Document Document Title
US10761630B2 Substrate for display device, display device, and touch panel
A display substrate, a display device, and a touch panel, the display substrate including a base substrate; and an electrode on the base substrate, the electrode including a first light transmitting layer, wherein the first light transmitting layer has a work function ranging from about 4.75 eV to about 4.9 eV, the first light transmitting layer includes a first transparent conductive oxide (TCO) layer and a first metal element doped in the first transparent conductive oxide layer, the first metal element being a group 2 metal element, the first metal element is included in the first light transmitting layer in an amount of about 0.01 atomic percent (atomic %) to about 5.00 atomic %, based on a total number of atoms in the first light transmitting layer.
US10761629B2 Flexible touch display panel and manufacturing method therefor, and display device
A flexible touch display panel includes a flexible display substrate, and a color film layer disposed above the flexible display substrate. The color film layer includes a plurality of color filter blocks spaced apart, and a light shielding layer disposed between adjacent ones of the color filter blocks. The flexible touch display panel further includes a first electrode pattern and a second electrode pattern on both sides of the light shielding layer. An orthographic projection of the light shielding layer on the flexible display substrate covers orthographic projections of the first electrode patterns and the second electrode patterns on the flexible display substrate. The first electrode pattern is electrically connected with the second electrode pattern a via hole provided on the light shielding layer.
US10761628B2 Touch control system of electronic product in underwater environment
Provided is a touch control system of an electronic product in underwater environment. The touch control system includes a sealing device which is configured to accommodate the electronic product. The sealing device includes a sealed chamber interlayer and a sealed shell. Herein the sealed chamber interlayer is opposite to the touch screen of the electronic product and is capable of being pressed and rebounded and is transparent, and the sealed shell is connected with the sealed chamber interlayer in a sealing manner. The sealed chamber interlayer covers a surface of the touch screen completely. The sealed shell covers other surfaces of the electronic product, and implements touch control to the touch screen by applying an external force to the sealed chamber interlayer. Underwater high-accuracy maneuverability of the touch screen of the electronic product may be implemented when an external force is applied to the sealed chamber interlayer by a finger.
US10761625B2 Stylus for operation with a digitizer
A stylus for operation with a digitizer device is described. The stylus comprises a housing, at least one transmitter within the housing, electronic circuitry within the housing, the electronic circuitry configured to generate a signal for transmission by the transmitter such that in use, the digitizer device is able to detect the transmitted signal and infer a position of the transmitter with respect to the digitizer device; and an electrically conducting connector. The connector connects the transmitter to the electronic circuitry, and conveys the generated signal from the electronic circuitry to the transmitter. The connector and the transmitter are formed as a single element.
US10761622B2 Pressure sensing on a touch sensor using capacitance
A system and method for measuring pressure by using two substrates that are separated by a distance, each substrate having at least one electrode, and wherein touch sensor capacitance circuitry coupled to electrodes on each of the substrates and transmitting a drive signal may be used to detect a bending or deflection of at least one of the substrates by measuring a change in distance between the electrodes on the different substrates when pressure is applied to one of the substrates, and wherein a compressible substrate may be disposed between the two substrates.
US10761620B2 Electronic pen
An electronic pen includes an ink writing section including a core body and an ink holding section configured to hold an ink that is supplied to the core body, a circuit board, a transmission section which, in operation, transmits a signal, a connection member including a first side that holds an end portion of the ink writing section, on a side of the ink writing section opposite to the core body, and a second side that holds a first end portion of the circuit board, a pen pressure detector provided adjacent to a second end portion of the circuit board, and a casing configured to accommodate the ink writing section, the connection member, the circuit board and the pen pressure detector such that a tip portion of the core body protrudes from the casing.
US10761619B2 Touch-sensing system, display device, active pen, and pen recognition method
Disclosed are a touch-sensing system, a display device, an active pen, and a pen recognition method which can perform rapid and accurate pen recognition as the active pen provides pen identification information to the display device through a predetermined path, and which can also simultaneously process pen inputs through many active pens by distinguishably recognizing the many pens.
US10761615B2 Electronic apparatus, display system, and method for controlling electronic apparatus
An electronic apparatus includes: first to third source-side IF units; and a control unit which causes one of the first to third source-side IF units to transmit image data inputted thereto, to a projector, when an operation mode of the electronic apparatus is a first operation mode, and which causes one of the first to third source-side IF units that is not the one of the first to third source-side IF units connected when in the first operation mode, to transmit image data inputted thereto, to the projector, when the operation mode of the electronic apparatus is a second operation mode. The control unit switches the operation mode to one of the first operation mode and the second operation mode in response to a change request received from the projector.
US10761614B2 Enhanced context-based command line interface auto-completion using multiple command matching conditions
Systems and methods for improved command line interface (CLI) auto-completion. According to one embodiment, a command auto-complete assistant running on a network security device receives input text entered by a user via a command line interface (CLI) console associated with the network security device. A list of auto-complete suggestions is determined by the command auto-complete assistant by matching the input text with multiple commands of a command set based on a matching condition. A score is calculated by the command auto-complete assistant for each auto-complete suggestion in the list of auto-complete suggestions based on at least one priority weighting factor. The list of auto-complete suggestions is sorted by the command auto-complete assistant based on their respective scores. At least one of the sorted auto-complete suggestions is displaying by the command auto-complete assistant on the CLI console.
US10761609B2 User wearable interface device having force feedback
An interface device includes a first fixed portion and a first rotation portion which are fixed to a body, a first power portion which is connected to the first fixed portion and the first rotation portion and provides power to the first rotation portion, and a control unit which controls the first power portion to control rotation of the first rotation portion when receiving a signal from an external device, and the first power portion switches the first rotation portion to a free state of being rotatable by external force or a control state of being not rotatable by external force in accordance with a signal of the control unit.
US10761605B1 Knit data input glove
An item such as a glove may be formed from knitted fabric. The knitted fabric may form fingers for the glove and may form pockets in the fingers. Sensors such as inertial measurement units may be placed in the pockets to measure movements of a user's fingers in the glove. The sensors may be coupled to control circuitry in the glove using conductive yarn in the knitted fabric. The conductive yarn may form courses in the knitted fabric that run along each finger. Haptic components and other electrical components may be coupled to the control circuitry using the conductive yarn. Electrodes may be formed from metal-coated strands of material in the fabric on the sides of each finger. The wireless or wired communications circuitry coupled to the control circuitry may be used to convey information such as user finger movement information to external equipment.
US10761599B2 Eye gesture tracking
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for eye gesture recognition. In one aspect, a method includes obtaining an electrical signal that represents a measurement, by a photodetector, of an optical signal reflected from an eye and determining a depth map of the eye based on phase differences between the electrical signal generated by the photodetector and a reference signal. Further, the method includes determining gaze information that represents a gaze of the eye based on the depth map and providing output data representing the gaze information.
US10761590B1 Data storage performance scaling based on external energy
Systems and methods are disclosed for data storage performance scaling based on external energy. In certain embodiments, a system may comprise a data storage device having an interface to communicate with an external device, a nonvolatile memory, and a circuit. The circuit may be configured to receive an indication via the interface of power resources available to the data storage device from the external device in case of a power loss event, adjust a performance metric of the data storage device to apply when accessing the nonvolatile memory during normal power availability based on the indication, and perform operations during normal power availability based on the performance metric.
US10761587B2 Optimizing power in a memory device
Embodiments generally relate to a memory device. In one embodiment, the memory device includes a clock receiver circuit that receives an external clock signal and provides an internal clock signal. The memory device also includes a delay-locked loop circuit (DLL) having an input, and a circuit that receives the internal clock signal. The circuit selects which pulses of the internal clock signal are applied to the input of the DLL, such that no more than two clock pulses selected from at least three consecutive pulses of the external clock signal are applied to the input of the DLL during a predetermined interval. In another embodiment, a method includes receiving an external clock signal at a clock receiver circuit, receiving an internal clock signal from the clock receiver circuit, and selecting which pulses of the internal clock signal are applied to an input of a DLL, where no more than two clock pulses selected from at least three consecutive pulses of the external clock signal are applied to the input of the DLL during a predetermined interval.
US10761586B2 Computer performance and power consumption optimization
Systems, apparatuses and methods may provide for technology that determines a first real-time correlation between a power consumption of a processor and an operating frequency of the processor, determines a second real-time correlation between a performance level of the processor and the operating frequency of the processor, and sets the operating frequency of the processor to a value based on the first and second real-time correlations. In one example, the performance level or performance per watt of the processor decreases at one or more operating frequencies greater than the value.
US10761585B2 Techniques and system for managing activity in multicomponent platform
In one embodiment an apparatus includes a multiplicity of processor components; one or more device components communicatively coupled to one or more processor components of the multiplicity of processor components; and a controller comprising logic at least a portion of which is in hardware, the logic to schedule one or more forced idle periods interspersed with one or more active periods, a forced idle period spanning a duration during which the multiplicity of processor components and the one or more device components are simultaneously placed in respective idle states that define a forced idle power state during isolated sub-periods of the forced idle period. Other embodiments are disclosed and claimed.
US10761582B2 Method and apparatus to optimize system battery-life for static and semi-static image viewing usage models
A computer system comprising: a graphics processor, a display controller comprising a display-local frame buffer, a display device, and a memory. The memory stores instructions, that when executed by the computer system, perform a method of entering a power management state. The method comprises detecting that the computer system is idle and optional proximity detector for determining if a user is present in front of the system. With the computer system idle, and the user in proximity of the system, the display-local frame buffer is activated. Display information transmitted by the graphics processor is stored in the display-local frame buffer. Initially a power reduction state is initiated for the graphics subsystem including the graphics processor, and the display device is placed in a self-refresh state with the display self-refreshing from information stored in the local frame buffer.
US10761581B2 Method and module for programmable power management, and system on chip
A method and module for programmable power management and a system on chip are disclosed. The module includes: a token ring and an operation unit. The token ring is provided with a cyclically running token and forming a clock information. The operation unit is configured to perform a corresponding power management operation according to a predetermined operation step register and the token; wherein the step register records a time sequence for performing power management operations, the time sequence being represented by the clock information.
US10761580B2 Techniques to enable communication between a processor and voltage regulator
In one embodiment, a processor includes: a plurality of cores; a first storage to store parameter information for a voltage regulator to couple to the processor via a voltage regulator interface; and a power controller to control power consumption of the processor. The power controller may determine a performance state for one or more cores of the processor and include a hardware logic to generate a message for the voltage regulator based at least in part on the parameter information, where this message is to cause the voltage regulator to output a voltage to enable the one or more cores to operate at the performance state. Other embodiments are described and claimed.
US10761570B2 Electronic device with wrapped display
An electronic device may have a hollow display cover structure. The hollow display cover structure may be formed from a structure having an inner surface. The structure may be an elongated member having a longitudinal axis. A material such as sapphire, other crystalline materials, or other transparent materials may be used in forming the hollow display cover structure. A flexible display layer such as an organic light-emitting diode display layer or other flexible display structure may be wrapped around the longitudinal axis to cover the interior surface of the hollow display cover structure. The electronic device may have a touch sensor, accelerometer, gyroscope, and other sensors for gathering input such as user input. The electronic device may use one or more sensors to gather information on rotational motion of the device and can display content on the flexible display layer accordingly.
US10761566B2 Electronic apparatus and method for processing information
A wearable electronic apparatus includes: a fixing unit configured to maintain a relative position relationship between the wearable electronic apparatus and the user's head, the fixing unit can maintain a first relative position relationship and a second relative position relationship between the wearable electronic apparatus and the user's head, and the first relative position relationship is different from the second relative position relationship; a display unit, fixed provided on the fixing unit; a first sound output unit, located at a first end of the fixing unit; a second sound output unit, located at a second end of the fixing unit, and the first end is different from the second end. With the present invention, using the wearable electronic apparatus to facilitate processing information, at least the problem that user's combined experiences of functional requirements, entertainment requirements and usability requirements etc. are met is solved.
US10761562B2 Accessory storage system for computers
A storage system that is secured to a computer monitor. The system includes a tray that extends across the lower edge of the monitor and includes one or more detachable storage compartments. The storage tray is formed having a front wall, a bottom wall, and a rear wall, collectively forming a U shape. An attachment wall is provided at an upper end of the rear wall for attachment to a computer monitor. The attachment wall can be configured having a horizontal orientation for attachment to a lower surface of the monitor or a vertical orientation for attachment to a rear of the monitor. The interior surfaces of the front wall, the bottom wall, and the rear wall define a storage compartment of the storage tray.
US10761560B2 Method and apparatus for transaction based propagated clock-gating for low power design
The embodiments employ a transaction based design methodology to supply clocking when clock pulses are requested. The transactional module receives a clock when it requests a clock pulse and one stage of a logic pipeline is clocked at a time. This methodology reduces dynamic power dissipation by the transactional module from the dynamic power dissipated by traditional synchronous logic designs.
US10761559B2 Clock gating enable generation
In one embodiment, a clock-gating system for a pipeline includes a clock-gating device configured to gate or pass a clock signal to the pipeline, and a clock controller. The clock controller is configured to track a number of input packets at an input of the pipeline, to track a number of output packets at an output of the pipeline, to determine whether to gate or pass the clock signal based on the number of the input packets and the number of the output packets, to instruct the clock-gating device to pass the clock signal if a determination is made to pass the clock signal, and to instruct the clock-gating device to gate the clock signal if a determination is made to gate the clock signal.
US10761556B2 Rotational positioning mechanism and carrier
A rotational positioning mechanism includes a base, a rotational shaft, a rotational plate, at least two first switches and a positioning assembly. The rotational shaft is pivoted to the base. The rotational plate is connected to the rotational shaft and is configured to rotate relative to the base along with the rotational shaft. The rotational plate has at least two first positioning portions. The two first switches are respectively disposed at the two first positioning portions. The positioning assembly is disposed at the base, and comprises a positioning component configured to form a structural interference with any one of the first positioning portions or remove the structural interference. After the positioning component forms the structural interference with any one of the first positioning portions, the positioning component abuts against the corresponding first switch, and the degree of rotational freedom of the rotational plate and the rotational shaft are restricted.
US10761555B2 Shifting device
This shifting device is equipped with an operation unit that is operated for switching among a plurality of shift ranges of a transmission installed in a vehicle. The operation unit includes: a first operation portion that is operated by pressing; and a plurality of second operation portions that are arranged on either side of the first operation portion and are operated in different directions about their common turning axis.
US10761550B2 Current limitation for voltage regulator
This specification discloses methods and devices for limiting output current of a voltage regulator, in order to protect the voltage regulator against component overstress in case of output load current overloading. In some embodiments, a current limitation circuit acting on a reference input voltage of a voltage regulator can limit the maximum output load current of the voltage regulator. Once the current limitation circuit detects an over current load, the reference voltage is adjusted or decreased to limit the maximum output load current. Additionally, these methods and devices can be coupled easily with a slew rate control circuit to also limit the inrush current.
US10761547B2 HVAC controller with integrated airside and waterside cost optimization
A building HVAC system includes a waterside system and an airside system. The waterside system consumes one or more resources from utility providers to generate a heated and/or chilled fluid. The airside system uses the heated and/or chilled fluid to heat and/or cool a supply airflow provided to the building. A HVAC controller performs an integrated airside/waterside optimization process to simultaneously determine control outputs for both the waterside system and the airside system. The optimization process includes optimizing a predictive cost model that predicts the cost of the resources consumed by the HVAC system, subject to a set of optimization constraints including temperature constraints for the building. The HVAC controller uses the determined control outputs to control the HVAC equipment of the waterside system and the airside system.
US10761546B2 Anti-scalding water outlet device
An anti-scalding water outlet device, including: a main body adapted to allow water to flow through; a control circuit board adapted to set a temperature parameter value; a temperature sensor, in connection with the control circuit board and adapted to sense water temperature inside the main body; and a solenoid valve, in connection with the control circuit board and adapted to use as a water flow switch of the main body, when the solenoid valve is opened to allow water to flow out of the main body, the control circuit board obtaining water temperature information transmitted from the temperature sensor; when the water temperature exceeds the set temperature parameter value, the control circuit board issuing a command to close the solenoid valve and stop waterflow of the main body, thereby preventing high temperature water from scalding users.Therefore, the present invention is safe and practical.
US10761543B2 Machine guidance pitch and roll compensation
Systems and methods for steering a mobile agricultural machine to align a guidance point with a guidance line. One method includes setting the guidance point and setting the guidance line. The method also includes receiving, from an orientation sensor mounted on the mobile agricultural machine, orientation information including one or both of a pitch angle and a roll angle of the mobile agricultural machine. The method further includes calculating an orientation correction based on the orientation information. The method also includes modifying the guidance point using the orientation correction and steering the mobile agricultural machine to align the modified guidance point with the guidance line and/or modifying the guidance line using the orientation correction and steering the mobile agricultural machine to align the guidance point with the modified guidance line.
US10761540B2 Autonomous driving system
An autonomous driving system has: an information acquisition device configured to acquire driving environment information indicating driving environment for a vehicle; and an autonomous driving control device configured to control autonomous driving of the vehicle based on the driving environment information. A forward event is an event that exists in front of the vehicle and causes the autonomous driving control device to change a travel state of the vehicle. The autonomous driving control device performs: event detection processing that detects the forward event based on the driving environment information; visually-recognizing timing estimation processing that estimates a visually-recognizing timing at which a driver of the vehicle is able to visually-recognize the forward event; and travel control processing that proposes or executes, at or after the visually-recognizing timing, travel control that changes the travel state according to the forward event.
US10761537B1 Obstacle detection and manipulation by a vehicle within a dig site
An autonomous or semi-autonomous excavation vehicle is capable of determining a route between a start point and an end point in a site and navigating over the route. Sensors mounted on the excavation vehicle collect any or more of spatial, imaging, measurement, and location data to detect an obstacle between two locations within the site. Based on the collected data and identified obstacles, the excavation vehicle generates unobstructed routes circumventing the obstacles, obstructed routes traveling through the obstacles, and instructions for removing certain modifiable obstacles. The excavation vehicle determines and selects the shortest route of the unobstructed and obstructed route and navigates over the selected path to move within the site.
US10761535B2 Intelligent vehicle navigation systems, methods, and control logic for multi-lane separation and trajectory extraction of roadway segments
Presented are systems and methods for extracting lane-level information of designated road segments by mining vehicle dynamics data traces. A method for controlling operation of a motor vehicle includes: determining the vehicle's location; identifying a road segment corresponding to the vehicle's location; receiving road-level data associated with this road segment; determining a turning angle and centerline for the road segment; receiving vehicle data indicative of vehicle locations and dynamics for multiple vehicles travelling on the road segment; determining, from this vehicle data, trajectory data indicative of start points, end points, and centerline offset distances for these vehicles; identifying total driving lanes for the road segment by processing the trajectory data with a clustering algorithm given the turning angle and centerline; extracting virtual trajectories for the driving lanes; and commanding a vehicle subsystem to execute a control operation based on an extracted virtual trajectory for at least one driving lane.
US10761531B2 Guidance control system for autonomous-traveling vehicle
The present invention is an induction control system for an autonomous-traveling vehicle that performs traveling and work autonomously while measuring the position of the traveling vehicle by using a satellite positioning system, the induction control system being characterized by, when the autonomous-traveling vehicle is moved backward, setting a virtual antenna position more backward, by a predetermined distance, than the antenna position of the satellite positioning system, and performing a lateral control by using a lateral deviation from a target path at the virtual antenna position. This makes it possible to travel along a pre-designed target path during a forward movement, turning, and a backward movement of the autonomous-traveling vehicle.
US10761529B2 Trajectory-based guidance of a motor vehicle
A method for controlling a motor vehicle includes detecting a first predefined trajectory, determining a region across which the first trajectory leads, determining a second trajectory that has a different extension in the determined region than the first trajectory, detecting a driver-controlled selection of one of the trajectories, and autonomously controlling the motor vehicle in such a way that it follows the selected trajectory.
US10761520B1 Cluster-based work cell orchestrator
Embodiments herein describe forming clusters of network connected orchestration components (referred to herein as “orchestrators”) and distributing the management of a plurality of work cells among the orchestrators. That is, each cluster can include a plurality of work cell orchestration nodes which are the compute resources used to host an orchestrator for managing the work cells. Each cluster can be assigned to manage a particular type or version of a work cell. Because managing a work cell may use only a small fraction of the compute resources of the orchestration nodes, each orchestration node can manage multiple work cells. The embodiments herein describe distributing the work cells amongst the orchestration nodes using a work cell table which permits the orchestration nodes to assert ownership over new work cells and enable automated failover in case one of the orchestration nodes fails.
US10761519B2 Product design and process design device
A product design and process design device includes: a storage unit that stores design specification information containing the tolerance of a dimensional variation at any site of an assembly product, part dimension error information, assembly facility error information, assembly tolerance information, the part dimension error information, and the assembly facility error information, part manufacturing cost information, and facility investment cost information with respect to the assembly facility error information; a tolerance distribution processing unit that uses the assembly tolerance information to generate proposed tolerance distributions that differ in distributional combination with respect to each error, and calculates part manufacturing costs and facility investment costs; a facility planning processing unit that determines a proposed tolerance distribution, with, as an evaluation index, total production costs respectively including the sums of the part manufacturing costs and the facility investment costs calculated; and an output unit that outputs the proposed tolerance distribution.
US10761514B2 Intelligent binding and selection of hardware via automation control objects
The present disclosure is directed to systems, methods and devices for facilitating object-based industrial automation control. An automation control library comprised of a plurality of objects may be maintained in association with one or more industrial automation applications. Code defining the execution of an industrial automation process may be received. A plurality of objects in the object library for implementing the industrial automation control process may be identified. The plurality of identified objects may be matched to one or more hardware components based on one or more operational requirements included in the code, and available hardware resources for performing the automation control process.
US10761511B2 Printing apparatus and printing method for biochip fabrication
A printing method for biochip fabrication is implemented by a printing apparatus including a platform for supporting a substrate, a pipet module, and a control module. The method includes: moving the platform in sequence to multiple positions associated with multiple to-be-printed points on the platform; moving the pipet module reciprocatively toward and away from the platform during each movement of the platform; discharging, by the pipet module, solution sample onto the respective one of the to-be-printed points to form a bio-sensing spot to form a biochip; and determining, by the control module, whether to execute a supplementary printing procedure for the biochip based on whether each bio-sensing spot satisfies a predetermined criterion.
US10761510B2 Machine tool management device
A machine tool management device including process screen display section configured to display a process screen on display, the process screen being a screen corresponding to each of multiple machine tool related processes; menu display section configured to display on the process screen each of a free menu at which it is possible to register any of the multiple machine tool related processes and a fixed menu at which specific processes of the multiple machine tool related processes are displayed; specific person authentication section configured to authenticate a specific person such that an entry operation via display is restricted to only the specific operator; and display menu changing section configured to receive an operation by an operator authenticated by specific person authentication section.
US10761508B2 Client initiated vendor verified tool setting
Computer (or computerized) numerical control (CNC) tools are employed globally. Whilst these may be purchased with an initial set of configurations users must establish any other configurations themselves leading to potentially every CNC tool being configured slightly differently for the same process requirement even before considering new materials, tool elements etc. Accordingly, users and manufacturers would benefit from access to updated process parameters for machine tools that reflect scenarios encountered in manufacturing operations that are new or lead to improved tolerances, yields, reducing process time etc. However, users are not going to employ just any set of parameters given to them as these may damage their CNC tool or tool elements. Embodiments of the invention provide a subscription service providing access to verified settings where the verification is performed by the machine tool manufacturer or machine tool element manufacturer.
US10761507B2 Instant correction method for encoder and system thereof
An instant correction method for an encoder includes the following steps. The motion of a device under test is sensed to obtain a first wave signal and a second wave signal. The first and second wave signals are sampled to generate N first digital signal values and N second digital signal values. N positioning positions are generated according to the N first and second digital signal values, and the N positioning positions are added to a calculation group. A regression analysis is performed for the calculation group to generate a regression curve. The (N+1)-th prediction position is predicted using the regression curve. The ideal position of the device under test is determined at a time point of the (N+1)-th prediction position according to an ideal position curve. An error value between the (N+1)-th prediction position and the ideal position is applied to correct the device under test.
US10761500B2 Load prediction and control of electrical network using load profiles
Systems, methods, and other embodiments associated with load prediction using load profiles are described. In one embodiment, a method includes receiving weather information for a plurality of geographical regions, and receiving load information from a plurality of meters located in the plurality of geographical regions. A load profile is generated for each of the geographical regions. Each load profile is generated based upon (i) weather information corresponding to a geographical region and (ii) load information corresponding to one or more meters located within the geographical region. A loading is predicted for each geographical region based upon a load profile for the geographical region. A determination is made as to whether the predicted loading for each geographical region exceeds a defined threshold. In response to a first predicted loading for a first geographical region exceeding the defined threshold, a geographical representation of the first geographical region is distinguished.
US10761496B2 Apparatus and method for identifying impacts and causes of variability or control giveaway on model-based controller performance
A method includes obtaining data identifying values of one or more controlled variables associated with an industrial process controller. The method also includes identifying periods when at least one of the one or more controlled variables has been moved to an associated limit by the controller. The method further includes, for each identified period, (i) identifying a standard deviation of predicted values for the associated controlled variable and (ii) determining a control giveaway value for the associated controlled variable based on the standard deviation. The control giveaway value is associated with an offset between the associated controlled variable's average value and the associated limit. In addition, the method includes identifying variances in the one or more controlled variables using the control giveaway values and generating a graphical display identifying one or more impacts or causes for at least some of the variances.
US10761495B2 Dynamic and reconfigurable system management
In response to receiving an input of a user criteria for operating a system, one or more predictive models are selected in dependence on the user criteria. The predictive models predict behavior of the system and are stored in the memory with one or more system performance models that control operation of the system. The selected performance model(s) is implemented to select a subset of sensors that monitor physical conditions of the system and/or environmental parameters thereof, and is also used to select one or more of the system performance models that conform to the user criteria. One or more actuators associated with the system are controlled according to inputs received from the selected subset of sensors and the selected performance model(s). The same concepts are valid for other areas rather than maintenance, like optimization in the area of the internet of things, dynamic system reconfiguration, preventive healthcare.
US10761494B2 Policy introduced effect prediction apparatus, and policy introduced effect prediction method
A disclosed policy introduced effect prediction apparatus includes a memory storing a set of instructions of a policy introduced effect prediction program, and processors programed to execute the instructions to perform a policy introduced effect prediction process. The policy introduced effect prediction process includes calculating at least one calculation model based on first difference data calculated based on time series data of an objective variable and second difference data calculated based on time series data of an explanatory variable, calculating a difference amount of the objective variable by inputting a difference amount of the explanatory variable for introducing a policy into the calculated calculation model, and calculating a predicted value of the objective variable in response to introduction of the policy by adding the calculated difference amount of the objective variable to a predicted value of the objective variable in the absence of the introduction of the policy.
US10761491B2 Portable electronic device
An electronic timepiece which is a portable electronic device includes a planar first conductor element including a feed element which is a feed portion, a planar second conductor element which is disposed so as to overlap the first conductor element in plan view and includes a ground portion, a short circuit portion that connects the first conductor element and the second conductor element, and a non-conductive base plate that is disposed between the first conductor element and the second conductor element and to which a step motor which is a driving element is attached.
US10761487B2 Convertible smart watch
A convertible smart watch including a smart watch and an analog watch together, which is convertible between the smart watch and the analog watch at user's option, is disclosed. The convertible smart watch includes a frame with a through hole in the center, a watch body including an analog watch unit and a smart watch unit combined against their backs such that that analog watch be exposed to one side and the smart watch be exposed to the other side, which is rotatable inside the through hole of the frame, and a smart watch on-off unit to operate the smart watch unit, when the smart watch is exposed to the front of the frame and the analog watch is exposed to the rear of the frame.
US10761486B2 Reward clock
The present invention is directed to devices that may be used to help young children stay in bed or their room until it is time to get up. The device may be configured as a clock. The clock may be programmable to have a duration of a nap time, or a time when the child is able to get up. A visual countdown timer may be provided with the device (e.g., on the clock face), which may include a graphical representation of the remaining fraction of time before “get up” time. The visual countdown timer may not include number indicia, but rather includes a graphic (e.g., ring extending about the perimeter of the clock face), which gradually diminishes as the predetermined “get up” time is approached. A reward drawer may also be provided, which automatically unlocks at the “get up” time, and provides the child with a prize.
US10761485B2 Strike mode selector for a watch or timepiece
Striking mechanism for a watch including: an hour snail driven by a movement, a strike wheel set including a detent ratchet and a repeating rack pinion, a pivoting hour-rack for reading this snail and driving this pinion, a click set in motion at each passing strike to drive this detent ratchet, with a mode selector mechanism for selection by the user of a particular strike mode, among distinct modes including a silent mode, defining the angular position of a cam having an external profile, wherein, in silent mode, the largest radius pushes back a beak of a silencing lever, to orient it into a position where its main arm moves this click away from this ratchet in order to disable every passing strike.
US10761482B2 Component for a timepiece movement
The invention relates to a timepiece component (1) comprising at least one portion (3) machined by chip removal. Said portion (3) is made of a non-magnetic copper alloy in order to limit its sensitivity to magnetic fields, said copper alloy containing between 10 wt % and 20 wt % of Ni, between 6 wt % and 12 wt % of Sn, X wt % of additional elements, wherein X is comprised between 0 and 5, and the remainder is Cu.The invention concerns the field of timepiece movements.
US10761481B2 Holographic display
Disclosed is a holographic display including a spatial light modulator (SLM) with pixels, the SLM pixels being on a substrate, the SLM including circuitry which is on the same substrate as the SLM pixels, the circuitry operable to perform calculations which provide an encoding of the SLM.
US10761478B2 Process cartridge and image forming apparatus
A process cartridge is detachably mountable to a main assembly of an electrophotographic image forming apparatus. The cartridge includes an electrophotographic photosensitive drum, a developing roller, a drum unit containing the drum, a developing unit containing the roller and being movable so the roller contacts and is spaced from the drum, and a first force receiver receiving a force from a main-assembly first force applier by movement of a door from open to closed positions when mounting the cartridge and a second force receiver movable from a stand-by position by movement of the first force receiver by a force received from the first force applier. The second force receiver takes a projected position receiving a force from the second force applier to move the developing unit so the roller moves out of contact with the drum, the projected position being higher than the stand-by position.
US10761476B1 Replaceable unit for an electrophotographic image forming device having a movable electrical connector
A replaceable unit for an electrophotographic image forming device includes a housing having a reservoir for holding toner. An electrical connector is positioned on a first side of the housing. The electrical connector includes an electrical contact for contacting a corresponding electrical contact in the image forming device. The electrical contact of the replaceable unit is electrically connected to processing circuitry mounted on the housing. The electrical connector is movable between a first position and a second position. The electrical contact of the replaceable unit moves outward from the first side of the housing along a side-to-side dimension of the housing when the electrical connector moves from the first position to the second position. The electrical contact of the replaceable unit faces downward when the electrical connector is in the second position permitting the corresponding electrical contact to contact the electrical contact of the replaceable unit from below.
US10761473B2 Developing device capable of suppressing the passing of a relatively large amount of developer and image forming apparatus therewith
A developing device includes a housing, a developer holding device, and a directing device. The housing includes a container portion containing developer and has a developing opening. The developing device has a through portion disposed at a portion of the housing including a downstream edge portion at a downstream portion of the developing opening in a direction in which the developer holding device is rotated. The through portion has an inlet, an outlet, and a passage that connects the inlet and the outlet to each other so as to allow part of an airflow generated by rotation of the developer holding device to be introduced thereinto and flow therethrough. The directing device extends from a portion of the housing opposite to the developing opening with the inlet of the through portion interposed therebetween toward the developer holding device so as to direct the part of the airflow toward the inlet.
US10761470B2 Printing apparatus and light-emitting element driving device
A printing apparatus is provided. The apparatus comprises a light-emitting element, a light-receiving element including a first terminal and a second terminal, a reference current generator supplying a reference current, a comparator comparing a monitor current with the reference current, the light-receiving element supplying the monitor current to the second terminal in accordance with a light emission amount, a driver driving the light-emitting element based on an output of the comparator, and a reference voltage controller. The comparator includes a first input terminal connected to the second terminal and a second input terminal. The reference voltage controller supplies a reference voltage selected from at least two voltage values to the second input terminal, and to control the voltage of the second terminal to be a voltage according to the reference voltage.
US10761469B2 Printing apparatus and control method for deleting an area of image data before printing and binding
Even when a binding process for binding a plurality of sheets without using a staple is performed after performing printing on both faces of the sheets, the binding process can be performed so that the bound sheets are not easily separated. A control method for controlling a printing apparatus, comprises: performing a binding process for binding, without using a staple, a sheet on which an image is printed based on image data; specifying an area where the binding process is to be performed, the area being included in the image data; deleting image data of the specified area; and printing the image on the sheet based on the image data on which deleting is performed.
US10761468B2 Image forming apparatus
An image forming apparatus is provided. The image forming apparatus includes an image forming unit containing a special recording material and circuitry configured to control the image forming unit to form a hardly visible image on a recording medium with the special recording material. The hardly visible image is formed of a halftone dot image comprising isolated dots in a number smaller than that of isolated dots forming a visible image having the same image area ratio as the hardly visible image.
US10761464B2 Fuser device
A fixation heater heats a specific part with resistance heating. A temperature sensor detects as a detection temperature a temperature of the specific part. An alternating current switching unit turns on and off alternating current power supply to the fixation heater. A controller controls the alternating current switching unit with a heater control signal and thereby performs temperature control of the fixation heater. An estimation calculating unit derives an estimation temperature at a second time point on the basis of the detection temperature at a first time point and the heater control signal until the second time point, and the second time point is a time point when a predetermined time elapses from the first time point. An anomaly detecting unit detects anomaly on the basis of the detection temperature at the second time point and the estimation temperature at the second time point.
US10761463B2 Heating device, fixing device, and image forming apparatus
A heating device includes a heater that includes a heat generator configured to generate heat as the heat generator is supplied with power. A feeding member is configured to contact the heater and feed the power to the heat generator. The feeding member is made of a corson copper alloy.
US10761461B2 Fixing device and image forming apparatus
A fixing device includes a fixing belt, a flat heater, a holder and a pressing roller. The fixing belt is rotatable and cylindrical. The flat heater has a holding body and a heating resistor. The holder is configured to hold the flat heater such that a surface in which the heating resistor is embedded comes into contact with an inner circumferential face of the fixing belt via a lubricant. Of a contact area of the flat heater with the inner circumferential face of the fixing belt, in an area outside longitudinal end portion of the holding body, a groove is formed such that the lubricant flows to a center side of the holding body toward a downstream side in a rotational direction of the fixing belt.
US10761458B2 Image forming apparatus
An image forming apparatus includes an image bearing member; an intermediary image transfer belt; primary and secondary transfer members; a first cleaning member; a second cleaning member; an electrical discharge member; a voltage source for supplying a voltage to produce the discharge current; and a controller, which controls the voltage source such that an absolute value of a first current balance is not more than 50% of an absolute value of a second current balance. The first current balance is a sum of a primary transferring current, a secondary-transfer current, a first cleaning current, a second cleaning current and a discharge current at the time when an image region on the belt passes the primary transfer member, the secondary transfer member, the first cleaning member, the second cleaning member and the discharge member, respectively, and the second balance is the first balance minus the discharge current.
US10761449B1 Charging device, process cartridge, and image forming apparatus
A charging device includes: a charging member that charges an image holding member according to a contact charging method, and includes a conductive substrate and a surface layer provided on the conductive substrate; and a clean member that cleans the charging member while contacting the charging member, and includes a shaft and a foamed elastic layer provided on the shaft, wherein a ratio of a distance between irregularities in an axial direction of the surface layer in the charging member (Sm) to a width of a nodal section of a foam cell wall surface protruding from a surface of the foamed elastic layer in the clean member (W) satisfies 2.4≤Sm/W≤5.9.
US10761448B2 Charging roller with curved roller surface
A charging roller has a curved roller surface, and the shape of the roller surface is represented by Y/Y1=(X/X1)exp(α). A distance between a central portion of the roller body and a first arbitrary point on a rotation axis is denoted by X, a reduction in a radius at the first arbitrary point from the maximum radius at the central portion is denoted by Y, a distance between the central portion and a second arbitrary point on the rotation axis is denoted by X1, and a reduction in the radius at the second arbitrary point from the maximum radius at the central portion is denoted by Y1. The second arbitrary point is closer to an end portion of the roller body than the first arbitrary point.
US10761446B2 Image forming apparatus and computer-readable recording medium storing program
An image forming apparatus includes an image forming unit that has multiple developing units, arranged in series for basic colors in a rotational driving direction of a transfer body, for developing toner images of the basic colors based on input image data and forms the overlapped toner images on a surface of the transfer body in a state in which the toner images are aligned; a transferring unit that transfers the toner images onto a sheet; and a controller that calculates a difference between color information of an image obtained by reading the toner images and color information of the input image data, calculates a color change direction of the toner images with respect to a color of the input image data based on the difference, and refers to a table and determines a shape of a surface of the sheet based on information of the color change direction.
US10761443B2 Charge transport molecule having hydrogen for an overcoat of a photoconductor
A charge transport molecule contains four radical polymerizable functional groups of the general structure exemplified below: where R1 and R2 contain a spacer group and a radical polymerizable functional group, R3 and R4 are hydrogen atoms, and R5 and R6 contain a spacer group and a radical polymerizable functional group wherein the spacer group of R1, R2, R5 and R6 is an ethyl group and the radical polymerizable functional group of R1, R2, R5 and R6 is an acrylate group.
US10761440B2 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
A photosensitive member (1) includes a conductive substrate (2) and a photosensitive layer (3). The photosensitive layer is a single-layer photosensitive layer (3c). The photosensitive layer contains a charge generating material, a hole transport material, an electron transport material, and a binder resin. The hole transport material includes a triphenylamine derivative represented by general formula (HT). The electron transport material includes a compound represented by general formula (ET1), (ET2), (ET3), (ET4), or (ET5). The binder resin includes a polyarylate resin represented by general formula (1)
US10761439B2 Polyarylate resin and electrophotographic photosensitive member
An electrophotographic photosensitive member includes a photosensitive layer. The photosensitive layer contains a charge generating material, a hole transport material, and a binder resin. The binder resin contains a polyarylate resin represented by general formula (1). In general formula (1), r and s each represent an integer of at least 0 and no greater than 49 and t and u represents an integer of at least 1 and no greater than 50. Furthermore, r+s+t+u=100 and r+t=s+u. X and Y each represent, independently of one another, a divalent group represented by chemical formula (1-1), (1-2), (1-3), or (1-4).
US10761436B2 Optical arrangement, in particular lithography system, with a transport lock
An optical arrangement, for example a lithography system, includes: a first component, in particular a carrying frame; a second component, in particular a mirror, which is movable in relation to the first component; and at least one stop with at least one stop face for limiting the movement of the second component in relation to the first component. The optical arrangement, preferably the stop, can have a fixing device for fixing the second component. The fixing device can have a fixing element that is movable in relation to the stop face of the stop. Further aspects of the device likewise relate to an optical arrangement with a fixing device or with a transport lock.
US10761435B2 Reticle clamping device
Systems and methods are disclosed that provide a support system in the Z direction for patterning devices that can function under high acceleration and deceleration with minimal effect on travel and hysteresis in the X and Y directions. A reticle clamping system includes a support device and a holding device. The holding device is configured to releasably couple a reticle to the support device. The holding device includes a plurality of burls. The reticle clamping system further includes a metallic support system coupled to the support device. The metallic support system provides a vacuum path from a vacuum channel to the holding device.
US10761428B2 Fabricating calcite nanofluidic channels
A method for fabricating calcite channels in a nanofluidic device is described. A photoresist layer is coated onto a top surface of a silicon nitride (SiN) substrate. After coating the photoresist layer, the photoresist layer is scanned with an electron beam in a predefined pattern. The scanned photoresist is developed to expose portions of the top surface of the SiN substrate in the predefined pattern. Calcite is deposited in the predefined pattern using atomic layer deposition (ALD) using a calcite precursor gas. Using a solvent, a remaining portion of the photoresist layer is removed to expose the deposited calcite in the predefined pattern and on the top surface of the SiN substrate, where a width of the deposited calcite is in range from 50 to 100 nanometers (nm).
US10761427B2 Photoresist and method of formation and use
A system and method for depositing a photoresist and utilizing the photoresist are provided. In an embodiment a deposition chamber is utilized along with a first precursor material comprising carbon-carbon double bonds and a second precursor material comprising repeating units to deposit the photoresist onto a substrate. The first precursor material is turned into a plasma in a remote plasma chamber prior to being introduced into the deposition chamber. The resulting photoresist comprises a carbon backbone with carbon-carbon double bonds.
US10761423B2 Chemical composition for tri-layer removal
A method includes forming a tri-layer. The tri-layer includes a bottom layer; a middle layer over the bottom layer; and a top layer over the middle layer. The top layer includes a photo resist. The method further includes removing the top layer; and removing the middle layer using a chemical solution. The chemical solution is free from potassium hydroxide (KOH), and includes at least one of a quaternary ammonium hydroxide and a quaternary ammonium fluoride.
US10761421B2 Pellicle film for photolithography and pellicle
A pellicle film for photolithography that is a pellicle film to be stretched over one end face of a pellicle frame, and is characterized by including a polymer film, and a gas impermeable layer formed on one side or both sides of the polymer film, and a pellicle for photolithography provided with the pellicle film.
US10761419B2 Systems and methods for performing optical imaging using a tri-spot point spread function (PSF)
Systems and methods for use in tri-spot point spread function imaging are provided that include a phase mask. The phase mask includes three partitions that each include a subset of the total area that is asymmetrical to other partitions. Each partition includes a phase delay ramp aligned along a phase delay axis, and includes a gradient of phase delays. Each phase delay axis is oriented in a different direction with respect to each other. Included is a source that outputs an excitation beam into a sample containing at least one light emitter that emits a radiation pattern when illuminated. Included is at least one sensor arranged to capture at least one image of the radiation pattern and a phase mask positioned between the at least one emitter and the at least one sensor. The phase mask is configured to produce a tri-spot point spread function.
US10761418B2 Imaging method and imaging system
An imaging method is provided. In an example, the imaging method includes a first X-ray image including a ROI of a subject is taken by an image capturing device, a position of the ROI in the first X-ray image is determined, a moving distance and a moving direction for a positioning system is determined based on the position of the ROI in the first X-ray image, and the positioning system is capable of being moved to adjust a positional relationship between the image capturing device and the subject, the positioning system is moved based on the moving distance and the moving direction, and a second X-ray image including the ROI is taken by the image capturing device, and the ROI is located in a center position of the second X-ray image.
US10761409B2 Surveillance camera enclosure
The present disclosure provides for an adjustable camera enclosure. The camera enclosure includes a housing, a camera mounting assembly, and a base. The housing is aligned along a longitudinal axis and includes a hollow interior, a first end, a second end and an aperture through a wall of the housing. The aperture extends in a direction parallel to the longitudinal axis. The camera mounting assembly is disposed in the hollow interior of the housing and slidable within the hollow interior along the longitudinal axis. The camera mounting assembly can receive a camera such that a lens of the camera is oriented to the aperture of the housing. The base is coupled to the second end of the housing and is mountable to a surface. The base is rotatable about the longitudinal axis relative to the surface to rotate the housing about the longitudinal axis.
US10761403B2 Aperture unit
The present disclosure relates to an aperture unit having an optical axis. The aperture unit includes a fixed portion, a movable portion, a first blade and a driving component. The movable portion is movably connected to the fixed portion, the first blade movably connects to the movable portion and the fixed portion, and the driving component connects to the movable portion to move the movable portion relative to the fixed portion in a first moving dimension. When the movable portion is moved relative to the fixed portion in the first moving dimension, the first blade is driven by the movable portion to move relative to the fixed portion in a second moving dimension, and the first moving dimension and the second moving dimension are different.
US10761399B2 Laser exposure head with reduced leakage
A laser exposure system includes an electrically-controlled diffraction grating which can be controlled to be in a first state where the incident light beam is undiffracted and a second state where the incident light beam is diffracted into a plurality of light beams including a zero-order light beam and first and second diffracted light beams. An aperture structure which passes the first and second diffracted light beams while blocking the zero-order light beam. A polarization rotator rotates a polarization state of the second diffracted light, and a polarization beam combiner combines the first diffracted light beam and the polarization-rotated second diffracted light beam onto a common path forming a combined light beam. An optical element focuses the combined light beam onto an imaging medium. A controller controls the state of the electrically-controlled diffraction grating in accordance with pixel data to form a printed image.
US10761393B2 Electro-chromic devices including solid or quasi-solid electrolyte layers and methods of making the same
An electro-chromic device including a solid or quasi-solid electrolyte layer is disclosed. The electrolyte layer may be a composite polymeric electrolyte layer. The polymeric electrolyte layer may be a conductive transparent adhesive or an optically transparent cured electrolyte. The electrolyte layer may also be a porous optically transparent membrane impregnated or embedded with an electrolytic material. Methods for forming solid or quasi-solid electrolyte layers in-situ in electro-chromic devices are also provided.
US10761390B2 Liquid crystal display device and method for fabricating the same
An LCD device includes first and second substrates and a liquid crystal layer disposed between the substrates. A gate transmitting member is disposed on the first substrate. The gate transmitting member includes a gate line and a gate electrode. A data transmitting member is disposed on the first substrate. The data transmitting member includes a data line, a source electrode, and a drain electrode. A pixel electrode is disposed in a pixel area. The pixel electrode is connected to the source electrode. A first gate insulating layer is disposed on the gate transmitting member. The first gate insulating layer has substantially a same shape as the gate transmitting member and has a greater size than a size of the gate transmitting member. A semiconductor layer is disposed on the first gate insulating layer. The semiconductor layer overlaps the gate electrode, the source electrode, and the drain electrode.
US10761387B2 Liquid crystal display device and manufacturing method thereof
A liquid crystal display device includes a liquid crystal display element, a wiring substrate having a second terminal, and a light shielding mask. The liquid crystal display element includes a first substrate having a first terminal and a display pixel unit, and a second substrate disposed at a side where illumination light is irradiated to the first substrate. A bonding wire has an arch shape, is formed such that a top of the bonding wire is lower than an upper surface of the second substrate, is joined to the first terminal by first bonding, and is joined to the second terminal by second bonding. The light shielding mask has a light transmitting region corresponding to the display pixel unit and is disposed at a side where the illumination light is irradiated to the liquid crystal display element.
US10761383B2 Phase modulator and optical device
A phase modulator includes; a first liquid crystal element and a second liquid crystal element, wherein: in the state in which no voltage is applied to the first liquid crystal element nor to the second liquid crystal element, both of the first liquid crystal material and the second liquid crystal material show optical isotropy; and in the state in which a predetermined range of voltage is applied both to the first liquid crystal element and to the second liquid crystal element, the first liquid crystal material shows optically uniaxial anisotropy with a first ordinary refractive index and a first extraordinary refractive index which is larger than the first ordinary refractive index, and the second liquid crystal material shows optically uniaxial anisotropy with a second ordinary refractive index and a second extraordinary refractive index which is smaller than the second ordinary refractive index.
US10761380B2 Liquid crystal display device
A reliability of seal portion of a liquid crystal display device can be improved by the following structure. A liquid crystal display device includes: a TFT substrate which includes a display region and a terminal part, and has an inorganic insulating film formed on an organic passivation film and an alignment film formed over the inorganic insulating film; a counter substrate, the TFT substrate and the counter substrate bonded together by a sealing material formed at a seal part surrounding the display region; and a liquid crystal sealed inside. At the seal part, a transparent conductive oxide film is formed between the inorganic insulating film and the alignment film. The transparent conductive oxide film exists inside an edge of the TFT substrate and hence, the edge of the TFT substrate is free of the transparent conductive oxide film.
US10761376B2 Liquid crystal display device and manufacturing method thereof
A liquid crystal display device includes: a TFT substrate formed with an alignment film on a pixel; a counter substrate disposed opposite to the TFT substrate and formed with an alignment film on a top surface on the TFT substrate side; and a liquid crystal sandwiched between the TFT substrate and the counter substrate. In the liquid crystal display device, the alignment film is configured of a first alignment film layer contacting the liquid crystal layer and having at least one kind of polyimide and a second alignment film layer formed below the first alignment film layer and having at least one kind of polyimide, the first alignment film layer is a material that is enabled to provide liquid crystal alignment regulating force by applying polarized light, and the first alignment film layer and the second alignment film layer contain a common polyimide structure.
US10761373B2 Display device
A display device is provided. The display device includes a display panel and a backlight module. The backlight module is disposed corresponding to the display panel. The backlight module includes a substrate and a plurality of light emitting units. The substrate has a first surface, and the first surface faces the display panel. The plurality of light emitting units are disposed on the first surface. A first distance between the first surface and the display panel is in a range from 0.8 mm to 9 mm.
US10761372B2 Image display apparatus
An image display apparatus includes: a display panel; a back frame including a flat portion and a side wall; light sources arranged in rows and columns at substantially equal intervals in the flat portion; support pins arranged in rows and columns at substantially equal intervals in the flat portion and away from the light sources; a diffuser panel diffusely emitting light from the light sources toward the display panel; and a luminance-equalizing sheet that is supported on the support pins, between the diffuser panel and the back frame, has an outer edge substantially overlapping an outer edge of an active area of the display panel, and transmits part of the light from the light sources toward the diffuser panel. The luminance-equalizing sheet protrudes in a curved manner toward the side wall between the diffuser panel and the side wall such that distance to the back frame gradually decreases outward.
US10761370B2 Optical film and display device comprising the same
An optical film and a display device comprising the same are disclosed, in which luminance may be prevented from being deteriorated. The optical film comprises a first base film; a second base film spaced apart from the first base film to face the first base film; and an optical pattern arranged between the first base film and the second base film, absorbing a portion of light incident to the optical film, wherein the optical pattern has a reflective surface at one end.
US10761366B2 Optical layered body, polarizer, method for producing polarizer, image display device, method for producing image display device, and method for improving visibility of image display device
The present invention provides a method for improving visibility of an image display device which is capable of providing an image display device excellent in anti-reflection properties and bright-field contrast even using an optical layered body including a light-transmitting substrate having in-plane birefringence, such as a polyester film. The method of the present invention is a method for improving visibility of an image display device that has an optical layered body including a light-transmitting substrate having in-plane birefringence and an optical functional layer disposed on one surface of the substrate. The method includes the step of disposing the optical layered body such that the slow axis showing a greater refractive index of the light-transmitting substrate is in parallel with the vertical direction of a display screen of the image display device.
US10761365B2 Display module and manufacturing method
The present invention provides a display module which comprises a display panel, a cover, and an upper polarizer. The upper polarizer is attached to a light emitting surface. The cover is disposed on the upper polarizer, and a first microstructure has a curved concave surface is on the cover. A second microstructure having curved convex surface is on the upper polarizer and faces to the cover, and the first microstructure is corresponding to the second microstructure. The present invention also provides a manufacturing of display module. In the present invention, the cover of the display module and the surface of the upper polarizer are subjected to a special anti-glare surface treatment so that the microstructure on the surface of the cover and the microstructure of the surface of the upper polarizer form a substantially complementary relationship to achieve better anti-glare effect.
US10761364B2 Liquid crystal display device
A liquid crystal display device comprising: scanning lines extending in a first direction, video signal lines extending in a second direction, a pixel electrode formed in an area surrounded by the scanning lines and the video signal lines; a transistor connected to the pixel electrode, a first insulating film formed on a source electrode of the transistor, a common electrode formed on the first insulating film, a second insulating film on the common electrode, the pixel electrode is formed on the second insulating film; wherein a first through hole is formed in the first insulating film, the pixel electrode connects with the source electrode via the first through hole, a common metal wiring made of metal is formed overlapping with a part of the common electrode, black resin exists in the first through hole, the black resin is formed overlapping with the video signal line in a plan view.
US10761362B2 Display panel and display device
The disclosure discloses a display panel and a display device. The display panel includes: a base substrate, a reflecting layer, a dielectric grating layer, a filter layer, and a color filter layer including a first color filter element for transmitting light rays in a first color, a second color filter element for transmitting light rays in a second color, and a third color filter element for transmitting white light; the filter layer is configured to transmit light rays in first and second colors, and to reflect light rays in a third color; the dielectric grating layer includes a grating element corresponding in position to the third color filter element, and configured to reflect light rays in the first color transmitted through the filter layer to the first color filter element, and to reflect light rays in the second color transmitted through the filter layer to the second color filter element.
US10761358B2 Display screen shield line system
Electrical shield line systems are provided for openings in common electrodes near data lines of display and touch screens. Some displays, including touch screens, can include multiple common electrodes (Vcom) that can have openings between individual Vcoms. Some display screens can have an open slit between two adjacent edges of Vcom. Openings in Vcom can allow an electric field to extend from a data line through the Vcom layer. A shield can be disposed over the Vcom opening to help reduce or eliminate an electric field from affecting a pixel material, such as liquid crystal. The shield can be connected to a potential such that electric field is generated substantially between the shield and the data line to reduce or eliminate electric fields reaching the liquid crystal.
US10761357B2 Liquid crystal display panel and display device
A liquid crystal display panel and a display device, comprising: an array substrate, an opposite substrate arranged opposite to the array substrate, a driver circuit; a common electrode layer on a side of the opposite substrate facing the array substrate; and a liquid crystal layer located between the opposite substrate and the array substrate; the array substrate includes: a display area, a non-display area, a signal line in the display area, and a switchover terminal in the non-display area, where the switchover terminal includes: a first connection terminal electrically connected with the driver circuit, a second connection terminal electrically connected with the signal line, and an electrically-conductive layer covering the first connection terminal and the second connection terminal; the electrically-conductive layer is insulated from the common electrode layer.
US10761354B2 Display device
The purpose of the invention is to realize the flexible display device of high reliability; specifically in a structure that a bending area is in a terminal area, and in that disconnection of the wiring does not occur in the bending area. The concrete structure is that: a display device having a display area, a driving circuit area and a bending area comprising: a first thin film transistor and a first interlayer insulating film are formed in the display area, a second thin film transistor and a second interlayer insulating film are formed in the driving circuit area, terminal wirings to connects the display area and the driving circuit area are formed in the bending area.
US10761351B2 Phase modulation active device, method of driving the same, and optical apparatus including the phase modulation active device
A phase modulation active device and a method of driving the same are provided. The method may include configuring, for the phase modulation active device including a plurality of channels that modulate a phase of incident light, a phase profile indicating a phase modulation target value to be implemented by the phase modulation active device; setting a phase limit value of the phase modulation active device; generating a modified phase profile based on the phase profile by modifying the phase modulation target value, for at least one channel from the plurality of channels that meets or exceeds the phase limit value, to a modified phase modulation target value that is less than the phase limit value in the phase profile; and operating the phase modulation active device based on the modified phase profile. Thus, improved optical modulation performance may be achieved.
US10761350B2 Multi-functional glasses and eyeglasses
This disclosure relates generally to eyewear apparatus that includes a frame configured to fit on the front of a wearer's face, in front of the eye area and over the bridge of the wearer's nose; and a first arm and a second arm that are configured to fit over the user's ears, in which each arm connects to the frame at a proximal point that is adjacent to the user's temple; in which at least one arm comprises a utility portion.
US10761346B1 Head-mounted computer device with hinge
A head-mounted wearable device utilizes electronics placed in one or more of a left temple or a right temple. The temples are joined to a front frame using hinges. The hinges provide passageways, slots, or other openings to permit passage of a flexible printed circuit (FPC) within an open core of the hinge. The FPC allows communication between the left temple and the right temple. During motion of the hinge, the FPC may twist such that the ends within the hinge are rotated relative to one another while remaining substantially parallel to one another. The overall length of the FPC passing through the hinge remains substantially unchanged between the hinge being open or closed. The FPC remains protected within the hinge and is minimally displaced, preventing the introduction of a crease in the FPC at a hinge line.
US10761344B1 Systems and methods for generating a volumetric image and interacting with the volumetric image using a planar display
A system includes a photophoretic display device including a trap light source and an illumination light source, an image converter including a light signal propagation director and a light signal sensor, and a control unit. The trap light source is configured to trap a scattering particle and the illumination light source is configured to illuminate the scattering particle that the trap light source is configured to trap such that the photophoretic display device generates a volumetric image. The light signal propagation director is configured to direct a visual signal of the volumetric image to the light signal sensor. The light signal sensor is configured to sense the visual signal and to generate a planar image signal based on the visual signal. The control unit is configured to send the planar image signal, receive a user input signal in response to sending the planar image signal, and control one or more of the trap light source and the illumination light source to change the volumetric image based on the user input signal.
US10761336B2 Display device
A display device is provided. The display device comprises: a display panel; a collimation optical element located on a light emission side of the display panel and configured to modulate a first light emitted from the display panel into a collimated second light and emit the collimated second light; and a light modulation element located on a light emission side of the collimation optical element and configured to adjust an emission angle of the second light from the light modulation element. The first light emitted from the display panel is modulated into the collimated second light by the collimation optical element, the emission angle of the second light emitting from the light modulation element is adjusted by the light modulation element, such that the direction of the emission light of the display device is controllable.
US10761333B2 Head mounted display device, sound transmission system, and control method for head mounted display device
An HMD including an image display unit mounted on a user's head to display an image, a right earphone and a left earphone to be installed in the user's right and left ears to output sound based on a sound signal of a right channel for a right ear and a sound signal of a left channel for a left ear, a second communication unit configured to receive a sound signal, and a control unit configured to assign a sound signal for sound associated with a displayed image displayed by the image display unit and the sound signal received by the second communication unit to the left channel and the right channel to output the sound signals as sound.
US10761332B2 Light-guiding device and display device
A light-guiding device according to an aspect of the invention includes an incident section configured to make light incident, a light guide configured to guide the light incident from the incident section, a bonding layer configured to bond the incident section and the light guide, and a reflection member provided on a side surface of the bonding layer.
US10761330B2 Rainbow reduction in waveguide displays
A waveguide display includes a first substrate and one or more grating layers on a first surface of the first substrate. The one or more grating layers are configured to cause destructive interference between ambient light diffracted by at least two grating layers or between ambient light diffracted by different portions of one grating layer. In some embodiments, the waveguide display also includes an angular-selective transmissive layer. The angular-selective transmissive layer is configured to reflect, diffract, or absorb ambient light incident on the angular-selective reflective layer with an incidence angle greater than a threshold value.
US10761328B2 Display glasses using meta-surface planar lens
Designs of display devices using one or more planar lenses are described. According to one aspect of the present invention, a planar lens includes at least a substrate and a plurality of nanosized studs. Depending on the implementation, the objects may be in different heights, spaced evenly or unevenly and oriented towards or outwards a focal point. When the planar lens is used with a lightguide guide that receives an image projected from a source, the image can be seen in the lightguide guide enlarged through the planar lens, provided that nanosized studs are properly structured, sized, oriented and arranged in a predefined pattern.
US10761323B2 Lens array and image projection device
There is provided a lens array and an lens array capable of suitably preventing irregular brightness without reducing resolution. A microlens array 20 of a screen 2 includes upper-level microlenses 21H and lower-level microlenses 21L which are formed on the incidence surface of the screen 2, which have the same effective diameter, and which have a structure that generates an optical path length difference Δ in transmission light. By disposing the upper-level microlenses 21H and the lower-level microlenses 21L at an interval based on the effective diameter, the basic periodic structure of a lens period PL is formed. Further, the upper-level microlenses 21H and the lower-level microlenses 21L form a basic block comprising a combination of the lenses having a structure that generates the optical path length difference. A concave-and-convex period PC based on the basic block is an integer multiple of the lens period PL.
US10761322B2 Targeted content with image capture
A method, computer program product, and visual display apparatus include a processor(s) obtaining, via a camera device, a unique identifier, wherein the unique identifier was captured by the image capture functionality of the camera device during a given temporal period. Based on the unique identifier, the processor(s) determines an application, where a graphical user interface of the application, when rendered through a client during the given temporal period, displayed the unique identifier (and was captured by the camera device). The processor(s) obtain, from the camera device, identifying data relevant to a user associated with the camera device. Based on the unique identifier and the identifying data, the processor(s) provides content targeted to the user.
US10761321B2 Optical arrangements including Fresnel lens elements
An optical lens arrangement comprises a first Fresnel lens element and a second lens element, The first Fresnel lens element defines a flat surface side and an opposite faceted surface side defining wedge and draft faces. The flat surface side faces towards the eye of a user and the opposite faceted surface side faces away from the eye of the user. The second lens element interfaces with the faceted surface side of first Fresnel lens. The second lens element is selected from the group consisting of: a second Fresnel lens element, a singlet lens element, a doublet lens element and any combination thereof. The first Fresnel lens is proximal relative to the eye of the user and the second lens element is distal relative to the eye of the user. Head mounted devices (HMD) including these optical lens arrangements are provided. Methods of making such optical lens arrangements and HMDs are also provided.
US10761319B2 Vehicle camera with lens heater
A camera for a vehicular vision system includes a housing and a lens barrel including a lens. The camera is configured to be disposed at an exterior portion of a vehicle so as to have a field of view exterior of the vehicle. A heating device is disposed at an exterior of the lens barrel. The heating device includes a thin foil heating element that at least partially circumscribes the lens barrel. The heating device includes an electrical lead that is configured to electrically connect to an electrical connector of the vehicle when the camera is disposed at the exterior portion of the vehicle.
US10761318B2 Mirror device, mirror drive method, light irradiation device, and image acquisition device
Provided is a mirror device including a mirror which is supported to be flappable around a fast axis and supported to be flappable around a slow axis and in which a resonance frequency of flapping thereof with respect to the fast axis is a first value and a resonance frequency of the flapping thereof with respect to the slow axis is a second value lower than the first value; a signal extracting portion configured to obtain from a slow axis coil a synthesized signal including an induced signal generated in the slow axis coil due to an operation of flapping the mirror around the fast axis and configured to extract the induced signal from the synthesized signal; and a signal generating portion configured to generates a driving signal so that the flapping of the mirror with respect to the fast axis is in a resonance state according to the induced signal.
US10761314B1 Apparatuses, systems, and methods for reflecting infrared light
The disclosed apparatus may include a planar substrate including a first dimension, a second dimension perpendicular to the first dimension, and a thickness perpendicular to a plane defined by the first dimension and the second dimension. The planar substrate may include material that is transparent to at least one wavelength band of visible light and at least one wavelength band of infrared light. The apparatus may also include a plurality of reflective segments embedded in the planar substrate and distributed along the plane. The face of each reflective segment may be oblique to the plane. In addition, the reflective segments may be transparent to the wavelength band of visible light and at least partially reflective to the wavelength band of infrared light. Various other systems and methods are also disclosed.
US10761310B2 Auto-focus methods and systems for digital imaging using multi-spectral trajectories
A method and associated method and computer program product for acquiring focused images of a specimen on a slide, by determining optimal scanning trajectories. The method includes capturing a relatively low magnification image of the slide to locate the specimen, forming a grid that includes an arrangement of grid points, overlaying at least part of the grid over a field of view that covers at least part of the specimen, capturing a relatively high magnification Z-stack of images of the specimen within the field of view, determining a best focus for each grid point within said at least part of the grid to form a resulting grid of three dimensional points, and based on the resulting grid, determining one or more three dimensional scanning trajectories.
US10761308B2 Color correcting collimation of light from a color over position light source
A collimator (3) for a color over position light source (2) is provided. The collimator (3) comprises a focal point (F), an optical axis (OA) containing the focal point (F), an imaging element (4) arranged around or on the optical axis (OA) and several light spreading elements (5, 11, 12) ranged around the optical axis (OA) to receive at least one image from the imaging element (4). The light spreading elements (5, 11, 12) have different light beam widening characteristics, the light beam widening characteristics of each light spreading element (5, 11, 12) of said light spreading elements (5, 11, 12) depending on the position of the light spreading element (5, 11, 12) relative to the focal point (F). The light spreading elements (5, 11, 12) are adapted to spread light striking the light spreading elements (5, 11,12) in a first plane (M) including the optical axis (OA). A method for collimating light from a color over position light source (2) is also provided.
US10761306B2 Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
A zoom optical system (ZL) comprises, in order from an object: a first lens group (G1) having positive refractive power; an intermediate group (GM) including at least one lens group and having negative refractive power as a whole; an intermediate side lens group (GRP1) having positive refractive power; a subsequent side lens group (GRP2) having positive refractive power; and a subsequent group (GR) including at least one lens group. The subsequent side lens group (GRP2) moves upon focusing. A following conditional expression is satisfied: 2.5
US10761305B2 Zoom lens and image pickup apparatus
Provided is a zoom lens including: positive first unit; negative second unit; aperture stop; positive third unit; positive fourth unit; and rear lens group including at least one lens unit, wherein the fourth unit includes a positive lens, and wherein an amount of movement of the fourth unit during zooming from wide angle end to telephoto end, distances between the aperture stop and the fourth unit at the wide angle end and between the aperture stop and the fourth unit at the telephoto end, focal lengths of the fourth unit and of the zoom lens at the wide angle end, a length of the zoom lens at the wide angle end, an Abbe number of material of the positive lens with respect to d-line, and a partial dispersion ratio of the material of the positive lens with respect to g-line and F-line are each appropriately set.
US10761304B2 Zoom optical system, optical apparatus and method for manufacturing the zoom optical system
A zoom optical system (ZL) comprises, in order from an object: a first lens group (G1) having positive refractive power; an intermediate group (GM) including at least one lens group and having negative refractive power as a whole; an intermediate side lens group (GRP1) having positive refractive power; a subsequent side lens group (GRP2) having positive refractive power; and a subsequent group (GR) including at least one lens group. The intermediate group (GM) includes a partial group satisfying following conditional expressions: 1.4
US10761300B2 Optical system
An optical system includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens. The first lens includes an object-side surface that is convex with a meniscus shape. The second lens includes an image-side surface that is convex. The third lens includes an image-side surface that is concave. The fifth lens includes an image-side surface that is concave. The first to sixth lenses are sequentially disposed from an object side to an image side.
US10761298B2 Optical imaging lens
An optical imaging lens may comprise a first, a second, a third, a fourth, a fifth, a sixth and a seventh lens elements sequentially from an object side to an image side along an optical axis, and each of the first, second, third, fourth, fifth, sixth and seventh lens elements may have an object-side surface facing toward the object side and allowing imaging rays to pass through as well as an image-side surface facing toward the image side and allowing the imaging rays to pass through. The optical imaging lens may comprise no other lens elements having refracting power beyond the first, second, third, fourth, fifth, sixth and seventh lens elements. Through designing concave and/or convex surfaces of the four lens elements, the optical imaging lens may provide improved imaging quality and optical characteristics while the total length of the optical imaging lens may be shortened.
US10761297B2 Optical image capturing system
A six-piece optical image capturing system is provided. In order from an object side to an image side along the optical axis, the optical image capturing system includes a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element. A least one of the first lens element through the fifth lens element has positive refractive power. The sixth lens element has negative refractive power. At least one of the image-side surface and object-side surface thereof is aspheric. At least one of the surfaces of the sixth lens element has an inflection point. The six lenses have refractive power. The optical lens can increase aperture value and improve the image quality for use in compact cameras.
US10761295B2 Image focusing device, image focusing method and computer readable medium with image focusing control program
Provided are an imaging device, an imaging method and an imaging control program which make it possible to shorten an imaging time, and to capture an image of each observation region at an appropriate focusing position regardless of the state of installation of a culture vessel on a stage. In a case where an observation target is imaged multiple times, a focusing position of an observation region within a culture vessel is detected by auto-focus control during first imaging, and the first imaging of each observation region is performed using the focusing position. Next, the focusing position of a reference position is detected by auto-focus control during second imaging subsequent to the first imaging, and the focusing position of each observation region detected in the first imaging is corrected on the basis of the detected focusing position and the focusing position of the reference position in the first imaging.
US10761292B2 Dual camera module and optical device
The present embodiments relate to a dual camera module comprising: a first camera module including a first lens module and a first image sensor disposed below the first lens module; and a second camera module including a second lens module and a second image sensor disposed below the second lens module, wherein the second camera module has a wider angle of view than the first camera module, and the second image sensor is disposed at a position higher than the first image sensor.
US10761288B2 Armored fiber optic cable connector assembly
A fiber optic cable connecter assembly includes a terminal wall having a port, an adapter at the port having one end for mating with a first fiber optic cable at the front of the wall and a second end for mating with a second cable at the back, and a spacer having an axial bore and a leading portion for engaging the port in sealing relationship. A cap has an axial bore, and a leading portion for engaging a rear portion of the spacer. A cable grommet/boot has a passage for receiving the first cable, and a leading end for engaging the rear portion of the spacer in sealing relationship. The rear portion of the grommet/boot protrudes from the back of the cap to act as a boot when the cap engages the spacer, after the first cable is connected to the adapter and the spacer engages the port.
US10761287B2 Splice-on cable breakout assembly
A break-out assembly includes an enclosure defining a first port at the first end to receive an optical cable and a second port at the second end to receive a plurality of break-out cables. Each port leads to the interior of the enclosure. A cable retention region defined within the enclosure at the second end is configured to enable the break-out cables to each secure to the enclosure at one of a plurality of axial locations. Certain types of break-out assemblies include other cable retention regions to axially and/or rotationally secure the optical cable to the enclosure. A splice retention region is disposed within the enclosure between the first port and the second cable retention region. The splice retention region receives optical splices at which optical fibers of the optical cable are spliced to optical fibers of the break-out cables.
US10761284B2 Material formulation for over mold cover fiber optic cable
A polyurethane composition is provided. The polyurethane composition includes a first part of a first polytetramethylene oxide, a second polytetramethylene oxide, and a castor oil based polyol. The second polytetramethylene oxide has a higher viscosity than the first polytetramethylene oxide. The polyurethane composition also includes a second part of methylene diphenyl diisocyanate. Also provided is a fiber optic cable assembly incorporating the polyurethane composition as an overmold. The overmold has a glass transition temperature of less than −40° C. measured according to differential scanning calorimetry. Further provided is a method of applying an overmold to a fiber optic cable assembly.
US10761280B2 Hermetic optical subassembly
A hermetic optical subassembly includes an optical bench having a mirror directing optical signals to/from an optical waveguide, a carrier supporting a photonic device, and an intermediate optical bench having a mirror directing optical signals between the photonic device and the optical bench. The optical bench and the intermediate optical bench optically aligns the photonic device to the waveguide along a desired optical path. In one embodiment, the photonic device is an edge emitting laser (EML). The mirror of the optical bench may be passively aligned with the mirror of the intermediate optical bench. The assembled components are hermetically sealed. The body of the optical benches are preferably formed by stamping a malleable metal material to form precise geometries and surface features. In a further aspect, the hermetic optical subassembly integrates a multiplexer/demultiplexer, for directing optical signals between a single optical fiber and a plurality of photonic devices.
US10761278B2 Optical subassembly and optical module
An optical subassembly and an optical module are provided. The optical subassembly includes an optical transmitter, an optical receiver, an optical splitter, and an optical fiber stub. The optical transmitter is configured to transmit light from the optical transmitter to the optical fiber stub through the optical splitter. The optical splitter is configured to reflect light from the optical fiber stub to the optical receiver. An optical axis of the optical receiver and an optical axis of the optical fiber stub form an acute angle. An optical axis of the optical transmitter and the optical axis of the optical fiber stub also form an acute angle.
US10761257B2 Display device
A display device includes a backlight and a display panel on the backlight. The backlight includes a light source to provide a first light, and an optical wavelength converter to receive the first light and emits a second light. The optical wavelength converter includes a light emitting part having a plurality of excitation light emitting bodies to be excited by receiving the first light, and thereby emit the second light, and a light absorbing part including a plurality of absorbers provided on the light emitting part to receive the second light and absorb a portion of the second light having a wavelength of about 550 nm to about 650 nm.
US10761255B2 Light guide
Disclosed is a light guide including a core bar of a transparent material extended in a length direction from a first side to a second; and a plurality of reflection parts printed in parallel along with the length direction of the core bar on the outer surface; wherein spaces between the reflection parts are the same or decreased from the first side of the core bar toward the second side of the core bar.
US10761254B2 Light-guiding optical system
The light-guiding optical system comprises at least one light guide (1) made from an optically transparent material with an associated collimating element (2), and a light unit (3) to emit light rays (10) into the collimating element (2). The light guide (1) comprises on its front side an output surface (12) for the output of light rays (10) conducted by the light guide (1) out of the light guide (1), and on its bottom or top side, a binding surface (11) to bind light rays (10) collimated by the collimating element (2) into the light guide (1). The light guide (1) further comprises at least one reflective means (4) to produce light patterns (A, B, C) on the output surface (12) that comprises surfaces (41, 42, 43) configured for total reflection of at least a part of the light rays (10) falling onto them, a part of the light rays (10) reflected this way being directed by the reflective means (4) towards the lateral surfaces (15) and the remaining part being directed straight to the output surface (12) of the light guide (1). The reflective means (4) of the light guide (1) comprises two lateral reflective surfaces (41, 43) opening from a common contact edge (44) and configured for total reflection of the incident light rays towards the lateral surfaces (15), and one central surface (42) comprising one or more central reflective surfaces (42′), the central surface (42) touching each of the lateral reflective surfaces (41, 43) at one point at the most.
US10761253B1 Out-of-field rejection filters for optical systems
An out-of-field rejection filter (OFRF) can be used in optical systems to reject stray light. Such optical systems can include cameras, projectors, star trackers, and virtual reality or augmented reality displays. The OFRF can include a converter to convert randomly polarized light to p-polarized light and an angular selectivity layer to select in-field p-polarized light and reject out-of-field p-polarized light. The converter and the angular selectivity layer are configured so as to filter out-of-field light while passing in-field light within a light bandwidth. The angular selectivity layer can be a multilayer film of interleaved materials having alternating permittivity and magnetic permeability properties.
US10761252B2 Wire grid polarizer with protective coating
A wire grid polarizer (WGP) can have a conformal-coating to protect the WGP from at least one of the following: corrosion, dust, and damage due to tensile forces in a liquid on the WGP. The conformal-coating can include a silane conformal-coating with chemical formula (1), chemical formula (2), or combinations thereof: A method of applying a conformal-coating over a WGP can include exposing the WGP to Si(R1)d(R2)e(R3)g. In the above WGP and method, X can be a bond to the ribs; each R1 can be a hydrophobic group; each R3, if any, can be any chemical element or group; d can be 1, 2, or 3, e can be 1, 2, or 3, g can be 0, 1, or 2, and d+e+g=4; R2 can be a silane-reactive-group; and each R6 can be an alkyl group, an aryl group, or combinations thereof.
US10761251B2 Resin film, coloring photosensitive composition, resin film production method, color filter, light shielding film, solid-state imaging element, and image display device
Provided are a resin film which exhibits an excellent low reflectivity, a coloring photosensitive composition capable of forming a resin film which exhibits an excellent low reflectivity, a resin film production method, a color filter, a light shielding film, a solid-state imaging element, and an image display device. The resin film of the present invention includes at least two or more resins, a coloring agent, and a photoacid generator, in which the resin film has a peak at which the value of A1/A2 is greater than 0.1 and 2.5 or less in a light scattering measurement of the resin film, in the case where a half-width of the peak is A1 and a scattering angle of a maximum light intensity of the peak is A2 in a spectrum in which a scattering angle is plotted on the horizontal axis and a scattered light intensity is plotted on the vertical axis.
US10761241B2 Methods for optimizing bunch distance of fractured horizontal wells of shale gas
The present disclosure provides a method for optimizing bunch distance of fractured horizontal wells of shale gas, which relates to the technical field of oil exploration. The method comprises first establishing a stress field distribution model for a single fracture; then establishing an induced stress distribution model of segmented single-bunch fracturing for a horizontal well; later establishing an induced stress distribution model of segmented multi-bunch fracturing for a horizontal well; last optimizing fracturing parameters and fracture distance according to the distribution pattern of the induced stress difference.The method considers the stress barrier, stress interference effects, and the variation of the effective net pressure during the synchronous expansion of fractures, so the calculation model is more in line with the actual working conditions, has higher precision, and can provide more accurate theoretical guidance for the optimization design of segmented multi-bunch fracturing of a horizontal well.
US10761240B2 Determining a notional source signature of a bubble
A notional source signature of a bubble may be determined. For example, a method for determining a notional source signature of a bubble can include estimating a position of a bubble created by actuation of an impulsive source. A notional source signature of the bubble can be determined based on the estimate.
US10761239B1 Magnetic sensing buried utility locator including a camera
Portable locators for detecting buried objects and determining information therefrom based on sensing electromagnetic emissions are disclosed. In one implementation, a portable locator may include a magnetic field sensor array and associated signal processing circuitry to detect and determine information associated with the buried object, as well as a camera and image or video processing circuitry to process images or video received from the camera in conjunction with the buried object detection.
US10761238B2 Downhole optical chemical compound monitoring device, bottom hole assembly and measurements-while-drilling tool comprising the same, and method of optically monitoring chemical compound downhole during drilling
A downhole optical chemical compound monitoring device (30) arranged to be integrated in a mandrel (20) of a drilling system, for monitoring a chemical compound in a drilling fluid (14B) circulated through a well (7, 8), the downhole optical chemical compound monitoring device (30) comprising: an analysis cell part (31) comprising an open cavity (40, 140) into which the drilling fluid (14B) is free to flow; a first optical probe (41A, 141A) coupled to a light source (157) and arranged to transmit a light energy into the open cavity (40, 140); a second optical probe (41B, 141B) coupled to a detector (158) and arranged to produce in use a signal resulting from an interaction of the drilling fluid (14B) present in the open cavity (40, 140) with said light energy, indicative of a quantity of chemical compound present in the drilling fluid (14B); each of said optical probes is mounted through a wall (38A, 38B, 138A, 138B) of the analysis cell part (31) in a sealed manner and has a tip (45A, 45B), the tip being needle shaped and having an external diameter less than 1 mm; and the first optical probe (41A, 141A) and the second optical probe (41B, 141B) are arranged such that the first and second tips of the respective optical probes project into the open cavity (40, 140) and such that the first tip (45A) of the first optical probe (41A, 141A) faces the second tip (45B) of the second optical probe (41B, 141B) at a defined distance ranging from 10 μm to 10 mm.
US10761235B2 Applying E-field antennas to resistivity logging tools
The present invention provides a methodology and system for resistivity tool design. By using at least one E field antenna instead of magnetic antennas, stronger signals can be captured by a smaller system. The more effective antenna design of the present invention has broad applications in various tools including geosteering, look ahead, and triaxial induction.
US10761233B2 Sondes and methods for use with buried line locator systems
Sondes and sonde arrays for use with portable buried object locating systems are disclosed.
US10761231B2 Generating a high-resolution lithology model for subsurface formation evaluation
Examples of techniques for generating a high-resolution lithology model for subsurface formation evaluation are disclosed. In one example implementation according to aspects of the present disclosure, a computer-implemented method includes determining, by a processing device, a low-resolution lithology volumetric model. The method further includes comparing, by the processing device, the low-resolution lithology volumetric model to a high-resolution imaging log. The method further includes calculating, by the processing device, a dynamic boundary curve for each of a plurality of moving windows. The method further includes generating, by the processing device, the high-resolution lithology model based at least in part on the calculated dynamic boundary curve for each of the plurality of moving windows. The method further includes controlling a drilling operation based at least in part on the high-resolution lithology model.
US10761228B2 Method to calculate acquisition illumination
New methods for calculating acquisition illumination are computationally less expensive in comparison with conventional methods. In one such new method, source wavefield propagations are calculated and assigned to corresponding zero-offset receivers. Further, the number of non-zero-offset receivers within the coverage of the shot at the source location is decimated. Such a method is most advantages in reverse time migration, in which all source wavefield propagations are already calculated. The receiver-side illumination for each shot can be obtained by summing up all the source-side illumination with the source located within receiver coverage. All the source-side illumination and receiver-side illumination can be summed up to get the acquisition illumination for the survey. The acquisition illumination can be used to value the acquisition system and to compensate the migration images.
US10761223B1 Systems and methods for multiple detector heads in a single arm or housing
A radiation detector assembly is provided that includes a plurality of multi-detector arms (e.g., between 2 and 5), and plural detector head units disposed in each multi-detector arm. Each of the multi-detector arms defines a cavity therein. At least two detector head units are disposed within the cavity of each multi-detector arm. Each detector head unit includes an absorption member and associated processing circuitry, with the processing circuitry configured to generate electronic signals responsive to radiation received by the absorption member. Each detector head unit is configured to pivot along a sweep direction.
US10761222B2 Detection element and detector
According to an embodiment, a detection element includes a first electrode, a second electrode, an organic conversion layer, and a third electrode. A bias is applied to the first electrode. The organic conversion layer is arranged between the first electrode and the second electrode, and is configured to convert energy of a radiation into an electric charge. The third electrode is arranged in the organic conversion layer.
US10761220B2 Laminated scintillator panel
A laminated scintillator panel having a structure in which a scintillator layer for converting radiation into visible light and a non-scintillator layer are repeatedly laminated in a direction parallel to an incident direction of radiation, wherein the non-scintillator layer transmits the visible light.Provided is a lattice-shaped laminated scintillator panel with high luminance, a large area, and a thick layer by means completely different from a conventional technique using a silicon wafer.
US10761215B2 Positioning device and positioning method
A code positioning part calculates a position of a subject vehicle and a receiver clock based on an orbit of a GNSS satellite in which an error indicated by a positioning reinforcing signal is corrected and a first corrected pseudorange being a pseudorange of the GNSS satellite in which an error indicated by the positioning reinforcing signal is corrected. A receiver clock bias error correction part determines a difference between a two-point range between a position of each of a plurality of GNSS satellites and the position of the subject vehicle and the first corrected pseudorange as an unknown error, and determines a receiver clock bias error of the pseudorange based on the unknown error. A code positioning correction part recalculates the position of the subject vehicle, using a second corrected pseudorange that is obtained by correcting the first corrected pseudorange using the receiver clock bias error.
US10761213B2 Systems and methods for receiving information at rover receivers in navigation satellite systems
A navigation satellite system, one or more NSS reference station is set out for providing information to one or more rover receivers. The NSS reference station comprises a processing unit configured to determine one or more first range intervals representing first ambiguity windows based on estimated atmospheric effects, and determine one or more second range intervals representing a second ambiguity window smaller than each of the first ambiguity windows based on uncertainties of range measurements within a predetermined previous period. The NSS reference station further comprises a transmission unit configured to transmit, to the NSS rover receivers, first messages each comprising a modulo a first ambiguity window, and transmission of two first messages, to range measurement transmit between the NSS rover receiver, a plurality of second messages, each second message comprising a range measurement modulo one of the second ambiguity windows.
US10761209B2 Triangulation light sensor
The present invention relates to a triangulation light sensor for the detection of objects on a conveying path having a light transmitter for transmitting transmitted light into a detection zone that extends over a part region of the conveying path, having a light receiver, a reception optics arranged in an optical path between the detection zone and the light receiver, and an evaluation unit that is configured for generating an object detection signal from the received signals.
US10761207B2 Automatic uplink weather information sharing
Systems and methods for automatic uplink of weather information are provided. In one embodiment, a ground-based system for automatically communicating crowdsourced weather information comprises: at least one transceiver configured to communicate with vehicles via one or more communication links; a weather data processing system coupled to the at least one transceiver, the weather data processing system comprising at least one processor coupled to a memory, the at least one processor configured to: receive weather information from the vehicles; aggregate the weather information received from the vehicles and store aggregated weather information in the memory; automatically transmit aggregated weather information to a first vehicle of the vehicles via the one or more communication links in response to the weather data processing system receiving a radar error report from the first vehicle.
US10761205B2 Systems for determining target direction and methods therefor
A system (1) and a method for finding the direction (θ) of a target (6) in a detection plane, e.g. the azimuthal plane. The system comprises a plurality of transceivers (2a, 2b, 2c) which transmit continuous-wave radio signals (4) oriented in distinct main directions of transmission (5a, 5b, 5c) and receive a return radio signal (7) reflected from a target (6), wherein the transceivers have partially overlapping angular fields of view. A controller (9) analyzes the transmitted and return signals by calculating signal amplitudes associated with the return signals and determining the direction (θ) of the target as a direction of a mean signal vector obtained from signal vectors having as a modulus the signal amplitudes of respective transceivers.
US10761204B2 Radar attenuation mitigation
Techniques and apparatuses are described that enable radar attenuation mitigation. To improve radar performance, characteristics of an attenuator and/or properties of a radar signal are determined to reduce attenuation of the radar signal due to the attenuator and enable a radar system to detect a target located on an opposite side of the attenuator. These techniques are beneficial in situations in which the attenuator is unavoidably located between the radar system and a target, either due to integration within other electronic devices or due to an operating environment. These techniques save power and cost by reducing the attenuation without increasing transmit power or changing material properties of the attenuator.
US10761197B2 Sensor arrangement and method for determining time-of-flight
A sensor arrangement for determining time-of-flight comprises an emitter configured to periodically emit pulses of electromagnetic radiation depending on a first clock signal, a photonic demodulator configured to detect electromagnetic radiation during detection intervals comprising first and second intervals and a processing circuit. A timing of the detection intervals is defined by a second clock signal having a phase difference with respect to the first clock signal. The demodulator is configured to generate demodulator signals depending on energy of the radiation detected during at least one of the first intervals and at least one of the second intervals, respectively. The processing circuit is configured to adapt the phase difference based on the demodulator signals and to generate an output signal indicative of the time-of-flight based on the phase difference.
US10761196B2 Adaptive ladar receiving method
Disclosed herein are various embodiment of an adaptive ladar receiver and associated method whereby the active pixels in a photodetector array used for reception of ladar pulse returns can be adaptively controlled based at least in part on where the ladar pulses were targeted. Additional embodiments disclose improved imaging optics for use by the receiver and further adaptive control techniques for selecting which pixels of the photodetector array are used for sensing incident light.
US10761194B2 Apparatus, method for distance measurement, and non-transitory computer-readable storage medium
An apparatus for distance measurement includes: a memory; and a processor coupled to the memory and configured to execute a detection process that includes detecting a measurement target in a measurement range through two-dimensional scanning of a scan angle range with laser light, and execute a changing process that includes changing a width of the scan angle range with the laser light so that sampling density has a certain value or higher based on a distance and a bearing angle from the apparatus to the measurement target.
US10761193B2 Optoelectronic sensor and method for detecting an object
An optoelectronic sensor (10) according to the principle of triangulation for detecting an object (36) in a monitoring region (18) comprises a light transmitter (12) and a spatially resolving light receiver (26). A receiving optics (22) and an optical element (24) are arranged in front of the light receiver (26), wherein the optical element (24) comprises a converging partial region (24a) and a diverging partial region (24c) and is arranged such that a remitted light bundle (20) from an object (36) in a near range of the monitoring region (18) passes through the converging partial region (24) and a remitted light bundle (20) from an object (36) in a far range of the monitoring region (18) passes through the diverging partial region (24c).
US10761191B2 Systems and methods for LiDAR detection
Embodiments of the disclosure provide a LiDAR assembly. The LiDAR assembly includes a central LiDAR device configured to detect an object at or beyond a first predetermined distance from the LiDAR system and an even number of multiple auxiliary LiDAR devices configured to detect an object at or within a second predetermined distance from the LiDAR system. The LiDAR assembly also includes a mounting apparatus configured to mount the central and auxiliary LiDAR devices. Each of the central and auxiliary LiDAR devices is mounted to the mounting apparatus via a mounting surface. A first mounting surface between the central LiDAR device and the mounting apparatus has an angle with a second mounting surface between one of the auxiliary LiDAR devices and the mounting apparatus.
US10761187B2 Liquid detection using millimeter-wave radar sensor
A device includes: a millimeter-wave radar sensor circuit configured to generate N virtual channels of sensed data, where N is an integer number greater than one; and a processor configured to: generate a 2D radar image of a surface in a field of view of the millimeter-wave radar sensor circuit based on sensed data from the N virtual channels of sensed data, where the 2D radar image includes azimuth and range information, generate a multi-dimensional data structure based on the 2D radar image using a transform function, compare the multi-dimensional data structure with a reference multi-dimensional data structure, and determine whether liquid is present in the field of view of the millimeter-wave radar sensor circuit based on comparing the multi-dimensional data structure with the reference multi-dimensional data structure.
US10761186B2 RF receiver with built-in test capabilities
A radar device comprises a test signal generator including a digital harmonic oscillator that generates a digital oscillator signal with a first spectral component; a first digital-to-analog-converter that generates an analog oscillator signal based on the digital oscillator signal. Furthermore, the radar device comprises at least one radar channel receiving the analog oscillator signal during one or more self-tests.
US10761185B2 Signal processing device, signal processing method, recording medium, target detection device, and target detection method
A signal processing device for processing a signal of a reflected wave which is a wave reflected in a medium and is received by a receiver, when a wave propagating through the medium is continuously transmitted by a transmitter. The signal processing device includes: an estimation unit configured to estimate a lower limit distance of a detection distance range for which an intensity level of a scattered wave from the medium in the detection distance range is equal to or smaller than an allowable level; and a scattering reduction unit configured to remove, from a signal of the reflected wave received, a signal of the scattered wave from the medium in a masking region from the receiver to the lower limit distance to perform output.
US10761178B2 In-vehicle system
An in-vehicle system includes: a position information reception unit configured to receive position information from a satellite positioning system; a first control unit; a communication line connected to the first control unit; and a second control unit that is connected to the first control unit through the communication line and has a first conversion process unit configured to convert a datum of the position information. The first control unit is configured to transmit the position information received by the position information reception unit to the second control unit through the communication line, and the second control unit is configured to convert a datum of the position information received from the first control unit by the first conversion process unit.
US10761177B2 Angle of arrival location sensing with antenna array
In one embodiment, an apparatus includes a processor for processing a plurality of radio frequency chains at a wireless device in a block based modulation environment, recording subcarrier phases and differences between the subcarrier phases, and using the subcarrier phase differences to construct a feature vector for use in angle of arrival calculated positioning of a mobile device, and memory for storing the subcarrier phases and the feature vector.
US10761174B2 Recording a B0 map of a main magnetic field of a magnetic resonance device in an imaging volume of which an object to be recorded is arranged
A method for recording a B0 map of a main magnetic field of a magnetic resonance device in an imaging volume of which an object to be recorded is arranged includes scanning a recording region to be covered by the B0 map by the magnetic resonance device. The recording region is scanned by a map recording sequence slice-by-slice in successive slices in a slice selection direction extending in a phase encoding direction and a readout direction, or three-dimensionally using two phase encoding directions and one readout direction in order to ascertain the B0 map. In a preliminary scan, the magnetic resonance device ascertains extension information describing the extension of the object using a scout sequence, which is used to define the recording region in sequence parameters of the map recording sequence and/or to adjust at least one sequence parameter of the map recording sequence.
US10761170B2 Segmentation of quantitative susceptibility mapping magnetic resonance images
The invention provides for a medical imaging system (100, 400) comprising: a memory (112) for storing machine executable instructions and a processor (106) for controlling the medical imaging system. Execution of the machine executable instructions cause the processor to: receive (200) a preliminary segmentation (124) from a preliminary magnetic resonance image (122) of a region of interest (409), wherein the preliminary segmentation comprises preliminary segmentation edges; reconstruct (202) a first QSM image (124) for the region of interest from QSM magnetic resonance data (122), wherein the reconstruction of the QSM image is at least partially performed using a regularization function, wherein the regularization function is dependent upon the preliminary segmentation edges during reconstruction of the first QSM image; calculate (204) a first segmentation (126) by segmenting the first QSM image using a QSM image segmentation algorithm (134), wherein the first segmentation comprises first segmentation edges; and reconstruct (206) a second QSM image (128) for the region of interest from the QSM magnetic resonance data, wherein the reconstruction of the second QSM image is at least partially performed using the regularization function, wherein the regularization function is dependent upon the first segmentation edges.
US10761169B2 Method and apparatus for recording a magnetic resonance data set with magnetic resonance signals from at least two slices
In a method and apparatus for recording a magnetic resonance (MR) data set with MR signals from at least two slices, a first radio-frequency (RF) pulse is radiated in at least one first slice, a second RF pulse is radiated in at least one second slice, and readout of at least one first and at least one second MR signal takes place. The flip angle of the second RF pulse is smaller than the flip angle of the first RF pulse.
US10761165B2 System and method for magnetic resonance image acquisition
A system and method of acquiring an image at a magnetic resonance imaging (MRI) system is provided. Accordingly, an analog signal based on a pulse sequence and a first gain is obtained. The analog signal is converted into a digitized signal. A potential quantization error is detected in the digitized signal based on a boundary. When the detection is affirmative, a replacement analog signal based on the pulse sequence is received. At least one portion of the replacement analog signal can be based on an adjusted gain. The adjusted gain is a factor of the first gain. The replacement analog signal is digitized into a replacement digitized signal. At least one portion of the replacement digitized signal corresponding to the at least one portion of the replacement analog signal is adjusted based on a reversal of the factor.
US10761161B2 Magnetic resonance system and method for controlling a power supply for a superconducting coil of the magnetic resonance system
A magnetic resonance (MR) apparatus has an MR scanner that includes a basic field magnet, which defines a patient receiving zone and that has at least one superconducting coil that generates a basic magnetic field in the MR scanner. The MR scanner has a power supply controlled by at least one control computer of the MR apparatus for the purpose of providing electrical power to the superconducting coil. The power supply is arranged on, and may be fixedly mounted to, the basic field magnet or integrated into the basic field magnet.
US10761160B2 Adjusting a field distribution of an antenna arrangement of a magnetic resonance system
A method for adjusting a field distribution of an antenna arrangement of a magnetic resonance system is provided. The symmetry of the field distribution may be impaired by positional inaccuracy of the antenna arrangement in the magnetic resonance system. The antenna arrangement comprises oscillating circuit antenna elements and switching elements. Each of the oscillating circuit antenna elements is assigned a respective switching element of the switching elements. A respective switching element is configured to couple the assigned oscillating circuit antenna element operatively to the antenna arrangement in dependence on a status of the respective switching element. During the method, symmetry information on the field distribution in the antenna arrangement is measured, and the switching elements are automatically adjusted using the measured symmetry information, such that the symmetry of the field distribution in the interior of the antenna arrangement is increased.
US10761153B2 Magnetic sensor with an asymmetric wheatstone bridge
Magnetic sensors, sensor modules, and methods thereof are provided. A magnetic sensor includes a sensor arrangement including a plurality of magnetic field sensor elements electrically arranged in an asymmetrical bridge circuit, where a first total resistance of a first pair of sensor elements provided on a first side of the asymmetrical bridge circuit is different from a second total resistance of a second pair of sensor elements provided on a second side of the asymmetrical bridge circuit, and the asymmetrical bridge circuit is configured to generate a differential signal based on sensor signals generated by the plurality of magnetic field sensor elements in response to a magnetic field impinging thereon.
US10761151B2 Optical probe system and method
An optical fiber-mounted field sensor for measuring an electric or magnetic field includes an optical fiber configured to receive light from a laser source, a polarizer, a polarization manipulator, electro-optical material or magneto-optical material adjacent to the polarization manipulator, and a high reflection coating. The polarizer is adjacent to an output of the fiber, while the polarization manipulator is adjacent to the polarizer and opposite of the optical fiber. The electro-optical material or magneto-optical material is adjacent to the polarization manipulator, and the high reflection coating is adjacent to the electro-optical material or magneto-optical material. An optical mainframe for sending and receiving optical beams to and from the optical fiber-mounted field sensor is also described.
US10761147B2 Transformer monitoring and data analysis systems and methods
A monitoring system has one or more voltage sensors configured integral in a single housing for detecting a voltage of a power cable of a transformer and one or more current sensors integral in the single housing configured for detecting a current in the power cable of a transformer. Further, the monitoring sensor has at least one internal sensor integral with the voltage sensor and the current sensor, the internal sensor configured for detecting operational data corresponding to the distribution transformer and a processor configured to receive operational data indicative of the detected operational value and perform an action based upon the operational data received.
US10761146B2 Wafer probe card for evaluating micro light emitting diodes, analysis apparatus including the same, and method of fabricating the wafer probe card
Provided are a wafer probe card that matches in one-to-one correspondence with an LED wafer by implementing a probe system having the same size as the LED wafer, and inspects brightness and wavelength of light emitted from a plurality of LEDs provided on the LED wafer at once by controlling the plurality of LEDs to emit light, an analysis apparatus including the same, and a method of fabricating the wafer probe card.
US10761142B2 Battery monitoring unit
A battery monitoring unit includes a plurality of voltage detection lines, a flexible printed circuit board extending in a stuck direction of single batteries, an electronic circuit connected to one end portions of the plurality of the voltage detection lines so as to detect voltage of each of the single batteries and mounted on the flexible printed circuit board, a plurality of busbar fixing portions formed integrally with the flexible printed circuit board and to which the plurality of the busbars are fixed respectively, and communication lines disposed in the flexible printed circuit board so as to connect between the electronic circuit and a battery ECU.
US10761141B2 Method and apparatus for estimating battery state
Provided is a method and apparatus for estimating a battery state. A method of estimating a battery state that includes determining whether a previous state to a rest state of a battery is a charging state or a discharging state; selecting a current profile comprising one or both of a charging pulse and a discharging pulse based on the previous state of the battery; stabilizing an open circuit voltage (OCV) of the battery by applying the current profile to the battery; and measuring the stabilized OCV.
US10761140B2 Method for producing a semiconductor device by means of computer-aided development of test scenarios
A method for producing a semiconductor device is described. In accordance with one example embodiment, the method comprises providing a virtual DUT in the form of a behavior model of the semiconductor device and developing at least one test in a test development environment for an automatic test equipment (ATE). In this case, commands are generated by means of the test development environment, which commands are converted into test signals by means of a software interface, which test signals are fed to the virtual DUT and are processable by the latter. The software interface processes response signals of the virtual DUT and reports information dependent on the response signals back to the test development environment.
US10761131B1 Method for optimally connecting scan segments in two-dimensional compression chains
Methods and computer-readable media for testing integrated circuit designs implement a physically efficient scan by optimally balancing and connecting scan segments in a 2-dimensional compression chain architecture. A compression architecture that provides an optimal and balanced configuration of scan segments in 2D compression grids to not only decrease test time, but also to maximize compression efficiency and limit wiring congestion for IC designs that contain complex scan segments facilitates efficient scanning of data by bisecting the elements into balanced partitions of the same target scan length. A segment padding algorithm, followed by a bisecting algorithm and ultimately an element swapping algorithm may be applied to optimally balance and connect scan segments in 2-D compression chains, optimizing an efficient compression architecture which minimizes scan testing resources and time.
US10761129B2 Electrical power supply panel with increased safety through monitoring and control
A method for monitoring, metering and improving system parameters, including leakage sensitivity and response over a time period in an electrical panel for a single phase system, or a 3-phase system comprising phase lines X, Y and Z, wherein the system reaction and accuracy are critical to a decision to disconnect the line with the malfunction before operation of the leakage breaker to cut off power. Set parameter 1: a leakage threshold in mA that can be changed in system setup mode. Set parameter 2: Allowable deviation in mA for alert; and set parameter 3: Maximum deviation in mA to disconnect currents. Set parameter N for the time to include in an average calculation.
US10761127B2 Electronic component classification
A system and method of electronic component authentication or component classification can reduce the vulnerability of systems (e.g., satellites, weapons, critical infrastructure, aerospace, automotive, medical systems) to counterfeits. Intrinsic deterministically random property data can be obtained from a set of authentic electronic components, processed, and clustered to create a classifier that can distinguish whether an unknown electronic component is authentic or counterfeit.
US10761125B2 Input/output multiplexer bus
One embodiment includes and I/O bus including a signal line coupled to a signal source and multiple line switches, each line switch to couple a corresponding I/O port to the signal line. Switch logic coupled to the I/O bus may programmatically switch the multiple line switches to couple at least one of the signal source and measurement circuitry to the respective I/O port.
US10761119B2 Voltage threshold sensing systems and related methods
Implementations of voltage sensing systems may include: a high side current mirror coupled to a reference current source coupled to at least one diode. The at least one diode may be coupled to a resistor and to a comparator. The resistor may be coupled to the ground. The comparator may be coupled with a reference voltage. The comparator may be configured to receive a comparison voltage from the diode and output whether the comparison voltage is higher or lower than the reference voltage.
US10761117B2 Voltage sensor
A voltage sensor comprises a conductor (102) having a first end (101) and a second end (103), the first end including a first connection interface (150) and the second end having no connection, and a sensor section (125) including at least one sensor disposed over the conductor, the sensor sensing the sensor sensing at least a voltage or a sample of the voltage of the conductor. The voltage sensor is coupleable to a power line or cable, such as an overhead power line or cable, or a cable accessory, and can also be used in underground applications.
US10761116B2 Sensing and control of position of an electrical discharge
Sensors measure magnetic field components, and the measured fields are used to calculate and estimated transverse position of a longitudinal electric current flowing as an electric discharge across a discharge gap. Based on the estimated position, and according to a selected transverse trajectory or distribution of the estimated discharge position, magnetic fields are applied transversely across the discharge gap so as to control or alter the estimated discharge position. Inventive apparatus and methods can be employed, inter alia, during operation of a vacuum arc furnace.
US10761115B2 Sensor and measuring apparatus
A sensor detects a detected value for a covered wire without metallic contact, and includes: a tubular support that has a male thread and an insertion channel in which the covered wire is inserted and supported; a tubular shell that is inserted into the support from a base end; a pillar-shaped detection electrode that is inserted in and supported by the shell; and a tubular threaded piece that screws onto the male thread, is rotatably attached onto the shell, and is moved, along the axis of the support, together with the shell and the detection electrode by a screwing operation. The detection electrode is configured so that the front surface is pressed onto the covered wire in the support when the detection electrode moves, resulting in the front surface becoming capacitively coupled to a core wire of the covered wire via an insulating covering.
US10761108B2 Microelectromechanical systems (MEMS) inertial sensors with energy harvesters and related methods
A microelectromechanical system (MEMS) apparatus is described. The MEMS apparatus may comprise inertial sensors and energy harvesters configured to convert mechanical vibrational energy into electric energy. The harvested energy may be used to power an electronic circuit, such as the circuit used to sense acceleration from the inertial sensors. The inertial sensors and the energy harvesters may be disposed on the same substrate, and may share the same proof mass. The energy harvesters may include a piezoelectric material layers disposed on a flexible structure. When the flexible structures flexes in response to vibration, stress arises in the piezoelectric material layer, which leads to the generation of electricity. Examples of inertial sensors include accelerometers and gyroscopes.
US10761107B2 Apparatus and method for detecting disease in dairy animals
Disclosed is apparatus and a method for detecting udder disease in dairy animals. An accelerometer is attached to each of a plurality of dairy animals. A processor determines a measure of the activity of the dairy animals to which the accelerometers are attached. Data is recorded by and automatically transmitted from a sensor unit secured to an animal, without the requirement for costly and time consuming chemical analysis of milk, or of visual or veterinary inspection of individual animals in a herd.The development of an udder disease in a dairy animal, such as mastitis, may be identified from a decrease in the monitored measure of activity of a dairy animal. A separate baseline measure of activity may be determined for each dairy animal and the activity of a plurality of dairy animals in one or more herds may be taken into account, in order to reduce false positives due to external effects which are not specific to a single dairy animal.
US10761105B2 Automatic analyzing apparatus
An automatic analyzing apparatus is provided which includes a member 401 fixed at a predetermined level which presses down the sample container sealed with the sealing plug that is floated from the rack due to friction between the probe and the sealing plug when pulling out the probe from the sample container sealed with the sealing plug, and a mechanism 402 that pushes down, toward the rack, the sample container sealed with the floated sealing plug in which the sample container sealed with the floated sealing plug is transported by the transport line, and disposed on a path of the transport line until re-inspection is performed after pulling out the probe from the sample container sealed with the sealing plug.
US10761096B2 Quantitative peptide or protein assay
Peptide and/or protein quantitation methods, kits, and compositions, particularly useful for mass spectrometry, are provided herein based on a bathocuproine-based composition complex such as bathocuproinedisulfonic acid disodium salt hydrate complex. The methods are one-step rapid absorbance methods using small sample volumes. They produce a robust signal with high signal to background ratio and accurately quantitate even complex peptide mixtures with low variability and high sensitivity.
US10761090B2 Sandwich assays in droplets
The invention generally relates to performing sandwich assays in droplets. In certain embodiments, the invention provides methods for detecting a target analyte that involve forming a compartmentalized portion of fluid including a portion of a sample suspected of containing a target analyte and a sample identifier, a first binding agent having a target identifier, and a second binding agent specific to the target analyte under conditions that produce a complex of the first and second binding agents with the target analyte, separating the complexes, and detecting the complexes, thereby detecting the target analyte.
US10761081B2 Method and system for metastasis diagnosis and prognosis
A system for diagnosing metastasis in a metastatic-suspicious sample, including: a bio-chip, an electrical signal extraction board and a processor. The bio-chip includes a biosensor including a substrate, an array of electrodes, where the array of electrodes is patterned on the substrate and at least one Human Umbilical Vein Endothelial Cell (HUVEC) which is adhered on the substrate and on the array of electrodes forming a biological trap for a metastatic cell. A metastatic-suspicious sample may be introduced onto the bio-chip allowing for diagnosis of metastasis by monitoring the time-lapse electrical signals that are recorded by the processor.
US10761071B2 Artifact compensation due to different properties of fluid accommodation volumes in sample separation apparatus
A control device for controlling at least part of a sample separation apparatus for separating a fluidic sample, the sample separation apparatus including at least two fluid accommodation volumes having different flow through properties and each being configured for temporarily accommodating fluidic sample, wherein the control device is configured for controlling operation of at least part of the sample separation apparatus for at least partially compensating sample separation artifacts resulting from the different flow through properties of the fluid accommodation volumes.
US10761068B2 Method and apparatus for spectroscopy
A method including: generating a first comb optical signal; generating a second comb optical signal; exciting a sample using in combination the first comb optical signal and the second comb optical signal; and detecting at the sample an acoustic response of the sample.
US10761066B2 Micro-resolution ultrasonic nondestructive imaging method
A system and methods of nondestructive testing are described. The system includes an immersion ultrasonic probe and a laser vibrometer. The immersion ultrasonic probe and a sample are immersed in a fluid contained in an immersion tank and the laser vibrometer is disposed outside of the immersion tank. A tightly focused ultrasonic beam from the immersion ultrasonic probe and a laser beam from the laser vibrometer are both transmitted upon a sample, the laser beam being transmitted through the wall of the immersion tank. Since the ultrasonic beam is tightly focused and the laser beam samples only a small area impinged by the ultrasonic beam, microscopic resolution is obtained.
US10761062B2 Sensor apparatus
A sensor apparatus according to an embodiment of the present invention includes an element substrate, an element electrode located on an upper surface of the element substrate, an insulating member covering at least a part of the element electrode, and a detection part that includes an immobilizing film located on the upper surface of the element substrate or an upper surface of the insulating member, and performs a detection of a detection object contained in a specimen. A surface roughness of the immobilizing film is smaller than a surface roughness of the element electrode. In a sensor apparatus of other embodiment of the present invention, an amount of oxygen in a surface layer part of the immobilizing film is smaller than an amount of oxygen in a surface layer part of the element electrode.
US10761061B2 System, method, and apparatus for detecting air in a fluid line using active rectification
A circuit for detecting air, a related system, and a related method are provided. The circuit for detecting air includes a receiver connection and an air-detection circuit. The receiver connection is configured to provide a receiver signal. The air-detection circuit is in operative communication with the receiver connection to process the receiver signal to generate a processed signal corresponding to detected air. The air-detection circuit includes one or more active-rectifying elements configured to actively rectify the receiver signal to provide the processed signal.
US10761058B2 Nanostructures to control DNA strand orientation and position location for transverse DNA sequencing
A DNA sequencing device, and related method, which include an electrode and a plurality of spaced apart alignment structures. The electrode defines an electrode gap, the electrode being operable to detect a change in tunneling current as a DNA strand passes through the electrode gap. The plurality of spaced apart alignment structures are arranged to position nucleotides of the DNA strand in a predetermined orientation as the DNA strand passes through the electrode gap.
US10761057B2 Membrane device and method for manufacturing same
A method for producing a membrane device includes: forming an insulating film as a first film on a Si substrate; forming a Si film as a second film on the entire surface or a part of the first film; forming an insulating film as a third film on the second film; forming an aperture so as to pass through a part of the third film positioned on the second film and not to pass through the second film; etching a part of the substrate on one side of the first film with a solution that does not etch the first film; and etching a part or all of the second film on the other side of the first film with a gas or a solution that does not etch the first film and has an etching rate for the third film lower than an etching rate for the second film.
US10761050B2 Molecular detection apparatus and molecular detection method
A molecular detection apparatus according to an embodiment includes: a distributor which ionizes a target containing substances to be detected, applies voltage to ionized substances, and extracts the substances to be detected according to a time-of-flight based on the speed; a detector which detects the substance to be detected dropped from the distributor; and a discriminator which discriminates the substance to be detected. The detector includes: a plurality of detection units including field effect transistors using graphene layers; and a plurality of organic probes which are provided on the graphene layers, and at least some of which have different bond strengths with the substances to be detected. The substance to be detected is discriminated depending on a signal pattern based on intensity differences of the detection signals generated by differences in the bond strengths between the organic probes and the substances to be detected.
US10761048B2 Metal terminal for gas sensor, gas sensor and method for manufacturing gas sensor
A metal terminal includes a front-side terminal member and a rear-side terminal member. The front-side terminal member includes a female connection portion, and the rear-side terminal member includes a male connection portion. The female connection portion has an insertion port in which the male connection portion is inserted. The insertion port is formed in a shape that prevents the insertion port and the male connection portion from coming into contact with each other when the male connection portion is inserted therein. The female connection portion includes a terminal contact portion which brings the male connection portion and the female connection portion into contact with each other by pressing the male connection portion toward the female connection portion inside the female connection portion.
US10761047B2 Formaldehyde detecting apparatus, and air treatment apparatus having the same
A formaldehyde detecting apparatus includes a formaldehyde sensor configured to measure concentration of formaldehyde in air; a printed circuit board on which the formaldehyde sensor is disposed, the printed circuit board including a signal processor configured to process a signal output from the formaldehyde sensor; a fixing member disposed on the printed circuit board, the fixing member configured to fix the formaldehyde sensor, wherein the fixing member prevents the formaldehyde sensor from oscillating with respect to the printed circuit board by external vibration; and a power supply configured to supply a voltage capable of stabilizing an output signal to the signal processor.
US10761043B2 Graphene-based nanopore and nanostructure devices and methods for macromolecular analysis
Provided are graphene-based nanopore and nanostructure devices, which devices may include an insulating layer disposed atop the graphene, which can be in a planar shape or nanostructured into a ribbon or other shapes, containing a single graphene layer or several layers. Graphene layers and nanostructures can be placed nearby horizontally or stacked vertically. Also provided are related methods of fabricating and processing such devices and also methods of using such devices in macromolecular analysis.
US10761040B2 Planar thermocatalytic sensor of combustable gases and vapours
The invention relates to gas analysis and to combustible gas and vapour analyzers based on a thermocatalytic operating principle. The subject of the invention is a sensor the sensitive elements of which are manufactured by planar techniques that can be easily automated. The main distinguishing feature is that a working sensitive element and a reference sensitive element are colocated in a single micron-sized structural component (a microchip) on a common substrate made of porous anodic aluminium oxide. The design of the sensitive elements provides for film-wise heat transfer from heated parts of the working and reference sensitive elements. Measuring microheaters which heat the working and reference sensitive elements up to working temperatures and provide for differentially measuring an output signal in a measuring bridge circuit are spaced apart at opposite sides of the anodic aluminium oxide substrate and are disposed on arms projecting beyond the common substrate configuration. The sensitive elements are disposed in a reaction chamber having restricted diffusion access via a calibrated orifice, and the diameter of regular pores in the microchip substrate is increased to sizes that provide for a predominantly molecular diffusion mode in the pores (100 nm or more).
US10761039B2 Method for examination of a sample by means of the lock-in thermography
Method for a non-destructive and image forming examination of a sample (1) by means of a heat flow thermography method where the examination consists of evaluating the presence of any gradients in heat flow velocity at respective depth distances from a surface of the sample (1), comprising exciting the sample (1) by means of periodic heat pulses P1 from at least one excitation source, and capturing thermal image sequences of a thermal flow originating from the heat pulses by at least one infrared camera (5), implementing relative time delays Δt between a starting point of imaging of the respective image sequences and a starting point of the periodic excitation, combining all captured image sequences to a resulting image sequence in which all images are arranged in a correct time sequence, and extracting from the resulting image sequence an indication of the existence and depth distance of a heat flow velocity transition from a surface of the sample. Exciting the sample (1) comprises applying heat pulses to the sample with a lock-in frequency equal to or higher than one fourth of the imaging frequency of the camera for exciting the sample (1), controlling an excitation period of the heat pulses during which the excitation of the sample (1) by means of the heat pulses takes place, and capturing thermal image sequences comprises capturing the plural image sequences during successive excitation periods of the heat pulses with the imaging frequency. The invention includes also a system for implementing the above method.
US10761038B2 Multi-energy x-ray absorption imaging for detecting foreign objects on a conveyor
Apparatus and method for detecting materials on a conveyor belt using multi-energy x-ray absorption imaging. A spectroscopic x-ray detector consisting of a line array of pixels receives x-rays from an x-ray source directed through the conveyor belt. The x-rays are attenuated as they pass through the belt and materials on the belt. The pixels each produce an energy spectrum of the received x-rays. The received energy spectrum of each pixel is related to the source x-ray spectrum to determine a measured attenuation, which is then related to an attenuation model that includes the attenuation coefficients of a set of preselected constituent materials expected to be in or on the belt. Mathematical regression is used to fit the measured attenuation to the attenuation model to find the thickness of each constituent material for each pixel.
US10761037B2 Laser processing device for determining the presence of contamination on a protective window
A laser processing device includes a beam splitter disposed between a focusing lens and a protective window, a return light measurement unit configured to measure intensity distribution of a return light reflected from a workpiece and returning to an external optical system via the beam splitter, a storage unit configured to store at least one of normal pattern data representing the intensity distribution of the return light when the protective window is in normal condition and abnormal pattern data representing the intensity distribution of the return light when the protective window is contaminated, a processing unit configured to perform a process of detecting contamination of the protective window during laser processing based on measurement data about the return light and at least one of the normal pattern data and the abnormal pattern data, and a warning unit configured to warn of contamination of the protective window in accordance with the process.
US10761035B2 Diagnosis support apparatus, diagnosis support method, diagnosis method, and repair method of vacuum degassing tank
This diagnosis support apparatus is a diagnosis support apparatus of a vacuum degassing tank having an immersion tube that extends downward, the diagnosis support apparatus including a camera that is configured to capture an image of an inner circumferential surface of an immersion tube seen from below at an angle in a state of being disposed outside the inner circumferential surface of the immersion tube in a plan view and acquire the image as data and an image processor that is configured to be connected to the camera and carry out image-processing of the data.
US10761034B2 Expediting spectral measurement in semiconductor device fabrication
A device and method for expediting spectral measurement in metrological activities during semiconductor device fabrication through interferometric spectroscopy of white light illumination during calibration, overlay, and recipe creation.
US10761031B1 Arbitrary wavefront compensator for deep ultraviolet (DUV) optical imaging system
Disclosed is a system that includes a light source for generating an illumination beam and an illumination lens system for directing the illumination beam towards a sample. The system further includes a collection lens system for directing towards a detector output light from the sample in response to the illumination beam and a detector for receiving the output light from the sample. The collection lens system includes a fixed-design compensator plate having individually selectable filters with different configurations for correcting system aberration of the system under different operating conditions. The system also includes a controller operable for: (i) generating and directing the illumination beam towards the sample, (ii) selecting operating conditions and a filter for correcting the system aberration under such selected operating conditions, (iii) generating an image based on the output light, and (iv) determining whether the sample passes inspection or characterizing such sample based on the image.
US10761030B2 System and methods for analyte detection
This invention is in the field of medical devices. Specifically, the present invention provides portable medical devices that allow real-time detection of analytes from a biological fluid. The methods and devices are particularly useful for providing point-of-care testing for a variety of medical applications.
US10761029B1 Laser-induced spectroscopy system and process
Specialized linkage assemblies for Laser-Induced Breakdown Spectroscopy (“LIBS”) systems are provided. The linkage assemblies may facilitate the attachment of the laser housing of the LIBS system onto an existing sample supply chamber, such as a volumetric or gravimetric feeder. Generally, the linkage assemblies may comprise a specialized purge head and inert gas assembly that facilitate the attachment of the laser housing and may enhance the functionality of the LIBS system.
US10761028B2 Determining extracellular analyte concentration with nanoplasmonic sensors
Methods and systems for determining extracellular concentration data of an analyte are disclosed. A method for determining extracellular concentration data of an analyte includes receiving sensor data from one or more arrays of functionalized plasmonic nanostructures on a localized surface plasmon resonance imaging chip in contact with a fluid containing at least one living cell for a plurality of times, determining intensity data for the one or more arrays, determining fractional occupancy based on the intensity data, and determining extracellular concentration data based on the fractional occupancy data. A system for determining extracellular concentration data of an analyte includes a LSPRi chip, a sensor component, an intensity component, a fractional occupancy component, a concentration component, and a processor to implement the components.
US10761024B2 Apparatus and method for extracting low intensity photonic signals
A system for detecting stimulated emission from a material of interest comprising: an excitation source; and an imaging component; wherein, in use, the system is configured to: a) emit excitation radiation from the excitation source for a first time period, the excitation radiation having a wavelength suitable for inducing stimulated emission in the material of interest; b) capture a first image via the imaging component, the first image substantially consisting of a background illumination component and a stimulated emission component; c) stop emitting excitation radiation for a second time period; d) capture a second image via the imaging component, the second image substantially consisting of the background illumination component; e) create a difference image corresponding to the difference between the first and second images, such that the difference image includes any stimulated emission signals from the material of interest.
US10761023B2 Diffraction-based focus metrology
Diffraction-based focus target cells, targets and design and measurement methods are provided, which enable sensitive focus measurements to be carried out by overlay measurement tools. Cells comprise a periodic structure having a coarse pitch and multiple elements arranged at a fine pitch. The coarse pitch is an integer multiple of the fine pitch, with the fine pitch being between one and two design rule pitches and smaller than a measurement resolution and the coarse pitch being larger than the measurement resolution. The elements are asymmetric to provide different amplitudes in +1st and −1st diffraction orders of scattered illumination, and a subset of the elements has a CD (critical dimension) larger than a printability threshold and the other elements have a CD smaller than the printability threshold.
US10761022B2 Rotated boundaries of stops and targets
A scatterometry metrology system, configured to measure diffraction signals from at least one target having respective at least one measurement direction, the scatterometry metrology system having at least one field stop having edges which are slanted with respect to the at least one measurement direction.
US10761013B2 Method and device for cleaning an optical entrance window of a fire alarm
A method is provided for cleaning an optical entry window (1) of a fire detector (2), wherein an intermittent gas stream is discharged from at least one gas exit opening (7) onto the surface of the optical entry window (1) of the fire detector (2), wherein the intermittent gas stream having a number of pressure pulses (14) is discharged onto the optical entry window (1), and to an apparatus for cleaning an optical entry window. The method has the advantage that the optical entry window of a fire detector can be cleaned from contamination intermittently and corresponding to the intensity of contamination with a matched and low consumption of gas.
US10761010B2 Method and apparatus for monitoring a corrosive environment for electrical equipment
According to one aspect, an apparatus includes a first printed circuit board (PCB), the first PCB including a first interface, and a corrosion sensor assembly. The corrosion sensor assembly including a second interface arranged to be coupled to the first interface, the corrosion sensor assembly further including a signal trace field and a plurality of components, wherein the signal trace field and the plurality of components are arranged to provide an indication of whether the apparatus is in an environment that is corrosive.
US10761007B2 System and method for light obscuration enhanced imaging flow cytometry
An imaging flow cytometry system and method which includes a flow chamber, light obscuration analysis and imaging optics, image capturing system, device to regulate fluid flow through the chamber, and backlighting generator. The flow cell is configured so that light obscuration signals can be detected from the same passing particles that are imaged.
US10761004B2 Forward scatter sensor
An example forward scatter sensor comprises: a transmitter to emit a light sheet; a receiver to observe light scattered from particles that fall through a measurement volume; and a control entity comprising an analyzer to record a measurement signal descriptive of intensity of light captured by the receiver as a function of time and to: carry out a precipitation analysis on basis of a time segment of the measurement signal; carry out a verification of analysis performance based on magnitudes of first peaks of at least one identified double peak and on respective residence times for said at least one identified double peak; and invoke a predefined maintenance action responsive to said verification indicating a threshold-exceeding difference between respective size estimates derived based on magnitudes of the first peak of said at least one identified double peak and based on residence times of said at least one identified double peak.
US10760997B2 Apparatus and process for measuring characteristics of particle flow
The present invention relates to an apparatus (1) and process for measuring characteristics of a particle flow. The measuring is done with two different cut-off diameters of a particle trap (13) of which one cut-off diameter is adjusted based on the measured particle characteristics.
US10760995B2 Failure detection device for detecting an issue with a part of a machine
A failure detection device is disclosed. The failure detection device may receive operations data related to operations of a set of parts of a machine. The failure detection device may process the operations data using a condition-based processing technique. The condition-based processing technique may be associated with mapping initial values of data elements of the operations data to binary values based on satisfaction of a first set of conditions by the initial values. The failure detection device may detect a presence of a possible issue with the operations of the set of parts based on a second set of conditions, associated with the binary values and the initial values, being satisfied during a time period. The failure detection device may perform, after detecting the presence of the possible issue, a set of actions related to addressing the possible issue.
US10760992B2 Optical power monitor device and optical power monitor method
An optical power monitor device includes a first optical fiber, including a core and a cladding surrounding the core and being at least one of an incidence-side optical fiber and a launch-side optical fiber connected to each other at a connection point, which is constituted by a curve portion and a linear portion between the curve portion and the connection point, a low refractive index layer that is provided in at least a portion of the linear portion on an outer side of the cladding and has a refractive index lower than a refractive index of the cladding, and a first optical detector that is provided at a position close to at least the curve portion.
US10760991B2 Hierarchical actions based upon monitored building conditions
Method and apparatus for measuring conditions within a structure to generate objective data indicative of an overall status of the structure. Aggregated objective measurements may quantify as built and experiential conditions of the structure over time. Utilizing objective measurements a determination is made of, among other things, compliance with applicable building codes. A remediation table is provided to assess the risk of noncompliance with the applicable building codes and to prescribe appropriate remedial actions. Alternatively a table of scaled alphanumeric ratings may be generated and associated with measured conditions within the structure.
US10760989B2 Submersible transducer configured to impede fluid penetration
Submersible transducer includes a transducer housing configured to be submerged within an aqueous liquid and a pressure sensor operable to obtain data for determining a pressure of the aqueous liquid. The pressure sensor may be disposed within the transducer housing. The submersible transducer also includes a submersible cable having an electrical conductor and a venting tube operably coupled to the pressure sensor. The pressure sensor uses an atmospheric pressure of an external environment that is detected through the venting tube to determine the pressure of the aqueous liquid. The submersible cable also includes a cable jacket and an inner layer that is surrounded by the cable jacket. The inner layer surrounds the electrical conductor and the venting tube. The inner layer includes a non-hygroscopic polymer that is more resistant to absorbing the aqueous liquid than the cable jacket.
US10760986B2 Displacement detection type six-axis force sensor
A displacement detection type six-axis force sensor. The force sensor includes a first end portion; a second end portion; an intermediate portion; a first connecting portion elastically connecting the first end portion to the intermediate portion with first three-degrees of freedom; a second connecting portion elastically connecting the second end portion to the intermediate portion with second three-degrees of freedom; a first detecting part detecting relative displacement between the first end and intermediate portions, accompanied by elastic deformation of the first connecting portion; and a second detecting part detecting relative displacement between the second end and intermediate portions, accompanied by elastic deformation of the second connecting portion. The intermediate portion and the first and second connecting portions are disposed such that a force applied to the first or second end portion is applied to both of the first and second connecting portions without propagating through the intermediate portion.
US10760982B2 Pressure detecting device
Each of a first electrode pattern Ty and a second electrode pattern Tx extends between third electrodes Rx neighboring in a Y direction among the plurality of third electrodes Rx so as to overlap only partly with each of the neighboring third electrodes Rx in a plan view. A microcontroller is configured to detect capacitance generated at those portions. The microcontroller is configured to calculate shear force based on a capacitance change obtained due to a change in an overlapping surface area between the third electrode Rx and the first electrode pattern Ty and the second electrode pattern Tx overlapping each other in a plan view, when a pressure is applied so that an insulator is deformed.
US10760981B2 Hall sensor
A Hall sensor having a ball portion on a magnetosensitive portion is provided. A Hall sensor is provided, including: a substrate; a magnetosensitive portion formed on the substrate; an insulating film formed on the magnetosensitive portion; an electrode portion formed on the insulating film; and a ball portion which is provided on the electrode portion and is electrically connected to the electrode portion, wherein in plan view, a projection area of the ball portion accounts for 10% or more of a projection area of the magnetosensitive portion. The projection area of the ball portion may account for 20% or more of the projection area of the magnetosensitive portion. A bonding wire which is electrically connected to the ball portion and is extended from the ball portion in a direction perpendicular to an upper surface of the electrode portion may be further included.
US10760980B2 IGBT temperature sensor correction apparatus and temperature sensing correction method using the same
An Insulated Gate Bipolar Transistor (IGBT) temperature sensor correction apparatus includes an Insulated Gate Bipolar Transistor (IGBT); a temperature sensor having a sensing diode; and a process variation sensor having an internal resistor.
US10760976B2 Thermal imaging of heat sources in thermal processing systems
Thermal imaging of heat sources in thermal processing systems for determination of workpiece temperature are provided. In one example, a thermal processing apparatus can include a processing chamber, a workpiece support, a plurality of heat sources configured to heat a workpiece, and at least one camera. The at least one camera can capture one or more images of thermal radiation of the plurality of heat sources during thermal treatment of the workpiece. In one example, a method for calibrating the camera can include obtaining the one or more images of thermal radiation of at least one heat source, obtaining one or more reference signals indicative of irradiation of the at least one heat source, and calibrating the camera based at least in part on a comparison between the one or more images of thermal radiation and the one or more reference signals indicative of irradiation of the heat source.
US10760969B1 Fluorescence and systemic noise reduction in time-gated spectroscopy
Systems and methods for reducing fluorescence and systematic noise in time-gated spectroscopy are disclosed. Exemplary methods include: a method for reducing fluorescence and systematic noise in time-gated spectroscopy may comprise: providing first light using an excitation light source; receiving, by a detector, first scattered light from a material responsive to the first light during a first time window; detecting a peak intensity of the first scattered light; receiving, by the detector, second scattered light from the material responsive to the first light during a second time window; detecting a peak intensity of the second scattered light; recovering a spectrum of the material by taking a ratio of the peak intensity of the first scattered light and the peak intensity of the second scattered light; and identifying at least one molecule of the material using the recovered spectrum and a database of identified spectra.
US10760956B2 Wavefront control apparatus, wavefront control method, information acquiring apparatus, and storage medium
A wavefront control apparatus includes a detector configured to detect a signal generated from a medium onto which light is irradiated, and a controller configured to control a wavefront of the light based on an output of the detector. The controller performs first processing for forming a first wavefront of the light based on the signal generated from a first measurement position in the medium, and second processing for forming a second wavefront of the light based on the signal generated from a second measurement position different from the first measurement position in the medium onto which the light having the first wavefront is irradiated.
US10760951B2 Window cover for sensor package
The proposed technology relates to a window cover for a sensor package, in which a partition wall is provided between a light emitting device and a light receiving device to improve sensing accuracy and reliability of the sensor package. The proposed window cover includes: a base disposed in a direction in which light is emitted from a light source; a light emitting device cover extending from a first surface of the base and disposed at an upper portion of a light emitting device of the sensor package; and a light receiving device cover having the first surface of the base as a bottom surface thereof, and disposed at an upper portion of a light receiving device of the sensor package, wherein an outer circumference of the light emitting device cover extends in a direction opposite to the direction in which the light is emitted to form a partition wall.
US10760950B2 Apparatus and method for processing ultrasonic data
An apparatus for processing data including a data compressor configured to compress ultrasonic data, and store the compressed ultrasonic data in a memory; and a data decompressor configured to read the stored ultrasonic data from the memory, decompress the read ultrasonic data, and transfer the decompressed ultrasonic data to a processor configured to perform beamforming.
US10760943B2 Measurement method, measurement device, and program for measuring a volume of a drug filled in a needle-shaped recess
A measurement method measuring a volume of a drug in each needle-shaped recess of a mold includes: acquiring a reference surface height that is a height between a reference surface determined in advance with respect to a first surface on the side on which a drug is filled in the mold or a second surface opposite to the first surface, and the second surface; acquiring a first detection result by detecting a measurement wave emitted from a drug surface according to incidence of the measurement wave on the drug in the needle-shaped recess; detecting a first height between the reference surface and the drug surface; detecting a second height from the second surface to the drug surface based on the reference surface height and the first height; and calculating a volume of the drug based on the second height and a known shape of the needle-shaped recess.
US10760940B2 Fill level device
A fill level device according to an exemplary embodiment of the present disclosure can be provided. For example, the fill level device can include waveguide couplings, each of which can include a radiator element connected to a microstrip line configured to transmit and/or receive a radar signal, a waveguide configured to conduct the radar signal and a substrate on which the microstrip line, the radiator element and the waveguide can be arranged. The waveguide can have a cross section with a narrow side and a wide side. The narrow side can be shorter than the wide side. The microstrip line can be guided through the narrow side of the waveguide into the waveguide to the radiator element that is arranged in the interior of the waveguide. The microstrip line and the radiator element can be arranged on a surface of the substrate facing the waveguide.
US10760939B2 Liquid level sensing apparatus and related methods
Liquid level sensing apparatus and related methods are disclosed. An example method includes moving a cannula to pierce a seal of a container to provide access to a liquid in a cavity of the container; moving a probe through a passageway of the cannula and into the cavity of the container; and when the probe is at least partially positioned in the cannula: providing a first signal to the probe to cause the probe to emit a first electrical field; and providing a second signal to the cannula to cause the cannula to emit a second electrical field.
US10760938B2 Liquid level detector
A liquid level detector for use in a pump control system comprises a chamber 20 for liquid, a liquid inlet 6 to the chamber 20, a liquid outlet 7 from the chamber and connectable to a pump, and a capacitive sensor comprising mutually spaced capacitive sensor elements (21, 22; 22, 23) forming a capacitance which is sensitive to permittivity within a region of the chamber proximate the capacitive sensor. The chamber is defined at least partially by a barrier member 25 and the capacitive sensor elements are provided on the barrier member outside the chamber.
US10760937B2 System and method for measuring the level of fluid in a container
A system includes a container having an inner chamber for storing fluid, at least one measuring probe arranged within the chamber and one ground probe arranged within or near a bottom of the chamber. There is at least one impedance electrically connected with a processor which is electrically connected with the at least one measuring probe. A signal generator has a first voltage terminal electrically connected with the at least one impedance and a second voltage terminal electrically connected with the ground probe. When a signal is sent from the signal generator to the measuring probe, an electrochemical reaction occurs at the measuring probe and ground probe and stores a charge if the measuring probe and/or ground probe are immersed in fluid. The processor measures the voltage, current and power of the signal to calculate the resistance and capacitance of the fluid within the container to determine the level of fluid in the container. A method for measuring the level of fluid in the container includes the steps of applying at least one time-varying voltage signal to the one or more measuring probes, creating an electrochemical reaction between the ground probe and each measuring probe, storing energy around each probe that is submerged in fluid, measuring the current and power of the signals, and determining the level of fluid in the container based on the calculated capacitance and resistance of the fluid within the container.
US10760936B2 Semiconductor device and method of sensing a change in a level of a liquid therein
The present disclosure provides a semiconductor device. The semiconductor device includes a substrate, a pair of walls and a conductive layer. The pair of walls, disposed on the substrate, are configured to define a recess therebetween to receive a liquid. The conductive layer is disposed above the substrate, and has a resistance, wherein the resistance is correlated with a surface tension of the liquid in the recess.
US10760934B2 Using localized flow characteristics on electronic flow meter to quantify volumetric flow
An electronic flow meter that is configured to use localized flow conditions to determine volumetric flow. The embodiments may include a body forming a pass-through channel and a by-pass channel; a semiconductor device comprising a sensor disposed proximate the by-pass channel, the sensor configured to generate a signal with data that reflects localized pressure and localized temperature of a stream in the by-pass channel; and a processing component coupled with the sensor to receive and process the signal so as to identify a flow condition for the stream, select a calculation for volumetric flow rate in response to the flow condition, use data for localized pressure and localized temperature in the calculation to generate a value for the volumetric flow rate; and generate an output with data that reflects the value for the volumetric flow rate.
US10760933B2 Method for detecting and diagnosing powder flow stability
Powder flow conveying from a powder feeder to a process (i.e. thermal spray gun) can have instabilities that can be detected and diagnosed using a hose back pressure. Incorporating a pressure transducer in a powder hose line at a connection of the powder hose line and the feeder allows the back pressure to be measured in real time at a high sample rate to detect instability and aid in diagnosing a cause of the instability. Diagnosis includes identifying periodic oscillations in the powder hose line such as acoustics as well as detecting hose clogging and hose rupture conditions. Once detected, proper corrective actions can be recommended to correct the cause of the instability.
US10760932B2 Methods to shorten calibration times for powered devices
A calibration method for a hand-held surgical instrument is disclosed. The hand-held instrument includes a drive motor, a firing rod controlled by the drive motor and having at least one indicator, and a sensor configured to detect the at least one indicator. A microcontroller includes a pulse modulation algorithm stored therein to control the drive motor. The microcontroller executes a calibration algorithm to adjust at least one program coefficient in the pulse modulation algorithm.
US10760931B2 Dynamic control of performance parameters in a six degrees-of-freedom sensor calibration subsystem
A technique for dynamically controlling performance parameters in a six degrees-of-freedom non-line-of-sight sensor subsystem is described. In certain embodiments, a magnetic field sensor is mounted on or proximate to an object to measure a parameter that varies with a position or orientation of the object, where the magnetic field sensor is part of a sensor calibration subsystem. The position or an orientation of the object is determined based on the parameter as indicated in an output of the magnetic field sensor. A receiver bandwidth and/or other operation parameter of the subsystem is dynamically adjusted during operation of the subsystem based on, for example, a transmitter-receiver distance or an operational state of the subsystem.
US10760929B2 Environmental sensor and manufacturing method thereof
An environmental sensor and manufacturing method thereof. The environmental sensor comprises: a substrate comprising at least one recess disposed at an upper portion of the substrate; and a sensitive film layer disposed above the substrate, comprising a fixed portion fixed on an end surface of the substrate and a bent portion configured to extend inside the recess. The bent portion and a side wall of the recess form a capacitor configured to detect a signal. The bent portion, fixed portion, and the recess form a closed cavity. A conventional capacitive structure configured on a substrate surface is changed to a capacitive structure of the environmental sensor vertically extending into the inside of the substrate, increasing a depth of the recess, and in turn, increasing a sensing area between two polar plates of the capacitor, significantly shrinking a coverage area of the capacitor on the substrate, and satisfying a requirement of a modern compact electronic component.
US10760928B1 Planar linear inductive position sensor having edge effect compensation
A planar linear inductive position sensor is formed on a substrate and includes at least one oscillating coil, a first sensing coil having opposing edges extending beyond opposing edges of the oscillating coil along a linear axis along which a linear position of a conductive target is to be sensed, and a second sensing coil having opposing edges extending beyond opposing edges of the oscillating coil along the linear axis. The first and second sensing coils have geometries selected such that equal opposing magnetic fields are induced in the first and second sensing coils in the presence of a magnetic field generated by the oscillating coil when no conductive target is proximate to the first and second sensing coils and unequal opposing magnetic fields are induced in the first and second sensing coils when the conductive target is proximate to the first and second sensing coils, a difference in the unequal opposing magnetic fields induced in the first and second sensing coils correlated to the position of the conductive target.
US10760924B2 POI information providing server, POI information providing device, POI information providing system and program
It is possible to mitigate a load of POI search and provide non-overlapping POI information to a user. Included are: a communication unit which acquires a POI search request signal to request search of the POI from a POI information providing device; a memory unit which stores user utterance information storing a genre when voice information of user utterance specifying the genre of the POI is included in the POI search request signal; and a control unit which searches a POI of a genre specified by voice information when the voice information of user utterance specifying the genre of the POI is included in the POI search request signal, determines whether a predetermined POI search condition is satisfied when the voice information is not included in the POI search request signal, searches a POI of a genre specified by the user utterance information when the predetermined POI search condition is satisfied, and generates notification POI information including voice information relating to the searched POI.
US10760921B2 Start-of-route map navigation with suppression of off-route feedback
A map navigation tool provides a start-of-route buffer area in which off-route feedback (e.g., audio or visual warnings or alerts) can be suppressed in some circumstances. For example, a mobile computing device implements a map navigation tool that can output off-route feedback when the user strays from a route, but also can suppress off-route feedback when the user is within a start-of-route buffer area. Off-route feedback can continue to be suppressed until some other event, such as the user leaving the start-of-route buffer area, occurs. Off-route feedback can be suppressed even if the user is not within a start-of-route buffer area, such as when the map navigation tool generates a route when the user is at an initial location that is far away from any part of the route and then joins the route later (e.g., at the start location or downstream from the start location).
US10760918B2 Spatiotemporal lane maneuver delay for road navigation
System and methods are provided for calculating a lane maneuver delay for different lane maneuvers and different road segments at different times of the day to generate a predicted lane maneuver delay for use in routing and navigation services. A lane-level map-matcher identifies the lane a vehicle is driving on using positional sensors. Sensor data is obtained from vehicle sensors using the left-turn and right-turn signal lights sensor. A lane maneuver delay value is calculated from the time period a left-turn or right-turn signaling light was kept on before a vehicle completed a lane maneuver. The lane maneuver delay values are aggregated to generate a predicted lane maneuver delay that may be used in lane level routing instructions.
US10760917B2 Dynamic display of route preview information
A transportation management system matches drivers with riders. After a rider has been picked up by a driver, a navigation route from the rider's pickup location to the driver's next stop is displayed to the driver on a mobile computing device. Prior to picking up the rider, only an initial portion of the navigation route is displayed to the driver. The amount of the initial portion displayed to the driver is dynamically determined according to its navigational complexity.
US10760914B2 Comparative metrics for route planning scenarios
A device can determine scenario information associated with a plurality of route planning scenarios. The scenario information can include information that describes, for each route planning scenario of the plurality of route planning scenarios, a condition or a configuration based on which a respective route plan is to be generated. The device can calculate, based on a plurality of route plans corresponding to the plurality of route planning scenarios, a set of metrics associated with the plurality of route planning scenarios. The set of metrics can be calculated based on a single user interaction with a user interface. The device can provide information associated with the set of metrics. The providing the information associated with the set of metrics can cause an action, associated with at least one route plan of the plurality of route plans, to be automatically performed.
US10760906B2 Apparatus and method for obtaining three-dimensional depth image
An apparatus and method for obtaining a depth image are provided. The apparatus may include a light source configured to emit first light to a first region of an object for a first time period and emit second light to a second region of the object for a second time period, the first light and the second light respectively being reflected from the first region and the second region; and an image obtainer configured to obtain a first partial depth image based on the reflected first light, obtain a second partial depth image based on the reflected second light, and obtain a first depth image of the object based on the first partial depth image and the second partial depth image.
US10760903B2 Master disk, master disk mounting method, and master disk removal method
A master disk which simulates a tire and is used at the time of confirmation or correction of measurement accuracy of a geometry measuring device for measuring the surface shape of a tire, of a tire testing machine, includes: a simulated tire section simulating a tire; a lower tubular section having a cylindrical shape, in which the tip side thereof is connected to the lower end side of the simulated tire section so as to be coaxial with the simulated tire section and a guide surface inclined in a tapered shape so as to have a larger diameter toward the base end side is formed on the base end side of an inner peripheral surface; and a neck section and a flange section which are provided on the upper end side of the simulated tire section and detachably engaged with test rim moving and exchanging means of a tire holding device of the tire testing machine.
US10760902B2 Measurement processing device, x-ray inspection apparatus, method for manufacturing structure, measurement processing method, x-ray inspection method, measurement processing program, and x-ray inspection program
A measurement processing device used for an x-ray inspection apparatus that detects an x-ray passing through a predetermined region of a specimen placed on a placement unit to perform an inspection on the shape of the predetermined region of the specimen includes: a setting unit that sets a three-dimensional region to be detected on the specimen; and a sliced-region selection unit that sets a plurality of sliced regions on the region to be detected, calculates, for each of the plurality of sliced regions, an amount of displacement of the predetermined region that is required to detect the region to be detected when the plurality of sliced regions is regarded as the predetermined region, and selects a sliced region for the inspection from among the plurality of sliced regions on the basis of each of the calculated amounts of displacement.
US10760894B2 Optical detecting device capable of determining relative position of a reference object or a light source
An optical detecting device is utilized to determine a relative position of a reference object or a light source according to an optical reflecting signal reflected from the reference object via an optical detecting signal emitted by the light source. The optical detecting device includes a light penetrating component, at least one light tight structure and an optical detecting component. A focal length of the light penetrating component is greater than a predetermined distance. The light tight structure is located on a region correlative to the light penetrating component. The optical detecting component is disposed by the light penetrating component and spaced from the light penetrating component by the predetermined distance. The optical reflecting signal is projected onto the optical detecting component through the light penetrating component to form a characteristic image via the light tight structure, and the characteristic image can be used to determine the relative position.
US10760891B2 Surface measuring apparatus
Surface measuring apparatus for measuring a surface of a workpiece has a probe including a probe arm bearing a probe element for contacting workpiece surface to be measured. Surface measuring apparatus also has a feed apparatus for moving probe element relative to workpiece to be measured. Probe arm is detachably connectable or connected to a movable part of feed apparatus via a mechanical interface having a first part and a second part, which in installed position of probe arm are connected to one another with static determinacy on movable part of feed apparatus, and one of the parts is associated with probe arm and the other part is associated with feed apparatus. At least one alignment protrusion is on first part as an installation alignment aid, which in installed position of probe arm contactlessly or essentially contactlessly engages in an alignment recess formed on second part.
US10760888B1 Methods and apparatus for disarming an explosive device
A disrupter for launching a combination of a liquid and a projectile toward an explosive device to strike the explosive device to disable the explosive device. The position of the projectile in the barrel of the disrupter determines an exit velocity of the liquid and the projectile from the barrel of the disrupter.
US10760883B2 Archery projectile facility
An archery projectile facility comprises an elongated body. The elongated body includes at least one accelerometer. The at least one accelerometer is operable to generate three-dimensional acceleration information. The archery projectile facility comprises a body processor. The body processor is operably connected to the at least one accelerometer. The body processor is adapted to process the three-dimensional acceleration information to generate sampled information. The archery projectile facility comprises a transmitter. The transmitter is operably connected to the body processor to broadcast the sampled information. The archery projectile facility comprises a receiver. The receiver includes a receiver processor. The receiver processor is adapted to generate resulting information based on the sampled information. The resulting information is based on a determination of a stabilization point.
US10760878B2 Colored multilayered composite fabrics
Multilayer composite materials having a camouflaged appearance. More particularly, camouflaged tactical vest covers having slots for the webless attachment of accessories. An easily colored outer fabric is provided with a colored camouflage pattern and backed with a non-colored high tenacity fabric for enhanced durability. A colored intermediate adhesive is employed to maintain a camouflaged visual appearance without the added complexity of dying the high tenacity fibers of the backing material.
US10760873B2 Gear-type air rifle slide stop structure
The present disclosure relates to the field of air rifles, and particularly to a gear-type air rifle gear cock structure, including a air cylinder, a gear cock controller, a rack, and a rack reset spring, the gear cock controller is fixedly connected with the air cylinder, and the rack is arranged between the air cylinder and the gear cock controller; the air cylinder includes a air cylinder body, a piston, and a magazine, the air cylinder body has a hollow structure with an air chamber inside, the piston is arranged in the air chamber inside the air cylinder body, the magazine communicates with the air chamber through an outlet pipe; two ends of the rack are a piston fixing end and a spring fixing end respectively, the piston fixing end is connected with the piston through a lug arranged at the piston fixing end, the spring fixing end is connected with the rack reset spring, two ends of the rack reset spring are respectively fixed on the rack and the air cylinder.
US10760871B2 Liquid dispensing squirt device
A liquid dispensing squirt device comprises a handle member, a barrel/loading member, and a spray nozzle member. The barrel/loading member connects to the top portion of the handle member, and contains an access hatch where the carbonated beverage is held. The liquid from the carbonated beverage can is dispensed through the spray nozzle with the can is pierced.
US10760869B2 Archery bow pulley engagement
In some embodiments, an archery bow comprises a riser, a first limb and a second limb. The first limb supports a first rotatable member, which comprises a cam. The second limb supports a second rotatable member, which comprises a pulley comprising a peripheral groove. A ring comprising an elastomeric material is positioned in the peripheral groove. A power cable is arranged to be taken up on the cam as the bow is drawn. A string segment is arranged to wrap around the pulley. The string segment contacts the ring.
US10760865B2 Magazine loader
A magazine loader for loading a batch of rimmed cartridges into a tubular rifle magazine is disclosed. In embodiments, the magazine loader comprises an elongate body comprising a hopper portion and a tubular magazine receiving portion with a circular aperture for receiving the tubular rifle magazine. In embodiments, the body defines a feed passageway extending between the hopper portion and the circular aperture of the tubular magazine receiving portion. The body may define, extending along the feed passageway, a first cartridge orienting passageway defined by a first cartridge orienting portion, a second cartridge orienting passageway defined by a second cartridge orienting portion, a third cartridge orienting passageway defined by a third cartridge orienting portion, and a fourth cartridge orienting passageway defined by a fourth cartridge orienting portion.
US10760864B1 Magazine assembly providing tactile indication of ammunition level
A magazine, magazine assembly, magazine retrofit kit and/or portion thereof configured to provide tactile indication of magazine ammunition level.
US10760860B2 Firearm systems and methods for accommodating different bullet casing lengths
A firearm includes a frame assembly, a slide assembly releasably and slidably coupled to the frame assembly, a bolt assembly including a leading surface, a firing pin, and an adjuster. The adjuster includes a body and an extension. The body defines a first bore, defines a leading surface, and has a thickness. The leading surface is configured to interface with a rear portion of a cartridge, and the body spaces the leading surface from the leading surface of the bolt assembly. The extension couples the body to the bolt assembly and defines a second bore that shares a common central axis with the first bore. The first bore and the second bore receive the firing pin such that the firing pin at least selectively protrudes from the leading surface of the adjuster to engage the cartridge.
US10760858B2 Coated heat exchanger
A heat exchanger is disclosed for transferring heat from a first material to a second material comprises a structural heat transfer member having a first surface in contact with the first material and a second surface in contact with the second material. The heat exchanger also has a coating on the first surface, the second surface, or on the first and second surfaces. The coating comprises filler particles dispersed in a polymer resin matrix.
US10760855B2 Heat sink
The present disclosure is to provide a heat sink capable of improving cooling efficiency of a heat radiation fin and exhibiting excellent cooling performance with respect to a cooling target regardless of an installation posture of the heat sink, and capable of being installed even in a narrow space.The heat sink includes: a heat transport member having a heat receiving portion thermally connected to a heat-generating element and including a first wick structure; a tube body connected to a heat insulating portion or a heat radiating portion of the heat transport member and including a second wick structure; and a heat radiation fin group which is thermally connected to the tube body and in which a plurality of heat radiation fins are arranged, in which, the heat transport member has an integral internal space that communicates from the heat receiving portion to a connection portion with the tube body and is sealed with a working fluid, the internal space of the heat transport member communicating with an internal space of the tube body, and the first wick structure includes a branch portion branched in a thickness direction of the heat transport member and multi-stage stem parts extending from the branch portion in a predetermined direction.
US10760840B2 Dual-compressor refrigeration unit
A refrigeration unit may include a first compressor constructed and arranged to compress a first refrigerant, and a second compressor constructed and arranged to compress a second refrigerant. A first condenser of the refrigeration unit is operatively coupled to the first compressor, and a second condenser is operatively coupled to the second compressor. An evaporator of the refrigeration unit is constructed and arranged to flow the first and second refrigerants received from the respective first and second condensers for chilling a heat transfer fluid. A controller of the refrigeration unit includes a computer processor and a storage media for executing a pre-programmed algorithm for initialing the second compressor when a predetermined crossover frequency of the first compressor is reached as a system load increases.
US10760839B2 Indoor unit of air-conditioning apparatus having leaked refrigerant ventilation
In an indoor unit of an air-conditioning apparatus, an air inlet for room air is provided at a position lower than a height position of a drain pan. A partition plate is provided to partition a space below a height position of the drain pan in a housing. A pipe connecting portion connected to a refrigerant pipe of an outdoor unit is provided in one part of the partitioned space and a heat exchanger and a fan are placed in the other part of the partitioned space. At least one communicating path is formed in the partition plate to communicate the two parts of the partitioned space with each other. The indoor unit can include a controller for activating a fan when leakage of refrigerant is detected or for closing the communicating path when leakage of refrigerant is detected.
US10760838B2 Method and apparatus for refrigerant detector calibration confirmation
A refrigerant detector testing system according to aspects of the disclosure includes a metering orifice formed in a suction line that is disposed between an evaporator coil and a compressor, a valve fluidly coupled to the metering orifice, a connecting tube fluidly coupled to the valve on a side opposite the metering orifice, a mixing device having an input orifice fluidly coupled to the connecting tube. In some embodiments, the mixing device includes an air intake disposed proximate the input orifice, a throttling portion downstream of the input orifice and the air intake, the throttling portion having a reduced cross-sectional area, and a diffuser section positioned downstream of the throttling portion, the diffuser section having an output orifice. According to aspects of the disclosure, a refrigerant detector fluidly exposed to the output orifice.
US10760837B2 Evaporator
Provided is an evaporator including a header in which a depressed portion is formed by concavely depressing downwards a transverse central portion in a longitudinal direction from an upper surface, the portion in which the depressed portion is formed protrudes downwards to form a pair of partitions spaced apart from each other, and a communication hole is formed in a penetrating manner in a transverse direction in each of the pair of partitions; a tank in which a transverse central portion is coupled to a lower end of the partition of the header and both sides in the transverse direction are coupled to the header; and an insert plate inserted into the depressed portion of the header such that both surfaces are tightly attached to the pair of partitions, and having a through hole provided at a position corresponding to the communication holes provided in the pair of partitions.
US10760834B2 Evaporator in a refrigerant circuit D
An evaporator in a refrigerant circuit, having a bottom-side inlet chamber which is connected in flow terms to an evaporator outlet side via evaporator tubes, a separator being integrated into the evaporator inlet chamber, in which separator a refrigerant which is expanded in an expansion member is divided as a two-phase liquid/vapour mixture into a vapour phase and into a liquid phase which is separate therefrom, the vapour phase being conducted via a bypass line to the evaporator outlet side, and the liquid phase being conducted counter to the direction of gravity into the evaporator tubes, to be precise at least one evaporator tube being a flat tube with a plurality of micro-channels.
US10760832B2 Air-conditioning apparatus
An air-conditioning apparatus includes a main circuit in which a compressor, a refrigerant flow switching device, a load side heat exchanger, a load side expansion device, and a plurality of heat source side heat exchangers are sequentially connected. When the plurality of heat source side heat exchangers are used as condensers, the first heat source side heat exchanger and the second heat source side heat exchanger are connected in series. When the plurality of heat source side heat exchangers are used as evaporators, the first heat source side heat exchanger and the second heat source side heat exchanger are connected in parallel. A distribution adjustment header on an inlet side of at least either the first heat source side heat exchanger or the second heat source side heat exchanger when the plurality of heat source side heat exchangers are used as evaporators.
US10760831B2 Oil distribution in multiple-compressor systems utilizing variable speed
A method of operating a multiple-compressor refrigeration system is provided. This method includes the steps of supplying, via a common supply line, refrigerant gas and oil to a plurality of compressors coupled in series, and attaching an oil flow conduit between adjacent compressors of the plurality of compressors. The oil flow conduit is configured to move oil from a compressor with a relatively higher pressure to a compressor with a relatively lower pressure. The method further includes controlling the pressure for each of the plurality of compressors by regulating a speed at which each of the plurality of compressors operates in order to maintain a pressure differential between the adjacent compressors to facilitate the flow of oil from the compressor with the relatively higher pressure to the compressor with the relatively lower pressure.
US10760830B2 Desiccant air conditioning methods and systems
A desiccant air conditioning system for treating an air stream entering a building space, including a conditioner configured to expose the air stream to a liquid desiccant such that the liquid desiccant dehumidifies the air stream in the warm weather operation mode and humidifies the air stream in the cold weather operation mode. The conditioner includes multiple plate structures arranged in a vertical orientation and spaced apart to permit the air stream to flow between the plate structures. Each plate structure includes a passage through which a heat transfer fluid can flow. Each plate structure also has at least one surface across which the liquid desiccant can flow. The system includes a regenerator connected to the conditioner for causing the liquid desiccant to desorb water in the warm weather operation mode and to absorb water in the cold weather operation mode from a return air stream.
US10760823B2 Hot water storage tank with integrated pump and controller
A hot water supply system decouples an intelligent hot water storage system from a water heating engine system. The water heating engine system includes a plurality of instantaneous water heaters that provide for redundant operation for improved reliability. The intelligent hot water storage system includes a storage tank that encloses a volume for storage of water. The intelligent hot water storage system includes a recirculation loop driven by an integrated pump and operated by an integrated controller. By positioning the tank recirculation outlet and inlet farther apart from each other, additional usable volume of hot water is provided by the intelligent hot water storage system. Isolation valves positioned on the input and output of a recirculation pump in the recirculation loop facilitate repair or replacement of the recirculation pump. The hot water system provides for increased capacity while providing redundant heating engines in a smaller floor space than conventional systems.
US10760821B2 Heating device having a holding apparatus to accommodate a control unit
A heating device having a holding apparatus to accommodate a control unit, the holding apparatus having a receiving part. The receiving part has at least two struts, and a receptacle for the control unit is developed between the at least two struts. A holding apparatus for a heating device is also described.
US10760819B2 Water supply system that is selectively supplied with heated water
Disclosed is a water supply system that conditionally fills with heated water. The water supply system has a water tank configured to store and supply heated water, a heater configured to heat water in the water tank, and a sensor configured to sense a temperature of the water in the water tank. In accordance with an embodiment of the disclosure, the water supply system has a water supply unit configured to selectively supply heated water or unheated water to the water tank based on the temperature that has been sensed. In some implementations, this is performed to reduce use of the heated water, which may result in energy savings.
US10760818B2 Air conditioner
Disclosed herein is an air conditioner including a suction panel which includes a suction port through which air is suctioned in inside a housing. The suction panel is formed to rotate with an axial direction of an air blowing fan or a direction perpendicular to the axial direction of the air blowing fan as a rotation axis to be coupled with or separated from the housing. Accordingly, a user may easily and intuitively separate the suction panel and falling of the suction panel, which may occur when the suction panel is separated, may be effectively reduced using a supporting unit disposed at the suction panel. Also, the housing and cover members which cover an outer perimeter of a lower portion of the housing may be coupled with each other by pressurizing the cover members toward the housing, thereby allowing the user to easily coupled the cover members.
US10760817B2 Louver assembly
A louver assembly for placement in an opening for regulating the inlet of air, comprising a first blade stack and second blade stack arranged in tandem, and a sill for supporting the first and second blade stack. The first and second blade stacks have a plurality of blades arranged in a horizontally-spaced and vertically-extending configuration defining a plurality of horizontally-spaced and vertical extending air passageways for the passage of air therethrough. The sill has a generally planar first portion for supporting the first blade stack and a sloped second portion for supporting the second blade stack, wherein the sloped portion and the second blade stack define therebetween a void for equalizing pressure within the assembly to facilitate the draining of water therefrom.
US10760815B2 Building system commissioning using mixed reality
Methods, devices, and systems for building system commissioning using mixed reality are described herein. One system includes a computing device comprising computer readable instructions stored thereon that are executable by a processor to retrieve configuration data for a physical controller from a remote distributed database in response to receiving a query, display the configuration data for the physical controller in a mixed reality display on a mixed reality device, and install the configuration data on the physical controller.
US10760806B1 Thermostat with failsafe mechanism
A failsafe assembly for use with a thermostat that includes a housing that defines a housing interior, and first and second thermoswitches disposed in the housing interior. The first thermoswitch includes an open and a closed state and is normally in the open state. The first thermoswitch is configured to switch to the closed state when an ambient temperature drops below a predetermined lower threshold temperature and the first thermoswitch is configured to switch back to the open state when the ambient temperature rises above a predetermined first safety temperature. The second thermoswitch includes an open and a closed state and is normally in the open state. The second thermoswitch is configured to switch to the closed state when the ambient temperature exceeds a predetermined upper threshold temperature. The second thermoswitch is configured to switch back to the open state when the ambient temperature drops below a predetermined second safety temperature.
US10760805B2 Air purifier
An air purification apparatus (100) is disclosed that comprises a flow channel (110) extending between an inlet (111) and an outlet (113); a pollutant removal structure (120) and an air displacement apparatus (130) in the flow channel; a branched sensor channel (140) including: a first branch (142) extending between an ambient air port (141) and a further outlet (143) in the flow channel between the inlet and the air displacement apparatus; and a second branch (144) extending between the ambient air port and a further inlet (145) in the flow channel between the air displacement apparatus and the outlet, the first branch and second branch sharing a branch section; at least one sensor (150) in the shared branch section; a valve arrangement (161, 163) in the branched sensor channel adapted to exclusively disconnect the first branch from the flow channel in a first configuration and exclusively disconnect the second branch from the flow channel in a second configuration; and a controller (170) adapted to control the valve arrangement.
US10760803B2 Humidifier control systems and methods
An indoor air quality (IAQ) system for a building includes a relative humidity (RH) sensor. The RH sensor is configured to measure a RH of the air within the building. At least one of a thermostat and an IAQ control module is configured to control humidification of the building based on the RH measured by the RH sensor.
US10760802B2 Whole house fresh air system with a wireless interface
A whole house fresh air system with a wireless interface is disclosed. An example embodiment includes: a damper installed in a structure; a collector box coupled to an intake side of the damper; a disburser box coupled to an output side of the damper; a plurality of intake vents mounted to the structure, the plurality of intake vents having access to fresh air outside of the structure, the plurality of intake vents being coupled to the collector box via a plurality of intake ducts routed through an interior of the structure; and a plurality of output vents installed within the structure, the plurality of output vents having access to air inside of the structure, the plurality of output vents being coupled to the disburser box via a plurality of output ducts routed through an interior of the structure.
US10760797B2 Air or spray washer for air conditioning units
A system for purifying and pre-conditioning intake air in an air conditioning unit comprises an energy exchange unit having an air inlet, an air outlet, a primary air flow running from the air inlet to the air outlet, and an active energy exchanging element or elements, and at least one spray washer having at least one nozzle, the spray washer positioned between the air inlet and the next active element, wherein the at least one spray washer is configured to dispense droplets of a fluid into the intake air from the at least one nozzle. A method for purifying and pre-conditioning intake air in an air conditioning unit is also described.
US10760795B2 Split heating and cooling systems
The present disclosure relates to air conditioning systems and methods. An aspect of the present disclosure is a device that includes a housing having an external surface and defining an interior volume, a heat exchanger positioned within the interior volume, a fluid line partially positioned within the interior volume, a sleeve extending from the external surface and terminating at a distal end of the sleeve, and a fluid connector. The sleeve has an outside wall spanning a length of the sleeve and defining an internal cavity, the fluid connector is positioned at or near the distal end, a portion of the fluid line is positioned within the internal cavity, and the fluid line provides a fluid connection between the heat exchanger and the fluid connector.
US10760793B2 Jet in cross flow fuel nozzle for a gas turbine engine
The present disclosure is directed to a fuel nozzle assembly for a gas turbine engine. The fuel nozzle assembly includes a centerbody extended along a nozzle centerline axis and generally concentric thereto and an outer sleeve surrounding the centerbody and extended along the nozzle centerline axis and generally concentric thereto. The centerbody defines an outer wall extended at least partially along the nozzle centerline axis in which the centerbody defines a first fuel passage therewithin and one or more first fuel exit openings through the outer wall. Each first fuel exit opening is discrete from another along the outer wall. The outer sleeve and centerbody together define a first air passage therebetween. The first fuel passage and the first fuel exit opening are in fluid communication with the first air passage. The fuel nozzle assembly provides a first flow of fuel through the first fuel passage and first exit opening and a first flow of air through the first air passage, the first flow of fuel defines a jet in crossflow mixing with the first flow of air.
US10760791B2 Control system for exhaust gas fan system
Systems and methods for controlling an exhaust gas fan system. The control system may control one or more components of the exhaust system to optimize system performance and improve energy efficiency. The control system may be designed to maintain a substantially constant pressure in the exhaust header and provide a substantially constant flow through the exhaust fans. The control system may include software and hardware that allow the control system to control one or more of: modulation of one or more by-pass dampers; adjustment of the nozzle outlet area; varying the speed of the fans; the number and staging of fans. By utilizing and controlling one or more of these functions, the amount of energy being used may be minimized/optimized.
US10760789B2 Boiler and a method for NOx emission control from a boiler
A boiler includes an enclosure having at least a supply for fuel and oxidizer and at least a supply for a SNCR reagent. The supply for the SNCR reagent includes at least a regulation valve for the SNCR reagent. The boiler includes at least a sensor for measuring information indicative of the NOx concentration over at least one given enclosure cross section. The boiler includes a controller connected to the at least a sensor and to the at least a regulation valve. The controller regulates the SNCR reagent supply according to the measured information indicative of the NOx concentration.
US10760787B2 Grate block for a combustion grate
A grate block for a combustion grate, wherein consecutive grate blocks are arranged in a staircase and are designed to rearrange and convey the combustible material during combustion through pushing motions. The grate block includes a block body, an upper wall forming a supporting surface, and an extension parallel to a longitudinal axis L of the body. The supporting surface drops into a pushing surface formed by a front wall, which has at least one air supply opening for supplying air to the combustion grate, which extends at a right angle or slant to the pushing surface. In the lowest region of the front wall, formed as a foot, which lays on the supporting surface of a grate block, is adjacent in the pushing direction. The front resting edge of the pushing surface is arranged in a plane E extending at a right angle to the longitudinal axis L.
US10760786B2 Jet burner
A jet burner of the present disclosure basically includes a burner unit and an air blower disposed at a rear end of a burning chamber of the burner unit, wherein the burner unit is installed with a fuel bucket for storing fuel and the burning chamber having a tubular shape. Interior of the burning chamber is installed with a least one nozzle, at least one fuel pipe coupled to the fuel bucket is installed at each the nozzle, a front end of the burning chamber is installed with at least one jet pipe, and a pipe diameter of each the jet pipe is less than an inner diameter of the burning chamber. Under the reaction of the jet pipe, the burning stay time of the fuel in the interior of the burning chamber is increased, as to achieve the objective of increasing the fuel burning efficiency.
US10760785B2 Burner
A burner 100 comprising a burner body 110 having a burner chamber with a backing plate 122 and having a burner element received in the burner chamber, the burner element having a plurality of gas nozzles 117 for supplying gas into the burner, the gas nozzles 117 each ending in a tip through which the gas exits and gas nozzle 117, and each gas nozzle being rotatable such that the direction of gas exiting the gas nozzle can be adjusted. The burner has means for rotating the gas nozzles 117 provided on the backing plate and by releasable means for retaining each gas nozzle 117 in a plurality of rotational configurations provided outside the burner chamber. The gas nozzles 117 further comprise first and second parts which are detachable from each other, the first part comprising the tip and the second part being upstream of the first part with respect to the flow of gas into the gas nozzles in use. The burner allows for tuning of gas flow from outside the burner while it is in use.
US10760784B2 Burner including a perforated flame holder spaced away from a fuel nozzle
A perforated flame holder and burner including a perforated flame holder provides reduced oxides of nitrogen (NOx) during operation. The perforated flame holder includes a pattern of elongated apertures extending between a proximal and a distal surface of the flame holder relative to a fuel nozzle. The perforated flame holder can provide a significantly reduced flame height while maintaining heat output from the burner.
US10760780B2 Directional accent luminaire with junction box
A directional accent luminaire includes a housing having a front portion including a front compartment, a rear portion with a rear opening extending from the front portion, and a wall positioned between the front portion and the rear portion. A cover is removably connected over the rear portion to selectively enclose the rear opening. A light emitter is positioned in the front compartment for emitting light in a direction away from the rear portion. A control component is positioned in the front compartment for controlling the light emitter. An internal conductor is electrically connected to the control component and extends from the front portion into the rear portion. The rear portion includes a junction compartment for housing a connection between a power supply conductor and the internal conductor. The removal of the cover provides access to the junction compartment through the rear opening.
US10760778B2 Connection device and flexible lighting system with the same
A connection device according to an embodiment disclosed herein is a connection device connected to a flexible lighting device and includes a body part, a connection terminal protruding toward the flexible lighting device from the body part and electrically connected to the flexible lighting device, a lighting device guide part provided to protrude toward the flexible lighting device from the body part, configured to guide the flexible lighting device to be inserted into the connection device and having one or more side surfaces provided to be open, and a clip part coupled to an outer side of the lighting device guide part at one open side surface of the lighting device guide part and provided to be fixed to one side surface of the flexible lighting device, which is exposed to the outside due to the one open side surface.
US10760776B1 Baffle trim mask system
A baffle system for a lighting or ventilation apparatus, the system having a baffle with a wall extending from an upper end to a lower end, and a lip extending from the wall lower end to a lip outer edge and defining a lip face. A mask is configured to couple to the baffle and cover the lip face. The mask provides aesthetics different from the aesthetics of the lip face and facilitates simple and economical alteration of the baffle aesthetics.
US10760774B1 Compact safer tightly secured lighting system
A compact safer tightly secured lighting system comprises an illumination element module, a terminal box, an illumination element module driver, and a junction box, wherein the illumination element module is composed of a heat sink and a lamp housing. An outer wall of a lower end of the heat sink has a circular recess provided for embedding a temperature controller. The lamp housing is composed of an external case, a reflective cup, a protection mask and a plurality of circlips having elasticity. A spacing is between the outer wall of the protection mask and the internal wall of the external case. The circlip is disposed to an outer wall of the protection mask, where one end is joined to a top end of the protection mask while another end has a tooth buckle corresponding to the internal wall of the external case. The tooth buckle stretches into the spacing to allow the circlip to locate between the external case and the protection mask so as to closely combine the protection mask and the external case. The terminal box is locked and connected by a locking mechanism.
US10760772B2 Illumination device
The illumination device capable of illuminating plural regions via a light diffusion element includes a laser light source that emits a laser beam, an optical scan unit capable of changing an optical path of the laser beam from the laser light source, an optical path adjustment element and a light diffusion element. On the optical path adjustment element, the laser beam from the optical scan unit is incident, an incidence position of the laser beam varies depending on the optical path determined by the optical scan unit; and an emission angle of the laser beam varies depending on the incidence position. The light diffusion element diffuses the laser beam and emits diffused light. On the light diffusion element, the laser beam from the optical path adjustment element is incident and an emission angle of the diffused light varies depending on an incidence angle of the laser beam.
US10760771B2 Foil structure with generation of visible light by means of LED technology
A foil structure with generation of visible light using LED technology includes a carrier foil and an LED chip for generation of UV light. The LED chip is disposed on the carrier foil and is provided with a light output face for emission of the UV light. Furthermore, the foil structure includes a color reaction layer for conversion of the UV light into the visible light. The color reaction layer is disposed above the LED chip or in a manner laterally offset relative to the LED chip. The color reaction layer is provided with a structuring, so that the UV light emitted from the light output face of the LED chip is not emitted into the surroundings of the foil structure.
US10760769B2 Optical element and light assembly
An optical element includes a light entry surface configured to receive light, a light emission surface having a first light emission sub-surface and a second light emission sub-surface connected to each other, and a reflecting surface having a first reflecting sub-surface and a second reflecting sub-surface connected between the first reflecting sub-surface and the second light emission sub-surface. A first portion of the light is transmitted to the light entry surface and the first light emission sub-surface in sequence. A second portion of the light is transmitted to the light entry surface, the second reflecting sub-surface, and the second light exit sub-surface in sequence. A third portion of the light is transmitted to the light entry surface, the first reflecting sub-surface, the second reflecting sub-surface, and the second light emission sub-surface in sequence.
US10760768B2 Optical device and illumination device
An optical device comprises: at least one first reflecting surface disposed so as to reflect first light that has a light distribution having an optical axis parallel to a first axis, to an arc-shaped first region surrounding the first axis; and a second reflecting surface and a third reflecting surface that are disposed such that the second reflecting surface and the third reflecting surface meet each other on the first axis, and such that the first reflecting surface is disposed between the second reflecting surface and the third reflecting surface.
US10760767B2 Illuminating lens design method and illuminating lens
An illuminating lens design method and an illuminating lens. The projections of the highest points of an outer surface and an inner cavity surface of the illuminating lens on the horizontal plane are overlapped, and a horizontal profile curve of the outer surface and the inner cavity surface of the illuminating lens obtained from an arbitrary height satisfies: ( | x i | a i ) n i + ( | y i | b i ) n i = 1 where ai is the projection length of a portion of an xz section basic profile curve, which is intercepted by an xiyi plane, on the xiyi plane; bi is the projection length of a portion of a yz basic profile curve, which is intercepted by the xiyi plane, on the xiyi plane; xi, yi are coordinates of certain point on the outer horizontal profile curve and the inner horizontal profile curve; ni is a real number greater than 1.
US10760761B2 Vehicle lamp
A vehicle lamp includes a projection lens, and a light source disposed behind the projection lens. The vehicle lamp is configured to form a required light distribution pattern by irradiating light emitted from the light source forward through the projection lens. A movable lens configured to be movable in a required direction intersecting with an optical axis of the projection lens is disposed between the projection lens and the light source. A maximum luminous intensity position of the light distribution pattern is changed by moving the movable lens in the required direction.
US10760758B2 Headlamp, in particular a headlamp for a motor vehicle
A headlamp, and in particular a headlamp for a motor vehicle, comprising a digital micromirror device which reflects light hitting it so that it exits at least partially from the headlamp when the headlamp is operated. The headlamp also includes at least one first light source which emits light with a first luminance, and which hits the digital micromirror device at least partially when the headlamp is operated. The headlamp also includes at least one second light source emitting light when the headlamp is operated, and having a second luminance which is different from the first luminance. The light emitted from the at least one second light source hits, at least partially, the digital micromirror device. The areas of incidence of the light emitted by the light sources on the digital micromirror device overlap at least partially. On the digital micromirror device, the range of incidence of the light emitted by the at least one first light source differs from the range of incidence of the light emitted by the at least one second light source.
US10760757B2 Vehicle lamp
An Fr turn lamp that is a vehicle lamp includes a first light guide and a second light guide. The first light guide is disposed in front of a light source in the direction of an optical axis. The second light guide has a connection end connected to a vehicle width direction outer side surface of the first light guide and extends outward in the vehicle width direction from the connection end. The first light guide has a reflecting surface configured to reflect a part of incident light from the light source toward the connection end of the second light guide.
US10760756B2 Condenser for low-beam vehicle light module
A condenser for a low-beam vehicle light module comprises light condensing structures, a cut-off line forming structure, a 50L dark area forming structure, a zone III forming structure and an SEG10 luminance reducing structure. The zone III forming structure comprises a zone III breadth forming structure and an HV luminance reducing structure. The cut-off line forming structure is disposed at a front end of the condenser. The SEG10 luminance reducing structure is disposed at the bottom of the condenser. The zone III forming structure is disposed at the bottom of the condenser and is located at a front end of the SEG10 luminance reducing structure. The 50L dark area forming structure is disposed at the bottom of the condenser and is located between the zone III forming structure and the cut-off line forming structure.
US10760755B2 Lighting system with a laser light source for a motor vehicle
A lighting system for automobiles is proposed which includes a laser light source emitting a primary laser light bundle within a solid angle area around a beam direction, a photoluminescence element positioned within the emitted primary light beam, and a protective element that protects against stray laser rays. The photoluminescence element is configured to absorb the laser rays impinging on said element and by means of the photoluminescence to radiate secondary light rays. The lighting system includes a protection system with a protective element of an elongated shape having a first end and a second end, wherein the first end of the protective element is positioned within the beam direction of the primary light beam and downstream of the photoluminescence element.
US10760752B2 Illuminating device having a plurality of asymmetrical lenses mounted to a holder with corresponding asymmetrical openings
A light emitting device module including a substrate including a plurality of light emitting areas, light emitting devices disposed in each light emitting area and to emit light, windows disposed on the substrate, each of the windows covering one of the light emitting areas and having an asymmetrical shape with respect to one direction, and a holder for coupling the windows, the holder including a plurality of openings each having an asymmetrical shape, in which each of the windows is individually disposed in a corresponding one of the openings and is detachably coupled to the holder.
US10760751B1 Configurable mounting frame for direct mount luminaires
A configurable mounting frame includes a light fixture receiving opening having a first shape. The light fixture receiving opening is configured to receive a light fixture to mount the light fixture to a mounting surface. Further, the configurable mounting frame includes breakaway panels that are detachable to change the shape of the light fixture receiving opening from the first shape to a second shape that is different from the first shape. Furthermore, the configurable mounting frame includes locking features that are configured to toollessly and releasably lock an electrical or electronic component such as a junction box-driver assembly thereto.
US10760747B2 Lighting apparatus
The present invention provides a lighting apparatus which is easy in expandability of a plurality of lighting panels. The lighting apparatus according to the present invention may include: a plurality of lighting panels including an emission part having a light emitting device which emits light with a current flowing between a first electrode and a second electrode; and a panel connection means disposed between the plurality of lighting panels to electrically connect first and second electrodes between adjacent lighting panels. Each of the plurality of lighting panels may include first and second auxiliary wirings electrically connected between adjacent panel connection means.
US10760745B2 LED lighting unit
The invention describes an LED lighting unit comprising a container with a number of partially reflective side walls; a light exit opening defined by the side walls; and a number of light-emitting diodes arranged in the container to emit light of a first color through the light exit opening during an on-state of the lighting unit; characterized in that the material properties of the partially reflective container side walls are chosen to impart a second non-white color to the container side walls, and to absorb light in at least one specific region of the visible spectrum such that light of the non-white second color exits the lighting unit through the light exit opening during an off-state of the lighting unit. The invention further describes a method of manufacturing such an LED lighting unit.
US10760734B1 Container storage apparatus and system
An apparatus and system for removably storing an object in an area having one or more area supports so as to position the container below the area supports and above the floor of the area. The apparatus has a support rail that mounts to the area supports and a container engaging section that securely holds the object. The container engaging section has a static support assembly and a dynamic support assembly defining a space for the object. The static support assembly engages one side of the object. The dynamic support assembly has a dynamic support that connects to a moving mechanism so it will move along the support rail to engage an opposing side of the object. A biasing mechanism biases the dynamic support toward the static support assembly to secure the object therebetween. The support rail has a track and the moving mechanism moves along the track.
US10760733B2 Cast-in-place anchors
A cast-in-place anchor and method of securing it to a wooden form board. Such cast-in-place anchors include a body defining a cavity and having a base for positioning the body on a wooden form board. The body being securable to the wooden form board by at least one fixing member. An opening is disposed in the base in communication with the cavity and a plurality of additional openings are in the body in communication with the cavity. A threaded member is provided in the cavity. A support member is also provided in the cavity for supporting the threaded member and for restricting the ingress of wet concrete through the additional openings into contact with the threaded member in use. The anchor is configured such that after concrete pouring, concrete setting, and form board removal, a threaded rod can be inserted into the opening in the base of the body.
US10760730B2 Two-wheeled vehicle
A vehicle includes an electrical system which has at least one control unit and a first operator input device operably coupled to the at least one control unit. Additionally, the electrical system includes a second operator input device electrically coupled to the at least one control unit. The at least one control unit being operative to power on at least the engine. Also, the electrical system includes a security input device operably coupled to the at least one control unit. The at least one control unit is configured to transmit an actuation signal to the security input device in response to actuation of the first operator input device independent of actuation of the second operator input device and in response to actuation of the second operator input device independent of actuation of the first operator input device.
US10760728B1 Stand for a terminal system with adjustable screen orientation
A terminal system includes a portable computing device and a stand. The stand includes an arm, a coupler movably coupled to the arm and coupled to the portable computing device, and a base removably coupled to the arm. The coupler of the stand allows the portable computing device to move such that the body rotates about an axis perpendicular to the display screen while the arm is in a fixed position. When the arm of the stand is coupled to the base, the base is configurable to support the portable computing device at a desired angle with respect to the surface. The portable electronic device is configured to modify a display on the display screen of the portable computing device in response to the orientation of the portable electronic device.
US10760722B2 Fitting subassembly with retained ferrule
A fitting subassembly includes a threaded fitting nut, a ferrule, and a retaining member. The fitting nut includes a radial drive surface and an interior wall defining a socket, with the ferrule at least partially disposed in the socket. The retaining member is separate from and retained in a recess in the fitting nut. The retaining member retains the ferrule with the fitting nut when the retaining member is in a first position prior to the fitting nut being assembled with the fitting body. The retaining member is radially movable from the first position to a second position within the fitting nut to release the ferrule from the fitting nut.
US10760713B2 Flexible protector and method
A flexible protector including a protector housing, clearance space defined by the housing the clearance being dimensioned and positioned to preserve flexibility of the housing while isolating a placed device from bending therein upon flexing of the housing. Also disclosed is a resource recovery system including a spoolable conductor, a device disposed in line with the conductor, and a spoolable protector disposed about the device. A method for protecting a device inline in a spoolable conductor including contacting the device with a buttress of a first half protector, securing conductors in the half protector, and interconnecting a second half protector with the first half protector. A method for instrumenting a target environment.
US10760709B2 Handle for valve assembly
A handle assembly is provided for an outlet valve of a tank car wherein the outlet valve has a valve stem rotatable about an axis and is operative to open and close the outlet valve. The handle assembly includes a valve handle for manually opening the outlet valve, a rotatable shaft coupled to the handle, and a coupling coupled to the outlet valve and selectively coupleable to the shaft. A valve rotation control structure includes a first movement control component on one of the coupling and the shaft. The valve rotation control structure is configured to permit the coupling or shaft to move parallel to the axis of the valve stem between a first locked position and a second rotatable position and to rotate about the axis of the valve stem between a first valve closed position and a second valve open position at the second rotatable position.
US10760704B2 Servovalve assembly
A servovalve includes a fluid transfer valve assembly comprising a supply port and a control port; a moveable valve spool arranged to regulate flow of fluid from the supply port to the control port in response to a control signal; and a drive assembly configured to axially move the valve spool relative to the fluid transfer assembly in response to the control signal to regulate the fluid flow. The drive assembly comprises a steerable jet pipe moveable by an amount determined by the control signal to cause corresponding movement of the valve spool. The jet pipe terminates at one end in a nozzle and at the other end being in fluid flow engagement with and fixedly connected to a fluid supply torsion tube arranged to receive fluid from a fluid source. Movement of the valve spool is caused by fluid flowing from the nozzle to engage with the valve spool.
US10760703B2 Valve with a sliding mechanism
A valve with a sliding mechanism is described. In one embodiment, the valve has a housing and a valve housing, wherein the housing accommodates an electromagnet and the valve housing accommodates a valve part, and the housing, facing the valve housing, has a magnetic core and the magnetic core in the electromagnet forms an armature compartment base which delimits the armature compartment and against which the armature movably mounted in the armature compartment bears in a first position of the electromagnet, and the magnetic core has a penetrating opening in the region of the armature compartment to accommodate an armature bar operatively connected to the armature and the valve housing accommodates a sliding sleeve which extends along a longitudinal axis.
US10760698B2 Coupling seal having ramp surfaces
A seal for a coupling joining pipe elements has angularly oriented ramp surfaces on an outer surface. The ramp surfaces are arranged in diametrically opposite pairs which are positioned at the three o'clock and nine o'clock positions at the interface between segments forming the coupling. The ramps are expected to mitigate pinching of the seals between the segments as the segments are drawn together, compressing the seals to form a fluid tight pipe joint.
US10760697B2 Regulating valve for a gas cooking appliance and gas cooking appliance incorportating said regulating valve
Regulating valve for a gas cooking appliance according to one embodiment includes a valve body with an inlet conduit, at least one outlet conduit and an inner cavity in fluid communication with the inlet conduit. The regulating valve also includes a rotating disc in contact with a wall of the valve body that partially defines the inner cavity. The rotating disc includes at least one connecting opening for regulating the gas flow between the inner cavity and the outlet conduit by means of rotation. Operating means is connected to the rotating disc for rotating it. The regulating valve is adapted for supplying different types of combustible gas, the rotating disc being arranged in a different angular position, depending on the type of gas to be supplied, when the operating means is arranged in a reference position.
US10760692B2 Mixture preventing valve
Mixture preventing valve includes first flow passage allowing a first fluid to flow; second flow passage allowing a second fluid to flow; communication passage allowing first flow passage and second flow passage to communicate with each other; valve body that opens/closes communication passage; and valve seat provided on an inner wall surface of the communication passage that contacts valve body. Valve body includes first valve body piece and second valve body piece arranged side by side in a state of being separated from each other in a movement direction of valve body. Valve seat contacts respective outer peripheral surfaces of first valve body piece and second valve body piece. In the inner wall surface, a portion where valve seat contacts outer peripheral surface of first valve body piece, and a portion where valve seat contacts outer peripheral surface of the second valve body piece exist on a same plane.
US10760689B2 Multipurpose flow control arrangement
A device for controlling flow of a flow agent in a pipe system, the device comprising: a pipe housing (1) comprising a pipe cavity (2) with one or multiple openings in a pipe cavity wall of the pipe cavity, the one or multiple openings defining an outlet port (3) of the device, and the pipe cavity having an open end defining an inlet port (6) of the device, and a closed end (7), wherein the closed end is closed by a dismountable end body (15); the pipe cavity comprising a first portion having a first cross sectional area and a second portion having a reduced cross sectional area (4), smaller than the first cross-sectional area, the second portion being located between the open end and the one or multiple openings in the pipe cavity wall.
US10760688B2 Rotary leadthrough for a vehicle
Rotary joints are disclosed, such as for supplying fluid to a pressure chamber that is disposed between a rotatable component and a stationary component. The rotary joint may include a seal carrier having at least one channel for a fluid connection to the pressure chamber. At least two axially spaced apart sealing rings may be disposed on the seal carrier for a static sealing of the at least one channel. At least one sealing element may be non-rotatably disposed on the seal carrier and configured to form an axial and a radial seal of the pressure chamber. The at least one sealing element may be configured to bear on a ring element that is non-rotatably connected to the rotatable component when pressure is built up in the pressure chamber and the at least one sealing element may have means for reducing the axial pressure exerted on the ring element.
US10760686B2 Wear resistant piston seal
Aspects are directed to a tribological and creep resistant system configured to operate at temperature in excess of 750° C., comprising: a piston seal that includes a nickel base alloy, where the nickel base alloy includes a Ni3(Al,X) type precipitated phase in an amount greater than 40% by volume. Aspects are directed to a system comprising: a piston seal that includes a cobalt-based alloy. Aspects are directed to a method comprising: heat treating an ingot of a nickel base alloy that includes coarsening a precipitated phase to facilitate forging or wrought forming the ingot, machining the ingot to include a substantially flat surface, and processing the ingot to generate a piston seal.
US10760685B2 Pump shaft packing gland and bushing
One or more techniques and/or systems are disclosed for mitigating fluid loss or leakage from a fluid pump with a rotating shaft driving a pumping mechanism. A one-piece, combined packing gland-bushing component can have an internal seal that allows for use of lubricants at higher pressures. Further, the combined packing gland-bushing component can be configured with a removal component that allows for easier removal of the packing gland-bushing component from a pump shaft, and shaft packing box.
US10760683B2 Cradle-mounted swash with trunnion-mounted positioning arms
An example pump includes: (i) a swash block having (a) a first trunnion arm, (b) a second trunnion arm, and (c) a first curved support surface and a second curved support surface disposed on an exterior surface of the swash block; and (ii) a housing comprising (a) a first bore, (b) a second bore, and (c) an internal chamber having a first curved bushing and a second curved bushing, where the swash block is supported within the internal chamber of the housing by the first trunnion arm being positioned in the first bore of the housing, the second trunnion arm being positioned in the second bore of the housing, the first curved support surface being positioned against the first curved bushing of the housing, and the second curved support surface being positioned against the second curved bushing of the housing.
US10760677B2 Epicyclic gear train with balanced carrier stiffness
An epicyclic gear train including a central sun gear, an outer ring gear, and a number of planet gears which are mounted to a planet carrier. The planet carrier includes a centrally disposed torque transfer coupling with a torque transmission point at an axial end thereof. First and second carrier plates extend radially from the torque transfer coupling and are axially spaced apart to support the planet gears therebetween at aligned gear mounting points. The first carrier plate is closer to the torque transfer point than the second carrier plate. The second carrier plate has a stiffness that is greater than that of the first carrier plate.
US10760672B2 Coolant system pressure drop reduction
A vehicle system is disclosed. The vehicle system includes an automatic transmission fluid cooling conduit. The automatic transmission fluid cooling conduit includes an inlet portion, an outlet portion, and an elbow portion connecting the inlet and outlet portions and having an inner surface defining a cavity in fluid communication with the inlet and outlet portions. The automatic transmission fluid cooling conduit also includes an oleophobic or hydrophobic coating on the inner surface. The oleophobic or hydrophobic coating is configured to reduce eddy currents in the cavity.
US10760669B2 Machine or vehicle component
In a machine or vehicle component comprising a first housing part, a second housing part covering the first housing part, an opening which is provided in the second housing part, a functional attachment unit incorporating a mounting element consisting of a structurally rigid material which extends through the opening, it is proposed that the problem that the functional attachment unit can only be mounted on the second housing part if the structural rigidity thereof is sufficient to hold the functional attachment unit permanently in a stable position be solved in that the second housing part is formed from a thermoplastic material of low structural rigidity and in that there is provided a carrier which incorporates a carrying element consisting of a structurally rigid material and is fixed relative to the first housing part and upon which the attachment unit is held by means of the mounting element.
US10760664B2 Method of producing wave gear device and wave gear device
A circular spline is secured to a housing. An output member is positioned relative to the circular spline, an outer race of a bearing is secured to the housing, and an inner race of the bearing is secured to the output member. A flex spline is positioned relative to the circular spline and secured to the output member. A wave generator is positioned relative to the circular spline, and a support member, by which the wave generator is rotatably supported, is secured to the housing.
US10760663B2 Method of making strain wave gearing
A method of making a strain wave includes the steps of a) providing a circular spline, a flexspline meshed with the circular spline, and an initial wave generator having an initial outer profile of a standard ellipse with a perimeter S0, and b) producing a modified wave generator rotatably fitted within the flexspline and having a modified outer profile with a perimeter S. A difference ES between the perimeter S of the modified outer profile and the perimeter S0 of the initial outer profile satisfies the equation ES=S−S0=0.1 m to 0.8 m, wherein m is the modulus of the flexspline. Through a special parameter design of the modified wave generator, the meshing ratio between the circular spline and the flexspline is increased, thereby improving the transmission accuracy and reducing the average load.
US10760662B2 Power-driven system and vehicle having the same
A power-driven system includes: a differential; a power output shaft configured to link to a power input end of the differential; multiple input shafts; and a first motor generator. The differential includes a first planet carrier, a second planet carrier, a first planet gear, a second planet gear, a first ring gear, and a second ring gear. The first planet gear and the second planet gear are respectively disposed on the first planet carrier and the second planet carrier and respectively meshed with the first ring gear and the second ring gear. One input shaft of the multiple input shafts is configured to selectively link to the power output shaft, and another input shaft of the multiple input shafts is configured to link to the power output shaft. The first motor generator is configured to link to the one input shaft of the multiple input shafts.
US10760661B2 Hydromechanical automatic gearbox and the vehicle using the same
A vehicle comprises a hydromechanical automatic gearbox, an automatic gear shift unit (12) connected to a pressure fluid feeding pump (15). The gearbox comprises an input shaft (4) extending from an engine, gearing (23) extending to each gear step, wherein the gearing (23) is mounted on the input shaft (4) and is as a central gear (2), located on the input shaft (4), meshing with gear wheels (3) of different gear steps having different diameters mounted on the input shaft (4) of a single hydraulic torque converter (5) comprising a pump (6) and a turbine (8) located accordingly on the input (4) and output (7) shafts thereof forming a flow path of pressure fluid, each of the hydraulic torque converter (5) is electronically and hydraulically linked to the gear shift unit (12) of the vehicle.
US10760660B2 Hydraulic unit
The present invention relates to a hydraulic unit with a housing in which a hydraulic converter is accommodated, which is coupled with a drive shaft that includes a connecting shaft piece located outside the housing for connection to a mechanical drive element The invention furthermore relates to a hydraulic driving device with such hydraulic unit and to a drive train connecting piece to which the hydraulic unit is connected.It is proposed to integrate a clutch for connecting and disconnecting the hydraulic unit into the hydraulic unit itself, so that a mechanical drive train, to which the hydraulic unit is connected, can remain unchanged or need not especially be adapted to the clutch. In accordance with the invention, a clutch for coupling and uncoupling the connecting shaft piece of the hydraulic unit to and from the hydraulic converter of the hydraulic unit is accommodated in the housing of the hydraulic unit.
US10760649B2 Speed reducer
A speed reducer includes an input shaft, an output shaft, and a gear assembly coupled to the input shaft. The gear assembly includes a housing, an external gear, and at least two internal gears. The external gear is located within the housing and inscribes the at least two internal gears. One side of the at least two internal gears is rotatably coupled to the input shaft, and another side of the at least two internal gears is coupled to a connecting column of the output shaft. The at least two internal gears are offset on the input shaft, and the input shaft drives the at least two internal gears to maintain engagement with the external gear. The connecting column maintains transmission of the output shaft and the at least two internal gears.
US10760648B2 Planetary gear device series
In a planetary gear device series composed of eight kinds of planetary gear devices with gear reduction ratios of 3 to 10, the planetary gear device of each gear reduction ratio uses an internal gear with 108 teeth or a slightly different number of teeth, and the module is common among the planetary gear devices of all gear reduction ratios. The combinations of the sun gear teeth number Za and the internal gear teeth number Zc in the planetary gear device of each reduction ratio are given in Table 1 of this application.
US10760645B2 Rotary viscous vibration damper or rotary viscous vibration absorber
A rotary viscous vibration damper or absorber has a hub part which can be fastened to a crankshaft of an engine, in particular of an internal combustion engine, and a vibration damper ring which is mounted such that it can be rotated relative to the hub part. A shear gap which is filled with a silicone oil is formed between the hub part and the vibration damper ring, in which shear gap flange bushings for guiding the vibration damper ring are mounted. The flange bushings are composed of a liquid crystal polymer.
US10760642B2 Liquid-filled vibration isolator
The present invention provides a liquid-filled vibration isolator with improved durability. The liquid-filled vibration isolator includes a shaft unit, a first unit, an elastic body coupling the first unit and shaft unit, and a second unit mounted radially outside the first unit. The first unit includes a pair of annular elements, a pair of coupling elements coupling the annular elements, while the elastic body includes outer face portions bonded to outer surfaces of the coupling elements. The outer face portions include lips making contact with the second unit, and first segments making contact with the second unit on areas larger than the lips. The second unit restrains the annular elements along the entire circumferences, and compresses the lips and first segments in the radial direction.
US10760640B2 High-voltage connection device for an electrorheological device
A high-voltage connection device for use with an electrorheological device having a high-voltage connector with an insulating upper part, an insulating lower part, a connector socket, and a central metallic contact pin, wherein the connector socket is fixed to a grounded portion of the electrorheological device and the upper part contains ground terminal elements and is axially connected to the lower part. Additionally, the upper part has a pot-like design and coaxially surrounds both the lower part and the connector socket in the connected state.
US10760635B2 Torsion spring assembly, camshaft phaser and belt or chain tightener therewith
A torsion spring assembly according to the invention includes a torsion spring having a cylindrical spring body of wound spring wire and with a plurality of torsion spring windings, and having first and second torsion spring ends for taking up forces in a direction of rotation, and a damping spring abutting the torsion spring on the inner side and having a cylindrical spring body of wound spring wire and with a plurality of damping spring windings, and having first and second damping spring wire ends, wherein the damping spring windings have their outer sides extending partially into the space formed between two respectively adjacent torsion spring windings and abutting in particular rounded, round or beveled inner abutment areas of respectively adjacent torsion spring windings with substantially radially outwardly directed bias.
US10760631B1 Hydraulic caliper brake assembly for multiple rotor thicknesses, diameters, and axial offsets
A caliper brake (10) includes a housing (12) formed of a first housing portion (16) and a second housing portion (18). Each of the first housing portion and second housing portion include a channel (104) extending therethrough. The channels (104) include pins (102) for receiving one or more shims (94) thereon. Brake (10) includes a first stator assembly (60) and a second stator assembly (64) that are separated by a first distance when no shims (94) are on the pins (102). The first stator assembly (60) and the second stator assembly (64) are separated by a second distance less than the first distance when one or more shims (94) are on the pins (102).
US10760629B2 Clutch control apparatus
A clutch control device includes an engine, a gearbox, a clutch device configured to disconnect and connect power transmission between the engine and the gearbox, a clutch actuator configured to drive the clutch device and vary a clutch capacity, and an ECU configured to calculate a control target value of the clutch capacity, and the ECU determines whether an engine rotational number after downshifting by the gearbox enters a high rotation region and decreases the clutch capacity after downshifting when it is determined that the engine rotational number after downshifting enters the high rotation region.
US10760627B2 Clutch control device
This clutch control device includes a clutch device, a clutch actuator, a hydraulic pressure circuit device, hydraulic pressure sensors, a control device, and a control valve for controlling a flow of a working fluid between the clutch device and the clutch actuator. The hydraulic pressure sensors include an upstream side hydraulic pressure sensor and a downstream side hydraulic pressure sensor. The control device is configured to perform feedback control of the clutch actuator using hydraulic pressure detection information of a side on which hydraulic pressure fluctuation is small, among the hydraulic pressure detection information of each of the upstream side hydraulic pressure sensor and the downstream side hydraulic pressure sensor, in the case of driving the clutch actuator toward a pressurization side and in the case of driving the clutch actuator to a decompression side.
US10760624B1 Wedge-type selectable one-way clutches for engine disconnect devices of motor vehicle powertrains
Presented are wedge-type engine disconnect devices, methods for making/using such disconnect devices, and motor vehicles equipped with such disconnect devices. An engine disconnect device includes an outer race that attaches to a torque converter's pump cover. The outer race's inner diameter (ID) surface has circumferentially spaced grooves. An inner race is concentrically aligned within the outer race and attaches to an engine's output shaft. The inner race's outer diameter (OD) surface has circumferentially spaced pockets. A wedge plate interposed between the inner and outer races has multiple circumferentially spaced ramps. Each ramp slidably mounts within one groove and one pocket. The wedge plate moves between an engaged position, whereat the ramps wedge between the ID and OD surfaces to thereby transfer torque between the inner and outer races, and a disengaged position, whereat the ramps unwedge to thereby free the inner race to rotate with respect to the outer race.
US10760611B2 Rotatable connection having rotational angle limitation
A rotatable connection for a mounting device for arrangement in an operating room, the rotatable connection includes an adjustable stop mechanism, which can be disposed between a first connection component and a second connection component, and is configured to define at least two different relative rotational angles of the connection components relative to each other or at least two different ranges or rotation. The adjustable stop mechanism includes at least one stop device having a respective counterstop, which is axially disposed between a first part and a second part that are each mounted in a torsion-proof manner. The at least one stop device is configured to define the different relative rotational angles or ranges of rotation by way of the respective counterstop. The invention further relates a support system or a mounting device comprising such a rotatable connection, and to a method for setting the adjustable stop mechanism.
US10760609B2 Sealant articles and method of applying sealant
A method of making an assembly is disclosed. According to the method, a curable sealant is applied to a metal surface of a first article, and the curable sealant and first article are stored under conditions to maintain the curable sealant in an at least partially uncured state. The method further includes contacting the curable sealant on the first article metal surface with an electrically conductive surface of a second article, and curing the curable sealant.
US10760608B2 Electrical connector with shearable fastener
A fastener (20) includes a head (22), a base (26), a shearable section (24), and a removable blocking insert (50). The head (22) has an inner surface (30) that includes a first socket (36) for receiving a drive tool (T). The base (26) includes an outer surface (38) having a base thread (44). The shearable section (24) is positioned between the head (22) and the base (26) and has a predetermined torque limit. The removable blocking insert (50) is positioned to hinder access of a drive tool (T) to the base (26).
US10760600B2 Method of applying riblets to an aerodynamic surface
This disclosure relates to a method and resulting apparatus of applying a riblet sheet comprising a riblet film layer and a riblet liner layer on an airfoil surface. The method comprises applying the riblet film layer of the riblet sheet over the airfoil surface, peeling back at least a portion of the riblet liner layer from the riblet film layer to expose a portion of the riblet film layer, applying a attaching hardware or a non-textured surface film over at least a portion the riblet film layer portion; and applying the peeled back portion of the riblet liner layer over a portion of the attaching hardware.
US10760597B2 Soft robots, soft actuators, and methods for making the same
A material-mapped actuator useful as, or as part of, a soft robot along with automated methods of design and manufacture. The actuator exhibits mechanical properties that spatially vary along a coordinate system of the actuator. The actuator body has an initial shape with a corresponding initial map of mechanical attributes consisting of locally-varying stiffness at each point in a volume of the actuator body. The actuator is configured to change to a different shape or distribution of mechanical properties upon being activated by an actuation medium. The map of mechanical attributes influences and determines the new shape or distribution. The material-mapped actuator can incorporate a spatially-varying distribution of mechanical properties that dictates multiple desired shapes as the actuation medium is applied, including an actuation sequence in which the actuator transitions from a first shape to a desired intermediate shape(s), and from the intermediate shape to a desired final shape.
US10760596B2 Proportional sequence valve with pressure amplification device
A valve member having a supply pressure and a method of controlling the supply pressure in the valve member includes a valve body having a fluid inlet, a fluid outlet, and a controlled port. The valve member includes a spool moveable within the valve body to fluidly connect at least one of the fluid inlet and the fluid outlet with the controlled port. The spool includes an end in fluid communication with a control pressure port and a pin received within the end of the spool that is moveable relative to the spool. Fluid flow through the control pressure port acts against a cross-sectional area of the pin and an annular area of the spool to modulate the supply pressure through the valve member.
US10760589B2 Turbofan engine assembly and methods of assembling the same
A turbofan engine assembly includes a core gas turbine engine with a booster compressor having a radially outer diameter, a fan case assembly, and an outlet guide vane assembly. The outlet guide vane assembly includes a plurality of outlet guide vane segments spaced circumferentially about the core gas turbine engine. Each outlet guide vane segment of the plurality of outlet guide vane segments includes a radially inner fan hub frame flange configured to couple to the core gas turbine engine, a radially outer fan case flange configured to couple to the fan case assembly, and a plurality of outlet guide vanes extending therebetween. The radially inner diameter of the outlet guide vane assembly is smaller than the radially outer diameter of the booster compressor.
US10760583B2 Axial bearing arrangement for a drive shaft of a centrifugal compressor
The axial bearing arrangement comprises a first axial bearing plate (12) and a second axial bearing plate (13) each having an annular ring shape, the first axial bearing plate (12) having a first surface (12.1) axially facing the second axial bearing plate (13) and a second surface (12.2) opposite to the respective first surface (12.1), the second axial bearing plate (13) having a first surface (13.1) axially facing the first axial bearing plate (12) and a second surface (13.2) opposite to the respective first surface (13.1); a spacer ring (14) clamped between the first surfaces (12.1, 13.1) of the first and second axial bearing plates (12, 13), the spacer ring (14) defining an axial distance between the first and second axial bearing plates (12, 13); and a bearing sleeve (15) abutting the second surface (13.2) of the second axial bearing plate (13) and being secured to a compressor block (16). The axial bearing arrangement includes an elastic element (22) axially biasing the first and second axial bearing plates (12, 13) and the spacer ring (14) with a predetermined force against an abutment surface (17) of the bearing sleeve (15).
US10760580B2 Gas turbine engine compressors having optimized stall enhancement feature configurations and methods for the production thereof
Multistage gas turbine engine (GTE) compressors having optimized stall enhancement feature (SEF) configurations are provided, as are methods for the production thereof. The multistage GTE compressor includes a series of axial compressor stages each containing a rotor mounted to a shaft of a gas turbine engine. In one embodiment, the method includes the steps or processes of selecting a plurality of engine speeds distributed across an operational speed range of the gas turbine engine, identifying one or more stall limiting rotors at each of the selected engine speeds, establishing an SEF configuration in which SEFs are integrated into the multistage GTE compressor at selected locations corresponding to the stall limiting rotors, and producing the multistage GTE compressor in accordance with the optimized SEF configuration.
US10760579B2 Speaker fan system and method
A ventilation assembly includes a main housing comprising a first housing wall and a second housing wall, a fan assembly disposed within the main housing, the fan assembly including a fan, and an acoustic device disposed between said first and second housing walls, the acoustic device having a first distal portion, a second distal portion and an intermediate portion extending between the first distal portion and the second distal portion, the first distal portion being relatively wider than the intermediate portion.
US10760576B2 Vertical pump having motor support with truss elements
A vertical pump has a motor support for arranging between a lower pump assembly and an upper motor assembly in relation to a vertical pump axis. The motor support features a base plate for coupling to the lower pump assembly; a mounting plate for coupling to the upper motor assembly; and at least three pairs of truss elements connected between the base plate and the mounting plate and oriented obliquely in relation to the vertical pump axis, each pair having respective truss elements with converging ends coupled to one of the base plate or mounting plate at a substantially common point and with diverging ends coupled to the other of the base plate or mounting plate at different points.
US10760574B2 Compressor element for a screw compressor and screw compressor in which such a compressor element is applied
A compressor element of a screw compressor inlet side and an outlet side and two helical rotors, respectively a male rotor with a drive for the male rotor and a female rotor that is driven by the male rotor by means of synchronisation gearwheels with at least one synchronisation gearwheel on the male rotor, wherein the drive and synchronisation gearwheels of the male rotor are chosen such that, upon being driven with acceleration of the rotors without gas forces, the resulting mechanical drive force that is exerted by this drive and by this synchronisation gearwheel on the male rotor has an axial component that is directed from the outlet side to the inlet side and that the movement of the male rotor in the axial direction from the outlet side to the inlet side is fixed by means of a single axial single-acting or double-acting bearing.
US10760569B2 Reciprocating pumps and closures therefore
A closure for the fluid end of a reciprocating pump which uses a closure plate or assembly that is secured in a slot formed in the fluid end body so that no retaining threads must be formed in the body.
US10760566B2 Magnetically driven pressure generator
A magnetically driven pressure generator including a housing, flexible member, first magnetic force generator, and second magnetic force generator. The magnetically driven pressure generator oscillates the flexible member to increase or decrease the volume of a chamber, inversely increasing or decreasing the pressure of the chamber.
US10760565B2 Airflow generator
An airflow generator (10) having a first plate (12), a second plate (14) where the second plate (14) is spaced from the first plate (12) to define a cavity (28) there between, a joint (30) operably coupled to the first plate (12) and the second plate (14) and joining them together, piezoelectrics (34) located on each of the first plate (12) and the second plate (14) wherein actuation of the piezoelectrics (34) results in movement of the first plate (12) and the second plate (14) to increase the volume of the cavity (28) to draw air in (200) and then decrease the volume of the cavity (28) to push out the drawn in air (202).
US10760564B2 Reciprocating compressor having a connector
A reciprocating compressor is provided. The reciprocating compressor may include a connector coupled to a discharge hose and a discharge pipe, a cutout formed in the connector or the discharge pipe, and a clamp inserted into the cutout. The connector and the discharge pipe may be supported by the clamp.
US10760562B2 Pressure burst free high capacity cryopump
A cryopump includes a refrigerator with at least first and second stages. A radiation shield surrounds the second stage and is in thermal contact with the first stage. The radiation shield includes a drain hole to permit cryogenic fluid to traverse through the drain hole during regeneration. The cryopump also includes a primary pumping surface supporting adsorbent in thermal contact with the second stage. The second stage array assembly includes a primary condensing surface, protected surfaces having adsorbent, and non-primary condensing surfaces. A baffle is disposed over the drain hole. The baffle redirects gas from an annular space disposed between the radiation shield and the vacuum vessel that attempts to traverse through the drain hole to prevent the gas from condensing on a non-primary condensing surface. The baffle directs gas to condense on the primary condensing surface.
US10760561B2 Solenoid valve having ventilation structure
The present disclosure relates to a solenoid valve having a ventilation structure, in which a connection passage for connecting a first space that is an operating space of an armature and a second space that is a lower space of a bobbin is formed on a bottom surface of a housing. The second space of the bobbin is connected with an outer space of the housing by a communication path. Accordingly, by connecting the first space that is the operating space of the armature with an outer space of the solenoid valve, a negative pressure can be avoided in the operating space of the armature, thus preventing the performance of the armature from being deteriorated.
US10760560B2 Gas displacement pump assembly
A gas displacement assembly includes a storage container, a pump that pumps a pressurized gas material into the storage container, a cooling chamber that houses a coolant and cools the gas material to a cryogenic temperature, and a coolant line that transports coolant through the cooling chamber to cool the gas material.
US10760559B2 Control valve for variable displacement compressor
A control valve includes: a first valve to control a flow rate of refrigerant flowing from a discharge chamber to a control chamber of a compressor; a second valve to control a flow rate of the refrigerant flowing from the control chamber to a suction chamber; a solenoid to generate a drive force in a first valve closing direction and a second valve opening direction; a biasing member to generate a biasing force in an first valve opening direction and a second valve closing direction; and a pressure sensing part to sense a pressure in the suction chamber or the control chamber, and generate a counterforce against the drive force. A state in which both of the first and second valves are open is present during an increase in the current supplied to the solenoid from zero to an upper limit current value, and an increase rate of an opening degree of the first valve is increased during a decrease in the current supplied to the solenoid, a predetermined lower limit current value being an inflection point of the increase.
US10760557B1 High efficiency, high pressure pump suitable for remote installations and solar power sources
A pump head has a motor coupler; a motor mount; at least one piston housing; a fluid input; a fluid output; and a reciprocating piston to pump a fluid from fluid input to fluid output. The manifold has fluid input and output bores extending parallel with the reciprocating piston, and from end to end thereof. The motor mount has a mounting flange configured to couple to a motor, and a torsion sleeve extending from the flange. A torsion bolt is coupled with the piston housing. An elastomeric sleeve isolates the torsion bolt from torsion sleeve. The torsion bolt longitudinally compresses and radially expands the elastomeric sleeve toward and against the torsion sleeve. The reciprocating piston, piston housing, a first seal, and a second seal in combination define a fluid collection chamber for fluid that leaks past the first seal. A fluid conduit connects the fluid collection chamber to the fluid input. An over-pressure release valve assembly is coupled on an input with the fluid output from the pump head, and is configured to stay closed until a predetermined maximum pressure is exceeded, and when opened will spill fluid back to at least one of the fluid inlet or a fluid reservoir.
US10760556B1 Pump-engine controller
A system controller manages a gas turbine engine driving a pump directly or indirectly coupled to the engine. The controller is programmed to automatically determine and adjust inputs to the gas turbine engine in order to cause the pump to produce a user-specified hydraulic output.
US10760553B2 Electromagnetic energy beam angular momentum engine: self-propulsion of energy beam source via application of conservation of angular momentum
The present application relates to optical-mechanical systems and methods for moving a solid object by applying conservation of angular momentum to a configuration of a laser light beam that emanates from the solid object. The system includes a rotatable housing and an axially movable laser light source coupled to the housing and configured to emit a first light beam along a first path. The system can include a first beam splitter disposed along the first path for splitting the first light beam into a second light beam and a third light beam. The system can cause the third light beam to travel in a closed path, as an approximation of a circular path of initial radius, and of decreasing radius. The system can further include a second beam splitter, axially movable first, second and third mirrors, and a third beam splitter disposed at one end of the housing.
US10760549B2 Method and system for configuring wind turbines
A method and system of configuring wind turbines is provided. The method and system includes generation of a plurality of configuration profiles. Thereafter, one of the configuration profiles is set as the active configuration profile and the rest of them are stored as shadow configuration profiles. Further, the performance of the active configuration profile and the shadow configuration profiles are monitored. Based on the performance of the configuration profiles, a candidate configuration profile is chosen. Further, a delta configuration profile is generated by eliminating the duplicate parameters from the candidate configuration profile and the active configuration profile. Further, the active configuration profile is updated with the delta configuration profile.
US10760543B2 System and method for valve event detection and control
In one embodiment, a system includes an engine control system configured to control an engine. The engine control system comprises a processor configured to receive a vibration signal sensed by a knock sensor disposed in an engine. The processor is further configured to correlate the vibration signal with a fingerprint having at least an ADSR envelope indicative of the operating event of a valve train of the combustion engine, analyze the vibration signal with a statistical valve train model, or a combination thereof. The processor is also configured to detect if the operating event has occurred based on correlating of the noise signal with the fingerprint, based on analyzing the vibration signal with a statistical valve train model, or a combination thereof, and to control the valve train based on the operating event.
US10760538B2 Customizable engine air intake/exhaust systems
A multi-stage reconfigurable air intake and exhaust system for a piston engine having first and second rows of cylinders forming a V configuration. The system includes plural stage packages having inter-related components that can be connected and changed to form different air intake and exhaust gas configurations. There is particularly provided a Stage 1 package with first and second exhaust manifolds adapted to be respectively secured to the first and second rows of cylinders, and a Stage 2 package with a turbo exhaust manifold adapted for mounting a turbocharger, and also adapted to be secured to the first row of cylinders in lieu of the first exhaust manifold, and a crossover pipe assembly adapted for coupling the turbo exhaust manifold to the second exhaust manifold.
US10760533B2 Evaporated fuel processing device
A detecting unit that detects a specific pressure difference between a pressure of gas that has passed throuch a canister and a pump and a pressure of the gas before passing through the canister and the pump. A gas flow rate from the pump may be higher with a smaller pressure difference between upstream and downstream sides relative to the pump, and higher with a higher purge gas density. A gas flow rate from the canister may be lower with a smaller pressure difference between upstream and downstream sides relative to the canister, and lower with a higher purge gas density. An estimating unit may estimate a flow rate of the purge gas while the specific pressure difference is an unchanged pressure difference being a pressure at which the flow rate of the gas is not chanced by the density of the purge gas.
US10760529B2 Composite wear pad for exhaust nozzle
A composite wear pad for being coupled to a slider block of a convergent nozzle of a gas turbine engine includes a high heat capacity composite having a resin and a plurality of carbon fibers bonded together by the resin. The composite wear pad also includes a first rod coupled to the high heat capacity composite at a first axial end of the composite wear pad such that a first end thickness. The composite wear pad also includes a second rod coupled to the high heat capacity composite at a second axial end of the composite wear pad such that the first axial end and the second axial end of the composite wear pad each have an end thickness that is greater than a middle thickness of the composite wear pad.
US10760522B2 Control apparatus for an internal combustion engine
The deterioration of combustion due to condensed water flowing into a cylinder is suppressed as much as possible. A control apparatus for an internal combustion engine is applied to an internal combustion engine which includes a fuel injection valve that directly injects fuel into a cylinder and a spark plug. The internal combustion engine is constructed so that the fuel goes to the spark plug. The control apparatus comprising a controller configured to: predict whether condensed water flows into the cylinder during an intake stroke; and carry out first injection control to perform fuel injection in a predetermined period of time within a period of time which is after closure of an exhaust valve and before the condensed water flows into the cylinder, and second injection control to perform fuel injection in a compression stroke before ignition, if an inflow of the condensed water into the cylinder is predicted.
US10760517B2 Systems and methods for cylinder exhaust valve diagnostics
Methods and systems are provided for diagnosing degradation of an exhaust valve coupled to an engine cylinder. In one example, a method may include, routing compressed air from an electric booster into a cylinder with the intake valve of the cylinder open and the exhaust valve closed, and indicating degradation of the exhaust valve based on an exhaust airflow relative to a baseline airflow.
US10760515B2 Controller for internal combustion engine and method for controlling internal combustion engine
A controller of an internal combustion engine includes processing circuitry configured to execute a peak current command value calculating process of calculating a peak current command value, which is a command value of a peak current flowing through a coil, based on a detection value of a pressure in a delivery pipe, and a peak control process of controlling a value of the peak current at the peak current command value. The in-cylinder injection valve is configured to execute multi-stage injection including a first injection and a second injection carried out at a timing toward a retarding side from the first injection. A peak current command value for the second injection is larger than the peak current command value for the first injection.
US10760512B2 Methods and systems for an aftertreatment system
Methods and systems are provided for adjusting engine operating parameters in response to an emission output from vehicles within a region. In one example, a method comprises adjusting engine operating parameters in a portion of the vehicles to decrease an emission output therefrom.
US10760509B2 Engine system
A system includes a fuel tank, an internal combustion engine, a generator, a recoil starter, a control unit, an injector, a fuel pump, an igniter, and a detection unit that detects the crank angle of the internal combustion engine. The control unit, in a starting period of the internal combustion engine, which is started using the recoil starter, supplies electric power to the igniter, the injector, and the fuel pump such that a power supply period of the igniter will not overlap a power supply period of the injector and the fuel pump, using the crank angle as a reference.
US10760506B2 Liquified gaseous fuel storage tank level calibration control system
A gaseous fuel supply system for an internal combustion engine may include a storage tank for storing liquefied gaseous fuel and supplying the fuel to the engine. The system may also include a liquid level sensor for measuring a level value of the liquefied gaseous fuel in the storage tank and a pressure sensor for measuring a pressure value of gaseous fuel in the fuel supply system. The system may further include a controller. The controller may be configured to: monitor a pressure signal of the pressure sensor indicating the pressure value and a tank level signal of the liquid level sensor indicating the level value; store the level value when the pressure value indicates the storage tank is empty; store the level value when the pressure value or the level value indicates the storage tank is full; and determine a calibrated level range based on the stored level values.
US10760501B2 Arm for turbine-engine casing comprising a removable additional piece
To facilitate the removal of a bearing housed in an arm of a turbomachine casing, which bearing guides a transmission shaft of the turbomachine, a casing arm includes a body with a vertical portion and a base defining a portion of a shaft housing; an additional part removably attached to the body and defining a bearing housing opening in the shaft housing; and a removable shim inserted between the base and the additional part. A turbomachine including such a casing arm is also described, as well as a method for removing the bearing from such a turbomachine, including removing the shim and moving the additional part towards the base, thereby allowing access to the bearing.
US10760500B2 Composite piston ring seal for axially and circumferentially translating ducts
A seal system is provided. The seal system may comprise a first duct having an annular geometry, a second duct overlapping the first duct in a radial direction, and a seal disposed between the first duct and the second duct. The seal may comprise a groove defined by the first duct and a piston configured to slideably engage the groove.
US10760498B2 System and method for removing rotor bow in a gas turbine engine using mechanical energy storage device
The present disclosure is directed to a gas turbine engine structure and method for reducing or mitigating bowed rotor. The method includes coupling a rotor assembly to a mechanical energy storage device via a clutch mechanism when the rotor assembly is at or below a speed limit below an idle speed condition; storing mechanical energy at the mechanical energy storage device via rotation of the rotor assembly at or below the speed limit; releasing mechanical energy from the mechanical energy storage device to rotate the rotor assembly following shutdown of the gas turbine engine; and rotating the rotor assembly via the mechanical energy from the mechanical energy storage device.
US10760495B2 Fluid manifold for gas turbine engine and method for delivering fuel to a combustor using same
A method for delivering fuel to a combustor of a gas turbine engine includes: injecting fuel into a conduit of a fuel manifold; directing the fuel through a continuous first portion of the conduit; directing the fluid from the first portion into an inflexion of the conduit being a single exit of the first portion; directing the fuel from the inflexion into a second portion of the conduit in serial flow communication with the first portion; and carrying the fuel in the second portion in a direction different from that of the fuel in the first portion. As the fuel flows through the second portion of the conduit, the fuel exits from the second portion of the conduit into a plurality of fuel injection nozzles in exclusive fluid flow communication with the second portion for ejection into a combustor of the gas turbine engine.
US10760488B2 Geared turbofan engine gearbox arrangement
A gas turbine engine according to an example of the present disclosure includes, among other things, a fan section having a plurality of fan blades. The plurality of fan blades has a peak tip radius Rt and an inboard leading edge radius Rh at a first inboard boundary of a first flowpath. A core engine includes a first turbine configured to drive a first compressor, and a fan drive turbine configured to drive the fan section. A method of designing a gas turbine engine is also disclosed.
US10760484B2 Multi-engine aircraft power plant with heat recuperation
Multi-engine aircraft power plants and associated operating methods are disclosed. An exemplary multi-engine power plant comprises a first turboshaft engine and a second turboshaft engine configured to drive a common load such as a rotary wing of an aircraft; and a heat exchanger in thermal communication with an exhaust gas of the first turboshaft engine and in thermal communication with pre-combustion air of the second turboshaft engine. The heat exchanger is configured to permit heat transfer from the exhaust gas of the first turboshaft engine to the pre-combustion air of the second turboshaft engine.
US10760483B2 Tip turbine engine composite tailcone
A non-metallic tailcone in a tip turbine engine includes a tapered wall structure disposed about a central axis. The non-metallic tailcone is fastened to a structural frame in the aft portion of the tip turbine engine. The tip turbine engine produces a first temperature gas stream from a first output source and a second temperature gas stream from a second output source. The second temperature gas stream is a lower temperature than the first temperature gas stream. The second temperature gas stream is discharged at an inner diameter of the tip turbine engine over an outer surface of the tailcone. Discharging the cooler second temperature gas stream at the inner diameter allows a non-metallic to be used to form the tailcone.
US10760482B1 Methods and system for reducing a possibility of spark plug fouling
Systems and methods for operating a vehicle that includes an engine and an electric machine are described. In one example, operation of the engine may be adjusted to compensate for conditions when carbon deposits may build on one or more engine spark plugs. The engine adjustments may help to remove carbon deposits from the engine's spark plugs.
US10760480B2 System and method for reducing NOx emissions for natural gas engines
A chambered sparkplug carrier and a natural gas engine management system are provided for reducing NOx emissions of pre-chambered combustion natural gas engines. A method for retro-fitting a pre-chambered combustion natural gas engine with a chambered sparkplug is also described.
US10760477B2 Turbocharger engine
A turbocharger engine includes a dual stage turbocharger in which a first turbo unit is disposed on the upstream side of a second turbo unit on an exhaust passage. The turbocharger is disposed in such a manner that a second turbine shaft of the second turbo unit is far from an engine output shaft than a first turbine shaft of the first turbo unit in a plan view in an axis direction of a cylinder. Further, a second turbine is rotated clockwise around an axis thereof in a side view when the turbocharger is viewed from the side of the turbine, and an intra-turbine passage is disposed on the side of an engine body than the second turbine shaft.
US10760475B2 Integrated passive one way valve in charge air inlet tank
An inlet tank for a charge cooler comprises a manifold portion, a turbocharger inlet port, and a supercharger inlet port. The turbocharger inlet port is in fluid communication with a compressor wheel of a turbocharger and the manifold portion of the inlet tank. An opening is formed in a sidewall of the turbocharger inlet port. The supercharger inlet port is in fluid communication with an electric supercharger and intersects the turbocharger inlet port. The opening formed in the sidewall of the turbocharger inlet port provides fluid communication between the supercharger inlet port and the turbocharger inlet port. A valve element selectively determines when a flow of air from the supercharger inlet port enters the turbocharger inlet port through the opening based on a pressure differential present between the air exiting the compressor wheel of the turbocharger and the air exiting a compression mechanism of the electric supercharger.
US10760472B2 Electronic thermostat, cooling system provided with the same and control method for the same
An electronic thermostat may include an internal housing including a partition defining a head chamber communicating with a cylinder head and a block chamber communicating with an engine block and the internal housing of which a head chamber hole and a block chamber hole are formed thereto, an external housing of which an outlet is formed thereto and the external housing covering the internal housing, a thermostat heater disposed to the partition, a first opening/closing portion including a first wax receiving heat from the thermostat heater and selectively closing or opening the head chamber hole and a second opening/closing portion including a second wax receiving heat from the thermostat heater and selectively closing or opening the block chamber hole.
US10760471B2 Auxiliary machine-driving device for vehicle
An auxiliary machine-driving device is provided for a vehicle. The auxiliary machine-driving device has a first roller, a second roller, a third roller, a fourth roller and a fifth roller. The first roller rotates integrally with a rotary shaft of an engine. The second roller rotates integrally with a rotary shaft of a motor/generator. The third roller rotates integrally with a rotary shaft of an auxiliary machine. The fourth roller is provided between the first roller and the second roller. The fifth roller that always contacts the second roller and the third roller. The actuator switches the fourth roller between a contact state with the first and second rollers and a separation state from the first and second rollers.
US10760467B2 Vehicle comprising a dual-branch exhaust system
A vehicle has an internal combustion engine and an exhaust system. The exhaust system has a first exhaust tract with a first exhaust outlet extending into the atmosphere as well as a second exhaust tract with a second exhaust outlet extending into the atmosphere. The second exhaust outlet is located in front of the first exhaust outlet in the direction of travel of the vehicle.
US10760455B2 Poppet valve for an internal combustion engine
A poppet valve has an elongated stem that is configured to extend along a longitudinal axis. The poppet valve further includes a valve body that is disposed laterally with respect to the longitudinal axis and located in a spaced apart relation with an end of the elongated stem. The valve body has a pair of opposing faces disposed co-axial with the longitudinal axis of the elongated stem. The poppet valve also includes at least two arcuately shaped appendages depending downwardly from the end of the elongated stem and extending away from the longitudinal axis of the elongated stem. An end of each appendage is disposed in abutment with an annular region defined on one of the opposing faces of the valve body, a perimeter of the annular region being larger than a perimeter of the elongated stem measured about the longitudinal axis.
US10760445B2 Electrical resistance wear indicator
In combination a wear indicator and a component of a gas turbine engine is provided. The wear indicator is secured to a surface of the component of the gas turbine engine. The wear indicator comprising: a first component including: a first plate; a second plate opposite the first plate; a plurality of wires extending from first plate to the second plate, wherein the first plate is electrically connected to the second plate through the plurality of wires; and a potting material configured to partially fill the first component and fill voids between the plurality of wires, such that the plurality of wires are electrically insulated from each other by the potting material.
US10760443B2 Turbine abradable air seal system
An air scal system for a rotor blade assembly of a gas turbine engine includes a substrate. An optional ceramic interlayer may be disposed on an optional bond coat deposited on the substrate. An erosion resistant thermal barrier coating (E-TBC) layer is disposed on the ceramic interlayer (if present) or on the bond coat, or on the substrate. An abradable layer is disposed on the erosion resistant thermal barrier coating (E-TBC) layer.
US10760441B2 Turbine for a turbine engine
The invention relates to a turbine for a turbine engine, having a stator and a rotor comprising a rotor wheel having vanes the radially external periphery of which comprises at least one lip which radially extends outwards, with sealing means radially extending about the vanes and comprising a ring. The radially external end of the lip cooperates with said ring so as to form a seal of the labyrinth type.
US10760440B2 Assembly for gas turbine, associated gas turbine
An assembly for gas turbine, includes a first part and a second part installed circumferentially around a longitudinal axis of the turbine, where the first part has a first side face adjacent to a second side face of the second part, and where a first aperture made in first side face is facing a second aperture made in second side face, a sealing plate fitted inside the first aperture and the second aperture, at least one longitudinal face of the sealing plate includes at least two projections made either side of a longitudinal central area of the sealing plate, wherein each projection is of a height chosen so as to reduce a clearance between the sealing plate and the first and second apertures.
US10760437B2 Turbocharger with ported turbine shroud
A turbocharger includes a turbine housing that defines a flow passage for a fluid. The turbine housing includes a turbine shroud member. The turbocharger also includes a turbine wheel supported for rotation within the turbine housing relative to the turbine shroud member. The turbine wheel is configured to rotate as the fluid flows through the flow passage. Moreover, the turbocharger includes a port extending through the turbine shroud member. The port is configured to receive a portion of the fluid flowing through the flow passage.
US10760436B2 Annular wall of a combustion chamber with optimised cooling
An annular turbine engine combustion chamber wall including air admission orifices to create zones of steep temperature gradient, and cooling orifices to enable the air flowing on the cold side to penetrate to the hot side in order to form a film of cooling air along the annular wall, the annular wall being further includes, in the zones of steep temperature gradient, multi-perforation holes having respective bends of an angle α greater than 90°, the angle α being measured between an inlet axis Ae and an outlet axis As of the multi-perforation hole, the outlet axis of the multi-perforation hole being inclined at an angle θ3 relative to the normal N to the annular wall through which the multi-perforation holes with bends are formed, in a “gyration” direction that is at most perpendicular to the axial flow direction D of the combustion gas.
US10760431B2 Component for a turbine engine with a cooling hole
An apparatus and method relating to a cooling hole of a component of a turbine engine. The cooling hole can extend from an inlet to an outlet to define a connecting passage. The cooling hole can contain a diffusing section. The diffusing section can be defined by an interior surface having variable geometries.
US10760428B2 Frangible gas turbine engine airfoil
An airfoil defining a span extending between a root and a tip and a chord at each point along the span extending between a leading edge and a trailing edge. The airfoil includes a leading edge sheath coupled to the leading edge of the airfoil. The leading edge sheath includes a flange extending from a frangible line toward the tip along the span and defining a first width along the chord at each point along the span S. The leading edge sheath further includes a base extending from the frangible line at least partially along the span to the root and defining a second width along the chord at a point along the span of the frangible line such that the second width is greater than the first width.
US10760427B2 Secondary flow control
A slot is provided in an endwall of a flow passage, for example between two stator vanes or rotor blades of a gas turbine engine. The length direction of the flow passage is aligned substantially with the main flow through the flow passage. The alignment of the slot means that the “over-turned” boundary layer flow can be extracted through the slot but with minimal impact on the mainstream flow.
US10760424B2 Compressor rotor airfoil
A compressor rotor airfoil in a gas turbine engine is presented. Opposed pressure and suction sides are joined together at chordally opposite leading and trailing edges. The pressure and suction sides extend in a span direction from a root to a tip. A leading edge dihedral angle is defined at a point on the leading edge between a tangent to the airfoil and a vertical. The leading edge dihedral angle has a span-wise distribution. The distribution has at least one inflection point. A method of reducing a rub angle between a compressor rotor blade and a casing surrounding the blade is also presented.
US10760423B2 Spoked rotor for a gas turbine engine
A rotor for a gas turbine engine includes a plurality of blades which extend from a rotor disk at an interface, where the interface is defined along a spoke. A spool for a gas turbine engine includes the rotor disk, the plurality of blades with the interface defined along the spoke radially inboard of a blade platform, a rotor ring axially adjacent to the rotor disk, and a plurality of core gas path seals which extend from the rotor ring. Each of the plurality of core gas path seals extends from the rotor ring at a seal interface, with the seal interface defined along a spoke and the plurality of core gas path seals being axially adjacent to the blade platform.
US10760422B2 Pre-sintered preform for repair of service run gas turbine components
A pre-sintered preform (114) and a repair process (100) utilizing the pre-sintered preform (114) are disclosed, each of which result in a brazement (116) comprising a replacement protective coating (118) deposited on a component surface (110). The protective coating (118) exhibits excellent temperature and oxidation resistance, improved adhesion to superalloy surfaces, and reduced depletion over a service life of the associated component (102).
US10760420B2 Underground ventilation apparatus and method
A ventilation apparatus includes a plurality of tubular conduit sections, each conduit section including a first semi-tubular section and a second semi-tubular section, each semi-tubular section having a cross-sectional profile generally in the form of an open semi-circular annular element, when viewed along a longitudinal axis. Each tubular conduit includes a first engagement formation located at an end of the tubular conduit, and a second engagement formation located at an opposing end of the tubular conduit.
US10760418B1 Method and system for preserving and obtaining hydrocarbon information from organic-rich rock samples
Methods and systems to preserve, prepare, extract, and/or analyze hydrocarbons in the pore spaces of or adsorbed in organic-rich rock samples, such as, but not limited to, drill cuttings and drill cores, using one or more combinations of physical energy sources, including, but not limited to, thermal, vapor pressure, and mechanical stress. The collected samples are transported and prepared in low temperature conditions, with parts of subsequent processing at very low temperatures, thereby allowing a fuller measurement of geochemical fingerprints for the extracted hydrocarbons using various analysis tools. More particularly, the treatment and process allows geochemical fingerprinting to very low carbon number ranges.
US10760417B2 System and method for surface management of drill-string rotation for whirl reduction
A system and method to reduce a whirl effect on a rotation of a drill string with an AC induction motor mechanically coupled to a rotary drilling system and configured to drive the rotary drilling system and the drill string attached thereto. Additionally, the system includes an electronic inverter to generate supplied power for the AC induction motor and a controller configured to drive the operation of the electronic inverter to impose a virtual drive characteristic relating a torque output of the motor with speed of the motor, determine a desired nominal operating point, and determine presence of whirl in the drill string from torque of the rotary drilling system and speed of the drill string.
US10760416B2 Method of performing wellsite fracture operations with statistical uncertainties
A method of performing a fracture operation at a wellsite is provided. The wellsite has a fracture network therein with natural fractures. The method involves stimulating the wellsite by injecting an injection fluid with proppant into the fracture network, obtaining wellsite data comprising natural fracture parameters of the natural fractures and obtaining a mechanical earth model of the subterranean formation, defining the natural fractures based on the wellsite data by generating one or more realizations of the natural fracture data based on a statistical distribution of natural fracture parameters, meters, generating a statistical distribution of predicted fluid production by generating a hydraulic fracture growth pattern for the fracture network over time based on each defined realization and predicting fluid production from the formation based on the defined realizations, selecting a reference production from the generated statistical distribution, and optimizing production and uncertainty by adjusting the stimulating operations based on the selecting.
US10760414B1 Data transmission system
A data transmission system for use with a drill string in a primary wellbore is disclosed. The data transmission system includes a toroidal antenna assembly. The toroidal antenna assembly is disposed around the drill string at a primary downhole location within the primary wellbore and configured to transmit a signal from a transmitter. The signal corresponds to sensor data. The toroidal antenna assembly includes a plurality of toroidal antennas, wherein each toroidal antenna is configured to transmit the same signal from the transmitter. Because a plurality of toroidal antennas are utilized to transmit the same signal, construction of the drill string can be more mechanically robust than a conventional insulated gap collar while permitting reliable and fast transmission of sensor data to the surface.
US10760413B2 Electromagnetic telemetry for sensor systems deployed in a borehole environment
Disclosed are telemetry systems and methods that employ a plurality of electromagnetic transceivers disposed outside a well casing string at a corresponding plurality of depths along the casing string. Each transceiver includes one or more toroidal inductors circumferentially surrounding the casing string and inductively coupled thereto to allow signal transmission between transceivers via currents induced in the casing. In some embodiments, signals are relayed via a chain of transceivers to facilitate indirect communication between a surface facility and other transceivers located too deep for direct communication to the surface.
US10760412B2 Drilling communication system with Wi-Fi wet connect
Drilling communication systems employ a Wi-Fi wet connect to communicate information from one downhole subsystem to another. In some implementations, the subsystems are disposed within drilling callers making-up a bottom hole assembly (BHA). The Wi-Fi wet connect may communicate information obtained by a first downhole subsystem for storing or transmission by the second downhole subsystem.
US10760411B2 Passive wellbore monitoring with tracers
A method involving introducing a perforation string into a wellbore passing through a subterranean formation, the perforation string having a perforation gun and a releasable tracer, the releasable tracer being releasable in response to a fluid produced from the subterranean formation contacting the nearby perforation string. The method includes perforating, with the perforation gun, a surface of the wellbore and withdrawing fluid from a wellbore. The method further includes allowing the releasable tracer to release from the perforation string after the fluid produced from the formation contacts the perforation string and flows toward an entrance of the wellbore. Finally, measuring at least one of an amount or presence of the releasable tracer thereby indicating at least one of an amount or presence of the fluid produced from the subterranean formation.
US10760408B2 Methods and systems for detecting relative positions of downhole elements in downhole operations
Methods and systems to initiate downhole operations in a borehole include deploying a first structure at least partially in the borehole, moving a second structure at least partially along the first structure, wherein at least one of the first structure and the second structure is equipped with a sensor and the other of the first and second structure is equipped with a marker detectable by the sensor, detecting a critical event that is related to an interaction of the sensor and the marker, measuring a time-since-critical event, determining a time delay based on the time-since-critical event, transmitting, with a telemetry system, data from the earth's subsurface to the earth's surface indicating that the critical event has been detected, and initiating a downhole operation by using the determined time delay.
US10760406B2 Locating multiple wellbores
Methods and systems are described that can be used for locating conductive bodies such as wellbore casing or piping disposed below the earth's surface. An electrical current can be excited in a conductive body in each wellbore in a given area to produce a magnetic field, and the magnetic field can be detected by a ranging tool. Location and current parameters can be determined for an estimated number of wellbores producing non-negligible contributions to the magnetic field, and the estimated number of wellbores can be adjusted until the number of contributing wellbores is determined. Location solutions can be returned for each of the contributing wellbores, and the location solutions can be employed to facilitate exploration of drilling applications such as well avoidance, well intersection and/or steam assisted gravity drainage (SAGD) steering operations.
US10760401B2 Downhole system for determining a rate of penetration of a downhole tool and related methods
A method of determining a rate of penetration of a downhole tool. The method comprises introducing a downhole tool including a drill bit configured to drill through a subterranean formation in a wellbore, the downhole tool comprising at least one reader configured to communicate with identification tags using electromagnetic radiation. The method includes advancing the wellbore with the drill bit and placing, with a component of a bottomhole assembly of the downhole tool, a first identification tag at a first location proximate the wellbore and at least a second identification tag at a second location proximate the wellbore and separated from the first location by a distance. An interrogation signal is transmitting from the at least one reader toward a wall of the wellbore and response signals from the identification tags are received by the at least one reader to determine proximity of the identification tags to the reader. A rate of penetration of the downhole tool is determined, using a processor and associated memory, based at least in part on a distance between identification tags and an amount of time between receiving response signals from a first identification tag and at least a second identification tag. Downhole systems for determining a rate of penetration and other methods are also disclosed.
US10760396B2 Using radio waves to fracture rocks in a hydrocarbon reservoir
The present disclosure describes methods and systems for fracturing geological formations in a hydrocarbon reservoir. One method includes forming a borehole in a hydrocarbon reservoir from a surface of the hydrocarbon reservoir extending downward into the hydrocarbon reservoir; transmitting an electromagnetic (EM) wave through the borehole: directing at least a portion of the EM wave to rocks at a location below the surface in the hydrocarbon reservoir; and fracturing the rocks at the location below the surface in the hydrocarbon reservoir by irradiating the rocks around the borehole using at least the portion of the EM wave, wherein irradiating the rocks elevates pore-water pressure in the rocks causing fracturing of the rocks.
US10760391B2 Method for recovering hydrocarbons from low permeability formations
There is provided a method of producing hydrocarbon material. A first hydrocarbon material is produced from the formation, the first hydrocarbon material including a gaseous hydrocarbon material originally in place in the formation. At least a portion of the produced gaseous hydrocarbon material is injected into the formation to increase the formation pressure. A second hydrocarbon material is produced from the formation.
US10760389B2 Extraction methods and systems for recovery of oil from reservoirs containing mobile water
The present disclosure relates to, according to some embodiments, an extraction process for recovering an oil from an oil reservoir comprising a mobile water. The extraction process includes the step of injecting a first solvent into the oil reservoir through the at least one injection well to form a first mixture, the first mixture comprising the first solvent, a first portion of mobile water, and a first portion of oil. Additionally, the extraction process includes the steps of recovering the first mixture from the at least one production well to produce a first recovered oil mixture, the first recovered oil mixture comprising the first solvent, the first portion of the mobile water, and the first portion of oil; separating the first recovered oil mixture to produce a first recovered oil fraction that is separated from the first portion of mobile water and the first solvent; and injecting a second solvent into the oil reservoir through the at least one injection well to form a second mixture, the second mixture comprising the second solvent, a second portion of mobile water, and a second portion of oil. The extraction process also includes the steps of recovering the second mixture from the at least one production well to produce a second recovered oil mixture, the second recovered oil mixture comprising the second solvent, the second portion of the mobile water, and the second portion of oil, and separating the second recovered oil mixture to produce a second recovered oil fraction that is separated from the second portion of mobile water and the second solvent.
US10760386B2 Slant well pumping unit
A surface unit reciprocates a rod string for a downhole pump in a slanted well. The unit has a beam with a bend and pivots at a pivot between the bend and the horsehead of the beam. A post of the unit supports the pivot and is oriented to support the beam's load along the post and reduce bending stress. A crank arm is rotated by a prime mover about a crank point and translates pitman arms to oscillate the beam on the pivot, which reciprocates the rod string at surface along the slanted axis. The unit can be set at various offset distances relative to the intersection of the well so the unit can be used at various inclinations of slanted axis. The horsehead defines a segment with a face to accommodate at least 70% engagement or greater with the rod load for both largest and smallest inclinations.
US10760374B2 Tool for metal plugging or sealing of casing
This disclosure describes a device and method of sealing perforations on a well casing inside a subterranean well. The device comprises a generally cylindrical sleeve having a open top and a closed bottom; a heater located inside the sleeve, the heater comprising a thermite mixture; an ignition mechanism that ignites the thermite mixture upon actuation; and a string connected to the heater ignition and detachably engages the sleeve. The method comprises lowering a body of meltable plugging material into the well casing near the perforations; lowering the plugging device into the well casing immediately on top of the body of meltable plugging material; melting the meltable plugging material by igniting the thermite thereby transferring heat to the body of meltable plugging material; forcing the molten plugging material into the perforations by pushing the plugging tool further downhole; cooling the plugging tool and the plugging material until the plugging material solidifies; disengaging the tubing string from the sleeve and retrieving the tubing string with the heater; and removing the sleeve and bismuth remaining in the well casing, but not in the perforations.
US10760366B2 Coiled tubing connector to electrical submersible pump
A connector secures an ESP to coiled tubing containing a power cable. Upper and lower barriers in the connector housing define an upper chamber, a lower chamber, and a center chamber. An upper chamber dielectric fluid in the upper chamber is in fluid communication with the interior of the coiled tubing. A lower chamber dielectric fluid in the lower chamber is in fluid communication with motor lubricant in the motor of the ESP. Center chamber dielectric fluid in the center chamber is sealed from contact with the upper and lower chamber dielectric fluids by the upper and lower barriers. A thermal expansion device has a container portion for allowing center chamber dielectric fluid to expand into the container.
US10760359B2 Wellbore tong
A tong includes a gear ring powered by a motor assembly, the gear ring having a plurality of ramps formed on an inner surface thereof and a brake plate rotationally independent of the gear ring, the brake plate having a gripping assembly for interacting with the ramps to grip a tubular. Also included is a brake assembly for preventing rotation of the brake plate, the brake assembly including an adjustable brake band for applying friction to the brake plate and at least one brake pad made of braking material disposed on an outer surface thereof in the area of contact with the brake band for reducing friction between the brake plate and the brake band. In one embodiment, the braking material is bronze.
US10760349B2 Method of forming a wired pipe transmission line
A wired pipe system includes a wired pipe segment having a first end and a second end, a first coupler in the first end and a second coupler in the second end and a transmission line disposed in the wired pipe segment between the first and second ends. The transmission line includes a transmission cable that includes an inner conductor and an insulating material disposed about the inner conductor as well as a a wire channel surrounding the insulating material and the inner conductor for at least a portion of a length of the transmission cable. The wire channel and the insulating material are mated together by at least one mating feature.
US10760346B2 Rotatable cutters and elements, earth-boring tools including the same, and related methods
A rotatable cutter may comprise a rotatable element, a stationary element, and a releasable interface. The releasable interface may be configured to substantially inhibit rotation of the rotatable element when the rotatable element and the stationary element are at least in partial contact. An earth-boring tool may include one or more rotatable elements.
US10760345B2 Cutting elements with wear resistant surfaces
Cutting elements and hardfacing materials are in the form of a milled tooth having an uppermost first surface or crest and remaining surfaces such as flank surfaces and end surfaces extending downwardly away from crest. The crest has a hardfaced layer disposed thereon formed from a premium hardfacing material, and one or more of the remaining cutting element surfaces has a hardfaced layer formed from a hardfacing material different than the premium hardfacing material, wherein the hardfaced layer on the crest has a wear resistance at least 10% greater than that of the remaining cutting element hardfaced surfaces. The hardfaced layer on the crest may extend along a partial portion of one or more of the adjacent remaining cutting element surfaces.
US10760344B1 Polycrystalline diamond compacts and methods of fabricating same
Embodiments of the invention relate to methods of fabricating leached polycrystalline diamond compacts (“PDCs”) in which a polycrystalline diamond table thereof is leached and resized to provide a leached region having a selected geometry. Creating a leached region having such a selected geometry may improve the performance of the PDC in various conditions, such as impact strength and/or thermal stability.
US10760342B2 Rolling element assembly with a compliant retainer
A rolling element assembly includes a rolling element rotatable about a rotational axis when positioned within a cavity defined on a bit body of a drill bit, and a compliant retainer positioned within a retainer slot defined in the bit body. A biasing device is positioned within a device pocket defined within the bit body to bias the compliant retainer against the outer circumferential surface of the rolling element. The compliant retainer secures the rolling element within the cavity while an arcuate portion of the rolling element protrudes from the cavity and exposes a full axial width of the rolling element.
US10760341B2 Automated steering of a drilling system using a smart bottom hole assembly
A method of drilling a wellbore is described using a BHA including an RSS that comprises an adjustment mechanism movable between first and second configurations to alter a drilling direction of the BHA, BHA sensor(s), and a controller. The method includes drilling, using the BHA, the wellbore with the adjustment mechanism in the first configuration; receiving, by the first controller, real-time data including inclination and azimuth angle data from the BHA sensor(s); determining, by the first controller and based on the real-time data, a relationship between an actual measurement and a target measurement that is associated with a target well path; automatically moving, by the first controller and in response to the determination of the relationship, the adjustment mechanism from the first to the second configuration; and drilling, using the BHA, the wellbore while the adjustment mechanism is in the second configuration.
US10760332B2 Lock device having position sensor
A position sensing system and method for detecting the displacement of a door from a reference position, such as, for example, from a closed position. The system includes a magnetometer that may be operably connected to the door, and which measures positional location relative to a reference magnetic field, such as, for example, a magnetic field provided by a magnet of a lock device. The system may also include an accelerometer that detects acceleration of the door, and thereby provides an indication of when location is to be measured by the magnetometer. Measurement information from the magnetometer is used to derive a position indicator that is compared to a reference indicator, the reference indicator being associated with the reference position. Differences between the position and reference indicators may provide an indication that the door has been moved from the reference position.
US10760325B2 Vacuum insulated glass windows with friction reduction compositions and methods of making the same
A window with low frictive compositions and methods of making the same. The low frictive composition is applied to top portion of at least one glass bump contacting an opposing pane in a window. The low frictive composition may include an inorganic powder and a binder. The inorganic powder includes disulfide, molybdenum disulfide, tungsten diselenide, and molybdenum diselenide. The binder includes silsesquioxanes and alkali silicates.
US10760323B1 Adjustable support device for bay windows and other protruding building structures
An adjustable window support device is disclosed. In embodiments, the adjustable window support device includes: a horizontal segment configured to be placed into contact with a lower surface of a bay window; a vertical segment configured to be placed against a wall and configured to extend downwardly from the lower surface of the bay window along the wall; and an adjustable segment configured to extend diagonally from the bottom end of the vertical segment to one or more receiving members at or near the front end of the horizontal segment. The adjustable segment includes a first end that is pivotally coupled to the bottom end of the vertical segment and a second end that is configured to mate with the one or more receiving members at or near the front end of the horizontal segment.
US10760321B2 Thermal door release system
A thermal door release system is provided that includes a plurality of temperature sensors arranged within multiple environments; a controller; and a release apparatus; wherein the controller, using data from the temperature sensors, monitors the temperatures of the individual environments and when a temperature for an environment reaches a set temperature threshold for that environment, causes an action such as the release apparatus to operate a door to a specified position. The set points and actions to be taken can be set per environment by a user, such that different environments will have different set points. In an embodiment, the system can support staged logic such that at various different user-defined set point temperatures for an environment, specified actions can be taken, for example, sending an email to the facilities manager when the temperature is significantly above normal and closing the door when it reaches a higher set point value.
US10760320B2 Door drive for a motor vehicle door
A door drive for a motor vehicle door has a lever element which can be mounted on the body work side of the motor vehicle and which can be connected to an adjustable drive element of a drive device arranged on the motor vehicle door. The adjustable drive element is designed as a rocker element which can be mounted about a bearing axis and which includes a first lever arm by which the rocker element is at least indirectly connected to an actuator of the drive device, and also includes a second lever element by which the rocker element is connected at least indirectly to the lever element.
US10760315B2 Integrated stowage bin assembly
A stowage bin assembly includes a bin bucket assembly having a bin bucket which includes at least one sidewall, the at least one sidewall including a notch and the at least one sidewall having an interior surface. The stowage bin assembly also includes at least one hinge assembly. The at least one hinge assembly includes a housing which is received in the notch, the housing having an interior surface, wherein the interior surface of the housing is substantially flush with the interior surface of the at least one sidewall when the housing of the at least one hinge assembly is received in the notch. The stowage bin assembly also includes a stowage bin door pivotably coupled to the bin bucket assembly via the at least one hinge assembly, the stowage bin door moveable between an open position and a closed position. Related components, assemblies, and devices are also provided.
US10760311B2 Information handling system dual axis mono-barrel hinge
A dual axis hinge assembly couples first and second hinges to each other with a central barrel and routes cables across hinge axles with cable channels formed in the axles. The dual axis hinge assembly rotationally couples information handling system housing portions to each other and routes cables between the housing portions distal the barrel by running the cables through a channel formed in each axle of one of the hinges with the cable entering one axle distal the barrel, routing through the axle to a position proximate the barrel, crossing the hinge to enter the other hinge axle proximate the barrel and routing though the other axle to exit distal the barrel.
US10760303B2 Multi-point lock with single actuation and mishandling device and self-aligning engagement
A multi-point locking arrangement is provided. The multi-point locking arrangement includes a primary lock bolt and an auxiliary lock bolt offset from the primary lock bolt. The multi-point locking arrangement, in an embodiment, uses a single actuation motion to transition between locked and unlocked states. The locking arrangement may also include a lockout device that prevents transitioning from the unlocked state to the locked state when the lockout device is not actuated. The locking arrangement may include a biased auxiliary strike plate that cooperate with the auxiliary lock bolt to provide improved alignment and a tighter seal.
US10760294B1 Safety apparatus
A safety cover configured to be releasably secured to an exposed portion of a construction element so as to provide improved visibility thereof and provide impalement protection. The safety cover includes a body having an upper portion and a lower portion. The upper portion and lower portion of the body are integrally formed wherein the lower portion of the body extends downward from the lower surface of the upper portion. The lower portion of the body includes three receiving members equidistantly positioned along the width of the upper portion. The three receiving members include walls forming a cavity having an opening operable to provide access thereto. The upper portion further has a top member superposed thereon. Furthermore, a cap member is superposed the upper portion of the body with the top member being intermediate the upper portion and the cap member.
US10760291B2 Above ground pool
The present invention provides a above ground pool, comprising a flexible pool body. The flexible pool body comprises: a polygonal bottom sheet that comprises a plurality of edge portions; and a plurality of side sheets, each side sheet comprising a pool sidewall portion and a pool bottom portion, and each of the pool sidewall portions and each of the pool bottom portions being in the shape of an isosceles trapezoid. Each of pool sidewall portion comprises a first upper-base portion, a first lower-base portion and a first middle portion defined between the first upper-base portion and the first lower-base portion, and each of the pool bottom portion comprises a second upper-base portion, a second lower-base portion and a second middle portion defined between the second upper-base portion and the second lower-base portion. The first lower-base portion and the second lower-base portion coincide to define a junction of the pool sidewall portion and pool bottom portion. The first middle portions of the side sheets are successively connected to form a side wall of the above ground pool and the second middle portions are successively connected to form an outer ring of the bottom of the above ground pool. The second upper-base portions of the pool bottom portions are respectively connected to the edge portions of the bottom sheet. In the above ground pool of the present invention, joints are moved to a side wall of the swimming pool or the bottom of the swimming pool as much as possible, thereby reducing the length of joints passing through a heavily stressed area to the greatest extent, simplifying production processes, reducing costs, and reducing the probability of water leakage from the above ground pool.
US10760287B2 Loosefill insulation blowing machine with a full height bale guide
A machine for distributing blowing insulation material from a package of compressed loosefill insulation material is provided. The machine includes a chute. The chute has an inlet portion, an outlet portion, a bale guide and a cutting mechanism. The inlet portion is configured to receive the package with the package having a substantially vertical orientation. The inlet portion has a vertical height. The bale guide has a length and is configured to urge the package against the cutting mechanism. The cutting mechanism is configured to open the package. A lower unit is configured to receive the material exiting the outlet portion of the chute. The lower unit includes a plurality of shredders and a discharge mechanism. The discharge mechanism is configured to discharge conditioned loosefill insulation material into an airstream. The length of the bale guide extends substantially across the height of the inlet portion of the chute.
US10760286B2 System and method for a bonded layer flooring component
A system for manufacturing a luxury vinyl tile. The system includes a heater, a belt, and a wrapping machine. The heater is configured to heat a base layer of the luxury vinyl tile. The belt is configured to support and transfer the base layer through the system. The wrapping machine is configured to receive the base layer on the belt therethrough. The wrapping machine includes an adhesive dispenser and a series of rollers. The adhesive dispenser is configured to apply an adhesive onto a top surface of the base layer as the base layer travels through the wrapping machine. The series of rollers is configured to apply a decorative layer on top of the adhesive to bond the decorative layer to the top surface of the base layer.
US10760285B2 Floor element for forming a floor covering, a floor covering, and a method for manufacturing a floor element
A floor element for forming a floor covering, wherein the floor element comprises: a decorative layer made of a ceramic material; a support layer arranged below the decorative layer; and an intermediate layer comprising a rigid resin material that permeates a lower surface of the decorative layer, wherein the decorative layer is between 8 and 10 mm thick, wherein the support layer is made of rigid PVC, comprises more than 30 wt % of filler material and is less than 6 mm thick, and wherein the floor element comprises an intermediate reinforcing layer having a resin material that permeates a lower surface of the decorative layer, wherein the intermediate reinforcing layer is an adhesive layer that bonds together the decorative layer and the support layer.
US10760284B2 Knob for leveling spacer for laying wall tiles, floor tiles and the like
A knob for a leveling spacer for laying wall tiles, floor tiles, and the like, the spacer being of the type having a base with spacing raised portions for the abutment of the edges of corresponding tiles and a stem, and the knob is provided with circumferential openings on the side wall.
US10760281B2 Veneer connectors, wall blocks, veneer panels for wall blocks, and walls
Wall blocks, veneers, veneer connectors, walls, and methods of constructing walls are provided. More particularly, the invention relates to constructing walls in which a veneer panel is attached to a wall block with a connector and in which the front faces of the veneers have a desirable texture.
US10760280B2 Rail system for an outdoor shelter
An outdoor shelter and a rail system for the outdoor shelter are described herein. The outdoor shelter includes at least one pair of support post members, each pair of support post members including a first support post member being spaced apart from a second support post member; a first guide rail member coupled to the first support post member; a second guide rail member coupled to the second support post member; and a shade support pole member slidably coupled to the first and second guide rail members, the shade support pole member being coupled to an end portion of a shade member of the outdoor shelter, and the shade support pole member configured to be slidably displaced along the lengths of the first and second guide rail members so as to allow an amount by which the shade member overhangs a side of the outdoor shelter to be user-adjusted.
US10760278B2 High-strength wind load-resistant lightweight cementitious soffit assembly
A fiber cement soffit comprising a first major face, a second major face, an intermediate portion positioned between the first and second faces and an edge portion surrounding the intermediate portion such that the first and second faces, intermediate portion and edge portion together form a panel of predetermined thickness; and a plurality of apertures extending between the first and second major faces of the soffit through the predetermined thickness forming a vented portion wherein the apertures comprise between approximately 8% and 28% of the total surface area per linear foot of each of the first major face and second major face of the vented portion such that the net free ventilation provided per linear foot of the fiber cement soffit is between 10 and 16 square inches.
US10760276B2 Apparatus and methods for cleaning gutters
An apparatus includes rigid tubing and a tubular nozzle. The tubular nozzle is attached to the rigid tubing and includes a proximal nozzle portion, a distal nozzle portion, and a guide-shoe. The proximal nozzle portion defines a first proximal nozzle sub-portion merging with a second proximal nozzle sub-portion at a first angle. The distal nozzle portion is removably attached to the proximal nozzle portion and defines a first distal nozzle sub-portion merging with a second distal nozzle sub-portion at a second angle. The guide-shoe projects outwardly from an exterior sidewall of the distal nozzle portion. In use, high-velocity air is propelled through the tubular nozzle to remove debris from the gutter. The guide-shoe allows the tubular nozzle to easily bypass hangers that are located in the gutter and to lock the tubular nozzle in the gutter so that it does not unintentionally depart the gutter.
US10760272B2 Rebar coupler
A disclosed rebar coupler includes a first coupling member, a second coupling member, and a coupling means. Accordingly, the connection angle between the first coupling member and the second coupling member is variable to a desired angle. The connection angle between rebars to be connected may be rapidly and conveniently varied at an industrial site to which the rebars are applied.
US10760271B2 Additive manufactured multi-colored wall panel
This invention is an additively manufactured wall panel using computer aided design (CAD) and computer aided manufacturing (CAM) to design and manufacture multi-colored and multi-layered wall panels. This results in a variety of highly attractive, multi-colored wall panel faces ranging from brick, colored grout lines and multi-colored stones to multi-colored geometric designs. The design and manufacturing process greatly reduces the amount of precast cementitious materials by efficiently using higher quality materials. This reduces cost and weight while simultaneously producing a much more comprehensive, multi-functional wall panel complete with an interior frame, exterior insulation and an air, vapor and moisture barriers.
US10760270B2 Structural insulated panel framing system
Systems and methods are disclosed herein to a structural insulated panel framing system comprising: insulation sheathing receivable by a wall jig; a frame for placement atop the insulation sheathing; and spray foam for application to the frame and the insulation sheathing to fuse the frame and insulation sheathing to produce a structural insulated panel.
US10760268B2 Multi-directional beam for a drywall ceiling soffit related application
A straight beam made for use in a suspended horizontal drywall ceiling. The beam is modified so that it can be bent in multiple directions to multiple predetermined angles. The beam has a web connecting two top flanges to two bottom flanges. A notch in the web extends through either the top or bottom flanges dividing the beam into a first side and a second side. The first side and the second side may each contain a pocket angled away from an outward face of the web forming a cutout having a locking edge and optionally a protuberance projecting out in the same direction as the pocket. Furthermore, the first side and the second side may optionally each contain an indentation projecting outward from the web in a direction opposite the spring pocket. As a result, when the beam is bent to the desired predetermined angle the locking edge or indentation may engage with the protuberance locking the angle in place. A soffit may then be constructed with drywall hung therefrom.
US10760267B2 Method and mold for manufacturing an interlocking concrete retaining wall block
A mold for manufacturing interlocking, dry-cast concrete retaining wall blocks in an upright orientation comprises a mold box comprising two side walls joined to end walls to define a mold cavity, a top face, and a substantially open bottom face. Partitions configured to define a space between adjacent blocks or a space between a block and a side of the mold box extend parallel to the side walls of the mold box substantially from the top face into the mold cavity, to form first transverse portions of the profile of the top and bottom surfaces the blocks which do not include any undercut portion that would impede removal of the mold box in a substantially vertical direction. At least one removable insert comprises insert members which, when positioned in the mold box beneath the partitions, form remaining transverse portions of the profile of the top and bottom surfaces, the remaining transverse portions including at least one undercut portion. The insert members, when in position in the mold box for casting, are substantially in lateral alignment with respective bottom surfaces of at least some of the partitions and can be inserted and retracted through openings in an end wall of the mold box.
US10760265B2 Folding variable acoustic assembly and method of use
A variable acoustic system for selectively controlling acoustic properties of an environment. Said variable acoustic system comprises a two side portions, a back portions and a variable expansion assembly. Said variable acoustic system further comprises a shell and a plurality of absorbers. Said variable acoustic system is configured to selectively transition through a one or more configurations. Said one or more configurations comprises at least a closed configuration and an open configuration. Said closed configuration comprises said two side portions closed with said shell exposed. Said open configuration comprises said two side portions open with a portion of said plurality of absorbers exposed. Said shell configured to reflect more acoustic energy than said plurality of absorbers. Said two side portions comprise a first side portion and a second side portion. Said two side portions each comprise at least an outer portions and a back absorbers.
US10760263B2 Rotatable connector for trusses
A rotatable connector for use with a truss in accordance with the present disclosure includes a sleeve and a connector end coupled to the sleeve. The sleeve engages with the truss in a fixed orientation. The connector end rotates relative to the truss to allow attachment with another connector of an adjacent truss in a variety of orientations.
US10760256B2 Air treatment device
An air treatment device is disclosed. The air treatment device according to one embodiment of the present invention comprises: a first air passage part of which one side is connected with at least one contamination space; a first air suction part for enabling the contaminated air within the contamination space to flow into the first air passage part; and a first air treatment part including: a partition formed inside a toilet water tank; at least one of through-holes, which is formed in the partition, connected with the other side of the first air passage part, and connected with a space inside the partition; and an air discharging part for discharging the contaminated air into the inside of the partition.
US10760255B2 Self cleaning toilet assembly and system
Toilet assemblies having various embodiments of a cleaning system are described herein which include a toilet assembly and a cleaning system. The toilet assembly has a toilet bowl, a toilet tank, a flush valve, a rim inlet port and a rim flow path (which may be an isolated rim path) extending from an outlet of the flush valve to the rim inlet port. The cleaning system has a reservoir for holding a liquid cleaning agent having an outlet port in fluid communication with the interior space of the reservoir body; a housing to receive the reservoir; a supply conduit in fluid communication with the interior of the reservoir; a flow control device capable of controlling flow through the supply conduit; and a control system activatable by an actuator feature, wherein upon activation of the actuator feature, the control system is adapted to initiate a clean cycle by: operating the flow control device for a first period of time sufficient to deliver a dose of a liquid cleaning agent from the supply conduit to an interior space of the flush valve in a closed position, the flush valve configured for delivery of fluid to the rim inlet port, and operating the flush valve to open the flush valve to introduce flush water to carry the dose of a liquid cleaning agent through the rim inlet port into the toilet bowl.
US10760254B2 Toilet overflow prevention system and method
A system for preventing overflow of a toilet includes a sensor, a processor and an actuator. The sensor senses a parameter caused by fluid dynamics within the toilet during a flush cycle. The parameter may involve vibration, sound, pressure, fluid flow rate or other detectible characteristics of the toilet. The processor uses information regarding the parameter that is gathered by the sensor to evaluate the condition of the flush cycle to determine if an impeded flush condition exists. In the event of an impeded flush condition, the processor directs the actuator to close a valve, which may be the toilet flapper valve in some embodiments. Also disclosed are methods for preventing toilet overflow, detecting an impeded flush condition and calibrating the system.
US10760250B2 Method of retrofitting a bathtub drainage pipe
A method of retrofitting a drainage pipe is disclosed. The method provides removing a pre-existing bathtub drain of a pre-existing bathtub drainage system to expose the concrete-encased drainage pipe, attaching a gasket to an exposed end of the concrete-encased drainage pipe, attaching a drain body to the gasket, attaching a strainer to the drain body, and attaching the drain body to the concrete-encased drainage pipe via the gasket. The drain body and gasket create a water-tight seal with and between the concrete-encased drainage pipe when attached. The method enables a user to convert a pre-existing bathtub drainage pipe to a shower drainage pipe without the added necessity of digging into the concrete surrounding the pre-existing drainage pipe below the pre-existing bathtub drain in order to place a small piece of modern piping material and a secure fastener below the body of the shower drain.
US10760249B2 Faucet knob return spring kit
A faucet knob return spring kit for automatic shut off includes a pair of knob sleeves each having an outer perimeter and a through hole. The through hole is configured to receive and secure a faucet knob. A pair of sleeve eyelets is coupled to the outer perimeter of the pair of knob sleeves. Each of a pair of extension springs has a sleeve hook end coupled to the pair of sleeve eyelets and a wall hook end. Each of the pair of extension springs has a rest position and an alternate stretched position. Each of a pair of eyelet screws has a spring eyelet and a threaded screw. The spring eyelet is coupled to the wall hook end of the pair of extension springs and the threaded screw is configured to mount into a wall adjacent the faucet knob.
US10760242B2 Blocks, block systems and methods of making blocks
A block, block system and method of making a wall block. Multiple block embodiments with multiple embodiments of a visually exposed surface having three dimensional shaped areas and three dimensional angular valleys or joints that can be used to construct a patio, wall, fence or the like; the multiple embodiments creating a more random and natural appearance.
US10760237B2 Method for optimizing processes for increasing the load-bearing capacity of foundation grounds
A method for optimizing processes for increasing the load-bearing capacity of foundation grounds includes the following steps: detecting at least one part of a built structure and/or of ground; identifying at least one region to be treated of the foundation ground; and injecting, at least one injection point located substantially within the at least one region to be treated, a cement and/or synthetic mixture. The method further includes at least one second step of detecting at least one part of the built structure and/or of the ground that lies above the injected foundation ground. The method further includes a step of interrupting the injection step, and measuring at least one physical parameter that is susceptible of varying as a consequence of the injection step.
US10760232B1 Dock leg with adjustable length and anti-rotation mechanism
An adjustable leg for use with a dock includes a tubular, lower member having a non-circular cross-section when taken normal to a longitudinal axis where the lower member has a first end and a second end. The lower member further includes a plate secured to the first end, the plate having a threaded through bore, and a disc secure to the plate. The disc has an elliptical aperture that is biased from the plate. The adjustable leg includes a tubular, upper member having a non-circular cross-section when taken normal to the longitudinal axis. The upper member is sized to be positioned over the lower member. The upper member further includes a threaded rod rotatably positioned within an interior cavity of the upper member, the threaded rod rotatably secured to the upper member. The threaded rod is configured to threadably engage the threaded bore and wherein the disc is configured engage the threaded rod and to place upward pressure on the threaded rod to prevent or reduce unwanted rotation of the rod.
US10760231B1 Inflatable water barrier assembly
An inflatable water barrier assembly includes a plurality of boundary units. Each of the boundary units can be linked together on a support surface to define a boundary around a selected area to inhibit flood water from entering the selected area. Each of the boundary units has a lower portion that is fluidly discrete from an upper portion. The lower portion is fillable with water to weighing down the boundary units. The upper portion of each of the boundary units is inflatable with air to inhibit the flood water from passing thereover. A plurality of anchors is engages a respective one of the boundary units. Each of the anchors penetrates a support surface to inhibit the respective boundary unit from being moved by flood water.
US10760230B2 Snow thrower
A snow thrower includes a motor, an auger driven by the motor to rotate, a handle device for a user to operate, an auger housing for containing the auger and a frame for connecting the handle device and the auger housing. The auger housing is made of at least two different materials.
US10760228B2 Road finisher with power adjusters for electric paving screed heating devices
A road finisher comprises a towing vehicle including a material hopper at a front in a paving travel direction for receiving paving material, and a paving screed which is pulled behind the towing vehicle in the paving travel direction for compacting paving material. A generator for providing electrical power is provided on the towing vehicle. A plurality of electric heating devices is provided on the paving screed for heating the paving screed. The road finisher further comprises a power distribution arrangement having a line network configured to supply the heating devices with power provided by the generator. The power distribution arrangement comprises a plurality of power adjusters provided on the paving screed and each power adjusted is associated with one of the heating devices. The road finisher comprises a control device configured to control the power adjusters to individually dynamically adjust the power supplied to the respectively associated heating device.
US10760223B2 Method for installation of system for paver support
A method for providing a system for supporting a layer of paver blocks, the method including excavating drain holes at a depth corresponding to at least a length of a corresponding drain pipe, forming a base by pouring high porosity non-compactable material into each drain hole of the at least three drain holes, inserting a drain pipe into a corresponding drain hole, filling a hollow of the drain pipe with a non-compactable material, placing a water permeable closure across the top opening of the drain pipe, pouring a concrete layer above the drain hole, and depositing a sand layer above the concrete layer, with the sand layer covering the top opening.
US10760222B2 System, method and appartus for in-situ, dynamic repair of a railroad
A device for in-situ, dynamic repair of a railroad can include two connected machines. A first one of machines can be a track lifting unit that can clamp the rails of the railroad and lift the track in its entirety out of its track bed. The first machine also can plow ballast away from and/or toward the rails, and level the track bed for the rails before they are lowered. In addition, the track lifting unit can remove selected railroad ties. The second machine can include a power unit that can provide hydraulic, pneumatic and electrical power to both machines. The power unit also can provide track stabilization by settling ballast and can free debris from the railroad while it is raised.
US10760221B2 Road rail stoneblower
The present disclosure generally relates to a road rail stoneblower vehicle for carrying out rail maintenance operations near fixed structures such as bridges and overpasses. The road rail stoneblower includes a hi-rail chassis having a first set of wheels configured to engage a road surface and a second set of wheels configured to engage surfaces of substantially parallel rails of a railroad track. The road rail stoneblower further includes a plurality of workheads that are capable of dispensing ballast stones into a bed of ballast underlying the railroad track to adjust the height of the rails. The road rail stoneblower further includes a leveling system detachedly coupled to the hi-rail chassis that is configured to transmit a detectable signal that defines a reference plane with which the rails are to be aligned. Related methods of operation of the road rail stoneblower vehicle and associated maintenance of ballast beds underlying railroad tracks are also described.
US10760220B2 Packaging material and method for making the same
A method for making a packaging material includes jetting a first pulp stock onto a wire to form a strength layer precursor including water; and softwood fibers, the first pulp stock excluding a water soluble di-valent or multi-valent salt. A second pulp stock is jetted onto a second wire to form an image layer precursor including water; hardwood fibers; and a water soluble di-valent or multi-valent salt present in an amount ranging from about 5 lb per ton of total fibers in the second pulp stock to about 50 lb per ton of the total fibers in the second pulp stock. The image layer precursor and the strength layer precursor are placed in contact. Water is removed from the image and strength layer precursors. The image layer precursor and the strength layer precursor are dried to form the packaging material including an image layer and a strength layer.
US10760218B2 Heat sealable coating with filler
A coating for paperboard includes polyethylene outer layers and a polyethylene inner layer with calcium carbonate filler. In addition to the lower cost, benefits include a surprising better heat sealing behavior compared with a coating of polyethylene alone.
US10760216B2 Starch-based PHCH
The invention relates to a process for preparing self-binding pigment particle suspensions, to a self-binding pigment particle suspension as well as to a paper product comprising self-binding pigment particles and to the use of the self-binding pigment particle suspension in paper applications, such as in paper coating or as filler material.
US10760211B2 Brass-plated steel wire for reinforcing rubber articles
This disclosure is to provide a brass-plated steel wire for reinforcing a rubber article, which is capable of improving the initial adhesiveness, heat-resistant adhesiveness and initial adhesion rate. This disclosure is a brass-plated steel wire for reinforcing a rubber article, wherein: when measured with XPS (X-ray photoelectron spectroscopy), an outermost surface contains zinc at an amount of 4.8 atom % or less, phosphorus at an amount of 0.5 atom % or more, and oxygen at an amount of 50 atom % or less; and in the outermost surface, an atomic ratio of copper to zinc is 1 to 6.
US10760210B2 Silicone-coated fabric
This invention provides a silicone-coated fabric for airbags in which creases can be easily formed by applying heat and pressure, that can be stored compactly, and that exhibits minimal damage on the coated layer when deployed. More specifically, the invention provides a silicone-coated fabric comprising a silicone-based resin coated on one surface of a synthetic fiber woven fabric, and a thermoplastic resin adhering to the silicone-based resin-coated surface, wherein the adhesive strength between the silicone-based resin-coated surfaces is 0.01 to 10 N/cm.
US10760204B2 Flatwork ironer
The flatwork ironer comprises a heating cylinder (1), a plurality of conveying bands (2), defining said conveying bands (2) a plurality of zones in an introduction area of articles to be ironed, and a plurality of temperature sensors (3) of said heating cylinder (1), indication means for indicating at least one zone (5) of the conveying bands where the articles to be ironed must be placed according to the temperature detected by said plurality of sensors (3), wherein said indicating means are placed in said are for introducing the articles to be ironed.It permits to place correctly the articles to be ironed in the correct position not looking away from the introduction area.
US10760197B2 Washing machine
Disclosed herein is a washing machine including an inner tub assembly for accommodating laundry, a pulsator rotatably provided to an inner lower portion of the inner tub assembly, a blade installed at a lower portion of the pulsator to be rotatable independently from the pulsator, the blade being configured to pump wash water to raise the wash water to an upper end of the inner tub assembly, a drive motor for providing rotational power to the pulsator and the blade, and a power transmission unit for transmitting power of the drive motor to the pulsator and the blade, respectively.
US10760195B2 Washing machine
A washing machine includes a cabinet; a tub disposed in the inside of the cabinet; at least one suspension apparatus configured to reduce vibrations of the tub, and to connect the tub to the cabinet such that the tub is supported on the cabinet; and a position guide apparatus having one end connected to the at least one suspension apparatus, and the other end connected to the tub, and configured to limit a movement range in horizontal direction of the tub.
US10760190B2 Method for knitting with a sock knitting needle
The present disclosure relates to a knitting needle for a knitting set for producing cross-sectionally round knitted products, having a first leg extending in a variable manner from a bendable shaft portion in a first extension direction to a first free end suitable for holding stitches, and a second leg extending in a variable manner from the bendable shaft portion in a second extension direction to a second free end suitable for holding stitches, wherein the free ends are in the form of rounded tips, and wherein the center of gravity of the knitting needle is arranged within the shaft portion, wherein the first extension direction and the second extension direction are at a variable angle to one another.
US10760188B2 Non-coated air bag fabric and air bag
Provided is a non-coated air bag fabric made from polyethylene terephthalate, and the fabric is woven using fibers containing polyethylene terephthalate as the main raw material, the fabric having a cover factor of 2300 or more, Z calculated using the equation below is 8200 or more, and a height difference between recesses and protrusions on the surface of the fabric is less than 130 μm. Z=cover factor/thickness (mm).
US10760186B2 Manufacture of bi-component continuous filaments and articles made therefrom
A bi-component continuous filament has a sheath-core arrangement including a first polymer component forming a sheath and including a polyamide, a polyolefin, or a polyester; a second polymer component forming a core and including a polyamide, a polyolefin, or a polyester; and a binding agent adhering the first polymer component to the second polymer component along a length of the filament such that the filament has a generally uniform cross-sectional shape along the length. The binding agent preferably includes a polyolefin modified by an acid anhydride. Articles made from such bi-component continuous filaments include, for example, bulk continuous filament (BCF) fibers and floor coverings, such as mats, rugs, and carpets.
US10760182B2 Method and device for marking fibrous materials
A method of marking fibers, wherein the method includes providing a plurality of fibers; depositing a marker onto at least a portion of the fibers, the depositing being performed with a delivery mechanism comprising one or more outlets; and thereby marking the fibers. Also provided is a device for marking fibers, including a transport system adapted to transport fibers in a direction of a marker delivery apparatus positioned along the transport system; the delivery apparatus includes one or more outlets, adapted to deposit a solution of the marker through the outlets onto at least a portion of the fibers; and thereby marking the fibers. Authentication of a fibrous material using the marking method of the invention followed obtaining a sample of the marked fibers and assaying the sample for the presence of the nucleic acid marker; and thereby determining whether the fibrous material is authentic or counterfeit.
US10760177B2 Plating method, plating apparatus, and method for estimating limiting current density
A plating method for plating a substrate by increasing a current value from a predetermined current value to a first current value is provided. The plating method plates the substrate for a first predetermined period with the first current value when a first current density corresponding to the first current value is lower than a limiting current density. This plating method includes measuring a voltage value applied to the substrate, and when the current value is increased from the predetermined current value to the first current value, determining whether the first current density is equal to or more than the limiting current density or not based on an amount of change in the voltage value.
US10760173B2 Ecologic method for the continuous chrome plating of bars and associated device
Method and plant for continuous chrome plating of metal bars, tubular elements and similar, wherein the bar to be chromed is made move forward fastly in a device of chrome plating without of tank of chrome plating including a plurality of anodic cells of chrome plating with tubular-torx shape, into which an electrolytic solution flows with high density of current, for forming on the bar a multi-layer chromium plating while the bar moves forward through the anodes-cells themselves, and wherein the device is characterized in feeding the electrolytic solution with a flow axially distributed and with a circulation of the electrolyte in a turbulent flow, controlled through the anode of chrome plating, said plant including furthermore many cooling stations of the bar by a jet of liquid with cryoscopic thermal step, the sealing of the bath is guaranteed by gaskets in plastic material which are reinforced by armonic steel springs.
US10760169B2 Bioelectrochemical biorefining for the conversion of hydrogenous matter to hydrogen gas and other useful products
A method for the substantially complete conversion of hydrogenous matter to higher value product, the method comprising: (i) subjecting the hydrogenous matter to a substantially complete deconstruction process in which an aqueous phase containing a multiplicity of deconstructed compounds is produced; and (ii) contacting the aqueous phase with an anode of a microbial electrolysis cell, the anode containing a community of microbes thereon which oxidatively degrade one or more of the oxygenated organic compounds in the aqueous phase to produce protons and free electrons at the anode, wherein the protons and free electrons are transported to the cathode to produce hydrogen gas or a valuable reduced organic compound at the cathode upon application of a suitable cell potential across the anode and cathode. The invention is also directed to an apparatus for practicing the method described above.
US10760168B2 Composite nanoparticles comprising a complexing ligand and methods of preparation thereof
The present invention is directed to composite nanoparticles comprising a metal, a rare earth element, and, optionally, a complexing ligand. The invention is also directed to composite nanoparticles having a core-shell structure and to processes for preparation of composite nanoparticles of the invention.
US10760163B2 Surface treatment method of aluminum for bonding different materials
Disclosed is a method of fabricating an aluminum alloy member for bonding different materials. The method may include etching the aluminum alloy member with one or more etching solutions, and forming one or more undercuts on a surface of the aluminum alloy member.
US10760162B2 Electroless copper plating polydopamine nanoparticles
Aqueous dispersions of artificially synthesized, mussel-inspired polydopamine nanoparticles were inkjet printed on flexible polyethylene terephthalate (PET) substrates. Narrow line patterns (4 μm in width) of polydopamine resulted due to evaporatively driven transport (coffee ring effect). The printed patterns were metallized via a site-selective Cu electroless plating process at a controlled temperature (30° C.) for varied bath times. The lowest electrical resistivity value of the plated Cu lines was about 6 times greater than the bulk resistivity of Cu. This process presents an industrially viable way to fabricate Cu conductive fine patterns for flexible electronics at low temperature, and low cost.
US10760158B2 Ex situ coating of chamber components for semiconductor processing
Forming a protective coating ex situ in an atomic layer deposition process to coat one or more chamber components subsequently installed in a reaction chamber provides a number of benefits over more conventional coating methods such as in situ deposition of an undercoat. In certain cases the protective coating may have a particular composition such as aluminum oxide, aluminum fluoride, aluminum nitride, yttrium oxide, and/or yttrium fluoride. The protective coating may help reduce contamination on wafers processed using the coated chamber component. Further, the protective coating may act to stabilize the processing conditions within the reaction chamber, thereby achieving very stable/uniform processing results over the course of processing many batches of wafers, and minimizing radical loss. Also described are a number of techniques that may be used to restore the protective coating after the coated chamber component is used to process semiconductor wafers.
US10760156B2 Copper manganese sputtering target
A method of forming a high strength copper alloy. The method comprises heating a copper material including from about 2 wt. % to about 20 wt. % manganese by weight of the copper material to a temperature above 400° C., allowing the copper material to cool to a temperature from about 325° C. to about 350° C. to form a cooled copper material, and extruding the cooled copper material with equal channel angular extrusion to form a cooled copper manganese alloy.
US10760151B2 Galvanically-active in situ formed particles for controlled rate dissolving tools
A castable, moldable, and/or extrudable structure using a metallic primary alloy. One or more additives are added to the metallic primary alloy so that in situ galvanically-active reinforcement particles are formed in the melt or on cooling from the melt. The composite contain an optimal composition and morphology to achieve a specific galvanic corrosion rate in the entire composite. The in situ formed galvanically-active particles can be used to enhance mechanical properties of the composite, such as ductility and/or tensile strength. The final casting can also be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final composite over the as-cast material.
US10760142B2 High-strength steel sheet and method for manufacturing the same
Provided are a high-strength steel sheet and a method for manufacturing the steel sheet. The high-strength steel sheet has a specified chemical composition with the balance being Fe and inevitable impurities, a microstructure including, in terms of area ratio, 30% or more of a ferrite phase, 40% to 65% of a bainite phase and/or a martensite phase, and 5% or less of cementite, in which, in a surface layer that is a region within 50 μm from the surface in the thickness direction, the area ratio of a ferrite phase is 40% to 55% and the total area ratio of a bainite phase having a grain diameter of more than 5 μm and/or a martensite phase having a grain diameter of more than 5 μm is 20% or less, and a tensile strength is 980 MPa or more.
US10760141B2 Grain-oriented electrical steel sheet and manufacturing method of grain-oriented electrical steel sheet
An oriented electrical steel sheet includes Ba at about 0.005 wt % to about 0.5 wt % inclusive, Y at about 0.005 wt % to about 0.5 wt % inclusive, or a composite of Ba and Y at about 0.005 wt % to about 0.5 wt % inclusive, the remainder including Fe and impurities, based on 100 wt % of a total composition of a base steel sheet thereof.
US10760139B2 Method for repairing defects on hot parts of turbomachines through hybrid hot isostatic pressing (HIP) process
In a hot isostatic pressing (HIP) method, the component to be treated, affected by imperfections, like porosity, cracks and cavities in its structure, is placed into a container together with non-metallic material in form of powder or grains having size greater than the porosity and the cracks and imperfections of the component. During the HIP process, the non-metallic material presses on the whole surface of the embedded component in order to generate a combination of temperature and forces capable to reduce defects, embedded and not embedded, in the component itself. The component is not contaminated during the process thus allowing easily removal of the non-metallic material by a simple operation of mechanical cleaning or chemical washing.
US10760138B2 Methods and systems for processing a sucrose crop and sugar mixtures
A method comprising: (a) providing a partially processed sucrose crop product containing at least 2% optionally at least 5% of the sucrose content of said crop at harvest on a dry solids basis, cellulose and lignin; (b) hydrolyzing said partially processed crop product with HCl to produce an acid hydrolyzate stream and a lignin stream; and (c) de-acidifying said hydrolyzate stream to produce a de-acidified sugar solution and an HCl recovery stream. Additional, methods, systems and sugar mixtures are also disclosed.
US10760137B2 Compositions and methods for detection of Babesia
Methods for the rapid detection of the presence or absence of Babesia in a biological or non-biological sample are described. The methods can include performing an amplifying step, a hybridizing step, and a detecting step. Furthermore, primers and probes targeting Babesia and kits are provided that are designed for the detection of Babesia, including, but not limited to, the Babesia species of B. microti, B. divergens, B. duncani, and B. venatorum. Also described are kits, reaction mixtures, and oligonucleotides (e.g., primer and probe) for the amplification and detection of Babesia.
US10760132B2 Methods for diagnosing prostate cancer and predicting prostate cancer relapse
The present invention relates to methods and compositions for diagnosing prostate cancer and/or determining whether a prostate cancer patient is at increased risk of suffering a relapse, or a rapid relapse, of his cancer. It is based, at least in part, on the results of a comprehensive genome analysis on 241 prostate cancer samples (104 prostate cancer, 85 matched bloods, 49 matched benign prostate tissues adjacent to cancer, and 3 cell lines) which indicate that (i) genome copy number variation (CNV) occurred in both cancer and non-cancer tissues, and (ii) CNV predicts prostate cancer progression.
US10760129B2 Th17 differentiation markers for acne and uses thereof
A method is described for using ROR gamma t or ROR alpha to diagnose acne and/or to screen inhibitors of Th17 differentiation. Specifically described, are methods of inhibiting ROR gamma t or ROR alpha and use of the screened inhibitors in acne treatment.
US10760126B2 Detection of RNA-interacting regions in DNA
The present invention provides methods and kits for detecting RNA-interacting regions in genomic DNA.
US10760122B2 Hybrid nanopores and uses thereof for detection of analytes
The invention relates to a hybrid structure comprising perforated solid substrate having at least one nanopore perforating therethrough, and devices and uses thereof.
US10760116B2 Analysis kit, analyzer, and methods for analyzing template nucleic acid or target substance
The present invention provides a method for analyzing a template nucleic acid, a method for analyzing a target substance, an analysis kit for a template nucleic acid or a target substance, and an analyzer for a template nucleic acid or a target substance, which are excellent in accuracy. The method for analyzing a template nucleic acid of the present invention includes the steps of: fractionating a sample containing a template nucleic acid into a plurality of template nucleic acid fractions; amplifying a target sequence and its complementary sequence in the template nucleic acid with respect to each of the plurality of template nucleic acid fractions in the presence of a nucleic acid amplification reagent; detecting generation or quenching of a signal that shows an amplification of the target sequence or the complementary sequence with respect to each of the plurality of template nucleic acid fractions after the amplification step; and discriminating a template nucleic acid fraction in which the generation or quenching of a signal that shows the amplification has been detected among the plurality of template nucleic acid fractions as an amplified fraction in which the target sequence or the complementary sequence has been amplified, wherein the nucleic acid amplification reagent contains a primer set that amplifies the target sequence and the complementary sequence and a signal generating substance that generates or quenches a signal in response to the amplification, and the signal generating substance generates a signal in a state where it is bound sequence-dependently and quenches a signal in a state where it is not bound or quenches a signal in a state where it is bound sequence-dependently and generates a signal in a state where it is not bound, and generation and quenching of a signal are reversible.
US10760115B2 Specimen disrupting method and specimen disrupting apparatus
A specimen disrupting apparatus includes: a drive unit that rotates the lower portion of a container having a solution that includes a specimen, a great number of small diameter beads, and a large diameter bead stored therein; and a control unit that controls the drive unit. The control unit controls the drive unit such that the lower portion of the container rotates at two or more different rotational speeds which are changed continuously.
US10760114B2 Methods for delivering an analyte to transmembrane pores
The invention relates to a new method of delivering an analyte to a transmembrane pore in a membrane. The method involves the use of microparticles.
US10760108B2 Modified RNA polymerase sigma factor 70 polypeptide
The present invention relates to a novel variant RNA polymerase sigma factor 70 (π70) polypeptide, a polynucleotide encoding the same, a microorganism containing the polypeptide, and a method for producing L-threonine by using the microorganism.
US10760106B2 Variant thioesterases and methods of use
The present invention relates to variant thioesterases and their use in plants, e.g., to increase enzymatic activity and to promote increased production of mid-chain length fatty acids (e.g., 8 to 14 carbons) and at desired ratios. Further disclosed herein are methods of manufacturing renewable chemicals through the manufacture of novel triglyceride oils followed by chemical modification of the oils. Oils containing fatty acid chain lengths of C8, C10, C12 or C14 are also disclosed and are useful as feedstocks in the methods described herein.
US10760097B2 CMV glycoproteins and recombinant vectors
Disclosed herein are recombinant CMV vectors which may comprise a heterologous antigen that can repeatedly infect an organism while inducing a CD8+ T cell response to immunodominant epitopes of the heterologous antigen. The CMV vector may comprise a deleterious mutation in the US11 glycoprotein or a homolog thereof.