. The communication unit is adapted to only wirelessly transmit the at least one measuring result to a central measuring unit, not being part of the measuring device.
US10826627B1 Near-field measuring device
One example discloses a near-field measuring device, including: a near-field antenna; a tuning circuit galvanically coupled to the near-field antenna and configured to set a resonant frequency and/or a quality factor of the measuring device; and a current sensor inductively coupled to the near-field antenna and configured to generate a signal in response to a current flowing through the galvanic coupling between the near-field antenna and the tuning circuit; wherein the signal represents a measurement of non-propagating quasi-static near-field signals received by the near-field antenna.
US10826621B2 Rx delay line inteferometer tracking in closed-loop module control for communication
The present invention is directed to a communication signal tracking system comprising an optical receiver including one or more delay line interferometers (DLIs) configured to demultiplex incoming optical signals and a transimpedance amplifier configured to convert the incoming optical signals to incoming electrical signals. The communication signal tracking system further includes a control module configured to calculate a bit-error-rate (BER) of the incoming electrical signals before forward-error correction decoding, and use the BER as a parameter for optimizing settings of the one or more DLIs in one or more iterations in a control loop and generating a back-channel data.
US10826618B2 Tuning optoelectronic transceivers in optical network
A method of tuning optoelectronic transceivers in an optical network may include powering on a first optoelectronic transceiver, setting a channel wavelength of the first optoelectronic transceiver, transmitting a first request command from the first optoelectronic transceiver through the optical network to a second optoelectronic transceiver, and non-iteratively changing a channel wavelength of the first optoelectronic transceiver until a second request command is received from the second optoelectronic transceiver. The second request command may indicate to the first optoelectronic transceiver that the channel wavelength set by the first optoelectronic transceiver is able to travel through the optical network between the first optoelectronic transceiver and the second optoelectronic transceiver.
US10826613B1 Integrated compact in-package light engine
An integrated compact light engine configured in a on-board in-package optics assembly. The compact light engine includes a single substrate to integrate multiple optical-electrical modules. Each optical-electrical module includes an integrated optical transceiver based on silicon-photonics platform, in which a transmit path configured to output four light signals centered at four CWDM wavelengths and from four laser devices and to modulate the four light signals respectively by four modulators driven by a driver chipand to deliver a multiplexed transmission light. A receive path includes a photodetector to detect four input signals demultiplexed from an incoming light and a trans-impedance amplifier chip to process electrical signals converted from the four input signals detected. A multi-channel light engine is formed by co-integrating or co-mounting a switch device with multiple compact light engines on a common substrate member to provide up to 51.2 Tbit/s total capacity of data communication with median-or-short-reach electrical interconnect.
US10826612B2 Power supply
A host card is provided for supplying power to a transceiver module through a transceiver interface. The host card established a connection of the transceiver module with the transceiver interface. The transceiver module is operable in a low power mode and a high power mode. The host card requests module identification information from the transceiver module. In response to receiving the module identification information, the host hard verifies a module power condition and modifies an output voltage provided by a primary host power supply if the module power condition is verified.
US10826601B2 Optical switch with path continuity monitoring for optical protection switching
An Optical Protection Switch (OPS) includes a splitter connected to a transmitted input and a path continuity monitor transmitter and configured to output the transmitted input with a path continuity monitor signal to two paths; a switch connected to a receiver output and configured to provide one of two receiver inputs each from one of the two paths based on a setting of the switch; and one or more path continuity monitor receivers connected to the two receiver inputs and configured to detect a corresponding path continuity monitor signal from a complementary OPS, wherein the setting of the switch is set based upon the received path continuity monitor signals. The one or more path continuity monitor receivers each have a narrow optical bandwidth relative to an overall optical bandwidth of the transmitted input.
US10826598B1 Satellite communication system having mitigation action for rain fade and associated method
A satellite communication system may include a terrestrial station and a satellite having a communication link therebetween. The terrestrial station may include a controller and a transceiver cooperating therewith and configured to determine a degradation of the communication link, obtain satellite-derived, rainfall rate and rainfall height data, and determine a rain fade for the communication link based upon the satellite-derived, rainfall rate and rainfall height data. When the degradation of the communication link is caused by the rain fade, the controller determines a mitigation action for the satellite and communicates the mitigation action to the satellite.
US10826595B2 GNSS-assisted wireless communication
The disclosure concerns systems and methods for providing fifth generation or later (5G+) wireless communication, for in-flight and other applications, by way of integrating global navigation satellite system (GNSS) data among other features and aspects. In various embodiments, systems and methods are disclosed embodying one or more of: GNSS-assisted Doppler estimation and tracking; GNSS-assisted cell acquisition, measurement, and handover target cell selection; GNSS-assisted timing advance estimation and tracking; GNSS-assisted power control; and/or GNSS-assisted beam identification and tracking. Each of these, when considered individually or in any combination, provides GNSS-assisted wireless communication.
US10826591B1 Irregular grid sub sampling to reduce feedback overhead in a 5G or other next generation wireless network
The technologies described herein are generally directed to facilitating irregular grid subsampling to reduce feedback overhead. According to an embodiment, a system can comprise a processor and a memory that can store executable instructions that, when executed by the processor, facilitate performance of operations. The operations can include communicating, by the transceiver, a reference signal to a device. The operations can further include receiving, by the transceiver, a channel state report from the device that is based on an irregularly subsampled portion of the reference signal, based on a criterion. The operations can further include adjusting a communication parameter of the transceiver, based on the channel state report.
US10826590B2 Wireless communication device and wireless communication method
A wireless communication device and a wireless communication method. The wireless communication device includes one or more processors. The processor is configured to estimate an equivalent channel from a base station to user equipment based on a user equipment specific reference signal from the base station, and generate, according to the estimated equivalent channel, a channel state indication used to be fed back to the base station.
US10826589B2 Channel state information (CSI) reporting for bandwidth parts
Technology for a user equipment (UE) operable for channel state information (CSI) reporting for selected bandwidth parts is disclosed. The UE can be configured to decode CSI reporting parameters for one or more bandwidth parts (BWPs). The UE can be configured to calculate CSI for the one or more BWPs based on measurements from the one or more BWPs and the CSI reporting parameters for the one or more BWPs. The UE can be configured to generate one or more CSI reports for the one or more BWPs based on measurements from the one or more BWPs and the CSI reporting parameters for the one or more BWPs. The UE can be configured to encode the one or more CSI reports using the one or more BWPs.
US10826585B2 Apparatus, system and method of asymmetric beamforming training
For example, an EDMG initiator STA of an asymmetric beamforming training may be configured to, during a Beacon Transmission Interval (BTI) in a Beacon Interval (BI), transmit a beacon via a sector of the EDMG initiator STA, the beacon including allocation information to allocate a beamforming training allocation for asymmetric beamforming training of the sector during a Data Transfer Interval (DTI) in the BI after the BTI, the beacon including one or more Receive Training (TRN-R) subfields for the asymmetric beamforming training of the sector; during the beamforming training allocation, to listen on the sector for one or more Sector Sweep (SSW) frames from one or more EDMG responder STAs; and, during the beamforming training allocation, to transmit via the sector a sector acknowledgement (ACK) frame including information based on the one or more SSW frames.
US10826576B1 Use of RF stability as basis to control configuration of MU-MIMO service
A method and system for controlling application of MU-MIMO. The disclosure provides for considering a device's rate of change of RF conditions as a basis to decide whether to provide the device with MU-MIMO service. For instance, a base station could determine which of the base station's served devices each have threshold low rate of change of RF conditions. And on at least that basis, the base station could select each such device to receive MU-MIMO service. Or faced with a choice between devices to receive MU-MIMO service, the base station could compare the devices' rates of change of RF conditions and could select the devices that have lower rate of change of RF conditions to receive MU-MIMO service.
US10826574B2 Beam processing method, base station, and mobile terminal
The beam processing method for use in the base station includes: transmitting a first downlink transmission beam training signal to a UE, and receiving first recommended beam-related information reported by the UE in accordance with the first downlink transmission beam training signal; transmitting a second downlink transmission beam training signal to the UE, and receiving second recommended beam-related information reported by the UE in accordance with the second downlink transmission beam training signal; determining a target downlink transmission beam in accordance with the first recommended beam-related information and the second recommended beam-related information; and performing a switching operation on one or more currently-adopted valid downlink transmission beams in accordance with the target downlink transmission beam.
US10826571B2 Generation node-B (GNB), user equipment (UE) and methods for interleaving in multiple-input multiple-output (MIMO) arrangements
Embodiments of a Generation Node-B (gNB), User Equipment (UE) and methods for communication are generally described herein. The gNB may map data symbols to resource elements (REs) of virtual resource blocks (VRBs). The gNB may interleave the data symbols, on a per-VRB basis, to spatial layers of a multi-layer multiple-input multiple-output (MIMO) transmission. The data symbols may be interleaved based on different interleave patterns of VRB indexes for the spatial layers. The gNB may map the interleaved data symbols of the spatial layers to REs of physical resource blocks (PRBs) for orthogonal frequency division multiplexing (OFDM) transmission.
US10826569B2 Sub-channel allocation in orthogonal frequency division multiplex WLAN
A first communication device allocates respective frequency sub-channels for subsequent orthogonal frequency division multiple access (OFDMA) communications with two or more second communication devices, including allocating a first frequency sub-channel, a second frequency sub-channel, and a third frequency sub-channel between the first frequency sub-channel and the second frequency sub-channel. The first communication device generates and transmits a first downlink OFDMA data unit configured to prompt the two or more second communication devices to transmit as part of a multi-user transmission that spans the first frequency sub-channel, the second frequency sub-channel, and the third frequency sub-channel. The first communication device receives an uplink OFDMA transmission and determines that the uplink OFDMA transmission did not include a transmission within the third frequency sub-channel. In response, the first communication device does not transmit within the third frequency sub-channel when transmitting one or more subsequent downlink OFDMA data units via the communication channel.
US10826564B2 System of signal-over-power network adapters for low power networks
An integrated networking scheme that enables data communication and power delivery over a single connection for a network of low power devices spread across a local area is disclosed. The integrated networking scheme provides a simplified technique to transfer data signal and power signal using a single cable with power coupling/decoupling enabled through a bias T-network with diodes, which enable multi-point power injection. A special transistor-resistor network controls the received signal spectrum. The integrated networking scheme provides a signal over power adapter attached to each low power devices in the local area network to enable coupling and decoupling of data signal and power signal. The scheme provides wide-band data communication capabilities, enables plug-and-play power and data capabilities to remote devices.
US10826563B2 Power line communication system and method of auto-commissioning system nodes
A method for auto-commissioning of multiple device control modules on a power line during the power up of the system. Device control modules associated with the peripheral devices are powered up sequentially and a unique address is assigned to each device controller when it is powered up.
US10826560B2 Targeted rectangular conditioning
A vectoring controller for configuring a vectoring processor that jointly processes DMT communication signals to be transmitted over, or received from, a plurality of N subscriber lines according to a vectoring matrix. In accordance with an embodiment, the vectoring controller is configured, for given ones of a plurality of tones, to enable the given tone for direct data communication over a first set of N−Mk targeted lines out of the plurality of N subscriber lines, and to disable the given tone for direct data communication over a second disjoint set of Mk supporting lines out of the plurality of N subscriber lines, Mk denoting a non-null positive integer. The vectoring controller is further configured to configure the vectoring matrix to use an available transmit or receive power at the given tone over the second set of Mk supporting lines for further enhancement of data signal gains at the given tone over the first set of N−Mk targeted lines.
US10826556B2 Method for calibrating an onboard unit, system, and onboard unit therefor
The disclosed subject-matter relates to a method for calibrating an onboard unit of a vehicle identification system, the method comprising: emitting at least one polling message from a first radio beacon; in the first radio beacon, determining a link margin of a communication with a first onboard unit by evaluating a response message of the first onboard unit to the polling message(s); and sending a configuration message from the first radio beacon or a second radio beacon to the first onboard unit or to a second onboard unit with a same characteristic as the first onboard unit to adjust a receive sensitivity or a transmit power of the first or the second onboard unit, respectively, to a level derived from the determined link margin. Alternative embodiments relate to a system and to an onboard unit used in the method.
US10826554B2 Mobile phone case having hidden camera detecting function
Provided is a mobile phone case having a hidden camera detection function. The mobile phone case includes a case body whose one surface is formed to enclose portions, except for a display of a mobile phone and having an opening formed at a position corresponding to a light emitting diode (LED) light source and a camera of the mobile phone; a detector including a red filter for passing through light of a red wavelength of a wavelength range of 600 nm to 700 nm; and an operation unit whose one end is coupled to the detector and whose the other end is protruded to the other surface of the case body and for enabling the detector to move in a vertical or horizontal direction, wherein the detector covers or opens the opening by the operating unit.
US10826552B2 Methods and apparatus to detect external environmental conditions associated with a mobile electronic device
An example method includes determining, by executing an instruction with a processor, whether environmental condition data collected by a plurality of sensors of a mobile device complies with an environmental condition rule. The environmental condition rule including environmental thresholds associated with the environmental condition data, and the environmental condition data being representative of external conditions. The method includes when the environmental condition data does not comply with the environmental condition rule: determining, by executing an instruction with the processor, a level of severity of at least one of the external conditions which does not comply with the environmental condition rule; and in response to determining the level of severity does not satisfy a severity threshold, informing a user of the mobile device of the at least one of the external conditions; and in response to determining the level of severity satisfies the severity threshold, informing a third-party of the at least one of the external conditions absent input from the user of the mobile device.
US10826547B1 Radio frequency waveguide communication in high temperature environments
A system of a machine includes a network of a plurality of nodes distributed throughout the machine. Each of the nodes is operable to communicate through a plurality of electromagnetic signals. A controller is operable to communicate with the network of nodes through the electromagnetic signals. A plurality of waveguides is configured to confine transmission of the electromagnetic signals between the controller and one or more of the nodes. A radio frequency antenna is coupled to a first end of a first waveguide of the plurality of waveguides. A radio frequency transceiver is coupled between the controller and the radio frequency antenna. A capacitively coupled membrane at a second end of the first waveguide is configured to establish communication between the first waveguide and at least one node of the plurality of nodes.
US10826544B2 Signal filtering and signal processing apparatus and method
A signal processing method, a signal filtering apparatus, and a signal processing apparatus are provided. An input signal may be input into a filter having a passband, a superfluous signal of the passband may be output from the filter, and a target signal may be obtained by subtracting the superfluous signal from the input signal.
US10826541B2 Convolutional code decoder and convolutional code decoding method
The invention discloses a convolutional code decoder and a convolutional code decoding method. The convolutional code decoder performs decoding operation according to a received data and an auxiliary data to obtain a target data and includes an error detection data generation circuit, a channel coding circuit, a selection circuit, and a Viterbi decoding circuit. The error detection data generation circuit performs an error detection operation on the auxiliary data to obtain an error detection data. The channel coding circuit, coupled to the error detection data generation circuit, performs channel coding on the auxiliary data and the error detection data to obtain an intermediate data. The selection circuit, coupled to the channel coding circuit, generates a to-be-decoded data according to the received data and the intermediate data. The Viterbi decoding circuit, coupled to the selection circuit, decodes the to-be-decoded data to obtain the target data.
US10826540B2 Soft decoding of rate-compatible polar codes
A node receives transmissions associated with a given set of information bits, wherein each of the transmissions use a different polar code and share one or more information bits of the given set of information bits. The node determines, at each of a plurality of polar decoders of the node, soft information for each information bit included in an associated one of the transmissions, wherein each of the plurality of polar decoders is associated with a different transmission of the transmissions. The node provides, from each polar decoder of the plurality to one or more other polar decoders of the plurality, the determined soft information for any information bits shared by their respective associated transmissions, and uses the provided soft information in an iterative decoding process to decode one or more of the received transmissions.
US10826536B1 Inter-chip data transmission system using single-ended transceivers
A single-ended inter-chip data transmission system and a single-ended inter-chip data reception system are provided for processing data. A controlled Hamming weight parallel data encoder at a transmitter device accepts N data bits with an arbitrary Hamming weight as input and generates M data bits with a controlled Hamming weight as output, wherein M is greater than N. A transmission circuit provides a time-aligned transmission of the controlled Hamming weight encoded data across a single-ended data bus.
US10826522B2 Integrator circuit for use in a sigma-delta modulator
An integrator circuit (10) for use in a sigma-delta modulator (1) comprises a differential operational amplifier (130) with a first input node (E130a) and a second input node (E130b). The first input node (E130a) of the differential operational amplifier (130) is connected to a first current path (101) and the second input node (E130b) of the differential operational amplifier (130) is connected to a second current path (102). A first controllable switch (111) is arranged between the second input node (E130b) of the differential operational amplifier (130) and the first current path (101). A second controllable switch (112) is arranged between the first input node (E130a) of the differential operational amplifier (130) and the second current path (102). A third controllable switch (113) is arranged between a reference potential (RP) and the first current path (101). A fourth controllable switch (114) is arranged between the reference potential (RP) and the second current path (102).
US10826517B1 Circuit for and method of receiving data in an integrated circuit
An integrated circuit is described. The integrated circuit comprises an analog-to-digital converter circuit configured to receive an input signal at an input and generate an output signal at an output; and a monitor circuit coupled to the output of the analog-to-digital converter circuit, the monitor circuit configured to receive the output signal and to generate integration coefficients for the analog-to-digital converter circuit; wherein the integration coefficients are dynamically generated based upon signal characteristics of the output signal generated by the analog-to-digital converter circuit. A method of receiving data in an integrated circuit is also described.
US10826516B2 Gain calibration device and method for residue amplifier of pipeline analog to digital converter
A gain calibration device for an ADC residue amplifier includes a DAC and a flash ADC. The DAC is configured to convert the digital signal to an analog signal, and the DAC includes a calibration module used in the gain calibration of the ADC residual amplifier. The flash ADC is configured to generate a digital signal, the flash ADC includes a plurality of comparators, the total number of the plurality of comparators is equal to the number of output bits of the flash ADC, and the comparators are configured to be unevenly distributed in an input range.
US10826511B1 Pipeline analog-to-digital converter
A pipeline analog-to-digital converter (ADC) includes a hybrid multiplying digital-to-analog converter (MDAC) that includes multiple digital-to-analog converters (DACs), an amplifier, and a conversion circuit. The multiple DACs function in a pipelined manner such that each DAC receives an analog input signal in different cycles of a clock signal and generates a corresponding analog output signal. The amplifier amplifies each analog output signal to generate a corresponding amplified analog signal in different cycles of the clock signal. The conversion circuit successively approximates each analog output signal to generate multiple digital signals. Thus, a digital output signal of the pipeline ADC is generated based on the corresponding amplified analog signal and at least one of the multiple digital signals. The pipeline ADC utilizes one cycle for performing each of sampling, conversion, and amplification operations, which results into low power consumption by the pipeline ADC.
US10826510B2 Atomic oscillator and frequency signal generation system
An atomic oscillator includes: a light-emitting element; an atom cell that includes a first surface on which light beams from the light-emitting element are incident and a second surface from which the light beams incident on the first surface are emitted and accommodates alkali metal atoms in a gas state; a shield that accommodates the atom cell and has a magnetic shielding property, the shield having an opening; a heat transfer member that is in contact with a portion of the atom cell via an opening of the shield and has a thermal conductivity higher than a thermal conductivity of the atom cell; a temperature control element that is in contact with the heat transfer member and controls a temperature of the atom cell; and a light-receiving element that receives the light beams emitted from the second surface.
US10826507B1 Fractional divider with error correction
A clock product includes a phase-locked loop configured to generate an output clock signal based on an input digital value and a feedback digital value. The input digital value corresponds to a first clock edge of a frequency-divided input clock signal and the feedback digital value corresponds to a second clock edge of a feedback clock signal. The clock product includes an input fractional divider configured to generate the input digital value based on an input clock signal, a divider value, and an input clock period digital code corresponding to a period of the input clock signal.
US10826501B1 Ring oscillator based RC calibration circuit
A calibration operation adjusts a frequency of a ring oscillator to a desired frequency by adjusting programmable RC circuits in the stages of the ring oscillator. The programmable RC circuits have programmable capacitors, resistors, or both. The RC circuits account for most of the delay through the ring oscillator. Another circuit with its own RC time constant is calibrated based on the adjustments made to the RC circuits in the ring oscillator to achieve the desired frequency.
US10826498B2 Low power logic family
A semiconductor building block is disclosed which includes a plurality of logic gates, each having at least one P-channel device, at least one N-channel device, and a current controller controlling current for each of the plurality of logic gate having a voltage source input (vdd), a ground input (vss), a first input current (ibiasn) adapted to control current through the at least one N-channel device, a second input current (ibiasp) adapted to control current through the at least one P-channel device, and an analog voltage input (delta) representing i) a predetermined ratio between respective on currents in the at least one P-channel device to ibiasp, and ii) the predetermined ratio between respective on currents in the at least one N-channel device to ibiasn.
US10826495B2 On cable touchpad for configuring an electronic device
A flexible cable may include an electrical conductor, a dielectric insulator layer surrounding the electrical conductor, a jacket layer being flexible and surrounding the dielectric insulator layer, a shield surrounding the dielectric insulator layer and a connector electrically connected to the electrical conductor. The connector may be configured to connect to an electronic device and communicate electrical signals from the electrical conductor to the electronic device. The cable may further include a capacitive layer engaging the jacket layer. At least one capacitive pad may be disposed on the capacitive layer and be configured to communicate signals (e.g., capacitance variance) over a communications path in response to a user touching the capacitive pad(s) by his or her fingers.
US10826493B1 Gate driving circuit for providing high driving voltage
A gate driving circuit for providing a high driving voltage includes a first N-type high-voltage transistor and a second N-type high-voltage transistor connected in series between a driving voltage output node and a system low-voltage source. A voltage difference between a system high-voltage source and the system low-voltage source is greater than a withstand voltage of the first or second N-type high-voltage transistor. When the driving voltage output node is to output a system high voltage, the first N-type high-voltage transistor and the second N-type high-voltage transistor are turned off. Deep N-type well regions of the first N-type high-voltage transistor and the second N-type high-voltage transistor are applied with a first bias voltage. A voltage difference between the first bias voltage and the system low-voltage source is smaller than an interface breakdown voltage between the deep N-type well region and a P-type well region of the second N-type high-voltage transistor.
US10826491B1 Control circuit for load switch
A control circuit of a load switch including a charge pump circuit, an oscillator, and a current signal generator is provided. The charge pump circuit generates a control signal according to a clock signal. The load switch is turned on or turned off according to the control signal. The oscillator generates the clock signal according to a control current. The current signal generator provides a resistor string to receive a power voltage. The resistor string of the current signal generator generates a sensed current or a sensed voltage according to the power voltage. The current signal generator generates the control current according to a reciprocal of the sensed current or a square of the sensed voltage. A frequency of the clock signal is negatively related to the power voltage.
US10826490B2 Switch circuit
A switch circuit includes FETs including a first FET group including m FETs, a second FET group including n FETs at a position away from the input terminal than the first FET group, and an intermediate FET between the first FET group and the second FET group, and capacitive elements including m capacitive elements, n capacitive elements, and an intermediate capacitive element, the capacitive element (C1i) (i is an integer between 1 and m inclusive) is connected in parallel to i consecutive FETs of the first FET group starting from a top closer to the input terminal, the capacitive element (C2j) (j is an integer between 1 and n inclusive) is connected in parallel to j consecutive FETs of the second FET group starting from a top closer to the input terminal, and the intermediate capacitive element is connected in parallel to the intermediate FET.
US10826488B2 Switch device with switch circuits that provide high voltage surge protection
A switch device includes a common node that is connected to end nodes, such as that of computer interface ports. The switch device includes several switch circuits that can be connected in series to form a switch path between the common node and an end node. A switch circuit can include a main switch, such as a transistor that can be configured to withstand a positive or negative voltage surge by automatically changing the connection of its gate.
US10826482B1 Gate voltage control
Aspects of the present disclosure are directed to circuitry to control a gate voltage. As may be implemented in accordance with one or more embodiments, a voltage level is controlled for a field effect transistor (FET) having a floating gate and a target operating voltage above which the FET would be overcharged and around which the FET has a nominal operating range. Pulse circuitry is configured to apply energy to the floating gate in pulses, in operation the applied energy being pulsed low relative to the gate's target operating voltage, and then being changed by adjusting successive pulses until the gate reaches the target operating voltage. A feedback circuit samples a voltage level of, and enables the pulse circuitry to apply pulsed energy to, the floating gate for directing operation of the FET based on the target operating voltage in the nominal operating range.
US10826480B1 Gate driver to decrease EMI with shorter dead-time
An integrated circuit includes a gate driver circuit that controls high side and low side transistors to operate in buck or boost mode. In buck operating mode, after switching off the low side transistor, the gate driver circuit controls the high side transistor in a constant current mode. After the low side transistor is disabled and no longer conducts current, then the gate driver circuit controls the high side transistor to operate in full-enhancement mode. In boost operating mode, after switching off the high side transistor, the gate driver circuit controls the low side transistor in a constant current mode. After the high side transistor is disabled, then the gate driver circuit controls the low side switching transistor to operate in full-enhancement mode. In both buck and boost operation, the gate driver circuit operates without dead time in which both the high side and low side transistors are off.
US10826475B2 Shift register and driving method thereof, cascade driving circuit and display device
A shift register includes: a first control and output circuit coupled to precharge signal input terminal, first and second power supply terminals, first to third clock signal terminals, first signal output terminal, and configured to write second clock signal provided through the second clock signal terminal to the first signal output terminal during precharge and output phases, and write second operating voltage provided through the second power supply terminal to the first signal output terminal during reset phase; and a second control and output circuit coupled to the first and second power supply terminals, the third clock signal terminal, the precharge signal input terminal, second signal output terminal, and configured to write first operating voltage provided through the first power supply terminal to the second signal output terminal during the precharge and output phases, and write the second operating voltage to the second signal output terminal in the reset phase.
US10826473B2 PVT-independent fixed delay circuit
A PVT-independent fixed delay circuit includes a circuit structure that has a current generator and a multi-level inverter-based time delay unit. The inverter-based time delay unit has at least two NMOS transistors M5, M6, and at least two PMOS transistors M7, M8. The current generator has a circuit structure including at least two NMOS transistors M1, M2, at least two PMOS transistors M3, M4 and a resistor RS.
US10826469B2 High performance and low power TSPC latch with data agnostic setup and hold time
A True Single Phase Clock (TSPC) latch design with symmetrical input data paths. A first input data path includes: a first NMOS transistor coupling a gate of a first PMOS transistor to VSS in response to a rising input data signal, and a second PMOS transistor having a gate coupled to a logic low (VSS) input clock signal, whereby the first and second PMOS transistors turn on to couple a data input node to VDD. A second input data path includes: a third PMOS transistor having a gate coupled to a falling input data signal (VSS), a fourth PMOS transistor having a gate coupled to a logic low (VSS) input clock signal, whereby the third and fourth PMOS transistors turn on to couple a gate of a second NMOS transistor to VDD, whereby the second NMOS transistor turns on to couple the data input node to VSS.
US10826467B1 High-accuracy dual-mode free running oscillator
A free running oscillator (FRO) includes a reference current generator, a current converter, and first and second oscillator cores. The reference current generator generates a first current. The current converter generates a second current based on the first current. The first oscillator core generates a clock signal at a first frequency based on a first value of the second current. The second oscillator core generates a clock signal at a second frequency based on a second value of the second current. The second frequency may be lower than the first frequency, and the second value of the second current lower than the first value of the second current.
US10826461B2 Acoustic wave device
An acoustic wave device includes: a piezoelectric substrate; a comb-shaped electrode located on the piezoelectric substrate; a pair of reflectors located on the piezoelectric substrate, the pair of reflectors sandwiching the comb-shaped electrode; a first dielectric film located on the piezoelectric substrate, the first dielectric film covering the pair of reflectors and having side surfaces in regions between the comb-shaped electrode and the pair of reflectors; and a second dielectric film located on the piezoelectric substrate, the second dielectric film covering the comb-shaped electrode and being in contact with the side surfaces of the first dielectric film.
US10826459B2 Heterostructure and method of fabrication
The present invention relates to a heterostructure, in particular, a piezoelectric structure, comprising a cover layer, in particular, a layer of piezoelectric material, the material of the cover layer having a first coefficient of thermal expansion, assembled to a support substrate, the support substrate having a second coefficient of thermal expansion substantially different from the first coefficient of thermal expansion, at an interface wherein the cover layer comprises at least a recess extending from the interface into the cover layer, and its method of fabrication.
US10826447B2 Adaptive envelope tracking threshold
An apparatus of a transmitter and method are provided, the apparatus comprising a processor that calculates a supply voltage (SV) value (SVV) to provide as an SV for a power amplifier (PA) of the transmitter for transmissions during a transmission time slot (TS). When the SV
US10826443B2 Common mode overload recovery for amplifier
A circuit includes a first transistor having a first control input and first and current terminals. The circuit also includes a second transistor having a second control input and third and fourth current terminals. The third current terminal couples to the first current terminal at a first node. An output stage has a first input, a second input, and an output stage output. The first input couples to the fourth current terminal, and the second input couples to the second current terminal. A resistor has first and second resistor terminals. The first resistor terminal couples to the output stage output, and the second resistor terminal couples to the second control input. A third transistor has a third control input, a fifth current terminal, and a sixth current terminal. The fifth current terminal couples to the first resistor terminal, and the sixth current terminal couples to the second resistor terminal.
US10826440B2 Extended operational bandwidth amplifiers with fractional instantaneous bandwidth feed forward correction
Apparatus and method for extended operational bandwidth amplifiers with fractional instantaneous bandwidth feed forward correction. In one embodiment, the method includes amplifying a radio frequency (RF) input signal to provide an amplified RF signal and introducing a first delay in the amplified RF signal. The method also includes receiving an error signal of the amplified RF signal and centering a correction bandwidth with respect to the amplified RF signal. The method also includes amplifying the error signal and combining the amplified RF signal and the amplified error signal to reduce an error in the amplified RF signal. The first delay is smaller than a second delay caused by the error path.
US10826436B2 Power supply modulator and wireless communication apparatus including the same
A power supply modulator includes: a linear regulator; a switching regulator; and a mode-based connection circuit. The mode-based connection circuit includes a coupling circuit configured to drop an output signal of the linear regulator by a target coupling voltage in an envelope tracking (ET) modulation mode; and a coupling voltage management circuit configured to monitor a coupling voltage of the coupling circuit in another modulation mode, and selectively apply a voltage to the coupling voltage based on a monitoring result such that the coupling voltage is maintained at the target coupling voltage.
US10826433B2 Passive mixer with reduced second order intermodulation
The present disclosure generally relates to the field of receiver structures in radio communication systems and more specifically to passive mixers in the receiver structure and to a technique for converting a first signal having a first frequency into a second signal having a second frequency by using a third signal having a third frequency. A passive mixer for converting a first signal having a first frequency into a second signal having a second frequency by using a third signal having a third frequency comprises a cancellation component for generating a first cancellation signal for cancelling second order intermodulation components by superimposing the first signal weighted by a cancellation value on the third signal; and a mixing component having a first terminal for receiving the first signal, a second terminal for outputting the second signal, and a third terminal for receiving the first cancellation signal, wherein the mixing component is adapted to provide the second signal as output at the second terminal by mixing the first signal provided as input at the first terminal and the first cancellation signal provided as input at the third terminal.
US10826432B2 Quadrature oscillator
An oscillator circuit (10) for generating quadrature-related first and second oscillation signals having equal frequencies comprises a first oscillation circuit (VCO_I) configured to generate the first oscillation signal having a first controllable frequency, a second oscillation circuit (VCO_Q) configured to generate the second oscillation signal having a second controllable frequency; and a controller (100) configured to enable and disable oscillation of the first and second oscillation circuits (VCO_I, VCO_Q) and to control the first and second controllable frequencies, such that when the oscillation is enabled, the first and second controllable frequencies are controlled to be initially unequal and then to become equal.
US10826428B1 Monitoring and fault detection method and system for photovoltaic plants
To ensure photovoltaic (PV) panels at a PV plant constantly operate in an ideal state, an unsupervised system and method of intelligent performance evaluation and data-driven fault detection is used. The system and method enables engineers to check PV panels in time and implement timely maintenance. Monitored data are classified into three subsets: ideal period A, transition period S, and downturn period B. Based on A and B data, two regression prediction models are built which are tree-based and fit the non-continuous PV data well. Real-time measured power is compared with upper and lower reference baselines derived from the two predictive models, respectively. Using threshold ranges, the system and method achieves the instantaneous performance monitoring of PV power generation, and provides failure identification and operation and maintenance (O&M) suggestions to engineers.
US10826423B2 Motor driving apparatus and motor driving method
A motor driving apparatus includes a first driving control circuit (an MCU, a driving circuit, an input circuit, a power management IC) and a second driving control circuit (an MCU, a driving circuit, an input circuit, a power management IC). The first driving control circuit and the second driving control circuit are configured to drive a corresponding winding group of winding groups of a motor, and have a master mode for outputting a synchronous trigger signal in synchronization with driving of the corresponding winding group and a slave mode for synchronizing the driving of the corresponding winding group with an input synchronous trigger signal. When an error has occurred in an operation of the first driving control circuit in the master mode, the second driving control circuit switches an operation mode of the second driving control circuit from the slave mode to the master mode.
US10826421B2 Motor control device
A microcomputer includes a current command value setting unit configured to set a two-phase current command value in a two-phase rotating coordinate system for each of PWM cycles in a current control cycle, and an open-loop control unit configured to calculate a two-phase voltage command value for each of the PWM cycles, according to a motor voltage equation, based on the two-phase current command value for each of the PWM cycles that is set by the current command value setting unit and a rotation speed of an electric motor. The two-phase voltage command value is a command value of voltage that is to be applied to the electric motor.
US10826418B2 Printed circuit board based exciter
In one embodiment, a generator includes a rotor configured to rotate in cooperation with a stator to generate electrical power. An exciter of the generator includes at least one circuit board, a stationary exciter stator, and a control circuit. The circuit board is mechanically coupled to a rotor of the generator and includes at least one coil of an electrical conductor. The stationary exciter stator is configured to induce a current in the at least one coil of the at least one circuit board. The control circuit is configured to modify the current from the at least one coil and provide the modified current to a field of the generator.
US10826411B2 Device for controlling power conversion circuit
A controller for a power conversion circuit includes a first limiter for limiting a compensating voltage component within a compensating voltage switching level. A delay time measurement section measures an ON-delay time and an OFF-delay time, based on a binarized digital value and a PWM command value. A multiplier calculates an error voltage component average value by multiplying an average value of the ON-delay time and the OFF-delay time by a value that is obtained by dividing a direct-current power supply voltage by a half cycle of a triangular wave carrier signal. A second limiter extracts a component of the error voltage component average value that is beyond the compensating voltage switching level in absolute value. An adder sets a combined compensating voltage component to a sum of a limited compensating voltage component outputted by the first limiter and a limited error voltage component outputted by the second limiter.
US10826407B2 Load control device for controlling a driver for a lighting load
A load control device is configured to generate a control signal having a desired magnitude for controlling a load regulation device adapted to control the power delivered to an electrical load. The load control device may comprise a control terminal arranged to provide the control signal to the load regulation device, a communication circuit for generating the control signal, and a control circuit configured to generate an output signal that is provided to the communication circuit. The communication circuit may be characterized by non-linear operation. The control circuit may adjust the magnitude of the output signal in response to the difference between the magnitude of the control signal and the desired magnitude to adjust the magnitude of the control signal towards the desired magnitude. The control circuit may also be configured to determine if an incompatible load regulation device is coupled to the load control device.
US10826403B1 Active Y-rated capacitor control options for common-mode electromagnetic interference (EMI) reduction
A system includes an input voltage supply and a switching converter coupled to the input voltage supply. The switching converter includes a transformer having a primary coil and a secondary coil. The switching converter also includes a Y-rated capacitor with a top plate and a bottom plate, wherein the top plate is coupled to a first end of the secondary coil. The switching converter also includes a push-pull current source coupled to the bottom plate of the Y-rated capacitor. The switching converter also includes a controller coupled to the push-pull current source.
US10826402B1 Methods and systems of controlling switching frequency of LLC resonant power converters
Controlling switching frequency of LLC resonant power converters. At least one example embodiment is a method of operating LLC converter, including: measuring values indicative of current through a primary winding of a transformer of an LLC converter, the measuring during a first on-time of a first switching period of an electrically controlled switch coupled to the primary winding, and the measuring creates a current waveform; calculating a slope of the current waveform; and controlling frequency of switching the electrically controlled switch based on the slope.
US10826397B2 Switching power supply operable in an intermittent driving mode
A switching power supply includes: a switching output circuit configured to generate an output voltage from an input voltage by charging a capacitor by turning on and off an output transistor; a control circuit configured to halt the driving of the switching output circuit when charging electric charge to the capacitor per switching event is limited to a lower limit value and the output voltage, or a feedback voltage commensurate therewith, is raised from a predetermined reference voltage; and a lower limit value setting circuit configured to variably control the lower limit value during the driven period of the switching output circuit. For example, the lower limit value setting circuit can increase the lower limit value with increase in the number of times of switching.
US10826396B1 Automatic bandwidth control system for any switching frequency of power converter
An automatic bandwidth control system for any switching frequency of a power converter is provided. A pulse generator outputs a preset clock signal according to a comparing signal. A control circuit controls a first switch and a second switch according to frequencies of the preset clock signal and an external clock signal. A first current mirror is connected to an input voltage source and a first terminal of the first switch. A second comparator compares an output voltage of a second reference voltage source with an output voltage of the first current mirror to output the comparing signal. A second current mirror is connected to the input voltage source, an error amplifier and a first terminal of the second switch. A transconductance gain of the error amplifier is controlled by a current of the second current mirror to adjust a bandwidth of the power converter.
US10826389B1 Charge pump device and image sensor including the same
A charge pump device is configured to generate an output voltage from a square wave, where the charge pump device includes a semiconductor layer; first and second outer wells; a first inner well formed in the first outer well; a second inner well formed in the second outer well; a first capacitor, to which the input signal is applied, and connected to the first outer well; and a second capacitor connected to the first capacitor and second outer well, wherein the first voltage is applied to the first outer well, and a voltage that is lower than the first voltage is applied to the second outer well.
US10826387B2 Charge pump and method for operating a charge pump
Embodiments of a method for operating a charge pump and a charge pump are disclosed. In an embodiment, a method for operating a charge pump involves during a first operating phase of the charge pump, setting a first current source of the charge pump according to a second current source of the charge pump, and, during a second operating phase of the charge pump that is subsequent to the first operating phase, providing current from the first current source to a load of the charge pump.
US10826386B2 Multi-stage charge pump regulation architecture
A multi-stage charge pump including a first stage configured to generate a first output voltage, a last stage configured to receive the first output voltage from the first stage and output a second output voltage, a switch configured to receive the second output voltage from the last stage, and a voltage regulator circuit configured to control the second output voltage of the last stage to maintain a substantially constant on-resistance of the switch.
US10826384B2 Soft-start circuit for converters, corresponding converter device and method
A circuit includes an input node configured to receive an input reference signal. An output node is configured to provide a replica of the input reference signal with a respective scaling ratio to the input reference signal at the input node. A digital-to-analog converter has a reference input configured to receive the input reference signal from the input node, a digital input configured to receive a digital input signal having a digital signal value, and a digital-to-analog converter output configured to provide an output signal from the digital-to-analog converter resulting from conversion to analog of the digital input signal. The output node of the circuit is configured to sense the output signal from the digital-to-analog converter and to provide the replica of the input reference signal at the output node.
US10826375B2 Frequency jitter for a power converter
A controller for use in a power converter comprising a request control circuit coupled to receive a feedback signal representative of an output of the power converter. The request control circuit is coupled to generate a request signal for controlling a power switch. The request signal can include a synchronization signal in response to the feedback signal and a jitter average signal. The synchronization signal is generated by the request transmitter circuit and corresponds to an average on time for controlling the power switch.
US10826373B2 Current pulse transformer for isolating electrical signals
A communication circuit for communication over a voltage isolation barrier, the communication circuit including a pulse driven transformer coupled to a current sensing input, wherein information is transferred in the current domain and wherein during the information transfer, the receiver input is made low ohmic, a current pulse transformer including a primary winding, a core, and a secondary winding, a resistor in parallel with the secondary winding, a current sensor having a low ohmic input to receive a pulse from the secondary winding, and a signal processing unit to extract information from the received pulse.
US10826366B2 DC excitation of the doubly fed brushless induction starter generator
A doubly fed brushless induction starter generator includes a stator and a rotor, which are separated by an air gap. The stator includes stator winding slots, each of which includes a first layer of power windings, a second layer of power windings, and a third layer of control windings, which include 2-pole single-phase windings. The control windings are arranged in the stator winding slots between the air gap and the first and second layers of power windings. Direct current is delivered to control windings in the generator as an excitation current to thereby produce a magnetic flux, through which the stator is moved to produce and alternating current in the power windings as an output current. The output current can be delivered to an electrical load, such as an electrical component on an aircraft.
US10826363B2 Additively manufactured assemblies for electrical machines
Electrical machines, components thereof, and methods for manufacturing the same are provided. In one aspect, methods for additively manufacturing a rotor assembly for an electrical machine is provided. The method includes additively printing the rotor core and shaft of the same material composition. In another aspect, an electrical machine is provided. The electrical machine includes a stator assembly that includes a stator core having a plurality of poles with magnetic slot wedges positioned between adjacent poles to reduce tooth harmonics. The electrical machine also includes a rotor assembly having a rotor core that is formed as a solid core. In yet another aspect, a rotor assembly for an electrical machine is provided that includes slots that reduce eddy current losses in the rotor core during operation of the electrical machine.
US10826362B2 Laminated iron core and method for manufacturing same
In a laminated iron core formed by laminating a plurality of iron core pieces, at least one of an inner circumferential portion or an outer circumferential portion of the iron core piece is provided with a connection recess part which is connected with a connection part of a caulking piece detachable in a radial direction from the connection recess part, an outer circumferential edge of the connection part has the same shape as an inner circumferential edge of the connection recess part, and a bottom portion of the connection recess part is not configured by a single straight line.
US10826351B2 Motor rotor holder and motor
A motor rotor holder and a motor are provided according to the present application. The motor rotor holder is rotatably supported in a housing of the motor, and the motor rotor holder includes: a first cooling channel which allows interior spaces at two axial sides of a rotor in the housing to be in communication with each other so as to direct a first cooling medium through the first cooling channel; and a second cooling channel which is in communication with an exterior of the housing so as to direct a second cooling medium through the second cooling channel. The first cooling channel and the second cooling channel are provided to have a common heat conduction portion, and the first cooling medium is allowed to exchange heat with the second cooling medium via the common heat conduction portion.
US10826346B2 Stator for rotating electrical machine and rotating electrical machine
A stator for a rotating electrical machine includes a stator core, two insulators, and conductive wires forming coils. At least one of the insulators includes guide grooves and through-grooves. The through-grooves include at least two first grooves each of which divides at least two of the guide grooves. Each of the first grooves has a recess that is recessed in the circumferential direction with respect to the rest of the first groove at a portion that divides one of the at least two guide grooves divided by the first groove. The conductive wires extending through the corresponding through-grooves and outward in the radial direction of the insulator base are guided in the circumferential direction by the corresponding guide grooves. The conductive wires extend through the recesses in the corresponding first grooves.
US10826345B2 Conductor and method of forming thereof
A conductor a method of forming a conductor can include providing a hollow base conductor defining a fluid channel along the base conductor, and a solid conductor arranged about the perimeter of the hollow base conductor, wherein the fluid channel can be configured to allow a fluid to flow via the channel.
US10826340B2 Rotor for a synchronous motor
A rotor for a synchronous motor includes teeth arranged at regular intervals, project from a rotor core in the radial direction, and taper in a cross-section in the direction of the rotor core. The rotor also includes tangentially magnetized magnets that are arranged in gaps between the teeth and are trapezoidal in cross-section. The teeth are connected via a flexible joint to the rotor core, and the teeth are deflected in the tangential direction such that in every other gap between two teeth, first magnets rest against outer stops at the ends of the teeth facing away from the rotor core.
US10826337B2 Direct-current motor and actuator
A collar is provided on the outer periphery of a rotor shaft and is integrated with a cylindrical member through apertures penetrating the outer wall of the rotor shaft.
US10826336B2 Display apparatus, display system, and driving method of the same
A display apparatus includes a main body; a power receiver configured to receive power from a wireless power transmission apparatus positioned outside of the main body; a driver configured to move the power receiver with respect to the main body; and a controller configured to control the driver to move the power receiver toward the main body or toward the wireless power transmission apparatus.
US10826333B2 NFC antenna power taking device
An NFC antenna power taking device includes an antenna, a rectifying module, an energy storage module, and a current adjusting module; the antenna is configured to convert the received electromagnetic field energy into a first voltage, the rectifying module is configured to rectify the first voltage to obtain a second voltage, the second voltage is configured to charge the energy storage module through the current adjusting module, the current adjusting module is configured to adjust the charging current, when the second voltage has a tendency to weaken due to the weakening of the electromagnetic field, the energy storage module is configured to discharge directly to maintain the stability of power supply and ensure the normal operation of the circuit, avoiding overload of the NFC field caused by the energy storage module with large capacity getting too much energy at the moment of the NFC device entry.
US10826331B2 Tunable/de-tunable wireless power resonator system and related methods
A wireless power transmission (WPT) system. Implementations may include a power source coupled with a first wireless power transmission (WPT) system and a load coupled with a second WPT system including a sense circuit. The second WPT system, using the sense circuit, may be configured to dynamically tune a resonance of the second WPT system with the first WPT system to a desired resonance frequency value to allow transfer of a desired voltage or a desired power to the load. The desired resonance frequency value may be less than a maximum possible resonance frequency value. The first WPT system may be capable of transmitting more voltage or more power than the second WPT system or the load can receive without inducing damage to the second WPT system or the load.
US10826329B2 Wireless power transfer pad with multiple windings and magnetic pathway between windings
A wireless power transfer (“WPT”) pad apparatus includes a ferrite structure and four windings adjacent to the ferrite structure. A horizontal surface of the ferrite structure is adjacent to each of the four windings and each of the four windings are wound in a horizontal pattern that is planar to the horizontal surface. The four windings are arranged in a two-by-two square pattern in a north-south-north-south polarity arrangement.
US10826321B1 Power busway tap box
A power busway tap box with integrated uninterruptable power supply (UPS) functionality is enabled. A busway may be utilized to distribute electrical power throughout a data center. A busway tap box may incorporate one or more components providing UPS functionality. When the busway is distributing alternating current (AC) power, the tap box may incorporate a rectifier, an electrical energy storage device (e.g., a lithium-ion battery), and an inverter. The tap box may keep a substantially conventional form factor, or an extended form factor to accommodate larger electrical energy storage device sizes. The busways may run overhead in a data center and the tap boxes may physically couple with the overhead busways and be disposed beneath them. By distributing the UPS functionality throughout the data center, the impact of UPS failures may be lowered and/or environmental maintenance costs may be reduced.
US10826318B2 Voltage increasing and decreasing device for power storage apparatus and power storage apparatus
A power storage apparatus includes a charge and discharge controller. To start a voltage increasing operation in a state where a smoothing capacitor is not charged, the charge and discharge controller supplies a nonrestrictive current to a voltage increasing and decreasing circuit after charging the smoothing capacitor with a restrictive current. When a second direct-current voltage is supplied to a second terminal, the charge and discharge controller charges the smoothing capacitor with an increased voltage by the voltage increasing operation after charging the smoothing capacitor with the restrictive current, reduces a potential difference between the charge voltage in the smoothing capacitor and the second direct-current voltage, and then closes a switch circuit.
US10826313B2 Power management systems for product demonstration fixtures
Power management systems for an electronic product demonstration fixture for demonstrating portable electronic devices. The product demonstration fixture may include an exhibition portion and a base portion. A portable electronic device offered for sale may be affixed to the exhibition portion. The base portion may include an electronic display, an auxiliary battery, and an auxiliary controller. The auxiliary controller may direct power from the auxiliary battery to the electronic display upon determining that a battery within the electronic display has fallen below a particular selected level. Similarly the auxiliary controller may direct power from the auxiliary battery to the portable electronic device offered for sale upon determining that a battery within the portable electronic device has fallen below a selected level.
US10826311B2 Alternating-current voltage detection circuit
An alternating-current voltage detection circuit for detecting an alternating-current voltage from an alternating-current power source according to one or more embodiments may include: a rectification circuit that performs full-wave rectification on an alternating-current voltage from the alternating-current power source and supplies a rectified output to a load; a series circuit comprising a first capacitor and a second capacitor electrically connected in series between one end of the alternating-current power source and the ground terminal of the rectification element; a discharge circuit that causes the second capacitor to discharge such that an absolute value of dv/dt voltage does not reach a predetermined voltage, wherein the second capacitor is electrically connected to the ground terminal side of the rectification element; and a predetermined period generator that outputs a signal after an elapse of a predetermined period of time from stoppage of a discharge operation of the discharge circuit.
US10826309B2 Terminal, heating apparatus and charging method for battery
A terminal can include a battery (11), a temperature detection circuit (13), a control circuit (14) and a heating apparatus (15), wherein the control circuit detects a temperature of the battery via the temperature detection circuit, and if the temperature of the battery is detected to be less than a first threshold, the control circuit keeps a charging loop for charging the battery disconnected and controls the heating apparatus to heat the battery; and if the temperature of the battery is detected to be greater than or equal to the first threshold, the control circuit controls the charging loop to be conducted for charging the battery. A heating apparatus and a charging method for a battery are also provided.
US10826304B1 Battery capacity translator and corresponding systems and methods
A battery capacity translator (209) includes an input (301), an output (302), and a conversion circuit (305) coupled between the input and the output. The conversion circuit receives stored energy capacity information (701,702) corresponding to one or more energy storage cells of a first type at the input, and converts the stored energy capacity information to modeled stored energy capacity information (703) corresponding to one or more other energy storage cells of a second type. This modeled stored energy capacity information is delivered to the output to emulate the energy storage cells of the second type in legacy systems.
US10826303B2 Chargeable device and charging method
A chargeable device and a charging method are proposed. The chargeable device includes a charging interface and a first charging circuit coupled to the charging interface. The first charging circuit receives voltage and current outputted by an adapter through the charging interface and to apply the voltage and current outputted by the adapter onto two terminals of multiple cells coupled in series built in the chargeable device to charge the multiple cells directly.
US10826302B2 Method for equalizing states of charge of a plurality of battery modules of a battery and corresponding apparatus
The present invention relates to a method for equalizing states of charge of a plurality of battery modules (20) of a battery (10). The method comprises identifying each of the battery modules (20) which is to be discharged by means of a load resistor (30) which is associated with the respective battery module for the purpose of equalizing the states of charge. The method comprises carrying out, for each battery module (20) or each identified battery module (20), a first evaluation, which is associated with the respective battery module, of its state of charge which occurs at a first time on a first day and/or of a first quantity of electrical energy and/or of a second quantity of electrical energy. An estimate for the first quantity of energy can be supplied by an energy conversion system to the battery (10) during the first day. An estimate for the second quantity of energy is supplied by the battery (10) to a load during the first day. The method comprises determining for each identified battery module (20), on the basis of the first evaluation which is associated with the respective battery module, whether a discharge time, at which the respective battery module (20) is discharged by means of the load resistor (30) which is associated with it, occurs during the first day.
US10826297B2 System and method for wind power generation and transmission in electrical power systems
Systems and methods of wind power generation in electrical power systems are described. According to one aspect, a wind turbine system can include a down tower portion having a main transformer configured to transform medium voltage power to another voltage power, a tower portion having one or more medium voltage cables configured to transmit medium voltage power, and, a nacelle portion. The nacelle portion can include a generator comprising a stator and a rotor. The stator may be connected to one or more medium voltage cables via a stator power path. The nacelle portion also includes a power converter coupled to the rotor of the generator, and, a step-up transformer coupled to the power converter and the one or more medium voltage cables. The step-up transformer can be configured to step-up low voltage power to medium voltage power.
US10826296B2 Method and system for applying electric fields to multiple solar panels
A solar cell management system for increasing the efficiency and power output of a solar cell and methods for making and using the same. The management system provides an electric field across one or more solar cells. The imposed electric field exerts a force on both the electrons and holes created by light incident on the solar cell and accelerates the electron-hole pairs towards the electrodes of the solar cell. The solar cell management system considers variations in configuration of solar cells to maximize the power output of the solar cells. The accelerated electron-hole pairs have a lower likelihood of recombining within the cells' semiconductor's material. This reduction in the electron-hole recombination rate results in an overall increase in the solar cells' efficiency and greater power output.
US10826294B2 Multi-source power distribution system
Systems and methods for controlling power distribution are provided. More particularly, in one embodiment, a method can include monitoring a first plurality of electrical characteristics for each power source of a plurality of power sources. The plurality of power sources can include a first generator, a second generator, an auxiliary power source, and an external power source. The method can include monitoring a second plurality of electrical characteristics for each bus of a plurality of buses. The plurality of buses can include a first electrical bus, a second electrical bus, and an electrical tie bus. The method can further include selectively controlling a power distribution of the plurality of power sources among the plurality of buses based, at least in part, on the first and second pluralities of electrical characteristics.
US10826279B1 Spark plug ground electrode configuration
A spark plug having a shell with a ground electrode recess. A ground electrode having an insertion end, a firing end, and a round cross-sectional profile toward the insertion end is inserted into the ground electrode recess of the shell. An attachment portion surrounds at least a portion of the ground electrode and includes a solidified bonding material at a connection interface between the ground electrode and the shell. In some implementations, the ground electrode can have a copper core that extends further into the shell, past the distal end of the insulator. In some embodiments, the ground electrode has a sheath surrounding the copper core that has aluminum and a high weight percentage of nickel.
US10826277B2 Optoelectronic component having a housing with a plurality of openings
An optoelectronic component includes a carrier with at least two radiation sources that generate electromagnetic radiation, including a housing consisting of a material non-transmissive to the electromagnetic radiation from the radiation sources, wherein at least two openings are provided in the housing, each opening is closed with a plate, the plate consists of a material transmissive to the electromagnetic radiation from the respective radiation source, and a radiation source is respectively assigned to an opening.
US10826276B2 Semiconductor laser
A semiconductor laser including an active zone and a waveguide, wherein the active zone includes an active layer configured to generate electromagnetic radiation during operation of the semiconductor laser, the waveguide is configured to guide the electromagnetic radiation generated during operation of the semiconductor laser within the semiconductor laser, the waveguide includes a subregion formed from a compound semiconductor material, wherein a proportion of a material of the compound semiconductor material gradually increases in the entire subregion along the vertical direction toward the active zone so that a refractive index of the subregion gradually decreases toward the active zone, and the proportion is an aluminum proportion or a phosphorus proportion.
US10826274B2 Grating structure for surface-emitting laser
A vertical-cavity surface-emitting laser (VCSEL) may include at least one layer forming a grating structure with a selected period, depth, and fill factor, wherein the period, the depth, and the fill factor of the grating structure are configured to achieve greater than a threshold level of efficiency for the VCSEL, less than a threshold current increase caused by power loss from higher order diffraction associated with the grating structure, and greater than a threshold polarization selectivity at an emission wavelength of the VCSEL.
US10826272B2 Single-pass ring-modulated laser
An optical source may include an optical gain chip that provides an optical signal and that is optically coupled to an SOI chip. The optical gain chip may include a reflective layer. Moreover, the SOI chip may include: a first optical waveguide, a first ring resonator that selectively optically coupled to a second optical waveguide and that performs phase modulation and filtering of the optical signal, the second optical waveguide, an amplitude modulator, and an output port. Note that the reflective layer in the optical gain chip and the amplitude modulator may define an optical cavity. Furthermore, a resonance of the first ring resonator may be aligned with a lasing wavelength, and the resonance of the first ring resonator and a resonance of the amplitude modulator may be offset from each other. Additionally, modulation of the first ring resonator and the amplitude modulator may be in-phase with each other.
US10826269B2 Multi-pulse generation for pulsed laser diodes using low-side drivers
A system for controlling a pulsed laser diode includes a power source configured to supply power to the pulsed laser diode and at least one driving branch between the power source and the pulsed laser diode. The at least one driving branch is configured to control power delivery from the power source to the pulsed laser diode. The at least one driving branch is connected to a cathode of the pulsed laser diode.
US10826268B1 Laser driver incorporating clamping circuit with freewheeling diode
A circuit includes a capacitance coupled between a high voltage node and ground, a laser diode having an anode coupled to the high voltage node and a cathode coupled to an output node, and a current source coupled between the output node and ground. The current source turns on based on assertion of a trigger signal and sinks current from the capacitance to ground to thereby cause the laser diode to lase, and turns off based on deassertion of the trigger signal. A clamping circuit is coupled between the output node and the high voltage node, and clamps voltage at the output node occurring when the current source switches off.
US10826267B2 Surface coupled systems
A system includes a surface coupled edge emitting laser that includes a core waveguide, a fan out region optically coupled to the core waveguide in a same layer of the surface coupled edge emitting laser as the core waveguide; and a first surface grating formed in the fan out region; and a photonic integrated circuit (PIC) that includes an optical waveguide and a second surface grating formed in an upper layer of the PIC, wherein the second surface grating is in optical alignment with the first surface grating.
US10826265B2 Optical frequency stabilizer using optical fiber delay line, and method for generating stable optical frequency signal
A frequency stabilizer includes: a delay line interferometer that receives an optical signal corresponding to one frequency mode of a pulsed laser, divides and transmits the received optical signal to a reference arm and a delay arm including an optical fiber delay line, and then outputs an interference signal between signals passing through the reference arm and the delay arm; a photoelectric converter that converts the interference signal into an electrical signal; a mixer that generates a baseband signal of the electrical signal by mixing a carrier frequency signal; and a feedback controller that transmits a control signal generated based on the baseband signal to the pulsed laser. The optical signal passing through the delay arm is weighted with a delay time caused by the optical fiber delay line compared to the optical signal passing through the reference arm, and the optical signal passing through the delay arm is frequency shifted to a carrier frequency of an oscillator. A carrier-envelope offset frequency of the pulsed laser is stabilized by an offset frequency stabilizer.
US10826255B2 Flippable electrical connector
A receptacle connector assembly includes an outer housing and a terminal module. The terminals module includes an insulator having a base and a mating tongue extending from the base and equipped with a plurality of contacts. The contacts include front contacting sections exposed upon the mating tongue and tail sections extending out of the base. The outer housing is of an insulative molding part or a metallic die cast, the terminal module is assembled in the outer housing, and thus a mating cavity is directly defined between the mating tongue and the outer housing.
US10826250B2 Power cord with in-line power control functionality
A power cord is described that includes “in-line” power control functionality. The power control functionality may selectively enable or disable a flow of electrical current through the power cord and/or selectively control an amount of electrical current that is permitted to flow through the power cord. The power control functionality may be activated and/or controlled through the receipt of control signals from an external device. The power cord may be configured to monitor the state of an electronic device to which it is connected and selectively activate and/or modify the operation of the power control functionality in response to the detection of a particular state of the electronic device. The power cord may also be configured to receive and analyze sensor data, and based at least on the analysis, selectively activate and/or modify the operation of the power control functionality.
US10826249B2 Rotary connector apparatus
A rotary connector apparatus includes: a ring-shaped fixed member; a ring-shaped rotating member rotatably fitted to the fixed member; a flexible flat cable housed in a housing space formed by the fixed member and the rotating member, the flexible flat cable having a plurality of wires, one end of the flexible flat cable being fixed to the fixed member and another end thereof being fixed to the rotating member, wherein a first connector housing attached to the fixed member accommodates a plurality of electrically conductive paths that respectively connect a plurality of first terminals to the plurality of wires at said one end of the flexible flat cable, and at least one of the plurality of electrically conductive paths is configured to removably receive a protection device so as to protect the path from overcurrent.
US10826248B2 Sliding contact arc suppression
A sliding power contact and method includes a mobile load device connector and a socket. The mobile load device connector includes a non-current power pin having a first length, a current power pin having a second length less than the first length, a neutral pin, and a ground pin. The socket includes a non-current power contact configured to electrically couple with the non-current power pin, a current power contact configured to electrically couple with the current power pin, a neutral contact configured to electrically couple with the neutral pin, and a ground pin configured to electrically couple with the ground pin. An arc suppressor is directly coupled to at least one of the non-current power pin and the non-current power contact, wherein the arc suppressor, the non-current power pin and the non-current power contact form a current path between the current power pin and the current power contact.
US10826246B2 Contact arrangement of electrical connector
An electrical connector includes an insulative housing and a plurality of contacts retained within the housing as a contact module. The housing includes a base and a mating tongue forwardly extending from the base. The contacts are arranged with two rows contacting sections respectively exposed upon two opposite surfaces of the mating tongue, and one row mounting sections for mounting to a same plane of a printed circuit board. Each contact has a linking section between the contacting section and the mounting section. The contacts are grouped by one grounding contact associated with a pair of neighboring differential pair signal contacts in an isosceles triangular configuration wherein the grounding contact is located at the top apex. The linking section of grounding contact of the outermost group is widened compared with those of the remaining contacts for lowering the corresponding impedance.
US10826238B2 Connector and connector assembly
A connector assembly includes a female housing (11) and a male housing (12) connectable to each other. Male terminal fittings (39) have tabs (41) projecting into a receptacle (36) of the male housing (12), and a moving plate (15) to be movably accommodated into the receptacle (36). The moving plate (15) includes a plate body (94) with positioning holes (96) enabling the insertion of the tabs (41) and a peripheral wall (95) connected to a periphery of the plate body (94) and slidable on an inner surface of the receptacle (36). An operating portion (103) for removal is provided on the peripheral wall (95) and is exposed from the receptacle (36).
US10826236B2 Disconnecting and supporting quick release electrical fixtures
A plug is connectable to an electrical socket which has concentric ring shaped openings housing electrical contacts. The plug has a body supporting electrically conductive concentric rings insertable into the socket to contact the electrical contacts to form electrical connections. A hollow post extends away from the plug body and has a transverse aperture therethrough. A rod with a narrowed portion is slideable within the post. A spring biases the rod towards a latched position in which the narrow portion is not adjacent to the transverse aperture. A cross-brace is connected to a portion of the rod which extends outside of the post. Pins engage the cross brace and can be pushed to move the brace, and thereby push the rod to position the narrowed portion to an unlatched position adjacent the aperture to enable removal of the plug.
US10826235B2 Latch mechanism for mobile systems and related methods
Various techniques are provided to secure a connector to a module, for example, for convenient and reliable use in mobile environments. In one example, a system includes a housing and a latch mechanism. The latch mechanism includes first and second opposing latch members that define a cavity configured to receive a cable connector. The latch mechanism also includes first and second bias members configured to maintain the latch members in tension with each other. The latch members are configured to slide relative to each other in response to the bias members to secure the connector relative to the housing. Additional systems and methods are also provided.
US10826234B2 Connector assembly with direct mount housing
A connector assembly includes a housing. The housing defines a cavity configured to receive a coaxial electrical terminal. The housing has a first end an a second end opposite the first end. The housing also has a first side and a second side opposite the first side. The first side and second side have opposed locking ribs. The coaxial electrical terminal has a wire end and a terminal end oriented orthogonal to the wire end. When the housing engages a corresponding mounting bracket, locking arms extending from the corresponding mounting bracket impart a retention force on the opposed locking ribs and inhibit a rotation of the housing about a mating axis of the coaxial electrical terminal.
US10826233B1 Resilient latch with low stress concentrations
An electrical connector having a latch which extends from the first housing surface of the housing. A mounting portion extends from the latch arm to the first housing surface. A first mounting surface of the mounting portion extends at a first angle from the first housing surface in a direction toward the mating connector latching end. The first mounting surface extends from the first latch arm surface at a second angle. The length of the mounting portion as measured between a vertex of the first angle and a vertex of the second angle along the first housing surface is greater than the distance that the first latch arm surface is spaced from the first housing surface. The latch arm is pivotable about the mounting portion. The latch and the mounting portion have low stress concentrations when the latch arm is pivoted about the mounting portion.
US10826230B1 Spring mouth connector
A coaxial cable connector has a tubular post that passes through an annular end of an unthreaded inner shell for grasping a mating connector and through an annular end of a body, the body and the inner shell irrotatably coupled to the post neck.
US10826229B2 Connector with coupling portion
A connector (10) includes terminals (14) and a housing (12) with terminal accommodating portions (36) to accommodate the terminals (14). Each terminal (14) includes a terminal connecting portion (18) extending in a front-rear direction and a vertical wire connecting portion (20) perpendicular to the front-rear direction. A first coupling portion (22A) extends in the front-rear direction from a rear end of the terminal connecting portion (18), and a second coupling portion (22B) extends vertically from an extending end of the first coupling (22A) to the wire connecting portion (20). Projections (30) project from sides of the first coupling portion (22A) in a third direction perpendicular to the front-rear direction and the vertical direction. Grooves (42) are open in inner walls (38A) of the terminal accommodating portion (36) facing each other in the third direction, and the projections (30) contact inner walls of the grooves (42) in the vertical direction.
US10826220B1 Electrical connector having electrical terminal servicing feature
An electrical connector includes a housing having an interior space and a retaining finger extending into the interior space. An electrical terminal and a terminal position assurance are each disposed within the interior space of the housing. The terminal position assurance is movable relative to the housing between (1) a pre-lock position, wherein the retaining finger prevents the electrical terminal from being withdrawn from the interior space of the housing, and the terminal position assurance does not prevent the retaining finger from moving relative to the housing; (2) a service position, wherein the retaining finger does not prevent the electrical terminal from being withdrawn from the interior space of the housing; and (3) a lock position, wherein the retaining finger prevents the electrical terminal from being withdrawn from the interior space of the housing, and the terminal position assurance prevents the retaining finger from moving relative to the housing.
US10826218B2 Thermally insulating electrical contact probe
A thermally insulating electrical contact probe including a mounting plate having a tubular pin guide defining a pin pass-through, a cover coupled to the mounting plate and having a neck portion enclosing the pin guide, and an insulating pin having a shank portion disposed within the pin pass-through and defining a conductor pass-through, a flange portion extending radially outwardly from the shank portion above a top of the pin guide, and a pocket portion extending from the flange portion and defining a pocket. The electrical contact probe may further include a spring disposed intermediate the flange portion and the mounting plate, the spring biasing the flange portion away from the mounting plate, an electrical contact pad disposed within the pocket, and an electrical conductor coupled to the electrical contact pad and extending through the conductor pass-through.
US10826216B2 Outer conductor arrangement for a coaxial plug connector
The invention relates to an outer conductor arrangement (4) for a coaxial connector (2). According to the invention, the outer conductor arrangement (4) is of two-part design, comprising a contact component (6) for electrical and mechanical connection to an outer conductor of a mating connector and comprising a connection component (8b) for electrical and mechanical connection to an outer conductor of a coaxial cable, wherein the contact component (6) and the connection component (8b) are electrically and mechanically connected to one another at a contact section (12b), wherein a compensation section (26) for compensation of a component difference in the region of the contact section (12b) is arranged between the contact component (6) and the connection component (8b).
US10826211B2 Connector contact with dual contact beams derived from different contact strips
A card edge connector with an insulative housing includes opposite longitudinal side walls along a longitudinal direction with a receiving slot therebetween in a transverse direction. Each side wall forms a plurality of passageways. A plurality of contacts are respectively received within the corresponding passageways. Each contact includes a retaining section, a contacting section extending from the retaining section into the receiving slot, and a leg extending downwardly from the retaining section out of the housing. Each contact is further equipped with an auxiliary spring beam with an additional contacting section extending into the receiving slot. The contacts are initially linked to a single contact carrier strip so as to be simultaneously inserted into the corresponding passageways, respectively.
US10826210B2 Base module and aviation computer system having the base module
A base module and an aviation computer system having the base module includes a printed circuit board, an integrated power supply and communication connector, a SMARC connector, and an FMC connector. A power supply circuit supplies the SMARC connector and the FMC connector with power from dedicated power supply contacts of the integrated power supply and communication connector, and a communication circuit connects the SMARC connector to dedicated communication contacts of the integrated power supply and communication connector. In addition, signal lines are provided on the printed circuit board in order to connect dedicated input/output contacts of the SMARC connector to corresponding dedicated input/output contacts of the FMC connector.
US10826208B1 Sensor with integrated electrical contacts
A PCB mountable sensor having spring electrical contacts and mechanical attachment means is provided. In use, the spring contacts mate with exposed pads on a target PCB to form an electrical interface therebetween. The attachment means releasably secures the sensor to the PCB against the force of the spring contacts. The attachment means can be, for example, an adapter that fits like a collar around the sensor, or can be integral with the sensor. The design of the sensor provides interchangeability with no or limited tools, no PCB resident connectors, and no potential damage to the PCB upon rework or replacement.
US10826205B2 Double wiping blade contact
A double wiping blade contact assembly has a blade contact and a double wiping contact. The double wiping contact has first and second stage contact wiping areas. The second stage being at a distance from the first stage and wherein the first stage contact wiping area has an upper lead-in flange that guides the blade contact under the first stage contact wiping area and the second stage contact wiping area has a lower lead-in flange that guides the blade contact over the second stage contact wiping area.
US10826203B2 Metallic material for electronic components and method for producing same, and connector terminals, connectors and electronic components using same
The present invention provides metallic materials for electronic components, having low degree of whisker formation, low adhesive wear property and high durability, and connector terminals, connectors and electronic components using such metallic materials. The metallic material for electronic components includes: a base material; a lower layer formed on the base material, the lower layer being constituted with one or two or more selected from a constituent element group A, namely, the group consisting of Ni, Cr, Mn, Fe, Co and Cu; an intermediate layer formed on the lower layer, the intermediate layer being constituted with one or two or more selected from a constituent element group B, namely, the group consisting of Ag, Au, Pt, Pd, Ru, Rh, Os and Ir; and an upper layer formed on the intermediate layer, the upper layer being constituted with an alloy composed of one or two or more selected from the constituent element group B, namely, the group consisting of Ag, Au, Pt, Pd, Ru, Rh, Os and Ir and one or two selected from a constituent element group C, namely, the group consisting of Sn and In; wherein the thickness of the lower layer is 0.05 μm or more and less than 5.00 μm; the thickness of the intermediate layer is 0.01 μm or more and less than 0.50 μm; and the thickness of the upper layer is 0.02 μm or more and less than 0.80 μm.
US10826199B2 Multipolarized vector sensor array antenna system for radio astronomy applications
The present invention generally relates to an electromagnetic field vector sensing receive antenna array system for installation and deployment on a structure. A multipolarized array of collocated antenna elements is used to provide calibrated amplitude and phase radiation patterns with monopole, dipole, and loop modes generated from crossed loops connected to a beamformer. The invention has applications for installation and deployment on a tower, balloon, satellite for radio frequency sensing and location of low-frequency galactic emissions. The novel receive antenna array system comprises a multipolarized vector sensor antenna array. The disclosed direction-finding vector sensor can be installed and deployed on a structure and can detect and locate radio frequency emissions from galactic sources. The key system components of the receive antenna array system consist of deployable antennas, receivers, signal processing computer, and communications link.
US10826194B2 Scalable phased array package
Techniques regarding a scalable phased array are provided. For example, various embodiments described herein can comprise a plurality of integrated circuits having respective flip chip pads, and an antenna-in-package substrate having a ball grid array terminal and a plurality of transmission lines. The plurality of transmission lines can be embedded within the antenna-in-package substrate and can operatively couple the respective flip chip pads to the ball grid array terminal. In one or more embodiments, a die can comprise the plurality of integrated circuits. Further, in one or more embodiments a combiner can also be embedded in the antenna-in-package substrate. The combiner can join the plurality of transmission lines.
US10826192B2 Antenna and method of manufacturing the same, display panel
An antenna includes: a first substrate and a second substrate; a first antenna electrode is disposed on a side of the first substrate away from the second substrate; a second antenna electrode is disposed on a side of the second substrate away from the first substrate and a microstrip line is disposed on a side of the second substrate close to the first substrate; a liquid crystal layer is disposed between the first substrate and the second substrate; at least one drive electrode assembly is disposed between the first substrate and the second substrate. The at least one drive electrode assembly is configured to achieve impedance matching of the antenna by controlling liquid crystal molecules of the liquid crystal layer to deflect.
US10826189B2 Frequency selective surface
Embodiments provide a frequency selective surface (FSS). The FSS includes uniformly arranged FSS units. Each FSS unit includes a dielectric slab, a cross-shaped metal patch, and N square-ring metal patches. The cross-shaped metal patch is adhered to a first surface of the dielectric slab, and divides the first surface of the dielectric slab into four parts. Each part has a same size and a same quantity of the square-ring metal patches. The N square-ring metal patches are adhered to the first surface of the dielectric slab, and are arranged uniformly, and N is a positive integer power of 4. Lengths of the cross-shaped metal patch in two mutually perpendicular directions are equal, and both a length in each direction and a width of a gap between adjacent patches need to meet a specific condition.
US10826188B2 Electromagnetically reflective plate with a metamaterial structure and miniature antenna device including such a plate
An electromagnetically reflective plate for a miniature antenna device includes: etched conductive elements on a first dielectric substrate layer; an apertured ground plane placed between the first substrate layer and a second dielectric substrate layer; a set of metal through-vias formed in the thickness of the two substrate layers, each including an upper end making contact with one of the conductive elements, a lower end reaching a lower face of the second substrate layer, and passing through the ground plane without electrical contact in one of its apertures. Each conductive element makes contact with a plurality of vias and each via of each conductive element is connectable to another via of a neighboring conductive element using a corresponding electrical connection making contact with the lower end of this via. At least some of the electrical connections include one or more meanders.
US10826187B1 Radiating interrupted boundary slot antenna
Cavity backed slot antenna systems and methods are provided. The systems include a frequency selective surface, a housing containing a cavity, and a feed structure between at least portions of the frequency selective surface and the cavity. The frequency selective surface can be embedded in a non-conductive slot in a first ground plane. The cavity can contain a space filler. Embodiments of the present disclosure provide an antenna with a relatively wide bandwidth and a relatively small antenna element.
US10826184B2 Unbalanced slot aperture (USA) radiator
Systems and methods are provided for Planar Ultrawideband Modular Antenna (PUMA) arrays that use slots as primary radiating mechanisms. Slot-based PUMA arrays in accordance with an embodiment of the present disclosure can achieve approximately the same performance as dipole-based PUMA arrays. Systems and methods according to embodiments of the present disclosure enable wideband slot-based antenna arrays that can be planar printed using etched metallic traces and plated through vias, have a single input per unit cell, and have unit cells that are coupled to radiating slot(s) that are continuous across multiple unit cells.
US10826183B2 Circularly polarized antennas
An antenna includes a dielectric substrate, a circular patch overlying the dielectric substrate, and a metamaterial ground plane. One or more antenna feeds are coupled to the circular patch. The antenna feeds may include impedance transformers. The metamaterial ground plane includes a plurality of conductive patches and a ground plane. The conductive patches are arranged along a first plane below the circular patch and are separated from the circular patch by at least the dielectric substrate. The conductive patches are arranged in a pattern that provides circular symmetry with respect to a center of the circularly polarized antenna. The ground plane is arranged along a second plane and is electrically coupled to at least a first portion of the conductive patches. One or more of the conductive patches and the ground plane are coupled to ground.
US10826176B2 Dielectric resonator antenna
A dielectric resonator antenna array system includes a first array of a plurality of dielectric resonator antennas arranged in a first orientation and that forms a first beam, and a second array of a plurality of dielectric resonator antennas arranged in a second orientation, that is different from the first orientation, and that forms a second beam. Further, a dielectric resonator antenna array system includes a first array of a first type of plurality of dielectric resonator antennas arranged in a predetermined orientation and that forms a first beam, and a second array of a second type of plurality of dielectric resonator antennas arranged in the predetermined orientation and that forms a second beam.
US10826175B2 Antenna apparatus for communicating with noncontact communication medium via electromagnetic waves
An antenna apparatus includes: a switch having a single one-side terminal and four other-side terminals; and a distributor that distributes electric power supplied via the switch to a terminal and a terminal with a phase difference of 90 degrees. The apparatus further includes a switch that switches to either of a state in which conduction is achieved between an other-side terminal of the switch and a horizontally polarized wave antenna, and a state in which conduction is achieved between the terminal of the distributor and the horizontally polarized wave antenna. The apparatus further includes a switch that switches to either of a state in which conduction is achieved between an other-side terminal of the switch and a vertically polarized wave antenna, and a state in which conduction is achieved between the terminal of the distributor and the vertically polarized wave antenna. The switches are controlled by a control unit.
US10826174B2 Antenna module
Disclosed herein is an antenna device that includes an antenna layer having a radiation conductor, a first ground pattern having a first slot, a feed layer stacked on the antenna layer through the first ground pattern and having a first feed pattern electromagnetically coupled to the radiation conductor through the first slot, and a first coupler pattern electromagnetically coupled to the first feed pattern or radiation conductor.
US10826172B2 Antenna apparatus and antenna module
An antenna apparatus provides a feed line through which an RF signal passes, a feed via which has a first end electrically connected to the feed line, a feed antenna pattern which is electrically connected to the second end of the feed via and which extends from the second end of the feed via in a first extending direction, a mirroring antenna pattern spaced apart from the feed antenna pattern and extending in a second direction opposite to the extending direction of the feed antenna pattern, a ground line electrically separated from the feed line, and a mirroring core pattern which electrically connects the ground line and the mirroring antenna pattern and is disposed to bypass the feed via.
US10826166B2 Plated, injection molded, automotive radar waveguide antenna
The radar system includes a split-block assembly comprising a first portion and a second portion. The first portion and the second portion form a seam, where the first portion has a top side opposite the seam and the second portion has a bottom side opposite the seam. The system includes at least one port located on a bottom side of the second portion. Additionally, the system includes radiating elements located on the top side of the first portion, wherein the radiating elements are arranged in a plurality of arrays. Yet further, the system includes a set of waveguides in the split-block assembly configured to couple each array to at least one port. Furthermore, the split-block assembly is made from a polymer and where at least the set of waveguides, the at least one port, and the plurality of radiating elements include metal on a surface of the polymer.
US10826159B2 Electronic device including antenna
An electronic device is provided. The electronic device includes a front glass plate, a back glass plate, and a side member including a conductive portion, at least one conductive pattern formed on an edge portion of the front glass plate, a wireless communication circuit positioned inside a housing and electrically connected to the conductive portion and the at least one conductive pattern. In addition, various embodiments understood through the disclosure may be provided.
US10826158B2 Printed and/or thin film integrated circuit with integrated antenna, and methods of making and using the same
A wireless communication device having an integrated antenna, and methods for making and using the same are disclosed. The device generally includes (a) a substrate; (b) an integrated circuit (IC) comprising a plurality of printed and/or thin film layers and/or structures on the substrate, (c) a dielectric or insulator layer in at least one area of the substrate other than the IC; and (d) an antenna on the dielectric or insulator layer, comprising one or more metal traces. The plurality of printed and/or thin film layers and/or structures include an uppermost layer of metal. The antenna has (i) an inner terminal continuous with the uppermost layer of metal or connected to the uppermost layer of metal through one or more contacts, and (ii) an outer terminal connected to the uppermost layer of metal through one or more contacts and optionally a metal bridge or strap.
US10826156B2 Portable cellular tower antenna ballast system
A ballast system includes a frame having first and second sides, each having first and second openings to accept first and second outriggers extending therefrom and third and fourth openings to secure to an antenna tower base or one or more supplemental outriggers.
US10826149B2 Dielectric waveguide including a core for confining a millimeter-wave signal with a low-loss tangent
A dielectric waveguide and/or a cable for transmission of millimeter-wave signals. The dielectric waveguide and/or the cable comprises an inner core having a dielectric medium adapted to transmit a millimeter-wave signal by carrying an electromagnetic field along the dielectric waveguide and/or the cable. The dielectric medium is a dielectric material having dielectric properties adapted to confine the propagating electromagnetic field to the inner core, while adding low transmission loss at signal frequencies in a millimeter-wave frequency range. The dielectric medium may be provided as a core of solid dielectric material, one or more bundles of fibers that extend along the length of the inner core, or as powder and/or granulate of dielectric material that fills the volume of the inner core. The dielectric material may be quartz or alumina.
US10826146B2 Networking system comprising a waveguide that connects a transmitter to a receiver, where the waveguide includes a guiding array having a periodic array of conductive elements
A networking system includes a transmitter, a waveguide and a receiver. The transmitter is configured to generate a millimeter-wave signal carrying data. The waveguide is transmissive at millimeter-wave frequencies and is configured to receive the millimeter-wave signal from the transmitter, and to guide the millimeter-wave signal from the transmitter to a downstream location by having a dielectric constant that varies over a transversal cross-section of the waveguide in accordance with a predefined profile. The receiver is configured to receive the millimeter-wave signal guided by the waveguide, and to extract the data carried by the received millimeter-wave signal.
US10826144B2 Immersible gaseous oxidant cathode for electrochemical cell system
An electrochemical cell system is configured to utilize an oxidant reduction electrode module containing an oxidant reduction electrode mounted to a housing to form a gaseous oxidant space therein that is immersed into the ionically conductive medium. A fuel electrode is spaced from the oxidant reduction electrode, such that the ionically conductive medium may conduct ions between the fuel and oxidant reduction electrodes to support electrochemical reactions at the fuel and oxidant reduction electrodes. A gaseous oxidant channel extending through the gaseous oxidant space provides a supply of oxidant to the oxidant reduction electrode, such that the fuel electrode and the oxidant reduction electrode are configured to, during discharge, oxidize the metal fuel at the fuel electrode and reduce the oxidant at the oxidant reduction electrode, to generate a discharge potential difference therebetween for application to a load.
US10826143B2 Refuelable electrochemical battery
A refuelable electrochemical battery is provided that features three phases of operation that repeat cyclically. In an intake phase a mixture of electrochemically active particles or pellets (e.g., aluminum pellets) and a suitable electrolyte (e.g., sodium hydroxide, potassium hydroxide) are fed into a cavity or chamber. In a power phase the resulting electrochemical reaction produces electrical energy. The particles are mechanically combined or collected to form one electrode, while a gas-diffusion membrane permeable by oxygen is another electrode. During the exhaust phase, a piston forces the residue of the reaction from the cavity in order to prepare for the next cycle of operation.
US10826142B2 Metal-air fuel cell
A fuel cell having a cathode, cathode chamber, anode and anode chamber. The anode chamber is at least partially defined by an anode current collector. The cathode chamber is at least partially defined by the cathode. The anode chamber includes one or a plurality of anode flow channels for flowing an electrolyte in a downstream direction. The anode current collector may include a plurality of particle collectors projecting into the anode chamber to collect particles suspended in the electrolyte.
US10826138B2 Method and apparatus for contact detection in battery packs
Method and apparatus for contact detection in battery packs are disclosed. The battery pack may comprise at least a first battery cell and a second battery cell, and a power bar for coupling a first electrode of the first battery cell to a second electrode of the second battery cell. The first battery cell comprises a supervisor, which comprises a transmitter/receiver for signal communication with the second battery cell via a communication wire, and a voltage difference detector coupled to the power bar and the communication wire, for detecting a voltage difference between the power bar and the communication wire. The supervisor may indicate degraded contact of the power bar if the detected voltage difference is out of a predetermined threshold range. A battery cell and a method for monitoring a battery pack are also disclosed.
US10826137B2 Battery management method, battery, flight control system and unmanned aerial vehicle
A method is provided for managing an unmanned aerial vehicle (UAV). The UAV includes a first cell unit and a second cell unit connected in parallel. The method includes: detecting, by a first control circuit, whether a failure occurs in the first cell unit; detecting, by a second control circuit, whether a failure occurs in the second cell unit; establishing a communication between the first control circuit and the second control circuit; and in response to detecting a signal indicating that a failure occurs in the first cell or the second cell from the first control circuit or the second control circuit, reducing an output power of a propulsion device of the UAV.
US10826136B2 Battery pack including stacked battery-board assemblies
A battery pack comprises a stack of battery-board assemblies. Each battery-board assembly includes a circuit board, an electrical connector mounted on the circuit board, and a battery cell secured to a side of the circuit board. The battery cells are sandwiched between the circuit boards and the connectors are interconnected. The circuit boards and the connectors electrically connect the battery cells together.
US10826135B2 Battery pack
A battery pack includes a first unit battery, a second unit battery, and a spacer. The first unit battery includes a wound electrode body and a casing that accommodates an electrolyte solution. The spacer includes: a primary surface that faces the first unit battery; and plural projections, each of which is projected from the primary surface. The plural projections include: a first projection that abuts the casing in a state where the casing is not expanded; and a second projection, a height of which is lower than a height of the first projection.
US10826133B2 Heating element and circuit managing equivalent series resistance of energy storage cell
An apparatus and method of keeping an energy storage cell at or above a target temperature, includes receiving at a processing circuit, an analog voltage that is proportional to a temperature of the energy storage cell, converting, at the processing circuit, the analog voltage to a pulse-width-modulated signal having a duty cycle that is proportional to the analog voltage, and driving a switch, with the pulse-width-modulated signal, between conductive and non-conductive states to modulate a voltage passing across (or a current flowing through) a heating element in series with the switch, the heating element being in thermal communication with the energy storage cell, wherein the duty cycle of the pulse-width-modulated signal is adjusted to maintain the temperature of the energy storage cell at or above the target temperature.
US10826130B2 Negative active material and preparation method thereof and secondary battery
The present application discloses a negative active material and a preparation method thereof and a secondary battery. The negative active material comprises: lithium pre-intercalated silicon-containing materials; and a polymer coating layer coated on an outer surface of each particle of the lithium pre-intercalated silicon-containing materials. The negative active material can improve the first coulombic efficiency of the secondary battery, inhibit the volume expansion of the secondary battery and improve the cycle performance of the secondary battery. The preparation method of the negative electrode plate is simple, environment-friendly, and suitable for mass production.
US10826125B2 Mono-nuclei cationized magnesium salt, preparation method and applications thereof
The invention relates to a mono-nuclei cationized magnesium salt, a preparation method and applications thereof. The mono-nuclei cationized magnesium salt has a chemical formula of MgRnMX4-mYm, wherein R is a non-aqueous solvent molecule, M includes Al3+ and/or B3+, X and Y respectively include halide ion and halogenoid ion, n is any one integer selected in the range of 0˜6, and m is any one integer selected in the range of 0-4. The mono-nuclei cationized magnesium salt provided by the invention has a simple structure and excellent electrochemical properties, and the preparation method thereof features low cost, integrated synthesis, accessible raw materials, simple preparation process, and simple scaled production. The provided mono-nuclei cationized magnesium salt is used as the electrolyte of the rechargeable batteries, the generated electrolyte solution has a high ionic conductivity, a high reversible magnesium deposition-dissolution efficiency, excellent circulating performance and a high anode oxidation deposition potential. For example, when the electrolyte solution is applied to the magnesium batteries, the initial discharging capacity of the batteries can reach over 700 mAh/g, and the cycle number is greater than 20.
US10826123B2 Lithium-ion battery electrolyte and lithium-ion battery
The present invention discloses a lithium-ion battery electrolyte and a lithium-ion battery. The electrolyte comprises an organic non-aqueous solution, a lithium salt, and an additive. The additive comprises: (A) fluoroethylene carbonate; (B) at least one compound from the following: a saturated dinitrile or an unsaturated nitrile as represented by structural formula (1), wherein R1 is an unsaturated hydrocarbon group with 3-6 carbon atoms and R2 is an alkene group with 2-5 carbon atoms; and (C) at least one unsaturated phosphate ester as represented by structural formula (2), wherein R3, R4, and R5 are each a hydrocarbon with 1-4 carbon atoms, and at least one of R3, R4, and R5 contain an unsaturated hydrocarbon with a triple bond.
US10826122B2 Lithium-ion battery
The present disclosure provides a lithium-ion battery, which comprises: a positive electrode plate containing a positive electrode active material, a negative electrode plate containing a negative electrode active material and an electrolyte. The positive electrode active material comprises: a core and a coating layer coating a surface of the core and comprising boron. The electrolyte comprises a lithium salt, a non-aqueous organic solvent and an electrolyte additive, the electrolyte additive comprises an organic titanium compound. The coating layer of the positive electrode active material of the lithium-ion battery according to the present disclosure contains boron, and the electrolyte of the lithium-ion battery contains the organic titanium compound, under the combined effect of the coating layer containing boron and the electrolyte containing the organic titanium compound, the lithium-ion battery has excellent high temperature cycle performance and excellent high temperature storage performance.
US10826120B2 Lithium-ion battery and its electrolyte
The present invention discloses a Lithium ion battery and an electrolyte thereof, the electrolyte comprising an organic solvent, a lithium salt and an additive. The additive comprises additive (A) cyclic fluoro carbonate, additive (B) cyclic phosphazene (B), and additive (C) cyclic sulfate. The additive B cyclic phosphazene has the following general structural formula: Compared with the prior art, the electrolyte of the present invention may form a stable CEI and SEI film on the surface of positive and negative electrodes, protect the interface between positive and negative electrodes, improve the acidic atmosphere of Lithium ion battery electrolyte, and reduce the damage effect of HF on the interface between positive and negative electrodes, thereby improving cycle life, high temperature storage performance, and safety performance of lithium-ion battery.
US10826116B2 Solid electrolyte and lithium ion battery with cubic garnet type crystalline and amorphous areas
A solid electrolyte which reduces grain boundary resistance and exhibits a high total ion conductivity is provided.The solid electrolyte includes a first area which has a cubic garnet type crystalline and a second area which is amorphous, around the first area, in which each of the first area and the second area contains a composite oxide represented by formula (1) or (2) as a forming material, and an abundance ratio of metal atoms each having an ionic radius of 78 pm or more gradually increases from the first area to the second area. Li7+xLa3−xZr2AxO12  (1) [In formula (1), A is at least one selected from the group consisting of Mg, Ca, Sr, and Ba. In addition, x is 0.1 or more and 0.6 or less.] Li7La3−xZr2BxO12  (2) [In formula (2), B is at least one selected from the group consisting of Sc and Y. In addition, x is 0.1 or more and 0.6 or less.]
US10826114B2 Cathodes and electrolytes for rechargeable magnesium batteries and methods of manufacture
The invention relates to Chevrel-phase materials and methods of preparing these materials utilizing a precursor approach. The Chevrel-phase materials are useful in assembling electrodes, e.g., cathodes, for use in electrochemical cells, such as rechargeable batteries. The Chevrel-phase materials have a general formula of Mo6Z8 and the precursors have a general formula of MxMo6Z8. The cathode containing the Chevrel-phase material in accordance with the invention can be combined with a magnesium-containing anode and an electrolyte.
US10826113B2 Zinc ion-exchanging energy storage device
A zinc ion-exchanging battery device comprising: (A) a cathode comprising two cathode active materials (a zinc ion intercalation compound and a surface-mediating material); (B) an anode containing zinc metal or zinc alloy; (C) a porous separator disposed between the cathode and the anode; and (D) an electrolyte containing zinc ions that are exchanged between the cathode and the anode during battery charge/discharge. The zinc ion intercalation compound is selected from chemically treated carbon or graphite material having an expanded inter-graphene spacing d002 of at least 0.5 nm, or an oxide, carbide, dichalcogenide, trichalcogenide, sulfide, selenide, or telluride of niobium, zirconium, molybdenum, hafnium, tantalum, tungsten, titanium, vanadium, chromium, cobalt, manganese, iron, nickel, or a combination thereof. The surface-mediating material contains exfoliated graphite or multiple single-layer sheets or multi-layer platelets of a graphene material.
US10826112B2 Negative electrode active material, negative electrode for secondary battery, and lithium ion secondary battery
A negative electrode active material includes a carbon material; a plurality of first particles including a first silicon oxide particle and a carbon layer and a plurality of second particles including a carbon particle and a second silicon oxide particle, and when a first mass of the first silicon oxide particle per gram of the negative electrode active material is referred to as M1 gram, and a second mass of the second silicon oxide particle per gram of the negative electrode active material is referred to as M2 grams, 0.40≤M1/(M1+M2)≤0.85 is satisfied, and when a first discharge capacity associated with the carbon material and the carbon particle is referred to as CpC, and a second discharge capacity associated with the first silicon oxide particle and the second silicon oxide particle is referred to as CpSO, 0.15≤CpSO/(CpC+CpSO)≤0.5 is satisfied.
US10826108B2 High melt temperature microporous lithium-ion rechargeable battery separators and methods of preparation and use
Disclosed or provided are high melt temperature microporous Lithium-ion rechargeable battery separators, shutdown high melt temperature battery separators, battery separators, membranes, composites, and the like that preferably prevent contact between the anode and cathode when the battery is maintained at elevated temperatures for a period of time, methods of making, testing and/or using such separators, membranes, composites, and the like, and/or batteries, Lithium-ion rechargeable batteries, and the like including one or more such separators, membranes, composites, and the like.
US10826107B2 Negative active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
A negative active material for a rechargeable lithium battery includes a core including a SiO2 matrix and a Si grain, and a coating layer continuously or discontinuously coated on the core. The coating layer includes SiC and C, and the peak area ratio of the SiC (111) plane to the Si (111) plane as measured by X-ray diffraction analysis (XRD) using a CuKα ray ranges from about 0.01 to about 0.5.
US10826105B2 Apparatus for the manufacture of battery components
An apparatus for separating battery plates comprising a work surface for receiving a stack of battery plates, and an alignment mechanism for aligning the battery plates on the work surface. The work surface is movable between a first position in which it is angled with respect to a horizontal plane and a second position in which it is substantially aligned with the horizontal plane. When the work surface moves between the first and second position adjacent battery plates of the stack are displaced relative to each other.
US10826103B2 Fuel cell
A fuel cell includes (1) a stack including (a) an assembly of overlaid electrochemical generators, which are disposed along a stack axis, and (b) end plates axially clasping the assembly, and (2) at least one holding winding. Each holding winding includes at least one taut wire wound around the stack in a plurality of turns. Each holding winding surrounds the stack and bears on the end plates. Each taut wire is formed of at least one layer or sheet, and ends of each taut wire are fixed on at least one of the end plates.
US10826100B2 Polymer electrolyte membrane, electrochemical cell and flow cell comprising same, method for manufacturing polymer electrolyte membrane, and flow cell electrolyte
The present specification relates to a polymer electrolyte membrane, an electrochemical battery including the polymer electrolyte membrane, an electrochemical battery module including the electrochemical battery, a flow battery including the polymer electrolyte membrane, a method for manufacturing a polymer electrolyte membrane, and an electrolyte solution for a flow battery.
US10826095B2 Air supply control method and system for fuel cell
An air supply control method and system for a fuel cell controlling a switching frequency of an inverter at which power consumption of the air compressor becomes minimal includes: calculating a revolution per minute (RPM) of a motor of an air compressor; calculating a switching frequency of an inverter of the motor of the air compressor at which power consumption becomes minimal based on the calculated RPM of the motor; and controlling the inverter with the calculated switching frequency.
US10826090B2 Method for controlling fuel cell system and fuel cell system
A method for controlling a fuel cell system is a method for controlling a fuel cell system including a solid oxide fuel cell which generates a power upon receiving supplies of an anode gas and a cathode gas. The method for controlling the fuel cell system includes; as a stop control of the fuel cell, stopping a supply of the anode gas while continuing a supply of the cathode gas to the fuel cell, and shutting off a discharge side of an anode of the fuel cell; and carrying out an additional control to supply the anode gas to the fuel cell during the stop control and/or an additional control to decrease the flow rate of the cathode gas during the stop control.
US10826086B2 Thermal management system for fuel cell vehicle
A thermal management system for a fuel cell vehicle may include a fuel cell stack, a solid-state hydrogen storage device, and a hydrogen supply pipe, wherein the fuel cell stack receives hydrogen and air configured to generate electricity and discharge water, wherein the solid-state hydrogen storage device includes a first container accommodating a solid-state hydrogen storage material, a second container accommodating a thermochemical thermal energy storage material, a third container accommodating a heat transfer medium, and pipes connected to the first container, the second container, and the third container to circulate the heat transfer medium, and wherein the hydrogen supply pipe is connected to the first container and the fuel cell stack.
US10826083B2 Fuel cell assemblies with improved reactant flow
In solid polymer electrolyte fuel cell stacks, increasing the height of support features in the transition regions and/or increasing the depth of the transition regions improves the flow of reactants therein and thus improves the sharing of flow in the channels in the reactant flow fields. The support feature height and transition region depth are increased so as to be out of plane with respect to the landings and channels in the reactant flow fields. The invention is suitable for cells employing metal flow field plates or plates in which no adhesives are employed in the transition regions.
US10826081B2 Method for conveying fuel cell separator material
Provided is a method for conveying a separator that ensures stably conveying a separator material without leaving an indentation or the like. The conveyance method conveys a separator material for use in a single cell of a fuel cell. A hydrogen gas and an air are supplied for the fuel cell to generate electricity. The separator material has a rectangular shape in a plan view of the separator material, and the separator material has both sides on which a pair of through-holes are formed at proximity of a pair of hydrogen distribution ports through which a hydrogen gas flows. The conveyance method includes, when the separator material is conveyed, inserting a conveyance pin into each of the through-holes formed on the separator material, and in a state where the conveyance pin is inserted in each of the through-holes, conveying the separator material while pulling the separator material in a direction in which the conveyance pins mutually separate.
US10826080B2 Fuel cell comprising a membrane/electrode assembly provided with a capacitive layer
A fuel cell including: a membrane/electrode assembly including a proton exchange membrane and including an anode in contact with the membrane, the membrane/electrode assembly including a first active zone covered by the anode, and a first linking zone not covered by the anode; flow guiding plates between which the membrane/electrode assembly is arranged, the flow guiding plates being traversed by at least one first flow collector in communication with the anode, the first linking zone arranged between the first flow collector and the first active zone. The membrane/electrode assembly further includes a first capacitive layer including a mixture of carbon including a BET specific surface area at least equal to 200 m2/g and of a proton-conducting material, arranged on the first linking zone.
US10826076B1 Patterned electrode catalyst
Disclosed herein are embodiments of a patterned electrode comprising regions of catalyst and segregating regions that separate the regions of catalyst. The segregating regions may be regions of non-catalytic material. The catalyst regions may correspond to the channels of a flow field. The electrode provides improved fuel cell performance, particularly at high current densities. The electrode may be for all suitable applications, such as in a membrane electrode assembly and/or a fuel cell. Also disclosed is a method for making the patterned electrode. The method may comprise using masks to apply the catalyst and non-catalyst material to a substrate.
US10826075B2 Membrane electrode assembly of electrochemical device, membrane electrode assembly of fuel cell, fuel cell, membrane electrode assembly of electrochemical hydrogen pump, electrochemical hydrogen pump, membrane electrode assembly of hydrogen sensor, and hydrogen sensor
A membrane electrode assembly of an electrochemical device includes a proton conductive solid electrolyte membrane and an electrode including Ni and an electrolyte material which contains as a primary component, at least one of a first compound having a composition represented by BaZr1-x1M1x1O3 (M1 represents at least one element selected from trivalent elements each having an ion radius of more than 0.720 A° to less than 0.880 A°, and 0
US10826064B2 Cathode active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same
The present disclosure relates to a cathode active material for a lithium secondary battery, a method for preparing same, and a lithium secondary battery comprising same, the cathode active material comprising a lithium-nickel compound oxide, wherein a c-axis lattice parameter of a unit lattice of the lithium-nickel compound oxide satisfies Formula 1: 14.1720 ÅA≤c≤14.1750 ÅA  [Formula 1]
US10826063B2 Lithium secondary battery
The present invention may improve the lifetime characteristics of a lithium secondary battery, and particularly, may provide a non-aqueous electrolyte solution or cathode including a phosphate-based compound which may exhibit stable and excellent lifetime characteristics at high temperature and high voltage regardless of the moisture content or the presence of a pressing process of the electrode.
US10826058B2 Positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
The present invention relates to a positive electrode for a rechargeable lithium battery and a rechargeable lithium battery including the same. The positive electrode includes: a current collector; and a positive electrode active material positioned on at least one surface of the active material layer current collector. The positive electrode active material layer includes a small particle size active material having an average particle diameter D50 of 2 μm to 4 μm and a first coating layer positioned at a surface thereof, and a large particle size active material having an average particle diameter D50 of 17 μm to 21 μm and a second coating layer positioned at the surface thereof.
US10826057B2 Mixed positive electrode active material, positive electrode comprising same, and secondary battery
Provided is a mixed positive electrode active material comprising a large-grain positive electrode active material with an average diameter of 10 μm or greater and a small-grain positive electrode active material with an average diameter of 5 μm or smaller, in which the large-grain positive electrode active material and the small-grain positive electrode active material are coated with different materials between a lithium boron oxide-based composition and metal oxide, respectively.
US10826056B2 Electrode sheet used in nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
An electrode sheet including a multi-walled carbon nanotube including plural graphene layers, each of which has a trioxotriangulene derivative of formula (1) dispersed therein, where X's are hydrogen, a halogen, or a monovalent organic group, and may be the same as or different from each other.
US10826055B2 Electrode manufacturing apparatus
A turnover apparatus includes a first turnover portion, a second turnover portion, and a third turnover portion each including a convexly curved outer surface. An electrode foil is turned over as the electrode foil is transported along the outer surface of each of the first turnover portion, the second turnover portion, and the third turnover portion in this order. The first turnover portion, the second turnover portion, and the third turnover portion are integrally fixed. Each of the outer surfaces of the first turnover portion, the second turnover portion, and the third turnover portion defines a part of each side of a virtual triangle.
US10826050B1 Methods of preparing a safety battery
The present invention relates, in part, to methods of preparing a safety battery. Methods can include dispensing a safety ink formulation between the two poles of a battery. Upon exposure to moisture, the formulation provides an electrical connection between two poles, thus minimizing electrical discharge and/or reducing the formation of electrochemically generated ions at the pole(s).
US10826049B2 Electrode tab, electrode assembly and battery
According to embodiments of the present application, an electrode tab is provided comprising a substrate, a protective layer located outside the substrate, wherein the protective layer includes a first non-metallic element and a first metal element and the atomic ratio between the first non-metallic element and the first metal element is in the range of 10% to 30%. The embodiments of the present application further provide an electrode assembly and a battery. The object of the present application is to provide an electrode tab, an electrode assembly and a battery so as to at least achieve the improvement of electrolyte resistance under the immersion of electrolyte.
US10826046B2 Bus bar and power storage module
A bus bar includes a metal plate material. A plate face of the metal plate material includes a recessed portion. An inner wall of the recessed portion includes a first light-receiving face that is inclined relative to the plate face so as to receive a laser light beam L1 extending in a direction perpendicular to the plate face, and a second light-receiving face for receiving the laser light beam L1 that has reflected off the first light-receiving face.
US10826045B2 Battery wiring module
A battery wiring module that can improve workability when covers are to be opened. A cover includes a cover body portion coupled to a housing so as to be pivotable between a closed position and an open position, and a cover lock portion locked to a housing lock portion when the cover body portion is at the closed position. The housing lock portion includes an elastic piece located so as to face an outer surface of a fourth wall portion of the wiring housing portion, and is elastically deformable in a direction away from and a direction toward the fourth wall portion, and a lock protrusion that protrudes from the elastic piece in the direction toward the fourth wall portion. The cover lock portion is locked to the lock protrusion in the state of being inserted between the fourth wall portion and the elastic piece.
US10826044B2 Conductive module
The housing member includes a housing body that houses first and second conductive members, a lid body that closes an opening of a second housing chamber of the second conductive member in the housing body, a hinge body as a living hinge therebetween, and a holding mechanism that holds the lid body in the housing body at a closing position, the holding mechanism includes a first engagement holder having an inserted portion, and a second engagement holder having a claw portion.
US10826039B2 Electrode assembly including electrode and separator partially bonded to each other
An electrode assembly for a secondary battery having reduced internal resistance while adhesion between a separator and an electrode is maintained and having improved electrolyte impregnation the electrode assembly including a separator having a processed area having undergone a corona discharging process and a non-processed area.
US10826038B2 Secondary battery, battery pack, and electric vehicle
A secondary battery includes: a cathode and an anode opposed to each other with a separator in between; an electrolyte layer provided between the anode and the separator; and an adhesion layer provided between the anode and the electrolyte layer, wherein the anode includes an active material and a first polymer compound, the electrolyte layer includes an electrolytic solution and a second polymer compound, the adhesion layer includes a third polymer compound, the first polymer compound includes a polar group, the second polymer compound includes a polymer chain, and the third polymer compound includes a polar group and a polymer chain same as the polymer chain of the second polymer compound.
US10826032B2 Battery pack
A battery pack includes: at least one battery module; a housing; and attachment members. The at least one battery module is housed in the housing. The attachment members are coupled to the housing, and attachable to a vehicle body. The housing is positioned under a floor of a vehicle. Each of the attachment members extends from a side of the housing to another side along a lower surface of the housing. Lower surfaces of the attachment members are coupled to a plate member. A lower portion of the battery pack has a double-bottomed part formed by the plate member and a bottom surface of the housing.
US10826029B2 Energy storage device
An energy storage device includes: an electrode assembly; a case accommodating the electrode assembly; a lid plate structure including a lid plate of the case, a current collector electrically connected to a tab provided at the electrode assembly, and an insulating member disposed between the lid plate and the current collector; and a first spacer disposed between an end provided with the tab of the electrode assembly and the lid plate and having a locked portion locked to part of the lid structure.
US10826028B2 Manufacture method of flexible display panel
The present invention provides a manufacture method of a flexible display panel, and after forming grooves on the rigid substrate, and forming the flexible supporting bases in the grooves, and manufacturing the display element layer on the flexible supporting bases and the rigid substrate, the flexible display mother board is obtained. Then, the normal knife flywheel is used to cut the flexible display mother board along the edges of the grooves to obtain the flexible substrate units. After stripping the rigid substrates in the flexible substrate units with laser, the flexible display substrates are obtained. The method saves the purchase cost of the laser cutting apparatus, and thus to reduce the manufacture cost of the flexible display substrate, and meanwhile, to raise the cutting yield of cutting the flexible display mother board with the normal knife flywheel for promoting the usage lifetime of the knife flywheel.
US10826026B2 Display device and manufacturing method thereof
A method for manufacturing a display device including forming a lower electrode on a substrate; depositing a first insulation layer thereon; forming a semiconductor layer that overlaps the lower electrode thereon; depositing a second insulation layer thereon; forming a gate electrode and an etching prevention layer that overlap the semiconductor layer thereon; depositing a third insulation layer thereon; forming a first conductor that overlaps the gate electrode thereon; depositing a fourth insulation layer thereon; forming a photosensitive film patterns thereon by depositing a photosensitive film and exposing and developing the photosensitive film such that portions of the photosensitive film are removed in a first area, a second area, and a third area; etching the third insulation layer using the patterns as an etching mask; etching the etching prevention layer by using the patterns as an etching mask; and etching the first insulation layer using the patterns as an etching mask.
US10826021B2 Organic electroluminescence device including a plurality of unit regions each including a light emitting area and a transmissive area
An organic electroluminescence device according to one aspect of the disclosure includes a base material including a recessed portion on an upper face, and a light emitting element including a reflective layer, a filling layer having optical transparency, a first electrode having optical transparency, an organic layer including at least a light emitting layer, and a second electrode having optical transparency. The reflective layer is disposed at least on a surface of the recessed portion. The filling layer is disposed at an inside of the recessed portion with the reflective layer interposed between the recessed portion and the filling layer. The first electrode is disposed at least on an upper-layer side of the filling layer. The organic layer is disposed on an upper layer of the first electrode. The second electrode is disposed on an upper-layer side of the organic layer. The organic electroluminescence device includes a display region that is divided into a plurality of unit regions. The plurality of unit regions each having the light emitting element has a light emitting area and a transmissive area that are partitioned.
US10826018B2 Package structure including package layers and manufacturing method thereof and display panel
A package structure and a manufacturing method thereof, and a display panel are provided, and the package structure comprises a package stack disposed on a substrate; and an additional layer disposed on the package stack. The package structure provided by the present disclosure results in saving of one deposition process and one mask process, thereby the manufacturing process is simplified. Moreover, a narrow bezel may be realized.
US10826017B2 Packaging assembly and preparation method thereof, and display device
The present disclosure provides a packaging assembly and a preparation method thereof, and a display device. The packaging assembly may include at least one of packaging unit; the at least one of packaging unit including a first inorganic layer, a second inorganic layer, and an organic layer sequentially stacked, wherein a material of the first inorganic layer and a material of the second inorganic layer are different. Holes inside the layers may be reduced, and a density of the layers may be increased. An effect of blocking the water vapor may be higher than that of a single layer, and a packaging effect may be better.
US10826016B2 Organic light-emitting diode package, display panel and method for manufacturing the same
The present disclosure discloses an organic light-emitting diode package, a display panel and a method for manufacturing the same. The method may include: providing a substrate comprising a baseplate, a pixel-defining layer disposed on the baseplate and a light-emitting layer disposed in an opening of the pixel-defining layer, wherein the light-emitting layer comprises an organic light-emitting diode; forming a first inorganic layer on the substrate; preparing an ultraviolet absorbing layer on the first inorganic layer; and forming a planarization layer and a second inorganic layer in sequence on the ultraviolet absorbing layer. The implementation of the present disclosure may effectively reduce the damage from external ultraviolet light to the organic light-emitting diode.
US10826015B2 Organic light emitting display panel and organic light emitting display device
An OLED panel and an OLED device are provided. The OLED panel includes a display area and a non-display area around the display area; a substrate, a driving device layer and a light emitting device layer arranged in the display area, and the driving device layer includes multiple thin film transistors, the light emitting device layer includes multiple organic light emitting diodes, and an encapsulation layer covering the light emitting device layer. The non-display area includes an electrostatic discharge portion, the electrostatic discharge portion is made of a transparent conductive thin film and is located on a side of the encapsulation layer facing away from the substrate. The non-display area includes at least one blocking portion, the blocking portion is arranged around the display area, and is located between the substrate and the encapsulation layer.
US10826014B2 Curved-surface display screen and method for assembling the same
A method for assembling a curved-surface display screen includes: attaching a flexible display panel to a flexible glass to form an integral body; and mounting the integral body into a frame. The frame surrounds a periphery of the integral body, and a perimeter of the frame is less than that of the integral body.
US10826012B2 Light-emitting display device and manufacturing method thereof
The present disclosure provides a light-emitting display device including a lower substrate, a transistor, a planarization layer, a sacrificial layer, an isolation layer, a lower electrode layer, an organic emission layer and an upper electrode layer. The isolation layer is positioned on the sacrificial layer, and exposes part of the planarization layer through an opening that extends through the isolation layer and the sacrificial layer. The planarization layer includes a first contact hole positioned in the opening, and the lower electrode layer is electrically connected to one electrode of the transistor through the first contact hole.
US10826009B2 Quantum dot light-emitting diode and display apparatus thereof
A quantum dot light-emitting diode and a display apparatus comprising the quantum dot light-emitting diode are provided. The quantum dot light-emitting diode comprises an anode, a hole injecting layer, a hole transporting layer, a quantum dot light-emitting layer, an electron transporting layer and a cathode from bottom to top, wherein the materials of the quantum dot light-emitting layer contain quantum dots and CuSCN nano-particles. By blending quantum dots and CuSCN nano-particles into a membrane to prepare a quantum dot light-emitting layer, a hole trap state on the surface of the quantum dots is passivated, and the transporting effect of a hole is improved, so that the injection of holes in the quantum dot light-emitting diode and that of electrons achieve balance, and thus the light-emitting efficiency and stability are improved.
US10826008B2 Display device
A display device according to the present invention includes a substrate, and a plurality of pixels arranged in the substrate, wherein each of the plurality of pixels includes a light emitting element, a first transistor, a second transistor, a first insulation layer and a second insulation layer, the first transistor includes a first semiconductor layer, the second transistor includes a second semiconductor layer, the first insulation layer is arranged across the plurality of pixels between the first semiconductor layer and the second semiconductor layer, the second insulation layer is arranged between the first insulation layer and the second semiconductor layer, the first semiconductor layer is arranged on the substrate side sandwiching the first insulation layer with respect to the second semiconductor layer, the first insulation layer includes a silicon oxide layer; and the second insulation layer includes an aluminum oxide layer.
US10826003B2 Display apparatus and method of manufacturing the same
Provided are a display apparatus and a method of manufacturing the display apparatus. The display apparatus includes: a substrate including a bending area located between a first area and a second area and bent in the bending area; a display unit arranged over an upper surface of the substrate and located in the first area; a protection film located over a lower surface of the substrate and including a protection film base and a viscous layer; and a bending protection layer including a first bending protection layer and a second bending protection layer and corresponding to the bending area, wherein the protection film is located over the lower surface of the substrate and has an opening corresponding to the bending area or at least a part of the first area, and wherein the first bending protection layer is arranged over at least a part of a boundary of the opening or over an outside of the boundary of the opening, and at least a part of the second bending protection layer is arranged over an inside of the boundary of the opening.
US10826002B2 Display device
A display device including: a plurality of unit portions repeatedly arranged in a first direction and a second direction, wherein the second direction is different from the first direction; a plurality of display units respectively arranged above the plurality of unit portions; and a plurality of encapsulation layers respectively encapsulating the plurality of display units, wherein each of the plurality of unit portions includes an island where a display unit and an encapsulation layer are located, and at least one connection unit connected to the island, and islands of two unit portions adjacent to each other are spaced apart from each other, and connection units of the two unit portions adjacent to each other are connected to each other.
US10826001B2 OLED array substrate and display apparatus
An Organic Light-Emitting Diode (OLED) array substrate and a display apparatus. The OLED array substrate includes a base substrate, a pixel driving circuit and an OLED display element layer which are arranged on the base substrate. The OLED array substrate further includes a solar cell, the solar cell is arranged on a side of the pixel driving circuit which faces an incident ambient light, the solar cell and the pixel driving circuit are insulated from each other, and the solar cell and the OLED display element layer are insulated from each other.
US10825997B2 Organic electroluminescent materials and devices
This invention discloses heteroleptic iridium complexes containing two tridentate ligands with three five- and one six-cyclometalated rings, showing desired device performance properties.
US10825993B2 Organic light-emitting device and method of manufacturing the same
An organic light-emitting device includes a first electrode, a second electrode, and an organic layer between the first and second electrodes and including an emission layer, wherein the emission layer comprises a first host represented by Formula 1 and a second host represented by Formula 2:
US10825991B2 Composition and light emitting device using the same
A composition is provided containing a phosphorescent compound and a polymer compound having a constitutional unit represented by the formula (Y): ArY1  (Y) wherein ArY1 represents an arylene group, a divalent heterocyclic group or the like; and at least one constitutional unit selected from the constitutional units represented by the formulas (Ia) to (Id): wherein m represents an integer of 0 to 4, n represents an integer of 0 to 3, RT1 represents an alkyl group, an alkoxy group, an aryl group, a monovalent heterocyclic group or the like, Rx represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, a monovalent heterocyclic group or the like, Ar represents an aromatic hydrocarbon group or a heterocyclic group, nA and nB represent an integer of 0 to 3, and LA and LB represent an alkylene group, a cycloalkylene group, an arylene group or a divalent heterocyclic group.
US10825990B2 Image sensor and methods of fabricating and measuring image sensor
A method of measuring an image sensor is disclosed. The method includes connecting a measurement unit to an image sensor, producing an electric current, which sequentially flows through a second connection line, second lower electrodes, an upper electrode, first lower electrodes, and a first connection line of the image sensor, using the measurement unit, and measuring an alignment state of the lower electrodes, the photoelectric conversion layer, and the upper electrode.
US10825988B2 Light-emitting material and display apparatus
A light-emitting material, a method for producing the light-emitting material and a display apparatus are provided. An average particle size of the light-emitting material is 0.1 μm to 30 μm, and an average distance between outermost quantum dots of a particle of the light-emitting material and a surface of the particle of the light-emitting material is 0.5 nm to 25 nm, or a minimum distance between the outermost quantum dots of a particle of the light-emitting material and the surface of the particle of the light-emitting material is 0.1 nm to 20 nm.
US10825986B2 Semiconductor devices including a stacked cell structure
A semiconductor device includes a stacked structure of cell structures, an electrode structure, and a heating electrode. Each cell structure includes a capping layer, a selection layer, a buffer layer, a variable resistance layer, and a upper electrode layer sequentially stacked. The electrode structure is in an opening passing through the stacked structure, is electrically isolated from the buffer layer, the variable resistance layer, and the upper electrode layer, and is electrically connected to the selection layer. The heating electrode is between the variable resistance layer and the upper electrode layer and operates to transfer heat to the variable resistance layer.
US10825985B2 Magnetoresistance effect element
A magnetoresistance effect element includes a first ferromagnetic layer, a second ferromagnetic layer, and a tunnel barrier layer that is interposed between the first ferromagnetic layer and the second ferromagnetic layer. The tunnel barrier layer is a stacked body including one or more first oxide layers having a spinel structure and one or more second oxide layers having a spinel structure with a composition which is different from a composition of the first oxide layer.
US10825979B2 Piezoelectric element, piezoelectric actuator, piezoelectric motor, robot, electronic component transporting apparatus, and printer
A piezoelectric element includes: a substrate; a first electrode which is disposed on the substrate; a piezoelectric body layer which is disposed on the first electrode, which has a plurality of layers configured to contain a piezoelectric body material, and in which the total thickness of the plurality of layers is within a range of 1.6 μm to 10 μm; and an intermediate layer which is disposed on an interlayer of the piezoelectric body layer, and which is configured to contain titanium.
US10825972B2 Semiconductor light-emitting apparatus having light reflection adjusting member of gray resin and its manufacturing method
A semiconductor light-emitting apparatus is constructed by a wiring substrate, at least one semiconductor light-emitting element provided on the wiring substrate, at least one wavelength-converting member provided on the semiconductor light-emitting element, and a light reflection adjusting member directly covering a sidewall of the semiconductor light-emitting element and a sidewall of the wavelength-converting member. The light reflection adjusting member is formed of gray resin including light reflecting fillers and light absorbing fillers for visible light.
US10825968B2 Method for manufacturing light-emitting device
A method of manufacturing a light-emitting device includes applying a light-guiding member to a light-emitting element. A light-transmissive member is mounted on the light-guiding member, and the light-guiding member is cured. A width of the light-transmissive member is narrowed. Lateral surfaces of the light-transmissive member and lateral surfaces of the light-guiding member are covered.
US10825967B2 Light emitting device, method of manufacturing covering member, and method of manufacturing light emitting device
A method of manufacturing a covering member includes: providing a first light-reflective member comprising a through-hole, the through-hole having first and second openings; arranging a light-transmissive resin containing a wavelength-conversion material within the through-hole; distributing the wavelength-conversion material predominantly on a side of the first opening of the through-hole within the light-transmissive resin; and after the step of distributing the wavelength-conversion material, removing a portion of the light-transmissive resin from a side of the second opening of the through-hole.
US10825962B2 Thin film light emitting diode
A light emitting device can include a light emitting structure including a p-GaN based semiconductor layer, an active layer having multiple quantum wells, and an n-GaN based semiconductor layer; a p-electrode and an n-electrode electrically connecting with the light emitting structure, respectively, wherein the n-electrode has a plurality of layers; a first passivation layer including a first portion contacting a portion of the n-electrode, a second portion vertically overlapped with the p-electrode, and a third portion that extends outside of outermost side surfaces of the light emitting structure; a phosphor layer disposed on a top surface of the light emitting structure; and a second passivation layer including a first portion disposed between the phosphor layer and the top surface of the light emitting structure, and a second portion disposed on the outermost side surfaces of the light emitting structure, in which the phosphor layer includes a pattern to bond a wire with a p-pad on a portion of the p-electrode, the second portion of the second passivation layer extends toward the third portion of the first passivation and contacts the third portion of the first passivation layer, and the first passivation layer includes an opening on the n-GaN based semiconductor layer such that the opening accommodates at least a portion of the n-electrode.
US10825958B2 Electro-optic device with mounted printed circuit board
An electro-optic device is provided having a first transparent substrate having a first surface and a second surface opposite the first surface; a first transparent electrode on the second surface of the first substrate; a second transparent substrate having a first surface and a second surface opposite the first surface; a second transparent electrode on the first surface of the second substrate, wherein the second substrate is positioned in spaced relation to the first substrate, wherein an extended portion of the first substrate extends beyond an edge of the second substrate; an electro-optic medium disposed between the first substrate and the second substrate, wherein the electro-optic medium is electrically coupled to the first electrode and the second electrode; and a printed circuit board mounted directly to the extended portion of the first substrate, the printed circuit board having a first electrical contact electrically coupled to the first electrode.
US10825956B2 Light-emitting device
A light-emitting device comprises a semiconductor layer; a pad electrode comprising a periphery disposed on the semiconductor layer; a finger electrode connected to the pad electrode, wherein the finger electrode comprises a first portion extended from the periphery of the pad electrode and a second portion connected to the first portion; and a plurality of first current blocking regions formed on the semiconductor layer, separated from the pad electrode and formed under the finger electrode, wherein one of the plurality of first current blocking regions is most close to the pad electrode and is separated from the pad electrode by a first distance, adjacent two of others of the plurality of first current blocking regions are separated from each other by a second distance, and the first distance is longer than the second distance.
US10825955B2 Method for manufacturing light-emitting element
A method for manufacturing a light-emitting element includes: a preparation process including preparing a semiconductor stacked body that includes a first semiconductor layer, a second semiconductor layer, and a light-emitting layer, the first semiconductor layer including a semiconductor of a first conductivity type, the second semiconductor layer including a semiconductor of a second conductivity type; a first layer formation process including forming a first layer on the first semiconductor layer, the first layer being made of an insulating material; a removal process including removing a portion of the first semiconductor layer and a portion of the first layer; a processing process including introducing oxygen into a portion of the first semiconductor layer that includes a first surface formed in the removal process, the introducing being performed by, after the removal process, processing the semiconductor stacked body in an atmosphere including oxygen.
US10825954B2 Porous-silicon light-emitting device and manufacturing method thereof
A light-emitting device may include a semiconductor body having a first conductivity type, with a front side and a back side. The light-emitting device may also include a porous-silicon region which extends in the semiconductor body at the front side, and a cathode region in direct lateral contact with the porous-silicon region. The light-emitting device may further include a barrier region of electrically insulating material, which extends in direct contact with the cathode region at the bottom side of the cathode region so that, in use, an electric current flows in the semiconductor body through lateral portions of the cathode region.
US10825951B2 Display device
A display device includes a substrate, a first electrode on the substrate, a light emitting element including: a first contact electrode connected to the first electrode, a first semiconductor layer on the first contact electrode, an active layer on the first semiconductor layer, a second semiconductor layer on the active layer, and a second contact electrode on the second semiconductor layer, a second electrode on the light emitting element, and a color conversion layer on the light emitting element and the second electrode, wherein an upper surface of the second contact electrode has a concavo-convex pattern.
US10825949B2 Method of manufacturing light emitting device
Provided is a method of manufacturing a light emitting device, comprising: preparing a base body having a concave portion; disposing a light emitting element at the bottom of the concave portion; disposing a first resin containing first phosphor particles having an average particle size of 10 μm or more and 30 μm or less and a first filler having an average particle size of 5 μm or more and 20 μm or less to cover the light emitting element; centrifugally precipitating the first phosphor particles and the first filler toward the base body; temporarily curing the first resin; disposing a second resin containing second phosphor particles and a second filler having an average particle size of 5 nm or more and 100 nm or less on the first resin temporarily cured; centrifugally precipitating the second phosphor particles and the second filler toward the first resin; and curing the first and second resins.
US10825948B1 Diffusion bond of metallic layers in multijunction solar cells
A solar cell comprising an epitaxial sequence of layers of semiconductor material forming a solar cell deposited using an MOCVD reactor; a metal layer disposed on top of the sequence of layers of semiconductor material, the metal layer including a top surface layer composed of gold or silver; a polymer film; depositing a first metallic adhesion layer disposed on the polymer film that has a coefficient of thermal expansion substantially different from that of the top surface layer on one surface of the polymer film; a second metallic adhesion layer deposited over the first metallic adhesion layer and having a different composition from the first metallic adhesion layer and having no chemical elements in common; and the second metallic adhesion layer of the polymer film being permanently bonded to the metal layer of the sequence of layers of semiconductor material by a thermocompressive diffusion bonding technique.
US10825943B2 Concentrating solar power generation module, concentrating solar power generation panel, and concentrating solar power generation device
A concentrator photovoltaic module including: a concentrating portion formed by arranging a plurality of lens elements each configured to concentrate sunlight; and a housing configured to accommodate a plurality of power generating elements disposed at positions respectively corresponding to the lens elements, wherein the housing includes: a frame body formed from resin; and a bottom plate formed from metal, the bottom plate being mounted to the frame body and having the power generating elements mounted thereto, and the frame body includes: a frame body portion forming an outer frame; and a liner portion extending along an upper surface of the bottom plate at an inner side of the frame body portion, the liner portion having both end portions thereof formed integrally with the frame body portion.
US10825942B2 Solar cell hermetic package structure
A solar cell hermetic package structure includes a lower-cover plate, a conductive layer, a photovoltaic layer, a lower-electrode lead, an upper-electrode lead, an upper-cover plate, a border and dividers. The conductive layer and the photovoltaic layer are orderly arranged on one side of the lower-cover plate. The upper-electrode lead and the lower-electrode lead are arranged on the lower-cover plate and electrically connected to the photovoltaic layer and the conductive layer. The border is arranged on corresponding side edges of the lower-cover plate and the upper-cover plate. After the upper-cover plate and the lower-cover plate are combined, the photovoltaic layer is arranged in a hermetic package structure between the upper-cover plate and the lower-cover plate. A hermetic area accommodating the photovoltaic layer is formed by the border. The dividers are arranged in gaps of photovoltaic components and used as supports between the upper-cover plate and the lower-cover plate.
US10825938B2 Solar cell module
A solar cell module is disclosed. The solar cell module includes a plurality of solar cells each including a semiconductor substrate, in which a p-n junction is formed, and a plurality of first and second electrodes which are formed on a back surface of the semiconductor substrate and are separated from each other, a plurality of interconnectors which are connected to the first electrodes or the second electrodes included in each solar cell and connect the plurality of solar cells in series, and a conductive adhesive attaching the interconnectors to the first electrodes or the second electrodes. The conductive adhesive includes the same material or the same metal-based material as a metal material included in at least one of the interconnectors or the first and second electrodes.
US10825937B2 Protective circuit for a photovoltaic (PV) module, method for operating the protective circuit, and photovoltaic (PV) system having such a protective circuit
The disclosure relates to a protective circuit for a photovoltaic (PV) module that includes an input having two input terminals for connecting the PV module, an output having two output terminals for connecting further PV modules of a series circuit comprising PV modules, a first switch for connecting one of the input terminals to one of the output terminals, and a controller configured to control the first switch, wherein the protective circuit further includes a series circuit including a first diode and an energy store, wherein the series circuit is arranged in parallel with the input of the protective circuit. The protective circuit also includes a second diode, which connects an output terminal of the protective circuit to a midpoint of the series circuit including the first diode and the energy store, and wherein a series circuit including the second diode and the energy store is connected in parallel with the first switch. The disclosure also relates to a method for operating a protective circuit according to the disclosure, and to a photovoltaic (PV) system including a series circuit comprising PV modules.
US10825935B2 Trench MOS-type Schottky diode
A trench MOS-type Schottky diode includes a first semiconductor layer including a Ga2O3-based single crystal, a second semiconductor layer that is a layer laminated on the first semiconductor layer and that includes a Ga2O3-based single crystal and a trench opened on a surface thereof opposite to the first semiconductor layer, an anode electrode formed on the surface of the second semiconductor layer opposite to the first semiconductor layer, a cathode electrode formed on a surface of the first semiconductor layer opposite to the second semiconductor layer, an insulating film covering the inner surface of the trench of the second semiconductor layer, and a trench MOS gate that is embedded in the trench of the second semiconductor layer so as to be covered with the insulating film and is in contact with the anode electrode.
US10825933B2 Gate-all-around structure and manufacturing method for the same
Present disclosure provides gate-all-around structure including a semiconductor fin having a top surface, a first nanowire over the top surface, a first space between the top surface and the first nanowire, an Nth nanowire and an (N+1)th nanowire over the first nanowire, and a second space between the Nth nanowire and the (N+1)th nanowire. The first space is greater than the second space. Present disclosure also provides a method for manufacturing the gate-all-around structure described herein.
US10825932B2 Thin film transistor having light shielding structure
Provided is a thin film transistor including a substrate, a first spacer on the substrate, a second spacer on the first spacer, a light shield layer intervened between the first spacer and the second spacer, a semiconductor layer on the second spacer, and a gate electrode on the semiconductor layer, wherein the light shield layer includes a plurality of inclined surfaces against a top surface of the substrate.
US10825927B2 LDMOS device having hot carrier suppression
A first diffusion region of a first conductivity type and a second diffusion region of a second conductivity type are formed next to each other in a semiconductor substrate. Drain and source contact regions of the first conductivity type are formed in the first and second diffusion region, respectively. A trench insulating region is formed in the first diffusion region between the drain and source contact regions. A third diffusion region of the second conductivity type is formed next to a side wall of the trench insulating region on the source contact region side in the first diffusion region between the source contact region and the trench insulating region. A gate electrode is formed on the semiconductor substrate through a gate insulating film to cover an area from an end portion of the source contact region to at least a part of a top surface of the trench insulating region.
US10825924B2 Semiconductor device with selectively etched surface passivation
A semiconductor device includes a semiconductor substrate configured to include a channel, a gate supported by the semiconductor substrate to control current flow through the channel, a first dielectric layer supported by the semiconductor substrate and including an opening in which the gate is disposed, and a second dielectric layer disposed between the first dielectric layer and a surface of the semiconductor substrate in a first area over the channel. The gate may be configured to include a lateral overhang that is separated from an upper surface of the first dielectric layer.
US10825923B2 Semiconductor device
A semiconductor device is provided comprising a semiconductor substrate of a first conductivity type and a dummy trench portion having a main body portion and one or more branch portions, the main body portion formed in a front surface of the semiconductor substrate and extending in a predetermined extending direction, the branch portions extending from the main body portion in directions different from the extending direction. The semiconductor substrate has an emitter region of first conductivity type and a base region of a second conductivity type which are provided sequentially from the front surface side of the semiconductor substrate, and the dummy trench portion has a dummy trench which penetrates the emitter region and the base region from the front surface of the semiconductor substrate, and a dummy insulating portion which is provided within the dummy trench.
US10825922B2 Semiconductor device and method of manufacturing a semiconductor device
A semiconductor device comprises: an extrinsic base region; a first dielectric spacer on at least a part of a sidewall of the extrinsic base region adjacent to an emitter window region; an intrinsic base region; a base link region coupling the intrinsic base region and the extrinsic base region; a collector region underlying the intrinsic base region and having a periphery underlying the base link region; and a second dielectric spacer, separating the base link region from at least the periphery of the collector region; wherein said second dielectric spacer extends laterally beyond said first dielectric spacer to underlie said emitter window region.
US10825920B2 Energy-filtered cold electron devices and methods
Energy-filtered cold electron devices use electron energy littering through discrete energy levels of quantum wells or quantum dots that are formed through band bending of tunneling barrier conduction band. These devices can obtain low effective electron temperatures of less than or equal to 45K at room temperature, steep electrical current turn-on/turn-off capabilities with a steepness of less than or equal to 10 mV/decade at room temperature, subthreshold swings of less than or equal to 10 mV/decade at room temperature, and/or supply voltages of less than or equal to 0.1 V.
US10825919B2 Methods of fabricating semiconductor devices having gate-all-around structure with inner spacer last process
A method of fabricating semiconductor devices is provided. The method includes forming a fin structure on a substrate, in which the fin structure includes a fin stack of alternating first and second semiconductor layers and forming recesses in the fin stack at source and drain regions. The method also includes etching the second semiconductor layers to form recessed second semiconductor layers, and forming third semiconductor layers on sidewalls of the recessed second semiconductor layers. The method further includes epitaxially growing source and drain structures in the recesses, removing the recessed second semiconductor layers to form spaces between the first semiconductor layers, and oxidizing the third semiconductor layers to form inner spacers. In addition, the method includes forming a gate structure to fill the spaces and to surround the first semiconductor layers.
US10825900B2 Semiconductor switch device and method having at least two contacts located on either the source region or the drain region
A semiconductor switch device and a method of making the same. The device includes a semiconductor substrate having a major surface. The device also includes a first semiconductor region located in the substrate beneath the major surface. The device includes an elongate gate located on the major surface. The device also includes a source region and a drain region located in the first semiconductor region adjacent respective first and second elongate edges of the gate. The device also includes electrical contacts for the source and drain regions. The contacts include at least two contacts located on either the source region or the drain region, which are spaced apart along a direction substantially parallel the elongate edges of the gate. The device further includes an isolation region located between the at least two contacts. The isolation region extends through the source/drain region from the major surface to the first semiconductor region.
US10825897B2 Formation of enhanced faceted raised source/drain EPI material for transistor devices
One illustrative method disclosed herein may include forming a first straight sidewall spacer adjacent a gate structure of a transistor, forming a recessed layer of sacrificial material adjacent the first straight sidewall spacer and forming a second straight sidewall spacer on a portion of the outer surface of the first straight sidewall spacer and above the recessed layer of sacrificial material. The method may also include removing the recessed layer of sacrificial material so as to expose a first vertical portion of the outer surface of the first straight sidewall spacer and forming an epi material on and above the substrate, wherein an edge of the epi material engages the first straight sidewall spacer.
US10825896B2 Silicon carbide-based transistor and method for manufacturing the same
Disclosed is a transistor including a substrate, first and second type wells in contact with each other on the substrate; and a breakdown voltage improving region including vertical high concentration doped regions according to first and second types vertically in contact from upper surfaces of the first and second type wells to an upper surface of the substrate in a portion where the first and second type wells are in contact with each other.
US10825894B2 MIM capacitor and method of manufacturing the same
Provided are MIM capacitor and method of manufacturing the same. The MIM capacitor includes a first electrode, a second electrode, a third electrode, a first insulating layer, a second insulating layer, and a first spacer. The first electrode and the third electrode are electrically connected to each other. The first insulating layer is between the first electrode and the second electrode. The second insulating layer is between the second electrode and the third electrode. The first spacer is located between a sidewall of the first electrode and the first insulating layer.
US10825884B2 Display panel and display device having anode not overlapping with gate lines and/or light-emitting control signal lines
A display panel and a display device are provided. The display panel includes a base substrate; a plurality of gate lines extending in a row direction and a plurality of data lines extending in a column direction arranged on the base substrate, and the plurality of gate lines and the plurality of data lines intersect in an insulation manner to define a plurality of pixel circuit regions including a plurality of pixel circuits; a plurality of sub-pixel regions arranged on the base substrate, and each of the plurality of sub-pixel regions includes a light-emitting element, a corresponding one of the plurality of pixel circuits provides a driving signal to the light-emitting element, and the light-emitting element includes an anode, a light-emitting layer and a cathode which are sequentially stacked at a side of the base substrate; and a plurality of light-emitting control signal lines arranged on the base substrate.
US10825880B2 Display device with a storage capacitor including multiple dielectric constant layers
A display device includes: a substrate; a semiconductor on the substrate and including a driving channel; a first insulating layer on the semiconductor; a driving gate electrode on the first insulating layer and overlapping the driving channel; a second insulating layer on the driving gate electrode and the first insulating layer and including first and second dielectric constant layers, the second dielectric constant layer having a dielectric constant that is greater than that of the first dielectric constant layer; a storage electrode on the second insulating layer; a passivation layer covering the storage electrode and the second insulating layer; a pixel electrode on the passivation layer; an emission member on the pixel electrode; and a common electrode on the emission member, wherein the storage electrode overlaps the driving gate electrode, and wherein the storage electrode, the driving gate electrode and the second insulating layer therebetween form a storage capacitor.
US10825875B2 OLED display panel and display device
An OLED display panel and a display device are disclosed. The OLED display panel includes a light shielding layer, a planarization layer, and an anode layer which are arranged on a substrate in this order. The anode layer includes a plurality of sub-electrodes independently disposed. The OLED display panel includes a display area including a fingerprint imaging area and a non-imaging area. The OLED display panel further includes a light blocking portion on a side of the planarization layer away from the substrate. An orthographic projection of the light blocking portion on the substrate is within an orthographic projection of a gap between two sub-electrodes on the substrate which lies in the non-imaging area.
US10825873B2 Organic light emitting display having touch sensor and method of fabricating the same
Disclosed are an organic light emitting display having a touch sensor, which may achieve process simplification and cost reduction, and a method of fabricating the same. The organic light emitting display includes a compensation film having a flat surface and formed to cover dams forming a boundary with an organic encapsulation layer and the compensation film has a planarized surface between a region above the dams and a boundary region between the dams and the organic encapsulation layer (144) and may prevent cut and short-circuit of routing lines cutting across the same. Further, touch sensors are disposed on an encapsulation unit including the organic encapsulation layer and thus a separate attachment process is not required, thereby simplifying the overall process and reducing manufacturing costs of the organic light emitting display.
US10825871B2 Organic light-emitting display apparatus and method of manufacturing the same
An organic light-emitting display apparatus includes a substrate; a pixel electrode over the substrate; a pixel-defining layer including an opening that exposes at least a portion of the pixel electrode; an intermediate layer, which is over the portion of the pixel electrode exposed by the opening and includes an organic emission layer; a counter electrode over the intermediate layer; and an encapsulating structure, which is over the counter electrode and includes at least one inorganic layer and at least one organic layer, and the at least one organic layer includes quantum dots and is in the opening.
US10825868B2 Three-dimensional semiconductor device and method of fabricating same
In one aspect, a method for manufacturing a three-dimensional (3D) semiconductor device is disclosed. It includes providing a vertical stack of alternating layers of a first layer type and a second layer type, and providing a first trench and a second trench adjacent the vertical stack. The first trench and the second trench can define a fin. The method further can include recessing the first layer type to form recesses extending into the fin, providing a first electrode in individual ones of the recesses, and providing a second electrode in the first trench and the second trench. The method further can include providing, for individual ones of the recesses, a lateral stack including a memory element, a middle electrode, and a selector element. The lateral stack can extend between the first electrode and the second electrode, thereby forming a memory device.
US10825866B2 Memory device
A memory device is described. A first conductive layer extends in a first direction. A second conductive layer extends in the first direction. A third conductive layer extends in a second direction intersecting the first direction. A first oxide region is disposed between the first conductive layer and the third conductive layer and between the second conductive layer and the third conductive layer. A semiconductor region is disposed between the first conductive layer and the first oxide region and between the first conductive layer and the second conductive layer. A second distance between the semiconductor region, which is disposed between the first conductive layer and the second conductive layer, and the third conductive layer, is longer than a first distance between the semiconductor region, which is disposed between the first conductive layer and the first oxide region, and the third conductive layer.
US10825863B2 Deck-to-deck reset current offset suppression for three-dimensional (3D) memory
A three-dimensional (3D) memory device includes multiple decks of memory cells. Each deck includes layers of material, including a layer of storage material (e.g., a phase change material). Each deck also includes an interlayer between the phase change material and conductive access lines. The interlayer can include, for example, one or more of tungsten, carbon, silicon, silicon oxide, silicon nitride, aluminum oxide, hafnium oxide, and titanium silicon nitride. In one such example, the interlayer includes tungsten silicon nitride (WSiN). The interlayers of different decks have different properties, such as different thicknesses or resistivities, to reduce or eliminate the deck-to-deck reset current offset.
US10825862B2 Variable resistance memory device
A variable resistance memory device includes: a substrate including a peripheral region and a core region, the core region including a far region spaced apart from the peripheral region and a near region between the far region and the peripheral region; first conductive lines disposed on the substrate and extending in a first direction; second conductive lines disposed on the first conductive lines and extending in a second direction intersecting the first direction, and memory cells disposed between the first and second conductive lines on the core region. The memory cells include a near memory cell disposed on the near region, and a far memory cell disposed on the far region, wherein a resistance or threshold voltage of the near memory cell, controlling connection of each of the memory cells to a corresponding one of the second conductive lines, is different from that of the far memory cell.
US10825856B2 Quantum dot digital radiographic detection system
A digital quantum dot radiographic detection system described herein includes: a scintillation subsystem 202 and a semiconductor light detection subsystem 200, 200′ (including a plurality of quantum dot image sensors 200a, 200b). In a first preferred digital quantum dot radiographic detection system, the plurality of quantum dot image sensors 200 is in substantially direct contact with the scintillation subsystem 202. In a second preferred digital quantum dot radiographic detection system, the scintillation subsystem has a plurality of discrete scintillation packets 212a, 212b, at least one of the discrete scintillation packets communicating with at least one of the quantum dot image sensors. The quantum dot image sensors 200 may be associated with semiconductor substrate 210 made from materials such as silicon (and variations thereof) or graphene.
US10825853B2 Semiconductor image sensor device with deep trench isolations and method for manufacturing the same
A semiconductor image sensor device includes a semiconductor substrate, a radiation-sensing region, and a first isolation structure. The radiation-sensing region is in the semiconductor substrate. The first isolation structure is in the semiconductor substrate and adjacent to the radiation-sensing region. The first isolation structure includes a bottom isolation portion in the semiconductor substrate, an upper isolation portion in the semiconductor substrate, and a diffusion barrier layer surrounding a sidewall of the upper isolation portion.
US10825852B2 Solid state imaging device
According to one embodiment, an edge of the second opening is recessed further than an edge of the first opening away from a center of the first opening. The recess has an opening and a concave surface and is disposed in a region inward from the edge of the second opening. The opening has a circular configuration. The concave surface has a curvature.
US10825850B2 Imaging element, imaging device, and manufacturing apparatus and method
The present technology relates to an imaging element, an imaging device, and a manufacturing apparatus and a method that facilitate electric charge transfer. An imaging element of the present technology includes a vertical transistor that has a potential with a gradient in at least part of a charge transfer channel that transfers electric charge of a photoelectric conversion unit. Also, an imaging device of the present technology includes: an imaging element including a vertical transistor that has a potential with a gradient in at least part of a charge transfer channel that transfers electric charge of a photoelectric conversion unit; and an image processing unit that performs image processing on captured image data obtained by the imaging element. Further, a manufacturing apparatus of the present technology includes a vertical transistor manufacturing unit that manufactures a vertical transistor having a potential with a gradient in at least part of a charge transfer channel that transfers electric charge of a photoelectric conversion unit. The present technology can be applied to imaging elements, imaging devices, and manufacturing apparatuses and methods, for example.
US10825849B2 Solid-state image pickup device
A solid-state image pickup device 1 according to the present invention includes a semiconductor substrate 2 on which a pixel 20 composed of a photodiode 3 and a transistor is formed. The transistor comprising the pixel 20 is formed on the surface of the semiconductor substrate, a pn junction portion formed between high concentration regions of the photodiode 3 is provided within the semiconductor substrate 2 and a part of the pn junction portion of the photodiode 3 is extended to a lower portion of the transistor formed on the surface of the semiconductor substrate 2. According to the present invention, there is provided a solid-state image pickup device in which a pixel size can be microminiaturized without lowering a saturated electric charge amount (Qs) and sensitivity.
US10825845B2 Display panel having a plurality of spacers
A display panel including a first substrate, an active element layer, a pixel electrode layer, an auxiliary conductive layer, a first spacer and a second spacer is provided. The active element layer is disposed on the first substrate. The pixel electrode layer is disposed on the first substrate and electrically connected with the active element layer. The auxiliary conductive layer is disposed on the active element layer. The first spacer is disposed on the auxiliary conductive layer. The first spacer overlaps the auxiliary conductive layer in a normal projection direction. The second spacer is disposed on the active element layer. The second spacer does not overlap the auxiliary conductive layer in the normal projection direction. A distance between an apex of the first spacer and the first substrate is longer than a distance between an apex of the second spacer and the first substrate.
US10825844B2 Thin film transistor array substrate minimizing unwanted reflection of external light and method of manufacturing the same
A transistor array substrate includes a substrate (having a first trench), a gate electrode (in the first trench), an insulating film, a gate line, a data line, a source electrode, and a drain electrode. The insulating film includes second, third, fourth, fifth, and sixth trenches. The gate line is in the second trench and is not parallel to the data line. The data line includes a first section and a second section that are separated by the gate line and respectively in the third and fourth trenches. The source electrode and the drain electrode are respectively in the fifth and sixth trenches. The source electrode is electrically connected to the data line. The gate electrode is electrically connected to the gate line.
US10825840B2 Thin-film transistor panel
Embodiments of the present disclosure provide a thin-film transistor (TFT) panel structured to prevent the deterioration of image quality due to the luminance change of backlight. According to an embodiment, the TFT panel includes: an insulating substrate; a first gate line and a first data line which are formed on the insulating substrate to be insulated from each other and cross each other; a first subpixel electrode which is formed on the insulating substrate and connected to the first gate line and the first data line by a first TFT; a second subpixel electrode which is formed on the insulating substrate and separated from the first subpixel electrode; a connecting electrode which is directly connected to any one of the first and second subpixel electrodes and capacitively coupled to the other one of the first and second subpixel electrodes; a semiconductor pattern which is formed between the connecting electrode and the insulating substrate; and a light-shielding pattern which is formed between the semiconductor pattern and the insulating substrate, is overlapped by the connecting electrode, and blocks light.