Document | Document Title |
---|---|
US10750324B2 |
Mixed-mode wireless scanner
An electronic scanning apparatus comprises a first wireless receiver configured to receive a first data. A second wireless receiver configured to initially be in a disabled mode. The second wireless receiver is enabled to receive a second data in response to reception of the first data by the first wireless receiver. The second wireless receiver returns to the disabled mode in response to receiving the second data. A processing module is coupled to the first wireless receiver and the second wireless receiver. A networking interface is coupled to the processing module. The networking interface is configured to receive the first data and the second data from the processing module and to transmit the first data and the second data to an external server. A Smart Tag includes both a first wireless receiver and a second wireless receiver. |
US10750322B2 |
Mobile device resident vehicle zone tracking
Values may be tracked from wireless sensors of a vehicle indicative of distance between the mobile device and the sensors. When the values over time indicate approach and then departure of the device to a first side of the vehicle and consistent approach of the device to a second side of the vehicle, the device may be associated with a seating zone of an identified closest pair of the sensors. Wireless sensors may be proximate to entrances to a vehicle. The vehicle may track values from the sensors indicative of distance between a mobile device and the sensors; calculate pair values as sums of the values received from pairs of the sensors proximate vehicle entrances; and identify one of the entrances through which the mobile device passed according to the pair value with a minimum value closest to a distance between the pair of the sensors. |
US10750318B2 |
Positioning system and positioning method thereof
A positioning method including following steps is provided. Firstly, several base stations are commanded to detect a tracked object. Then, a first position of the tracked object is obtained according to the first return information. Then, several fixed-type signal transceivers are selected according to the first position. Then, the selected fixed-type signal transceivers are commanded to detect the tracked object, and a second position of the tracked object is obtained according to the second return information received from the fixed-type signal transceivers. |
US10750317B2 |
Mobile application and system for associating actions with independent geographic locations
A mobile application executable on at least one mobile device for associating actions with a plurality of independent geographic locations and a system for implementing the actions are provided. The system and mobile application carry out a method including the steps of configuring a graphical user interface to include a map and requesting the user to select a designated pin location. The system includes a main controller configured to communicate with the at least one mobile device and initiate the actions based on the location of the at least one mobile device relative to the plurality of independent geographic locations. At least one database is in communication with the main controller and accessible to the mobile and away services module for storing data related to the actions associated with the plurality of independent geographic locations and the at least one mobile device. |
US10750312B2 |
System and method for monitoring devices relative to a user defined geographic area
The present invention relates generally to providing a system and method for monitoring devices relative to a user defined geographic area using an enablement platform for building web sites and web applications using data storage, management and publication capabilities of hosted web services. The system and method for monitoring M2M devices relative to a user defined geographic area (geofence) are built on existing AerCloud concepts by allowing user to define location attributes and by using the user defined location attributes to configure and evaluate geofence parameters and issue alerts if the devices are performing outside the geofence parameters. |
US10750310B2 |
Temporary location sharing group with event based termination
A system for exchanging GPS or other position data between wireless devices for purposes of group activities, child location monitoring, work group coordination, dispatching of employees etc. Cell phones and other wireless devices with GPS receivers have loaded therein a Buddy Watch application and a TalkControl application. The Buddy Watch application communicates with the GPS receiver and other wireless devices operated by buddies registered in the users phone as part of buddy groups or individually. GPS position data and historical GPS position data can be exchanged between cell phones of buddies and instant buddies such as tow truck drivers via a buddy watch server. Emergency monitoring services can be set up with notifications to programmable individuals in case an individual does not respond. Positions and tracks can be displayed. TalkControl simplifies and automates the process of joining talk groups for walkie talkie services such as that provided by Nextel. |
US10750309B2 |
Ad hoc location sharing group establishment for wireless devices with designated meeting point
A system for exchanging GPS or other position data between wireless devices for purposes of group activities, child location monitoring, work group coordination, dispatching of employees etc. Cell phones and other wireless devices with GPS receivers have loaded therein a Buddy Watch application and a TalkControl application. The Buddy Watch application communicates with the GPS receiver and other wireless devices operated by buddies registered in the users phone as part of buddy groups or individually. GPS position data and historical GPS position data can be exchanged between cell phones of buddies and instant buddies such as tow truck drivers via a buddy watch server. Emergency monitoring services can be set up with notifications to programmable individuals in case an individual does not respond. Positions and tracks can be displayed. TalkControl simplifies and automates the process of joining talk groups for walkie talkie services such as that provided by Nextel. |
US10750307B2 |
Crosstalk cancellation for stereo speakers of mobile devices
Described herein is a technology related to a mobile device with a pair of stereo speakers. The mobile device has an orientation detection system that detects the orientation of the mobile device and a crosstalk cancellation system that performs crosstalk cancellation with complementary cardioid beams in response to the detected orientation of the mobile device. The mobile device also has an audio system that emits complementary cardioid sound beams from the speakers. |
US10750306B2 |
Reverberation generation for headphone virtualization
The present disclosure relates to reverberation generation for headphone virtualization. A method of generating one or more components of a binaural room impulse response (BRIR) for headphone virtualization is described. In the method, directionally-controlled reflections are generated, wherein directionally-controlled reflections impart a desired perceptual cue to an audio input signal corresponding to a sound source location. Then at least the generated reflections are combined to obtain the one or more components of the BRIR. Corresponding system and computer program products are described as well. |
US10750303B2 |
Spatial audio correction
Example techniques may involve performing aspects of a spatial calibration. An example implementation may include detecting a trigger condition that initiates calibration of a media playback system including multiple audio drivers that form multiple sound axes, each sound axis corresponding to a respective channel of multi-channel audio content The implementation may also include causing the multiple audio drivers to emit calibration audio that is divided into constituent frames, the multiple sound axes emitting calibration audio during respective slots of each constituent frame. The implementation may further include recording the emitted calibration audio. The implementation may include causing delays for each sound axis of the multiple sound axes to be determined, the determined delay for each sound axis based on the slots of recorded calibration audio corresponding to the sound axes and causing the multiple sound axes to be calibrated. |
US10750301B2 |
Normalization fitting method
A method, including obtaining data indicative of respective perceived loudness levels for a plurality of hearing percepts respectively evoked at different current levels, and creating a map for the hearing prosthesis based on the obtained data by adjusting at least one of the respective current levels based on data of a respective perceived loudness for another current level. |
US10750296B2 |
Hearing instrument comprising switched capacitor DC-DC converter
The present disclosure relates to a hearing instrument comprising a rechargeable battery source providing a battery supply voltage and a switched capacitor DC-DC converter comprising a DC input coupled to the battery supply voltage for converting the battery supply voltage into a higher or lower DC output voltage. The hearing instrument comprises at least one active circuit connected to the DC output voltage for energizing active components of the at least one active circuit. |
US10750287B2 |
Evacuation of liquid from acoustic space
An acoustic module, such as a microphone or speaker module, includes an acoustic membrane that vibrates to produce acoustic waves and an acoustic cavity through which acoustic waves produced by the membrane travel. A liquid removal mechanism removes liquid from the acoustic cavity. Such a liquid removal mechanism may include the acoustic membrane, heating elements, hydrophobic and/or hydrophilic surfaces, and so on. In some cases, the liquid removal mechanism may remove liquid from the acoustic cavity upon connection of the acoustic module and/or an associated electronic device to an external power source. |
US10750284B2 |
Techniques for presenting sound effects on a portable media player
Improved techniques for presenting sound effects at a portable media device are disclosed. The sound effects can be output as audio sounds to an internal speaker, an external speaker, or both. In addition, the audio sounds for the sound effects can be output together with other audio sounds pertaining to media assets (e.g., audio tracks being played). In one embodiment, the sound effects can serve to provide auditory feedback to a user of the portable media device. A user interface can facilitate a user's selection of sound effect usages, types or characteristics. |
US10750282B2 |
Acoustic perimeter for reducing noise transmitted by a communication device in an open-plan environment
The amount of far-field noise transmitted by a primary communication device in an open-plan office environment is reduced by defining an acoustic perimeter of reference microphones around the primary device. Reference microphones generate a reference audio input including far-field noise in the proximity of the primary device. The primary device generates a main audio input including the voice of the primary speaker as well as background noise. Reference audio input is compared to main audio input to identify the background noise portion of the main audio signal. A noise reduction algorithm suppresses the identified background noise in the main audio signal. The one or more reference microphones defining the acoustic perimeter may be included in separate microphone devices placed in proximity to the main desktop phone, microphones within other nearby desktop telephone devices, or a combination of both types of devices. |
US10750281B2 |
Sound source separation apparatus and sound source separation method
Provided are a sound source separation apparatus and a sound source separation method. The sound source separation apparatus includes a plurality of directional vibrators configured such that one or more of the plurality of directional vibrators react to a sound based on a direction of the sound. The sound source separation apparatus is configured to determine directions of a first sound source and a second sound source that are different from each other, based on strengths of output signals of the plurality of directional vibrators, and select a first directional vibrator and a second directional vibrator that are different from each other from among the plurality of directional vibrators to separately obtain a sound coming from the first sound source and a sound coming from the second sound source. |
US10750280B2 |
Sound system
This sound system includes a plurality of sound devices connected via a network, each sound device including: an audio acquirer; a sound source localizer that performs sound source localization; a sound source information exchanger that acquires sound source information relating to the audio acquired by another device; a sound source determiner that determines, when a sound source in the sound source information coincides with the sound source specified by the sound source localizer, whether or not a second sound pressure level of the sound source in the sound source information is higher than a first sound pressure level of the sound source specified by the sound source localizer; and a filter processor that performs filter processing of the audio of the sound source specified by the sound source localizer when the second sound pressure level is higher than the first sound pressure level. |
US10750279B2 |
Signal processing device and signal processing method for detection of direction of movement of a region
Provided is a signal processing device including a plurality of sound collection units that is arranged at given positions, and a detection unit configured to detect, from respective sounds that have occurred in accordance with a movement of a region to which attachment is performed and have been collected by the sound collection units, a direction of the movement of the region. |
US10750278B2 |
Adaptive bass processing system
An effective and simple psychoacoustic bass generation system generates a harmonic signal having inter-modulation controllable to remain below a threshold level and includes a high-pass filter configured to pass harmonics which are reproducible with fidelity by the loudspeaker or other transducer and a loudness matching block configured to compensate the loudness of the desired harmonics to match the loudness of the original signal. |
US10750270B2 |
Method and system for audio sharing
The present invention provide a method and system of audio sharing aimed to revolutionize the way people listen and share music and to give multiple uses to a wireless headphone referred to as HEDphone. A communication protocol referred to as HEDtech protocol is used in a HED system to allow users to share music amongst a plurality of HEDphones while using a single audio source. A wireless connection is established between the HEDphone and a mobile device including an audio source while simultaneously having the capability of allowing other HEDphone users to join wirelessly and listen to the same audio source. A feature of Super Human Hearing (SHH) goes beyond conventional ANR (ambient noise reduction) with additional features that allow the user to control their aural environment by being able to directionally increase or decrease selective frequencies. |
US10750268B2 |
Capacitive wireless charging for wireless earbuds
A case for a pair of earbuds including a housing having first and second cavities formed within the housing, the first cavity configured to receive a first earbud in the pair of earbuds and the second cavity configured to receive a second earbud in the pair of earbuds; a lid attached to the housing; a first pair of electrodes positioned within the housing adjacent to the first cavity; a second pair of electrodes positioned within the housing adjacent to the second cavity; and charging circuitry coupled to the first and second pairs of electrodes, the charging circuitry including a high frequency inverter configured to receive a DC power signal and output a high frequency AC signal to each of the first and second pairs of electrodes. |
US10750267B2 |
Earplug apparatus and electronic apparatus
An earplug apparatus and an electronic apparatus are provided. The earplug apparatus includes: a biological feature detection module, the biological feature detection module being arranged in the earplug apparatus and being configured to be fit in a region enclosed by an outer ear canal and an ear canal entrance; wherein the biological feature detection module comprises a light emitting unit and a light receiving unit, wherein the light emitting unit is configured to emit light to the enclosed region, the light emitted by the light emitting unit is processed by an ear tissue in the enclosed region and transmitted to the light receiving unit, and the light receiving unit is configured to convert the received light photoelectrically to generate an original electrical signal for biological feature detection. In this way, the entire size of the final product is small, and wearing comfort is enhanced. |
US10750265B1 |
Smart speaker with fragrance dispenser
The present invention provides a smart speaker with fragrance dispenser. A housing is disposed below a lid. One or more air outlet, one or more air inlet, and one or more sound outlet are disposed on one side of the housing. A fragrance module is disposed on the inner side of the housing for outputting fragrance. A speaker and the fragrance module are disposed separately. A dot-matrix display is disposed on one side of the speaker. The speaker outputs sound and the dot-matrix display outputs light. A processor is disposed below the speaker and connected electrically to the fragrance module, the speaker, and the dot-matrix display for controlling the output of fragrance, sound, and light. The present invention further adopts a limiting member so that the lid can rotate and slide on the fragrance module. |
US10750258B1 |
Virtual node port based virtual fabric support
Embodiments of the present invention include systems and methods for transmitting data in a fibre channel (FC) network. The system includes a gateway that has: a port at which a plurality of data frames that are transmitted from a plurality of virtual node (VN) ports in a server are received, where data frames from at least two of the plurality of VN ports are related to different virtual fabrics (vfabrics) of a FC network. |
US10750255B2 |
Segment routing for optical networks
Aspects of the disclosure involve a source node, having some predetermined knowledge of the optical network generating a list of nodes and/or optical links between nodes that form a route in the optical network from the source node to the destination node. The nodes in the optical network do not necessarily need to know the entire route from source node to destination node. Each node simply decodes the control information identifying the next hop in the route towards the destination node. By utilizing the decoded control information identifying the next hop, a switch in the node can be controlled to route the optical signal including the payload and some or all of the control information onto the next optical link toward the destination node. |
US10750252B2 |
Identifying device state changes using power data and network data
Devices state changes in a building may be determined using a combination of power monitoring and network monitoring. Power monitoring may be performed by obtaining a power monitoring signal and processing the power monitoring signal with models to determine information about state changes of one or more devices in the building. Network monitoring may be performed by receiving information about network packets transmitted by a device in the building and processing the information about the network packets to determine information about a different device or a state change of a different device in the building. For some devices and some implementations, information about state changes of a device may be determined by using both power monitoring and network monitoring. |
US10750251B2 |
Information providing apparatus, information providing method, and storage medium
Provided is an information providing apparatus (10) including a reliability determination unit (11) that determines a reliability of an inference result obtained by inferring an operation state of a monitored electric device group, on the basis of time-series measurement data and training data, the time-series measurement data including any one of current consumption and power consumption of the monitored electric device group and the training data associating each of a plurality of the operation states which can be assumed by the electric device group with a feature value of each of the plurality of operation states, and an output unit (12) that outputs information related to the reliability. |
US10750244B2 |
Suggestive content based on habit
Suggestions for content are based on a habit of a user. As the user requests content, content selections are monitored for habitual selections according to channels, titles, or genres. A programming guide may then be customized based on the habitual selections. |
US10750238B1 |
Correlating playback information of video segments
Correlating information associated with playback of video segments is disclosed. Information associated with playback of a first video segment is obtained. Information associated with playback of a second video segment is obtained. The information associated with playback of the first video segment is correlated with the information associated with playback of the second video segment based at least in part on at least one of a client application identifier, a video session identifier, and a set of timestamps. Output is provided based at least in part on the correlating. |
US10750237B2 |
Apparatus, systems and methods for accessing information based on an image presented on a display
Systems and methods are operable to control operation of a portable media device based on machine readable information of a graphical artifact shown on a display concurrently with presentation of a video portion of a media content event. A portable media device, using a portable media device provisioned with an image capture device, captures at least one image that includes the display that is presenting the graphical artifact and the video portion of the media content event, identifies the graphical artifact in the captured at least one image, determines the machine readable data based on the identified graphical artifact, and operates the portable media device to perform at least one operation based on the determined machine readable data. |
US10750235B2 |
Multi-interface streaming media system
A streaming media device includes a printed circuit board hosting components configured to access internet data. An audio/visual connector is linked to the printed circuit board, wherein the audio/visual connector is adapted for connection to an audio/visual device, wherein the audio/visual connector is adapted to operate with a first audio/visual interface having sufficient power to fully operate the printed circuit board and a second audio/visual interface having insufficient power to fully operate the printed circuit board. A power connector is linked to the printed circuit board, wherein the power connector selectively receives power based on the audio/visual connector utilizing one of the first audio/visual interface and the second audio/visual interface. |
US10750233B2 |
Recording apparatus, recording method, and program
The present technology relates to a recording apparatus, a recording method, and a program capable of avoiding a buffer overflow at the time of reproduction.Each packet is separated from a packet string, and information indicating an arrival timing of each packet is output. The packet is divided into divided packets having a size which does not cause a buffer overflow, and a packet arrival time of each divided packet is embedded in a header of the divided packet. The present technology is applied to the recording apparatus. |
US10750221B2 |
Data processing apparatus and data processing method
The present technology relates to a data processing apparatus and a data processing method that enable correct clock synchronization by use of clock information. The data processing apparatus receives a digital broadcast signal so as to process content included in the digital broadcast signal and clock information also included therein for use in presentation synchronization on the content and sends via a transmission path the processed content and clock information to another data processing apparatus that presents the received content. On the other hand, the another data processing apparatus receives via the transmission path the content and clock information sent from the data processing apparatus so as to process presentation synchronization on the received content on the basis of the received clock information. The present technology is applicable to data processing apparatuses configured to process content, for example. |
US10750218B2 |
Network management, monitoring, and flow control
A data analyzer engine receives feedback associated with delivery of content (such as streaming content) to multiple subscriber domains in a cable network environment. The data analyzer engine analyzes the feedback to identify attributes of current content consumption by playback devices operated in the subscriber domains. Based on the analyzed feedback, the data analyzer engine produces control information specifying data flow control rates in which the playback devices are assigned to retrieve content over a shared communication link in the cable network environment. Accordingly, data flow rates in a network environment (such as a subscriber domain) can be controlled to promote fairness and optimal use of available bandwidth amongst multiple playback devices sharing a respective communication link. |
US10750215B2 |
Method and device for transmitting metadata in WFD
A method and a device for transmitting metadata in a WFD are provided. Particularly, a WFD source forms a WFD frame including a WFD header and metadata. The WFD source transmits, to a WFD sink, a packet stream created by packetizing a metadata stream including the WFD frame. The WFD header includes a metadata structure field and a metadata update indicator. The metadata structure field indicates whether the metadata has a video metadata structure or an audio metadata structure. The metadata update indicator indicates that previous metadata is updated such that all of the previous metadata is replaced with new metadata, or that the previous metadata is incrementally updated together with updated metadata. |
US10750212B2 |
Dynamic digital object placement in video stream
Techniques and mechanisms described herein facilitate providing dynamic digital object placement in a video stream. An exchange network for engagements within video streaming content is maintained, and a number of engagement entities and content providers are connected to the exchange network. An engagement proposal is received from an engagement entity in the exchange network, containing media assets for an engagement and proposed engagement information. Content provider requirements are also received from a content provider in the exchange network, containing content provider requirements and one or more engagement surfaces associated with a video stream. The exchange network determines that the received engagement proposal matches the received content provider requirements. Once the exchange network matches the two entities, the media assets from the engagement entity are dynamically inserted into the video stream published by the content provider by mapping the media assets to the one or more engagement surfaces. |
US10750211B2 |
Video-segment identification systems and methods
Summarization segments of an encoded video can be efficiently identified, without the need to decode the encoded video to obtain image data, by analyzing encoded-buffer-size deltas, each indicating an encoded-buffer-size difference between a pair of intra-coded frames of an encoded video. |
US10750209B1 |
Live video streaming based on an environment-related trigger
In certain embodiments, streaming of a live video to trigger-associated recipients in response to triggers in an environment may be facilitated. In some embodiments, one or more triggers may be detected in an environment, and one or more actions associated with the detected triggers may be performed. As an example, where such associated actions include streaming a live video of the environment to one or more recipients, the recipients may be selected as candidates to receive the live video stream based on the recipients being part of a recipient list associated with a detected trigger. In some embodiments, although a first recipient of the recipient list may initially be selected to receive the live video stream, the live video may be streamed to a second recipient of the recipient list based on the first recipient being unavailable to receive the live video stream. |
US10750207B2 |
Method and system for providing real-time video solutions for car racing sports
Techniques, systems, and devices are disclosed for capturing and delivering real-time racing videos when a race car travels around a racetrack. The disclosed systems and techniques are designed to capture racing video signals both from the vantage point of the race car itself and using a set of cameras installed around the racetrack. The captured racing videos and racing metadata can be uploaded or streamed live to a server as the race car travels around a racetrack by connecting the race car to a nearby or the closest Wi-Fi hotspot to the race car within a set of Wi-Fi hotspot placed around the racetrack. The uploaded multiple channels of racing video signals can be combined with racing metadata collected from the race car to generate “meta-video” packages which can be automatically delivered in multiple formats. |
US10750206B2 |
Method for encoding and decoding images, device for encoding and decoding images, and corresponding computer programs
A method for encoding at least one image split into blocks. The method includes, for a current block to be encoded from the image, at least one modification of two data points in the block via an operation of linear combinations operating on the two data points, at the end of which a modified block is obtained, application of a separable transform operation to the data points in the modified block, and encoding the data points obtained after application of the separable transform operation. |
US10750205B2 |
Selective use of start code emulation prevention
Approaches to selectively using start code emulation prevention (“SCEP”) on encoded data for media content are described herein. For example, a media encoder selectively performs SCEP processing on encoded data for media content, and sets a value of a syntax element that indicates whether or not to perform SCEP processing on the encoded data. The encoder stores the encoded data for output as part of a bitstream, where the syntax element is signaled in association with the bitstream. A media decoder receives the encoded data, determines, from the value of the syntax element, whether or not to perform SCEP processing on the encoded data, and selectively performs SCEP processing on the encoded data. In this way, the computational cost of scanning operations for SCEP processing can be avoided in many scenarios, and bit rate increases due to insertion of SCEP bytes can be limited. |
US10750203B2 |
Method and apparatus of adaptive bi-prediction for video coding
Method and apparatus of video coding using generalized bi-prediction are disclosed. According to one method, the generalized bi-prediction is extended for Decoder-Side Motion Vector Refinement (DMVR), where unequal weighting factor pair is allowed to form the template of the current block or the final predictor. In another method, the generalized bi-prediction is extended to pattern-based MV derivation (PMVD), where unequal weighting factor pair is allowed to combined reference blocks pointed by motion vectors derived based on PMVD. In yet another method, the generalized bi-prediction is used for Merge mode. When the final Merge MVP selected corresponds to bi-prediction using an unequal weighting factor pair, a new weighting factor pair is derived using neighboring reconstructed pixels of the current block and corresponding motion compensated pixels. In yet another method, the size of a set of weighting factor pairs is dependent on block size. |
US10750200B2 |
Encoding method, decoding method, encoder, and decoder
Disclosed is an intraframe prediction method, wherein for an intraframe predicted block in an interframe predicted frame, when an interframe predicted blocks exists on the lower right of the intraframe predicted block, a coding and decoding sequence of intraframe and interframe blocks is adjusted, and intraframe prediction is performed in a lower right intraframe prediction approach, i.e., performing prediction using the lower right reconstructed pixel value as the reference pixel point for the intraframe predicted block; at the coding procedure, each coded unit is first coded, and upon completion of the coding, information of all interframe predicted blocks is written into a code stream; next, two-pass coding is performed to the intraframe predicted block; lower right intraframe coding is performed during the two-pass coding process; after completion of the two-pass coding, the information of the intraframe predicted block is written into the code stream; at the decoding procedure, decoding of all interframe predicted blocks is first completed; then, lower right intraframe decoding is performed to the intraframe predicted blocks. The present disclosure may improve the intraframe prediction accuracy and enhance the coding efficiency of the intraframe predicted block in the interframe predicted frame. |
US10750194B2 |
Scalable video coding using reference and scaled reference layer offsets
A process for determining the selection of filters and input samples is provided for scalable video coding. The process provides for re-sampling using video data obtained from an encoder or decoder process of a base layer (BL) in a multi-layer system to improve quality in Scalable High Efficiency Video Coding (SHVC). In order to accommodate other applications such as interlace/progressive scalability and to increase the resolution of the alignment between layers, it is proposed that the phase offset adjustment parameters be signaled. |
US10750191B2 |
Coding of significance maps and transform coefficient blocks
A higher coding efficiency for coding a significance map indicating positions of significant transform coefficients within a transform coefficient block is achieved by the scan order by which the sequentially extracted syntax elements indicating, for associated positions within the transform coefficient block, as to whether at the respective position a significant or insignificant transform coefficient is situated, are sequentially associated to the positions of the transform coefficient block, among the positions of the transform coefficient block depends on the positions of the significant transform coefficients indicated by previously associated syntax elements. Alternatively, the first-type elements may be context-adaptively entropy decoded using contexts which are individually selected for each of the syntax elements dependent on a number of significant transform coefficients in a neighborhood of the respective syntax element, indicated as being significant by any of the preceding syntax elements. |
US10750190B2 |
Video decoding method and device in video coding system
According to the present invention, a method by which a decoding device performs video decoding comprises the steps of: parsing a merge index of a current block; configuring a merge candidate list on the basis of neighboring blocks; selecting a merge candidate indicated by the merge index among merge candidates included in the merge candidate list; deriving L0 motion information and L1 motion information of the current block on the basis of the selected merge candidate; deriving an L0 weight and an L1 weight of the current block; and generating a prediction sample of the current block by weighted-summing an L0 reference sample and an L1 reference sample on the basis of the L0 weight and the L1 weight. |
US10750186B2 |
Information processing apparatus and information processing method for coding
An information processing apparatus includes a processor. the processor determines a sign of a first value on a basis of a result of an operation of a sum of products of a plurality of color-difference residuals and a plurality of luminance residuals, and calculates the first value on a basis of a first product of a sum of luminance residuals that are negative values among the plurality of luminance residuals and a constant when the sign of the first value is determined to be positive, and calculates the first value on a basis of a second product of a sum of luminance residuals that are positive values among the plurality of luminance residuals and the constant when the sign of the first value is determined to be negative. |
US10750185B2 |
High speed scalable video coding device and method using multi-track video
The present disclosure relates to a Scalable Video Coding (SVC) video decoding method, including receiving a bit stream for layer videos, determining an encoding mode information and a prediction information for a macroblock of a lower layer video from among the layer videos; performing prediction of the macroblock of the lower layer video by using the encoding mode information and the prediction information for the macroblock of the lower layer video, obtaining an encoding mode information for a macroblock of a upper layer video from among the layer videos, determining a prediction information of the macroblock of the upper layer video based on a macroblock of the lower layer video which is corresponding to the macroblock of the upper layer video, and performing inter-layer prediction of the macroblock of the upper layer video by using the encoding mode information and the prediction information for the upper layer video. |
US10750184B2 |
Image decoding method, image coding method, image decoding apparatus, image coding apparatus, and image coding and decoding apparatus
The image decoding method includes: determining a context for use in a current block to be processed, from among a plurality of contexts; and performing arithmetic decoding on a bit sequence corresponding to the current block, using the determined context, wherein in the determining: the context is determined under a condition that control parameters of neighboring blocks of the current block are used, when the signal type is a first type, the neighboring blocks being a left block and an upper block of the current block; and the context is determined under a condition that the control parameter of the upper block is not used, when the signal type is a second type, and the second type is “no_residual_data_flag”. |
US10750183B2 |
Methods and apparatuses of sample adaptive offset processing for video coding
A video coding system determines a Sample Adaptive Offset (SAO) type for a current reconstructed block, and determines SAO offsets for the current reconstructed block and checks if all SAO offsets are zeros except for a last SAO offset if the SAO type is Edge Offset (EO) or Band Offset (BO). A new value for the last SAO offset is derived at an encoding end or an original value for the last SAO offset is derived at a decoding end if all SAO offsets except for the last SAO offset are zeros. The SAO offsets are used for applying SAO processing to the current block and the current block is encoded or decoded. The original value for the last SAO offset is used in SAO processing and the new value for the last SAO offset is signaled in a video bitstream. |
US10750182B2 |
Embedded codec circuitry for visual quality based allocation of refinement bits
An embedded codec (EBC) circuitry includes encoder circuitry to encode a plurality of sub-blocks of an image block by an entropy coding scheme to generate a plurality of encoded data blocks. Each encoded data block includes a first plurality of bit-planes and a second plurality of bit-planes. The first plurality of bit-planes include a plurality of entropy coded bits. The encoder circuitry determines a count of refinement bits of a plurality of refinement bits, for an encoded data block of the plurality of encoded data blocks, based on a quality measure of the plurality of encoded data blocks. The quality measure represents a count of the plurality of entropy coded bits in each encoded data block. The encoder circuitry allocates the count of refinement bits in the second plurality of bit-planes of the encoded data block. |
US10750180B2 |
Image coding method and apparatus, and image decoding method and apparatus
An image coding method and apparatus, and an image decoding method and apparatus are provided. In the coding method, a scanning manner parameter of a coding block is determined, and the scanning manner parameter may include at least one of: a region indication parameter used for determining a scanning region of the coding block and a scanning indication parameter used for determining a scanning order of pixels in a scanning region of the coding block; predicted values of part or all of pixels in the coding block are determined according to the scanning manner parameter; and the coding block is coded according to the predicted values, and a coding result is written into a bitstream. |
US10750173B2 |
Encoding and decoding HDR videos
To have a much better usable pragmatic manner of HDR video encoding and decoding, the inventor invented a high dynamic range video decoder (500) arranged to receive an encoding (Im_COD) of a high dynamic range video and to decode and output a set of temporally successive images (Im_RHDR) comprising: An input (502) to receive three weight values (kRY, kGY, kBY); A video decoder (501) arranged to decode the encoding (Im_COD) into an intermediate image (Im_RLDR) being in a Y′CbCr color representation; A brightness index calculation unit (503) arranged to calculate for each pixel of the intermediate image (Im_RLDR) a brightness index (J′) being defined as J′=Y′+MAX{kRY*(R′−Y′), kGY*(G′−Y′), kBY*(B′−Y′)}; A brightness mapper (505) arranged to receive a specification of at least one one-dimensional function F_ct, and to apply it with the brightness index (J′) as input, to obtain an output brightness index (J*); A multiplication factor calculation unit (506) arranged to calculate a multiplicative factor (g) being equal to the output brightness index (J*) divided by the brightness index (J′); Three multipliers (509, 510, 511) to multiply the respective color components (Y, Cr, Cb) of each pixel of the intermediate image (Im_RLDR) with the multiplicative factor (g), to obtain an output color (Y′H, Cb′H, Cr′H) for that pixel in the output dynamic range image (Im_RHDR) of the set of temporally successive images being currently decoded. |
US10750172B2 |
Prediction systems and methods for video coding based on filtering nearest neighboring pixels
Prediction systems and methods for video coding are described based on nearest neighboring pixels. In exemplary embodiments, to code a first pixel, a plurality of neighboring pixels of the first pixel are reconstructed. The coefficients of a filter such as a Wiener filter are derived based on the reconstructed neighboring pixels. The Wiener filter is applied to the reconstructed neighboring pixels to predict the first pixel. The coefficients of the Wiener filter may be derived on a pixel-by-pixel or a block-by-block basis. The reconstructed pixels may be pixels in the same picture (for intra prediction) or in a reference picture (for inter prediction). In some embodiments, the residuals of the prediction are encoded using RDPCM. In some embodiments, the residuals may be predicted using a Wiener filter. |
US10750169B2 |
Method and apparatus for intra chroma coding in image and video coding
A method and apparatus for chroma Intra prediction are disclosed. According to one method, a chroma Intra mode set comprising more than six chroma Intra coding modes are generated and chroma Intra-prediction encoding or decoding is applied to the current chroma block using a current chroma Intra mode selected from the chroma Intra mode set. According to another method, a chroma MPM list is determined and a current chroma Intra mode is signaled using chroma MPM process at the video encoding system or parsing the current chroma Intra mode using the chroma MPM process at the video decoding system, where the chroma MPM process comprises using a chroma MPM flag to indicate whether the current chroma Intra mode belongs to the chroma MPM list. |
US10750167B2 |
Intra-prediction method and apparatus in video coding system
An image decoding method, which is performed by a decoding device according to the present invention, comprises the steps of: acquiring the information on an intra-prediction mode of a current block from a received bit stream; deriving neighboring reference samples of the current block; deriving a first prediction value for a current sample of the current block on the basis of the intra-prediction mode and the neighboring reference samples; deriving a second prediction value for the current sample on the basis of adjacent samples of the current sample; and deriving a prediction value for the current sample on the basis of the first prediction value and the second prediction value. According to the present invention, the intra-prediction value can be derived on the basis of the adjacent samples of the current sample within the present block, and the intra-prediction accuracy can be improved therethrough. |
US10750157B1 |
Methods and systems for creating real-time three-dimensional (3D) objects from two-dimensional (2D) images
An example method for determining three-dimensional coordinates of an object from a plurality of two-dimensional images may include: acquiring two-dimensional input frames via a camera, the camera being associated with one or more calibration parameters; isolating a contour of at least one object contained within each input frame; calculating coordinates of one or more visual rays corresponding to each contour in a direction specified by at least one of the calibration parameters; estimating a spatial tangent vector of each contour using finite differences; estimating a tangent space of the visual rays at each visual ray; calculating epipolar numbers based on basis vectors of the tangent space, the one or more calibration parameters, and the tangent vector; forming a line-based epipolar matrix using the epipolar numbers and line coordinates; and de-homogenizing the column space of the matrix into object points. |
US10750153B2 |
Camera system for three-dimensional video
In one embodiment, an apparatus includes a processor and multiple pairs of cameras, where each camera of a first pair of cameras is separated from each other by one camera of a second pair of cameras. Each camera of the first pair of cameras has a first orientation, and each camera of the second pair of cameras has a second orientation that is different from the first orientation. |
US10750150B2 |
Methods for automatic registration of 3D image data
A method for automatic registration of 3D image data, captured by a 3D image capture system having an RGB camera and a depth camera, includes capturing 2D image data with the RGB camera at a first pose; capturing depth data with the depth camera at the first pose; performing an initial registration of the RGB camera to the depth camera; capturing 2D image data with the RGB camera at a second pose; capturing depth data at the second pose; and calculating an updated registration of the RGB camera to the depth camera. |
US10750148B2 |
Unevenness correction system, unevenness correction apparatus and panel drive circuit
An unevenness correction system according to the present invention includes a panel drive circuit provided with a gamma correction circuit that performs gamma correction on an image signal input to an input interface, a gamma correction information acquisition circuit that acquires a gamma correction signal obtained through gamma correction as gamma correction information, an unevenness correction circuit that performs an unevenness correction on the gamma correction signal based on correction data, and an output interface that externally outputs the gamma correction information, and an unevenness correction apparatus provided with a pattern generator that outputs the image signal of a predetermined image to the input interface, and a control unit that generates correction data based on gamma correction information of each individual display panel input to and read by a gamma correction information reading unit from the output interface regarding the output image signal. |
US10750146B2 |
High dynamic range color conversion correction
One embodiment of the present invention sets forth a technique for correcting color values. The technique includes downsampling first color space values to generate downsampled color space values and upsampling the downsampled color space values to generate second color space values. The technique further includes modifying at least one component value included in the downsampled color space values based on a first component value included in the first color space values, a second component value included in the second color space values, and an approximation of a nonlinear transfer function. |
US10750145B1 |
Variable-pitch liquid crystal diffraction grating
An apparatus may include a projector that switches from emitting monochromatic light of a first color to emitting monochromatic light of a second color that is different from the first color. The apparatus may also include one or more variable-pitch diffraction gratings that diffract monochromatic light emitted from the projector. The apparatus may further include a controller that changes a pitch of at least one of the one or more variable-pitch diffraction gratings from a first pitch used when the projector is emitting monochromatic light of the first color to a second pitch used when the projector is emitting monochromatic light of the second color. |
US10750135B2 |
Hardware-friendly model-based filtering system for image restoration
A device (e.g., an image sensor, camera, etc.) may identify a camera lens and color filter array (CFA) sensor used to capture an image, and may determine filter parameters (e.g., a convolutional operator) based on the identified camera lens and CFA sensor. For example, a set of kernels (e.g., including a set of horizontal filters and a set of vertical filters) may be determined based on properties of a given lens and/or q-channel CFA sensor. Each kernel or filter may correspond to a row of a convolutional operator (e.g., of a restoration bit matrix) used by an image signal processor (ISP) of the device for non-linear filtering of the captured image. The corresponding outputs from the horizontal and vertical filters (e.g., two outputs of the horizontal and vertical filters corresponding to an input channel associated with the CFA sensor) may then be combined using a non-linear classification operation. |
US10750130B2 |
Surveillance system with fixed camera and temporary cameras
A surveillance system including a fixed camera and one or more temporary cameras and a control means coupled to the fixed camera and the one or more temporary cameras is disclosed. The control means is configured to extend coverage of the fixed camera using the one or more temporary cameras coupled to the fixed camera. Each of the one or more temporary cameras includes one or more sensors and is configured to be deployed and adjusted based on sensor data obtained from the one or more sensors of the one or more temporary cameras and from one or more fixed camera sensors co-located with the fixed camera. |
US10750128B2 |
Wireless integration of security camera and door lock
An apparatus includes an audio output device, an audio input device and a processor. The audio output device may be configured to generate an audio message. The audio input device may be configured to receive audio input. The processor may be configured to analyze the audio input to perform a first authentication of a user and determine a command corresponding to the audio input, determine a confidence level of a classification of a user based on the first authentication and authenticate the user if the confidence level is above a pre-determined threshold. The classification may correspond to an approved list of users. The confidence level may be adjusted in response to one or more authentication factors. If the user is authenticated, the processor may be configured to perform the command. |
US10750122B2 |
Vehicle sales management and video chat system and method for a dealership salesperson mobile device and a remote visitor web browser
Vehicle sales management and video chat systems and methods use website listings that correspond to vehicles for sale at a dealership. A remote visitor clicks a “live video” button beside a desired vehicle, and schedules a time for a video chat, using their web browser. A dealership salesperson receives an alert, via a sales application running on on the salesperson's mobile device. At the scheduled time, a video chat window opens in the visitor's web browser with live audio/video of the desired vehicle from the dealership in real-time. The website visitor uses their web browser for live communication, in real-time, to the salesperson on their sales application. After the video chat, the website visitor can use their browser to download and save a recording of the video chat session. |
US10750121B2 |
Modifying images from a camera
Techniques provided herein determine a modification to apply at a respective facial position of one or more facial positions on a face in a first image; and apply the determined modification to one or more other images to the respective facial position on the face in the one or more other images to generate a modified video including the modifications at the respective facial position. |
US10750112B2 |
Substrate structures for image sensor modules and image sensor modules including the same
A substrate structure for an image sensor module includes a module substrate including a sensor mounting hole, a reinforcing plate on a lower surface of the module substrate, an image sensor chip on the reinforcing plate within the sensor mounting hole, and a reinforcing pattern in the module substrate. The reinforcing plate covers the sensor mounting hole. An upper surface of the image sensor chip may be exposed by the module substrate. The reinforcing pattern is adjacent to the sensor mounting hole and extends in at least one direction. |
US10750107B2 |
Noise removing circuit and image sensor
A noise removing circuit includes a capacitor, a buffer circuit, and a switch. The capacitor includes a first terminal and a second terminal. The buffer circuit includes a third terminal and a fourth terminal. The switch sets the capacitor and the buffer circuit to be in one of a first state and a second state. In the first state, the first terminal is connected to the fourth terminal, a reference voltage is input to the second terminal, and the third terminal is connected to the signal source. In the second state, the first terminal is connected to the signal source, and the second terminal is connected to the third terminal. |
US10750106B2 |
Imaging unit, imaging apparatus, and computer-readable medium having stored thereon a control program
Provided is an imaging unit including an imaging section that includes a pixel capable of performing charge accumulation a plurality of times in response to an imaging instruction for generating one frame of image data; a storage section that stores a pixel signal based on output from the pixel; an updating section that updates the pixel signal already stored in the storage section by performing an integration process to integrate the pixel signal output from the pixel as a result of a new charge accumulation and the pixel signal already stored in the storage section; and a control section that controls whether the updating section performs the update, for each of a plurality of pixel groups that each include one or more pixels. |
US10750105B2 |
Imaging apparatus, operation method of imaging apparatus, and operation program of imaging apparatus
Provided are an imaging apparatus capable of preventing deterioration in quality of a captured image to be captured in a case where imaging is performed by using the driving according to the global shutter method and the driving according to the rolling shutter method in combination, an operation method thereof, and an operation program thereof. The digital camera includes an imaging element 5 that has a plurality of pixels 61 each including a photoelectric conversion element 61A and a charge holding section 61B, and a driving controller 11A that performs driving control of the imaging element 5 according to a global shutter method while continuously performing driving control of the imaging element 5 according to a rolling shutter method. The driving controller 11A makes a first time, which is necessary for reading a signal obtained from one of pixel rows 62 under the driving control according to the rolling shutter method, longer than a second time which is necessary for reading the signal obtained from one of the pixel rows 62 under the driving control according to the global shutter method. |
US10750104B2 |
Solid-state imaging apparatus and driving method thereof
The present technology relates to a solid-state imaging apparatus and a driving method that can perform imaging at lower power consumption.By providing the solid-state imaging apparatus including a pixel array section on which a plurality of SPAD pixels is two-dimensionally arranged, in which in a case where illuminance becomes first illuminance higher than reference illuminance, a part of the SPAD pixels of the plurality of pixels arranged on the pixel array section is thinned, it is possible to image at lower power consumption. The present technology can be applied to an image sensor, for example. |
US10750102B2 |
Method of providing interactable visual object during video call and system performing method
A method of providing an interactable visual object capable of being manipulated in terminals on both sides during a video call and a system performing the same. |
US10750095B2 |
Display control apparatus and method for controlling the same
A display control apparatus comprises a detection unit configured to detect a user operation made to an operation member; a control unit configured to perform control to perform zoom processing at a zooming speed corresponding to an operation amount of the operation member in accordance with an operation made to the operation member, while a live view image is being displayed; and a display control unit configured to perform control to perform pseudo zooming display using a sample image that differs from the live view image, so that an object in the sample image is enlarged or reduced at a speed corresponding to the operation amount of the operation member in a setting screen for setting the zooming speed corresponding to an operation made to the operation member for the zoom processing. |
US10750090B2 |
Semiconductor device and electronic device
A semiconductor device for use in controlling a camera module performs position adjustment of a correction lens for use in optical camera shake correction, based on information representing a present position of the correction lens and position information of an output image of electronic camera shake correction with respect to a photographed image photographed by an imaging element. As a result, an operation margin of the correction lens is kept, while keeping a correction margin for the electronic camera shake correction. |
US10750085B2 |
Camera device for capturing a surrounding area of a driver's own vehicle and method for providing a driver assistance function
A camera device (2) for capturing a surrounding area of a driver's own vehicle has optoelectronics including a high-resolution image capturing sensor and a wide-angle optical system for capturing at least one initial image of the surrounding area. The optoelectronics are configured to generate, from the at least one initial image, a processed output image (4) that has, compared to the associated initial image, at least one non-modified image section (4a) and a resolution-reduced remainder image region (4b) bordering on the at least one non-modified image section (4a). |
US10750083B2 |
Systems and methods for processing digital image data representing multiple views of an object of interest
Systems and methods for processing digital image data representing multiple views of an object of interest use a sparse set of digital images along with object of interest profiling to provide a photo gallery for evidence-related workflows. Digital images are related to each other on the basis of common objects of interest represented in the images and their orientations within the views depicted in each image. Object of interest profile datasets, including spatial orientation data, enable efficient tracking of photography sessions in which a set of prescribed views of an object of interest are meant to be captured, as well as object-orientation-based photo gallery navigation. The systems recognize of a set of physical gestures that enable a user to intuitively navigate among digital images depicting different views of an object of interest based on how they were physically related to each other when captured. |
US10750077B1 |
Camera system with multiple camera
A camera system is provided and includes a processor, a first camera, a second camera, and a data bus. The processor transmits a first trigger signal to the first camera to enable the first camera outputting first data to the processor through the data bus. The first camera transmits a second trigger signal to the second camera to enable the second camera outputting second data to the processor through the data bus. |
US10750071B2 |
Camera module with lens array arrangement, circuit board assembly, and image sensor and manufacturing method thereof
A camera module and array camera module with circuit board unit and photosensitive unit and manufacturing method thereof is provided. The array camera module comprises two or more camera lenses and a circuit unit. The circuit unit comprises a circuit board portion for electrically connecting two or more photosensitive sensors of the array camera module, and a conjoined encapsulation portion integrally encapsulated on the circuit board portion. The camera lenses are respectively arranged along the photosensitive paths of the photosensitive sensors. |
US10750069B2 |
Optical image capturing system, image capturing device and electronic device
An optical image capturing system comprising, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element and a seventh lens element. The first lens element with negative refractive power has a concave image-side surface. The second lens element, the third lens element and the fourth lens element have refractive power. The fifth lens element has refractive power. The sixth lens element with refractive power has an image-side surface being concave in a paraxial region and includes at least one convex shape in an off-axial region, wherein the surfaces thereof are aspheric. The seventh lens element with refractive power has an image-side surface being concave in a paraxial region and includes at least one convex shape in an off-axial region, wherein the surfaces thereof are aspheric. |
US10750065B2 |
Miniaturized optical system with stabilization
An optical system is provided and includes a fixed module, a movable module, a driving assembly and a plurality of sliding members. The fixed module includes a base. The movable module includes an optical member holder and a driving frame unit. The optical member holder is configured to hold an optical member, and the driving frame unit is connected to the optical member holder. The driving assembly includes at least one first magnetic element and at least one second magnetic element. The second magnetic element corresponds to the first magnetic element and is configured to drive the driving frame unit with the optical member holder to move relative to the base. The sliding members are securely disposed on the fixed module or the movable module, so that the movable module is able to slide relative to the fixed module. |
US10750064B2 |
Camera for vehicle vision system with enhanced alignment features
A camera module for a vehicular vision system includes a lens barrel having a lens accommodated therein, a front camera housing portion that accommodates an imager printed circuit board therein, and a rear camera housing portion mated with a rear portion of said front camera housing so as to encase the imager printed circuit board in the camera module. The imager printed circuit board is disposed at the lens barrel and bonded thereat with the imager optically aligned with an optical axis of the optical elements. The front camera housing portion may include mounting structure for mounting at a vehicle. The camera module has a center of mass, and distance from the optical axis of the lens to the mounting structure may be the same as distance from the center of mass to the mounting structure. |
US10750057B2 |
Setting ink use limits for a printing system
An example method of setting ink limits for a printing system is described. The method involves printing a first set of color ramps. Each color ramp has test areas which are printed based different Neugebauer Primary Area Coverage (NPac) vectors. A test area for each color ramp is indicated that meets an image quality metric and Neugebauer Primary ink use limits are set based on these test areas. A second set of color ramps, for combinations of the set of available Neugebauer Primaries, is then printed, The test areas for each ramp are defined by monotonically-varying vector element values for one Neugebauer Primary in a combination and the second set of ramps are defined by monotonically-varying vector element values across said ramps for another Neugebauer Primary in the combination. Test areas are then indicated again for the second set of color ramps to set ink use limits for the printing system. |
US10750055B2 |
Image processing apparatus with color conversion for reduced consumption of color materials, image processing method, and storage medium
An object of the present invention is to provide an image processing apparatus capable of reducing color material consumption to the maximum while maintaining the hue of an image before and after color conversion to reduce the color material consumption. The present invention is an image processing apparatus having a first lookup table to convert pixel values in a color space into pixel values of color materials, the apparatus including: an acceptable color difference derivation unit configured to derive an acceptable color difference indicating a size of a range of acceptable color difference, which corresponds to each grid point in the color space; a pixel value determination unit configured to determine pixel values of color materials, which corresponds to each of the grid points, based on the derived acceptable color difference; and a lookup table creation unit configured to create a second lookup table to convert pixel values in the color space into the determined pixel values of color materials. |
US10750051B2 |
Image forming apparatus and controlling method of printing based on selection of an object associated with user name and network domain name obtained from print data
There is provided an image processing apparatus which comprises: a receiving unit configured to receive a print job from an information processing apparatus; an obtaining unit configured to obtain at least owner information and domain information from a header of the print job; a generating unit configured to generate user identification information including the owner information and the domain information; a registering unit configured to register the user identification information; and a storage unit configured to store the print job in association with the user identification information. Thus, it is possible to register the appropriate user identification information according to environments of a network system. |
US10750048B2 |
Printing apparatus and control method of printing apparatus including a carriage configured to mount a print head and a camera for capturing an image of a chart printed on a transported print medium
There is provided a printing apparatus including: an ink jet head that prints on a print medium; a camera that captures an image on the print medium; a carriage that mounts the ink jet head and the camera; and a processor that generates image data based on a captured image obtained by capturing a chart by the camera, the chart being printed on the print medium by the ink jet head, in which the processor generates at least one of image data representing an image of an image range smaller than a capturing range of the camera and image data representing an image of a resolution lower than a resolution of the captured image, for an adjustment item. |
US10750042B2 |
Scan privacy tool and methods
A multi-functional printing (MFP) includes a scan privacy tool to allow edits and changes to a scanned document image to remove or hide private information within a document. The scan privacy tool is enabled for jobs on the MFP device and launches when a job is run. The document is scanned and a scanned document image displayed on a display and edit interface of the scan privacy tool. Changes are made to the image using tools available through the scan privacy tool. The changes are applied to the scanned document image. The modified image is saved and transmitted to an engine in the MFP device to complete the job. |
US10750037B2 |
Display device, electronic device and image processing apparatus including the display device, and method of displaying information
On a touch-panel display of an image forming apparatus, a function selecting area and a preview area are displayed next to each other. On the function selecting area, a function setting menu is displayed in one display mode among an icon mode in which only a group of icons are displayed, a regular mode in which a group of icons and a group of texts are displayed, and an express mode in which a group of icons, a group of texts and a group of function setting buttons are displayed. In the icon mode, detailed preview information is displayed on a large preview area, and in the express mode, detailed function selecting information is displayed on a large function selecting area. |
US10750035B2 |
Electronic device, system, method for processing information, and recording medium
An electronic device includes: an operation receiving unit to receive operation from a user; a sensor to sense the user existing in a detection range of the electronic device to output detection information indicating that the user exists in the detection range; and processing circuitry to output content for assisting the user in operating the electronic device, when the processing circuitry has determined that the user exists in the detection range based on the detection information and when an elapsed time in which the operation of the user is not received at the operation receiving unit has exceeded a threshold time. |
US10750032B2 |
Image inspection apparatus
An image inspection apparatus includes a hardware processor that performs an image diagnosis on the basis of a read image obtained by reading images printed in both sides of a recording medium, wherein the hardware processor: acquires a read image obtained by reading an image on the recording medium to which at least a first chart and a second chart are output; and performs a diagnosis by determining a side to be used in the diagnosis depending on an image diagnosis item on the basis of the read image. |
US10750030B2 |
Information processing system
In a system in which a wireless access network and another network are connected to each other, an accurate fee is charged in a case where data held in an application server disposed in the wireless access network is used.The application server holds an application and data relating to the application. A usage mode information generating unit generates usage mode information which is information relating to a usage mode when the wireless terminal uses the held data. A network data usage amount measuring unit measures a network data usage amount when the wireless terminal uses data on another network via a wireless access network connected to the wireless terminal. A fee charging unit charges a fee on the basis of the measured network data usage amount and charge a fee on a basis of the generated usage mode information. |
US10750025B2 |
System and method for delivery of voicemails to handheld devices
Briefly, a variety of embodiments, including the following, are described: a system embodiment and methods that allow random access to voice messages, in contrast to sequential access in existing system embodiments; a system embodiment and methods that allow for the optional use of voice recognition to enhance usability; and a system embodiment and methods that apply to the area of voicemail. |
US10750024B2 |
Techniques for behavioral pairing model evaluation in a contact center system
Techniques for behavioral pairing model evaluation in a contact center system are disclosed. In one particular embodiment, the techniques may be realized as a method for behavioral pairing model evaluation in a contact center system comprising determining an ordering of a plurality of agents, determining an ordering of a plurality of contact types; analyzing, historical contact-agent outcome data according to the orderings of the pluralities of agents and contact types to construct a pairing model; and determining an expected performance of the contact center system using the pairing model. |
US10750018B2 |
Modeling voice calls to improve an outcome of a call between a representative and a customer
A call-modeling system models calls in real-time, with the goal of helping users, e.g., a sales representative and/or their managers, improve and/or guide the outcome of the calls. The call-modeling system generates real-time probabilities for possible outcomes of the conversation, as well as highlight specific on-call patterns, which may be either conducive or detrimental to a desired conversation outcome. The generated probabilities and highlighted patterns may be used by the sales representatives and/or their managers to either increase the probability of a desired outcome and/or optimize for call duration with a specific outcome. |
US10750012B2 |
Integrating a communication terminal as the preferred device in a static communication system configuration
A computer-implemented method is disclosed for integrating at least one rust communication terminal assigned to a user as a preferred device in a static configuration of a communication system and/or for dynamically switching from a first communication terminal used as a preferred device to a second communication terminal as a preferred device for providing a one-number service using the preferred device, to which a one-number service number is assigned, wherein at least two communication terminals are statically assigned to the user and a preferred device is also dynamically assigned to the user through a virtual device. Also communication system designed for this purpose. |
US10750008B1 |
Systems and methods for authenticating a caller
Methods and systems described in this disclosure receive a call from a caller, generate a first session through a first channel associated with the caller when the call is received and then send a request for authentication credentials to a device associated with the caller. In some embodiments, sending the request for authentication credentials generates a second session through a second channel associated with the caller. The caller can be authenticated to the first session using communication received during the second session through the second channel. |
US10750000B1 |
Opportunistic initiation of voice or video calls between smart speaker devices
A method and system are provided for opportunistically initiating a multimedia call between two or more devices such as smart speakers at a time when users of the respective smart speakers are available to participate in a call. A server system receives an instruction from a first smart speaker associated with a first user to establish a real-time communication session with a second smart speaker. In response to that instruction, the server system monitors availability of both the first user and the second user at their respective smart speakers. On determining that both the first user and the second user are available at the same time, the server system initiates the real-time communication session between the first smart speaker and the second smart speaker. |
US10749995B2 |
System and method to facilitate integration of information-centric networking into internet protocol networks
A method is provided in one example embodiment and may include receiving an Internet Protocol (IP) packet at a node; identifying a content semantic for the IP packet; determining whether the IP packet is an IP interest packet or an IP data packet; determining whether content identified in the IP packet is stored at the node based on a determination that the IP packet is an IP interest packet; forwarding the IP packet toward at least one other node based on a determination that the content is not stored at the node; and transmitting an IP data packet containing the content based on a determination that the content is stored at the node. |
US10749994B2 |
Network traffic controller (NTC)
A network device (ND) includes a first interface controller operable to transfer data between the ND and a host processing unit (host), a second interface controller operable to transfer data between the ND and the host, a network interface configured to interface the ND with a network, and a control unit operable to: receive incoming data from the network, process the incoming data, and transmit the processed incoming data to the host through the second interface controller; or, receive outgoing data from the host through the second interface controller, process the received outgoing data, and transmit the processed outgoing data to the network. The first interface controller, the control unit, and the network interface are together operable to enable the host to transmit and/or receive other data to and/or from the network and the first interface controller. The host and the control unit share a same network address. |
US10749989B2 |
Hybrid client/server architecture for parallel processing
The present disclosure describes an exemplary hybrid client/server architecture that may be utilized leverage the unique capabilities of both remote and local services. Data may be processed in parallel by remote and local processes. Results generated during the parallel processing may be exchanged between remote and local services and used to update results generated by the separate services. The hybrid client/server architecture may be utilized to generate enhanced inferences, hybrid subscriptions base upon local and remote subscriptions, and enhance natural language expression evaluation services. |
US10749987B2 |
System for managing software versions in multitenant cloud IP video-telephony services
Disclosed embodiments relate to a shared computing system for use in telecommunications between end-point telecommunication devices comprising a plurality of instances of a telecommunications service component and a version control gateway configured to route a communication connection from an end-point telecommunication device to an appropriate instance, of the plurality of instances, of the service component. In some embodiments, different end-point telecommunication devices may use different instances of the service component. Some embodiments relate to a network for telecommunications between end-point telecommunication devices, a version control gateway for use in the system of the disclosure, a method of providing a telecommunications service to a user, a method of migrating a user from one software version of a telecommunications service to another, and computer programs and computer-readable media. |
US10749985B2 |
Custom communication channels for application deployment
An application deployment service (ADS) component receives a request to establish a communication channel for clients to submit deployment artifacts associated with an application. A set of endpoints are created for the channel. In response to receiving a message via one of the endpoints, the ADS determines that additional security verification operations are to be performed before a deployment task indicated in the message can be performed. After the security verification operations are completed, the task is implemented. |
US10749984B2 |
Processing requests for multi-versioned service
Processing a job request for multiple versions of a distributed computing service. The service processing node does this by at least interleavingly (e.g., via time sharing with rapid context switching, or by actually concurrently) running a first runtime library associated with a first service version of the distributed computerized service and a second runtime library associated with a different service version of the distributed computerized service. While running the first runtime library, job requests of a first service version may be at least partially processed using a first set of one or more executables that interact with the first runtime library. While running the second runtime library, job requests of a second service version may be at least partially processed using a second set of one or more executables that interact with the second runtime library. |
US10749980B1 |
Autonomous storage device and methods for distributing content
Autonomous storage devices and methods are provided for distributing content, such as streaming content. An exemplary storage device comprises: a network interface for receiving requested content over a network; a non-volatile memory (NVM) for storing the content; and a single-board computer connected to the NVM and having an operating system with an installed peer-to-peer file sharing client and an installed data curation component. The data curation component stores and manages data in the NVM. An optional lightweight unikernel comprises a specialized machine image of the operating system to support the installed peer-to-peer file sharing client and the installed data curation component. A plurality of the storage devices can be interconnected in a local network of a content service provider and/or an Internet service provider and communicate with a peer-to-peer network composed of additional storage devices in an external wide area network that consume or replicate content. |
US10749977B1 |
Pushing news feed content to client devices
A system transmits selected news feed stories to a client device in advance of receiving a request for news feed stories. As a result, stories are immediately available for viewing when a user interacts with the system. The system selects news feed stories to push based on criteria such as a likelihood that a user will interact with a story and the sizes of pushed stories. For example, the system selects news feed stories such that a total size of stories selected does not exceed a threshold value based on local memory at the client device. The system may determine a scheduled time at which the stories are selected and pushed. The scheduled time is based on factors including patterns of network connection speed or past user interactions, for example, a time range of the day during which the user most frequently viewed pushed stories. |
US10749973B2 |
Systems and methods for enabling service interoperability functionality for WiFi direct devices connected to a network via a wireless access point
Certain embodiments herein are directed to enabling service interoperability functionality for wireless fidelity (WiFi) Direct devices connected to a network via a wireless access point. A WiFi Direct device may identify various other WiFi Direct devices on a WiFi network for performing a requested service, such as printing content or displaying content to a screen. In so doing, the device may share information associated with an access point to which the device is connected with the other devices, which may also share information associated with an access point to which they are connected. In this way, WiFi Direct devices may discover their connectivity with respect to other devices to utilize a broader array of connection options for implementing a desired service, and hence, may leverage application programming interface (API) modules directed at providing service interoperability functionality between software applications and services requested by the software applications. |
US10749970B1 |
Continuous task-based communication sessions
A method for managing a communication session includes receiving a request to perform a task. The task is divided into one or more steps. One or more user devices are identified that can be used to perform one or more of the steps. One or more communication channels are identified that are available to the one or more user devices. The communication session is permitted to switch from one or more of the user devices and communication channels to complete the one or more steps of the task while maintaining a continuity of the communication session. |
US10749968B2 |
Real-time receipt of computing resource status messages from cloud computing systems
Mechanisms for receiving real-time messages identifying statuses of computing resources from cloud computing systems are disclosed. A computing device receives, from each of a plurality of cloud computing systems configured to implement on-demand computing resources in response to requests, corresponding real-time messages via a plurality of corresponding communication channels, each real-time message identifying a status of at least one computing resource implemented in the respective cloud computing system. |
US10749966B2 |
Communication stack optimized per application without virtual machine overhead
A method is executed by a computing device to receive a request for a server via a known network access type, from a known application type, by a known user, or a known policy, instantiate a new unikernel with a differentiated communication protocol stack instance, in response to determining the request is not being serviced by a previously instantiated unikernel, and service the request by a previously instantiated unikernel, in response to determining the previously instantiated unikernel is available, where the new unikernel and the previously instantiated unikernel are separate from an operating system of the computing device. |
US10749965B2 |
Systems and methods for capturing and logging web application traffic
Systems and methods for capturing, logging, and diagnosing issues associated with web-based applications are disclosed. The systems and methods can include an interceptor application to intercept web-based (e.g., hypertext transfer protocol (HTTP)) requests and responses between web-based applications and third-party application servers. The systems and methods can also include an accumulator application to store request data and response data for a predetermined amount of time or until a predetermined number of requests and responses have been collected. The systems and methods can then send the accumulated data in a list or other data structure to a data logging server for storage in a database. The database can be used to diagnose issues arising on user equipment (UE), including issues caused by web-based applications. |
US10749958B2 |
Reduced storage of metadata in a distributed encoded storage system
A data object can be encoded into a plurality of encoded data fragments and stored on backend storage elements in a distributed encoded storage system. The identifiers and metadata corresponding to each encoded fragment of the data object can be stored in a single metadata unit, which is stored on the backend as encoded fragments. The identifiers of the metadata fragments can be associated with the data object and stored on a low latency frontend storage device. Thus, the amount of metadata per data object stored on expensive low latency frontend storage is reduced to the fragment identifiers. The fragment identifiers can be quickly retrieved, and used to retrieve the identifiers and metadata corresponding to the encoded data fragments from the backend, for retrieval of the data object itself. |
US10749955B2 |
Online cache migration in a distributed caching system using a hybrid migration process
Techniques for an online cache migration in a distributed caching system using a hybrid migration process include an application server in a network environment determining that an online cache migration from a source cache to a target cache is running. Based on this, the application server selectively mirroring writes to the source cache in the target cache. Meanwhile, an external migration controller migrates the cache from the source cache to the target cache in a way that does not require the external migration controller or the application server to synchronize their concurrent access to the source and target caches yet still allows the application server to read, write, and delete cache data in the source cache during the migration. |
US10749951B2 |
Selection of leader nodes in distributed data services
An aspect of the present disclosure facilitates selection of leader nodes in distributed data services. In one embodiment, a distributed data service is provided operative based on multiple nodes. Upon receiving from a user a selection of a set of nodes that are preferred as leader nodes, a node contained in the set of nodes is set as a leader node in the distributed data service in view of the selection by the user. Accordingly, a user is provided control over the selection of leader nodes in the distributed data service. |
US10749949B2 |
Dynamic content distribution protocol for an enterprise environment
Embodiments described herein provide a system for facilitating dynamic content distribution in an enterprise environment. During operation, the system receives, from a controller of the enterprise environment, an instruction for downloading a piece of content from one or more peers of a peer-to-peer protocol. The instruction can include a file descriptor that indicates a set of blocks the piece of content is divided into. The system can receive an offer for a first block of the set of blocks from a first peer of the one or more peers and determine whether the system is in a full peer relationship with a second peer of the one or more peers. The full peer relationship indicates that the second peer and the system are clients and servers of each other. If the system is in a full peer relationship, the system elects, between the second peer and the system, a sender for a first request that responds to the first offer. |
US10749948B2 |
Communication console with component aggregation
Systems methods and devices are provided for a presentation including a communications console with component aggregation. In one potential implementation, a computing device with an application framework receives a communication manager object via a network connectivity device and executes the communication manager object within the application framework. The computing device may then receive and execute communications components and presentation components within the application framework using the communication manager object. The communication manager object may then manage interface and display of the presentation information via the application framework, as modified by communication components. |
US10749933B2 |
Data sharing among processing systems in a collaboration group
Examples of techniques for data sharing among processing systems in a collaboration group are disclosed. In one example implementation according to aspects of the present disclosure, a computer-implemented method includes receiving a message sent to a collaboration group via a first network connection. The first processing system is a member of the collaboration group. The method further includes downloading data associated with the message via the first network connection. The method further includes determining whether any additional processing systems that are members of the collaboration group are in proximity to the first processing system. The method further includes, based at least in part on determining that a second processing system that is a member of the collaboration group is in proximity to the first processing system, transmitting a message indicator from the first processing system to the second processing system via a second network connection. |
US10749932B2 |
System and method for transferring states between electronic devices
In some examples, a system comprises a memory device for storing instructions and a processor which executes instructions causing the system to perform operations comprising receiving an instruction to transfer a state of a first device to a second device, and packaging information relating to the state of the first device in a file. The packaging of the information relating to the state of the first device includes recording each application executing on the first device in a list maintained in the file, and transferring the file containing information relating to the state of the first device to the second device, either directly or indirectly based on an availability of connections between the first device and the second device. The file, when processed by the second device, causes the second device to reproduce the state of the first device. In some example, reproducing the state of the first device includes the second device downloading, from one or more of the locations, one or more of the applications. |
US10749931B2 |
Data collection system
A data collection system is configured with a management apparatus to define associations between data and metadata, design a method of displaying the data and the metadata related to the data, and generate methods of transmitting, receiving, and relaying the data and the metadata; a generation apparatus that generates the data and the metadata; a display apparatus that displays the data and the metadata; and a relay apparatus that relays the data and the metadata, the management apparatus distributing processing procedures related to the data and the metadata to be displayed on the display apparatus to one of or all of the generation apparatus, the relay apparatus, and the display apparatus, in accordance with a position of the data and an acquisition method contained in association information created using the function to design the associations. |
US10749927B2 |
Webpage loading method, apparatus and system
The present application provides a webpage loading method, apparatus and system. The method includes: loading a webpage resource, wherein a JS file of each module resource is set behind the body resource, extracting a JS resource required for running of the JS file from each module resource, and registering the JS resource into a pre-established function running pool, and after the body resource loading is completed, injecting the JS resource of each module resource in the function running pool into the corresponding JS file. |
US10749926B2 |
Proxy for modifying HTTP messages to comply with browser
A proxy server includes various components to modify HTTP communications between a client and a server. Generally, an HTTP request or response is received. The request or response is modified in-stream by a proxy-process module that is running within a web-server-process space. |
US10749923B2 |
Contextual video content adaptation based on target device
Methods and apparatus for contextual video content adaptation are disclosed. Video content is adapted based on any number of criteria such as a target device type, viewing conditions, network conditions or various use cases, for example. A target adaptation of content may be defined for a specified video source. For example, based on receiving a request from a portable device for a live sports feed, a shortened and reduced resolution version of the live sport feed video may be defined for the portable device. The source content may be accessed and adapted (e.g., adapted temporally, spatially, etc.) and an adapted version of content generated. For example, the source content may be cropped to a particular spatial region of interest and/or reduced in length to a particular scene. The generated adaptation may be transmitted to a device in response to the request, or stored to a storage device. |
US10749922B2 |
Method and telecommunications arrangement for transferring media data having differing media types via a network sensitive to quality of service
A telecommunication system and a method for transferring media data from a first client over a QoS-sensitive network to a second client. The system and method can permit media data, which contain a first media type with a first traffic class and a second media type with a second traffic class to be bundled by the first client into second packets. In each second packet, the traffic class for each media type is marked in layer 4 and/or layer 5. The second packets can be transmitted toward the second client. Either before or during the transfer to the network, the second packets can be unbundled using the markings in layer 4 and/or layer 5 and then bundled into first packets, each of which has only one of the traffic classes. At least some of the first packets can then be transmitted over the network to the second client. |
US10749920B2 |
Monitoring system and wireless communication system equipped therewith
A base station is provided. The base station comprises a processor configured to receive beam related information from a user equipment (UE), determine a position of the UE in response to the beam related information and acquire a video stream from at least on video capturing device configured on the base station in response to the position. |
US10749918B2 |
Adaptive streaming with early client indication
Methods and systems for early identification of bitrates for segments in adaptive bitrate streaming can allow the server to begin processing or transcoding content as necessary for delivery, reducing processing and transmission latency. In a first aspect, a client may request a second segment before the first segment has been completely received. The server may begin any transcoding processes for preparing the second segment, and once the server has completed sending the first segment, the server may begin transmitting the now-prepared or partially prepared second segment. The server can then transmit the first and second segment contiguously, with essentially no network dead time. In a second aspect, the client may transmit an early notification of parameters for the request of the second segment, allowing the server to begin transcoding. The client may subsequently request the already-prepared or partially prepared second segment, similarly reducing request-response processing latency. |
US10749917B2 |
Broadcast signal transmission apparatus, broadcast signal reception apparatus, broadcast signal transmission method, and broadcast signal reception method
A method for transmitting a broadcast signal, according to one embodiment of the present invention, may comprise the steps of: generating broadcast data for at least one broadcast service; generating first level signaling information including information describing attributes for the at least one broadcast service; generating second level signaling information including information for listing the at least one broadcast service; generating link layer packets including encoded broadcast data, the first level signaling information and the second level signaling information; and generating broadcast signals including the generated link layer packets. |
US10749915B2 |
Modifying signal associations in complex computing networks
This disclosure is directed to an apparatus for modifying a temporal signal association in a complex computing network such that a future computing operation is executed based on the modified signal association. |
US10749913B2 |
Techniques for multiply-connected messaging endpoints
Various embodiments are generally directed to techniques for multiply-connected messaging endpoints, such as for communication between processes of a distributed computing system. Some embodiments are particularly directed to communication over a connectionless fabric between distributed computing (DC) threads, or DC processes comprised thereof, that are implemented in a connection-oriented framework. In several embodiments, establishment of this communication may be referred to as wire-up. In many embodiments, various DC processes on a distributed computing device may utilize respective connection manager (CM) endpoints to establish communication via a common messaging endpoint. |
US10749910B1 |
Multidimensional vectors for analyzing and visually displaying identity permissions
Disclosed embodiments relate to systems and methods for multidimensional vectors for analyzing and visually displaying identity permissions. Techniques include identifying a plurality of identities, privileges used by the identities, and data associated with the identities, developing privilege vectors based on the identified information, and generating groupings of the identities based on the privilege vectors. Further techniques include generating a group score for an identity grouping, using the group score to determine if the grouping is a least privilege grouping, and updating the privileges of the identities within the grouping. |
US10749909B2 |
Method and apparatus for centralized policy programming and distributive policy enforcement
A method and apparatus for centralized policy programming and distributive policy enforcement is described. A method comprises centrally maintaining a plurality of policy definitions for one or more subscribers, generating policy configurations using the plurality of policy definitions, each of the policy configurations being specific to one of the plurality of policy definitions, and disseminating the policy configurations to the appropriate ones of the subscribers' networks. |
US10749907B2 |
Mobile device security, device management, and policy enforcement in a cloud based system
Mobile device security, device management, and policy enforcement are described in a cloud based system where the “cloud” is used to pervasively enforce security and policy and perform device management regardless of device type, platform, location, etc. A cloud based method includes monitoring traffic between a mobile device and an external network in a cloud based system separate from the mobile device and the external network; enforcing policy with respect to the traffic from the mobile device to the external network to determine whether to block or allow the traffic from the mobile device to the external network; and inspecting content associated with the traffic from the external network to the mobile device to determine whether to block or allow the traffic from the external network to the mobile device. |
US10749903B2 |
Transmission/reception apparatus of security gateway for physical unidirectional communication performing security tunneling and data re-transmission, and data transmission method using same
The present invention provides a reception apparatus for performing security tunneling and data re-transmission and unidirectionally receiving data from a transmission apparatus and a transmission apparatus for unidirectionally transmitting data to the reception apparatus. When the reception apparatus checks that there is an error in received data, the reception apparatus performs a switching operation or transmits a switching request signal to the transmission apparatus to notify of the error of the received data to the transmission apparatus. When the transmission apparatus has detected the switching, the transmission apparatus re-transmits data, in which an error is generated, to the reception apparatus. The transmission apparatus encrypts the data and transmits the encrypted data to the reception apparatus. According to the present invention, reliability and security of one-unidirectional data communication are improved. |
US10749900B2 |
Deploying session initiation protocol application network security
Described are systems, methods, and computer-program product embodiments for providing Session Initiation Protocol (SIP) network security. In some embodiments, a SIP processing system includes a SIP device configured to establish and control a SIP communication session between SIP user agents. In some embodiments, the SIP processing system includes a SIP device that establishes a recording session with a first server to receive SIP messages relayed in the SIP communication session. The first server decodes the SIP messages based on metadata in the SIP messages to extract multimedia content. Then, the first server opens a socket connection to establish a security session with a security system configured to determine whether the portion is associated with a detected threat and transmits a portion of the decoded multimedia to the security system. Based on a threat status generated by and received from the security system, the first server controls the SIP communication session. |
US10749899B1 |
Securely sharing a transport layer security session with one or more trusted devices
Securely sharing a Transport Layer Security (TLS) session with one or more trusted devices. In one embodiment, a method may include establishing a TLS session between a client device and a server device, communicating encrypted messages that are encrypted using encryption keys between the client device and the server device, and intercepting and decrypting one or more of the encrypted messages at a trusted device using the encryption keys. In this embodiment, the establishing of the TLS session may include negotiating a master secret, establishing a secure channel between the trusted device and the client device or the server device, sending, from the client device or the server device, the master secret to the trusted device over the secure channel, and employing the master secret at the client device, at the server device, and at the trusted device to generate, for the TLS session, the encryption keys. |
US10749898B2 |
Relay attack prevention
A system including at least one hardware processor; and a non-transitory computer-readable storage medium having stored thereon program instructions, the program instructions executable by the at least one hardware processor to: receive, using a first transceiver, a radio-frequency (RF) transmission from an RF device; extract, from said RF transmission, at least one of: (i) noise samples from one or more segments of said RF transmission, and (ii) signal samples from one or more segments of said RF transmission; and determine the presence of a second transceiver in the path of said RF transmission, based, at least in part, on processing said extracted noise samples and signal samples. |
US10749895B2 |
Handling network threats
Examples relate to handling network threats. In one example, a computing device may: receive, from a threat detector, threat data associated with a particular network device included in a plurality of network devices; identify, based on the threat data, a particular analytics operation for assisting with remediation of a threat associated with the threat data; identify, based on the threat data, additional data for performing the particular analytics operation; cause reconfiguration of at least one of the plurality of network devices, the reconfiguration causing each of the reconfigured network devices to i) collect the additional data, and ii) provide the additional data to an analytics device; and receive, from the analytics device, particular analytics results of the particular analytics operation. |
US10749890B1 |
Systems and methods for improving the ranking and prioritization of attack-related events
Disclosed herein are embodiments of systems, methods, and products comprise an analytic server, which provides a SilverlineRT system that prioritizes and analyzes security alerts and events. The server builds an attack tree based on attack detection rules. The server monitors large-scale distributed systems and receives alerts from various devices. The server determines attacks using the attack tree while excluding false alarms. The server determines impact and risk metrics for attacks in real-time, and calculates an impact score for each attack. The server ranks and prioritizes the attacks based on the impact scores. The server also generates real-time reports. By consider the mission and system specific context in the analysis alert information, the server gives insight into the overall context of problems and potential solutions, improving decision-making. By showing the impacts of alters, the server allows security personnel to prioritize responses and focus on highest value defense activities. |
US10749885B1 |
Agentless management and control of network sessions
Disclosed embodiments relate to systems and methods for automatically and transparently detecting potential compromises or unauthorized use of endpoint computing devices. Techniques include engaging, at a security server, in an agentless management session with an application running on an endpoint computing device; controlling, at the security server and through the agentless management session, a user-facing session of the application; receiving, at the security server, an indication of anomalous activity or loss of a proximity between at least one of: the one or more personal computing devices associated with the user and the endpoint computing device, or the one or more personal computing devices associated with the user and the user; and implementing a control action in the agentless management session, based on the received indication. |
US10749882B2 |
Network security system and methods for encoding network connectivity for activity classification
Aspects are generally directed to network security systems and methods of monitoring network activity. In one example, a network security system includes and interface to receive a Hypertext Transfer Protocol (HTTP) network log that includes a matrix of data, a feature extraction component configured to extract a connectivity matrix from the HTTP network log based on a recurring pattern within the matrix of data, and a training module configured to provide deep learning architecture training data based on the connectivity matrix. The system may include a deep learning architecture configured to receive and propagate the training data through one or more layers thereof to train the one or more layers, and being configured to generate a general data representation of the HTTP network log. The system may include a behavior analytics component to detect a discordant network activity within the HTTP network log based on the general data representation. |
US10749880B2 |
Cloud tenant oriented method and system for protecting privacy data
The present invention involves with a cloud tenant oriented method and system for protecting privacy data. The method comprises at least the following steps: analyzing event handler information and/or behavioral signature information of request information and determining an execution mode, selecting at least one node without a behavioral signature plot to execute the tenant request and recording an execution result, generating a behavioral signature plot based on the execution result, and dynamically detecting security-sensitive behavior based on the behavioral signature plot. The present invention ensures data security during processing of security-sensitive data for cloud services by adopting a technology based on behavioral signatures, and prevents attackers from exploiting vulnerabilities and bypassing security control to conduct malicious operations. |
US10749879B2 |
Secure decentralized file sharing systems and methods
In an embodiment, a request for hosting a blockchain may be obtained from a client device. A node device to host the blockchain may be determined. Information associated with the node device may be provided to the client device, where the information is used for creating the blockchain on the node device. First data may be obtained from the client device and second data may be obtained from the node device for verifying that the node device hosting the blockchain complies with a hosting verification condition. Based on the first data, the second data, and the hosting verification condition, hosting information associated with the node device may be determined. Based on the hosting information, the node device may be removed from a set of node devices for hosting the blockchain. |
US10749876B2 |
Adaptive and dynamic access control techniques for securely communicating devices
Disclosed embodiments relate to adaptively and dynamically monitoring and managing a proximity status between securely communicating devices. Techniques include identifying a secure connection session established between an endpoint computing resource and an auxiliary computing device associated with a user; receiving real-time proximity data associated with at least one of the user or the auxiliary computing device; receiving proximity data associated with the endpoint computing resource; determining, based on the real-time proximity data associated with at least one of the user or the auxiliary computing device and the proximity data associated with the endpoint computing resource, whether at least one of the auxiliary computing device or the user has left the proximity to the endpoint computing resource; and implementing, based on the determining, an automatic session control action for the secure connection session. |
US10749873B2 |
User abstracted RBAC in a multi tenant environment
A method and system for improving efficiency and security of a role based access control (RBAC) identity management system. A service provider owner requests an addition of a service provider identity dataset to a role dataset in the RBAC identity management system. The role dataset includes permissions to the individual users within the service provider identity dataset to access a secured resource of the RBAC identity management system and to perform the service on the secured resource. Addition of the service provider identity dataset to the role dataset is granted and is periodically revalidated which includes receiving an instruction to maintain or delete the service provider identity dataset from the role dataset. Access to the secured resource is based on the service provider identity dataset in the role dataset, instead of being based on the individual users, which improves the efficiency and security of the RBAC identity management system. |
US10749869B1 |
Authentication authorization and accounting (AAA) system roaming management
A system for changing roaming policy configuration on an authentication, authorization, accounting (AAA) system. The system comprises a processor, a non-transitory memory, and an AAA policy change application stored in the non-transitory memory. When executed by the processor, the AAA policy change application launches execution of a plurality of instances of the automation script, monitors a progress of the instances of the automation script, compares the progress of the instances of the automation script to a time remaining of a predefined maintenance time window, where the AAA policy change application is configured to halt an in-progress update of roaming policy configuration on the plurality of AAA nodes based on the comparison of the progress of the instances of the automation script being insufficient relative to the time remaining of the predefined maintenance time window, and copies roaming policy files updated by the automation script to AAA nodes. |
US10749865B2 |
Systems and methods for providing block chain or distributed ledger-based entity identity and relationship verification
Block chain/distributed ledger-based verification of entity identity or verification of a relationship between two or more entities may be provided. Verification addresses may be established on a block chain/distributed ledger by: associating identifiers and verifiers with entities having previously verified entity identities or having previously verified relationship(s) with other entities, assigning verification addresses on a block chain/distributed ledger to the entities, and recording entity identifier(s), identity verifier data and relationship verifier data associated with the entities at corresponding verification addresses. Embodiments for block chain/distributed ledger-based verification of entity identity and/or verification of entity's relationship to related entity(ies) using the verification addresses are performed using one or more identity verifiers and/or one or more relationship verifiers. |
US10749863B2 |
System, apparatus and method for providing contextual data in a biometric authentication system
In one embodiment, an apparatus includes: a bioimpedance sensor to generate bioimpedance information based on bioimpedance sample information from at least some of a plurality of electrodes to be adapted about a portion of a person; at least one biometric sensor to generate biometric information based on biometric sample information from at least some of the plurality of electrodes; at least one environmental sensor to generate environmental context data; and an integration circuit to receive the bioimpedance information, the biometric information and the environmental context data and to adjust the bioimpedance information based at least in part on a value of one or more of the biometric information and the environmental context data. Other embodiments are described and claimed. |
US10749855B2 |
Securely managing digital assistants that access third-party applications
Systems herein allow a digital assistant to make requests to applications, such as third-party applications, that access data in an enterprise mobility management (“EMM”) system. The digital assistant can link to a portal application and receive a token that identifies a user. A remote application on a user device can establish a session with the portal application as part of a single sign on (“SSO”). The session can identify the same user. The portal application can then link the digital assistant to the remote application. When the digital assistant makes a request to the portal application, a notification can be pushed to the remote application. The user can confirm the request, establishing an authorized session during which time the digital assistant can make additional requests to the portal application. The portal application can service the requests by accessing third-party applications available through the portal application and authorized for access by the SSO. |
US10749852B2 |
Systems and methods for connecting private devices to public devices according to connection parameters
Systems and methods for connecting a private device to a public device based on various connection parameters. For example, a media guidance application may receive a communication requesting to use the public device from a private device that is implementing a private interface application (e.g., Netflix™ a streaming media application). In response, the media guidance application may generate an authorization key that is unique to the private device and comprises connection parameters. The media guidance application may transmit the authorization key to the private interface application to initiate a session between the public device and the private device. Whenever a command is received from the private device, the media guidance application may verify the authorization key and determine whether the connection parameters are satisfied. In response to verifying the authorization key and the connection parameters, the public device may execute the received command. |
US10749848B2 |
Systems and methods for providing data privacy in a private distributed ledger
Systems and methods for providing data privacy in a private distributed ledger are disclosed. According to another embodiment a distributed ledger network may include a first node comprising a first node computer processor and hosting a central ledger comprising a plurality of entries for public transactions and private transactions, wherein the entries for public transactions comprise transaction payloads for the respective public transaction, and the entries for private transactions comprise a cryptographic hash digest of a transaction payload for the respective private transaction; and a plurality of second nodes each comprising a second node computer processor and hosting a public database comprising the public transactions, and a private database comprising transaction payloads for the private transactions to which the node is a party. |
US10749847B2 |
Hardware trusted data communications over system-on-chip (SOC) architectures
A data communication system exchanges user data between a first System-On-Chip (SOC) and a second SOC. The SOCs hash and transfer their read-only hardware-trust keys and receive hardware-trust digital certificates. The SOCs exchange and validate the hardware-trust digital certificates. The first SOC encrypts user data and transfers the encrypted user data responsive to the hardware-trust validations. The second SOC receives the encrypted user data, decrypts the encrypted user data, and processes the decrypted user data responsive to the hardware-trust validations. In some examples, the second SOC encrypts and transfers other user data responsive to the hardware-trust validations, and the first SOC receives, decrypts, and processes the other user data responsive to the hardware-trust validations. The first and/or the second SOC could be wireless communication devices. |
US10749846B2 |
Secure content access authorization
A secure content delivery or access method may include coordination among three devices such as servers—a content management server, a delivery server, and an authorization server. A request for content may originate from an authorization server application, and may involve the application obtaining two digitally signed tokens for the request. The first token may be from the authorization server, and may include a content management server identifier for the requested content. The second token may include two identifiers for the content: the first identifier being the content management server identifier, and the second being a delivery server identifier. The first and second tokens may be signed by the authorization server and content management server, respectively, and may be delivered to the delivery server for validation. Successful validation may result in the delivery server providing a content decryption key for the requested content to a device requesting the content. |
US10749844B2 |
De-identifying distributed bridging network platform
Computer implemented systems and methods are presented comprising a platform coordinating data flows between data acquisition, data transformation and data delivery nodes, whilst protecting the identities of all entities whose data is being acquired, transformed, stored, and/or delivered. Metadata usage from different data transformation flows enables the platform to facilitate value distribution back to nodes and data subjects that contributed to output, enabling individual companies and/or data subjects subscribed to the platform to assess how and by whom their data is utilized in order to produce specific outputs, with the personal data of all entities being de-identified. |
US10749842B2 |
Communication system and method for network address translation
A communication system configured to perform an address translation and a method of translating an address of the communication system are provided. The communication system configured to transceive a packet through a network includes a modem circuit configured to modulate the packet into a transmission signal to be transmitted to the network and demodulate a receiving signal from the network into the packet, and an address translation circuit configured to translate a network address of the packet, wherein the address translation circuit includes an embedded memory configured to receive a header of the packet from an external memory in which the packet is stored and store the header, a first translator configured to translate a format of the header, and a second translator configured to translate an address included in the header. |
US10749840B2 |
Network communication method and apparatus
Devices residing in different networks communicate with one another using inter-network communication. A host may transmit a first packet to a gateway and the gateway may transform it into a second packet. When creating the second packet, the gateway may transmit a request to an address mapper for a mapped address. The mapped address includes a native address or a system address. The system address includes another native address as well as a reference value. The reference value is associated with the host, includes an opaque binary value of an arbitrary size, and is subdivided into multiple fields associated with the host. In response to the mapped address being the system address, the address mapping engine obtains the system address. In response to the mapped address being the native address, the address mapping engine obtains the native address. The native address is determined in view of an existing network protocol. |
US10749837B2 |
Network access control based on profile type
In some examples, a telecommunications-network packet gateway can receive, from a terminal via a packet tunnel, a lookup request for a network address associated with a server name. The packet gateway can determine a profile identifier associated with the packet tunnel and retrieve, from a policy server, an associated profile type. The packet gateway can then select a nameserver associated with the profile type, and forward the lookup request to the nameserver. The nameserver can store a name list. Upon receiving a request, the nameserver can determine whether the server name is included in the name list and, in response, send a reply. In some examples, the packet gateway receives a request from the terminal for content, determines a profile type, selects a destination server associated with the profile type, and forwards the request to the destination server. |
US10749832B1 |
Methods and apparatuses for managing limited engagement by external email resource entity within a group-based communication system
Method, system, apparatus, and computer program product for programmatically managing limited engagement by an external email resource entity with a group-based communication interface of a group-based communication system are described herein. |
US10749824B1 |
Methods and systems to retrieve and validate emergency information associated with VOIP communications
A VoIP 911 application is accessible to VoIP callers in the form of a portal and/or at least one API executed by one or more of a plurality of computing systems to retrieve a physical location of a VoIP user utilizing a VoIP number. A known postal address is generated from the physical location. The postal address is processed using a GIS system to determine if the postal address is a valid actual address. The postal address is processed using geocoding, and an updated MSAG address associated with the location of the VoIP user is generated. The VoIP 911 application may comprise an instant messaging application. The IM application is installed to and/or integrated with existing software packages. A VoIP user may update emergency information by submitting a current physical location of the VoIP user via an IM chat window. The physical location submitted is validated and confirmed. |
US10749821B2 |
Domain-specific connected type ahead for chat
Systems, methods, and computer-readable media for providing domain-specific type-ahead suggestions in a chat. In some embodiments, a method can include connecting a first user to communicate with a second user in a chat session. A first user-specific type-ahead domain for the second user can be selected based on one or more characteristics associated with the first user. The method can include receiving message input from the second user in the first chat session and selecting a first user-specific type-ahead suggestion for the second user based on the message input and the one or more characteristics associated with the first user using the first user-specific type-ahead domain. Subsequently, the first user-specific type-ahead suggestion can be presented to the first user if the second user accepts the first user-specific type-ahead suggestion. |
US10749819B2 |
Automatically generating a response on behalf of a first user to a request received from a second user
A server automatically generates a response on behalf of a first user to a request received from a second user. The server receives configuration information for configuring automatic response generation for the first user, including information identifying the first user, information specifying a type of service provided by the first user including a plurality of parameters that define details for the service, and information providing an availability of the first user to provide the specified type of service. A request is received from the second user. The first user is selected from multiple users to respond to the request. A response is automatically generated using at least some of the received configuration information. The response is automatically transmitted to the second user on behalf of the first user. |
US10749818B1 |
Electronic mail communications
A method includes receiving an email on a first email client, providing a user interface on the first email client, wherein the user interface displays a plurality of potential responses to the email, and receiving a selection by a user on the user interface of a response of the plurality of potential responses. The method also includes automatically transmitting a reply to the email to an email server of a second email client in response to the selection of the response. The plurality of potential responses can comprise at least one of a single word, a single phrase, a single sentence, an emoticon and an emoji. |
US10749816B2 |
System for allocating sensor network resources
The technology relates to allocating the resource costs of a sensor network. In particular, an auction model is used to control the demand-side of sensor network utilization. Users bid for fractional sensor network utilization over particular variables such as time, geography, and data type. During the bidding process, the available sensor network resources may be unknown. Therefore, users bid on the predicted fractional sensor network utilization, which can be estimated using historical sensor network trends and models. Throughout this process, device performance is preserved while providing for user experience, privacy, and security. |
US10749814B2 |
Dynamic allocation of resources while considering resource reservations
Described herein are technologies relating to computing resource allocation among multiple tenants. Each tenant may have a respective absolute reservation for rate-based computing resources, which is independent of computing resource reservations of other tenants. The multiple tenants vie for the rate-based computing resources, and tasks are scheduled based upon which tenants submit the tasks and the resource reservations of such tenants. |
US10749803B1 |
Enhanced congestion avoidance in network devices
An upstream network device in a switching system processes packets an determines respective one or more egress ports of a downstream network device via which the packets are to be subsequently transmitted by the downstream network device. The upstream network device temporarily stores the packets in respective virtual output queues (VoQs) corresponding to the determined egress ports of the downstream network device. Responsively to receiving a flow control message indicating that particular one or more egress ports of the downstream network device are congested, the upstream network device modulates a flow of packets from particular one or more VoQs corresponding to the one or more particular congested egress ports of the downstream network device, to reduce congestion at the particular congested egress ports of the downstream network device, without modulating the flow of packets from other one or more VoQs corresponding to other egress ports of the downstream network device. |
US10749788B2 |
Path establishment method and controller
A path establishment method and a controller are disclosed. The method includes: when detecting a path establishment request for establishing P2MP TE, computing a P2MP TE path by using head node information and tail node information included in the path establishment request; identifying a target branch node in the P2MP TE path, and obtaining a label of the target branch node; and when a third node corresponding to the head node information and the target branch node are not a same node, sending first information to the third node, and sending second information to the target branch node, where the second information is used to instruct the target branch node to generate a multicast forwarding entry. Embodiments of this application can reduce complexity of establishing the P2MP TE path. |
US10749785B1 |
Enhanced two-way active measurement protocol
Techniques are described for an enhanced two-way active measurement protocol (TWAMP) to measure network performance of links and/or network paths in a fully converged Software Defined Wide Area Network (SD-WAN), using a single TWAMP instance. In one example, a first network device executing a TWAMP session-sender may send a test packet embedded with one or more metrics to the TWAMP session-reflector executed by another network device, which reflects the test packet embedded with one or more metrics back to the TWAMP session-sender. The TWAMP session-sender may further reflect a test packet embedded with one or more additional metrics back to a TWAMP session-reflector to enable the network devices to independently perform network performance calculations using the metrics embedded within the test packets exchanged in a single TWAMP instance. |
US10749784B2 |
Test system and method for IoT e2e testing
A test system for Internet-of-Things (IoT) end-to-end (e2e) testing is provided. The test system comprises a network simulator and a device under test. The device under test is adapted to initiate a communication with the network simulator and to send a Domain Name System (DNS) query and/or a Message Queue Telemetry Transport (MQTT) request to the network simulator. The network simulator is adapted to determine a platform according to which the device under test intends to communicate based on the Domain Name System query and/or the Message Queue Telemetry Transport request. |
US10749780B2 |
Systems and methods for management of cloud exchanges
A cloud exchange includes a first connection to an enterprise; a first plurality of peering points each to an associated cloud provider of a plurality of cloud providers; a second connection to a Central office Re-architected as a Data Center (CORD) including a set of hardware and/or software from one or more existing data centers that is capable of routing traffic directly between the plurality of cloud providers, wherein the CORD comprises a second plurality of peering points to the plurality of cloud providers; and a cloud exchange management application executed on a computing system configured to cause movement of traffic data between the first plurality of peering points and the second plurality of peering points responsive to one or more of the traffic data trending between two applications in different cloud providers and latency between the two applications in different cloud providers. |
US10749777B2 |
Computer system, server machine, program, and failure detection method
For each combination of a connection destination device and a computer, a connection time of connection between the connection destination device and the computer is measured. Whether the operation of the connection destination device is normal is determined based on the result of the measurement. |
US10749776B2 |
Method for generating requests for the segmentation of the monitoring of an interconnection network and associated hardware
The invention relates to a method for generating a request, from a formal language instruction defining a set of ports of an interconnection network, said request including an addressing command for each one of the ports defined in the instruction, said method including the following steps: Receiving, by a communication module, a formal language instruction defining a set of ports, Processing, by a processing module, the formal language instruction so as to generate a set of numbers encoded on at least one byte, each number including position bits, each one of the position bits allowing to identify a port and at least one authorization bit, the at least one authorization bit allowing to define access rights on the ports, and Encoding, by an encoding module, the set of numbers so as to generate the request including the addressing command. |
US10749775B2 |
Systems and methods for response calibration
The disclosure provides methods, systems, and computer readable media for calibrating user responses to questions. The method may comprise presenting, with the aid of a computer system and an interactive display operatively coupled to the computer system, a query to a user. The query may relate to the user's dietary consumption, exercise, health condition or mental condition. The system may receive from the user a response to the query. The system may interpret a user's response to a query based on a set of reference information. The set of reference information may comprise a pictorial depiction of portion size of the dietary consumption, exertion level of the exercise, existing state of the health condition or existing state of the mental condition. |
US10749768B2 |
Using a multi-network dataset to overcome anomaly detection cold starts
In one embodiment, a network assurance service receives a first set of telemetry data captured in a first network monitored by the network assurance service. The network assurance service computes, for each of a plurality of other networks monitored by the service, a similarity score between the first set of telemetry data and a set of telemetry data captured in that other network. The service selects a machine learning-based anomaly detector trained using a particular one of the sets of telemetry data captured in one of the plurality of other networks, based on the computed similarity score between the first set of telemetry data and the particular set of telemetry data captured in one of the plurality of other networks. The service uses the selected anomaly detector to assess telemetry data from the first network, until the service has received a threshold amount of telemetry data for the first network. |
US10749767B2 |
Routing actions to user devices based on a user graph
A routing system is described herein for intelligently routing actions directed to any one of a collection of user devices that are associated with a user. In operation, the routing system receives a request from a source entity to perform an action. The routing system determines a mode of carrying out the action that involves use of one or more user devices, selected from the collection of user devices. It then instructs the selected user device(s) to carry out the action. In this manner of operation, requests that are directed to an individual user device are no longer necessarily carried out by that individual user device. The routing system chooses the user device(s) to carry out the action based on current context information together with relationship information extracted from a user graph. |
US10749765B2 |
Method and system for monitoring communication in a network
A method, system and computer program product, the method comprising: in response to receiving a packet from a stream of packets transmitted to a computing platform, determining, based on a meta-data of the packet, whether to capture the packet or avoid capturing thereof, said determining comprising: subject to the meta-data indicating that a sequence number of the packet is within a first range or within a second range, wherein a distance between an end of the first range and a beginning of the second range is at least of a predetermined size, wherein a distance, through a wraparound, between an end of the second range and a beginning of the first range is at least of the predetermined size, thereby a wraparound situation is identifiable within the stream of packets; and in response to determining to capture the packet: capturing the packet; and transmitting the packet to analysis. |
US10749764B2 |
Device for generating and searching sensor tag data in real time
A device for generating and searching sensor tag data in real time is provided. The device can include a rollup executor that is configured to generate statistics data per time from raw data; and a rollup memory storing per-second statistics data in units of seconds for new input data and per-minute statistics data in units of minutes for the per-second statistics data, where the statistics data can be automatically calculated and provided by the system by using statistics for time series sensor tag data based on tag names/times. |
US10749763B2 |
Reliable address discovery cache
Reliable address discovery cache techniques are described. In an implementation, a reliable communication channel is established for control messages related to address resolution in a network. The communication channel is employed for communication of messages for internet protocol (IP) address acquisition, release, and mapping staleness between clients (e.g., nodes or endpoints) in the network and a cache manager component configured to maintain and update an address map for the clients. The cache manager component may also be configured to send directed messages via the communication channel to propagate changes in the mapping to the clients. Further, clients may provide explicit notifications regarding address release and staleness to the cache manager component to facilitate updating of the address map. In this way, a reliable and up-to-date address map is maintained and the amount of broadcast discovery messages and bandwidth consumed overall for address discovery operations may be reduced. |
US10749762B2 |
Systems and methods for managing resource utilization in cloud infrastructure
The present disclosure relates to managing resource utilization in cloud service infrastructure. A device can monitor the cloud service. The cloud service can be configured with an automatic scaling function based on a threshold. The device can determine, based on the monitoring, that a utilization value of the cloud service during a time interval exceeds the threshold. The device can generate, using a policy based on the utilization value and the threshold, an instruction to disable the automatic scaling function of the cloud service by the one or more servers. The device can transmit the instruction to the one or more servers via a second cloud application programming interface. The device can generate, responsive to the policy, a service ticket data structure with an indication of the utilization value and the time interval. The device can provide the service ticket data structure to an electronic board. |
US10749761B1 |
Unique user session tracking in adaptive bitrate video delivery
An apparatus having a device of a user and a computer is disclosed. The computer may be configured to (i) transfer a manifest to the device in response to a viewing session being opened. The manifest generally has a plurality of modified links to a plurality of bitrates of a video content. Each one of the modified links may include an identifier that is unique to the viewing session. The computer may also be configured to (ii) receive a particular one of the modified links from the device, (iii) log a presence of the viewing session, and (iv) generate a request by removing the identifier from the particular modified link. |
US10749758B2 |
Cognitive data center management
An apparatus for cognitive data center management is disclosed. A computer-implemented method and computer program product also perform the functions of the apparatus. According to an embodiment of the present invention, the apparatus includes a performance module that determines performance metrics over a predetermined time interval at a device coordinate in a three-dimensional (“3D”) coordinate system for each replaceable device of a plurality of replaceable devices within a data center. The apparatus maps the performance metrics to environmental sensor measurements taken in the 3D coordinate system. The apparatus further includes an input analysis module that uses discovery analytics to determine a predicted time to failure for each replaceable device. The apparatus further includes a preventative action module that determines recommended actions to prevent failure of the replaceable devices and a tradeoff learning module that provides updated weighting factors based on changes to performance metrics in response to taking recommended actions. |
US10749751B2 |
Application of profile setting groups to logical network entities
Some embodiments provide a method for a network controller. The method receives network configuration data including an association of an entity configuration profile set with a logical network entity. The entity configuration profile set is a group of at least two entity configuration profiles for different types of settings to apply to logical network entities with which the entity configuration profile set is associated. The method identifies a host machine at which the logical network entity is implemented. The method distributes the entity configuration profile set and each of the at least two entity configuration profiles to the identified host machine. |
US10749735B2 |
Method and management agent for event notifications correlation
Methods and apparatus for correlating event notifications between agents in a management network are provided. An agent constructs a network notification in response to receiving an event notification. If the received event notification is associated with a prior notification already received and stored by the agent, a correlation attribute is added to the constructed network notification. If the received notification matches a peer agent notification category that another agent in the management network is interested in receiving, the constructed network notification is sent to the other agent. |
US10749734B2 |
Management of events and moving objects
A system comprising: an event server including a plurality of event agents for handling events occurring in a geographic space; a selector operable to select an event agent among the plurality of event agents for handling an event candidate based on a type of a source information; and a mobile object server including a mobile object agent assigned to a moving object in the geographic space, wherein the mobile object server is operable to execute the mobile object agent to collect information of an event from the selected event agent and provide the moving object with information that assists the moving object with traveling in the geographic space. |
US10749730B2 |
Supplying applications to mobile devices
Applications are supplied to mobile devices. An application template is developed as a hierarchy of nested elements and layout data for a plurality of types of element. An application is generated by applying content data to one or more of the elements to form objects. The objects are supplied to a requesting mobile device, such that each object contains data, an identification of its position within the hierarchy and an identification of its element type. In addition, layout data is supplied to the mobile device for element types corresponding to the supplied object. |
US10749728B1 |
Signal calibration circuit, memory storage device and signal calibration method
A signal calibration circuit including a first phase interpolator, a second phase interpolator, a phase detector, a control circuit and a delay circuit is provided according to an exemplary embodiment of the disclosure. The first phase interpolator is configured to receive a plurality of first signals and generate a plurality of first quadrature signals according to the first signals. The second phase interpolator is configured to generate a second signal according to the first quadrature signals. The phase detector is configured to detect a phase difference between the second signal and one of the first signals. The control circuit is configured to generate a calibration parameter according to the phase difference. The delay circuit is configured to adjust at least one of the first signals according to the calibration parameter, such that the adjusted first signal includes a plurality of second quadrature signals. |
US10749727B2 |
Method for protecting a link in an optical network
Enclosed herewith is a method for protecting a link in an optical network configured for transmitting digital data employing a predetermined modulation format which comprises a number of symbols in a constellation diagram. A binary address is associated with each symbol. The modulation format allows for a constellation distortion, according to which the relative positions of constellation points in the constellation diagram are varied in a predetermined way by a predetermined degree. The method the steps of: A) partitioning the traffic in two or more priority classes, B) mapping higher priority traffic to predefined bit positions within the binary symbol addresses, C) evaluating the quality of a predetermined protection link, D) determining a degree of distortion such that a desired transmission quality for the transmission of the traffic of the highest priority class or classes via said predetermined protection link and a desired transmission quality for the full traffic via said given link are simultaneously ensured, and E) employing said distorted constellation diagram for transmission of digital data over said given link. |
US10749726B2 |
Reference signal for pi/2 binary phase shift keying (BPSK) modulation
Various aspects directed towards generating a reference signal for pi/2-binary phase shift keying (BPSK) modulation are disclosed. In an example, a pi/2-BPSK sequence is selected from a plurality of candidate sequences. A reference signal is then generated based on the selected pi/2-BPSK sequence such that the reference signal is associated with a transmission of data modulated according to a π/2-BPSK modulation. |
US10749725B2 |
Apparatus and method for superposition transmissions
Apparatuses, systems, and methods are described concerning a new type of superposition multiplexing transmission constellation (super-constellation): the Gray-mapped Non-uniform-capable Constellation (GNC). Apparatuses, systems, and methods for generating GNC super-constellations are described, as well as apparatuses, systems, and methods for receiving, demapping, and decoding transmissions using GNC super-constellations. Apparatuses, systems, and methods for selecting a type of superposition multiplexing transmission constellation based on various conditions are also described. |
US10749720B1 |
Receiver adaptation using stochastic gradient hill climbing with genetic mutation
A receiver receives communications over a communication channel, which may distort an incoming communication signal. In order to counter this distortion, the frequency response of the receiver is manipulated by adjusting several frequency response parameters. Each frequency response parameter controls at least a portion of the frequency response of the receiver. The optimal values for the frequency response parameters are determined by modifying an initial set of values for the frequency response parameters through one or more of stochastic hill climbing operations until a performance metric associated with the receiver reaches a local maximum. The modified values are displaced through one or more mutation operations. The stochastic hill climbing operations may subsequently be performed on the mutated values to generate the final values for the frequency response parameters. |
US10749713B2 |
Resource pattern for uplink transmissions
Some wireless communication systems may attempt to balance frequent transmission opportunities (e.g., where the frequency of the opportunities may refer to gaps in the time domain, frequency domain, etc.) with a desire for communication reliability and/or interference diversity. In accordance with the described techniques, some such systems may apportion communicating devices into groups, where resources are strategically assigned to each group so as to reduce latency without significantly compromising communication reliability or interference diversity (e.g., by allowing a membership of the groups to cycle through all possible combinations before repeating). Such techniques may support delay-sensitive communications, channel sounding procedures, or other similar types of transmissions. Resources may be allocated based on a scheduling parameter transmitted to a user equipment (UE), which may implicitly or explicitly indicate a plurality of resource offsets to the UE. |
US10749712B2 |
Device and method of performing bandwidth detection
A bandwidth detection device comprises a receiving circuit, for receiving a first plurality of frequency-domain signals on a first subchannel; a filter circuit, coupled to the receiving circuit, for transferring the first plurality of frequency-domain signals to a first plurality of filtered frequency-domain signals according to a filter function; and a processing circuit, coupled to the filter circuit, for comparing the first plurality of frequency-domain signals with the first plurality of filtered frequency-domain signals, to determine whether the first subchannel comprises first transmitted data. |
US10749709B2 |
Distributed file system using torus network and method for operating the same
Disclosed herein is a distributed file system using a torus network. The distributed file system includes multiple servers. The location of a master server may be determined to shorten the latency of data input/output. The location of the master server may be determined such that the distance between the master server and a node farthest away from the master server, among nodes, is minimized. When the location of the master server is determined, the characteristics of the torus network and the features of a propagation transmission scheme may be taken into consideration. |
US10749708B2 |
Network transmission of USB traffic
Transport packets comprising Universal Serial Bus (USB) packet data are transported over a communications network in a manner adapted to the USB context of the USB data transfers the USB packet data belongs to. A transport packet comprising USB packet data has assigned thereto at least one quality-of-service parameter value that depends on the USB context of the USB data transfer applicable to the USB packet data. A USB-data source device is configured to run a computer program causing it to expose the respective USB contexts of the USB data transfers applicable to USB packet data of the transport packets it outputs. The USB-data source device (or its sink) may inform the network of the relationship between transport packets and USB contexts of USB data transfers. The network may include a node device which discriminates the USB contexts of the USB data transfers applicable to USB packet data in transport packets and maps the transport packets to quality-of-service parameter values based on the discriminated USB contexts. |
US10749706B2 |
Local interconnect network bus architecture
The present invention relates to an integrated circuit device for controlling LIN slave nodes based on a control signal transmitted by a LIN master control device. The IC device comprises a slave node circuit for processing the control signal when received in the form of a LIN message frame via a first data line terminal. The IC device also comprises a master node circuit for processing further control signals to be transmitted in the form of LIN message frames via a second data line terminal to the LIN slave nodes. The IC device also comprises a processing unit for controlling the LIN slave nodes based on the control signal by composing the further control signals. |
US10749703B2 |
Information processing method and device, and computer storage medium
The present disclosure relates to an information processing method, comprising: encapsulating, in a link layer discovery protocol data unit (LLDPDU), bit indexed explicit replication (BIER) bit string length information of a first node; and sending to a second node the LLDPDU, wherein the second node is an adjacent node of the first node, and the BIER bit string length information of the first node is used to forward BIER traffic. The present disclosure also relates to an information processing device. |
US10749701B2 |
Identification of meeting group and related content
Methods, systems, and apparatuses are described here that identify meeting content. A meeting content determiner in a shared computing device identifies a group including two or more participants in a meeting, where at least one participant of the group is logged into an account associated with a meeting content determiner. Further, the meeting content determiner identifies content associated with the two or more participants, and accessible by the at least one participant logged into the account and displays indications of the identified content to one or more participants of the group. |
US10749699B1 |
Predictive indicator based on network performance
A network load traffic management component is communicatively coupled to a radio access network (RAN). The network load traffic management component includes a subscriber scoring module and a subscriber scoring database that operates on a server processor and a server memory. The network load traffic management component identifies at least one network event corresponding to a RAN control plane. The network load traffic management component monitors each network event for a session time, in which each session time is associated with each subscriber interacting with the RAN. The network load traffic management component, repeatedly, determines a performance measurement for each network event associated with each session time. The performance measurement for each network event is recorded. A subscriber score is generated based on the performance measurements for each network event. A predictive indicator score is generated based on subscriber scores and behavioral analytics associated with each subscriber. |
US10749698B2 |
Feature-aware software usage metering
An approach is disclosed for metering usage of cloud computing services at a feature level. In one embodiment, a metering application receives feature status information indicating which features of a cloud computing service are enabled through an event-driven process, in which events are generated and reported to the metering application when features are enabled or disabled, as well as a polling process, in which the metering application periodically queries the statuses of features. Feature status information gathered by the metering application is persisted in a database as collective feature statuses, with each collective feature status being associated with an interval of time during which feature statuses are unchanged. The feature status information obtained and persisted in the database may then be used to, for example, determine licensing fees based on feature usage or report feature usage to facilitate quantitative studies of the usefulness of features. |
US10749691B2 |
Providing quality of service for certificate management systems
An example system receives certificate requests from clients. Each request can indicate a number of computerized devices needing certificates; a timestamp indicating when the request was transmitted; and a client identifier. The system includes a Quality of Service (QoS) manager that: distributes the requests from the clients across client queues, each of the client queues corresponding to a particular client; and divides requests into smaller subgroups of entries corresponding to a subset of the computerized devices needing certificates. The system can also transmit retrieved entries from the client queues to a certificate management service. |
US10749690B2 |
System and method for certificate authority for certifying accessors
A method for access control on an electronic device includes the step of generating, by an electronic device, a certificate signed by a keymaster, the electronic device running an operating system, the operating system capable of distinguishing between applications and application processes and providing an execution environment. The method also includes the steps of indicating, by the certificate, an access privilege for an approved accessor and receiving from an application, a request subject to the access privilege indicated by the certificate. The method further includes the steps of identifying the application from which the request subject to the access privilege was received and determining, using the certificate, whether the application is an approved accessor. |
US10749684B2 |
Methods and apparatus for providing blockchain participant identity binding
A method and apparatus provides a blockchain that includes one or more blocks that contain a cryptographic binding of a signature-verification public key and/or a data encryption public key to the identity of the holder of the corresponding private key. The binding is performed by one or more key binding entities, referred to herein as a blockchain identity binder. Originators and recipients use the identity binding data to secure block chain transactions. |
US10749683B2 |
Technologies for end-to-end biometric-based authentication and platform locality assertion
Technologies for end-to-end biometric-based authentication and locality assertion include a computing device with one or more biometric devices. The computing device may securely exchange a key between a driver and a secure enclave. The driver may receive biometric data from the biometric sensor in a virtualization-protected memory buffer and encrypt the biometric data with the shared key. The secure enclave may decrypt the biometric data and perform a biometric authentication operation. The computing device may measure a virtual machine monitor (VMM) to generate attestation information for the VMM. A secure enclave may execute a virtualization report instruction to request the attestation information. The processor may copy the attestation information into the secure enclave memory. The secure enclave may verify the attestation information with a remote attestation server. If verified, the secure enclave may provide a shared secret to the VMM. Other embodiments are described and claimed. |
US10749676B2 |
Distributed consent protecting data across systems and services
Non-limiting examples of the present disclosure relate to generation and implementation of a new security protocol that is used to secure common data access transactions across distributed network examples. An exemplary proof of verification protocol is disclosed that implements consensus security mechanisms across a plurality of distributed nodes, which may be utilized to validate owners of data in common data access transactions. Extending principles of blockchain security to common data access transactions and Internet of Things (IOT) networking requires a solution that: improves speed in transactional processing; reduces computational complexity; and presents efficient, secure and repeatable validation for owners of data in distributed networking environments. An exemplary proof of verification protocol provides such technical advantages by validating both user-specific data for a subscriber of an application/service and session data for user activity (past and present) within the application/service. |
US10749675B2 |
Homomorphic white box system and method for using same
A method for whitebox cryptography is provided for computing an algorithm (m,S) with input m and secret S, using one or more white-box encoded operations. The method includes accepting an encoded input c, where c=Enc(P,m); accepting an encoded secret S′, where S′=Enc(P,S); performing one or more operations on the encoded input c and the encoded secret S′ modulo N to obtain an encoded output c′; and decoding the encoded output c′ with the private key p to recover an output m′ according to m′=Dec(p,c′), such that m′=(m,S). |
US10749674B2 |
Format preserving encryption utilizing a key version
In one example, a system for format preserving encryption utilizing a key version can include a processor, and a memory resource storing instructions executable by the processor to determine a quantity of significant bits for a value to be encrypted, mask the value to include the quantity of significant bits, perform format preserving encryption on the masked value to generate an encrypted value, and append a key version to the encrypted value. |
US10749672B2 |
Computing system having an on-the-fly encryptor and an operating method thereof
A path for transmitting encrypted data is completely separated from a path for transmitting unencrypted data. To this end, a virtual secure memory is created on an address space. If a central processing unit (CPU) writes data in the virtual secure memory, hardware stores the data in a specific area of a dynamic random access memory (DRAM) after automatically encrypting the data. In the case where the CPU intents to read data, the hardware sends the data to the CPU after automatically decrypting the data read from a specific area of the DRAM. |
US10749666B2 |
Data statistics method and apparatus
A data statistics method and an apparatus thereof, the method comprises: receiving, by a first processor of the cooperative data party, data identifiers corresponding to pieces of first data for the data statistics and corresponding encrypted data from the statistical data party; determining, by the first processor, an identifier intersection according to data identifiers corresponding to pieces of second data of the cooperative data party and the received data identifiers corresponding to the pieces of first data; performing, by the first processor, statistical processing on encrypted data corresponding to common data identifiers in the identifier intersection to obtain encrypted statistical values; and sending, by the first processor, the encrypted statistical values to a second processor of the statistical data party to enable the second processor to perform decryption on the encrypted statistical values and obtain the statistical values. |
US10749664B1 |
Clock data recovery for automotive vision system
An apparatus includes a slicer circuit, a frequency acquisition circuit, a phase acquisition circuit and an oscillator circuit. The slicer circuit may be configured to (i) generate an output signal by slicing a data signal in response to a clock signal and (ii) generate a crossing signal in response to the data signal and the clock signal. The frequency acquisition circuit may be configured to generate a first control signal and a second control signal in response to the data signal and the clock signal. The phase acquisition circuit may be configured to generate a third control signal in response to the first control signal and the data crossing signal. The oscillator circuit may be configured to generate the clock signal in response to the second control signal and the third control signal. The second control signal may shift an adjustable frequency range of the clock signal. |
US10749659B2 |
Methods and apparatus for transmitting/receiving HE-LTF
A method and apparatus for transmitting frames having a long training field (LTF) for a second type of station (STA) in a wireless communication system are provided. For this, STA prepares a frame having a first part for a first type of STA and a second part for the second type of STA; wherein the second part includes multiple LTFs, when the frame is used for MU (Multiple User) transmission scheme or OFDMA (Orthogonal Frequency Divisional Multiple Access) scheme. In case a first LTF having a first number of symbols length and a second LTF having a second number of symbols length, which is greater than the first number of symbols length, are used for the multiple LTFs, the first LTF is extended such that the first LTF and the second LTF have a same number of symbols length. The STA transmits the prepared frame to one or more STAs. |
US10749657B2 |
Mapping reference signal for multi-cell transmission
Described is a method for the mapping of reference signals. The method includes generating a reference signal sequence for two or more cells, where each cell of the two or more cells has a cell bandwidth. The method also includes determining an offset for the reference signal sequence based at least in part on the cell bandwidth of each cell. Mapping the reference signal sequence to resource elements of physical resource blocks for the cells based at least in part on the offset is included in the method. Apparatus and computer readable media are also disclosed. |
US10749656B2 |
Method and apparatus for handling starting subframe of control channel for MTC UE in wireless communication system
A method and apparatus for transmitting a control channel to a machine-type communication (MTC) user equipment (UE) in a wireless communication system is provided. A base station (BS) configures a period of a control channel by using a first set of subframes which can be used for a MTC UE and a second set of subframes which cannot be used for the MTC UE, and transmits the control channel to the MTC UE in the first set of subframes within the period. A user equipment (UE) derives a starting subframe of the control channel among starting subframe sets of the control channel within the period of the control channel, and monitors the control channel from the starting subframe of the control channel. |
US10749654B2 |
Method for reporting channel state information and device using same
Provided are a method for reporting channel state information (CSI) and a device using the same. The device determines a CSI payload size in a CSI triggering subframe on which a CSI report is triggered. The device selects one of a plurality of physical uplink control channel (PUCCH) formats according to the CSI payload size. |
US10749652B2 |
Methods and apparatus for employing multiple subframe configurations for HARQ operations
Certain aspects of the present disclosure relate to methods and apparatus for employing multiple subframe configurations. A UE may identify a first reference subframe configuration (RSC) to use as a reference for hybrid automatic repeat request (HARQ) operations for transmissions on an uplink, and a second RSC to use as a reference for HARQ operations for transmissions on a downlink. The UE may communicate with at least a node on the uplink and the downlink based on the first and second RSCs. In aspects, a base station (BS) may identify a first RSC to use as a reference for HARQ operations for transmissions on an uplink, identify a second RSC to use as a reference for HARQ operations for transmissions on a downlink, and communicate with at least one UE on the uplink and the downlink based on the first and second RSCs. |
US10749651B2 |
Channel acquistion using orthogonal time frequency space modulated pilot signal
Techniques for performing channel estimation in an orthogonal time, frequency and space (OTFS) communication system include receiving a wireless signal comprising a data signal portion and a pilot signal portion in which the pilot signal portion includes multiple pilot signals multiplexed together in the OTFS domain, performing two-dimensional channel estimation in a time-frequency domain based on a minimum mean square error (MMSE) optimization criterion, and recovering information bits using a channel estimate obtained from the two-dimensional channel estimation. |
US10749650B2 |
Method and apparatus for generating pilot tone in orthogonal frequency division multiplexing access system, and method and apparatus for estimating channel using it
The present invention relates to a pilot tone generating method and apparatus of an orthogonal frequency division multiple access system and method, and a channel estimation method and apparatus using the same. The channel estimation apparatus includes a pilot tone extracting unit for extracting a pilot tone, which is inserted within a frame with data tone, masked with an orthogonal code; a pilot tone unmasking unit for unmasking of the pilot tone extracted from the pilot tone extracting unit by using an orthogonal code information; and a channel estimation operating unit for estimating a channel by calculating an average of the pilot tones which is unmasked in the unmasking unit. |
US10749647B2 |
Beamformed transmission in high efficiency wireless LAN
The present disclosure relates to a method and apparatus for beamformed transmission in a wireless local area network. According to one aspect of the present disclosure, a method for transmitting a Physical layer Protocol Data Unit (PPDU) frame to a plurality of stations (STAs) by an Access Point (AP) in a wireless local area network may be provided. The method may include transmitting a SIGNAL field of the PPDU frame, the SIGNAL field including beamforming information indicating whether beamforming is applied to respective data units of the PPDU frame, and transmitting the data units of the PPDU frame, the data units being individually beamformed or not beamformed according to the beamforming information. |
US10749646B2 |
Apparatuses, methods, and computer program products for communication
Apparatuses, methods, and computer program products for communication are provided. In an aspect, an apparatus for communication may include a processing system configured to receive a frame configured to assign at least member information or position information for one or more identifiers, and receive a data packet associated with a particular identifier and indicating a number of space-time streams for one or more position information. In another aspect, an apparatus for communication may include a processing system configured to transmit a frame configured to assign at least member information or position information for one or more identifiers, and transmit a data packet associated with a particular identifier and indicating a number of space-time streams for one or more position information. |
US10749645B2 |
Reference signal transmitting method and device, and reference signal receiving method and device
The present invention provides a reference signal transmitting method and device, and a reference signal receiving method and device. The transmitting method comprises: determining the position of a time-frequency resource for a reference signal a transmission time interval (TTI) according to a preset manner; and transmitting the reference signal according to the position of the time-frequency resource. The present invention solves the problem in the related art of high processing delay of a user equipment (UE) that occurs because a DMRS is later-positioned, and reduces the processing delay of the UE. |
US10749644B2 |
System and method for efficient bandwidth utilization
Systems and method for defining sub-bands are provided. Each sub-band has a respective sub-carrier spacing, and at least one sub-band portion. Each sub-band portion has a channelization configuration including a resource block size configuration and a sub-band portion bandwidth. The sub-bands are allocated based on a sub-band configuration framework that includes a preconfigured set of possible sub-carrier spacings, a preconfigured set of possible resource block sizes, and a preconfigured set of possible sub-band portion bandwidths. In some embodiments, to improve bandwidth utilization, the channelization configuration for a given sub-band configures a plurality of resource blocks having a first number of sub-carriers and an additional resource block having a number of sub-carriers other than the first number. A bandwidth portion may include two bandwidth portions having different channelizations with differing numbers of sub-carriers per resource block such that more useful sub-carriers are used than would be possible if only resource blocks having a largest of the differing numbers of sub-carriers were used. |
US10749642B2 |
Dynamic retransmissions with fixed and minimum delays
A network that supports retransmissions with fixed and minimum delays includes at least first, second and third transceivers. The first transceiver transmits to the second transceiver packets comprising data of first and second data types. The second transceiver: stores the received data in a second buffer; transmits to the third transceiver, without waiting a fixed delay, successfully-received packets comprising data of the first data type, which is encoded with a first error resistance level; and transmits to the third transceiver, after waiting the fixed delay, successfully-received packets comprising data of the second data type, which is also encoded with the first error resistance level. When the second transceiver receives a retransmission request from the third transceiver, it retransmits a packet comprising data of either the first or second data types, encoded with a second error resistance level that is higher than the first error resistance level. |
US10749638B2 |
Soft buffer handling with limited memory access bandwidth
Systems and methods for soft buffer handling with limited memory access bandwidth are provided herein. In some embodiments, a method of operation of a User Equipment (UE) of a cellular communications network includes receiving a retransmission that would require a total number of memory accesses to process that is greater than a memory access bandwidth of a soft buffer of the UE. The method also includes prioritizing which bits should be read from or written to the soft buffer of the UE when processing the retransmission based on the memory access bandwidth, any previously received redundancy versions, and/or a currently received redundancy version. According to some embodiments, this achieves higher system performance than Chase Combining alone while keeping the receiver implementation limitation as low as alternative solutions. |
US10749637B2 |
Methods and devices for aperiodic uplink transmission
A method for a user equipment (UE) is disclosed. The method includes receiving, by the UE, downlink control information (DCI) for a downlink (DL) scheduling assignment (DL-DCI), the DL-DCI indicating a first uplink (UL) carrier associated with a Physical Uplink Control Channel (PUCCH) resource configuration for transmitting an aperiodic UL transmission for uplink control information (UCI), and transmitting, by the UE, the aperiodic UL transmission for UCI in a second UL carrier without a PUCCH resource configuration, where the UE determines a resource allocation of the second UL carrier based on the DL-DCI. The DL-DCI includes at least one of: a UL/supplementary UL (SUL) carrier indicator, a Hybrid Automatic Repeat reQuest (HARQ)-ACK resource indicator (ARI), a sounding reference signal (SRS) request field, a HARQ timing indicator, or a channel station information (CSI) request. |
US10749635B2 |
Random-access and scheduling-request in new radio-things sidelink
Embodiments of a system and method for random access and scheduling request for new radio things sidelink are generally described herein. In some embodiments, a nUE (network user equipment) schedules a RA (random access) resource in a control channel. The nUE decodes a TAS (transmitter resource acquisition and sounding) payload, received from a wUE (wearable user equipment) in a PRB (physical resource block) addressed to a RA-ID (random access identifier) associated with the nUE. The nUE encodes, in response to decoding the TAS payload, a RAS (receiver resource acknowledgement and sounding) payload in the PRB. The nUE decodes initial access content received via a data channel from the wUE, the initial access content including a pro posed temp ID (temporary identifier) for addressing the wUE. The nUE encode, in response to the initial access content, an ACK (acknowledgement), addressed to the wUE, to accept initial access of the wUE. |
US10749634B2 |
Transmission device, transmission reception system and control method for transmission reception system
A transmission device includes, a receiver that receives availability information of each of a plurality of first transmission paths, and a transmitter that divides data into a plurality of transmission blocks, groups the plurality of transmission blocks into a plurality of slices, each of the plurality of slices include a distinct subset of the plurality of transmission blocks, when the availability information indicates that each of the plurality of first transmission paths has an error occurrence below a threshold value, transmits a different one of the plurality of slices to each of the plurality of first transmission paths. |
US10749633B2 |
Generation of polar codes with a variable block length utilizing
Polar codes may be generated with a variable block length utilizing puncturing. Some puncturing schemes consider punctured bits as unknown bits, and set the log likelihood ratio (LLR) for those bits to zero; while other puncturing schemes consider punctured bits as known bits, and set the LLR for those bits to infinity. Each of these puncturing schemes has been observed to provide benefits over the other under different circumstances, especially corresponding to different coding rates or different signal to noise ratio (SNR). According to aspects of the present disclosure, both puncturing schemes are compared, and the puncturing scheme resulting in the better performance is utilized for transmission. |
US10749632B2 |
Smart integrated cyclic data transport
An apparatus for smart integrated cyclic data transport is provided. The apparatus may preserve the consistency and integrity of a file during the transfer of the file from a source system to a target system. The apparatus includes an orchestration subsystem. The orchestration subsystem includes an analyzer/generator module. The analyzer/generator module executes an algorithm on the file at the source location. An output is generated from the executed algorithm. The apparatus includes a consistency module. The consistency module pre-checks the output at the source location for pretransfer validation and creates a copy of the output. The copy may preserve the consistency and the integrity of the file. The apparatus includes a data transfer subsystem which transfers the file and the output from the source system to the target system. The apparatus may also include a validation subsystem for validating the integrity and consistency of the file. |
US10749621B2 |
Radio communication repeater, a radio communication system and method
A radio communication repeater for operating in a Time Division Multiple Access radio communication system with a plurality of time slots to transmit packets. The repeater includes a transmitter to transmit a plurality of the packets in a transmit time slot assigned to that repeater and a receiver to receive a plurality of the packets from all other time slots of the TDMA radio communication system other than the transmit time slot assigned to that repeater. The repeater also includes a controller to process the received packets from all other time slots of the TDMA radio communication system other than the transmit time slot assigned to that repeater and, if the received packets have different recipient identifiers, to forward the received packets for transmission by the transmitter in the transmit time slot assigned to that repeater as a frame comprising a plurality of packets having different recipient identifiers. |
US10749620B2 |
Provisioning a service for capturing broadcast content to a user device via a network
A server device that communicates with a user device and the server device is enabled to receive a request for a copy of content, the request including a first identifier associated with the content, information associated with the user device, and information associated with a broadcast station that is broadcasting the content. The server device may obtain a user profile associated with the user device and obtain a station profile associated with a broadcast station, and identify the content, in the station profile. The server device may obtain the copy of the content to enable the user device to access the copy of the content and send, to the user profile, a notification indicating that the user device is authorized to access to the content. |
US10749619B2 |
Method and piece of equipment for generating an original whole data stream and a modified whole data stream, intended to be broadcast by a broadcasting site and a rebroadcasting site, respectively
A method for generating an original total stream intended for being distributed to at least one broadcasting site, which includes a modulator and a transmitter sending a radiofrequency signal on a first frequency. The method implements the following acts: obtaining at least one transport stream comprising at least one transport packet; obtaining, from at least one modulation parameter for the broadcasting site, at least one starting instant of a modulation frame intended for being sent by the broadcasting site; inserting at least one modulation information packet in the at least one transport stream, at a position determined from the at least one starting instant; and generating the original total stream, including at least one physical layer pipe encapsulating the at least one transport stream carrying the at least one modulation information packet. |
US10749617B2 |
Wireless communication system and method for monitoring the quality of a wireless link and recommending a manual adjustment to improve the quality of the wireless link
A system that acquires information from at least first and second electronic devices, the information indicating a quality of a wireless link between the at least first and second electronic devices; generates adjustment information indicating an adjustment of at least one of a position, orientation, antenna position or antenna direction of at least one of the first or second electronic devices to improve the quality of the wireless link between the first and second electronic devices; and controls outputting the adjustment information. |
US10749615B2 |
Burst error addition device, test signal generation device using same, and burst error addition method
There are included an error signal generation unit that generates an error signal for adding a burst error to each of an MSB and an LSB of the PAM4 signal in units of clock cycles, an error addition unit that performs an exclusive OR operation on the MSB and the LSB and the error signal and outputs bit strings obtained as a result of the operation, and a calculation unit that calculates the minimum number of clock cycles required for realizing a bit error rate of a desired test signal and the number of burst errors to be added to the MSB and the LSB during a period of the minimum number of the clock cycles. |
US10749612B1 |
Rotor assembly sensor system with interference isolation
A sensor system includes a rotor antenna, a radio frequency (RF) sensor, a stator antenna, and one or more frequency selective structures. The rotor antenna and the RF sensor are disposed on an outer surface of a shaft and are conductively connected to each other. The RF sensor generates measurement signals as the shaft rotates. The stator antenna is mounted separate from the shaft and positioned radially outward from the rotor antenna. The stator antenna wirelessly receives the measurement signals from the rotor antenna across an air gap. The one or more frequency selective structures are disposed on the outer surface of the shaft and configured to dissipate electromagnetic current that is conducted along the shaft to alleviate interference of the measurement signals. |
US10749610B2 |
System and method for a subscriber-powered network element
A system for powering a network element of a fiber optic wide area network is disclosed. When communication data is transferred between a central office (CO) and a subscriber terminal using a network element to convert optical to electrical (O-E) and electrical to optical (E-O) signals between a fiber from the central office and twisted wire pair, coaxial cable or Ethernet cable transmission lines from the subscriber terminal, techniques related to local powering of a network element or drop site by the subscriber terminal or subscriber premise remote powering device are provided. Certain advantages and/or benefits are achieved using the present invention, such as freedom from any requirement for additional meter installations or meter connection charges and does not require a separate power network. |
US10749606B2 |
Pulse generation module, and optical communication transmitter system and non-linear equalizing method thereof
The present disclosure provides a pulse generation module, and an optical communication transmitter system and a non-linear equalizing method thereof, the pulse generation module includes: a mode detector that outputs a corresponding effective detection signal after detecting a preset mode, a controller that generates a corresponding selection signal according to a jump mode, and an equalizing pulse generator that generates a corresponding equalizing pulse signal according to the effective detection signal and the selection signal. A jump mode of each piece of data in a data stream is detected, and a corresponding equalizing pulse signal is generated based on the detected jump mode, to compensate for nonlinearity of a laser driving signal. Information about a rising edge and a falling edge is determined by detecting a jump mode of data, a balanced current is provided for a particular purpose, and nonlinearity of a laser is compensated by current output. |
US10749605B2 |
Laser power controller
A system for transmitting a sequence of at least two data bursts in a fibre optical communications system includes: selection circuitry configured to select one of a data input value, a logical high value or a logical low value such that the selection circuitry selects the data input value during a data transmission period during a defined burst period and selects one of the logical high value and the logical low value during an extension time period during the defined burst period and immediately following the data transmission period, such that for the sequence of at least two bursts, at least one burst has a logical low value extension period and at least one burst has a logical high value extension period; drive circuitry configured to apply a current to a laser diode, the current corresponding to the value selected by the selection circuitry during the defined burst period or a zero value otherwise, the current being such that the laser diode is configured to provide an optical output; an optical sensor module configured to provide a sensor module output corresponding to the optical output of the laser diode; wherein the sensor module output is configured to provide an electrical output proportional to the laser diode's optical output corresponding to the logical high value and the logical low value in the sequence of at least two bursts, and further configured to provide an output corresponding to an average value of the sensor module output during only the data transmission period during the sequence of bursts; and a controller configured to receive values regarding desired minimum and maximum optical output power levels of the laser diode and to receive the electrical output from the optical sensor module proportional to the optical output power level corresponding to the logical high and the logical low values, and to receive the output corresponding to the average value of the sensor module output during only the data transmission period during the sequence of bursts; wherein the controller is configured to use the received information to provide control values for the drive circuitry. |
US10749601B2 |
Optical transceiver
An optical transceiver according to an exemplary aspect of the invention includes an interferometer including an input-side optical coupler, an output-side optical coupler, and two arms through which to propagate light and disposed between the input-side optical coupler and the output-side optical coupler, adding a bias phase difference of approximately π/2+2nπ, n representing an integer, between light beams propagating through the two arms; an optical phase modulator generating an optical signal obtained by modulating a phase of continuous wave light to be inputted depending on an electrical signal to be inputted; and an optical delay device making a difference in time for which the optical signal modulated by the optical phase modulator reaching the output-side optical coupler, wherein the optical phase modulator operates by changing carrier density in a silicon optical waveguide. |
US10749600B2 |
Systems and methods for single optical fiber data transmission
Optical transmission systems and methods are provided herein. The system includes a modulator configured to impress an input radio frequency (RF) signal onto an input optical signal to generate a first modulated optical signal and a second modulated optical signal. The system also includes a signal adjustment controller configured to apply a delay to the first modulated optical signal or the second modulated optical signal, interleave the first modulated optical signal and the second modulated optical signal, and transmit the interleaved first and second modulated optical signals as one optical signal. The system also includes a single optical link coupled to the modulator and configured to carry the interleaved first and second modulated optical signals to a receiver. |
US10749597B2 |
Wireless inspection solution
A method of conducting wireless fiber inspection includes obtaining a video stream from an inspection probe and transmitting the video stream over a Wi-Fi network. The method further includes creating the Wi-Fi network using a Wi-Fi hotspot, performing image analysis on the obtained video stream, and transmitting the image analysis along with the video stream over the Wi-Fi network. |
US10749594B1 |
Learning-based space communications systems
Methods and systems including computer programs encoded on computer storage media, for training and deploying machine-learned communication over RF channels. One of the methods includes: determining first information; generating a first RF signal by processing the first information using an encoder machine-learning network of the first transceiver; transmitting the first RF signal from the first transceiver to a communications satellite or ground station through a first communication channel; receiving, from the communications satellite or ground station through a second communication channel, a second RF signal at a second transceiver; generating second information as a reconstruction of the first information by processing the second RF signal using a decoder machine-learning network of the second transceiver; calculating a measure of distance between the second information and the first information; and updating at least one of the encoder machine-learning network of the first transceiver or the decoder machine-learning network of the second transceiver. |
US10749591B2 |
Reconfigurable and modular active repeater device
An active repeater device includes a primary sector and one or more secondary sectors, receives a first beam of input RF signals. A first set of analog baseband signals, are generated based on received first beam of input RF signals. The first set of analog baseband signals are converted to a first set of coded data signals and control information is extracted from the first set of coded data signals by decoding only a header portion of the first set of coded data signals without demodulation of data portion of the first set of coded data signals. Based on the extracted control information, the first set of coded data signals are transmitted as beams of output RF signals to remote user equipment. The transmission is independent of demodulation of the data portion within the active repeater device to reduce latency for transmission of the first set of coded data signals. |
US10749589B2 |
Apparatus and method for selecting beam in wireless communication system
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure relates to an apparatus and a method for wireless communication. The method may include: measuring beam pairs using signals transmitted from another apparatus using a plurality of carriers; determining a beam pair for the plurality of carriers based on measurement values for the beam pairs; and transmitting information indicating a transmit beam of the beam pair, to the other apparatus. |
US10749584B2 |
Uplink MIMO codebook for advanced wireless communication systems
Methods and apparatuses for a codebook for uplink MIMO in advanced wireless communication systems. A user equipment (UE) includes a processor and a transceiver operably connected to the processor. The transceiver is configured to transmit, to a base station (BS), a message reporting a coherence capability of the UE for an indication of a transmit precoding matrix indicator (TPMI) and a number of layers. The transceiver is configured to receive, from the BS, the indication of the TPMI and the number of layers via downlink control information (DCI) signaling. The transceiver is configured to transmit, to the BS, uplink (UL) data via a physical uplink shared channel (PUSCH) based on the received indication of the TPMI and the number of layers. A number of bits in the DCI signaling for the indication of the TPMI and the number of layers is determined by a coherence state that depends on the coherence capability reported by the UE. |
US10749580B2 |
Virtualized massive MIMO in multi-operator wireless networks
A method and device for adjusting a channel precoding matrix for one or more users operating in a virtualized Massive Multi-Input Multi-Output (M-MIMO) wireless network managed by a neutral host. Each of the users receive wireless services from one or more service providers (SP). For each service provider, a set of N antennas are selected from all available antennas managed by the neutral host. Channel information for each user of each service provider is obtained. A precoding matrix from each SP is defined according to each SP channel and state information. If all channel state information (CSI) parameters are known, and if the CSI parameters are all known, a final precoding matrix based on the known CSI is derived, whereas if only a subset of CSI parameters are known, a final precoding matrix based on the known subset CSI parameters is derived. |
US10749578B2 |
Broadcast receiving apparatus
A broadcast receiving apparatus is provided. The broadcast receiving apparatus includes a first cover with a circuit board arranged therein, a second cover coupled onto the first cover, and at least one dipole antenna coupled to the circuit board and including an antenna pattern arranged on an inner surface of the second cover. |
US10749576B2 |
Evaluation of an average power consumption of an electronic circuit
A device includes an electronic circuit and a voltage-controlled oscillator configured to receive information representative of a power supply voltage of the device. The voltage-controlled oscillator is coupled to the electronic circuit. A first counter is configured to count pulses supplied by the voltage-controlled oscillator and a second counter is configured to count pulses of a clock signal. The device is configured to estimate an average power of the electronic circuit based on the pulses counted by the first counter. |
US10749572B2 |
Near-field communication circuit, interface, and system
A circuit includes a near-field communication circuit configured to receive a radio frequency control signal transmitted in a near-field regime, a pulse width modulation signal generation circuit coupled to the near-field communication circuit circuit and configured to generate a pulse width modulation signal according to the radio frequency control signal, and a non-volatile memory coupled to both the near-field communication circuit circuit and the pulse width modulation signal generation circuit, the non-volatile memory comprising digital words for configuring the pulse width modulation signal. |
US10749571B2 |
System and methods for inferring the feeder and phase powering an on-grid transmitter
A system and method for inferring the feeder and phase of a transmitter on a plurality of electrical distribution lines. The system may include a low-voltage electrical distribution grid having one or more phases and one or more lines, a mechanism for transmitting a measuring data, a mechanism for receiving the measuring data, and a mechanism that analyzes the transmitted data to infer the phase and feed on which the transmission is injected. |
US10749566B2 |
Dynamically adjustable radio-frequency (RF) front-end
Certain aspects of the present disclosure generally relate to radio frequency (RF) front-end circuitry. For example, certain aspects provide an apparatus having a first converter circuit configured to upconvert a first baseband (BB) signal to a first RF signal based on a mode of operation, and a second converter circuit configured to upconvert a second BB signal to a second RF signal based on the mode of operation. The apparatus also includes a first RF weight adjustment circuit configured to selectively apply an amplitude weight or a phase weight to at least one of the first RF signal or the second RF signal based on the mode of operation, and a controller configured to control a power state of the second converter circuit in dependence on the mode of operation. |
US10749561B1 |
Headphone transmitting and receiving signals through a feed plate antenna with an L-shaped probe
The utility model belongs to the technical field of headphones, and discloses a headphone transmitting and receiving signals through a feed plate antenna with an L-shaped probe, which comprises a wireless circuit board, a panel, a probe, a plate and a PCB. The bottom of the said PCB is provided with a wireless circuit board, the said PCB is electrically connected to the probe, the top of the said PCB is provided with a panel, and the other end of the said probe is electromagnetically coupled with the plate. The utility model may render different geometric shapes with respect to different designs, and its different characteristic designs may support multiple frequency bands, providing high directivity, so that the headphone product itself transmits and receives signals better. In addition, the antenna can be made part of the appearance, which enables the headphone product itself to transmit and receive signals better. As a result, the PCB has more space for circuit design because the antenna has become a part of the appearance. |
US10749560B2 |
Audio apparatus and control method therefor
An audio apparatus and a control method therefor are provided. The present audio apparatus comprises: a vibration part for providing audio using vibration; a sensing part for sensing one or more of the material and the thickness of an object to which the audio apparatus is attached; a pressure regulation part for regulating the pressure that is applied to the object by the vibration part; and a processor for controlling the pressure regulation part in order to regulate the pressure applied to the object by the vibration part based on one or more of the material and the thickness of the object that is sensed by the sensing part. |
US10749557B1 |
Adaptive spur processing
A system and method for adaptive spurious signal (spur) processing at a broadband RF receiver. Spur processing addresses the detection of spurs generated by the receiver when high level RF signals are present at its input. The spurs can lead to undesired false detections. Based on signal parameters of the received RF signal, the system detects a strong enough real signal that would cause a spur and prevent generation of false reports. The adaptive spur mitigation scheme uses multiple detection and report thresholds to enable false report rejection with an improved high probability of rejecting false detections, while minimizing the adverse effects on multi-tone dynamic range. The necessary detection and report thresholds are generated based on a system level behavioral model that predicts the performance of several different types of spurs as a function of signal parameters. The thresholds are tuned to match the behavior of the dominant spur. |
US10749556B2 |
Antenna apparatus and wireless apparatus
An antenna apparatus includes: a plurality of first antenna elements to be connected to a first power-feeding point; and a plurality of second antenna elements to be connected to a second power-feeding point, the plurality of first antenna elements and the plurality of second antenna elements being respectively radially arranged, in which one of the first antenna elements, which is selected, is connected to the first power-feeding point through a first switch apparatus and one of the second antenna elements, which is selected, is connected to the second power-feeding point through a second switch apparatus. |
US10749554B1 |
System and method for short block length distribution matching
A communication system transmits an input block of bits over a communication channel using a prefix tree that maps a dyadic distribution of compositions of output symbols to prefixes of variable lengths. A path to each leaf of the prefix tree is defined by a prefix formed by a unique sequence of binary values of a length equal to a depth of the leaf. Each leaf is associated with a composition that has at least a number of unique permutations equals to two in a power of a length of a suffix of the block of input bits. The system selects a composition identified in the prefix tree by a prefix, permutes the selected composition according to a suffix, and transmits the permuted composition over a communication channel. The compositions are selected to reduce one or combination of energy and kurtosis of transmission. |
US10749553B2 |
System and method for increasing bandwidth for digital predistortion in multi-channel wideband communication systems
A method of operating a communications system includes receiving a signal at a digital predistorter (DPD), introducing predistortion to the signal using the DPD, and converting the predistorted signal to an analog signal using a digital-to-analog converter having a first bandwidth. The method also includes amplifying the analog signal, sampling the amplified signal using an analog-to-digital converter having a second bandwidth less than the first bandwidth, and extracting coefficients of the DPD from the sampled signal. |
US10749552B2 |
Pseudo differential receiving mechanism for single-ended signaling
Systems, apparatuses, and methods for performing efficient data transfer in a computing system are disclosed. A computing system includes multiple transmitters sending singled-ended data signals to multiple receivers. A termination voltage is generated and sent to the multiple receivers. The termination voltage is coupled to each of signal termination circuitry and signal sampling circuitry within each of the multiple receivers. Any change in the termination voltage affects the termination circuitry and affects comparisons performed by the sampling circuitry. Received signals are reconstructed at the receivers using the received signals, the signal termination circuitry and the signal sampling circuitry. |
US10749551B1 |
Systems and methods for extended spectrum amplifiers
In various embodiments, the disclosed systems, methods, and apparatuses describe extended spectrum amplifiers. In particular, a method is described including: receiving, at an input port, a radio frequency (RF) signal on a frequency band; separating, using a demultiplexer coupled to the input port, the RF signal into four signal on four respective lines, the four signals having different frequency bands; combining, using a multiplexer coupled to the demultiplexer by the four lines, the four signals into an amplified RF signal; and amplifying, using an amplifier on each of the four lines, the respective four signals. |
US10749546B1 |
Method and system of content based dynamic data compression
The present disclosure describes methods and systems that provide for content based dynamic data compression. During a training stage a plurality of training sets are compressed using multiple data compression techniques, and each training data set is associated with a most effective compression technique. Statistical features can be extracted from each of the training data sets with consideration of the most effective compression techniques and are saved as a compression parameters file. During a working stage, individual data blocks within a telemetry data set are compressed using a data compression technique selected for the data block in light of the statistical feature presented in the compression parameters file, and the compressed data blocks are written to a compressed data set, along with encoding tags that identify the compression technique used on each data block. During a consumption stage, the compressed data blocks are decompressed using techniques identified by the encoding tags. |
US10749544B2 |
Apparatus for overload recovery of an integrator in a sigma-delta modulator
Described is an apparatus which comprises: a first integrator to receive an input signal and to generate a first output; a second integrator to receive the first output or a version of the first output and to generate a second output; and an analog-to-digital converter (ADC) to quantize the second output into a digital representation, the ADC including a detection circuit to detect an overload condition in the second output. |
US10749542B2 |
Method and system for an asynchronous successive approximation register analog-to-digital converter with word completion algorithm
Systems and methods for an asynchronous successive approximation register analog-to-digital converter (SAR ADC) with word completion algorithm may include a SAR ADC comprising a plurality of switched capacitors, a comparator, a metastability detector including a timer having a tunable time interval, and a successive approximation register. The SAR ADC may sample input signals at inputs of the switched capacitors; compare signals at outputs of the switched capacitors, each for a respective bit; sense whether a metastability condition exists for the comparator using the timer and setting a metastability flag upon each metastability detection for each bit; increase a value of the tunable time interval if more than one metastability flag is set during conversion of a sampled input signal; decrease a value of the tunable time interval if no metastability flags are set; and use the flags for a word completion in the cases when not all the bits have been evaluated. |
US10749538B2 |
Oscillator arrangement and method for sychronizing an oscillator
An oscillator arrangement having an oscillator configured to generate an oscillation signal having two half-cycles, an input configured to receive a synchronization signal including synchronization triggers, a synchronizer configured to reject a synchronization trigger received during a first part of a half-cycle and to synchronize the oscillator to a synchronization trigger received during a second part of the half-cycle, and a controller configured to prolong the second part of the half-cycle in response to receiving a synchronization trigger during the first part of the half-cycle. |
US10749534B2 |
Apparatus and methods for system clock compensation
Apparatus and methods for clock synchronization and frequency translation are provided herein. Clock synchronization and frequency translation integrated circuits (ICs) generate one or more output clock signals having a controlled timing relationship with respect to one or more reference signals. The teachings herein provide a number of improvements to clock synchronization and frequency translation ICs, including, but not limited to, reduction of system clock error, reduced variation in clock propagation delay, lower latency monitoring of reference signals, precision timing distribution and recovery, extrapolation of timing events for enhanced phase-locked loop (PLL) update rate, fast PLL locking, improved reference signal phase shift detection, enhanced phase offset detection between reference signals, and/or alignment to phase information lost in decimation. |
US10749532B1 |
Method and apparatus for a phase locked loop circuit
A phase locked loop (PLL) circuit includes a voltage controlled oscillator (VCO), a first loop circuit, and a second loop circuit. The first loop circuit includes a first loop filter configured to receive a first signal based on a feedback signal from the VCO and provide a first VCO frequency control signal to the VCO. The second loop circuit includes a compensation circuit configured to receive a reference signal and the first signal, and provide a second VCO frequency control signal to the VCO. |
US10749527B2 |
Level shifting circuit
A level shifting circuit includes a level shifting portion configured to receive an input signal and generate an output signal, and a current adjustment circuit connected between the level shifting portion and a drive high voltage node at which a drive high voltage is applied. The current adjustment circuit is configured to adjust an amount of current provided from the drive high voltage node to the level shifting portion. |
US10749523B2 |
Switch circuit and multiplexer applying the switch circuit
A switch circuit includes: a switching device control circuit receiving a first voltage and a second voltage, a first Type-I switching device coupled to the switching device control circuit and a first control voltage, a first Type-II switch element coupled to the switch control circuit and the first Type-I switch element, and a second Type-II switch element coupled to the first Type-I switch element and the first Type-II switch element. When the second voltage is higher than the first voltage, the switch control circuit turns on the first Type-II switch element in order to turn off the second Type-II switch element; and when the second voltage is higher than the first voltage, the first Type-I switch element is off. |
US10749519B2 |
Semiconductor device driving method and driving apparatus and power conversion apparatus
Turn-on and turn-off of a semiconductor device are controlled through control of a gate voltage in accordance with a driving control signal. At a first time after a start of a Miller period of a gate voltage in driving a gate of the semiconductor device in accordance with the driving control signal, a driving signal is changed from “1” to “0” to thereby make a gate driving ability temporarily lower than the gate driving ability during a period from a starting time of the turn-on operation to the first time. Further, at a second time corresponding to an end of the Miller period, the driving signal is changed from “0” to “1” to thereby increase the gate driving ability. |
US10749517B2 |
Semiconductor device and overcurrent protection device
A semiconductor device includes a first main MOS transistor and a second main MOS transistor of a vertical structure that are inversely coupled to each other in series by sharing a drain electrode and a first sense MOS transistor and a second sense MOS transistor of a vertical structure that are inversely coupled to each other in series by sharing a drain electrode. The first sense MOS transistor is used for detecting the main current of the first main MOS transistor, and the second sense MOS transistor is used for detecting the main current of the second main MOS transistor. |
US10749508B1 |
Signal converter, duty-cycle corrector, and differential clock generator
A signal converter, a duty-cycle corrector, and a differential clock generator are provided. The differential clock generator includes the signal converter and the duty-cycle corrector. The signal converter is capable of calibrating skew distortion, and the duty-cycle corrector is capable of calibrating duty-cycle distortion. With the signal converter and the duty-cycle corrector, the differential clock generator can be applied to communication devices operating at high frequency. |
US10749503B2 |
Discrete time filter network
A discrete time filter network with an input signal connection and an output signal connection and comprising a capacitor bank with a plurality of history capacitors, and at least one sampling capacitor which operates at a predetermined cycling rate to couple to at least one history capacitor at a time, which history capacitor is selected from the capacitor bank so as to share electrical charge between such selected history capacitor and the sampling capacitor, wherein there is a plurality of sampling capacitors that are provided in the capacitor bank, and the discrete time filter network is provided with at least one switch network comprising a plurality of clock driven switches for making selected cyclical connections between the sampling capacitors and the history capacitors in the capacitor bank at the predetermined cycling rate. |
US10749501B2 |
High power silicon on insulator switch
An apparatus comprises a first RF port, a second RF port, a first resonator circuit and at least one second resonator circuit. The first resonator circuit and the second resonator circuit may be connected between the first RF port and the second RF port. The first resonator circuit may comprise a first inductor, a first capacitor, and a first stacked switch device. The second resonator circuit may comprise a second inductor, a second capacitor, and a second stacked switch device. The first capacitor and the first stacked switch device may be coupled in series across the first inductor. The second capacitor, the second inductor, and the second stacked switch device may be connected in parallel. |
US10749500B2 |
High-frequency module
A high-frequency module that performs filtering of signals transmitted and received through an antenna includes an antenna terminal, a transmission terminal, a reception terminal, a reception filter connected between the antenna terminal and the reception terminal, a transmission filter connected between the antenna terminal and the transmission terminal, a first element connected between the antenna terminal and the transmission filter, and a second element connected in series between the transmission terminal and the transmission filter. The first element and the second element are capacitively coupled to each other. |
US10749496B2 |
Resonator and resonance device
A resonator is provided having a first electrode and a second electrode; and a piezoelectric film that is disposed between the first and second electrodes, has an upper surface opposing the first electrode, and that vibrates in a predetermined vibration mode when a voltage is applied between the first and second electrodes. Moreover, the resonator includes a protective film made of an insulator and disposed opposing the upper surface of the piezoelectric film with the first electrode interposed therebetween. Furthermore, a conductive film made of a conductor is provided that is disposed opposing the upper surface of the piezoelectric film with the protective film interposed therebetween, where the conductive film is electrically connected to any one of the first and second electrodes. |
US10749492B2 |
Piezoelectric vibration component and method for manufacturing the same
A lid and an insulating bonding layer that seal a piezoelectric vibrator on a substrate are bonded with higher strength. A piezoelectric vibration component includes a substrate having a principal surface on which a piezoelectric vibrator is mounted, an insulating film disposed on the principal surface, a lid having a recess opening toward the principal surface and an edge portion around the recess. Moreover, first and second insulating bonding layers are interposed between the lid and the substrate. The first and second insulating bonding layers are joined together between the edge portion and the insulating film so as to seal the piezoelectric vibrator in a space between the recess and the principal surface. |
US10749489B2 |
Dynamic phased array tapering without phase recalibration
Variable gain amplifiers and methods of designing the same include a first amplifying transistor configured to receive a first input signal and to provide a first amplified output signal based on the first input signal. A phase compensating resistor is connected to the first amplifying transistor and has a resistance calibrated as: R e = τ b C be , par where τb is the base transit time of the first amplifying transistor and Cbe,par is the gain-independent part of the base-emitter capacitance of the first amplifying transistor. |
US10749482B2 |
Power amplification circuit
A power amplification circuit includes: a first amplifier that is input with a first signal and outputs a second signal; a bias circuit that supplies a bias current or voltage to the first amplifier; and a control voltage generating circuit that generates a control voltage in accordance with the first signal. The bias circuit includes a first transistor that outputs the bias current or voltage, a second transistor provided between the emitter or source of the first transistor and ground, and a third transistor that is supplied with the control voltage and that supplies a first current or voltage to the second transistor. The value of the first current or voltage when the signal level is a first level is larger than the value of the first current or voltage when the signal level is a second level. The first level is higher than the second level. |
US10749481B2 |
Supply compensated delay cell
Aspects generally relate to reducing delay, or phase jitter, in high speed signals transmission. Variations in power supply to ground potential changes the amount of delay introduced by transmit circuitry into the signal being transmitted, resulting in jitter, or phase noise, in the transmitted signal. To reduce phase jitter, or phase noise, aspects disclosed include a variable impedance circuit coupled to the signal distribution network, the impedance level of the variable impedance circuit is adjusted in response to variation in the supply to ground potential, such that the delay introduced by the impedance compensates for changes in the delay due to variations in supply to ground potential, resulting in substantially constant delay. |
US10749469B2 |
Transformer based shielded oscillator
An oscillator includes a first output node and a second output node. There is a tank circuit coupled between the first output node and the second output node. There is a first transistor having a first node, a second node coupled to a current source, and a control node coupled to the second output node. There is a second transistor having a first node, a second node coupled to the current source, and a control node coupled to the first output node. There is a first inductor coupled in series between the first node of the first transistor and the first output node. There is a second inductor coupled in series between the first node of the second transistor and the second output node. |
US10749462B2 |
Hybridized canopy
An example canopy includes a plurality of panels arranged in a plurality of rows and a plurality of sequences, including a first sequence, second sequence, and a third sequence. The second sequence is disposed between the first and third sequences and forms a rainwater collection channel The panels of the second sequence are angled with respect to the panels of the first and third sequences to optimize solar radiation and rainwater collection efficiency. Photovoltaic cells are provided on a flexible top surface of some or all of the panels. A hybrid canopy, a method of making a hybrid canopy, and a method of using and learning from a hybrid canopy, are shown and described. |
US10749461B2 |
Glass roof shingle
A glass roof shingle includes a shingle cover layer made of a glass. A shingle base layer is disposed underneath the shingle cover layer. The shingle base layer and shingle cover layer define a cavity. A seal area formed between the shingle base layer and shingle cover layer and around the cavity controls ingress of moisture into the cavity. A photovoltaic module may be disposed within the cavity. |
US10749457B2 |
Systems and methods for an identification protocol between a local controller of a solar module and a master controller
Systems and methods for local and master management units in a photovoltaic energy system. In one embodiment, a method implemented in a computer system includes sending a first identification code from a local management unit to a master management unit. The first identification code is associated with the first local management unit, and the local management unit controls a solar module. An authentication of the first identification code is received from the master management unit. In response to receiving the authentication, active operation of the local management unit is continued (e.g., for a set time period). |
US10749456B2 |
Control device
In a sensorless control of a motor, due to the characteristic of a response frequency, an induced voltage, a magnetic pole position estimation gain, a current control gain, and a speed control gain are closely related. An object of the invention is to enable the induced voltage and the frequency characteristic of a magnetic pole position estimation system to be clearly designed and to theoretically and quantitatively design all of the control gains necessary for the sensorless control so as to solve a problem that a method of designing those parameters cannot be established and the parameters have to be adjusted in a try and error manner. A control device has an estimator estimating an estimation induced voltage and a phase error of a motor by applying an induced-voltage observer and a controller controlling the motor on the basis of the estimation induced voltage and the phase error. |
US10749454B2 |
Hall-effect sensor signal offset correction in phase commutation
A method of operating a final drive unit clutch. The method provides an electric motor coupled with a clutch. The electric motor including a stator, a first Hall-effect sensor coupled with the stator, a second Hall-effect sensor coupled with the stator, a third Hall-effect sensor coupled with the stator, and a rotor having at least one magnetic pole pair. The method also provides for a controller in electrical communication with the electric motor. The method includes determining a first ideal commutation point, and calculating a first offset of a first Hall-effect sensor state change from the first ideal commutation point. The method further includes calculating a time delay of commutation, during the clutch transition between a non-torque transmitting position and a torque transmitting position, utilizing the first offset such that a second Hall-effect sensor state change corresponds with a second ideal commutation point. |
US10749451B2 |
Motor driving control apparatus and motor-assisted vehicle
An embodiment of this invention relates to a motor driving control apparatus for a moto-assisted vehicle, which includes a driving unit configured to drive a motor, and a controller configured to determine a regeneration amount based on a first speed of a vehicle that moves by the motor driven by the driving unit, and control the driving unit according to the regeneration amount, wherein the first speed is a speed at a first timing when it is detected that a brake of the vehicle is changed to OFF, or is determined based on temporal change in an acceleration of the vehicle. |
US10749450B2 |
Electrostatic clutch
An electrostatic clutch is described comprising a plurality of micron-scale thickness electrodes, adjacent electrodes being separated by a thin film of dielectric material. A power source and controller apply a voltage across two electrodes, causing an electrostatic force to develop. When engaged, a force can be transferred through the clutch. A tensioning device maintains the alignment of the clutch when the electrodes are disengaged, but permits movement in at least one direction. In some embodiments, multiple clutches are connected to an output to provide variable force control and a broad range of torque input and output values. Moreover, the clutch can be used as an energy-recycling actuator that captures mechanical energy from negative work movements, and returns energy during positive work movements. |
US10749449B2 |
Electroactive polymer expansion power cycle
Electroactive polymer expansion power cycle (100) converts thermal energy contained in working fluid (20) to electrical energy. Electroactive polymer expansion power cycle (100) comprises a pump (110), a boiler (120), a boiler electroactive polymer reservoir (130), an expansion electroactive polymer reservoir assembly (140), and a condenser (150). The boiler electroactive polymer assembly (140) is comprised of a transducer (10), that generates electricity resulting from the inflation and deflation of the boiler electroactive polymer reservoir (130). Transducer (10) is comprised of one or more polymer spacers (502) sandwiched between one or more top electrodes (504) and bottom electrode (506) pairs. The electroactive polymer assembly (140) is comprised of one or more electroactive polymer reservoirs that are similar in design to the boiler electroactive polymer assembly (130). These electroactive polymer reservoirs generate electricity through the same process as the electricity generated by the boiler electroactive polymer reservoir (140). |
US10749447B2 |
Electrical apparatus and a method for fabricating an electrical apparatus
An electrical apparatus includes an electrical signal generation structure arranged to generate an electrical signal in response to a change of an external pressure subjected thereto. The electrical signal generation structure includes a fabric material. A method for fabricating such electrical apparatus is also provided. |
US10749445B2 |
Regulation of an output current of a converter
A method for regulating an AC output current of a converter having a DC voltage intermediate circuit and a semiconductor switch in a bridge circuit for converting a DC voltage of the DC voltage intermediate circuit into an AC output current. The AC output current is regulated by way of a direct hysteresis current regulation, in which an actual value of the AC output current is maintained within a hysteresis window around a set point value. Furthermore, a hysteresis width of the hysteresis window is modulated in order to adjust a frequency spectrum of the AC output current. |
US10749435B2 |
DC/DC converter and control thereof
A DC/DC converter system includes a bidirectional DC/DC converter converting between voltage levels at first and second ports and a control system for controlling the DC/DC converter. The bidirectional DC/DC converter includes a first conversion stage connected to the first port and a second conversion stage interfaced with the first conversion stage and connected to the second port. The control system includes outer and inner control loops. The outer control loop compares a command for one of a voltage level, a current level or power at one of the first and second ports to an actual value of voltage level, current level or power level and outputs an interface current command based on the comparison. The inner control loop compares the interface current command to an actual interface current at an interface of the first and second conversion stages, and controls a switching signal duty value based on the comparison. |
US10749431B2 |
DC-DC converter
A DC-DC converter and corresponding method for transitioning between a discontinuous conduction mode, DCM, and a continuous conduction mode, CCM, wherein the DC-DC converter is configured to power a signal processing system within an integrated circuit, is provided. The method comprises receiving input data, wherein the input data is for inputting into the signal processing system; determining an amplitude of the input data; and transitioning between DCM and CCM based on the amplitude of the input data. A DC-DC converter and respective method for transitioning from CCM to DCM comprising determining an estimated current representative of an inductor current through an inductor of the DC-DC converter; and transitioning from CCM to DCM based on the estimated current, is provided. A DC-DC converter and respective method for transitioning from DCM to CCM comprising determining either an output voltage of the DC-DC converter or a duty cycle of the DC-DC converter; and transitioning from DCM to CCM based on the determined output voltage or duty cycle of the DC-DC converter, is provided. |
US10749429B2 |
Methods and systems of reducing charge pump substrate noise
Methods and systems of reducing a substrate noise in a charge pump having a flying capacitor are provided. An input node of the flying capacitor is pre-charged at a first slew rate. The input node of the flying capacitor is charged at a second slew rate that is faster than the first slew rate. The input node of the flying capacitor is pre-discharged at a third slew rate. The input node of the flying capacitor is discharged at a fourth slew rate that is faster than the first slew rate. |
US10749422B2 |
Linear motor translator
According to one embodiment, linear motor translator assembly for use in an electromagnetic actuator is provided. The linear motor translator assembly includes: a cylindrical housing having a first end, a second end opposite the first end, a flanged portion at the second end, and a blind hole initiating at the second end and extending into the cylindrical housing to a blind hole base; a tubular body located within the blind hole, the tubular body including a plurality of permanent magnets; and an end cap securely fastened to the flanged portion. |
US10749421B2 |
Rotor for IPM motor, IPM motor, and method of manufacturing the rotor for IPM motor
Provided is a rotor for an IPM motor, including: a rotor core; permanent magnets embedded in the rotor core; a sensor magnet provided at one end of the rotor core; and a resin configured to fix the sensor magnet to the rotor core by covering the sensor magnet, wherein the sensor magnet includes: a base portion having an annular shape; and a plurality of projecting portions projecting toward the rotor core from a first surface, which is a surface of the base portion on a side opposed to the rotor core, and wherein the plurality of projecting portions each have a tapered portion on an inner periphery thereof, and are arranged at intervals on the first surface. |
US10749420B2 |
Synchronous reluctance rotating electrical machine
According to one embodiment a synchronous reluctance rotating electrical machine of an embodiment has a shaft and a rotor core. The rotor core is fixed to the shaft, in which cavity portions being formed in a projected shape toward a radially inward direction are formed into multilayers for each pole and bridges are respectively formed between the cavity portions and an outer circumferential surface. The thickness of an outermost bridge positioned outermost on the pole end side among the plurality of bridges is formed to be gradually thicker from the pole center side toward the pole end side. Among the plurality of bridges, the thickness of an intermediate bridge positioned on the pole center side of the outermost bridge with one bridge interposed therebetween is formed to be gradually thicker from the pole end side toward the pole center side. |
US10749413B2 |
Inverter built-in brushless direct current motor
Provided is an inverter built-in BLDC motor including: an inverter housing having one side coupled to a motor, an inside formed to be hollow, and the other side formed to be open, and having a PCB substrate provided in the hollow portion; a bearing mounted in a bearing mounting portion of the inverter housing and having a rotating shaft of a rotor of the motor rotatably coupled thereto; and a bearing cover coupled to a bearing mounting groove of the bearing mounting portion mounted with the bearing and formed to close an opening portion of the bearing mounting groove on an inner bottom surface of the inverter housing. |
US10749411B2 |
Rotary electric machine
A rotary electric machine includes a rotor, a stator which is disposed on an outer circumferential side of the rotor and includes a stator core and a coil, a first cooling mechanism which supplies a coolant to the coil from an outer circumferential side of the stator, and a second cooling mechanism which supplies a coolant to the coil from an inner circumferential side of the stator. The coil includes a plurality of segment cods, each including a pair of leg portions, and a connection portion connecting one end sides of the leg portions. A close-side coil end constituted by the connection portion and an open-side coil end constituted by the lea portions are provided on respective end sides of the stator core. A supply amount of the coolant supplied from the second cooling mechanism is larger to the close-side coil end than to the open-side coil end. |
US10749410B2 |
Motor assembly
A motor assembly of the present disclosure improves a combined structure between an impeller and a rotor to more firmly combine them. Furthermore, the impeller is combined with a rotor shaft without deformation, so the durability of the respective components may be improved. |
US10749408B2 |
Connecting element for connecting a motor shaft of a motor to a rotary encoder and motor
A connecting element for connecting a motor shaft of a motor to an encoder shaft of a rotary encoder which is designed to detect a rotational position and/or a rotational speed of the motor shaft has a connecting region which runs in an annular shape around a connecting axis and has two end sides which lie axially opposite one another, an outer side facing away from the connecting axis and an inner side facing the connecting axis. In addition, the connecting element has at least one fan blade which protrudes radially from the outer side of the connecting region. |
US10749405B2 |
Power tool
Provided is a power tool whereby reduction is made for time-consuming effort and cost required in trouble, inspection and so forth related to a motor. A hammer drill, which is an example of a power tool, includes a plurality of coils, an insulator holding the plurality of coils, a terminal unit that is electrically connected to the plurality of coils and is attached to the insulator, a rotor that is rotatable with respect to the insulator, and a sensor board that detects rotation of the rotor and is attached to the terminal unit. The sensor board is detachable from the terminal unit, while the terminal unit is attached to the insulator. |
US10749404B2 |
Terminal connector assembly in overmolded single unit with coil end windings, temperature sensors, and cooling channel
A vehicle electric machine assembly including a stator core and a terminal block is provided. The stator core includes one or more three-phase terminals connected to end windings. The terminal block includes a connector for each of the three-phase terminals. A portion of the end windings extending from the stator core, the three-phase terminals, and the terminal block are overmolded as a single unit such that a portion of each of the connectors is exposed for connection to an inverter. The terminal block may further include one or more threaded apertures, each sized to receive a threaded stud to facilitate an electrical connection between one of the one or more three-phase terminals and the inverter. Each of the one or more three-phase terminals may extend axially along an axis substantially parallel to a central axis of a rotor disposed within a cavity defined by the stator core. |
US10749403B2 |
Motor assembly
A motor includes a housing that has a bottom with a first bearing accommodation and a cylindrical side surface portion which extends from the bottom; a rotor assembly with a rotation shaft, and a rotor mounted on the rotation shaft and accommodated inside the housing; a stator assembly accommodated inside the housing and surrounding the rotor; a housing cover coupled to an upper end of the housing and having a second bearing accommodation; a flow guide on the housing cover; an impeller connected to the rotation shaft over the flow guide; an impeller cover; a first bearing accommodated in the first bearing accommodation and receiving the rotation shaft; and a second bearing accommodated in the second bearing accommodation and receiving the rotation shaft, the housing cover having a cover body with an opening, connection arms between the second bearing accommodation and the opening portion, and a guide rib. |
US10749402B2 |
Rotary electric machine
The rotary electric machine includes: a stator that includes: a stator core; and a stator coil; a ring member that accommodates the stator so as to hold the stator core in an internally fitted state; a housing case formed into a floored cylindrical shape with an opening at a first end portion, and that accommodates the ring member and the stator; and a cover mounted onto the first end portion of the housing case so as to cover the opening of the housing case, wherein a first end portion of each of the ring member and the housing case is fixed by fastening to the cover such that a fastening direction of each is oriented in an axial direction, and a second end portion of the ring member is fitted into and held by the housing case by means of an interfitting member. |
US10749399B2 |
Stator for an electrical machine
Stators for an electrical machine which are fitted with a polyphase winding which is in the form of a plug-type winding and the winding sections of which run through slots of the stator and comprise a plurality of different conductor elements are already known. At least some of the said conductor elements have in each case two conductor limbs and in each case one connecting conductor which connects the two conductor limbs, wherein an even number of n conductor limbs is arranged one above the other in the radial direction with respect to a stator axis in each slot. Each conductor limb of one of the conductor elements is provided in its slot in a specific position with respect to a slot base of the slot. These polyphase windings comprise a comparatively large number of different conductor elements, in particular so-called special conductors which differ from the standard conductor elements. These special conductors increase the manufacturing costs. In the case of the stator according to the invention, a few different conductor elements are provided for the polyphase winding. According to the invention, it is provided that the lower conductor elements (5) each have conductor limbs (5.1) which are situated in the same position and the upper conductor elements (6) each have conductor limbs (6.1) which are situated in the same position, wherein the step width of the lower conductor elements (5) in relation to the step width of the upper conductor elements (6) differs by the value of one, in particular is greater by the value of one. |
US10749397B2 |
Brushless DC dynamo
A brushless DC dynamo includes a circular armature with N sets of first armature coils spaced with each other in sequence, N sets of second armature coils spaced with each other in sequence, a plurality of first wires and a plurality of second wires, and each first wire and each second wire respectively interconnecting between one set of the first armature coils and one set of the second armature coils; a control unit; a magnetic unit, disposed inside the circular armature unit, comprising a pair of magnetic poles, wherein the circular armature unit and the magnetic unit can rotate relatively to each other under control; and a position sensor for detecting the position of the magnetic unit, and outputting the information of magnetic unit's position to the control unit to trigger the control unit to output a control signal to control the first and second control switches. |
US10749386B2 |
Stator core with top-connected tooth parts
A stator core is a stack body of plural plates. Each plate includes an annular back yoke part, plural top-connected tooth parts, plural top-separated tooth parts, plural magnetic path parts and plural top open parts. The top-connected tooth part and the top-separated tooth part protrude from the back yoke part in a radial direction. The top magnetic path part connects top ends of two top-connected tooth parts. The top open part is open to a rotor side at both sides of the top end of the top-separated tooth part. The stator core includes a back yoke, plural teeth, plural partially-connected parts and plural open parts. Each partially-connected part is formed of plural top magnetic path parts and top open parts, which extend in an axial direction. Each open part is formed of only the plural top open parts, which extend continuously in the axial direction. |
US10749383B2 |
Power transmission device, power supply system, and power reception device
A power transmitting unit transmits electric power. A power transmission control unit detects one or more power receiving units that receive the electric power and controls the power transmitting unit so that more electric power is transmitted to a power receiving unit with a higher priority. One aspect of the present invention may be realized as a transmission device; a power supply system including a power receiving unit and the transmission device; or a power supply system further including an electronic device which consumes electric power received by the power receiving unit. |
US10749379B2 |
Power supply apparatus and control method thereof
A power supply apparatus comprises a power supply unit configured to supply power to a power reception apparatus in a non-contact manner, a communication unit configured to perform communication with the power reception apparatus and a movable power supply apparatus, and a control unit configured to, when power suppliable to the power reception apparatus does not satisfy a predetermined condition, control the movable power supply apparatus to supply power from the movable power supply apparatus to the power reception apparatus. |
US10749378B2 |
Resonance power transmission system based on power transmission efficiency
A resonance power transmission system for controlling a supply voltage of a power converter based on power transmission efficiency is provided. According to an aspect, a resonance power transmitter configured to transmit resonance power to one or more resonance power receivers may include: a voltage controller configured to receive an input signal and to output voltage of a predetermined level; a source controller configured to control a signal level of the DC voltage based the number of resonance power receivers. |
US10749375B2 |
System and method for supplying uninterruptible power to a PoE device for a power supply input for direct current power
A system and method for supplying uninterruptible power includes a housing, a power supply input for a DC power source, a power source equipment input, a powered device output, an alternative power supply, a control module, and a power source equipment extension. The control module includes a comparator, a switch, a line filter and protector and an injector. The injector includes a regulator and PoE power management module. The alternative power supply includes a plurality of battery packs in series. The system can be located at a remote location with only DC power sources, such as generators, batteries, and solar cells. |
US10749370B2 |
Portable electric vehicle supply equipment
An electric vehicle service equipment (EVSE) system includes an EVSE case having a front plug face, a rear face, and left and right gripping sides that collectively define a trapezoidal prism cross section, the left and right gripping sides further having left and right convex gripping portions, respectively, a relay positioned within the EVSE case, and a controller positioned within the EVSE case and in communication with the relay, the controller responsive to a pilot duty signal, when a pilot duty signal is present. |
US10749368B2 |
Computer mouse clock tuning to reduce electromagnetic induced noise in a wireless charging system
A method of operating a computer mouse includes receiving electromagnetic (EM) radiation emitted from a source external to the computer mouse, the received EM radiation induces noise within one or more bands of noise frequencies and an image sensor circuit of the computer mouse generates erroneous movement detection signals in response to an operating frequency of the image sensor circuit being within the one or more bands of noise frequencies. The method further includes determining the operating frequency of the image sensor circuit, comparing the operating frequency to a target frequency, wherein the target frequency is outside of the one or more bands of noise frequencies, and tuning the operating frequency of the image sensor circuit towards the target frequency. |
US10749367B2 |
Charging apparatus and method for controlling wireless charging
A method of a charging apparatus for controlling wireless charging is provided. The method includes detecting an electronic device, determining a charging method corresponding to the detected electronic device, and wirelessly charging the electronic device by selecting a coil corresponding to the determined charging method. |
US10749366B2 |
Wireless power receiver and wireless power transmitter
Disclosed is a wireless power receiver for receiving power wirelessly. According to an embodiment of the present disclosure, a wireless power receiver wirelessly receiving power may include a first power receiver receiving first power from a first power transmitter, a second power receiver receiving second power from a second power transmitter, and a shielder disposed between the first power receiver and the second power receiver to substantially shield influx of the first power into the second power receiver and to substantially shield influx of the second power into the first power receiver. |
US10749365B2 |
Power supply method and electronic card using the same
Provided is a power supply method for efficient operation of electronic cards and an electronic card using the same, and the power supply method may include the steps of: charging a charging unit through the DC power supplied from a rectification unit; enabling, when a constant voltage enable signal is applied, a system constant voltage unit if a predefined condition is satisfied; and supplying power to a system unit when the system constant voltage unit is enabled. |
US10749360B2 |
Power tool system and battery pack therefor having wireless communicator
A power tool system includes a hand-held power tool having a power tool housing accommodating a motor, and a battery pack interface electrically connected to the motor within the power tool housing. A battery pack includes a battery pack housing accommodating at least one battery cell and a power tool interface electrically connected to the at least one battery cell within the battery pack housing. The power tool interface is configured to be physically and electrically connected to and disconnected from the battery pack interface of the power tool. A communicator is attached to or accommodated within the battery pack housing. The communicator is configured to wirelessly communicate with an external device. |
US10749356B2 |
Electric work machine
An electric work machine (2) includes a motor (M) and a control unit (36) that controls rotation of the motor. The control unit (36) is configured such that an operating mode is switchable between a normal mode, in which the motor is rotated within a prescribed output range, and a power mode, in which the motor is rotatable with energy greater than in the normal mode. Furthermore, the control unit (36) is configured to restrict use of the power mode. |
US10749351B2 |
Wireless container data collector system
Systems and methods are provided and include a charging circuit, a converter network, and a voltage regulator. The voltage regulator couples the charging circuit to the converter network. When the system is in the charging mode, the charging circuit is configured to receive a serial communication signal that charges the charging circuit. When the system is in the communication mode, the voltage regulator is configured to limit an amount of voltage discharge from the charging circuit, and the converter network is configured to receive the serial communication signal and convert the serial communication signal to a second signal having a second type. The second type has a different communication protocol than the serial communication signal. When the system is in the communication mode, the converter network is configured to transmit the second signal to a remote device. |
US10749350B2 |
System and method for wireless power transfer using a power converter with a bypass mode
A system and method of wireless power transfer using a power converter with a bypass mode includes a power converter. The power converter includes a pulsed switch, a capacitor configured to supply a drive voltage to the pulsed switch, a first circuit configured to charge the capacitor when the power converter operates in a switched mode of operation, and, a second circuit configured to charge the capacitor when the power converter operates in a bypass mode of operation. |
US10749348B2 |
Power control apparatus, control method for power control apparatus, power control system, and control method for power control system
A power control apparatus according to the present disclosure includes a first interconnection relay and a second interconnection relay configured to interconnect or parallel off an inverter to or from a power grid, a reference potential relay configured to set a neutral phase of an independent operation output system to a reference potential, voltage sensors respectively installed between the first interconnection relay and the inverter and between the first interconnection relay and the power grid, voltage sensors respectively installed between the second interconnection relay and the inverter and between the second interconnection relay and the power grid, and a controller configured to turn the reference potential relay on to set the neutral phase to the reference potential and then to judge whether a state of each interconnection relay is normal on the basis of voltage values measured by the voltage sensors. |
US10749345B2 |
Method and installation for stabilizing a frequency in an AC voltage grid
A method for stabilizing a frequency in an AC voltage grid includes exchanging active power between the AC voltage grid and an energy storage device of a compensation installation in which the energy storage device is connected to the AC voltage grid. An electrical power is transmitted in an interconnector that connects the AC voltage grid to a further AC voltage grid. The electrical power is measured. The exchange of the active power is initiated by a control device of the compensation installation depending on a direction of the transmitted power. An installation for stabilizing an AC voltage grid can be used, in particular, to carry out the method. |
US10749337B2 |
Integrated ESD event sense detector
As an example, a circuit is provided. The circuit includes an ESD (electrostatic discharge) clamping circuit with a control signal controlling clamping operations of the ESD clamping circuit. The circuit further includes a counter coupled to the control signal of the ESD clamping circuit. The counter produces a set of output signals responsive to the control signal. The circuit also includes a communications interface for coupling to the set of output signals of the counter. The communications interface also couples to communications circuitry external to the circuit. |
US10749335B2 |
Method of operation a differential protection scheme
There is provided a method of operating a reconfigurable differential protection scheme for carrying out differential protection of an electrical power network, the electrical power network comprising terminals, each of the terminals configured to be in communication with each other within a communications network. The method includes controlling the differential protection scheme to deactivate the differential protection, and selecting a terminal to be configured out of or into the differential protection scheme. The method also includes communicating reconfiguration information among the terminals, the reconfiguration information including the selection of the terminal to be configured out of or into the differential protection scheme. The method also includes modifying a respective differential protection algorithm at each of the non-selected terminals so as to configure the selected terminal out of or into the differential protection scheme, and controlling the differential protection scheme to reactivate the differential protection. |
US10749331B2 |
System and method for leakage current protection
The present invention discloses a system and method for leakage current protection. The leakage current protection method comprises the following steps: using a first control signal to control a first relay to be short circuit so as to generate a leakage current; a leakage current sensor generates an AC signal when the leakage current sensor detects the leakage current; using a leakage current signal processor to convert the AC signal to a DC signal; and when a latch circuit receives the DC signal, the latch circuit uses a second control signal to disconnect a second relay which is connected to electrical appliances which are needed to protect. |
US10749327B2 |
Utility pole with tilt meters and related methods
A utility pole assembly includes an elongated structure and sensors mounted on the elongated structure for detecting and determining deflection and/or tilt. The elongated structure has a first end configured to be fixed into a ground and a second end that is free and located opposite the first end. A first sensor is positioned on the elongated body at or near the second end, and a second sensor is positioned on the elongated body between the first tilt sensor and the first end of the elongated body. The first and second sensors each include sensor circuitry configured for measuring movements in tilt values in at least two axes, which can be converted to tilt angles. The first and second tilt sensors, in combination, are configured for determining and distinguishing between elastic deflection of the elongated body and tilt of the elongated body. |
US10749320B2 |
Cradle for electrical switchgear
A cradle intended to be incorporated in a high-voltage electrical switchgear cubicle, including a mobile trolley bearing a switch apparatus provided with mobile contacts, a mechanism for operating the mobile contacts via operating springs and at least one coil for actuating the operating springs, a motorized protection shutter intended to prevent access to conductive busbars of the switchgear cubicle, and motorized device for driving the mobile trolley intended to be able to connect the switch apparatus to the conductive busbars. A first automation controller is embedded on the mobile trolley to control the operating mechanism and the actuating coil, and a second automation controller is embedded in the cradle to control the protection shutter and the device for driving the mobile trolley. |
US10749316B2 |
Multiple spark-gap arrester
A multiple spark-gap arrester is disclosed. In an embodiment the arrester includes a series connection of a plurality of spark gaps between a first potential node and a reference-ground potential node and a trigger circuit having an input and an output, the input being coupled to a second potential node between two adjacent spark gaps of the plurality of spark gaps, and the output being coupled to at least one of the spark gaps between the second potential node and the reference-ground potential node, wherein the trigger circuit is configured, when at least one spark gap between the first potential node and the second potential node is ignited, to supply a trigger signal for the at least one of the spark gaps between the second potential node and the reference-ground potential node. |
US10749315B2 |
Manufacturable RGB laser diode source
A multi-wavelength light emitting device is manufactured by forming first and second epitaxial materials overlying first and second surface regions. The first and second epitaxial materials are patterned to form a plurality of first and second epitaxial dice. At least one of the first plurality of epitaxial dice and at least one of the second plurality of epitaxial dice are transferred from first and second substrates, respectively, to a carrier wafer by selectively etching a release region, separating from the substrate each of the epitaxial dice that are being transferred, and selectively bonding to the carrier wafer each of the epitaxial dice that are being transferred. The transferred first and second epitaxial dice are processed on the carrier wafer to form a plurality of light emitting devices capable of emitting at least a first wavelength and a second wavelength. |
US10749313B2 |
Method for manufacturing a semiconductor element
A method for manufacturing a semiconductor element includes: providing a nitride semiconductor layer; performing plasma treatment to at least part of a surface of the nitride semiconductor layer in an oxygen-containing atmosphere while applying bias power; after the performing of the plasma treatment, heat treating the nitride semiconductor layer in an oxygen-containing atmosphere; forming a protective film on a region of the surface of the nitride semiconductor layer where the plasma treatment was performed; and forming an electrode in a region of the surface of the nitride semiconductor layer where the protective film was not formed. |
US10749304B1 |
Port for heat sink ono active cable end
An electronic interconnect includes a board, a rotatable connector, and a heat sink. The board extends along a plane, and the rotatable connector is connected to the board. The rotatable connector is configured to allow rotation about an axis parallel to the plane, between a first position and a second position. The heat sink is connected to the rotatable connector and extends a first distance from the board in the first position and a second, greater distance from the board in the second position. |
US10749299B2 |
Connector
A connector includes a plurality of contacts having a first pair of contacts and a second pair of contacts, and a housing configured to hold the plurality of contacts, the plurality of contacts each including a contact portion to be in contact with a contact of a mating connector, a connection portion to be connected to a connection target object, and a held portion disposed between the contact portion and the connection portion and embedded in the housing, the first pair of contacts each including, in the held portion, a deformed portion partially separated from the second pair of contacts. |
US10749297B2 |
Electrical plug-in connection for data transmission
An electrical plug-in connection (1) for data transmission, including a plug (2) and a socket (3), the plug (2) has a plug housing (4) and a plug-in extension (5) which projects beyond the plug housing (4) and has electrical contacts (6), and the socket (3) has a socket housing (7) with a receiving channel (8) for the plug housing (4). A plug-in extension receptacle (9) with electrical mating contacts (10) is provided, and in a fully inserted state, the plug-in extension (5) is inserted into the plug-in extension receptacle (9) for connecting the electrical contacts (6) to the electrical mating contacts (10). The plug housing (4), at least in regions, is arranged within the receiving channel (8). The socket (3) has a locking device (11) for locking the plug housing (4) in the receiving channel (8) in the fully inserted state and an operating element (12), which projects beyond the socket housing (7), for releasing this locking arrangement. |
US10749284B2 |
Connector and terminal connection structure with increased holding force while suppressiong the increase of parts
A connector includes a male terminal, a housing having a housing portion that houses the male terminal, and a pressing member arranged in the housing portion. A female terminal having a proximal portion and a contact segment formed in a cantilever-like shape and extending from the proximal portion, is inserted into the housing portion. The pressing member holds the contact segment of the female terminal that is inserted into the housing portion between the pressing member and the male terminals, elastically deforms the contact segment, and presses the contact segment toward the male terminal. |
US10749283B2 |
Electronics assembly for coupling two circuit boards
A power electronics assembly for an electric motor controller is disclosed having a first circuit board, a second circuit board spaced from the first circuit board by a stand-off distance, an electrically insulating housing held between the first circuit board and the second circuit board, multiple conductors, and a restraint adapted to hold the electrically insulating housing to the first circuit. The electrically insulating housing includes multiple channels. Each of the multiple conductors are arranged to provide a conduction path through a corresponding channel and are each trapped between the electrically insulating housing and the first circuit board and biased into electrical contact with an electrical conductor of the first circuit board. |
US10749282B2 |
Card edge connection unit
Even when a connection board has a large thickness tolerance, a stable connection is achieved by absorbing the tolerance so as to stabilize a contact pressure between the connection board and contacts. In a unit in which electrode groups of a connection board are in pressure contact with elastic contacts formed integrally with an inner housing to connect thereto, the inner housing is provided inside an outer case of a card edge connector through an elastic member to be freely movable forward and backward in a thickness direction of the connection board. The positions of the elastic contacts are adjusted by forward or backward moving the inner housing in accordance with the thickness of the connection board inserted into board insertion slots, so a pressure contact force with the elastic contacts is substantially equalized, irrespective of the size of the thickness of the connection board. |
US10749280B2 |
Angularly adjustable electric power conductor grounding clamp system and associated methods
The grounding clamp system is for use with an electrically insulated pole and for attachment to an electrical conductor in angled configurations. The grounding clamp system includes a clamping mechanism having an actuatable clamp and an associated ground conductor connector. An attachment coupler is configured to attach to the electrically insulated pole, and an angular adjustment mechanism is coupled between the clamping mechanism and the attachment coupler. The adjustment mechanism is configured to provide angular adjustment between the clamping mechanism and the attachment coupler in at least one axis while also transferring force to actuate the actuatable clamp when attaching the clamping mechanism to the electrical conductor at a selected angular position. The clamping mechanism is configured to create a path to pass ground fault current from the electrical conductor to a ground conductor coupled to the ground conductor connector without including the angular adjustment mechanism in the path. |
US10749279B2 |
Shielded circular plug-in connector
A circular plug-in connector for establishing a shielded plug-in connection to a mating plug-in connector includes: a contact carrier having at least one electrical contact element; a shielding sleeve that surrounds the contact carrier at least in part; and a screw housing that is rotatably connected to the shielding sleeve and adapted to screw the circular plug-in connector to the mating plug-in connector. A connection portion of the shielding sleeve is received in a receiving space of the screw housing The circular plug-in connector provides shielded contact between the screw housing and the shielding sleeve. The shielding sleeve includes a collar in the connection portion. The circular plug-in connector further includes a stopper for closing a receiving opening of the receiving space at least in part, such that the collar is trapped in the receiving space. |
US10749274B2 |
Separate antenna
Example implementations relate to separate antennae. In one example, separate antennae can include an antenna system having a first antenna to receive and transmit signals in a first frequency band, a second antenna to receive signals in a second frequency band and transmit and receive signals in a third frequency band, and a third antenna to receive signals in a fourth frequency band, where each of the first antenna, the second antenna, and the third antenna are physically separate and distinct. |
US10749271B2 |
Wireless transceiver having receive antennas and transmit antennas with orthogonal polarizations in a phased array antenna panel
A wireless communications system includes a first transceiver with a first phased array antenna panel having horizontal-polarization receive antennas and vertical-polarization transmit antennas, where the horizontal-polarization receive antennas form a first receive beam based on receive phase and receive amplitude information provided by a first master chip, the vertical-polarization transmit antennas form a first transmit beam based on transmit phase and transmit amplitude information provided by the first master chip. The wireless communications system may include a second transceiver having vertical-polarization receive antennas and horizontal-polarization transmit antennas in a second phased array antenna panel, where the vertical-polarization receive antennas form a second receive beam based on receive phase and receive amplitude information provided by a second master chip, the horizontal-polarization transmit antennas form a second transmit beam based on transmit phase and transmit amplitude information provided by the second master chip. |
US10749264B2 |
Cavity-backed slot antenna
A cavity-backed slot antenna is disclosed that includes a stripline. The stripline includes a conductive strip between two ground planes separated by a dielectric. The conductive strip feeds the cavity-backed slot antenna. The stripline also includes a first segment and a second segment. The first segment has a first characteristic impedance. The second segment is proximate the cavity-backed antenna and has a second characteristic impedance different than the first characteristic impedance. The second characteristic impedance provides impedance for matching a load impedance of the cavity-backed slot antenna. |
US10749262B2 |
Tapered slot antenna including power-combining feeds
An antenna transmission system includes a dual-feedline tapered slot antenna configured to generate a radiated output signal in response to a radio frequency (RF) signal. A power divider is configured to split a source RF signal into a plurality of RF feed signals. A plurality of transmitting amplifiers convert the plurality RF feed signals into a plurality of amplified RF feed signals; and a plurality of feedlines deliver the plurality of amplified RF feed signals to the dual-feedline tapered slot antenna. The dual-feedline tapered slot antenna generates the radiated output signal in response to the plurality of amplified RF feed signals. |
US10749261B2 |
Thin chassis near field communication (NFC) antenna integration
Described herein are techniques related one or more systems, apparatuses, methods, etc. for integrating a near field communications (NFC) coil antenna in a portable device. For example, the NFC antenna is integrated under a metal chassis of the portable device. The metal chassis and a conductive coating—that is integrated underneath the full metal chassis—are designed to include one or more slots to provide high impedance to Eddy current induced in the conductive coating. |
US10749260B2 |
Multi-element antenna for multiple bands of operation and method therefor
An antenna assembly has a conductive line coupled to a feed point. An element is configured to resonate at a predetermined frequency. The element is electrically coupled to the conductive line and aligned perpendicular to the conductive line wherein the predetermined frequency of the element determines a distance from the feed point along the conductive line. |
US10749259B2 |
TFT substrate, scanning antenna provided with TFT substrate and method for producing TFT substrate
This TFT substrate includes a TFT provided with a gate electrode, a source electrode, and a drain electrode; a gate metal layer including the gate electrode; a gate insulating layer formed on the gate metal layer; and a source metal layer that is formed on the gate insulating layer and includes the source electrode, the drain electrode, and a patch electrode. The source metal layer includes a first metal layer that contains one of Ti, Mo, Ta, W and Nb, and a second metal layer that is formed on the first metal layer and contains one of Cu, Al, Ag and Au. The source electrode and the drain electrode each include the first metal layer and the second metal layer. A distance from the first metal layer of the source electrode to the first metal layer of the drain electrode in a channel direction is less than a distance from the second metal layer of the source electrode to the second metal layer of the drain electrode in the channel direction. |
US10749258B1 |
Antenna system and method for a digitally beam formed intersecting fan beam
An antenna system and method use an electronically-scanned antenna array and a hybrid beam former architecture. The antenna system includes a matrix of antenna elements and a feeder network. The feeder network includes a first layer including phase shifters. Each of the phase shifters is for a respective antenna element of the antenna elements. The feeder network also includes a second layer and a third layer. Each of the first set of the first time delay units in the second layer is for a respective first subarray of the first subarrays of the antenna elements. Each of the second set of the second time delay units in the third layer is for a respective second subarray of the second subarrays of the first subarrays. |
US10749256B1 |
Waveguide adapter for slot antennas
Embodiments if the present disclosure relate to a radio frequency (RF) adapter configured to mimic the load that an antenna element would see if it was otherwise radiating into free space. The adapter is configured to come in direct contact with an antenna ground plane so that modes of propagation may be established, and energy coupled from a radiating antenna element into the adapter. The adapter may be of any form that will support direct coupling and include a waveguide (WG) that is coupled to a planar slot radiating element of an antenna array. The WG can have a length, width, height, and a central longitudinal axis and an internal surface. A resistive load can be disposed along the central longitudinal axis of the WG and a reactive load can be disposed in the internal surface of the WG. |
US10749255B2 |
Steerable antenna array
A high gain non-mechanical steerable beamforming antenna is provided together with a system implementing the antenna. The steerable beamforming antenna uses a reflectarray structure in conjunction with a phased array antenna element configuration. The antenna elements may include micro particle arrays (MPAs), having a number of micro particles disposed thereon. The micro particles may be implemented as graphene elements or as plasmonic elements having a sufficiently high electron mobility and an electron carrier density that is controlled as a function of an applied electronic tuning signal. The change in electron carrier density of the MPA elements, in turn, causes a phase change in incident waves provided by a source feed, facilitating steering of a main beam of an antenna pattern associated with the reflected incident waves. |
US10749252B1 |
GPS III antenna payload configuration for enhanced PNT accuracy and reduced high power risk
An antenna array for a global positioning system (GPS) includes a first antenna element and a number of second antenna elements. The antenna array is placed at a location on a spacecraft that is above the center of gravity of the spacecraft. The first antenna element is located at the center of the antenna array and is surrounded by the second antenna elements. The first antenna element can produce a beam with a predefined null-to-null beamwidth, and the second antenna elements can form a multi-beam phased array. |
US10749245B2 |
Antenna assembly, electronic device and method for switching antenna
Antenna assembly, electronic device and method for switching antenna are provided. The antenna assembly includes a first antenna structure, second antenna structure and third antenna structure, the first antenna structure is used as a diversity antenna, the second antenna structure is in an idle state, and the third antenna structure is used as a main antenna; a radio frequency module coupled to each of the first antenna structure, the second antenna structure and the third antenna structure through a switch assembly; and the switch assembly arranged to, according to signal quality of the first antenna structure, the second antenna structure and the third antenna structure, switch one of the first antenna structure or the second antenna structure to the main antenna, switch the other of the first antenna structure or the second antenna structure to the idle state and switch the third antenna structure to the diversity antenna. |
US10749239B2 |
Radiofrequency power combiner or divider having a transmission line resonator
Power combiner/divider includes a transmission line (TL) resonator having an inner conductor, an outer conductor that surrounds the inner conductor, and a cavity between the inner conductor and the outer conductor. The inner conductor and the outer conductor are electrically connected at a proximal end of the TL resonator. The power combiner/divider also includes coupling elements extending through respective openings of the outer conductor and into the cavity. The power combiner/divider also includes a capacitive element connected to at least one of the inner conductor or the outer conductor. The capacitive element capacitively couples the inner conductor and the outer conductor at a distal end of the TL resonator. |
US10749236B2 |
Transmission line
A transmission line includes a laminated insulating body including insulating base material layers that are laminated, signal conductors provided inside the laminated insulating body and extending in a transmission direction along the insulating base material layer, and ground conductors sandwiching the signal conductors in a lamination direction via the insulating base material layers. The transmission line includes at least one curved portion that is bent along a plane orthogonal to the lamination direction. The signal conductors are separated from each other in a direction orthogonal to the transmission direction when viewed in the lamination direction and include a first signal conductor on an inner side and a second signal conductor on an outer side in the curved portion. An interval between the ground conductors sandwiching the first signal conductor is narrower than an interval between the ground conductors sandwiching the second signal conductor. |
US10749233B2 |
In-phase corporate-feed circuit and array antenna apparatus
As a layout requirement imposed on an in-phase corporate-feed circuit, there is provided only a layout requirement to equalize the electric length of a transmission line (4) between one of N T-branch units (6) which is m-th when counted from a start point of a path A, and another one of the T-branch units (6) which is (m+1)-th when counted from the start point of the path A, to that of a transmission line (8) between one of N T-branch units (10) which is m-th when counted from an end point of a path B, and another one of the T-branch units (10) which is (m+1)-th when counted from the end point of the path B. Therefore, the in-phase corporate-feed circuit can be formed in a space smaller than that in which its circuit configuration of tournament type is formed, and downsizing of the circuit size can be achieved. |
US10749230B2 |
Metal-air battery unit and metal-air battery
An object is especially to provide a metal-air battery unit that has a compact configuration including a water supply space and an electrical system space. The metal-air battery unit of the present invention includes a unit main body including a plurality of metal-air battery cells, a water supply space supplying an electrolyte to the metal-air battery cells and an electrical system space coupling to a positive electrode and a negative electrode of the metal-air battery cell to control a battery output, disposed on an outer surface of the unit main body. |
US10749225B2 |
Thermal management assembly for traction battery cells
A vehicle traction battery assembly may include a traction battery cell, a case, and a thermal plate. The case may define a cavity to receive the traction battery cell and has a first side defining a first form feature. The thermal plate may be for positioning adjacent the traction battery cell and define a coolant channel sized for engagement with the case via the first form feature such that traction battery cell is in thermal communication with coolant flowing through the coolant channel. The first form feature may be serpentine-shaped or S-shaped. The first form feature may be castle-shaped from a cross-sectional plan view. The case may be multi-layered and include a first polymer layer, a second polymer layer, and an aluminum layer disposed between the polymer layers. |
US10749224B2 |
Rechargeable battery power system having a battery with multiple uses
Conventional internal combustion engine technology has been around for decades and historically has been the primary power source for virtually all industrial equipment. It relies on carbon-based fuels, is loud, polluting, and the machines it powers are expensive to operate and maintain. A self-contained, rechargeable battery system is provided that possesses improved power than comparable diesel and gas engines and it generates zero emissions, is virtually maintenance free, is quiet, and recharges overnight via a standard electrical outlet. The rechargeable battery power system can be installed in new and used construction equipment and may be used wherever a source of power is required including smart grid application. It can be safely used indoors, in neighborhoods and other locations sensitive to the side effects of internal combustion engines. There is a battery management system that controls sequential shutdown system and a power reserve system to control operation of the battery. |
US10749222B2 |
Thermal battery with shut-off valve
A thermal battery including a storage vessel as well as an inlet pipe and an outlet pipe for a fluid that are connected to a circulation circuit is disclosed. The thermal battery also has at least two shut-off valves placed on the inlet pipe and the fluid outlet pipe, respectively, to isolate the fluid contained in the storage vessel when the circulation circuit of the fluid is shut off. The shut-off valves are automatic and include an enclosure containing the fluid and including an inlet and an outlet for the fluid, and a float that is moveable between: an upper position in which the float floats and obstructs at least the outlet when the circulation circuit is shut off, and a lower position in which the float is submerged and allows the fluid to flow between the inlet and the outlet when the circulation circuit is operational. |
US10749220B2 |
Battery control apparatus and battery control system
A slave control apparatus including a receiver and a controller. The receiver is configured to receive a sensed physical quantity of a battery and a sensed output physical quantity of a converter corresponding to the battery. The controller is configured to determine state information of the battery based on the sensed physical quantity and the sensed output physical quantity, transmit the state information to a master control apparatus, and control the converter based on output information from the master control apparatus that corresponds to the state information. |
US10749216B2 |
Battery, integrated circuit and method of manufacturing a battery
A battery includes a first substrate having a first main surface, a second substrate made of a conducting material or semiconductor material, and a carrier of an insulating material. The carrier has a first and a second main surfaces, the second substrate being attached to the first main surface of the carrier. An opening is formed in the second main surface of the carrier to uncover a portion of a second main surface of the second substrate. The second main surface of the carrier is attached to the first substrate, thereby forming a cavity. The battery further includes an electrolyte disposed in the cavity. |
US10749213B2 |
Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. A positive electrode charge potential is 3.7 V or less with respect to a lithium metal potential. The nonaqueous electrolyte includes a cyclic disulfone compound having a specific structure in an amount of 0.1 to 4.0% by mass based on a total mass of the nonaqueous electrolyte. |
US10749211B2 |
Generation of wrinkle-free silicon monoxide electrodes using separate preformation and formation
A solid electrolyte interface is grown on a silicon monoxide electrode in a battery cell, including by charging the battery cell up to a first voltage while the battery cell is uncompressed in order to partially grow the solid electrolyte interface. After partially growing the partial solid electrolyte interface, the battery cell is rested. After resting the battery cell, the battery cell is charged to a second, higher voltage while the battery cell is compressed in order to further grow the partially grown solid electrolyte interface. After the solid electrolyte interface is grown on the silicon monoxide electrode, the battery cell is charged for one or more cycles while the battery cell is compressed. |
US10749210B2 |
Polymer electrolyte for secondary battery and secondary battery including the same
The present invention provides a polymer electrolyte for a secondary battery having high ionic conductivity, and a lithium secondary battery including the same. |
US10749209B2 |
Electrolyte, battery, battery pack, electronic apparatus, electric vehicle, power storage apparatus, and power system
A battery includes: a positive electrode; a negative electrode; and an electrolyte. At least one of the electrolyte and the negative electrode contains an aluminum hydroxide, at least a part of a surface of the aluminum hydroxide being modified. |
US10749205B2 |
Method for producing positive active material precursor and positive active material for lithium secondary batteries, exhibiting concentration gradient, and positive active material precursor and positive active material for lithium secondary batteries, exhibiting concentration gradient, produced by same
Disclosed are a method for manufacturing a lithium secondary battery positive active material exhibiting a concentration gradient and a lithium secondary battery positive active material exhibiting a concentration gradient, manufactured by the method, and more particularly, a method for manufacturing a lithium secondary battery positive active material exhibiting a concentration gradient and a lithium secondary battery positive active material exhibiting a concentration gradient, manufactured by the method, the method being characterized by forming a barrier layer so as to maintain a concentration gradient layer even in case of thermal diffusion by a subsequent thermal treatment process. |
US10749204B2 |
Electric power storage device and method of manufacturing the same
An electric power storage device includes a case body with an opening, the opening formed at an upper portion of the case body; an electrode body housed in the case body; a tab portion; and a current collecting terminal. The tab portion protrudes from part of the electrode body toward the opening of the case body. The tab portion has a side surface not facing the electrode body. The current collecting terminal is welded to the side surface of the tab portion. |
US10749203B2 |
Fuel cell stack housing
Fuel cell stack housing including at least a bottom section and a first and a second side wall, which are spaced apart by the bottom section, wherein the housing is adapted to house a fuel cell stack and includes at least one fastening element, which is engaged with the first and the second side wall, wherein at least the first side wall of the housing has a flat section and an arched section extending in direction of the second side wall, and wherein a maximum possible distance between the arched section and the bottom portion defines an inner height of the fuel cell stack housing, where in the inner height of the fuel cell stack housing is adjustable, as well as a fuel cell stack assembly including a fuel cell stack encased by such a housing. |
US10749200B2 |
Non-humidified proton-conductive membrane, method for producing the same, and fuel cell
A non-humidified proton-conductive membrane according to the present invention includes a polymer and a proton-conductive substance. The polymer includes a glassy or crystalline first site having a glass-transition temperature or melting temperature higher than the service temperature of the proton-conductive membrane and a second site capable of forming a noncovalent bond. The proton-conductive substance includes a proton-releasing/binding site capable of noncovalently binding to the second site of the polymer and a proton coordination site capable of coordinating to protons, the proton-releasing/binding site and the proton coordination site being included in different molecules that interact with each other or being included in the same molecule. A proton-conductive mixed phase that includes the second site to which the proton-releasing/binding site of the proton-conductive substance is bound and the proton-conductive substance is lower than the service temperature of the proton-conductive membrane. The amount of the proton-releasing/binding site is excessively large compared with the amount of the second site of the polymer. |
US10749197B2 |
Process for separating electrode for membrane-electrode assembly of fuel cell and apparatus therefor
Disclosed are a process for separating an electrode for membrane-electrode assemblies of fuel cells from the decal transfer film and an apparatus for separating the electrode. In particular, during the electrode separating process, only an electrode is separated from the decal transfer film on which the electrode is coated, without any damage, by a freezing method for freezing the specimen on the deionized water surface, and thus, wasting the expensive MEA is prevented. Thus, mechanical properties of the pristine electrode can be rapidly quantified in advance, and therefore, long term durability evaluation period during developing MEA having excellent durability is substantially reduced. |
US10749193B2 |
Oxygen regulated fuel cell with valve
A device includes a container having a top plate containing an array of oxygen limiting pinholes and a chamber to hold a chemical hydride fuel, a fuel cell membrane electrode assembly supported within the container between the top plate and the chamber positioned to receive oxygen from the pinholes and hydrogen from the chamber, and a valve assembly positioned to regulate additional flow of oxygen to the fuel cell proton exchange membrane electrode assembly responsive to hydrogen pressure in the chamber. |
US10749192B2 |
Hydrogen consumption measuring method for fuel cell system
A hydrogen consumption measuring method for a fuel cell system includes steps of: calculating an amount of hydrogen consumed for a representative section from a first pressure at a time when hydrogen is supplied into an anode and a second pressure at a time when the hydrogen is no longer supplied to the anode; and calculating a total amount of hydrogen consumed by accumulating amounts of hydrogen consumed from a plurality of sections. |
US10749190B2 |
Fuel cell comprising heating plates and facility comprising such a cell
A fuel cell includes a stack and heating plates sandwiching the stack. The stack is formed of a set of electrochemical generators superimposed along a stacking axis. The heating plates are located axially on each side of the set. Each heating plate includes cavities and orifices for accessing the cavities. The fuel cell may be incorporated in a facility that includes a source of pressurized gas, which is linked to the orifices of the heating plates, and a device for managing a supply process for supplying gas to the cavities from the source of pressurized gas and an evacuation process for evacuating gas from the cavities. |
US10749189B2 |
Separator membrane for fuel cell, method for preparing same, and fuel cell electrode assembly
Provided are a separator for a fuel cell, a method of manufacturing the same, and a fuel cell electrode assembly, in which the fuel cell separator includes: a support that is formed by accumulating fibers containing 20 wt % to 50 wt % of a fiber-forming polymer and 50 wt % to 80 wt % of a heat-resistant polymer, and has a plurality of pores; and an ion exchange resin filled in the plurality of pores of the support. |
US10749185B2 |
Secondary battery
Disclosed is a secondary battery. The secondary battery includes an electrode assembly having a plurality of unit electrode bodies, each electrode body including a positive electrode plate having a plurality of positive electrode uneven grooves into which a positive electrode active material is inserted, a negative electrode plate having a plurality of negative electrode uneven grooves located to face the positive electrode uneven grooves so that a negative electrode active material is inserted therein, and a unit separator interposed between the positive electrode plate and the negative electrode plate; and a case having an accommodation portion in which the electrode assembly and an electrolyte are accommodated, wherein the positive electrode plate and the negative electrode plate are symmetrical to each other on the basis of the unit separator. |
US10749184B2 |
Battery
A battery is provided in the present disclosure. The battery includes: a positive electrode plate including a positive current collector and a positive active material layer; a negative electrode plate including a positive current collector and a negative active material layer; and an electrolyte. The positive current collector includes an insulation layer used to support a conductive layer and the conductive layer used to support the positive active material layer and located above at least one surface of the insulation layer. The conductive layer has a thickness of D2 which satisfies: 300 nm≤D2≤2 μm. A protective layer is arranged on at least one surface of the conductive layer. The negative current collector is a copper foil current collector having a thickness of 1 μm to 5.9 μm. |
US10749182B2 |
Coated lithium-nickel composite oxide particles and method for producing coated lithium-nickel composite oxide particles
Provided are excellent coated lithium-nickel composite oxide particles which are capable of suppressing the occurrence of impurities produced by absorbing water and carbonic acid gas as a result of the high environmental stability thereof, have strong adhesion properties, do not result in easy coating layer detachment, and also exhibit lithium ion conductivity. The surfaces of the lithium-nickel composite oxide particles are coated with a polymer or copolymer comprising one or more types selected from a group consisting of a modified polyolefin resin, a polyester resin, a polyphenol resin, a polyurethane resin, an epoxy resin, a silane-modified polyether resin, a silane-modified polyester resin, a silane-modified polyphenol resin, a silane-modified polyurethane resin, a silane-modified epoxy resin, and a silane-modified polyamide resin. As a result, the coated lithium-nickel composite oxide particles exhibit conductivity, and said compound is capable of suppressing the transmission of water and carbonic acid gas. Consequently, it is possible to provide coated lithium-nickel composite oxide particles for use in a lithium-ion battery positive electrode active material which is excellent for use in a lithium-ion battery. |
US10749181B2 |
Oligomer and lithium battery
An oligomer and a lithium battery are provided. The oligomer is obtained by a reaction of epoxy acrylate and barbituric acid. The lithium battery includes an anode, a cathode, a separator, an electrolyte solution and a packaging structure, wherein the cathode includes the oligomer. |
US10749177B2 |
Method of synthesizing phosphate salt of high purity for preparation of electrode material
The present invention provides a cost-effective method of synthesizing phosphate salt of a metal M such as Fe and Mn that can be used for electrode active material of a lithium secondary battery. An oxidization-precipitation reaction is carried out on metal such as Fe(II) and Mn(II) to produce phosphate salt and hydroxide of the metal oxidized e.g. Fe(III) and Mn(III). With overdosed phosphoric acid, hydroxide of the oxidized metal is then converted to a phosphate salt. The invention also provides a method of preparing “wet” phosphate salt nanoparticles and their application in the synthesis of a cathode material. The present invention exhibits numerous technical merits such as lower cost, easier operation, and being environmentally friendly. |
US10749176B2 |
Cathode active material used for lithium ion secondary battery, method for producing same, and lithium ion secondary battery
Provided are a cathode active material used for a lithium ion secondary battery having a high discharge capacity, and a small increase in internal resistance caused following charge/discharge cycles; a method for producing the same; and a lithium ion secondary battery. The cathode active material has a layered structure assigned to a space group of R-3m represented by the formula: Li1+aM1O2+α (where M1 represents metal elements other than Li containing at least Ni, −0.05≤a≤0.15, −0.1≤α≤0.1). A content of Ni is 70 atom % or more, and a generating amount of oxygen gas in the range from 200° C. to 450° C. is 30 mass ppm or less. The method comprises the steps of grinding and mixing a lithium raw material, and firing the resultant mixture in the range of 650° C. or more and 900° C. or less. |
US10749173B2 |
Process for the preparation of lithium titanium spinel and its use
The present invention relates to a composite oxide with x wt.-parts Li2TiO3, preferably in its cubic modification of space group Fm-3m, t wt.-parts TiO2, z wt.-parts of Li2CO3 or LiOH, u wt.-parts of a carbon source and optionally v wt.-parts of a transition or main group metal compound and/or a sulphur containing compound, wherein x is a number between 2 and 3, y is a number between 3 and 4, z is a number between 0.001 and 1, u is a number between 0.05 and 1 and 0≤v<0.1 and the metal of the transition or main group metal compound is selected from Al, Mg, Ga, Fe, Co, Sc, Y, Mn, Ni, Cr, V or mixtures thereof. Further the present invention relates to the use of the composite oxide in a process for the preparation of a composition of a non-doped and doped lithium titianate Li4Ti5O12 comprising secondary agglomerates of primary particles and its use as anode material in secondary lithium-ion batteries. |
US10749172B2 |
Electrode for energy storage devices
Provided is an electrode for energy storage devices, which is provided with a collector substrate, an undercoat layer that is formed on at least one surface of the collector substrate and contains carbon nanotubes, and an active material layer that is formed on the surface of the undercoat layer, and wherein the active material layer does not contain a conductive assistant. |
US10749170B2 |
Graphene-coated metal oxide spinel cathodes
Disclosed herein are graphene-coated lithium manganese oxide spinels cathodes for high-performance batteries Li-ion batteries and methods for making thereof. A single-layer graphene coating is shown to significantly reduce manganese loss in the cathodes while concurrently promoting the formation of a well-defined solid electrolyte interphase layer. |
US10749167B2 |
Lithium ion secondary battery and method of manufacturing the same
A lithium ion secondary battery includes at least a positive electrode, a negative electrode, and an electrolyte. The positive electrode contains at least a first positive electrode active material and a second positive electrode active material. The first positive electrode active material is expressed with a formula (I) LiNiaCobMncO2 and the second positive electrode active material is expressed with a formula (II) LiNidCoeMnfO2, where a, b, c, d, e, and f satisfy conditions of a>d, 0.4≤a≤0.6, 0.2≤b≤0.5, 0.1≤c≤0.2, a+b+c=1.0, 0.2≤d≤0.5, 0.1≤e≤0.2, 0.4≤f≤0.6, and d+e+f=1. |
US10749159B2 |
Sensor system
A sensor system senses one or more characteristics of vehicles in a vehicle system with sensors disposed onboard the vehicles and communicate data representative of the one or more characteristics from the sensors to one or more of a controller or a control system of the vehicle system. The data communicated from the sensors onboard the same vehicle can be synchronously communicated with respect to the sensors onboard the same vehicle and asynchronously communicated with respect to the sensors disposed onboard one or more other vehicles in the vehicle system. The systems and methods can direct components disposed onboard a vehicle system to change operations, monitor data output by sensors operatively connected with the components, and determine which of the sensors are operatively connected with which of the components based on the operations of the components that are changed and the data that is output by the sensors. |
US10749157B2 |
Hearing aid battery packaging
A battery package includes a card, a cover, a tray, and batteries. The cover is attached to the card and includes a door and an opening formed in the front of the cover and the peripheral edge of the cover. The door is movable between an open position to provide access to the opening and a closed position. The tray is positioned between the card and the cover and includes multiple receptacles. Each battery is positioned within one of the receptacles. The card includes a recess in the outer edge of the card at a battery removal position. The tray is movable relative to the card and the cover to selectively align one of the receptacles with the opening in the battery removal position. With the door in the open position, the battery in the receptacle in the battery removal position is accessible through the opening. |
US10749151B2 |
Pouch-type rechargeable battery
A pouch-type rechargeable battery according to one or more exemplary embodiments includes: an electrode assembly; an exterior material receiving the electrode assembly; and a sealing portion arranged at an edge of the exterior material, and including at least one metal particle and a resin surrounding the at least one metal particle, and an area ratio of the at least one metal particle and the resin in a cross-section of the sealing portion cut along a direction that is perpendicular to a lengthwise direction of the sealing portion is from 1:99 to 6:4. |
US10749150B2 |
Case including insulating layer for secondary batteries and lithium secondary battery including the same
Disclosed is a case for secondary batteries including a laminate sheet composed of multiple layers, the laminate sheet including an insulating layer having an elongation percentage of 10% or more. |
US10749145B2 |
Screen plate, packaging method, display panel and display device
A screen plate, a packaging method, a display panel and a display device are provided. The screen plate includes a frame, a mesh fixed onto the frame and a masking film arranged on the mesh. A printing area is formed in a portion of the mesh that is not masked by the masking film. At least one masking line is arranged in the printing area. The at least one masking line is arranged along an edge of the masking film respectively. A width of the masking line is greater than a width of each mesh line of the mesh. |
US10749136B2 |
Display device
A display device includes: a frame that includes a plurality of protrusions; a display panel disposed on the frame that includes a planar portion and a curved portion; a pressure sensing unit disposed between the frame and the display panel that overlaps the curved portion and that includes a plurality of first electrodes and a plurality of second electrodes disposed in a different layer; and a pressure sensing drive unit connected to the plurality of first electrodes and the plurality of second electrodes. Any one of the plurality of second electrodes at least partially overlaps any one of the plurality of first electrodes. At least one of the plurality of protrusions overlaps a region where one of the plurality of first electrodes and one of the plurality of second electrodes overlap each other. |
US10749133B2 |
Anode structure for an organic light emitting diode display device
An anode structure of an organic light emitting diode display device, includes an insulating interlayer disposed on a silicon substrate, a first metal layer pattern disposed on the insulating interlayer comprising a first metal to be configured to upwardly reflect light, a second metal layer pattern formed on the first metal layer pattern comprising a second metal having a work function of 4.0 eV or more, and a diffusion barrier layer pattern interposed between the first metal layer pattern and the second metal layer pattern for preventing elements of the first metal or the second metal from diffusing between the first metal layer and the second metal layer. |
US10749132B2 |
Electrode laminate and organic light emitting device element
The present specification provides an electrode laminate including a substrate, an electrode provided on the substrate, and an auxiliary electrode electrically connecting to the electrode and has a laminated structure of a first layer having reflectivity of 80% or greater at a wavelength of 550 nm and a second layer having a higher etching rate compared to the first layer, wherein the auxiliary electrode is either provided between the electrode and the substrate, or provided so that the first layer of the auxiliary electrode adjoins at least part of the side surface of the electrode, and an organic light emitting device including the electrode laminate. |
US10749122B2 |
Organic electroluminescent materials and devices
A novel method for forming a metal-carbene bond is disclosed. |
US10749119B2 |
Plurality of host materials and organic electroluminescent device comprising the same
The present disclosure relates to a plurality of host materials and organic electroluminescent device comprising the same. By comprising a specific combination of a plurality of host materials, the organic electroluminescent device of the present disclosure can show long lifespan while maintaining high luminous efficiency. |
US10749115B2 |
N-doped semiconducting material comprising polar matrix and metal dopant
The invention relates to a semiconducting material comprising (i) in substantially elemental form, an electropositive element selected from alkaline metals, alkaline earth metals, rare earth metals, and transition metals, and (ii) at least one first compound which is a compound comprising at least one polar group selected from phosphine oxide group or diazole group; a process for manufacturing the semiconducting material; an electronic device comprising a cathode, an anode and the semiconducting material. |
US10749109B2 |
Read out integrated circuit (ROIC) for rapid testing and characterization of resistivity change of heating element in phase-change material (PCM) radio frequency (RF) switch
A rapid testing read out integrated circuit (ROIC) includes phase-change material (PCM) radio frequency (RF) switches residing on an application specific integrated circuit (ASIC). Each PCM RF switch includes a PCM and a heating element transverse to the PCM. The ASIC is configured to provide amorphizing and crystallizing electrical pulses to a selected heating element in a selected PCM RF switch. The ASIC is also configured to generate data for determining and characterizing resistivity change of the selected heating element in the selected PCM RF switch after the ASIC performs a plurality of OFF/ON cycles. In one implementation, a testing method using the ASIC is disclosed. |
US10749107B2 |
Method of manufacturing magnetic tunnel coupling element
A magnetic tunnel junction element configured by stacking, in a following stack order, a fixed layer formed of a ferromagnetic body and in which a magnetization direction is fixed, a magnetic coupling layer formed of a nonmagnetic body, a reference layer formed of a ferromagnetic body and in which the magnetization direction is fixed, a barrier layer formed of a nonmagnetic body, and a recording layer formed of a ferromagnetic body, a barrier layer formed of a nonmagnetic body, and a recording layer formed by sandwiching an insertion layer formed of a nonmagnetic body between first and second ferromagnetic layers, wherein the magnetic coupling layer is formed using a sputtering gas in which a value of a ratio in which a mass number of an element used in the magnetic coupling layer divided by the mass number of the sputtering gas itself is 2.2 or smaller. |
US10749103B2 |
Dry plasma etch method to pattern MRAM stack
Apparatuses for etching metal by depositing a material reactive with a metal to be etched and a halogen to form a volatile species and exposing the substrate to a halogen-containing gas and activation gas to etch the substrate are provided. Deposited materials may include silicon, germanium, titanium, carbon, tin, and combinations thereof. Apparatuses are suitable for fabricating MRAM structures and may be used to integrate ALD and ALE processes without breaking vacuum. |
US10749097B2 |
Current crowding in three-terminal superconducting devices and related methods
An active three-terminal superconducting device having an intersection region at which a hot spot may be controllably formed is described. The intersection region may exhibit current crowding in response to imbalances in current densities applied to channels connected to intersection region. The current crowding may form a hot spot, in which the superconducting device may exhibit a measurable resistance. In some cases, a three-terminal superconducting device may be configured to sense an amount of superconducting current flowing in a channel or loop without having to perturb the superconducting state or amount of current flowing in the channel. A three-terminal superconducting device may be used to read out a number of fluxons stored in a superconducting memory element. |
US10749095B2 |
ZZZ coupler for superconducting qubits
Systems and methods are provided for a ZZZ coupler. A first tunable coupler is coupled to the first qubit and tunable via a first control signal. A second tunable coupler is coupled to the first tunable coupler to direct a flux of the first qubit into a tuning loop of the second tunable coupler, such that when a first coupling strength associated with the first tunable coupler is non-zero, a second coupling strength, associated with the second tunable coupler, is a function of a second control signal applied to the second tunable coupler and a state of the first qubit. The second qubit and the third qubit are coupled to one another through the second tunable coupler, such that, when the second coupling strength is non-zero it is energetically favorable for the states of the first and second qubits to assume a specific relationship with respect to the Z-axis. |
US10749093B2 |
Interconnection by lateral transfer printing
A transfer print structure comprises a destination substrate having a substrate surface and one or more substrate conductors disposed on or in the destination substrate. One or more interconnect structures are disposed on and protrude from the destination substrate in a direction orthogonal to the substrate surface. Each interconnect structure comprises one or more notches, each notch having an opening on an edge of the interconnect structure and extending at least partially through the interconnect structure in a direction parallel to the substrate surface from the edge and a notch conductor disposed at least partially in the notch and electrically connected to one of the substrate conductors. In some embodiments, an electronic component comprising connection posts is transfer printed into electrical contact with a corresponding notch conductor by laterally moving the electronic component over the substrate surface to electrically contact the connection post to the notch conductor. |
US10749089B2 |
Light emitting device package including a recess provided under a light emitting device and having a closed loop shape
A light emitting device package according to an embodiment includes: a package body; a light emitting device disposed on the package body; and an adhesive disposed between the package body and the light emitting device. The package body includes first and second openings passing through the package body on an upper surface of the package body and a recess provided to concave in a direction of a lower surface of the package body from the upper surface of the package body. The light emitting device includes a first bonding part disposed on the first opening and a second bonding part disposed on the second opening. The adhesive is provided at the recess. |
US10749084B2 |
Optoelectronic component and method of producing an optoelectronic component
An optoelectronic component includes a carrier having a chip mounting face, wherein the chip mounting face has a reflection coating, and an optoelectronic semiconductor chip adhesively bonded on the reflection coating by an adhesive so that the reflection coating is subdivided into a first subsection covered by the semiconductor chip and a second subsection, which is free of the semiconductor chip, wherein the adhesive has reflection particles that reflect electromagnetic radiation emitted by the semiconductor chip, and the second subsection is at least partially covered by a corrosion protection layer. |
US10749078B2 |
Light emitting diode having side reflection layer
A light emitting diode including a side reflection layer. The light emitting diode includes: a semiconductor stack and a light exit surface having a roughened surface through which light generated from an active layer is emitted; side surfaces defining the light exit surface; and a side reflection layer covering at least part of the side surfaces. The light exit surface is disposed over a first conductivity type semiconductor layer opposite to the ohmic reflection layer, all layers from the active layer to the light exit surface are formed of gallium nitride-based semiconductors, and a distance from the active layer to the light exit surface is 50 μm or more. |
US10749077B2 |
Optoelectronic device and the manufacturing method thereof
An optoelectronic device includes a semiconductor stack including a first surface and a second surface opposite to the first surface; a first contact layer on the first surface; and a second contact layer on the second surface. The second contact layer is not overlapped with the first contact layer in a vertical direction. The second contact layer includes a plurality of dots separating to each other and formed of semiconductor material. |
US10749072B2 |
Nanowire light emitting device
Light emitting device and methods for forming the devices include a substrate and a nanowire placed on the substrate, where the nanowire comprises a core made of a semiconductor material. A cladding encloses the nanowire and has a breakdown voltage larger than a breakdown voltage of the core. A source of an electric field is provided, where the core is at least partially aligned with and lies at least partially within the electric field such that a cycling of the electric field creates charge separation and electron-hole recombination in the core. |
US10749069B2 |
Solar cell and method for manufacturing the same
A method for manufacturing a solar cell, includes forming an oxide layer on first surface of a single crystalline silicon substrate; forming a poly crystalline silicon layer doped with a first dopant having a first conductive type on the oxide layer; diffusing a second dopant having a second conductive type opposite to the first conductive type into a second surface of the single crystalline silicon substrate thereby forming a diffusion region; forming a first passivation layer on the poly crystalline silicon layer; forming a second passivation layer on the diffusion region; forming a first electrode connected to the poly crystalline silicon layer by printing a first paste on the first passivation layer and firing through; forming a second electrode connected to the diffusion region by printing a second paste on the second passivation layer and firing through. |
US10749067B2 |
Optical sensor package including a cavity formed in an image sensor die
One or more embodiments are directed to system in package (SiP) for optical devices, including proximity sensor packaging. One embodiment is directed to optical sensor that includes a substrate, an image sensor die and a light-emitting device. A first surface of the image sensor die is coupled to the substrate, and a recess is formed extending into the image sensor die from the first surface toward a second surface of the image sensor die. A light transmissive layer is formed in the image sensor die between the recess and the first surface. The optical sensor further includes a light-emitting device that is coupled to the substrate and positioned within the recess formed in the image sensor die. |
US10749066B2 |
Proximity sensor having substrate including light sensing area and temperature sensing area
A proximity sensor includes a circuit board; a light-emitting element and a light-receiving element on the circuit board; a light barrier; molding portions; and a transparent board disposed on the molding portions and configured to form an air gap with the light-receiving element. The light-receiving element includes: a substrate having a light sensing area and a temperature sensing area; a first input electrode and a first output electrode which are aligned in the light sensing area and apart from each other with a first delay gap therebetween; a sensing film covering at least some portions of the first input electrode and the first output electrode; and a second input electrode and a second output electrode which are aligned in the temperature sensing area and apart from each other with a second delay gap therebetween. The second delay gap is exposed to air. |
US10749061B1 |
Solar cell edge interconnects
Edge interconnects for interconnecting solar cells are disclosed. The edge interconnects include a layer of an electrically conductive adhesive overlying an insulating dielectric layer applied to edge of a solar cell and electrically interconnected to a busbar. Solar cell modules include adjacent solar cells comprising edge interconnects interconnected using an interconnection element. An interconnection element can be a solder paste or a solder containing electrically conductive ribbon. Methods of forming solar cell edge interconnects include applying an insulating dielectric coating to edges of a solar cell, depositing a busbar in proximity to the insulated edges of the solar cell, depositing an electrically conductive adhesive over at least portion of the busbar an over at least a portion of the dielectric layer. Solar cell modules can be formed by interconnecting adjacent solar cells using an interconnection element. |
US10749058B2 |
Monodisperse, IR-absorbing nanoparticles and related methods and devices
Embodiments described herein generally relate to monodisperse nanoparticles that are capable of absorbing infrared radiation and generating charge carriers. In some cases, at least a portion of the nanoparticles are nanocrystals. In certain embodiments, the monodisperse, IR-absorbing nanocrystals are formed according to a method comprising a nanocrystal formation step comprising adding a first precursor solution comprising a first element of the nanocrystal to a second precursor solution comprising a second element of the nanocrystal to form a first mixed precursor solution, where the molar ratio of the first element to the second element in the first mixed precursor solution is above a nucleation threshold. The method may further comprise a nanocrystal growth step comprising adding the first precursor solution to the first mixed precursor solution to form a second mixed precursor solution, where the molar ratio of the first element to the second element in the second mixed precursor solution is below the nucleation threshold. |
US10749057B2 |
Sensing device and sensing method
A device for sensing suspension operations or biometrics includes a light emitting module and a sensing layer. The light emitting module and the sensing layer are sequentially stacked. The light emitting module includes a plurality of light emitting elements emitting light near the infrared and the sensing layer includes a plurality of quantum dot thin film transistors. The quantum dot thin film transistor includes an active layer and quantum dots covering the active layer. The near-infrared light emitted by the plurality of light emitting elements is reflected by an animate object and received by the quantum dot thin film transistors. The sensing device can better sense suspension operations or biometrics. A method for the procedure is also disclosed. |
US10749053B2 |
Distributed Bragg reflector structures in multijunction solar cells
A multijunction solar cell and its method of fabrication, including an upper and a lower solar subcell each having an emitter layer and a base layer forming a photoelectric junction; a near infrared (NIR) wideband reflector layer disposed below the upper subcell and above the lower subcell for reflecting light in the spectral range of 900 to 1050 nm which represents unused and undesired solar energy and thereby reducing the overall solar energy absorptance in the solar cell and providing thermodynamic radiative cooling of the solar cell when deployed in space outside the atmosphere. |
US10749050B2 |
Thin film CZTSSe photovoltaic device
A method for forming a back contact on an absorber layer in a photovoltaic device includes forming a two dimensional material on a first substrate. An absorber layer including Cu—Zn—Sn—S(Se) (CZTSSe) is grown over the first substrate on the two dimensional material. A buffer layer is grown on the absorber layer on a side opposite the two dimensional material. The absorber layer is exfoliated from the two dimensional material to remove the first substrate from a backside of the absorber layer opposite the buffer layer. A back contact is deposited on the absorber layer. |
US10749045B1 |
Solar cell side surface interconnects
Peripheral side surface interconnects for interconnecting solar cells are disclosed. The peripheral side surface interconnects include a layer of an electrically conductive adhesive overlying an insulating layer overlying a peripheral side edge of a solar cell and electrically interconnected to a busbar. Photovoltaic modules include adjacent solar cells comprising peripheral side surface interconnects interconnected by the electrically conductive adhesive or by the electrically conductive adhesive and an interconnection element. An interconnection element can be a solder paste or a solder containing electrically conductive ribbon. Methods of forming solar cell peripheral side surface interconnects include applying an insulating layer to a side surface of a solar cell, depositing a busbar in proximity to the insulated side surface of the solar cell, depositing an electrically conductive adhesive over at least a portion of the busbar and over at least a portion of the insulating layer. Photovoltaic modules can be formed by interconnecting adjacent solar cells using a peripheral side surface interconnect. |
US10749043B2 |
Semiconductor device including a trench structure
A semiconductor device having first through third layers. The first layer has a first conductivity type. The second layer has a second conductivity type different from the first conductivity type. The third layer has a first portion having the second conductivity type and a second portion having the first conductivity type. A trench structure is located in the first portion and is completely surrounded by the first portion in an area extending from a first surface of the third layer to a second surface of the third layer. |
US10749041B2 |
Programmable charge storage transistor, an array of elevationally-extending strings of memory cells, methods of forming Si3Nx, methods of forming insulator material that is between a control gate and charge-storage material of a programmable charge-storage transistor, methods of forming an array of elevationally-extending strings of memory cells, a programmable charge-storage transistor manufactured in accordance with methods, and an array of elevationally-extending strings of memory cells man
A method of forming Si3Nx, where “x” is less than 4 and at least 3, comprises decomposing a Si-comprising precursor molecule into at least two decomposition species that are different from one another, at least one of the at least two different decomposition species comprising Si. An outer substrate surface is contacted with the at least two decomposition species. At least one of the decomposition species that comprises Si attaches to the outer substrate surface to comprise an attached species. The attached species is contacted with a N-comprising precursor that reacts with the attached species to form a reaction product comprising Si3Nx, where “x” is less than 4 and at least 3. Other embodiments are disclosed, including constructions made in accordance with method embodiments of the invention and constructions independent of method of manufacture. |
US10749039B2 |
TFT substrate and method for making same
A high-performance TFT substrate (100) for a flat panel display includes a substrate (110), a first conductive layer (130) on the substrate (110), a semiconductor layer (103) positioned on the first conductive layer (130), and a second conductive layer (150) positioned on the semiconductor layer (103). The first conductive layer (130) defines a gate electrode (101). The second conductive layer (150) defines a source electrode (105) and a drain electrode (106) spaced apart from the source electrode (105). The second conductive layer (150) includes a first layer (151) on the semiconductor layer (103) and a second layer (152) positioned on the first layer (151). The first layer (151) can be made of metal oxide. The second layer (152) can be made of aluminum or aluminum alloy. |
US10749037B2 |
Low temperature poly-silicon TFT substrate and manufacturing method thereof
The present invention provides a LTPS TFT substrate and a manufacturing method thereof. The LIPS TFT substrate of the present invention includes a metal layer formed on a channel zone so that the metal layer, a source electrode, and a drain electrode can be used as a mask to form LDD zones in a poly-silicon layer in order to save the mask needed for separately forming the LDD zones; further, due to the addition of the metal layer that is connected to the channel zone of the poly-silicon layer, the electrical resistance of the channel zone can be effectively reduced to increase a TFT on-state current. The LTPS TFT substrate manufacturing method of the present invention forms a metal layer on a channel zone at the same time of forming a source electrode and a drain electrode and uses the metal layer, the source electrode, and the drain electrode as a mask to form LDD zones in a poly-silicon layer so as to save the mask needed for separately forming the LDD zones thereby reducing the manufacturing cost and increasing throughput. |
US10749031B2 |
Large area contacts for small transistors
A large area electrical contact for use in integrated circuits features a non-planar, sloped bottom profile. The sloped bottom profile provides a larger electrical contact area, thus reducing the contact resistance, while maintaining a small contact footprint. The sloped bottom profile can be formed by recessing an underlying layer, wherein the bottom profile can be crafted to have a V-shape, U-shape, crescent shape, or other profile shape that includes at least a substantially sloped portion in the vertical direction. In one embodiment, the underlying layer is an epitaxial fin of a FinFET. A method of fabricating the low-resistance electrical contact employs a thin etch stop liner for use as a hard mask. The etch stop liner, e.g., HfO2, prevents erosion of an adjacent gate structure during the formation of the contact. |
US10749030B2 |
Semiconductor devices
A semiconductor device may include first and second channel patterns on a substrate, first and second source/drain patterns in contact respectively with the first and second channel patterns, and first and second gate electrodes respectively overlapping the first and second channel patterns. The first gate electrode may include a first segment between first and second semiconductor patterns of the first channel pattern. The first segment may include a first convex portion protruding toward the first source/drain pattern. The second gate electrode may include a second segment between third and fourth semiconductor patterns of the second channel pattern. The second segment may include a concave portion recessed toward a center of the second segment. |
US10749029B2 |
Semiconductor device and manufacturing method thereof
A fin field effect transistor (Fin FET) device includes a fin structure extending in a first direction and protruding from an isolation insulating layer disposed over a substrate. The fin structure includes a well layer, an oxide layer disposed over the well layer and a channel layer disposed over the oxide layer. The Fin FET device includes a gate structure covering a portion of the fin structure and extending in a second direction perpendicular to the first direction. The Fin FET device includes a source and a drain. Each of the source and drain includes a stressor layer disposed in recessed portions formed in the fin structure. The stressor layer extends above the recessed portions and applies a stress to a channel layer of the fin structure under the gate structure. The Fin FET device includes a dielectric layer formed in contact with the oxide layer and the stressor layer in the recessed portions. |
US10749028B2 |
Transistor with gate/field plate structure
Disclosed herein is a conductive structure that serves as both a control terminal and a field plate for a transistor. The transistor includes a channel region including a portion located in a vertical sidewall of semiconductor material that separates an upper level portion and a lower level portion of the semiconductor material. An extended drain region includes a portion located in the lower portion of the semiconductor material. The conductive structure is laterally adjacent to the vertical sidewall and includes a first vertical side and an opposite second vertical side with the first vertical side being closer to the vertical component sidewall. The first side is vertically closer to the lower level portion of the semiconductor material than the second vertical side. |
US10749024B2 |
Semiconductor device
A semiconductor device of an embodiment includes a first region including a first portion of a semiconductor layer having first and second planes, a first trench, a first gate electrode, a first source electrode and a drain electrode; a second region adjacent to the first region in a first direction and including a second portion of the semiconductor layer, a second trench, a second gate electrode, a second source electrode on the first plane side, and the drain electrode; a third region adjacent to the first region in a second direction crossing the first direction and including a third portion of the semiconductor layer, a third trench, a third gate electrode, a third source electrode on the first plane side, and the drain electrode; a first gate electrode pad connected to the first gate electrode; and a second gate electrode pad connected to the second and third gate electrodes. |
US10749020B2 |
Group III-nitride semiconductor device and corresponding fabricating method
The invention relates to the group III-nitride semiconductor device and corresponding fabricating method. Specifically, a method to reduce RF dispersion in a group III-nitride high electron mobility transistor (HEMT), especially for reduced barrier thickness epi materials and scaled deices for higher frequency applications. Periodic n-type doping within barrier is used to screen surface state traps, which are responsible for the above-mentioned RF dispersion, without introducing additional gate leakage current path. Within the method, the barrier (typically AlGaN, AlInN) layer is periodically n-type doped with its composition (such as Al % within AlGaN) periodically modulated. The periodic structure is effective in both screening surface state traps and reducing the leakage current within the AlGaN/gate Schottky barrier. Therefore, the growth method could be used for fabricate the dispersion-free III-nitride based HEMT devices, which will be highly desirable for making high frequency materials and devices in the applications such as higher frequency wireless communications. |
US10749019B2 |
Circuit and electronic device including an enhancement-mode transistor
An electronic device can include a channel layer and a barrier layer overlying the channel layer. In an embodiment, the electronic device can include a component disposed along a current path between a gate terminal and a gate electrode of a first transistor. In another embodiment, the electronic device can include a second transistor wherein source and gate electrodes of the second transistor are coupled to the gate electrode of the first transistor, and a drain electrode of the second transistor is coupled to the gate terminal. A circuit can include a transistor and a diode. The transistor can include a drain, a gate, and a source, wherein the drain is coupled to a drain terminal, and the source is coupled to a source terminal. The diode can have an anode is coupled to the gate terminal, and a cathode is coupled to a gate of the transistor. |
US10749018B2 |
Switch assembly of reactive power compensation apparatus
Each of the first and second switching modules may include first through (n+1)th cooling plates stacked along a vertical direction with respect to the support module; first through nth switches respectively disposed between the first through (n+1)th cooling plates; a first electrode plate disposed on the (n+1)th cooling plate; a first supporting member disposed on the first electrode plate; a first pressing member disposed between the first electrode plate and the first supporting member; a second electrode plate disposed below the first cooling plate; a second supporting member disposed below the second electrode plate; and a second pressing member disposed between the second electrode plate and the second supporting member. |
US10749017B1 |
Heterojunction bipolar transistors with field plates
Power amplifiers in radio frequency circuits are typically implemented as heterojunction bipolar transistors. In applications such as in 5G systems, the circuits are expected to operate at very high speeds, e.g., up to 100 GHz. Also, a certain amount of output power should be maintained for stable operation. To achieve both high power and high speed, it is proposed to incorporate field plates in the heterojunction bipolar transistors to reduce electric field in the collector. This allows the breakdown voltage of the transistor to be high, which aids in power output. At the same time, the collector can be relatively thin, which aids in operation speed. |
US10749015B2 |
Semiconductor device and method for manufacturing the same
To reduce defects in an oxide semiconductor film in a semiconductor device. To improve the electrical characteristics and the reliability of a semiconductor device including an oxide semiconductor film. In a semiconductor device including a transistor including a gate electrode formed over a substrate, a gate insulating film covering the gate electrode, a multilayer film overlapping with the gate electrode with the gate insulating film provided therebetween, and a pair of electrodes in contact with the multilayer film, a first oxide insulating film covering the transistor, and a second oxide insulating film formed over the first oxide insulating film, the multilayer film includes an oxide semiconductor film and an oxide film containing In or Ga, the first oxide insulating film is an oxide insulating film through which oxygen is permeated, and the second oxide insulating film is an oxide insulating film containing more oxygen than that in the stoichiometric composition. |
US10748990B2 |
Stacked indium gallium arsenide nanosheets on silicon with bottom trapezoid isolation
A method of forming a nanosheet semiconductor device that includes epitaxially forming a stack of at least two repeating nanosheets, the at least two repeating nanosheets including a first nanosheet layer of a first III-V semiconductor material and a second nanosheet layer of a second III-V semiconductor material. A sacrificial gate structure is formed on the stack of the at least two repeating nanosheets. Source and drain regions are epitaxially formed on the second nanosheet layer. The sacrificial gate structure is removed to provide a gate opening. An etch process removes the first nanosheet layer selectively to the second nanosheet layer, wherein the etch process is selective to facets of the material for the first nanosheet layer to provide an inverted apex at the base of the stack. A dielectric layer is deposited filling the inverted apex. A functional gate structure is formed in the gate opening. |
US10748989B2 |
Insulating layer structure for semiconductor product, and preparation method of insulating layer structure
An insulating layer structure for a semiconductor product. The insulating layer structure includes a device substrate, a supporting substrate and a thin film layer. The device substrate and the supporting substrate are silicon wafers. The thin film layer(s) is/are arranged on the device substrate or/and the supporting substrate. The device substrate and the supporting substrate are bonded together through the thin film layer arranged on at least one of the device substrate and the supporting substrate to form an integral multilayer SOI structure. The insulating layer structure formed by the present invention solves problems of serious spontaneous heating of an existing SOI device, severe warpage of an existing SOI structure caused by high-temperature annealing, a poor radio frequency characteristic and the like, and has a predictable relatively higher economic and social value. |
US10748987B2 |
Methods of forming an array of capacitors, methods of forming an array of memory cells individually comprising a capacitor and a transistor, arrays of capacitors, and arrays of memory cells individually comprising a capacitor and a transistor
A method of forming an array of capacitors comprises forming elevationally-extending and longitudinally-elongated capacitor electrode lines over a substrate. Individual of the capacitor electrode lines are common to and a shared one of two capacitor electrodes of individual capacitors longitudinally along a line of capacitors being formed. A capacitor insulator is formed over a pair of laterally-opposing sides of and longitudinally along individual of the capacitor electrode lines. An elevationally-extending conductive line is formed over the capacitor insulator longitudinally along one of the laterally-opposing sides of the individual capacitor electrode lines. The conductive line is cut laterally through to form spaced individual other of the two capacitor electrodes of the individual capacitors. Other methods are disclosed, including structures independent of method of manufacture. |
US10748985B2 |
Integrated inductor apparatus
An integrated inductor includes a first coil, a second coil, a third coil and a fourth coil. The first coil is disposed on a first layer of an integrated circuit structure. The second coil is disposed on the first layer and adjacent to the first coil, in which the first coil and the second coil have same number of turns. The third coil is disposed on a second layer of the integrated circuit structure and above the first coil. The fourth coil is disposed on the second layer and above the second coil, in which the third coil and the fourth coil have same number of turns. The first coil is coupled to and interlaced with the fourth coil disposed on the second layer. The second coil is coupled to and interlaced with the third coil disposed on the second layer. |
US10748981B1 |
Signal routing in organic light-emitting diode displays
An organic light-emitting diode display may have thin-film transistor circuitry formed on a substrate. The substrate may have rounded corners, a first tail portion along a lower edge, and a second tail portion along an additional edge. A first plurality of signal paths for the display may be routed to the first tail portion and a second plurality of signal paths for the display may be routed to the second tail portion. The second tail portion may be formed within a pixel-free notched region of the substrate. One or more data lines, power supply lines, touch sensor signal lines, and other signal lines may be routed to the second tail portion. Each tail portion of the substrate may be planar or may be bent. Vertical data lines at the edge of the display may be coupled to data line extensions that are routed through the active area of the display. |
US10748979B2 |
Display device
A display device may include a scan line, a data line, a power line, a substrate, a transistor, a light emitting device, a light shielding member, and a shielding layer. The scan line extends in a first direction and may transfer a scan signal. The data line extends in a second direction and may transfer a data signal. The power line is spaced from the data line and may transfer a driving voltage. The light emitting device is electrically connected to the transistor. The light shielding member is disposed between the substrate and the transistor. The shielding layer is electrically connected to the power line. The light shielding member includes a body member and a bridge member. The body member overlaps the transistor. The bridge member extends in the second direction from the body member and overlaps the shielding layer. |
US10748975B2 |
Display device
A display device includes a substrate with a first subpixel area and a second subpixel area adjacent to one side of the first subpixel area; an insulating layer on the substrate having a first recessed portion on the first subpixel area, a second recessed portion on the second subpixel area and a convex portion between the first recessed portion and the second recessed portion; a reflective electrode on the insulating layer including first and second reflective electrodes on the first and second recessed portions, respectively; a first electrode including a first sub electrode on the first reflective electrode and a second sub electrode on the second reflective electrode; an organic light emitting layer on the first electrode; a bank provided between the first subpixel area and the second subpixel area while covering an end of the first electrode; a second electrode on the organic light emitting layer; and a light path change structure on the second electrode while being overlapping the bank. |
US10748972B2 |
Organic light-emitting display panel and organic light-emitting display device
The present disclosure provides an organic light-emitting display panel and a display device. The organic light-emitting display panel has display area including fingerprint recognition region and non-fingerprint recognition region; and non-display area surrounding the display area. The organic light-emitting display panel includes: a base substrate; organic light-emitting elements arranged in the display area, located on a side of the base substrate and having at least three different colors; and a fingerprint recognition unit arranged in the fingerprint recognition region. The organic light-emitting elements include first organic light-emitting element disposed in the fingerprint recognition region and second organic light-emitting element disposed in the non-fingerprint recognition region, which emit light of a same color. Each organic light-emitting element has a light-emitting region, and the light-emitting region of the first organic light-emitting element has an area S1 larger than an area S2 of the light-emitting region of the second organic light-emitting element. |
US10748964B2 |
Electronic device and method for fabricating the same
An electronic device and a method for fabricating the same are provided. An electronic device according to an implementation of the disclosed technology is an electronic device including a semiconductor memory, wherein the semiconductor memory includes: a plurality of first lines extending in a first direction; a plurality of second lines extending in a second direction that intersects with the first direction; a plurality of variable resistance elements disposed between the first lines and the second lines and located at intersections of the first lines and the second lines; and a plug connected to a first portion of each of the first lines, wherein the plug comprises a conductive layer and a material layer having a resistance value higher than that of the conductive layer. |
US10748962B2 |
Method and structure for forming MRAM device
A method of forming a bottom electrode for MRAM comprises: depositing a conductive material into a trench in a substrate and planarizing; depositing a selective cap on the conductive material; depositing a layer of high stress material on upper surfaces of the substrate and the cap; patterning the high stress material to remove the layer of high stress material on the upper surfaces of the substrate and leaving the layer of high stress material on the upper surfaces of the cap; depositing a layer of dielectric material on the upper surfaces of the substrate and on upper surfaces of the high stress material on the cap; planarizing the layer of dielectric material; and forming a magnetic tunnel junction stack on the dielectric material over the conductive material. |
US10748959B2 |
Fabricating method for display apparatus
A fabricating method for a display apparatus is provided. The fabricating method for the display apparatus includes the following steps. An array substrate having a first electrode and a second electrode is provided. A first light emitting diode is heated to soften a first bump between the first electrode and the first light emitting diode, the first light emitting diode is bonded onto the first electrode by the first bump. The first light emitting diode and a second light emitting diode are heated to soften the first bump and a second bump between the second electrode and the second light emitting diode, the second light emitting diode is bonded onto the second electrode by the second bump, and the first light emitting diode and the second light emitting diode are pressed. |
US10748958B2 |
Solid-state imaging device, drive method thereof and electronic apparatus
A solid-state imaging device includes: plural photodiodes formed in different depths in a unit pixel area of a substrate; and plural vertical transistors formed in the depth direction from one face side of the substrate so that gate portions for reading signal charges obtained by photoelectric conversion in the plural photodiodes are formed in depths corresponding to the respective photodiodes. |
US10748957B1 |
Method of manufacturing a curved semiconductor die
A method of manufacturing a curved semiconductor die includes: designing a semiconductor die design by conducting finite element analysis of an initial semiconductor die design having a partial spherical curvature, the initial semiconductor die design including a shape of a semiconductor die and a location and shape of a slit in the semiconductor die; when a size of a gap at the slit in the curved semiconductor die is outside a tolerance, modifying the initial semiconductor die design to provide a revised semiconductor die design and conducting another finite element analysis thereof; when the size of the gap at the slit in the curved semiconductor die is within the tolerance, manufacturing a microfabrication mask utilizing the initial semiconductor die design or the revised semiconductor die design having the size of the gap within the tolerance; forming a semiconductor die by utilizing the microfabrication mask; and curving the semiconductor die. |
US10748954B2 |
Solid-state image pickup device
A solid-state image pickup device is provided which can inhibit degradation of image quality which may occur when a global electronic shutter operation is performed. A gate drive line for a first transistor of gate drive lines for pixel transistors is positioned in proximity to a converting unit. |
US10748952B2 |
Sensor chip and electronic apparatus
A time of flight sensor is disclosed. In one example, it includes a pixel array with pixels arranged in rows and columns. A global control circuit disposed along a first side of the pixel array outputs a global control signal to the pixels. The global control circuit has a clock tree structure that includes buffer circuits and driving circuits. A rolling control circuit disposed along a second side of the pixel array outputs a rolling control signal to the pixels. A column circuit with analog-to-digital converters is coupled to the pixels. |
US10748946B2 |
Lens module
A lens module includes a circuit board, a hollow mounting bracket, a photosensitive chip, a lens base, and a lens. The photosensitive chip is mounted within the hollow mounting bracket on a surface of the circuit board. The lens base is mounted on a surface of the mounting bracket opposite to the circuit board. The lens base axially defines a through hole. The lens is mounted within the lens base. The lens base includes a screw thread formed along an inner wall of the through hole. The lens includes mating threads formed along a periphery of the lens contacting the inner wall of the through hole. The mating threads define at least one thread slot which defines a gap with the screw threads of the inner wall of the through hole. |
US10748943B2 |
Display device, manufacturing method thereof, and electrode forming method
A display device includes: a substrate; first and second transistors provided on the substrate to be spaced apart from each other, the first and second transistors being electrically connected to each other; and a display unit electrically connected to the first transistor, wherein the first transistor includes a first semiconductor layer including crystalline silicon, a first gate electrode, a first source electrode, and a first drain electrode, wherein the second transistor includes a second semiconductor layer including an oxide semiconductor, a second gate electrode, a second source electrode, and a second drain electrode, wherein each of the second source electrode and the second drain electrode includes a first layer that includes molybdenum and is provided on the second semiconductor layer, a second layer that includes aluminum and is provided on the first layer, and a third layer that includes titanium and is provided on the second layer. |
US10748941B2 |
Light valve structure, manufacturing method therefor, operating method therefor, array substrate and electronic device
A light valve structure, a manufacturing method therefor, an operating method therefor, an array substrate and an electronic device are provided. The light valve structure includes a base substrate, a light-transmissive part and a light-shielding part. The light-transmissive part is disposed on the base substrate and light-transmissive, and it at least includes a first electrode. The light-shielding part is disposed on the light-transmissive part; a first end of the light-shielding part is fixed relative to the light-transmissive part; and the light-shielding part includes a base layer and a second electrode layered on the base layer. The light-shielding part is configured to be curled so as to be away from the light-transmissive part, and/or the light-shielding part is configured to be spread due to the mutual adsorption between the first electrode and the second electrode, so as to be superimposed on the light-transmissive part. |
US10748940B2 |
TFT substrate having data lines as touch driving electrode and common electrodes as touch sensing electrode and touch display panel using same
A TFT substrate for a touch display panel of reduced thickness defines a display area and a surrounding non-display area. The TFT substrate includes a first conductive layer on the substrate and a second conductive layer on the first conductive layer. In the display area, the first conductive layer includes data lines and the second conductive layer includes common electrodes. Each common electrode extends as a strip along a first direction. Each data line extends along a second direction. The first direction intersects the second direction. Each data line crosses the common electrodes. Each data line functions as a touch driving electrode and each common electrode functions as a touch sensing electrode. |
US10748939B2 |
Semiconductor device formed by oxide semiconductor and method for manufacturing same
A semiconductor device (100A) is provided with: a gate electrode (3); an oxide semiconductor layer (5); a thin-film transistor (101) including a gate insulating layer (4), a source electrode (7S), and a drain electrode (7D); an inter-layer insulating layer (11) arranged so as to cover the thin-film transistor (101) and come into contact with a channel area (5c) of the thin-film transistor (101); and a transparent electroconductive layer (19) arranged on the inter-layer insulating layer (11), the source electrode (7S) and the drain electrode (7D) each having a copper layer (7a), and the device being further provided with a copper oxide film (8) arranged between the source and drain electrodes and the inter-layer insulating layer (11). The inter-layer insulating layer (11) covers the drain electrode (7D) with the copper oxide film (8) interposed therebetween. The transparent electroconductive layer (19) is directly connected to the copper layer (7a) of the drain electrode (7D) inside a contact hole (CH1) formed in the inter-layer insulating layer (11), without the copper oxide film (8) being interposed therebetween. |
US10748938B2 |
Array substrate, method of manufacturing the same and display device
an array substrate, a method of manufacturing the array substrate, and a display device are provided. The array substrate includes: a base substrate; a first thin film transistor and a second thin film transistor on the base substrate, wherein the first thin film transistor comprises a first active layer, the second thin film transistor comprises a second active layer, and the second active layer is on a side of the first active layer away from the base substrate; and an interlayer dielectric layer and a first buffer layer between the first active layer and the second active layer, wherein the interlayer dielectric layer is capable of supplying hydrogen and the first buffer layer is capable of blocking hydrogen. |
US10748931B2 |
Integrated assemblies having ferroelectric transistors with body regions coupled to carrier reservoirs
Some embodiments include an integrated assembly having a ferroelectric transistor body region between a first comparative digit line and a second comparative digit line. A carrier-reservoir structure is coupled with the ferroelectric transistor body region through an extension that passes along a side of the first comparative digit line. Some embodiments include an integrated assembly having a conductive structure over a carrier-reservoir structure. A bottom of the conductive structure is spaced from the carrier-reservoir structure by an insulative region. A ferroelectric transistor is over the conductive structure. The ferroelectric transistor has a bottom source/drain region over the conductive structure, has a body region over the bottom source/drain region, and has a top source/drain region over the body region. An extension extends upwardly from the carrier-reservoir structure, along a side of the conductive structure, and to a bottom of the body region. Some embodiments include methods of forming integrated assemblies. |
US10748930B2 |
Multi-level ferroelectric memory device and method of manufacturing the same
A ferroelectric memory device may include a semiconductor substrate, a plurality of ferroelectric layers, a source, a drain and a gate. The semiconductor substrate may have a recess. The ferroelectric layers may be formed in the recess. The source may be arranged at a first side of the recess. The drain may be arranged at a second side of the recess opposite to the first side. The gate may be arranged on the ferroelectric layers. The ferroelectric layers may be polarized by different electric fields. |
US10748927B1 |
Three-dimensional memory device with drain-select-level isolation structures and method of making the same
A three-dimensional memory device includes an alternating stack of insulating layers and electrically conductive layers located over a substrate, first memory opening fill structures extending through the alternating stack, where each of the first memory opening fill structures includes a respective first drain region, a respective first memory film, a respective first vertical semiconductor channel contacting an inner sidewall of the respective first memory film, and a respective first dielectric core, and a drain-select-level isolation structure having a pair of straight lengthwise sidewalls that extend along a first horizontal direction and contact straight sidewalls of the first memory opening fill structures. Each first vertical semiconductor channel includes a tubular section that underlies a horizontal plane including a bottom surface of the drain-select-level isolation structure and a semi-tubular section overlying the tubular section. |
US10748921B2 |
Integrated assemblies which include stacked memory decks, and methods of forming integrated assemblies
Some embodiments include a method of forming stacked memory decks. A first deck has first memory cells arranged in first tiers disposed one atop another, and has a first channel-material pillar extending through the first tiers. An inter-deck structure is over the first deck. The inter-deck structure includes an insulative expanse, and a region extending through the insulative expanse and directly over the first channel-material pillar. The region includes an etch-stop structure. A second deck is formed over the inter-deck structure. The second deck has second memory cells arranged in second tiers disposed one atop another. An opening is formed to extend through the second tiers and to the etch-stop structure. The opening is subsequently extended through the etch-stop structure. A second channel-material pillar is formed within the opening and is coupled to the first channel-material pillar. Some embodiments include integrated assemblies. |
US10748920B2 |
Semiconductor memory device
According to one embodiment, a semiconductor memory device includes a plurality of electrode films, a semiconductor member, a tunneling insulating film, a charge storage member, and a blocking insulating film. The plurality of electrode films are arranged to be separated from each other along a first direction. The semiconductor member extends in the first direction. The tunneling insulating film is provided between the semiconductor member and the electrode films. The charge storage member is provided between the tunneling insulating film and the electrode films. The blocking insulating film is provided between the charge storage member and the electrode films. The blocking insulating film includes a first film contacting the charge storage film and including carbon-containing silicon oxide, and a second film contacting the electrode films and including hafnium oxide or aluminum oxide. |
US10748917B2 |
Semiconductor memory component integrating a nano-battery, semiconductor device including such a component and method using such a device
A semiconductor component includes a first electrode, designated flat electrode, defining a plane; a second electrode, designated active electrode, separated from the first electrode by an electrolyte layer; a pillar, designated vertical pillar, extending essentially along an axis perpendicular to the plane defined by the flat electrode, the pillar including a third electrode, designated vertical electrode and an information storage layer, the information storage layer covering a surface of the vertical electrode; the flat electrode and the vertical pillar being laid out so as to form a memory point. In addition, the materials of the active electrode and the electrolyte layer are chosen so as to form an energy storage zone with the flat electrode. |
US10748911B2 |
Integrated circuit for low power SRAM
An integrated circuit structure includes a semiconductor substrate, an active area, a gate electrode, and a butted contact. The active area is oriented in a first direction and has at least one tooth portion extending in a second direction in the semiconductor substrate. The gate electrode overlies the active area and extends in the second direction. The butted contact has a first portion above the gate electrode and a second portion above the active area. A portion of the second portion of the butted contact lands on the tooth portion. |
US10748906B2 |
Semiconductor device and method of fabricating the same
Provided are a semiconductor device and a method of fabricating the same. The semiconductor device may include a semiconductor substrate including a first region and a second region, a dummy separation pattern provided on the second region of the semiconductor substrate to have a recessed region at its upper portion, a first electrode provided on the first region of the semiconductor substrate, a dielectric layer covering the first electrode, a second electrode provided on the dielectric layer, and a remaining electrode pattern provided in the recessed region. The second electrode and the remaining electrode pattern may be formed of a same material. |
US10748905B2 |
Semiconductor devices and methods of forming the same
Semiconductor devices are provided. A semiconductor device includes a substrate, and a source/drain region in the substrate. Moreover, the semiconductor device includes a gate structure in a recess in the substrate. The gate structure includes a liner that includes a first portion and a second portion on the first portion. The second portion is closer, than the first portion, to the source/drain region. The second portion includes a metal alloy. Methods of forming a semiconductor device are also provided. |
US10748901B2 |
Interlayer via contacts for monolithic three-dimensional semiconductor integrated circuit devices
Devices and methods are provided for fabricating metallic interlayer via contacts within source/drain regions of field-effect transistor devices of a monolithic three-dimensional semiconductor integrated circuit device. For example, a semiconductor integrated circuit device includes a first device layer and a second device layer disposed on the first device layer. The first device layer includes a metallic interconnect structure formed in an insulating layer. The second device layer includes first and second field-effect transistor devices having respective first and second gate structures. A metallic interlayer via contact is disposed between the first and second gate structures in contact with the metallic interconnect structure of the first device layer, wherein a width of the metallic interlayer via contact is defined by a spacing between adjacent sidewalls of the first and second gate structures. Epitaxial source/drain layers for the first and second field-effect transistor devices are embedded within the metallic interlayer via contact. |
US10748897B2 |
Semiconductor device
A semiconductor device is provided, which includes a first and second multichannel active patterns spaced apart from one another and extending in a first direction. The semiconductor device also includes first and second gate structures on the first and second multichannel active patterns, extending in a second direction and including first and second gate insulating films, respectively. Sidewalls of the first multichannel active pattern include first portions in contact with the first gate insulating film, second portions not in contact with the first gate insulating film, third portions in contact with the second gate insulating film, and fourth portions not in contact with the second gate insulating film. Additionally, a height of the first portions of the first multichannel active pattern is greater than a height of the third portions of the first multichannel active pattern. |
US10748896B2 |
Method for fabricating semiconductor device including contact bars having narrower portions
A semiconductor device includes a first fin field effect transistor (FinFET) and a contact bar (source/drain (S/D) contact layer). The first FinFET includes a first fin structure extending in a first direction, a first gate structure extending in a second direction crossing the first direction, and a first S/D structure. The contact bar is disposed over the first S/D structure and extends in the second direction crossing the first S/D structure in plan view. The contact bar includes a first portion disposed over the first S/D structure and a second portion. The second portion overlaps no fin structure and no S/D structure. A width of the second portion in the first direction is smaller than a width of the first portion in the first direction in plan view. |
US10748895B2 |
Semiconductor arrangement and formation thereof
A semiconductor arrangement and method of forming the same are described. A semiconductor arrangement includes a first gate structure on a first side of an active area and a second gate structure on a second side of the active area, where the first gate structure and the second gate structure share the active area. A method of forming the semiconductor arrangement includes forming a deep implant of the active area before forming the first gate structure, and then forming a shallow implant of the active area. Forming the deep implant prior to forming the first gate structure alleviates the need for an etching process that degrades the first gate structure. The first gate structure thus has a desired configuration and is able to be formed closer to other gate structures to enhance device density. |
US10748892B2 |
Display apparatus
A display apparatus that can reduce defects caused by static electricity, includes a substrate unit that includes at least one organic insulating layer, at least one inorganic insulating layer, and a first conductive layer that includes doped amorphous silicon (a-Si) that is disposed between the at least one organic insulating layer and the at least one inorganic insulating layer; and a thin film transistor unit disposed on the substrate portion and that includes a thin film transistor. |
US10748889B2 |
Power grid and standard cell co-design structure and methods thereof
According to one general aspect, an apparatus may include a metal layer having a metal pitch between metal elements, and a gate electrode layer having a gate pitch between gate electrode elements, wherein the gate electrode pitch is a ratio of the metal pitch. The apparatus may include at least two power rails coupled, by via staples, with the metal layer, wherein the via staples at least partially overlap one or more of the gate electrode elements. The apparatus may include even and odd pluralities of standard cells, each respectively located in even/odd placement sites wherein portions of the standard cells that carry signals within the metal layer do not connect to the via staples. |
US10748887B2 |
Method for designing vehicle controller-only semiconductor based on die and vehicle controller-only semiconductor by the same
The present invention relates to a method for designing a die-based vehicle controller-only semiconductor and a vehicle controller-only semiconductor manufactured by the same, and breaks the conventional semiconductor process to design and manufacture a novel conceptual vehicle controller-only semiconductor, EIP (ECU in Package), through a fusion of a new semiconductor process technique with a controller system technique, thereby obtaining an effect of capable of implementing a high performance/high quality semiconductor in micro-miniature size/ultra-light weight in a short time period. |
US10748885B2 |
Semiconductor device and method for manufacturing semiconductor device
According to one embodiment, a semiconductor device comprises a first terminal on a first surface of a substrate and a first semiconductor chip on the first surface of the substrate and including a second terminal. A first connector electrically connects the first terminal to the second terminal. A second semiconductor chip is on the first surface of the substrate. An adhesive resin is between the second semiconductor chip and the first surface. A portion of the first connector is embedded in the adhesive resin. The first semiconductor chip is spaced from the adhesive resin in a direction parallel to the first surface. |
US10748883B2 |
Encapsulation cover for an electronic package and method of fabrication
An encapsulation cover for an electronic package includes a cover body having a frontal wall provided with at least one optical element allowing light to pass through. The optical element is inserted into the encapsulation cover by overmolding into a through-passage of the frontal wall. A front face of the optical element is set back with respect to a front face of the frontal wall. The process for fabricating the encapsulation cover includes forming a stack of a sacrificial spacer on top of an optical element, with the stack placed into a cavity of a mold. |
US10748882B2 |
Structure and formation method for chip package
Structures and formation methods of a chip package are provided. The chip package includes a semiconductor die and a package layer partially or completely encapsulating the semiconductor die. The chip package also includes a conductive feature penetrating through the package layer. The chip package further includes an interfacial layer the interfacial layer continuously surrounds the conductive feature. The interfacial layer is between the conductive feature and the package layer, and the interfacial layer is made of a metal oxide material. |
US10748876B2 |
Input output for an integrated circuit
A three-dimensional integrated circuit has a plurality of layers disposed in a stacked relationship. Logic circuitry is embodied in a first layer of the three-dimensional integrated circuit. An input output circuit is electrically coupled to the logic circuitry and has a plurality of transistors embodied in at least two layers of the three-dimensional integrated circuit. The input output circuit has first and second input output circuitry, wherein the first input output circuitry operates faster than the second input output circuitry. |
US10748873B2 |
Substrates, assembles, and techniques to enable multi-chip flip chip packages
Substrates, assemblies, and techniques for enabling multi-chip flip chip packages are disclosed herein. For example, in some embodiments, a package substrate may include a first side face; a second side face, wherein the second side face is opposite to the first side face along an axis; a portion of insulating material extending from the first side face to the second side face; wherein a cross-section of the portion of insulating material taken perpendicular to the axis has a stairstep profile. Solder pads may be disposed at base and step surfaces of the portion of insulating material. One or more dies may be coupled to the package substrate (e.g., to form a multi-chip flip chip package), and in some embodiments, additional IC packages may be coupled to the package substrate. In some embodiments, the package substrate may be reciprocally symmetric or approximately reciprocally symmetric. |
US10748870B2 |
Tri-layer COWOS structure
A package includes an Integrated Voltage Regulator (IVR) die, wherein the IVR die includes metal pillars at a top surface of the first IVR die. The package further includes a first encapsulating material encapsulating the first IVR die therein, wherein the first encapsulating material has a top surface coplanar with top surfaces of the metal pillars. A plurality of redistribution lines is over the first encapsulating material and the IVR die. The plurality of redistribution lines is electrically coupled to the metal pillars. A core chip overlaps and is bonded to the plurality of redistribution lines. A second encapsulating material encapsulates the core chip therein, wherein edges of the first encapsulating material and respective edges of the second encapsulating material are vertically aligned to each other. An interposer or a package substrate is underlying and bonded to the IVR die. |
US10748869B2 |
Protective layer for contact pads in fan-out interconnect structure and method of forming same
A method includes providing a die having a contact pad on a top surface and forming a conductive protective layer over the die and covering the contact pad. A molding compound is formed over the die and the conductive protective layer. The conductive protective layer is exposed using a laser drilling process. A redistribution layer (RDL) is formed over the die. The RDL is electrically connected to the contact pad through the conductive protective layer. |
US10748866B2 |
Thermal bonding sheet, thermal bonding sheet with dicing tape, bonded body production method, and power semiconductor device
A thermal bonding sheet includes a pre-sintering layer containing copper particles and polycarbonate. |
US10748865B2 |
Copper paste for joining, method for manufacturing joined body, and method for manufacturing semiconductor device
Provided is a copper paste for joining including copper particles, second particles including a metal element other than copper, and a dispersion medium, in which the copper particles include submicro copper particles having a volume-average particle diameter of 0.12 μm or more and 0.8 μm or less and micro copper particles having a volume-average particle diameter of 2 μm or more and 50 μm or less, a sum of a content of the submicro copper particles and a content of the micro copper particles is 80% by mass or more of a sum of masses of the copper particles and the second particles, the content of the submicro copper particles is 30% by mass or more and 90% by mass or less of a sum of a mass of the submicro copper particles and a mass of the micro copper particles, and a content of the second particles is 0.01% by mass or more and 10% by mass or less of the sum of the masses of the copper particles and the second particles. |
US10748864B2 |
Bonded semiconductor package and related methods
Implementations of a semiconductor package may include: a first wafer having a first surface and a first set of blade interconnects, the first set of blade interconnects extending from the first surface. The package may include a second wafer having a first surface and a second set of blade interconnects, the second set of blade interconnects extending from the first surface and oriented substantially perpendicularly to a direction of orientation of the first set of blade interconnects. The first set of blade interconnects may be hybrid bonded to the second set of blade interconnects at a plurality of points of intersection between the first and second set of blade interconnects. The plurality of points of intersection may be located along a length of each blade interconnect of the first set of blade interconnects, and along the length of each blade interconnect of the second set of blade interconnects. |
US10748862B2 |
TFT substrate, scanning antenna comprising TFT substrate, and TFT substrate production method
A TFT substrate includes a source-gate connection section in a non-transmission and/or reception region. The source-gate connection section includes a source lower connection wiring line included in a gate metal layer, a first opening formed in a gate insulating layer and at least reaching the source lower connection wiring line, a source bus line connection section included in a source metal layer and connected to a source bus line, a second opening formed in a first insulating layer and overlapping the first opening when viewed from a normal direction of a dielectric substrate, a third opening formed in the first insulating layer and at least reaching the source bus line connection section, a first connection section including at least one conductive layer formed between the first insulating layer and the second insulating layer, connected to the source lower connection wiring line within the first opening, and connected to the source bus line connection section within the third opening, a fourth opening formed in a second insulating layer and at least reaching the first connection section, and a second connection section included in an upper conductive layer and connected to the first connection section within the fourth opening. |
US10748858B2 |
High yield substrate assembly
High yield substrate assembly. In accordance with a first method embodiment, a plurality of piggyback substrates are attached to a carrier substrate. The edges of the plurality of the piggyback substrates are bonded to one another. The plurality of piggyback substrates are removed from the carrier substrate to form a substrate assembly. The substrate assembly is processed to produce a plurality of integrated circuit devices on the substrate assembly. The processing may use manufacturing equipment designed to process wafers larger than individual instances of the plurality of piggyback substrates. |
US10748855B2 |
Laminating device and method for fabricating semiconductor package using the same
A method of fabricating a semiconductor package using a laminating device is provided. The method includes placing a substrate on a substrate stand; providing a pressurizing unit which is expandable and includes a convex surface facing an upper surface of the substrate stand, on the substrate stand; injecting air into the pressurizing unit using a plate which is connected to the pressurizing unit; and supplying a film by a film supply unit which supplies the film between the substrate stand and the pressurizing unit, wherein the pressurizing unit attaches the film onto the substrate, while expanding. |
US10748853B2 |
Flexible display device
A flexible display device is disclosed. In one aspect, the display device includes a flexible display panel including a display substrate, wherein the display substrate includes an active area for pixel circuits, an inactive area adjacent to the active area and having a pad area including a plurality of pad terminals, and a thin film encapsulation layer covering the active area. The display device also includes a display driver electrically connected to the pad terminals and a plurality of driving terminals each having a rounding unit. A conductive unit is configured to electrically connect the pad terminals to the respective driving terminals. |
US10748851B1 |
Hybrid bonding using dummy bonding contacts and dummy interconnects
Embodiments of bonded semiconductor structures and fabrication methods thereof are disclosed. In an example, a semiconductor device includes a first and a second semiconductor structures. The first semiconductor structure includes a first interconnect layer including first interconnects. At least one first interconnect is a first dummy interconnect. The first semiconductor structure further includes a first bonding layer including first bonding contacts. Each first interconnect is in contact with a respective first bonding contact. The second semiconductor structure includes a second interconnect layer including second interconnects. At least one second interconnect is a second dummy interconnect. The second semiconductor structure further includes a second bonding layer including second bonding contacts. Each second interconnect is in contact with a respective second bonding contact. The semiconductor device further includes a bonding interface between the first and second bonding layers. Each first bonding contact is in contact with a respective second bonding contact at the bonding interface. |
US10748846B2 |
Semiconductor device
A semiconductor device may include an insulating layer, a pad, a circuit, at least one first wiring, at least one second wiring, at least one third wiring, and a pad contact. The pad may be disposed on the insulating layer. The circuit may be disposed in the insulating layer. The circuit may be positioned below the pad. The first wiring may be disposed between the pad and the circuit. The second wiring may be disposed between the pad and the first wiring. The third wiring may be disposed between the pad and the second wiring. The pad contact may be configured to directly connect the pad to the circuit. |
US10748843B2 |
Semiconductor substrate including embedded component and method of manufacturing the same
A semiconductor substrate includes a multi-layered structure, a component and a first conductive via. The multi-layered structure includes a plurality of dielectric layers and a plurality of patterned conductive layers. A topmost patterned conductive layer of the patterned conductive layers is embedded in a topmost dielectric layer of the dielectric layers. The component is embedded in the multi-layered structure. The first conductive via is electrically connected to the component and one of the patterned conductive layers. At least one of the patterned conductive layers is located at a depth spanning between a top surface of the passive layer and a bottom surface of the component |
US10748842B2 |
Package substrates with magnetic build-up layers
The present disclosure is directed to systems and methods for improving the impedance matching of semiconductor package substrates by incorporating one or more magnetic build-up layers proximate relatively large diameter, relatively high capacitance, conductive pads formed on the lower surface of the semiconductor package substrate. The one or more magnetic layers may be formed using a magnetic build-up material deposited on the lower surface of the semiconductor package substrate. Vias conductively coupling the conductive pads to bump pads on the upper surface of the semiconductor package substrate pass through and are at least partially surrounded by the magnetic build-up material. |
US10748834B2 |
Stack type power module and method of manufacturing the same
A stack type power module includes: a power semiconductor having a gate and an emitter, each of which has a pad shape, adjacent to each other on one surface of the power semiconductor, and a collector having a pad shape on another surface of the power semiconductor; an upper substrate layer stacked on an upper portion of the power semiconductor, and electrically connected to a metal layer that has a lower surface with which the collector is in contact; and a lower substrate layer stacked on a lower portion of the power semiconductor, and electrically connected to the metal layer that has an upper surface with which each of the gate and the emitter is in contact. |
US10748832B2 |
Heat sink for a semiconductor chip device
A heat sink for a semiconductor chip device includes cavities in a lower surface thereof for receiving electrical components on a top surface of the semiconductor chip, and a pedestal extending through an opening in the semiconductor chip for contacting electrical components on a bottom surface of the semiconductor chip. A lid may also be provided on the bottom surface of the semiconductor chip for protecting the electrical components and for heat sinking the electrical components to an adjacent device or printed circuit board. |
US10748823B2 |
Embedded etch rate reference layer for enhanced etch time precision
An exemplary semiconductor wafer includes a lower sublayer of a first organic planarization layer (OPL) material; an upper sublayer of a second OPL material deposited onto the lower sublayer; and a detectable interface between the lower sublayer and the upper sublayer. The exemplary wafer is fabricated by depositing the lower sublayer; curing the lower sublayer; and after curing the lower sublayer, depositing the upper sublayer directly onto the lower sublayer. |
US10748817B2 |
Semiconductor device and fabrication method thereof
A fabrication method for a semiconductor device is provided. The method includes: forming a semiconductor substrate including a first region and a second region; forming intrinsic fins protruding from the first region of the semiconductor substrate, and dummy fins protruding from the second region of the semiconductor substrate; forming a first isolation layer to cover a portion of sidewalls of the dummy fins and a portion of sidewalls of the intrinsic fins; forming a protection layer on surfaces of the intrinsic fins, to cover a portion of the intrinsic fins above a surface of the first isolation layer; removing the dummy fins and a portion of the first isolation layer in the second region; and forming a second isolation layer on the second region of the semiconductor substrate. |
US10748815B2 |
Three-dimensional semiconductor device and method of manufacturing same
The present disclosure relates to three dimensional (3D) transistor structures and methods of forming the same. In an aspect, a method comprises providing a vertical stack of alternating layers of channel material and dummy material, forming a first set of fins on the stack, and forming a second fin above the first set of fins, the second fin extending orthogonal to the first set of fins. Further, the first set of fins is cut into a set of fin portions, using the second fin and a first sidewall spacers as an etch mask, and second sidewall spacers are formed on the second fin. These structures are used to form a 3D structure of channel regions and source/drain regions forming transistor structures. Advantageously, the 3D semiconductor structure is manufactured using a relatively low number of mask layers per transistor which decreases manufacturing costs. |
US10748814B2 |
Fabrication method of semiconductor device by removing sacrificial layer on gate structures
A semiconductor device and fabrication method thereof are provided. The method includes: providing a base substrate with first gate structures on the base substrate; forming a spacer covering sidewalls of each first gate structure; forming sacrificial layers on sides of each first gate structure to cover corresponding spacers; forming a bottom dielectric layer covering sidewalls of the sacrificial layers; after forming the bottom dielectric layer, removing the sacrificial layers by etching to form first openings between the bottom dielectric layer and the spacer; and forming a plug in each first opening. |
US10748800B2 |
Chip bonding apparatus and method
A chip bonding device is disclosed, including a first motion stage (110), a second motion stage (200), a chip pickup element (160), a transfer carrier (170), a chip adjustment system (1000), a bonding stage (420) and a control system (500). A chip bonding method is also disclosed, in which a set of chips are temporarily retained on the transfer carrier (170) and their positions on the transfer carrier (170) are accurately adjusted by using the chip adjustment system (1000), followed by bonding the chips on the transfer carrier (170) simultaneously onto the substrate (430). With this batch bonding approach, flip-chips can be bonded with greatly enhanced efficiency. Moreover, picking up and bonding chips in batches can balance times for chip picking up, fine chip position tuning and chip bonding, thereby ensuring high bonding accuracy while increasing the throughput. |
US10748798B1 |
Wireless camera wafer for vacuum chamber diagnostics
In some embodiments, the present disclosure relates to a process tool which includes a housing that defines a vacuum chamber. A wafer chuck is in the housing and a carrier wafer is on the wafer chuck. A camera is integrated on the wafer chuck such that the camera faces a top of the housing. The camera is configured to wirelessly capture images of an object of interest within the housing. Outside of the housing is a wireless receiver. The wireless receiver is configured to receive the images from the camera while the vacuum chamber is sealed. |
US10748795B2 |
Substrate processing method and substrate processing apparatus
A substrate processing apparatus including a plurality of baking chambers stacked in a prescribed direction, each baking chamber carrying out heat treatment of a substrate in its interior, a processing unit having a liquid processing chamber separate from the baking chambers and carrying out liquid processing of the substrate using the processing liquid, and an enclosing isolating space that encloses the sides of the plurality of baking chambers and isolates the baking chambers from the surrounding area. |
US10748794B1 |
Apparatus for transferring electronic devices
An apparatus for transferring electronic components, comprising a main rotary turret comprising a plurality of turret pick heads for conveying electronic components to multiple positions adjacent to the main rotary turret; a first rotary mechanism configured for picking up electronic components from a supply of electronic components, the first rotary mechanism being in operative communication with the main rotary turret at a first transfer position; and a second rotary mechanism that is in operative communication with the main rotary turret at a second transfer position, and which is further in operative communication with the first rotary mechanism at a third transfer position. |
US10748792B2 |
Method and system for mass arrangement of micro-component devices
A method for mass arrangement of micro-component devices includes the following process stages: disposing the micro-component devices to float on a liquid suspending medium, wherein the micro-component devices are spaced apart from each other with a larger initial gap along a first direction and along a second direction; using electromagnetic force to actuate the floating micro-component devices to move closer so that the micro-component devices become spaced apart from each other with a smaller specified target gap along the first and the second directions; and transferring the arranged micro-component devices with the target gap on a carrier substrate. A system for arranging the micro-component devices is also disclosed to implement the method. Therefore, a precisely arranged array of the micro-component devices can be formed on a target application substrate. |
US10748782B2 |
Method of manufacturing semiconductor device
There is provided a method of manufacturing a semiconductor device by processing a substrate, which includes: embedding a polymer having a urea bond in a recess formed in the substrate by supplying a material for polymerization from above a sacrificial film to the substrate and forming a polymer film made of the polymer having the urea bond, wherein a surface of the substrate is covered with the sacrificial film, the recess including an opening of the sacrificial film that is formed by a patterning; removing the polymer film formed on the sacrificial film while leaving the polymer embedded in the recess; removing the sacrificial film in a state in which the polymer is embedded in the recess; and subsequently, removing the polymer embedded in the recess. |
US10748781B2 |
Catalyst-assisted chemical etching with a vapor-phase etchant
A method of catalyst-assisted chemical etching with a vapor-phase etchant has been developed. In one approach, a semiconductor substrate including a patterned titanium nitride layer thereon is heated, and an oxidant and an acid are evaporated to form a vapor-phase etchant comprising an oxidant vapor and an acid vapor. The semiconductor substrate and the patterned titanium nitride layer are exposed to the vapor-phase etchant during the heating of the semiconductor substrate. The vapor-phase etchant diffuses through the patterned titanium nitride layer, and titanium nitride-covered regions of the semiconductor substrate are etched. Thus, an etched semiconductor structure is formed. |
US10748780B2 |
Manufacturing method of silicon carbide semiconductor device
In a manufacturing method of a silicon carbide semiconductor device, a semiconductor substrate made of silicon carbide and on which a base layer is formed is prepared, a trench is provided in the base layer, a silicon carbide layer is epitaxially formed on a surface of the base layer while filling the trench with the silicon carbide layer, the sacrificial layer is planarized by reflow after forming the sacrificial layer, and the silicon carbide layer is etched back together with the planarized sacrificial layer by dry etching under an etching condition in which an etching selectivity of the silicon carbide layer to the sacrificial layer is 1. |
US10748777B2 |
Delay-etching member and display panel etching method by means of same
Provided is an etching delay element for forming a protruding portion at an object by shielding part of the object against etching, the etching delay element being attached to a non-etching section of the object corresponding to the protruding portion and being made of a material that is etchable by an etchant. |
US10748774B2 |
Semiconductor device and manufacturing method thereof
A method for manufacturing a semiconductor device includes forming a first high-k dielectric layer on a semiconductor substrate; forming a second high-k dielectric layer on the first high-k dielectric layer, in which the second high-k dielectric layer includes a material different from a material of the first high-k dielectric layer; annealing the first and second high-k dielectric layers, such that the first and second high-k dielectric layers are inter-diffused; and forming a gate electrode over the second high-k dielectric layer. |
US10748771B2 |
Apparatus for processing a substrate and display device by using the same
Disclosed herein is an apparatus for processing a substrate that forms a hole in a substrate while reducing a burr in the hole so that a module device can be inserted into the hole to reduce the thickness of a display device, and the display device using the apparatus. The apparatus for processing the substrate comprises a body configured to operably be rotatable, and a cylindrical cutting tip at an end of the body. The bottom surface of the cutting tip is in an acute angle with respect to a contact surface of the substrate to allow formation of a groove at the substrate. |
US10748770B2 |
Device and method for bonding of substrates
A method for bonding a first substrate with a second substrate at respective contact faces of the substrates with the following steps: holding the first substrate to a first sample holder surface of a first sample holder with a holding force FH1 and holding the second substrate to a second sample holder surface of a second sample holder with a holding force FH2; contacting the contact faces at a bond initiation point and heating at least the second sample holder surface to a heating temperature TH; bonding of the first substrate with the second substrate along a bonding wave running from the bond initiation point to the side edges of the substrates, wherein the heating temperature TH is reduced at the second sample holder surface during the bonding. |
US10748768B2 |
Method for mandrel and spacer patterning
A method includes forming mandrel patterns over a substrate; depositing a spacer layer over the mandrel patterns and onto sidewalls of the mandrel patterns; trimming the spacer layer to reduce a thickness of the spacer layer along a pattern width direction; and etching the spacer layer to expose the mandrel patterns, resulting in a patterned spacer layer on the sidewalls of the mandrel patterns. The trimming of the spacer layer and the etching of the spacer layer are performed in separate processes. After the trimming of the spacer layer and the etching of the spacer layer, the method further includes removing the mandrel patterns. |
US10748766B2 |
Workpiece processing method
Based on the fact that a film thickness of a film formed in a film formation processing of repeatedly performing a first sequence varies according to a temperature of the surface on which the film is to be formed, the film formation processing is performed after the temperature of each region of the surface of the wafer is adjusted to reduce a deviation of a trench on the surface of the wafer, so that the film is very precisely formed on the inner surface of the trench while reducing the deviation of the trench on the surface of the wafer. When the trench width is narrower than a reference width, an etching processing of repeatedly performing a second sequence is performed in order to expand the trench width, so that the surface of the film provided in the inner surface of the trench is isotropically and uniformly etched. |
US10748763B2 |
Silicon carbide semiconductor substrate, method of manufacturing a silicon carbide semiconductor device, and silicon carbide semiconductor device
An n−-type epitaxial layer is grown on a front surface of the silicon carbide substrate by a CVD method in a mixed gas atmosphere containing a source gas, a carrier gas, a doping gas, an additive gas, and a gas containing vanadium. The doping gas is nitrogen gas; and the gas containing vanadium is vanadium tetrachloride gas. In the mixed gas atmosphere, the vanadium bonds with the nitrogen, producing vanadium nitride, whereby the nitrogen concentration in the mixed gas atmosphere substantially decreases. As a result, the nitrogen taken in by the n−-type epitaxial layer decreases and the n−-type epitaxial layer including nitrogen and vanadium as dopants is grown having a low impurity concentration. |
US10748761B2 |
Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
A semiconductor manufacturing apparatus includes at least one UV lamp provided at a position facing a surface of a semiconductor substrate arranged to irradiate the surface of the semiconductor substrate with UV light, and a shutter disposed between the surface of the semiconductor substrate and the at least one UV lamp and configured to block UV light emitted by the UV lamp. The shutter includes a first movable part movable in a first direction being an in-plane direction parallel to the semiconductor substrate, and a second movable part movable in a second direction being an in-plane direction perpendicular to the first direction, the second movable part being movable independently of the first movable part. |
US10748755B2 |
Electrostatic trap
An electrostatic trap such as an orbitrap is disclosed, with an electrode structure. An electrostatic trapping field of the form U′(r, ϕ, z) is generated to trap ions within the trap so that they undergo isochronous oscillations. The trapping field U′(r, ϕ, z) is the result of a perturbation W to an ideal field U(r, ϕ, z) which, for example, is hyperlogarithmic in the case of an orbitrap. The perturbation W may be introduced in various ways, such as by distorting the geometry of the trap so that it no longer follows an equipotential of the ideal field U(r, ϕ, z), or by adding a distortion field (either electric or magnetic). The magnitude of the perturbation is such that at least some of the trapped ions have an absolute phase spread of more than zero but less than 2π radians over an ion detection period Tm. |
US10748754B2 |
Isotope mass spectrometer
An isotope mass spectrometer including: an electron cyclotron resonance ion source, a front-end analysis device, a back-end analysis device and an ion detector; where the electron cyclotron resonance ion source is connected with the front-end analysis device, and is used for generating ion beams of multivalent charge states; the front-end analysis device is connected with the back-end analysis device, selects and separates the ion beams, and receives ion beams of constant, microscale and trace levels; the back-end analysis device is connected with the ion detector, and is used for eliminating a background of an isotope to be measured at an ultratrace level; and the ion detector is used for receiving ion beams of the ultratrace level, and carrying out energy measurement and separation on the ion beams of the ultratrace level, so as to obtain the isotope to be measured at the ultratrace level. |
US10748752B2 |
Data independent acquisition with variable multiplexing degree
A method is disclosed for analyzing ions by mass spectrometry by repeatedly executing a data acquisition cycle to acquire product ion data across a precursor mass range of interest. The data acquisition cycle comprises performing, for each of a plurality of isolation windows having different mass ranges, steps of (i) isolating precursor ions within the mass range of the isolation window, (ii) fragmenting the isolated precursor ions to generate product ions, and (iii) mass analyzing the product ions. The step of mass analyzing the product ions includes concurrently mass analyzing product ions corresponding to N isolation windows, N being an integer greater than or equal to one, wherein N is changed at least once across the data acquisition cycle. |