Document | Document Title |
---|---|
US10663970B2 |
Vehicle control device mounted in vehicle and method for controlling the vehicle
A vehicle control device includes: a communication unit; a sensing unit configured to sense information associated with a vehicle; an output unit including at least one of a display unit or an audio output unit; at least one processor; and a computer-readable medium coupled to the at least one processor having stored thereon instructions which causes the at least one processor to perform operations including: receiving, through the communication unit, first information associated with charging stations from a first external device and second information associated with a driver of the vehicle from a second external device different from the first external device; receiving, through the sensing unit, third information associated with the vehicle; generating fourth information associated with charging of the vehicle based on at least one of the first information, the second information, or third information; and outputting, through the communication unit or the output unit, the fourth information. |
US10663968B2 |
Autonomous vehicle with trailer
An autonomous system for transporting an item from a first location to a second location includes an autonomous vehicle and a trailer. The autonomous vehicle includes a compartment, a vehicle sensor, a vehicle drive mechanism, a vehicle power source, and a vehicle control module for controlling the vehicle drive mechanism. The trailer includes a hitch for connecting the trailer to the autonomous vehicle, an electrical system, a trailer sensor in communication with the electrical system, a trailer power source in communication with the electrical system, a storage space, and a mechanism for autonomously transferring the item from the storage space into the compartment of the autonomous vehicle. The autonomous vehicle and trailer are configured to transport the item to the first location, the trailer is configured to transfer the item to the autonomous vehicle, and the autonomous vehicle is configured to transport the item to the second location. |
US10663966B2 |
Vehicle motion control system and method
A system for controlling a motion of a vehicle includes a memory to store a set of analytical functions corresponding to a set of patterns of elementary paths. Each pattern represents a continuous path and each analytical function is determined for a corresponding pattern to provide an analytical solution for input states of the vehicle defining a continuous path connecting the input states by a sequential compositions of the elementary paths following the corresponding pattern. The system includes a path planner to select from the memory, in response to receiving an initial state and a target state of the vehicle, an analytical function corresponding to a minimum cost of the continuous curvature path connecting the initial state with the target state and to analytically determine parameters of the continuous curvature path using the selected analytical function and a controller to control the motion of the vehicle according to the parameters of the continuous curvature path. |
US10663965B2 |
Permissions for partially autonomous vehicle operation
A vehicle system includes an autonomous mode controller and a processor. The autonomous mode controller is programmed to control a host vehicle in a partially autonomous mode. The processor is programmed to identify a driver, determine whether the driver is authorized to operate the host vehicle in the partially autonomous mode, and disable the partially autonomous mode if the driver is not authorized to operate the host vehicle in the partially autonomous mode. |
US10663960B2 |
System and method for controlling operational facets of a compressor from a remote location
Operational facets of a compressor are controlled from a remotely-located computer. Data from the compressor is automatically collected at a first data store every first time increment of a first time period. Portions of the data from the first data store are automatically collected at a second data store every second time increment of each first time period. The second time increment is greater than the first time increment, and the portions of the data are collected for a second time period which is greater than the first time period. Successful verification of user authentication data collected at the computer causes automatic generation of an image of application icons at the computer to enable the computer as an input device for controlling the compressor and selections of routines available at an analytics visualization generator that uses data from the second data store. |
US10663959B2 |
Smart HVAC manifold system
The smart HVAC manifold system for servicing air conditioning systems is designed to dynamically manage the data acquisition process and to measure and calculate the performance indicators and output as the load conditions and or equipment operation change taking into account variables in the installation that can impact performance. Both visually and by a very specific data set the performance of the equipment and the installation can quickly be assessed and specific problems identified along with suggestions of typical faults or problems that may need addressed by the technician.The smart HVAC manifold system provides a means of quickly and electronically handling the manual data acquisition process which would include component and or system model and serial numbers, equipment location (GPS tagging), customer name, environmental conditions that effect performance and performance measurement (weather data and elevation), and supports photo, voice and text documentation. These features streamline data acquisition, allow remote support, and minimizing transcription errors and preventing data-gaming when servicing equipment, commissioning or retro commissioning the system. |
US10663952B2 |
Method and computer system to consistently control a set of actuators
A method for transmitting control commands in a computer system, which includes components at least in the form of nodes, actuators and communication systems, wherein the control commands are communicated over the communication systems from the nodes to the actuators, and wherein one or more of the components may fail to operate according their specification. For consistently accepting control commands at the actuators, the nodes and their control commands are assigned priorities, wherein a node and its control commands have the same priority, wherein at least two priorities are used, wherein a high priority node produces high priority control commands and a low priority node produces low priority control commands, and wherein a high priority node is configured to communicate its control commands over at least two communication systems to the actuators and a low priority node is configured to communicate its low priority control commands over at least one communication system to the actuators. An actuator accepts the high priority control commands from the high priority node as long as it receives said high priority control commands on any one of the communication systems, and in this first case, it discards the low priority control commands, and stops to accept said high priority control commands in case said actuator does not receive said high priority control commands from any of the communication systems for a configurable duration, and in the second case, the actuator starts to accept low priority control commands. |
US10663950B2 |
Control system for controlling operation of a numerically controlled machine tool, and back-end and front-end control devices for use in such system
The present invention relates to a control system for controlling operation of a numerically controlled machine tool (100), the system comprising a back-end control device (300) and a front-end control device (200) communicably connected to the back-end control device (300). The back-end control device (300) comprises a numerical controller (310), a programmable logic controller (320), a first communication interface (330) being communicably connected to the numerical controller (310) and the programmable logic controller (320), and an interface server module (410) of a second communication interface (400) being communicably connected to the first communication interface (330). The front-end control device (200) comprises an interface client module (420a) of the second communication interface (400) being adapted to communicably connect to the interface server module (410), second processing means (210) for executing a second operating system (213), a basic module application (211), and a plurality of control applications (212a-212g), the basic module application (211) being for accessing data in the numerical controller (310) and the programmable logic controller (320) via the one or more interface client modules (420a), the interface server module (410) and the first communication interface (330), a display unit (230) for displaying one or more control screens to a user, an input unit (240) for receiving control input operations from the user, and a first human-machine interface (250) being communicably connected to the display unit (230) and the input unit (240), and including a first graphical user interface (251) for controlling the one or more control screens displayed on the display unit (230) and for processing control input operations of the user. |
US10663946B2 |
Machine tool, production management system and method for estimating and detecting tool life
To efficiently estimate and detect a tool life of a machine tool while lowering an occupation ratio in a data band of a communication line between a machine tool and an upper-level controller, a management apparatus or the like. A machine tool to be managed by a production management apparatus includes a motor for moving one of a workpiece to be machined and a tool for performing a machining operation, an amplifier for driving the motor, a servo controller for controlling the motor via the amplifier based on a notification of a predetermined machining operation, and an NC device for notifying the servo controller of the predetermined machining operation. The servo controller obtains servo data representing a load on the amplifier, performs a first processing for compressing the servo data, and transmits the compressed data to the NC device. |
US10663944B2 |
Machining systems comprising a machining facility and control methods
A machining system (10) comprising a machine comprising: real tool (12); actuators (14) for moving the real tool (12); sensors (15) for generating positioning data (16) for the real tool (12); a memory (17) for storing shape correction data (20) for the real tool (12); and a physical controller (18) for executing a machining program (19) and for controlling the actuators (14) as a function of the shape correction data (20), so as to move the real tool (12) relative to the real blank (13). On the basis of said data (22) representative of the positions of the real tool (12) and of the real blank (13), image display means (24) generate a reconstituted image (25) representative: of the shape of the real blank (13); and of the position of the real tool (12) at a given instant. |
US10663942B2 |
Position control apparatus
A position control apparatus includes an inversion detector which detects an inversion of a position command and generates an inversion detection signal, a deflection characteristic storage unit which stores a deflection characteristic representing an amount of deflection with respect to a torque command, and an inversion correction calculator which calculates an inversion correction amount. The inversion correction calculator stores a torque command immediately before the inversion, and calculates the inversion correction amount from a difference between an amount of deflection immediately before inversion in which the stored torque command is checked with the deflection characteristic, and an amount of deflection after the inversion in which a value obtained by inverting a sign of the stored torque command is checked with the deflection characteristic. A value obtained by adding the inversion correction amount to the position command value is used for position error calculation. |
US10663940B2 |
Felt and environment monitoring system and method
This application presents a solution for measuring different physical parameters from the felt and its surrounding environment, such as: pressure, temperature, humidity, pH, airflow and the degradation of the felt. It is disclosed a monitoring system, comprising: an independent measuring unit fixed in a felt, comprising at least one of the following sensors: temperature, humidity, pH, pressure or air flow; a central acquisition unit comprising a microcontroller, a real-time clock, a communication transceiver connected to at least one independent measuring unit and a communication transceiver connected to a computing device; and a polymeric encapsulation material layer. Applications for this technology are the monitoring of the felt and its surrounding environment in, for example, dry filtration, laundries, wet filtration and other suitable applications. Although the system is focused specifically on felt, the same principles could be applied to other types of fabrics with no further modifications to the system. |
US10663935B2 |
Method of controlling a motorized window treatment
A method comprises measuring a light intensity at a window; determining if the light intensity exceeds a cloudy-day threshold; operating in a sunlight penetration limiting mode to control the motorized window treatment to control the sunlight penetration distance in the space; enabling the sunlight penetration limiting mode if the light intensity is greater than the cloudy-day threshold; and disabling the sunlight penetration limiting mode if the total lighting intensity is less than the cloudy-day threshold. The cloudy-day threshold is maintained at a constant threshold if a calculated solar elevation angle is greater than a predetermined solar elevation angle, and the cloudy-day threshold varies with time if the calculated solar elevation angle is less than the predetermined solar elevation angle. The cloudy-day threshold is a function of the calculated solar elevation angle if the calculated solar elevation angle is less than the predetermined solar elevation angle. |
US10663932B2 |
Grid regulation services for energy storage devices based on grid frequency
Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value). |
US10663931B2 |
Process variable transmitter with dual compartment housing
A process variable transmitter for use in an industrial control or monitoring process is provided and includes a housing with a cavity formed therein. The housing includes an integrated terminal block which defines first and second compartments in the cavity. The transmitter further includes a process variable sensor configured to sense a process variable of the industrial process. Measurement circuitry is carried in the first compartment and configured to receive a process variable signal from the process variable sensor and provide an output. An electrical connection is carried on the integrated terminal block in the second compartment and is electrically coupled to the output of the measurement circuitry. |
US10663930B2 |
Control of aircraft systems with at least two remote data concentrators for control of an aircraft system component
A central processing unit for control of an aircraft system provided on board an aircraft, a control network for control of the aircraft system, an aircraft comprising such a control network, a corresponding method for control of the aircraft system and a computer program for carrying out the method. The central processing unit is connectable to at least two remote data concentrators over a network connection for control of a system component of an aircraft system. The central processing unit is configured to select one of the at least two remote data concentrators for control of the system component and to instruct the selected remote data concentrator to control the system component. |
US10663929B2 |
Long-haul safety system trips
A long-haul process control plant includes a process control system which controls industrial processes running within the plant, and a safety instrumented system, servicing the process control system, which detects safety-related problems within the plant and communicates safety messages within and between portions of the process plant, e.g., to effect a trip or other mitigating action. To transmit safety messages between remotely located portions of the process plant via a low-bandwidth long-haul link, a safety data concentrator combines individual safety messages generated by the safety logic solvers disposed at one portion of the plant into a concentrated safety message, and transmits the concentrated safety message to a safety data de-concentrator in the remote portion of the plant. The safety data de-concentrator recovers the individual safety messages from the concentrated safety message and communicates the recovered safety messages to recipient safety logic solvers disposed at the remote portion of the plant. |
US10663926B2 |
Electronic timepiece
An electronic timepiece for enabling the user to easily change daylight saving time implementation rules includes a memory, a location information setting device, a time display, a daylight saving time switch, and a controller. The memory is configured to store location information, time zones, and daylight saving time rules. The location information setting device is configured to set location information. The time display is configured to display time based on the time zone and daylight saving time rule corresponding to the location information set by the location information setting device. The daylight saving time switch is configured to turn a daylight saving time mode on (implemented) and off (not implemented). The controller is configured to correct daylight saving time rules based on the timing when the daylight saving time switch was operated to change the daylight saving time mode on or off. |
US10663924B2 |
Display device and method for realizing holographic display by the same
A display device and a method for realizing holographic display by the same are disclosed. The first lens array includes a plurality of first lenses arranged in an array, and the first lenses correspond to a plurality of viewing areas disposed on the light emitting path respectively; the array of slits includes a plurality of slits which are arranged in an array and disposed in one-to-one correspondence with the first lenses; the spatial light modulator loads a holographic image; the eye-tracking device tracks the location of human eye; and after determining a viewing area according to the location of human eye, the controller controls the deflecting member to emit light emitted from the spatial light modulator to the slit corresponding to the first lens which corresponds to the viewing area, and controls a deflection angle of the first lens. |
US10663920B2 |
Image forming apparatus and fan operation controlling method
Provided is an image forming apparatus including: an image forming unit configured to form an image on a recording material; an exhaust fan configured to exhaust air inside the image forming apparatus; a CPU configured to control rotation of the exhaust fan; and a memory configured to store in advance a first control setting value for rotating the exhaust fan at a first target rotation speed. The CPU rotates the exhaust fan based on the first control setting value, and permits the image forming unit to form an image when a rotation speed of the exhaust fan becomes equal to or faster than a lower limit rotation speed for suppressing a discharge amount of UFPs. When a predetermined time period has elapsed, the CPU performs feedback control for the exhaust fan such that the exhaust fan is rotated faster than the first target rotation speed. |
US10663915B2 |
Process cartridge
A process cartridge configured to be detachably installed to a main body of the imaging device includes a housing, and a photosensitive drum arranged in the housing. A drive coupler configured to receive a driving force from a drive head of the main body of the imaging device is provided at an end of the photosensitive drum. The process cartridge can be installed to the main body of the imaging device or be detached from the main body of the imaging device in a manner that the photosensitive drum rotation axis forms a variable included angle with respect to the drive head rotation axis. The installation of the process cartridge is facilitated, and the engagement of the drive coupler with the drive head of the imaging device is facilitated. |
US10663913B2 |
Process cartridge and electrophotographic apparatus
Provided is a process cartridge having a charging member and an electrophotographic photosensitive member to be charged by being in contact with the charging member, wherein the electrophotographic photosensitive member has a support and a photosensitive layer in this order, and a surface layer of the electrophotographic photosensitive member has a Martens hardness of 230 N/mm2 or less. |
US10663910B2 |
Developing cartridge including engaging member movable with helical gear and engageable with outer surface of housing
A developing cartridge includes: a housing; a developing roller rotatable about a first axis extending in an axial direction; a first helical gear and a second helical gear positioned at an outer surface of the housing; and an engaging member movable together with the second helical gear. The second helical gear meshes with the first helical gear and is rotatable in a first rotational direction and a second rotational direction. The second helical gear is movable in the axial direction between a first position and a second position closer to the outer surface than the first position. The second helical gear rotates in the first rotational direction to move toward the first position. The second helical gear rotates in the second rotational direction to move toward the second position whereby the engaging member engages a part of the outer surface to terminate rotation of the second helical gear. |
US10663907B2 |
Powder collection device and image forming apparatus
A powder collection device includes a powder collection container, a first transport member, at least one second transport member, and an entrance suppressing member. The powder collection container is removably mounted in an apparatus. The first transport member is disposed in the powder collection container, extends in a first transport direction, and is to transport the powder to a downstream side in the first transport direction. The at least one second transport member extends in a second transport direction. The at least one second transport member transports the powder in the second transport direction so as to pass the powder to the first transport member. The entrance suppressing member suppresses entrance of the powder into a gap between the first transport member and an end portion of the at least one second transport member. |
US10663904B2 |
Image forming apparatus
An image forming apparatus includes a trailing edge regulation guide configured to regulate a trailing edge position of a sheet stored in a sheet storage unit, a detection unit configured to detect a position of the trailing edge regulation guide, an input unit configured to input a sheet size to be set for the sheet storage unit, and a control unit. In the sheet storage unit, an attachment is attachable to the trailing edge regulation guide. The control unit controls display a warning screen in a case where a length in a feeding direction in the sheet size input by the input unit is longer than a predetermined length, whereas the control unit does not to display the warning screen according to the position of the trailing edge regulation guide in a case where the length in the feeding direction is shorter than the predetermined length. |
US10663899B2 |
Image forming apparatus
A fuser includes a heater, a presser, a support member that supports the presser to allow the presser to move between a nip position where the presser is in pressured contact with the heater, and a separated position where the presser is separated from the heater, a first spring, a first cam, a first gear, a second gear, a second spring, and a second cam. The second cam has a cam profile that, when the presser moves from the separated position to the nip position, causes the second gear to move in a direction along a second axis against urging force of the second spring to increase the urging force of the second spring. |
US10663898B2 |
Fixing apparatus
A fixing apparatus includes a heating member, a supporting member that supports the heating member, a film slidably disposed on the heating member, and a pressing member that forms a nip portion, in collaboration with the film, through which the recording medium is conveyed. The fixing apparatus further includes a first thermally conductive member and a second thermally conductive member that are disposed between the heating member and the supporting member. The first thermally conductive member has a thermal conductivity higher than that of a substrate of the heating member. The thermal conductivity in in-plane directions of the second thermally conductive member is higher than the thermal conductivity in a thickness direction thereof. The second thermally conductive member is in contact with the heating member, and the first thermally conductive member is in contact with the second thermally conductive member. |
US10663897B2 |
Fixing member, method for producing fixing member, fixing device, and image forming apparatus
A fixing member includes a substrate, an elastic layer on the substrate, and a surface layer on the elastic layer. The surface layer has transverse microhardness values within the range of 85 to 89, inclusive, and a transverse filtered maximum waviness (Wcm) of 0.1 μm or more and 4 μm or less. |
US10663891B1 |
Color image density calibration in imaging device having common developer voltage
A color imaging device includes a plurality of developer rolls with a common operating point, such as a common operating voltage. To determine the operating point, an acceptable range of color density is determined for each toner, the range being lighter and darker than an optimum color density for that toner. A search range is devised such that values within the range are examined relative to deviations from the optimum color density per each toner. The common operating point is selected as that having the lowest deviation per all toners. Also, if the common operating point corresponds to a color density darker than the acceptable range of color density for any toner, additional halftoning occurs compared to traditional halftoning, such as for continuous tones or solids. In this way, four color developer rolls can be operated from a single power supply, yet still provide acceptable color images. |
US10663890B2 |
Developer inlets
An example developer unit includes a developer roller. The developer unit also includes a set of electrodes proximate to the developer roller. The set of electrodes form a cavity. The developer unit includes an inlet to the cavity. The inlet is to receive printing fluid. The developer unit includes an insert in the inlet. The insert is to distribute the printing fluid evenly in the cavity. |
US10663887B2 |
Cartridge support unit
A cartridge support unit includes a housing, a toner cartridge, a guide member, a shutter body, and at least one snap fit portion. The housing has an opening. The toner cartridge has a cylindrical shape, has an outer circumferential surface, and is removably mounted in the housing. The guide member has portions and is provided at such a position in the housing that the opening is interposed between the portions of the guide member. The shutter body slides against the guide member from a closed position where the shutter body covers the opening to an open position where the shutter body exposes the opening. The at least one snap fit portion extends from the shutter body and has a protrusion. The protrusion is pushed by the outer circumferential surface of the toner cartridge so as release a lock state at the closed position. |
US10663885B2 |
Developing device and image forming apparatus
A developing device includes a container containing developer, into which toner is supplied from a supply port provided in the upper part of the container; and a rotary member disposed so as to oppose the supply port and having a projection on the circumference thereof, the rotary member transporting the developer and accumulating the developer in the supply port when the level of the surface of the developer inside the container is higher than or equal to a threshold height, and the rotary member transporting the toner from the supply port to the container through a path formed between the rotary member and the container by pushing the toner with the projection when the level of the surface is lower than the threshold height. |
US10663883B2 |
Rechargeable toner cartridge, rechargeable toner cartridge assembly and filter device
A rechargeable toner cartridge assembly includes a toner cartridge, a toner refilling bottle and a filter device. The toner cartridge includes a toner refilling hole and a connection portion, both of which are disposed on one end of the toner cartridge and penetrate through a housing of the toner cartridge. The toner refilling bottle contains toner, which is refilled into the toner cartridge through the toner refilling hole. The filter device connected to the connection portion filters the toner off a mixed gas overflowing from the toner cartridge to discharge clean air, wherein the toner cartridge and the filter device are two independent devices. The filter device and a rechargeable toner cartridge without a built-in inner air filter element are also provided. |
US10663878B2 |
Applying a corrective voltage
In one example, a method is described that includes a processor detecting a voltage of a photoconductor layer of a printing device, comparing the voltage of the photoconductor layer to a threshold voltage, and applying a corrective voltage to a charging unit or to a transfer member when the voltage of the photoconductor layer exceeds the threshold voltage. |
US10663876B2 |
Toner, toner cartridge, development device, and image forming apparatus
A toner includes binder resin 101 and a coloring agent 102. The coloring agent 102 is configured so that hue of a hue measurement print image printed on a print medium with the toner satisfies −8.6≤a*(Y)≤−7.9 and 93.4≤b*(Y)≤95.4, where a*(Y) and b*(Y) represent an a* value and a b* value of the hue measurement print image and light resistance F of a light resistance measurement print image printed on a print medium with the toner, after an irradiation test in which the light resistance measurement print image is irradiated with light having 0.36 W/m2 spectral irradiance at a wavelength of 340 nm for 663 hours, is higher than or equal to 70%. The toner is configured so that its melt viscosity at 120° C. is higher than or equal to 1400 Pa·s and lower than or equal to 1600 Pa·s. |
US10663874B2 |
Alignment system and method
An alignment system (100) and method for positioning and/or keeping a first object (1) at a controlled distanced (D1) with respect to a second object (2). An object stage (11) is configured to hold a surface (1a) of the first object (1) at a distance (D1) over a surface (2a) of the second object (2). A sensor device (31) comprising a probe tip (31a) is connected at a predetermined probe level distance (Dp) relative to the surface (1a) of the first object (1). The probe tip (31a) is configured to perform an atomic force measurement (AFM) of a force (F1) exerted via the probe tip (31a) on a surface (2a) of the second object (2). A controller (80) is configured to control an object stage actuator (21) as a function of the probe level distance (Dp) and the measured force (F1) to maintain the controlled distanced (D1). |
US10663872B2 |
Lithographic apparatus
A lithographic apparatus includes a patterning device support to support a patterning device, the patterning device system including a moveable structure movably arranged relative to an object, a patterning device holder movably arranged relative to the movable structure to hold the patterning device, an actuator to move the movable structure relative to the object, and an ultra short stroke actuator to move the patterning device holder with respect to the movable structure; a substrate support to hold a substrate; a projection system to project a patterned radiation beam onto a target portion of the substrate; a transmission image sensor for measuring a position of the patterned radiation beam downstream of the projection system; and a calibrator for determining a relationship between magnitude of an applied control signal to the ultra short stroke actuator and resulting change in position of the patterned radiation beam and/or patterning device holder and/or patterning device. |
US10663869B2 |
Imprint system and imprinting process with spatially non-uniform illumination
An imprinting system and method. An illumination system for imprinting, during a first period of time, that illuminates a first portion of boundary region that surrounds a pattern region with a thickening dosage of light that is within a first dose range, such that the fluid in the first portion of the boundary region does not solidify but does increase a viscosity of the fluid. The illumination system, during a second period of time, illuminates the pattern region with a curing dosage of light that is within a second dose range higher than the first dose range. Prior to illumination, the imprinting includes dispensing droplets and holding a template with a template chuck such that the template contact the droplets and the droplets merge and form a fluid front that spreads through the pattern region and towards the boundary region. |
US10663864B2 |
Pattern forming method, method for manufacturing electronic device, and laminate
The pattern forming method includes forming an actinic ray-sensitive or radiation-sensitive film using an actinic ray-sensitive or radiation-sensitive composition, forming an upper layer film on the actinic ray-sensitive or radiation-sensitive film using a composition for forming an upper layer film, exposing the actinic ray-sensitive or radiation-sensitive film having the upper layer film formed thereon, and developing the exposed actinic ray-sensitive or radiation-sensitive film using a developer, in which the composition for forming an upper layer film includes a solvent and a crosslinking agent; and in which the content of a solvent having a hydroxyl group is 80% by mass or less with respect to all the solvents included in the composition for forming an upper layer film. The method for manufacturing an electronic device includes the pattern forming method. The laminate has an actinic ray-sensitive or radiation-sensitive film, and an upper layer film including a crosslinking agent. |
US10663863B2 |
Method of producing layer structure, and method of forming patterns
A method of producing a layer structure and a method of forming a pattern, the method of producing a layer structure including coating a first composition on a substrate that has a pattern thereon; curing the coated first composition to form a first organic layer; applying a liquid material to the first organic layer to remove a part of the first organic layer; and coating a second composition on remaining parts of the first organic layer; and curing the coated second composition on the remaining parts of the first organic layer to form a second organic layer: wherein the first composition and the second composition each independently include a solvent, and a polymer including a structural unit represented by Chemical Formula 1, *A1-B1*. [Chemical Formula 1] |
US10663861B2 |
Method for forming resin cured film pattern, photosensitive resin composition, photosensitive element, method for producing touch panel, and resin cured film
The method for forming a resin cured film pattern according to the invention comprises a first step in which there is formed on a base material a photosensitive layer composed of a photosensitive resin composition comprising a binder polymer with a carboxyl group having an acid value of 75 mgKOH/g or greater, a photopolymerizable compound and a photopolymerization initiator, and having a thickness of 10 μm or smaller, a second step in which prescribed sections of the photosensitive layer are cured by irradiation with active light rays, and a third step in which the sections of the photosensitive layer other than the prescribed sections are removed to form a cured film pattern of the prescribed sections of the photosensitive layer, wherein the photosensitive resin composition comprises an oxime ester compound and/or a phosphine oxide compound as the photopolymerization initiator. |
US10663858B2 |
Imprint apparatus that forms a pattern of an imprint material on a substrate-side pattern region of a substrate using a mold, and related methods
An imprint apparatus that forms a pattern of an imprint material on a substrate-side pattern region of a substrate by using a mold. The imprint apparatus includes a light irradiation unit configured to irradiate the imprint material with light having a first wavelength for curing, and a heating unit configured to heat a partial region of the substrate, the partial region corresponding to the substrate-side pattern region, by irradiating the substrate with light that has passed through the mold and has a second wavelength different from the light having the first wavelength. The heating unit is configured to heat the partial region to deform the substrate-side pattern region by forming an uneven temperature distribution on the substrate-side pattern region by irradiation of the light having the second wavelength with an uneven illumination distribution. |
US10663854B2 |
Method of fabricating a photomask
A method of fabricating a photomask comprising providing a photomask blank including a phase shifting layer, a first light blocking layer, a first resist layer, a second light blocking layer and a second resist layer stacked sequentially in this order on a substrate, forming second resist patterns, forming second light blocking patterns, forming first resist patterns, forming first light blocking patterns and phase shifting patterns, removing the first resist patterns, and selectively removing at least one of the first light blocking patterns, wherein the second resist layer has a thickness such that all of the second resist layer is removed while the first resist layer is patterned for exposing the second light blocking layer. |
US10663852B2 |
Polarization modulator for stereoscopic projection with high light efficiency and polarization beam splitting prism assembly thereof
A polarization modulator for stereoscopic projection comprises a polarization beam splitting prism assembly for splitting an incident beam into a transmitted beam, an upper half of reflected beam, and a lower half of reflected beam, a polarization plane rotating component for rotating the polarization plane of the transmitted beam or of the upper half of reflected beam and the lower half of reflected beam by 90 degrees, a reflective mirror for adjusting a propagation direction of the upper half of reflected beam and the lower half of reflected beam, a lens group for adjusting the range of size of the transmitted beam, a linear polarizer for filtering the beam, a polarization modulator for modulating the transmitted beam, the upper half of reflected beam and the lower half of reflected beam into counter-clockwise circularly polarized light and clockwise circularly polarized light in the order of frames, and a driving circuit. |
US10663851B2 |
Stereoscopic image display device
The present invention relates to a stereoscopic image display through which after the incident light incident from a projector lens is split into different lights according to polarized components, by selectively delaying the phase of each split light by a predetermined value through an on/off operation of an optical switch module, each light is converted to have the same polarized component, and the synthesized light obtained by synthesizing the lights having the same polarized component is projected on a screen so as to double the luminance on the screen. |
US10663849B2 |
Polarization beam splitter and image projection apparatus using the same
A polarization beam splitter includes: a first prism; a second prism; a polarization beam split portion in contact with the second prism; a substrate provided between the polarization beam split portion and the first prism; a first adhesive portion provided between the first prism and the substrate; and a second adhesive portion provided between the polarization beam split portion and the substrate. |
US10663846B2 |
Image projection unit and filter box
To provide an image projection unit that can reduce the frequency of filter replacement and extend the life of an image projection device main body.Provided is an image projection unit including: a main body (10) of an image projection device; and a filter box (100A) that can be attached/detached to/from the main body (10), and at least covers an air inlet of the main body. A box-side filter provided for the filter box (100A) has a total area larger than an area of a main body filter provided at the air inlet of the main body (10). |
US10663837B2 |
Method for operating a light source for a camera, light source, camera
In an embodiment a method includes illuminating a scene in a first illumination by identically driving the emitters of a light source such that first exposures and/or first colour values of segments are ascertained by an image sensor, determining first illumination parameters for the segments of the scene, wherein the first illumination parameters are determined based on the first exposures and/or the first colour values, illuminating the scene in a second subsequent illumination by differently driving the emitters based on the first illumination parameters of the segments such that second exposures and/or second colour values of the segments are ascertained by the image sensor, determining second illumination parameters for the segments of the scene, wherein the second illumination parameters are determined based on the second exposures and/or the second colour values and illuminating the scene in a third subsequent illumination by differently driving the emitters based on the second illumination parameters of the segments. |
US10663836B2 |
Photographing apparatus having lens adjustment part
The present invention relates to a photographing apparatus having lens adjustment parts, comprising: a housing in which an object to be photographed is located; a camera located inside the housing to photograph the object; a lens unit having at least one lens knob; at least one link part located inside the housing and coupled to the lens knobs to rotate the lens knobs; a fixing part hingedly coupled to the link parts; and the lens adjustment parts coupled to one end of the link parts in such a manner as to be linearly moved according to a user's adjustment. |
US10663835B2 |
Dynamic privacy glasses
A system includes a memory, a processor in communication with the memory, a unique identifier generator, a transmitter, at least one receiver, a display, and a viewing aid. The transmitter is configured to transmit information about a unique identifier generated from the unique identifier generator. The receiver is configured to receive the information from the transmitter. The display is configured to emit polarized light at a plurality of polarizations. Additionally, the plurality of polarizations includes a plurality of different noise polarizations and polarized light at a polarization factor based on the unique identifier. The viewing aid has a filter that is configured to pass light at the polarization factor and block light at the plurality of different noise polarizations. |
US10663833B2 |
Electrochromic device with graphene/ferroelectric electrode
In accordance with a version of the invention, graphene with a ferroelectric material is used as the transparent electrode material in an electrochromic device. The use of curved and dynamically flexing substrates enables flexible and stretchable applications for electrochromic films. Furthermore, the nonreactive and impermeable nature of graphene increases the durability of the device through increased resistance to external impurities. In addition, the incorporation of ferroelectric materials allows the device to exhibit nonvolatile usage; that is, devices can remain transparent with no external power source. Furthermore, devices may exhibit a charging effect, permitting recovery of energy stored in alignment of ferroelectric dipoles within the ferroelectric material. |
US10663830B2 |
Fabrication of low defectivity electrochromic devices
Prior electrochromic devices frequently suffer from high levels of defectivity. The defects may be manifest as pin holes or spots where the electrochromic transition is impaired. This is unacceptable for many applications such as electrochromic architectural glass. Improved electrochromic devices with low defectivity can be fabricated by depositing certain layered components of the electrochromic device in a single integrated deposition system. While these layers are being deposited and/or treated on a substrate, for example a glass window, the substrate never leaves a controlled ambient environment, for example a low pressure controlled atmosphere having very low levels of particles. These layers may be deposited using physical vapor deposition. In certain embodiments, the device includes a counter electrode having an anodically coloring electrochromic material in combination with an additive. |
US10663826B2 |
Liquid crystal display device
A liquid crystal display device includes a first substrate; a plurality of gate lines and a plurality of data lines crossing each other to define a plurality of pixel regions on the first substrate; a thin film transistor electrically connected to each gate line and each data line; a first electrode having a plate shape, contacting a drain electrode of the thin film transistor and disposed in each pixel region; a passivation layer on the first electrodes; and a second electrode on the passivation layer, wherein the second electrode has an opening corresponding to the first electrode. |
US10663824B2 |
Liquid crystal display panel and method for producing liquid crystal display panel
The present invention provides a liquid crystal display panel capable of reducing display defects due to bubbles. The liquid crystal display panel of the present invention includes, sequentially from a back side to a viewing side, a first substrate, a liquid crystal layer, and a second substrate. The first substrate includes, sequentially from a liquid crystal layer side, a pixel electrode and an organic insulating film in contact with the pixel electrode. The organic insulating film is provided with a void at a position overlapping an end of the pixel electrode. Preferably, the second substrate includes a black matrix and the void overlaps the black matrix. |
US10663822B2 |
Display panel and manufacturing method thereof
The method for manufacturing a display panel includes: forming a thin film transistor (TFT), a first signal line, a second signal line, a third signal line, and a first insulation layer on a substrate, in which the first signal line is coupled to one of the gate and the source of the TFT, the second signal line is coupled to the other of the gate and the source, and the third signal line is electrically connected to the first signal line through a via of the first insulation layer; forming a second insulation layer on the TFT, the first signal line, the second signal line, the third signal line, and the first insulation layer; and forming a first transparent conductive layer on the second insulation layer with an electrode covering at least part of the third signal line. |
US10663821B2 |
Display board having insulating films and terminals, and display device including the same
An array board includes input terminals, a first interlayer insulating film, a first planarization film, terminal lines, a second planarization film, and protective members. A first interlayer insulating film edge section and a first planarization film edge section are disposed between the input terminals and the display area. The terminal lines in a layer upper than the first planarization film and extending to cross the first interlayer insulating film edge section and the first planarization film edge section are connected to the input terminals. The second planarization film in a layer upper than the terminal lines includes a second planarization film edge section disposed closer to the input terminals relative to the first interlayer insulating edge section and the first planarization film edge section. The protective members in a layer upper than the second planarization film cover sections of the terminals lines not overlapping the second planarization film, respectively. |
US10663820B2 |
Display substrate, its manufacturing method, and display device
A method for manufacturing a display substrate includes a step of forming a pattern of a barrier layer and a pattern of a first electrode. The step of forming the pattern of the barrier layer and the pattern of the first electrode includes: forming a barrier layer film and a first electrode film sequentially; and forming the pattern of the barrier layer and the pattern of the first electrode by a single patterning process. |
US10663813B2 |
Liquid crystal display
Provided is a liquid crystal display including a plurality of pixels disposed in a matrix of pixel rows and pixel columns, the liquid crystal display including: a plurality of gate lines formed on a first substrate and disposed two between every pixel row; a plurality of data lines formed on the first substrate and disposed one between every two adjacent pixel columns; a common voltage line formed on the first substrate and extending in a pixel row direction along a vertical center of the pixel; and a plurality of pixel electrodes and common electrodes formed on the first substrate and overlapping with each other with an insulating layer therebetween, each pixel electrode positioned in a pixel, and in which two pixel electrodes in the two pixel columns disposed between two adjacent data lines among the plurality of data lines are both connected to any one of the two data lines. |
US10663810B2 |
Display system and method for driving display
A display system and a method for driving a display, where the display system includes a first device comprising a first display, wherein the first display comprises a first electrode and a second electrode with a display component layer therebetween, and the second electrode is grounded, and a second device comprising a third electrode and an electric voltage source coupling to the third electrode, wherein when an electric voltage is applied to the third electrode by the electric voltage source, the third electrode is capable of inducing electrostatic charges on the first electrode, and a potential difference between the first electrode and the second electrode produced by the electrostatic charges on the first electrode is capable of driving molecules in the display component layer to be re-distributed. |
US10663808B2 |
Curved display panel and curved display
The embodiments of the present invention provide a curved display panel and a curved display. The curved display panel comprises an array substrate and a color film substrate arranged oppositely, a plurality of spacers arranged between the array substrate and the color film substrate, a first curved side edge and a second curved side edge opposite to the first curved side edge. A cell thickness of a central region is different with a cell thickness of a peripheral region closed to the first curved side edge or the second curved side edge, such that a light leakage amount of the peripheral region is smaller than a first preset value. The curved display comprises the curved display panel provided by the embodiment of the invention. |
US10663804B2 |
Liquid crystal display device comprising a second electrode having an elliptical opening portion with a major axis parallel or perpendicular to an alignment azimuth of liquid crystal molecules
A liquid crystal display device includes, in the given order: a first substrate; a liquid crystal layer containing liquid crystal molecules; and a second substrate; wherein the first substrate includes a first electrode, a second electrode positioned closer to the liquid crystal layer than the first electrode is, and an insulating film between the first electrode and the second electrode, the second electrode has an opening having a shape including an elliptical portion and/or a circular portion, in a no-voltage-applied state, where no voltage is applied between the first electrode and the second electrode, the liquid crystal molecules are aligned parallel to the first substrate, and in a plan view, the major axis of the elliptical portion is parallel or perpendicular to the alignment azimuth of the liquid crystal molecules in the no-voltage-applied state. |
US10663803B2 |
Liquid crystal display device comprising first, second, and third pixel electrodes each having first and second stem portions that extend from vertices of a central pattern
A liquid crystal display device includes first, second, third, and fourth pixel electrodes, each including a stem portion and a branch portion to define a plurality of domains, a common electrode opposing each of the first, second, third, and fourth pixel electrodes, and a liquid crystal layer between each of the common electrodes and a corresponding one of the first through fourth pixel electrodes, wherein an overall planar area of the stem portion and the branch portion of the fourth pixel electrode is smaller than an overall planar area of the stem portion and the branch portion of each of the first through third pixel electrodes. |
US10663801B2 |
Alignment agent, manufacturing method of alignment film, display panel and display device
In one aspect, provided herein is a method comprising: (a) (i) determining cytolytic activity in a tumor from the subject; and/or (ii) determining genetic alterations associated with cytolytic activity in the tumor; and (b) administering an immunotherapeutic agent to the subject if (i) cytolytic activity is detected in the tumor and/or (ii) a genetic alteration associated with induction of cytolytic activity, tumor resistance to cytolytic activity and/or suppression of cytolytic activity is detected in the tumor. |
US10663799B2 |
Backlight module and LCD
The invention provides a backlight module. The backlight module has a cavity, a reflecting cover, a light source and an auxiliary light-guiding diffusion structure. The cavity comprises a reflective surface, a mounting surface connected to the reflective surface, and a light-emitting surface connecting the reflective surface and the mounting surface; the light source a light-emitting diode, the reflecting cover mounted on the mounting surface, the light source being disposed inside the reflecting cover; the auxiliary light-guiding diffusion structure disposed on the reflective surface and able to assist in diffusing the light incident to the reflective surface to improve emission uniformity of the backlight module and display quality. Another object of the invention is to provide an LCD device, using backlight module having a single LED as light source and achieving brightness uniformity, improving display quality of the LCD device, reducing production cost of LCD device and increasing product competitiveness. |
US10663798B2 |
Liquid crystal display panel comprising a liquid crystal prism and a reflective prism disposed between first and second substrates and driving method thereof, and display device
The current disclosure relates to a liquid crystal display (LCD) panel including but not limited to, a first substrate and a second substrate which are opposite to each other to form a cell, and liquid crystal molecules and a reflective prism disposed between the first and second substrates. The first substrate and/or the second substrate is provided thereon with a control electrode configured to generate an electric field to control the liquid crystal molecules to form a liquid crystal prism. The first substrate is further provided thereon with a first light-blocking layer which has an orthogonal projection on the first substrate staggered with an orthogonal projection of the reflective prism on the first substrate. |
US10663797B2 |
Composite optical sheet, liquid crystal display device using same, and method for manufacturing same
Provide are a composite optical sheet used for a liquid crystal display (LCD) device and a method of manufacturing the composite optical sheet. The LCD device includes: a liquid crystal panel; a surface light-emitting module; a base layer disposed between the liquid crystal panel and the surface light-emitting module; a diffusion pattern layer disposed on a surface of the base layer facing the surface light-emitting module and configured to diffuse light incident from the surface light-emitting module; a prism pattern layer disposed on a surface of the base layer facing the liquid crystal panel and including a plurality of first unit prisms; and a prism film adhered to the prism pattern layer and including a plurality of second unit prisms. |
US10663795B1 |
Display device and manufacturing method thereof
A display device includes a substrate, a plurality of light emitters, a colloid, an optical film, and a liquid crystal panel. The light emitters are located on a surface of the substrate. There are a plurality of gaps between the light emitters. The colloid is located in the gaps on the surface of the substrate and surrounds the light emitters. The optical film is located above the colloid and the light emitters. The liquid crystal panel is located above the optical film. |
US10663791B2 |
Material system having multiple appearance states for a display surface of a display unit
A material system for a surface display unit that includes a first side (i.e., a proximal side) that faces a viewer of the surface display unit and a second side (i.e., a distal side) facing away from the viewer. The material system provides at least three appearance states, including a generally opaque first appearance state when the surface display unit is “off” (i.e., not used to display images), a second appearance state in which the material system is illuminated from the first (i.e., proximal) side to display a first image (e.g., information and/or decoration) that is perceptible to the viewer, and a third appearance state in which the material system is illuminated from the second (i.e., distal) side to display a second image (e.g., information and/or decoration) that is perceptible to the viewer. Surface display units, systems, and methods comprising the material system are also disclosed. |
US10663790B2 |
Display panel and mother substrate for display panels
A display panel including a base substrate which includes a display area and a non-display area, a polarizing member disposed on a surface of the base substrate and including a plurality of grid patterns overlapping the display area and a reflective pattern overlapping the non-display area, and a pixel array layer which overlaps the polarizing member and is insulated from the polarizing member. A first height from the surface of the base substrate to an upper surface of the reflective pattern is different from a second height from the surface of the base substrate to upper surfaces of the grid patterns. |
US10663789B2 |
Lens substrate, liquid crystal lens, and liquid crystal glasses
The disclosure discloses a lens substrate, a liquid crystal lens, and a liquid crystal glasses, where first annular electrodes and second annular electrodes of the lens substrate are arranged concentric with each other, and orthographic projections of the first annular electrodes onto a base substrate and orthographic projections of the second annular electrodes onto the base substrate are arranged alternately; where first wirings are electrically connected with the second annular electrodes through first via holes, and at least a first annular electrode adjacent to a part of the first via holes includes a place-giving pattern in an area corresponding to the part of the first via holes, and a smallest spacing between the place-giving pattern and its corresponding first via hole is no less than a preset distance. |
US10663787B2 |
Display device having polymer dispersed liquid crystals
Disclosed is a display device that includes a display area having an appearance of a specific color in a non-driving state or displaying a specific screen by using PDLC to improve esthetic appearance as in a home appliance. The display device comprises a reflective dispersed layer arranged on a display panel, wherein the reflective dispersed layer includes a PDLC layer between a first substrate and a second substrate, and a transflective layer arranged between the PDLC layer and the second substrate to transmit light externally emitted from the display panel and reflect externally incident light. |
US10663786B2 |
Liquid crystal display device
In a liquid crystal display device including a liquid crystal panel displaying an image and an LED and an IC driver which is a heat generating component generating heat during operation, the liquid crystal panel includes a pair of substrates that are disposed opposite each other, and a liquid crystal layer containing liquid crystal molecules and sealed between the pair of substrates, and a transparent thermal conducing sheet is disposed such that a part thereof is continuous from the LED and the IC driver and another part thereof is directly in contact with a TFT substrate to cover a display area. |
US10663785B2 |
Information processing apparatus and method of manufacturing information processing apparatus
An information processing apparatus includes: a conductive housing; a display fitted into and fixed to the housing; one or more display support members disposed between the display and the housing where the one or more display support members include a display support member provided with a bonding region on part of a surface of the display support member that is in contact with the housing and is fixed to the housing via a bonding member in the bonding region; and a flexible circuit board including a grounding pattern where the flexible circuit board is disposed such that the grounding pattern is in contact with the housing at a non-bonding region on the surface of the display support member and part of the flexible circuit board that includes the grounding pattern is held between the display support member and the housing. |
US10663782B2 |
Liquid crystal panel and thin film transistor array substrate thereof
A thin film transistor (TFT) array substrate includes: a substrate; a display region formed on the substrate; a flexible printed circuit disposed on the substrate and located at one side of the display region; a control chip disposed between the display region and the flexible printed circuit, and two sides of the flexible printed circuit going beyond two corresponding sides of the control chip, respectively; a first reinforcement member disposed at a first side of the control chip, and the first side being adjacent to one side of the control chip that faces the display region; a second reinforcement member disposed at a second side of the control chip opposite to the first side; and a third reinforcement member covering the control chip, the first reinforcement member and the second reinforcement member. |
US10663779B1 |
Welding helmet with single LCD filter lens
A welding helmet includes a helmet shell and a lens device mounted on the helmet shell. The lens device includes a filter control module and a single LCD panel. The logic control module controls the transmittance of the single LCD panel based on a sensed light signal and a shading-level signal designated by a user. Therefore, when the welding helmet is operated in an environment having intense light such as a welding arc, the single LCD panel will turn dark and lower its transmittance to block the intense light. |
US10663777B2 |
Viewing angle switchable display module
A viewing angle switchable display module includes an organic light-emitting display (OLED) panel, a viewing angle switchable device disposed on the OLED panel, and a quarter wave plate disposed between the OLED panel and the viewing angle switchable device. The viewing angle switchable device includes an absorptive polarizer, a reflective polarizer, and an electrically controlled viewing angle switching element. A transmission axis of the reflective polarizer is parallel to a transmission axis of the absorptive polarizer. The electrically controlled viewing angle switching element is disposed between the absorptive polarizer and the reflective polarizer and includes two conductive layers and a liquid crystal layer including liquid crystal molecules. When there is a potential difference between the two conductive layers, an orthogonal projection of an optical axis of each of the liquid crystal molecules on the absorptive polarizer is parallel to or perpendicular to the transmission axis of the absorptive polarizer. |
US10663775B2 |
Display device
The embodiments of the present disclosure provide a display device, which relates to the display technology field and can alleviate or mitigate the problem that noise is generated by the rear housing due to vibration when the display device is displaying a picture with sound. The display device includes a display module and a rear housing cooperating with the display module. The display module includes a display surface and a non-display surface opposite to the display surface. The display device includes a buffer between the non-display surface of the display module and the rear housing. |
US10663774B2 |
Optical transmission module, optical transceiver, and optical communication system including same
An embodiment includes an optical transmission module, an optical transceiver, and an optical communication system including the same, the optical transmission module comprising: a light emitting diode; and an optical modulator for modulating first light emitted from the light emitting diode, wherein the light emitting diode and the optical modulator include GaN, and the optical modulator transmits the first light therethrough when a voltage is applied. |
US10663770B2 |
Feed-forward optical equalization using an electro-optic modulator with a multi-segment electrode and distributed drivers
A device and method of optical equalization using an optical modulator is provided. An electrical modulation signal is split into a first modulation signal and a second modulation signal. The second modulation signal is delayed relative to the first modulation signal. An amplitude of the second modulation signal is attenuated relative to the first modulation signal. The first modulation signal is applied to a first waveguide segment of the optical modulator. The second modulation signal that is delayed and attenuated relative to the first modulation signal is applied to a second waveguide segment of the optical modulator. Both the applied first and second modulation signals generate a feed-forward equalized optical signal that is recombined in the optical domain. |
US10663767B2 |
Adjustable beam characteristics
Disclosed herein are methods, apparatus, and systems for providing an optical beam delivery device, comprising a first length of fiber comprising a first RIP formed to enable modification of one or more beam characteristics of an optical beam by a perturbation device and a second length of fiber having a second RIP coupled to the first length of fiber, the second RIP formed to confine at least a portion of the modified beam characteristics of the optical beam within one or more confinement regions. |
US10663766B2 |
Graphene-based plasmonic slot electro-optical modulator
An electro-optical modulator using a graphene-based plasmonic slot is disclosed. The electro-optical modulator is comprised of a substrate layer, a dielectric spacer, a graphene layer, a first metal layer, and a second metal layer. The metal layers create a plasmonic slot that modulates between a light absorptive and light transparent state depending on the application of voltage across the modulator. Two or four graphene layers may be used to reduce power consumption and the size of the modulator. |
US10663764B2 |
Spectacle lens and method for making the same
A method for manufacturing a spectacle lens includes the steps of providing an integral main lens. The integral main lens has a front surface and a back surface and is at least one selected from a group consisting of a spherical power lens, an astigmatic power lens, and a lens having a main curvature of the front surface in a first meridian and a main curvature of the back surface in the first meridian which are different so as to provide for a spherical power different from zero; and applying at least one additional lens element to at least a part of the front surface and/or at least a part of the back surface, wherein the at least one additional lens element includes at least one layer having a multitude of layer elements, in particular printed layer elements. Further, the invention is directed to a corresponding spectacle lens. |
US10663763B2 |
Multifocal intraocular lens
The present invention is a multifocal intraocular lens including an optical body, a first support loop and a second support loop, wherein, the optical body is composed of a substrate layer and a coating layer; the substrate layer, the first support loop and the second support loop have a one-piece structure and are formed integrally with the same material; the coating layer is cemented on the substrate layer by means of injection-compression molding; the substrate layer and the coating layer are made of different materials. The optical body of the present invention is a multifocal optical zone with a double-cemented structure. The optical zone includes a plurality of binary surfaces and an aspheric surface, effectively correcting chromatic aberration of the secondary spectrum, improving image quality, expanding the range of additional optical power, and achieving a full range of vision. |
US10663762B2 |
Dielectric electro-active polymer contact lenses
An ophthalmic device is described that includes a frame and an optically active component comprising a bistable dielectric electroactive polymer. The bistable dielectric electroactive polymer changes shape when exposed to a sufficiently strong electric field and does not completely revert to its former shape when the electric field is deactivated. The refractive properties of the ophthalmic devices described herein are adjusted by exposing the devices to electric fields. |
US10663759B2 |
Ear-engaging and eye-covering head assembly
The present invention relates to an ear-engaging and eye-covering head assembly. The assembly includes a pair of ear-engaging members. The assembly includes an arcuate member connecting the ear-engaging members together. The assembly includes an eye protector operatively connected to the arcuate member and pivotable relative to the arcuate member. The assembly includes a protective cover connected to the arcuate member and shaped to receive the eye protector when the eye-covering member is pivoted upwardly towards the protective cover. |
US10663758B2 |
Spectacles with dual salon and traditional configurations
The multiuse eyeglasses include a frame that holds two lenses and arms that extend from the frame. The arms include a first axis of rotation that is generally perpendicular to the arms and a second axis of rotation that is orthogonal to the first axis of rotation and allows the arms to be rotated downwards relative to the frame. |
US10663756B2 |
Display apparatus
A display apparatus is disclosed. The display apparatus includes: at least one LED display unit including a plurality of LED display panels outputting image lights; a light guide unit including a plurality of in-coupling zones where the image lights are received and a single out-coupling zone to which the received image lights are guided; a plurality of in-coupling holographic optical elements (HOEs) arranged in the in-coupling zones to define the propagation path of the image lights through the light guide unit; and a plurality of out-coupling HOEs arranged in the out-coupling zone to define a path through which the image lights guided through the light guide unit are sent outside the light guide unit. |
US10663753B2 |
Shape memory alloy actuator arrangement
A shape memory alloy actuator arrangement for a movable element supporting a camera lens assembly comprises plural shape memory alloy actuator wires connected between a support structure and the movable element in an arrangement wherein the shape memory alloy actuator wires are arranged, on selective driving, to move the movable element relative to the support structure in any direction orthogonal to the optical axis of the at least one lens. At least one plain bearing bears the movable element on the support structure, allowing movement of the movable element relative to the support structure orthogonal to the optical axis. |
US10663752B2 |
Optical unit with shake correction function and manufacturing method therefor
An optical unit may include a movable body including a holder which holds an optical module on its inner side; a fixed body which swingably supports the movable body through a support mechanism; and a shake correction drive mechanism structured to swing the movable body. An end part on one side in an optical axis direction of the fixed body may be structured to be an opened end. The movable body may include a protruded part which is protruded to the one side in the optical axis direction through the opened end. The fixed body may include a swing restriction part at the opened end which is configured to abut with the protruded part when the movable body is swung to restrict a swing range of the movable body. |
US10663746B2 |
Collimator, optical device and method of manufacturing the same
According to various embodiments, a collimator includes a substrate defining a plurality of channels through the substrate. The substrate includes a first surface and a second surface opposite the first surface. Each of the channels includes a first aperture exposed from the first surface, a second aperture between the first surface and the second surface, and a third aperture exposed from the second surface. The first aperture and the third aperture are larger than the second aperture. |
US10663745B2 |
Optical system
Light emitting systems and optical systems including a light emitting system and a lens system are described. The light emitting system includes a pixelated light source having a plurality of discrete spaced apart pixels, and includes a plurality of light redirecting elements, each light redirecting element corresponding to a different pixel in the plurality of pixels. The light redirecting elements may be adapted to alter one or both of a central ray direction and a divergence angle of light received from the corresponding pixel. A lens system disposed to receive light from the light emitting system may include a reflective polarizer and a partial reflector. |
US10663743B2 |
Optical wavelength conversion module and illumination module
An optical wavelength conversion module including a substrate, a driving device, and a first phosphor material layer is provided. The first phosphor material layer is disposed on a first optical region of the substrate. A conversion beam generated by the first phosphor material layer is a yellowish green beam when a phosphor temperature of the first phosphor material layer is close to or equal to an ambient temperature. The conversion beam generated by the first phosphor material layer is a yellow beam when the phosphor temperature of the first phosphor material layer is close to or exceeds a preset temperature. The driving device is connected to the substrate. The driving device is adapted to drive the substrate to act when the optical wavelength conversion module is in an operating state, so that the yellow beam is emitted from the first optical region. An illumination module is also provided. |
US10663740B2 |
Content presentation in head worn computing
Aspects of the present invention relate to methods and devices for receiving and presenting content. In an example method, content is received, the content to be delivered to a plurality of recipients. Each recipient of the plurality of recipients has a preference for a respective first physical location at which the content is to be presented on a display of a wearable head device associated with the recipient. A sender of the content has a preference for a second physical location at which the content is to be presented to the respective recipient of the plurality of recipients. A respective final physical location for the presentation of the content for the respective recipient of the plurality of recipients is identified. The respective final physical location is based on the respective recipient's preference and the sender's preference. It is determined whether the respective recipient is proximate to a zone associated with the respective final physical location. In accordance with a determination that the respective recipient is proximate to the zone, an alert is generated on the wearable head device, the alert associated with the respective final physical location. It is determined whether the respective recipient is in the zone associated with the respective final physical location. In accordance with a determination that the respective recipient is in the zone, the content is caused to be presented to the respective recipient of the plurality of recipients. |
US10663735B2 |
Head-mounted display
A head-mounted display including a transparent display, a main liquid crystal lens and a first liquid crystal lens is provided. The transparent display is configured to emit an image light beam. The main liquid crystal lens is disposed near the transparent display. The transparent display is disposed between the main liquid crystal lens and the first liquid crystal lens. The first liquid crystal lens is configured to receive an ambient light beam. The head-mounted display allows at least a part of the image light beam emitted from the transparent display passing through a pupil by phase modulating of at least a part of the main liquid crystal lens. |
US10663732B2 |
Systems, devices, and methods for beam combining in wearable heads-up displays
Systems, devices, and methods for beam combining are described. A monolithic beam combiner includes a solid volume of optically transparent material having a planar input surface, an output surface, a planar reflector physically coupled to the solid volume, and at least a first planar dichroic reflector within the solid volume. Multiple light sources input light into the solid volume through the planar input surface such that each light beam from a respective source is initially incident on one of the planar reflector and the at least a first planar dichroic reflector. The light is reflected by and transmitted through the reflectors and an aggregate beam is created. Because the reflectors are within an optically transparent material the beam combiner can be made more compact than a conventional beam combiner. This monolithic beam combiner is particularly well suited for use laser projectors and in wearable heads-up displays that employ laser projectors. |
US10663731B2 |
Freeform projected display
A freeform projection display includes an optical emitter configured to output one or more wavelengths of light and an optical diffuser optically coupled to receive and disperse the one or more wavelengths of light from the optical emitter, wherein the optical diffuser has at least one radius of curvature. The freeform projection display further includes a refractive lens optically coupled to receive the one or more wavelengths of light from the optical diffuser and to project the one or more wavelengths of light. The freeform projection display further may include a light modulator disposed between the optical emitter and the optical diffuser, wherein the light modulator oscillates to project the image on the optical diffuser. An illuminated area of the optical diffuser is dimensioned so that the image produced by the light modulator fills an aperture of the refractive lens. |
US10663730B2 |
Head mounted display device
A head mounted display (HMD) device including a display configured to display an image; a communication processor configured to communicate with a massage chair for performing a massage; and a controller configured to receive massage information from the massage chair about the massage, and display an image on the display corresponding to the massage based on the received massage information. |
US10663722B2 |
Display device
The display device includes: a display unit that projects a light beam onto a windshield so that the light beam is reflected from the windshield such that one or more virtual images are displayed in a space further than the windshield in a depth direction through the windshield; and a controller that controls the display unit so that a first vertical image and a second vertical image included in the one or more virtual images and have different distances from the windshield in the depth direction, are displayed in a time-division manner. |
US10663721B2 |
Image display apparatus and object apparatus
An image display apparatus (1000) mounted on an object or attached to a human body, includes: an image forming unit (200) to form an image with light; an optical system including a curved mirror (9) that reflects the light forming the image toward a bent transmission and reflection member; and a rotator (310) to rotate the curved mirror (9) about a prescribed axis. A first projection image, which is a projection image on an XY plane of the image, forms an angle θ1 with respect to an X direction. A second projection image, which is a projection image on an XY plane of the prescribed axis, forms an angle θ2 with respect to the X direction. The X denotes a lateral direction of the object or the human body and the Y direction denotes a vertical direction of the object or the human body. |
US10663720B2 |
Optical lens
An optical lens of the present disclosure assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element, an optical filter and a sensor. The optical lens also has an axis. The first lens element, the fourth lens element and the sixth lens element have negative power. The second lens element, the third lens element and the fifth lens element have positive power. |
US10663719B2 |
Optical scanning device and image forming device provided with optical scanning device
An optical scanning device provided with a casing, a plurality of light sources, a deflection scanning unit that deflects and scans light beams from the plurality of light sources onto a plurality of bodies to be scanned, and a plurality of optical units arranged between the deflection scanning unit and the bodies to be scanned, in which optical unit supporting members that support the optical units are provided, the optical unit supporting members support the plurality of optical units arranged at predetermined intervals, and a thermal expansion coefficient of the optical unit supporting members is lower than a thermal expansion coefficient of the casing. |
US10663709B2 |
Optical device for microscopic observation
An optical device for microscopic observation 4 comprises: a cold stop 13 having openings 13d, 13e corresponding to a low-magnification microscope optical system 5 and being a stop member arranged in a vacuum vessel 12 to let the light from the sample S pass to the camera 3; a warm stop 10 having an opening 14 corresponding to a high-magnification microscope optical system 5 and being a stop member arranged outside the vacuum vessel 12 to let the light from the sample S pass toward the cold stop 13; and a support member 11 supporting the warm stop 10 so that the warm stop can be inserted to or removed from on the optical axis of the light from the sample S, wherein the warm stop 10 has a reflective surface 15 on the camera 3 side and wherein the opening 14 is smaller than the openings 13d, 13e. |
US10663707B2 |
Scanning microscope
A scanning microscope includes an objective and a scanning element that is adjustable for a time-variable deflection to guide a focused illumination beam across the sample in a scanning movement. A detection beam is guided across sensor elements of an image sensor in a movement which corresponds to the scanning movement of the focused illumination beam. A dispersive element of a predetermined dispersive effect arranged upstream of the image sensor spatially separates different spectral components of the detection beam from one another on the image sensor. A controller detects the time-variable adjustment of the scanning element, assigns the spatially separated spectral components of the detection beam to the sensor elements of the image sensor based on the detected time-variable adjustment, while taking into account the predetermined dispersive effect of the dispersive element, and individually reads out the sensor elements assigned to the spectral components. |
US10663706B2 |
Zoom optical system
A zoom optical system includes a first lens group, a position of which with respect to an imaging plane is adjustable, and including first and second lenses. The zoom optical system also includes a second lens group of which a position with respect to the imaging plane is adjustable and includes third to fifth lenses. The zoom optical system further includes a third lens group including a sixth lens. An object-side surface of the first lens is convex. |
US10663703B2 |
Zoom lens and image pickup apparatus
A zoom lens includes lens units whose interval between adjacent units is changed during zooming, wherein the lens units consist of, in order from an object side, a positive first unit, an negative intermediate lens group including a unit, a positive (n−1)-th unit, and a positive n-th unit, wherein the first unit moves during zooming, wherein an interval between the (n−1)-th and n-th units is smaller at telephoto end than at wide angle end, wherein the n-th unit includes positive lenses LPL made of a material having proper Abbe number, wherein the n-th lens unit includes a positive lens LPH arranged on the image side of the lenses LPL and made of a material having proper refractive index and wherein a distance between lens surfaces on the most-object side and on the most-image side of the n-th lens unit, and back focus at the wide angle end are properly set. |
US10663699B2 |
Zoom lens and imaging apparatus
The zoom lens consists of, in order from an object side, a first lens group having a positive power, a second lens group having a positive power, a third lens group having a negative power, a fourth lens group having a negative power, and a fifth lens group having a positive power. During zooming, the first lens group and the fifth lens group remain stationary, and the other lens groups move. The following conditional expression relating to a focal length f1 of the first lens group and a focal length f3 of the third lens group is satisfied: −10 |
US10663697B2 |
Optical path folding element, imaging lens module and electronic device
An optical path folding element includes an incident surface, a path folding surface and an exiting surface. The incident surface allows a light ray to pass into the optical path folding element. The path folding surface folds the light ray from the incident surface. The exiting surface allows the light ray to pass through and depart from the optical path folding element. At least one of the incident surface and the exiting surface includes an optical effective portion and at least one engaging structure symmetrically disposed around the optical effective portion. The engaging structure includes an annular surface portion and an inclined surface portion. The annular surface portion surrounds the optical effective portion, and the inclined surface portion is located between the annular surface portion and the optical effective portion. An angle between the annular surface portion and the inclined surface portion satisfies a specific condition. |
US10663693B2 |
Imaging optical lens assembly, imaging apparatus and electronic device
An imaging optical lens assembly includes seven lens elements, the seventh lens elements being, in order from an object side to an image side: a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element, and a seventh lens element. The first lens element with positive refractive power has an object-side surface being convex in a paraxial region thereof. The second lens element has negative refractive power. The seventh lens element has an image-side surface being concave in a paraxial region thereof and having a critical point in an off-axis region thereof. The image-side surface and an object-side surface of the seventh lens element are both aspheric. |
US10663692B2 |
Camera optical lens
The present disclosure discloses a camera optical lens. The camera optical lens includes, in an order from an object side to an image side, a first lens, a second lens having a positive refractive power, a third lens having a positive refractive power, a fourth lens, a fifth lens, and a sixth lens. The first lens is made of glass material, the second lens is made of plastic material, the third lens is made of glass material, the fourth lens is made of plastic material, the fifth lens is made of plastic material, and the sixth lens is made of plastic material. The camera optical lens further satisfies specific conditions. |
US10663691B2 |
Imaging devices having autofocus control in response to the user touching the display screen
The present disclosure describes imaging techniques and devices having improved autofocus capabilities. The imaging techniques can include actively illuminating a scene and determining distances over the entire scene and so that a respective distance to each object or point in the scene can be determined. Thus, distances to all objects in a scene (within a particular range) at any given instant can be stored. A preview of the image can be displayed so as to allow a user to select a region of the scene of interest. In response to the user's selection, the imager's optical assembly can be adjusted automatically, for example, to a position that corresponds to optimal image capture of objects at the particular distance of the selected region of the scene. |
US10663690B2 |
High precision and low cross-coupling laser steering
Disclosed is an adjustable mirror mount that is capable of adjusting a mirror in two axes with a high degree of precision and low cross-coupling. Long horizontal and vertical adjustment arms are used to allow the precision adjustment about both a horizontal axis and a vertical axis. |
US10663687B1 |
Fiber optic pigtail assembly
A fiber optic pigtail assembly that includes a plurality of optical fibers and at least one optical connector. The optical fibers each have a first end opposite a second end. The plurality of optical fibers are ribbonized together from the first end of each of the plurality of optical fibers partway toward the second end of each of the plurality of optical fibers and form a ribbonized end portion. The at least one optical connector is connected to the second end of each of the plurality of optical fibers. A loose portion of the plurality of optical fibers is positioned between the at least one optical connector and the ribbonized end portion. |
US10663685B2 |
Fiber optic cable packaging arrangement
A fiber optic enclosure assembly is disclosed herein. The assembly includes a fiber optic enclosure defining connection locations, a fiber optic cable extending from the connection locations of the fiber optic enclosure, and a covering defining a first axial end and a second axial end, the covering defining a throughhole extending from the first axial end to the second axial end, the throughhole extending along a central longitudinal axis of the covering, the covering defining a first cavity for receiving the fiber optic enclosure. A port extends from the first cavity to an outer surface of the covering, wherein the fiber optic cable extending from the connection locations can extend from the first cavity to the outer surface of the covering for wrapping around the outer surface of the covering. |
US10663682B2 |
Low shrink and small bend performing drop cable
Embodiments of an optical fiber cable are provided. The optical fiber cable includes at least one optical fiber, a buffer tube surrounding the at least one optical fiber, and at least one tensile element wound around the buffer tube. The at least one tensile element has a laylength of at least 200 mm. The optical fiber cable also includes an exterior jacket surrounding the tensile element. The exterior jacket is made up of at least one polyolefin, at least one thermoplastic elastomer, and at least one high aspect ratio inorganic filler. Further, the exterior jacket has an averaged coefficient of thermal expansion of no more than 120(10−6) m/mK. |
US10663680B2 |
Surface coupled laser and laser optical interposer
An example system includes a grating coupled laser, a laser optical interposer (LOI), an optical isolator, and a light redirector. The grating coupled laser includes a laser cavity and a transmit grating optically coupled to the laser cavity. The transmit grating is configured to diffract light emitted by the laser cavity out of the grating coupled laser. The LOI includes an LOI waveguide with an input end and an output end. The optical isolator is positioned between the surface coupled edge emitting laser and the LOI. The light redirector is positioned to redirect the light, after the light passes through the optical isolator, into the LOI waveguide of the LOI. |
US10663679B2 |
Assembly tool and optical fiber connector assembly method
An assembly tool for terminating an optical fiber with an optical fiber connector comprises a base having a connector cradle to hold said connector, a buffer clamp activation shuttle slideably disposed on the base to push a sleeve over a buffer clamp of the connector, and an activation mechanism pivotally mounted to the base. The activation mechanism includes an actuation lever to press a securing cap over a mechanical element in the connector, and a drive shaft coupled to the actuation lever. Moving the actuation lever from a first position to a second position activates the buffer clamp activation shuttle and presses the securing cap over the mechanical element. |
US10663668B2 |
Optical splitter
An optical splitter includes a housing, a diffraction grating, and an optical filter. An incidence unit and an emission unit are provided in the housing. The optical filter is disposed between the emission unit and the diffraction grating in the housing. An anti-reflection coating is formed on a surface of a filter main body of the optical filter on the emission unit side. Therefore, from light dispersed by the diffraction grating and having passed through the optical filter, light reflected at a back surface of the emission unit passes through the optical filter without being reflected by a back surface of the optical filter and is directed toward the inside of the housing. As a result, light having passed through the optical filter and having a wavelength other than a target wavelength is inhibited from being emitted from an emission slit of the emission unit. |
US10663667B2 |
Antireflective surface structures for active and passive optical fiber
A system and method for creating a random anti-reflective surface structure on an optical fiber including a holder configured to hold the optical fiber comprising a groove and a fiber connector, an adhesive material to hold the optical fiber in the holder and fill any gap between the optical fiber and the holder, a glass to cover the adhesive material and the optical fiber, and a reactive ion etch device. The reactive ion etch device comprises a plasma and is configured to expose an end face of the optical fiber to the plasma. The plasma is configured to etch a random anti-reflective surface structure on the end face of the optical fiber. |
US10663666B2 |
Flexible, low profile kink resistant fiber optic splice tension sleeve
This invention is a method and system for addressing structural weaknesses and geometric differentials introduced to a cable when splicing optic fibers. The apparatus and method utilize structurally integrated layers of protective polymers and bonding materials selected for strength and flexibility relative to their thickness. This results in an apparatus having a minimally increased circumference compared to the cable. The method and apparatus include one or more strengthening layers which allow the repaired cable substantially similar flexibility compared to the cable, but prevent formation of sharp bends or kinks. The strengthening layers also allow the repaired cable a resistance to tension similar to the original cable. The method and apparatus further include an outer layer having a geometric configuration which includes sloped terminating ends designed to prevent the reinforced area of the cable from being damaged by the force of objects or substances in contact with cable. |
US10663663B2 |
Spot-size converter for optical mode conversion and coupling between two waveguides
A spot-size converter includes a first part of a waveguiding structure to couple to a first waveguide to receive light from or transmit light to the first waveguide in a first propagation mode, wherein the first part of the waveguiding structure has a lower waveguiding structure with a varying effective refractive index that decreases away from the first waveguide; and a second part of the waveguiding structure to couple to a second waveguide to transmit light to or receive light from the second waveguide in a second propagation mode, the second part of the waveguiding structure includes an upper waveguiding structure with a plurality of high-index elements arranged therein, an overlap region is between the first part and the second part, the first propagation mode progressively transforms into the second propagation mode in the overlap region. |
US10663661B1 |
Apparatus for bonding wafers and an optically-transparent thin film made from the same
A novel apparatus for bonding of two polished substrates includes a plasma source in a ultra-high vacuum (UHV) chamber and a wafer-guiding element to control and guide wafers in the UHV chamber, where after a plasma activation process the wafers are guided and pressed against each other to form a covalent bond between wafer surfaces. The plasma activation process involves deposition of mono-layer or sub-monolayer metallic atom on the surface of substrates. After deposition of metallic layers, a high-force actuation presses the wafers and forms a covalent bond between the wafers. Then, the bonded wafer pair is ion-sliced or thinned to form single crystalline optical thin film. An annealing process oxidizes the deposited metallic layers and produces optically-transparent single crystalline thin film. An optical waveguide may be fabricated by this thin film while utilizing an electro-optic effect to produce optical modulators and other photonic devices. |
US10663657B2 |
Selective propagation of energy in light field and holographic waveguide arrays
Disclosed embodiments include an energy waveguide system having an array of waveguides and an energy inhibiting element configured to substantially fill a waveguide element aperture and selectively propagate energy along some energy propagation paths through the array of waveguides. In an embodiment, such an energy waveguide system may define energy propagation paths through the array of waveguides in accordance to a 4D plenoptic system. In an embodiment, energy propagating through the energy waveguide system may comprise energy propagation for stimulation of any sensory receptor response including visual, auditory, somatosensory systems, and the waveguides may be incorporated into a holographic display or an aggregated bidirectional seamless energy surface capable of both receiving and emitting two dimensional, light field or holographic energy through waveguiding or other 4D plenoptic functions prescribing energy convergence within a viewing volume. |
US10663654B2 |
Optical fiber filter of wideband deleterious light and uses thereof
Optical fiber filters and uses thereof are presented. In typical implementations, there is provided a FBG taking deleterious light out of a fiber core without reflecting it into the fiber core. It also allows the unhindered transmission of useful light at a wavelength outside of the spectral band covered by the deleterious light. The filter couples the incoming deleterious light to cladding modes propagating in the opposite direction without coupling the incoming useful light to core or cladding modes propagating in the opposite direction. The filter may for example be useful as a Raman or ASE filter in a laser cavity of other optical devices. |
US10663650B2 |
Lighting device
A lighting device is provided, including a housing, a light source module, a light guiding module, and a protective member. The housing has an accommodating space, and the light source module is disposed in the accommodating space. The light guiding module has a top surface, a bottom surface opposite to the top surface, a first lateral surface, and a second lateral surface opposite to the first lateral surface. The light from the light source module can be received by the top surface. The first and second lateral surfaces connect the top surface to the bottom surface. The protective member surrounds the first lateral surface, the bottom surface, and the second lateral surface. The opposite ends of the protective member are connected to the housing. |
US10663647B2 |
Backlight unit, display device and manufacturing method of display device
A backlight unit includes a light guide plate; a wavelength conversion member disposed on a surface of the light guide plate; and a housing which houses the wavelength conversion member and is fused to the light guide plate. |
US10663646B2 |
LED panel lighting system
A lighting device includes a frame having an access panel. At least one LED is coupled to an interior edge of the frame and a light guide panel is positioned in the frame such that an edge is in communication with the LED. At least one light injection optic is coupled to the LED and the edge of the light guide panel, and is configured to direct light from the LED toward the edge of the light guide panel. At least one reflector is coupled to the LED, and is configured to direct light from the LED toward the edge of the light guide panel. At least one reflective sheet is coupled to a rear surface of the light guide panel and at least one color conversion sheet is coupled to a front surface of the light guide panel. A cover is coupled to the rear of the frame. |
US10663644B2 |
Movable barrier opener with edge lit panel module
A movable barrier opener system is provided. The movable barrier opener system may include one or more edge lit panel modules. The one or more edge lit panel modules may include edge light sources that can be selectably illuminated by a controller of a movable barrier operator to communicate a system status to a user of the movable barrier opener system. |
US10663642B2 |
Backlight unit, display apparatus including the same and method of manufacturing the same
A display apparatus includes a display panel configured to display an image, a light guide member below the display panel, a light source adjacent to at least one surface of the light guide member, and an optical member between the light guide member and the display panel. The optical member includes a wavelength conversion layer configured to convert a wavelength band of incident light. A low refractive index layer between the wavelength conversion layer and the light guide member and including a plurality of pores, and an inorganic layer between the low refractive index layer and the wavelength conversion layer. A volume ratio occupied by the pores within the low refractive index layer increases as being closer to the light guide member. |
US10663641B2 |
Display panel and display device
The disclosure provides a display panel and a display device. The display panel includes an upper substrate (001) and a lower substrate (002) arranged opposite to each other, a liquid crystal layer (003), a waveguide layer (004), a plurality of grating coupling structures (005), and a plurality of electrode structures (006). The liquid crystal layer (003) is arranged between the upper substrate (001) and the lower substrate (002), and liquid crystal molecules in the liquid crystal layer (003) have a refractive index no with respect to o-polarized light, and a refractive index ne with respect to e-polarized light; the waveguide layer (004) is arranged on a side of the lower substrate (002) facing the upper substrate (001), and a refractive index of the waveguide layer (004) is at least greater than a refractive index of a film layer in contact with the waveguide layer (004); the plurality of grating coupling structures (005) are arranged and arrayed on a surface of the waveguide layer (004) on a side thereof facing the upper substrate (001); and the plurality of electrode structures (006) are arranged on sides of the grating coupling structures (005) facing the upper substrate (001) and are in correspondence to the grating coupling structures (005) in a one-to-one manner. The display and the display device can control a display grayscale. |
US10663637B2 |
Optically variable film, apparatus and method for making the same
An apparatus for producing an optically variable film includes a laser configured to emit a beam, a telescoping lens section having a first lens and a second lens spaced apart by a first distance and an interferometer configured to direct the beam toward a workpiece. The laser may be operated at a predetermined power level and the first and second lenses are sized and spaced relative to one another to direct the beam onto the workpiece at about 200-230 dots per inch. The workpiece may include a polyethylene terephthalate (PET) layer configured to be ablated by the beam, forming a microstructure in the surface of the layer. The microstructure may be randomized and used to present non-chroma visual effects. |
US10663635B2 |
Optical film, shaping film, method for manufacturing optical film, and method for manufacturing stretched film
The present invention provides an optical film containing an additive. The optical film includes a high concentration portion containing the additive, and a low concentration portion containing the additive at a concentration lower than the high concentration portion. The low concentration portion is provided on both sides of the high concentration portion in a thickness direction of the optical film, and the low concentration portion is provided on both sides of the high concentration portion in a width direction of the optical film. |
US10663633B2 |
Aperture design and methods thereof
A method for performing DBO measurements utilizing apertures having a single pole includes using a first aperture plate to measure X-axis diffraction of a composite grating. In some embodiments, the first aperture plate has a first pair of radiation-transmitting regions disposed along a first diametrical axis and on opposite sides of an optical axis that is aligned with a center of the first aperture plate. Thereafter, in some embodiments, a second aperture plate, which is complementary to the first aperture plate, is used to measure Y-axis diffraction of the composite grating. By way of example, the second aperture plate has a second pair of radiation-transmitting regions disposed along a second diametrical axis and on opposite sides of the optical axis. In some cases, the second diametrical axis is substantially perpendicular to the first diametrical axis. |
US10663628B1 |
Cloaking devices with fresnel mirrors and plane mirrors and vehicles comprising the same
A cloaking device includes an object-side, an image-side, a cloaked region between the object-side and the image-side, and a reference optical axis extending from the object-side to the image-side. A plurality of object-side Fresnel mirrors, a plurality of image-side Fresnel mirrors and a planar reflection boundary positioned between the plurality of object-side Fresnel mirrors and the plurality of image-side Fresnel mirrors are included. Each of the Fresnel mirrors comprises an outward facing reflection surface. Light from an object positioned on the object-side of the cloaking device and obscured by the cloaked region is redirected around the cloaked region by the plurality of object-side Fresnel mirrors, the planar reflection boundary and the plurality of image-side Fresnel mirrors to form an image of the object on the image-side of the cloaking device such that the light from the object appears to pass through the cloaked region. |
US10663624B2 |
Method for creating a nanostructure in a transparent substrate
A method for creating a nanostructure in a transparent substrate, including a) applying a first structure carrier layer having a defined thickness onto at least one surface of the substrate; b) forming a nanostructure in the first structure carrier layer; and c) oxidizing the first structure carrier layer. |
US10663623B2 |
Anti-reflective film
Disclosed herein is an anti-reflective film comprising: a hard coating layer; and a low-refractive layer containing a binder resin and hollow inorganic nanoparticles and solid inorganic nanoparticles which are dispersed in the binder resin, wherein a ratio of an average particle diameter of the solid inorganic nanoparticles to an average particle diameter of the hollow inorganic nanoparticles is 0.26 to 0.55, and wherein at least 70 vol % of the entire solid inorganic nanoparticles are present within a distance corresponding to 50% of an entire thickness of the low-refractive layer from the interface between the hard coating layer and the low-refractive layer, and an anti-reflective film comprising: a hard coating layer containing a binder resin containing a photocurable resin, and organic or inorganic fine particles dispersed in the binder resin; and a low-refractive layer containing a binder resin and hollow inorganic nanoparticles and solid inorganic nanoparticles which are dispersed in the binder resin, wherein a ratio of an average particle diameter of the solid inorganic nanoparticles to an average particle diameter of the hollow inorganic nanoparticles is 0.15 to 0.55, and wherein at least 70 vol % of the entire solid inorganic nanoparticles are present within a distance corresponding to 50% of an entire thickness of the low-refractive layer from the interface between the hard coating layer and the low-refractive layer. |
US10663617B2 |
Systems and methods for monitoring radiation in well logging
A downhole tool includes a radiation generator configured to output radiation using electrical power received from a power supply. A first portion of the radiation is emitted into a surrounding sub-surface formation. The downhole tool also includes a radiation detector coupled proximate the radiation generator. The radiation detector includes a micromesh gaseous detector, and the radiation detector is configured to output a measurement signal based at least in part on interaction between a second portion of the radiation output by the radiation generator and the radiation detector. Additionally, the downhole tool includes a control system communicatively coupled to the radiation generator and the radiation detector. The control system is configured to determine measured characteristics of the radiation output from the radiation generator based at least in part on the measurement signal and to control operation of the radiation generator based at least in part on the measured characteristics. |
US10663613B2 |
Apparatus and methods for detecting obscured features
Obscured feature detectors are disclosed. An obscured feature detector includes a sensor plate array including three or more sensor plates, each of the three or more sensor plates configured to form a first end of a corresponding electric field and to take a sensor reading of the corresponding electric field. The corresponding electric field varies based on a proximity of the sensor plate to one or more surrounding objects and on a material property of each of the one or more surrounding objects. The three or more sensor plates include a first sensor plate that has a first shape and a second sensor plate that has a second shape that is different from the first shape of the first sensor plate. The obscured feature detector also includes one or more common plates to form a second end of the corresponding electric field of the three or more sensor plates. |
US10663612B2 |
Real-time determination of mud slowness, formation type, and monopole slowness picks in downhole applications
An acoustic logging system identifies hydrocarbon formation types by a real-time model-constrained mud wave slowness determination method using borehole guided waves. The system also combines data processing from different acoustic waveform processing techniques using an information sharing procedure, for example, using monopole source data and dipole source data, to further improve the processing results and to achieve more stable and reliable real-time shear slowness answers. |
US10663611B2 |
Methods and systems for non-contact vibration measurements
Methods and systems of measuring acoustic signals via a borehole wall are disclosed. One or more non-contact magneto-dynamic sensors are configured or designed for deployment at at least one depth in a borehole. The magneto-dynamic sensor comprises a coil excited by an electric current and a circuitry for outputting a signal corresponding to a time-varying impedance of the coil. A processor is configured to perform signal processing for deriving at least one of a magnitude or a frequency of vibration of the borehole wall based on the output signal from the circuitry. |
US10663606B2 |
Detector systems for integrated radiation imaging
Detector systems for enhanced radiographic imaging incorporate Compton and PET imaging capabilities. The detector designs employ one or more layers of detector modules comprised of edge-on or face-on detectors, or a combination of edge-on and face-on detectors, which may employ structured detectors. The detectors implement tracking capabilities and operate in a non-coincidence or coincidence detection mode. |
US10663599B2 |
Joint non-coherent integral vector tracking method based on spatial domain
The present invention discloses a joint non-coherent integral vector tracking method based on a spatial domain, which is used for further improving the performance of a vector tracking GPS (Global Positioning System) receiver. In a new vector tracking strategy design, a phase discriminator/a frequency discriminator in a traditional vector tracking loop is discarded, and baseband signals of visible satellites in each channel are taken as an observation value after performing non-coherent integration, and EKF (abbreviation of Extended Kalman Filter) is used to estimate directly and to solve the position, the velocity, a clock error, etc. of the GPS receiver. Because of the existence of non-coherent integral calculation, when GPS satellite signals are relatively weak, a carrier to noise ratio of an observation value may be effectively improved, and the tracking sensitivity is improved. |
US10663598B2 |
Electronic device, date-and-time acquisition control method, and recording medium
Provided is an electronic device includes an oscillator circuit that outputs a clock signal of predetermined frequency, a clock circuit that counts date and time in accordance with input of the clock signal, a temperature sensor that measures a temperature relating to a change of the predetermined frequency, a receiver that receives a radio wave from a positioning satellite, and a first processor and/or a second processor. The first processor and/or the second processor estimates an amount of time count difference in date and time counted by the clock circuit on the basis of a history of temperatures measured by the temperature sensor, and combines date and time counted by the clock circuit, the estimated amount of time count difference, and part of date-and-time information obtained from a radio wave received by the receiver to identify current date and time. |
US10663590B2 |
Device and method for merging lidar data
A device and method for merging lidar data is provided. Point cloud data is combined, via a lidar imaging controller, into a common point cloud data set, each set of point cloud data representing respective angular lidar scans of a region as at least two lidar devices are moved relative to the region of a shelf. The respective angular lidar scans from each lidar device occur at a non-zero and non-perpendicular angle to a movement direction. Common point cloud data set points are binned into a plane perpendicular to the movement direction of a mobile automation apparatus and extending from a virtual lidar position. The lidar imaging controller combines points among multiple planes. |
US10663581B2 |
Detection systems and methods using ultra-short range radar
An ultra-short range radar (USRR) system of a vehicle includes an object detection module configured to, based on radar signals from USRR sensors of the vehicle: identify the presence of an object that is external to the vehicle; determine a location of the object; and determine at least one of a height, a length, and a width of the object. A remedial action module is configured to, based on the location of the object and the at least one dimension of the object, at least one of: selectively actuate an actuator of the vehicle; selectively generate an audible alert via at least one speaker of the vehicle; and selectively generate a visual alert via at least one light emitting device of the vehicle. |
US10663580B2 |
Radar signal processing device
A highly accurate object identification is performed. A first feature quantity related to a relative distance and a relative speed to an object, the direction and the reflection intensity of the object, which are extracted by a first feature quantity extraction block, is made identical in time series in a data storage processing block; a second feature quantity is extracted in a second feature quantity extraction block; and a category of the object is determined by an object determination block on the basis of an attribution degree to the distribution of the second feature quantity related to a predetermined category calculated by an attribution degree calculation block. |
US10663579B2 |
Extending footprint for localization using surface penetrating radar (SPR)
A method for extending a surface penetrating radar (SPR) footprint for performing localization with an SPR system is disclosed. The method may include may include transmitting at least one SPR signal from at least one SPR transmit element. The method may further include receiving a response signal via at least two SPR receive elements, the response signal including, at least in part, a reflection of the SPR signal from an object. The method may also include determining that the object is in a region of interest outside a footprint of the SPR system based on a difference in phase at which the response signal is received at the at least two SPR receive elements. The method may additionally include performing localization of a vehicle using the SPR system based at least in part on the object. |
US10663578B2 |
Apparatus and method for detecting target
Provided is a target detecting apparatus including: a frequency modulation continuous wave (FMCW) radar that obtains a first beat signal; a linear frequency intensity modulation (LFIM) light detection and ranging (LiDAR) that transmits a second transmission signal obtained by modulating intensity of a continuous wave laser based on an FMCW signal and obtains a second beat signal based on a microwave signal into which a second reception signal reflected from a target is converted and the FMCW signal; and a controller that receives the first beat signal and the second beat signal and obtains information regarding the target based on the first beat signal and the second beat signal. |
US10663577B1 |
Electro optical and radio frequency fusion for threat detection
A data fusion system for combining and parsing data from multiple EO and RF threat warning systems, the system including a plurality of input systems capable of providing feature-level data about an environment in which they are operating. Each input system may be configured to output information regarding its capabilities and the environment in which it is operating. A fusion block is placed in operative communication with the plurality of input systems and battlespace information and configured to algorithmically combine the data and determine the presence or absence of a threat. An output may be placed in operative communication with the fusion block, thereby allowing the fusion block to provide information and/or notifications to the relevant parties and/or systems. |
US10663575B2 |
Off-road dump truck and obstacle discrimination device
An off-road dump truck includes a vehicle body, a peripheral recognition device, and an obstacle discrimination device. The peripheral recognition device detects obstacle candidates in front of the vehicle body. The obstacle discrimination device classifies the obstacle candidates, which were detected by the peripheral recognition device, into obstacles and non-obstacles and outputs, as obstacles, the obstacle candidates classified as obstacles. The obstacle discrimination device includes a travel state determination section, a distance filter section, and a reflection intensity filter section. The travel state determination section determines whether each obstacle candidate is a moving object or a stationary object. The distance filter section compares a distance, where the stationary object was first detected, with a distance threshold. The reflection intensity filter section calculates statistical information based on reflection intensity information on the obstacle candidate, and based on a comparison result of the statistical information with a threshold, classifies the obstacle candidate. |
US10663571B2 |
Radar system and associated apparatus and methods
A multi-static radar system provides surveillance. The radar system includes a plurality of radar receivers and a plurality of radar transmitters arranged in a multi-static configuration to form at least one radar cell to provide an area of radar coverage within the cell. |
US10663569B2 |
Localization systems and methods using communication protocols with open channels and secure communication connections
Localization systems and methods are provided and include a first sensor configured to perform wireless communication with a portable device using a communication protocol that allows for communication over open advertising communication channels and that allows for communication using a secure communication connection. The first sensor communicates with the portable device using the secure communication connection and seconds sensor communicate with the portable device by transmitting or receiving broadcast signals over the open advertising communication channels. A control module receives first signal information about signals transmitted or received by the first sensor and second signal information about signals transmitted or received by the second sensors and determines a location of the portable device based on the first signal information and the second signal information. The first signal information and the second signal information include received signal strength indicator information, angle of arrival information, and/or time difference of arrival information. |
US10663566B2 |
Phase compensation in a time of flight system
Systems and methods are provided for imaging a surface via time of flight measurement. An illumination system includes an illumination driver and an illumination source and is configured to project modulated electromagnetic radiation to a point on a surface of interest. A sensor system includes a sensor driver and is configured to receive and demodulate electromagnetic radiation reflected from the surface of interest. A temperature sensor is configured to provide a measured temperature representing a temperature at one of the illumination driver and the sensor driver and located at a position remote from the one of the illumination driver and the sensor driver. A compensation component is configured to calculate a phase offset between the illumination system and the sensor system from at least the measured temperature and a model representing transient heat flow within the system. |
US10663564B2 |
Cross-talk mitigation using wavelength switching
A lidar system includes a lighting module configured to (i) select a wavelength from among a plurality of wavelength values, for a particular time period, and (ii) emit light at the selected wavelength. The lighting module emits light at different wavelengths during at least two adjacent periods of time. The lidar system further includes a scanner configured to direct the pulse of light to illuminate a respective region within a field of regard of the lidar system and a receiver module configured to (i) receive a light signal and (ii) determine whether the received light signal includes the light emitted by the lighting module and scattered by a remote target, based at least in part on the wavelength selected by the lighting module. |
US10663549B2 |
Compressed sensing reconstruction for multi-slice and multi-slab acquisitions
A method for acquiring a three-dimensional image volume using a magnetic resonance imaging device includes performing a multi-slice or multi-slab acquisition process to acquire a plurality of slices or three-dimensional slabs corresponding to an imaged object. Each respective slice or three-dimensional slab included in the plurality of slices or three-dimensional slabs comprises k-space data. An iterative compressed-sensing reconstruction process is applied to jointly reconstruct the plurality of three-dimensional slabs as a single consistent volume. The iterative compressed-sensing reconstruction process solves a cost function comprising a summation of individual data fidelity terms corresponding to the plurality of three-dimensional slabs. |
US10663548B2 |
System and method for magnetic resonance imaging
A method for contrast agent enhanced magnetic resonance imaging (MRI) of a target sample, comprising generating a magnetic field shift in a polarizing magnetic field during a relaxation portion of an MRI pulse sequence and thereafter acquiring an MR image. |
US10663543B2 |
Device and method for recovering a temporal reference in free-running MR receive chains
A device for recovering a temporal reference in a free-running magnetic resonance tomography (MRT) receive chain includes a time reference encoder and a time reference decoder. The time reference encoder is configured to generate a modulation signal as a function of a reference clock, where the modulation signal is configured for a correlation with a temporal resolution less than a maximum predetermined phase deviation and a maximum that may clearly be identified. The time reference decoder is configured to receive, via the first signal input, a receive signal as a function of the modulation signal, perform a correlation with a reference signal, and generate a signal as a function of a temporal reference of the modulation signal in the receive signal in relation to the reference signal. |
US10663538B2 |
Monitoring of a temporal change in a magnetic field in a magnetic resonance device
A method for monitoring a temporal change in a magnetic field in a magnetic resonance device, as well as an evaluation unit, a magnetic resonance device, and a computer program product for performing the method are provided. The method provides that a position-dependent magnetic field distribution that is produced by the plurality of gradient coils is provided with a plurality of monitoring points. In addition, time-dependent gradient values of the plurality of gradient coils are ascertained. Based on position-dependent magnetic field distribution and the time-dependent gradient values, the temporal change in the magnetic field is ascertained. The temporal change in the magnetic field is monitored by comparing the temporal change in the magnetic field with at least one limit value. |
US10663536B2 |
Magnetoresistive sensor wafer layout used for a laser writing system, and corresponding laser scanning method
A magnetoresistive sensor wafer layout scheme used for a laser writing system and laser scanning method are disclosed. The layout scheme comprises a magnetoresistive multilayer film including an antiferromagnetic pinning layer arranged into a rectangular array of sensor dice on the wafer surface. Pinning layers of magnetoresistive sensing units are magnetically oriented and directionally aligned by the laser writing system. Sensing units are electrically connected into bridge arms electrically connected into a magnetoresistive sensor. Magnetoresistive sensing units in the dice are arranged into at least two spatially-isolated magnetoresistive orientation groups. In the magnetoresistive orientation groups, pinning layers of the sensing units have an angle of magnetic orientation of 0-360 degrees. Angles of magnetic orientation of two adjacent magnetoresistive orientation groups are different. Each orientation group is adjacent to an orientation group with the same angle of magnetic orientation in at least one adjacent die. |
US10663533B2 |
Calibration of a current sensor
An apparatus for calibrating a sensor unit is provided, wherein the sensor unit includes a sensor housing, a first magnetic sensor and a second magnetic sensor, wherein the first magnetic sensor is adapted to detect magnetic field components in a first direction, wherein the second magnetic sensor is adapted to detect magnetic field components in a second direction, wherein the first direction is not parallel to the second direction. The apparatus further includes a magnetic field generating device, which is adapted so that at least one magnetic field acts on the sensor unit, wherein the calibration of the sensor unit can be carried out with the aid of responses of the first magnetic sensor and of the second magnetic sensor to the magnetic field. A corresponding calibration method is furthermore provided. |
US10663532B2 |
Method of testing cable shield performance
An example method of testing a shielded cable couples an excitation signal to the shielded cable at an end of a shielded cable, determines one or more resonant frequencies of the shielded cable based on a response of the shielded cable to the excitation signal, and determines that a shielding of the shielded cable has degraded based on a change in the one or more resonant frequencies. A system for testing a shielded cable is also disclosed. |
US10663531B2 |
Digital short detection method of class D amplifier
An apparatus detects a short of a class-D amplifier. A pulse detector detects an output PWM pulse exceeds a predetermined width and a controller differentiates whether the pulse width exceeding is caused by a short or by a large digital input signal occurring during normal operation based on an expected level of the digital input signal to a level of the digital input signal when the pulse width exceeds the predetermined width. The expected level is dynamically obtained in response to one or more previous PWM pulses exceeding the predetermined width during the normal operation and may be selected based on an amount the pulse exceeds the predetermined width. A lookup table of predetermined levels, selected based on impedance of a load, provides the expected level if the expected level has not yet been dynamically obtained when the pulse width exceeds. |
US10663530B2 |
Test switch assembly having an electronic circuit
A test switch assembly electrically coupled with an electronic module. The electronic module is designed with intelligent sophisticated circuitry that facilitates the transmission and/or the detection of currents and/or voltages between a protective relay and current or voltage transformers. In one embodiment, the electronic test switch senses, detects, monitors, analyzes and/or stores electrical signals and outputs this information to standalone displays, computers. RTU, or similar devices, through wired or wireless connections. The electronic module also allows the test switch to accept electrical connectors such as RJ45, USB, RCA, and/or BNC, among others. |
US10663527B2 |
Non-contact voltage detector
A voltage detector includes a cylindrical hollow body housing including an open end and a tool end. An internal circuit assembly includes a voltage sensing loop, a flashlight, and a microprocessor. The internal circuit assembly is disposed inside the cylindrical hollow body housing. The voltage sensing loop is configured to detect voltage without contacting a detected voltage, and the microprocessor is configured to control power to the flashlight via a flashlight power button independently from power to the voltage sensing loop via a voltage detector button. |
US10663526B2 |
Battery management terminal and battery management system
A battery management terminal is for a secondary battery mounted on a device. The battery management terminal includes a second electronic control unit and an inform unit. The second electronic control unit is configured to, at the time when the secondary battery is replaced, acquire a historical information of an evaluation value of the secondary battery before replacement from the first electronic control unit. The second electronic control unit is configured to determine required characteristics required of a replacement secondary battery on the basis of the historical information of the evaluation value. The inform unit is configured to inform the required characteristics determined by the second electronic control unit. |
US10663524B2 |
Battery state estimating apparatus
A battery state estimating apparatus includes an updating unit. The updating unit updates a charge-transfer impedance model in a battery model of a secondary battery, which is a series connection of a DC resistance model, a charge-transfer impedance model, and an diffusion impedance model, using the amount of change in a measurement value of a current flowing through the secondary such that a first relationship between the current flowing through the secondary battery and a voltage across the charge-transfer resistance approaches a second relationship between an actual value of the current and an actual value of the voltage across the charge-transfer resistance. The first relationship between the current flowing through the secondary battery and the voltage across the charge-transfer resistance is defined based on the Butler-Volmer equation. A state estimator estimates a state of the secondary battery based on the battery model including the updated charge-transfer impedance model. |
US10663523B2 |
Remaining stored power amount estimation device, method for estimating remaining stored power amount of storage battery, and computer program
This remaining stored power amount estimation device 3 includes: sensors 5, 6 for observing the state of the storage battery 2; and a remaining amount estimation unit 15 which, on the basis of a state vector xk representing the state of the storage battery 2 by a plurality of elements included in an equivalent circuit model 20 modeling the storage battery 2, and an observation vector yk representing an observed value based on the observation result, updates the state of the storage battery 2, using a Kalman filter, and estimates the SOC of the storage battery 2. The remaining amount estimation unit 15 changes the internal impedance of the storage battery 2 modeled by the equivalent circuit model 20, in accordance with values influencing the internal impedance. |
US10663521B2 |
Method and device for ascertaining required charging time
A method and a device are provided for ascertaining the time required to fully charging a battery of the device. The device ascertains the type of power supply being used when charging the device by ascertaining the time required to fully charge the device based on a historical charging speed and an empirical charging speed corresponding to the power supply's type. Using the method and device provided by the present disclosure can ascertain the required charging time with more accuracy. |
US10663519B2 |
Motor winding fault detection circuits and methods to detect motor winding faults
An example fault detection circuit includes: a positive sequence voltage calculator to calculate a positive sequence voltage value for a three-phase motor; a positive sequence current calculator to calculate a positive sequence current value for the three-phase motor; an interpolator to calculate an expected negative sequence voltage value based on the positive sequence voltage value, the positive sequence current value, and measured characteristics of the three-phase motor; a negative sequence voltage calculator to calculate a measured negative sequence voltage value for the three-phase motor; and a fault detector to detect that a winding fault exists in the three-phase motor when a difference between the expected negative sequence voltage value and the measured negative sequence voltage value satisfies a threshold. |
US10663512B2 |
Testing of semiconductor chips with microbumps
A device includes a test pad on a chip. A first microbump has a first surface area that is less than a surface area of the test pad. A first conductive path couples the test pad to the first microbump. A second microbump has a second surface area that is less than the surface area of the test pad. A second conductive path couples the test pad to the second microbump. |
US10663508B1 |
Vehicle light tester
The vehicle light tester is a testing instrument configured for use with a trailer. The trailer comprises a plurality of operating lights and a trailer port. The trailer port attaches the plurality of operating lights to a vehicle electric power system. The vehicle light tester attaches to the trailer port of the trailer. The vehicle light tester provides electrical power to the plurality of operating lights. The vehicle light tester further simulates the control signals that operate the plurality of lights. The vehicle light tester allows for testing of the operation of a plurality of operating lights without requiring the trailer port to be connected to the vehicle electric power system. The vehicle light tester further allows for the flashing of the plurality of operating lights in an emergency situation. The vehicle light tester comprises a housing and a testing circuit. The housing contains the testing circuit. |
US10663504B2 |
Field-biased second harmonic generation metrology
Various approaches can be used to interrogate a surface such as a surface of a layered semiconductor structure on a semiconductor wafer. Certain approaches employ Second Harmonic Generation and in some cases may utilize pump and probe radiation. Other approaches involve determining current flow from a sample illuminated with radiation. Decay constants can be measured to provide information regarding the sample. Additionally, electric and/or magnetic field biases can be applied to the sample to provide additional information. |
US10663503B2 |
Methods and devices for determining a phase to which a receiver device is connected in a polyphase electric power supply system
A polyphase electric power supply system via which powerline communications are set up between a transmitter and a receiver. The transmitter: detects a first zero-crossing of an alternating electrical signal on a phase connected to the transmitter; determines a first instance when the transmitter is expected to transmit a dataset; determines a first time difference between the first zero-crossing and the first instance; includes in the data set information of the phase to which the transmitter is connected, when the first time difference is below a predefined threshold. The receiver: detects a second zero-crossing of the alternating electrical signal on the phase connected to the receiver; detects a second instant when the receiver receives the data set; determines a second time difference between the second zero-crossing and the second instant; determines the phase connected to the receiver, from the second time difference and the transmitter phase information. |
US10663500B2 |
System and method for estimating photovoltaic energy generation through linearly interpolated irradiance observations with the aid of a digital computer
The accuracy of photovoltaic simulation modeling is predicated upon the selection of a type of solar resource data appropriate to the form of simulation desired. Photovoltaic power simulation requires irradiance data. Photovoltaic energy simulation requires normalized irradiation data. Normalized irradiation is not always available, such as in photovoltaic plant installations where only point measurements of irradiance are sporadically collected or even entirely absent. Normalized irradiation can be estimated through several methodologies, including assuming that normalized irradiation simply equals irradiance, directly estimating normalized irradiation, applying linear interpolation to irradiance, applying linear interpolation to clearness index values, and empirically deriving irradiance weights. The normalized irradiation can then be used to forecast photovoltaic fleet energy production. |
US10663499B2 |
Power detection circuit for tracking maximum power point of solar cell and method thereof
Provided is a power detection circuit for tracking a maximum power point of a solar cell. The power detection circuit includes: an average voltage extracting unit which extracts an average voltage VPV,LPF from an external voltage VPV input from an external energy source; a ripple voltage extracting unit which extracts a ripple voltage including current information of the external voltage VPV from the external voltage VPV; a voltage-time converter which generates a ramp voltage VRAMP changing at a predetermined rate and converts the average voltage VPV,LPF and the ripple voltage into corresponding time information Δt1 and Δt2 based on the ramp voltage VRAMP; a time-digital converter which converts the time information Δt2 for the ripple voltage into a digital code t2 [n:0]; and a time multiplier which multiplies the digital code t2 [n:0] and the time information Δt1 for the average voltage VPV,LPF to output a specific voltage value. |
US10663496B2 |
Cable error signal
A computing device in tiding a data port for receiving power. A detector can determine if a cable attached to the data port is capable of providing power greater than a threshold level to the computing device. A controller can generate an error signal to alert a user that the cable does not provide power over the threshold level to the computing device. |
US10663495B2 |
Averaging unit and measuring apparatus
An averaging unit includes: a plurality of sensor connectors to which current sensors are detachably connected; an averager that generates an averaged signal for at least two detection voltage signals outputted from the current sensors connected to the sensor connectors; and an outputter that outputs the averaged signal. |
US10663494B2 |
Optical Pockels voltage sensor assembly device and methods of use thereof
An optical voltage sensor assembly includes an input fiber-optic collimator positioned and configured to collimate input light beam from a light source. A crystal material is positioned to receive the input light beam from the light source and configured to exhibit the Pockels effect when an electric field is applied through the crystal material. An output fiber-optic collimator is positioned to receive an output light beam from the crystal material and configured to focus the output light beam from the crystal onto a detector. Methods of using the optical voltage sensor assembly are also disclosed. |
US10663492B2 |
Current sensor
To provide a current sensor with high sensitivity, provided is a current sensor including a sealing portion; a first conductor that includes a bent portion bent in a planar view within the sealing portion and two end portions that are exposed from the sealing portion; a second conductor that includes a bent portion bent in the planar view within the sealing portion and two end portions that are exposed from the sealing portion; a first magnetic sensor that is provided within the sealing portion and arranged inside the first conductor in the planar view; and a second magnetic sensor that is provided within the sealing portion and arranged inside the second conductor in the planar view, wherein one end portion of the first conductor and one end portion of the second conductor are electrically connected. |
US10663486B2 |
Portable electrical noise probe structure
An apparatus includes a carrier base and one or more contact elements coupled to a portion of the carrier base. The one or more contact elements are configured to sense an electrical signal flowing through at least one electrical component in a circuitry under test. The first contact element of the one or more contact elements comprises a power sense conductor extending from a bottom surface of the first contact element toward a top surface of the first contact element and a ground conductor electrically isolated from the power sense conductor. |
US10663483B2 |
Method and apparatus of using peak force tapping mode to measure physical properties of a sample
Methods and apparatuses are provided for automatically controlling and stabilizing aspects of a scanning probe microscope (SPM), such as an atomic force microscope (AFM), using Peak Force Tapping (PFT) Mode. In an embodiment, a controller automatically controls periodic motion of a probe relative to a sample in response to a substantially instantaneous force determined and automatically controls a gain in a feedback loop. A gain control circuit automatically tunes a gain based on separation distances between a probe and a sample to facilitate stability. Accordingly, instability onset is quickly and accurately determined during scanning, thereby eliminating the need of expert user tuning of gains during operation. |
US10663482B2 |
Accelerometer leveling in an actively controlled vehicle suspension
In an aspect, in general, a system and method compensate for a misalignment characteristic of one or more acceleration sensors fixed to a sprung mass of a vehicle, each acceleration sensor having a location on the vehicle and a desired orientation relative to the vehicle. |
US10663480B2 |
Physical quantity sensor, electronic apparatus, and vehicle
A physical quantity sensor includes: a movable body; a support that supports the movable body via a coupler; a substrate that is disposed so as to overlap the movable body in a plan view and is provided with a first fixed electrode and a second fixed electrode thereon along a first direction orthogonal to a longitudinal direction of the coupler; a third fixed electrode that does not overlap the movable body in the plan view, is electrically connected with any one of the first fixed electrode and the second fixed electrode, and is provided on the substrate; and a first dummy electrode that is disposed next to the third fixed electrode in the plan view, is at the same potential as the movable body, and is provided on the substrate. |
US10663475B2 |
Use and treatment of di-amino acid repeat-containing proteins associated with ALS
Disclosed herein are methods and compositions for identifying and/or treating subjects having or likely to have amyotrophic lateral sclerosis (ALS) or frontotemporal dementia (FTD). Antibodies specific for one or more di-amino acid repeat-containing proteins are also provided herein. |
US10663468B2 |
High throughput methods for virus quantification
This invention relates to high throughput methods of determining a viral titer. The instant invention addresses the need for a more rapid and cost effective method of quantitating infectious viral particles in a sample. |
US10663462B2 |
Method of treating vascular insulin resistance in a normoglycemic subject based on biomarkers
The invention provides compositions and methods for determining insulin resistance and/or pancreatic β-cell dysfunction in a subject. The invention also provides compositions and methods for treating a subject according to the insulin resistance and/or pancreatic β-cell dysfunction in the subject. |
US10663461B2 |
Screening method
A method of screening a plurality of fluid samples for the presence of species capable of specifically binding to a binding partner immobilized on a sensing surface of a sensor is disclosed. The method comprises contacting each sample with the sensing surface and a reference surface, and subjecting the sensing surface responses obtained for all samples to a computational process which comprises fitting al responses to a model equation for the relationship between a response at the sensing surface and the corresponding response at the reference surface. In an iterative process residuals above a pre-determined threshold value are removed, the model equation is adjusted, and all remaining samples are refitted to the adjusted model equation until the model equation at least substantially converges. Residuals above the predetermined threshold value are considered as species specifically binding to the binding partner. The method may be computer-implemented, and a computer program product therefore comprises instructions for causing a computer to perform the computational process. |
US10663458B2 |
Method and kit for determination of free copper in serum
The present invention relates to a new method for the determination of free copper in serum. In particular to a method with a high degree of sensitivity and accuracy for the determination of free copper in serum samples of patients with Alzheimer's disease and Wilson's disease and other forms of free copper dyshomeostasis. The invention also relates to kits for the determination of free copper in serum comprising filter devices and coumarin fluorescent probe. |
US10663455B2 |
Transcription biomarkers of biological responses and methods of use
This invention provides transcription regulatory control sequences, the activity of which function as biomarkers for a variety of biological responses. This invention also provides expression constructs in which a biomarker transcription regulatory sequence is operably linked with a sequence for a reporter. Cells that comprise these expression constructs can be used in assays to identify conditions that modulate activity of the biological response. |
US10663450B2 |
Amorphous, porous silicon materials and related methods
Provided herein are Si-based materials, methods of making the Si-based materials, and methods for using the Si-based materials. In embodiments, a silicon-based material comprises an aggregate of particles, the particles comprising an ordered array of nanostructures, the nanostructures comprising amorphous silicon, wherein at least some pairs of adjacent nanostructures are connected by one or more bridges comprising amorphous silicon, the one or more bridges extending from the surface of one nanostructure of the pair to the surface of the other nanostructure in the pair. |
US10663449B2 |
Thin film liquid thermal testing
Elevated temperature liquid testing apparatus and methodology in which a thin film of test liquid and a reactant/control gas are provided about the top of a depositor member that is surrounded by a special mantle, for example, a substantially cylindrically walled glass mantle. As an oxidative engine oil test, it may mimic turbocharger conditions of a modern internal combustion engine. For example, employing moist air, the apparatus can test a thin film of engine oil for oxidation deposits at a predetermined temperature, say, 285° C., 290° C., or cycled between 285° C. or 290° C. and 320° C. or 330° C. |
US10663446B2 |
Methods, systems and devices for batch sampling
Systems and methods for sampling within a conveyance system are provided herein, such systems and methods being particularly useful in batch sampling of food products for a targeted biological agent. In one aspect, the sampling system includes a conveyance system and one or more sampling devices positioned along a conveyance path such that at least one portion of the batch contacts a sampling medium of the one or more sampling devices. In another aspect, sampling devices are provided that allow a sampling member to be secured in a sampling position for batch testing and readily removed after sampling and tested. The systems, devices and methods herein provide improved sampling coverage of the entire batch and reduce waste and inefficiency as compared to conventional batch sampling methods. |
US10663443B2 |
Sensor chamber airflow management systems and methods
Various devices, systems, and methods may be presented. A sensor unit may be presented that includes a housing and a chamber arranged within the housing and configured to receive air from outside of the housing of the sensor unit. Also present may be a sensor arranged within the housing and configured to measure a characteristic within the chamber. The sensor unit may include a fan arranged within the housing in relation to the chamber, the fan configured to clear air from the chamber of the sensor unit. Further, the sensor unit may include a controller in communication with the fan and the sensor, the controller configured to operate the fan. |
US10663442B2 |
Specific, reversible, and wide-dynamic range sensor for real time detection of carbon dioxide
A method for CO2 detection includes obtaining a gas sample; exposing a CO2 sensor to the gas sample, where the sensor includes a reversible and selective pH-sensitive nanocomposite sensor element for CO2 detection, and a hydrophobic surface; compensating for humidity and temperature; coupling at least one light source to receive signals from the CO2 sensor and respond to color changes in the sensor by transducing the color change into a light intensity change; measuring flow; and receiving signals from the at least one light source by at least one photodiode which responds to light intensity changes by transducing the light intensity changes into electronic signals representing varying degrees of light intensity. |
US10663439B2 |
Analysis method and analysis device for substance to be measured
An analysis method for a substance to be measured, including (a) introducing a sample into a flow channel having a bypass, flow channel and introducing the sample introduced into the bypass flow channel into a measuring device so as to measure signal intensity or concentration of a substance to be measured and/or a carrier in the sample; (b) introducing a sample that has not been introduced into the bypass flow channel into a column so as to adsorb the substance to be measured and/or the carrier; and (c) introducing an eluate into the column, eluting the substance to be measured and/or the carrier adsorbed on the column, and introducing the substance and/or the carrier into the measuring device so as to measure the signal intensity or concentration of the eluted substance to be measured and or the carrier. |
US10663436B2 |
Acoustic-wave acquisition apparatus
With a detector in which detection elements are placed in a spherical shape, a uniform resolution area is narrow. An acoustic-wave acquisition apparatus of the present invention is equipped with a detector including a plurality of detection elements that receive acoustic waves from a subject, the receiving surfaces of at least some of the detection elements being at different angles. The apparatus includes a scanning unit configured to move at least one of the subject and the detector to change the relative position of the subject and a highest-resolution area determined depending on the placement of the detection elements. |
US10663433B2 |
Ultrasound imaging device and method of generating image for ultrasound imaging device
An object is to simultaneously visualize a plurality of junction surfaces of a workpiece. An ultrasound imaging device serving as solution means includes a signal processing unit that causes a probe to irradiate a workpiece with an ultrasound wave having a predetermined frequency, and that performs gate processing on a reflected wave of the ultrasound wave detected by the probe so as to output a displacement of the reflected wave on two junction surfaces of the workpiece, an image generation unit that generates respective images of the two junction surfaces, based on the displacement of the respective reflected waves on the two junction surfaces, and a height adjustment unit that adjusts a height of a focus of the probe. The height adjustment unit adjusts the height of the probe so as to set the focus of the probe between the two junction surfaces. |
US10663430B2 |
Quantitation throughput enhancement by differential mobility based pre-separation
A system for analyzing a sample includes a source configured to generate ions from constituent components of the sample; a mobility separator configured to separate ions received from the source based on the mobility in a gas; a plurality of ion channels arranged adjacent to the plurality of exit apertures of the mobility separator such that ions from the mobility separator are directed to different channels according to their respective mobility; a mass analyzer configured to determine the mass-to-charge ratio of the ions; and a controller. The controller is configured to identify retention time windows with minimum overlap of ions with similar mobility and sets of ions within the retention time windows; adjust mobility separation parameters for specific sets of ions to optimize separation of compounds; and quantify a plurality of target analytes. |
US10663428B2 |
Systems and methods for ion separation using IMS-MS with multiple ion exits
A system for analyzing a sample includes a source; a mobility separator configured to separate ions based on a mobility in a gas; a plurality of ion channels; and a mass analyzer. The mobility separator includes a two-dimensional grid of electrodes spanning a passage between first and second walls. The first and second walls include an inlet aperture and a plurality of exit apertures, respectively. The two-dimensional grid of electrodes configured to generate an electric field within the passage. The plurality of ion channels arranged adjacent to the plurality of exit apertures. Movement of ions between the inlet aperture and the plurality of exit apertures are governed by the electric field and a gas flow through the passage between to the first and second walls such that the ions are sorted and directed to different channels based on their respective mobility. |
US10663427B2 |
Applicator comb for gel electrophoresis
A fluid applicator device includes an applicator body having a surface that is generally planar. A plurality of aligned applicator teeth extend from said applicator body. Each applicator tooth extends longitudinally from said applicator body along a length from a base of the applicator tooth proximate to the applicator body to a tip of the applicator tooth distal to the applicator body. At least one applicator tooth of the plurality of aligned applicator teeth has a width that is greater at the base than at the tip. A method for depositing a liquid sample on a substrate using the fluid applicator device is also disclosed. |
US10663426B2 |
Sensor controller, internal combustion engine control system, and internal combustion engine controller
A sensor controller includes a signal reception determination section and a use suspension section. The signal reception determination section determines whether or not the sensor controller has received a specific state signal that indicates a specific state in which exhaust gas may contain a specific gas that differs from ammonia and reacts with an ammonia sensor. When the signal reception determination section determines that the sensor controller has received the specific state signal, the use suspension section suspends at least temporarily use of a detection result detected by the ammonia sensor after the determination. Specifically, upon reception of the specific state signal, the sensor controller suspends at least temporarily the use of the detection result detected by the ammonia sensor after the reception of the specific state signal. |
US10663425B2 |
FET and fiber based sensor
A gas sensor includes a field effect transistor supported on an oxide layer of a substrate, the field effect transistor having a doped source (p+ doped for T-FET and n+ doped for FET) and an n+ doped drain separated by an channel region (intrinsic for T-FET or slightly p-doped for FET), and a floating gate separated from the channel region by a gate oxide, a passivation layer covering the floating gate, and a sensing layer supported by the passivation layer, the sensing layer comprising nanofibers. |
US10663422B2 |
Apparatus and method for detecting defects within a flexible pipe
A detection apparatus and method arranged to detect defects within a flexible pipe at least partially surrounded by seawater. The detection apparatus comprises a seawater electrode, an impedance monitor and a processor. The seawater electrode is arranged to be in contact with seawater surrounding at least part of a flexible pipe. The impedance monitor is arranged to measure the impedance between a metallic structural component of the flexible pipe extending at least partially along the length of the flexible pipe and the seawater electrode in response to an electrical test signal applied to the seawater electrode. The processor is arranged to determine the distance from the seawater electrode to a pipe defect electrically connecting the metallic structural component to seawater using the measured impedance. |
US10663421B2 |
Mineral insulated sheathed assembly with insulation resistance indicator
An assembly includes an electrical conductor disposed within an elongate mineral insulated conductive sheath. The electrical conductor is electrically grounded to the conductive sheath. The assembly also includes a test conductor disposed within and electrically isolated from the sheath to provide an indication of the insulation resistance of the assembly. |
US10663419B2 |
Silicon oil sensor
A silicon oil sensor has a conductive layer made of an organic silicone polymer doped with conductive particles. |
US10663418B2 |
Transducer temperature sensing
In described examples, one or more devices include: apparatus including a lens element and a transducer to vibrate the lens element at an operating frequency when operating in an activated state; and controller circuitry. The controller circuitry is arranged to measure an impedance of the apparatus, to determine an estimated temperature of the apparatus in response to the measured impedance, to compare the estimated temperature against a temperature threshold for delineating an operating temperature range of the apparatus, and to toggle an activation state of the transducer in response to comparing the estimated temperature against the temperature threshold. |
US10663416B2 |
Pattern measuring method, pattern measuring apparatus, and computer program storage device
The present invention is directed to a pattern measuring method and the like for deriving a roughness evaluation value from which measurement noise having a frequency component is removed. The pattern measuring method includes generating a plurality of integration signals having the different number of integration from the signals of the plurality of frames; acquiring edge position information of the pattern along an edge from the plurality of respective integration signals having the different number of integration; obtaining a difference between the edge position information and reference position information; obtaining a spectral component of a specific spatial frequency of the edge or a standard deviation based upon the difference; performing regression analysis in which a value relating to the number of integration is set as an explanatory variable, and a value relating to the spectral component or the standard deviation is set as a target variable; and outputting a value obtained by the regression analysis as a roughness index value of the pattern or a noise index value included in the signals. |
US10663414B2 |
Method of performing electron diffraction pattern analysis upon a sample
A method is provided for performing electron diffraction pattern analysis upon a sample in a vacuum chamber of a microscope. Firstly a sample is isolated from part of a specimen using a focused particle beam. A manipulator end effector is then attached to the sample so as to effect a predetermined orientation between the end effector and the sample. With the sample detached, the manipulator end effector is rotated about a rotation axis to bring the sample into a predetermined geometry with respect to an electron beam and diffraction pattern imaging apparatus so as to enable an electron diffraction pattern to be obtained from the sample while the sample is still fixed to the manipulator end effector. An electron beam is caused to impinge upon the sample attached to the manipulator end effector so as to obtain an electron diffraction pattern. |
US10663413B2 |
Inspection devices and methods for inspecting a container
A method for inspecting a container and an inspection device are disclosed. X-ray scanning is performed on the inspected container to obtain a scanned image. The scanned image is processed to obtain a region of interest. Features of texture units included in the region of interest are calculated. Local descriptions of the texture units are formed based on the features of the texture units. Distinction of each local point is calculated from a local description of each of the texture units so as to obtain a local distinct map of the region of interest. It is determined whether there is an article which is secretly carried in the inspected container using the local distinct map. |
US10663399B2 |
Optical analysis apparatus, optical analysis system, and optical analysis method
An optical analysis apparatus, that irradiates a liquid sample with light and analyzes the sample, includes a measurement unit that measures the sample, a light source portion that emits light with which the sample is irradiated, and a light receiving portion that receives the light transmitted through the sample. The measurement unit includes a housing provided with an opening portion for flowing in and out of the sample, an accommodation region connected to the opening portion and provided inside the housing, a movable portion provided inside the accommodation region to be movable inside the accommodation region, an irradiation portion which receives the light emitted from the light source portion and in which an inside of the accommodation region is irradiated with the light, and a light collection portion which collects the light transmitted through the sample inside the accommodation region and outputs the light to the light receiving portion. |
US10663397B2 |
Method and device of enhancing terahertz wave signals based on hollow metal waveguide optical fiber
A device and method of enhancing terahertz wave signals based on a hollow metal waveguide are disclosed. Simple devices such as a beam splitter, multiple plane mirrors, a beam combiner and an adjustable delay system are used. Two laser beams having a wavelength of 800 nm split by the beam splitter generate a fixed time phase delay, and are converged in the hollow metal waveguide to sequentially overlap with pulse of a laser having a wavelength of 400 nm for nonlinear interaction to ionize gas in the optical fiber to generate terahertz waves. The hollow metal waveguide can converge and transmit the generated terahertz waves due to its total reflection characteristics. |
US10663393B2 |
Spectrum inspecting apparatus
An embodiment of the present disclosure provides a spectrum inspecting apparatus. The apparatus includes a laser source; a focusing cylindrical lens configured to converge a light beam onto a sample; a light beam collecting device configured to collect a light beam signal, which is excited by the light beam, from the sample, so as to form a strip-shaped light spot; a slit configured to receive the collected light beam and couple it to downstream of a light path; a collimating device; a dispersing device configured to disperse the collected light beam so as to form a plurality of sub-beams having different wavelengths; an imaging device configured to image the sub-beams on the photon detector array respectively, wherein the light beam emitted from the laser source has a rectangular cross-section, the strip-shaped light spot impinges on the slit and its length is smaller than a length of the slit. |
US10663390B2 |
Adhesion strength test jig and adjusting rod thereof
The present disclosure provides an adhesion strength test jig includes a plurality of adjusting rods which are connected in an end-to-end manner so as to define an accommodating space for accommodating an adhered element. Each of the adjusting rods includes a rod body and a sliding block located at one end of the rod body, and the sliding block of each of the adjusting rods is capable of sliding along the rod body of another adjusting rod connected thereto, so as to adjust a size of the accommodating space. |
US10663389B2 |
Spectroscopic membrane permeation cell for simultaneous measurements of gas permeation rates and infrared reflection absorption spectroscopic analysis of membrane surfaces
A permeation cell device includes a body component, a wire mesh support structure positioned in the body component, a membrane over the wire mesh support structure, a pair of compressible gaskets sandwiching the membrane, and a flange compressing the membrane. A spectroscopic device contains the permeation cell device. At least one mechanism simultaneously performs an infrared-reflection absorption spectroscopic analysis of a surface of the membrane as a fluid permeates on the membrane and measures a trans-membrane fluid permeation rate across the membrane. The wire mesh support structure may be configured to provide mechanical support to the non-opaque membrane at a pressure of at least 1 atm. The permeation cell device and the spectroscopic device may collectively create a pair of separate isolated compartments. The body component may include a material that is non-permeable to the fluid. |
US10663387B2 |
Gas detecting device
A gas detecting device is disclosed and comprises a main body, a suspended particle sensing module and a gas sensing module, wherein the main body includes a first sensing area and a second sensing area. A suspended particle sensing module disposed within the first sensing area includes an irradiating mechanism, a first gas transporting actuator, a laser device and a light sensing device. The first gas transporting actuator transmits air to the first sensing area, the suspended particles in the air is irradiated by the laser beam emitted from the laser device to generate scattered light spots for the light sensing device to detect the suspended particles. The gas sensing module disposed within the second sensing area includes a gas sensor and a second gas transporting actuator. The second gas transporting actuator transmits air to the second sensing area, and the gas sensing device detects a gas composition contained in the air. |
US10663383B2 |
Stress cell having first and second elements having first and second variable lengths
The present disclosure relates to an apparatus and methods for applying a force on a sample. In particular, the present disclosure relates to a stress cell (200) comprising a frame (205); an actuator arrangement (210) coupled to the frame; and a coupler (220) for coupling the actuator arrangement to the sample (230). The coupler (220) includes a first coupler portion connected to the actuator arrangement (210) and a second coupler portion connectable to the sample (230). The first coupler portion is flexibly coupled to the frame. The actuator arrangement (210) comprises a first element (214) having a first variable length and a second element (212) having a second variable length, and is adapted to vary a difference between the first length and the second length to provide the force. |
US10663382B2 |
Testing apparatus for applying test load using vacuum pressure
A testing apparatus for applying a test load to a specimen, comprises a cradle and a test bed supported on the cradle. The test bed has a chamber which receives a specimen and is hermetically sealed with the specimen received inside. There is a vacuum source in communication with the chamber. The vacuum source provides vacuum pressure to the chamber, thereby applying a uniform load to the specimen. |
US10663381B2 |
Hardness tester and program
A hardness tester includes an image acquirer acquiring an image of a surface of a sample captured by an image capturer, a test area definer defining a test area where the hardness test is performed with respect to the image of the surface of the sample displayed by a display which displays the acquired image of the surface, a test setting acquirer acquiring estimated hardness of the sample and test force when the hardness test is performed, an estimator estimating a size of the indentation to be formed on the surface of the sample based on the acquired test force and the estimated hardness, and a display controller displaying an image picture of the indentation to be formed, based on the estimated size of the indentation superimposed on the image of the surface of the sample displayed by the display. |
US10663379B2 |
Plasma separation card
A multi-layer plasma separation card comprising (a) a first layer including a sample receiving member comprising (i) a top planar surface for applying or receiving a blood sample, said sample receiving portion being adapted to permit contact of said blood sample with a separating member; and (ii) a bottom planar surface being adapted to contact said separating member, (b) a second layer including at least three separating members, each separating member being adapted to permit the passage of plasma to an absorptive member and comprising (i) a top planar surface for receiving said blood sample; and (ii) a bottom planar shield-shaped surface being adapted to contact said absorptive member, and (c) a third layer including at least two absorptive members for absorbing plasma from the bottom planar surface of each corresponding separating member and a backing member arranged in a manner to support said absorptive members, each absorptive member comprising a removable absorptive element having a top planar surface being adapted to contact said bottom planar surface of the separating member, said absorptive element is detachable fixed to the third layer. |
US10663378B2 |
Embedded marking of sectionable tissue samples
Tissue samples embedded in settable, sectionable media such as paraffin can be cut into sections. Embedding one or more sectionable fiducial indicia in the medium permits identification of the plane along which the medium has been cut. However, prior methods of inserting indicia into embedded tissue sample blocks are cumbersome and difficult to perform. Sectionable fiducial indicia can be embedded in a block of medium by releasibly fixing the indicia to the sidewall or base of a mold used to shape the tissue block during embedding of a tissue sample in the medium block. |
US10663377B2 |
Clearing agent and mounting media for microscopy
A clearing agent and mounting solution for microscopy is disclosed comprising at least trichloroethanol and/or derivatives thereof, where the refractive index of the solution is greater than or equal to about 1.3810. Also disclosed are methods of preparing specimens for microscopy. |
US10663370B2 |
Effective structural health monitoring
A system is described for performing structural health monitoring of an object under study. The system comprises a hollow cavity structure comprising one or more cavities obtained using additive manufacturing. The cavity structure is sealable from its environment and forms an integral part of the object under study. The cavity structure furthermore is connectable to a pressure sensor for sensing a pressure in the cavity structure. |
US10663366B2 |
Semiconductor pressure sensor
A semiconductor pressure sensor includes: a first semiconductor substrate having a plurality of recesses formed thereon; an intermediate semiconductor substrate joined to the first semiconductor substrate with a first oxide film interposed therebetween; a second semiconductor substrate joined to the intermediate semiconductor substrate with a second oxide film interposed therebetween; a first reference pressure chamber formed as a space surrounded by a first recess of the first semiconductor substrate and the intermediate semiconductor substrate; a second reference pressure chamber formed as a space surrounded by a second recess formed on the first semiconductor substrate, the intermediate semiconductor substrate, and the second semiconductor substrate, the intermediate semiconductor substrate having a through hole communicating with the second recess of the first semiconductor substrate; and piezoresistors formed on a surface of the second semiconductor substrate that receives pressure, along outer peripheries of the first and second reference pressure chambers. |
US10663358B2 |
Method and sensor for pressure sensing based on electrical signal generated by redistribution of mobile ions in piezoionic layer
A method of sensing a pressure applied to a surface comprises monitoring an electrical signal generated by redistribution of mobile ions in a piezoionic layer under the surface. An externally applied local pressure at a portion of the layer induces redistribution of mobile ions in the piezoionic layer. It is determined that the surface is pressured based on detection of the electrical signal. A piezoionic sensor includes a sensing surface; a piezoionic layer disposed under the sensing surface such that an externally applied local pressure on a portion of the sensing surface causes detectable redistribution of mobile ions in the piezoionic layer; and electrodes in contact with the layer, configured to monitor electrical signal generated by the redistribution of mobile ions in the piezoionic layer. |
US10663357B2 |
Micro electro-mechanical strain displacement sensor and usage monitoring system
A low power consumption multi-contact micro electro-mechanical strain/displacement sensor and miniature autonomous self-contained systems for recording of stress and usage history with direct output suitable for fatigue and load spectrum analysis are provided. In aerospace applications the system can assist in prediction of fatigue of a component subject to mechanical stresses as well as in harmonizing maintenance and overhauls intervals. In alternative applications, i.e. civil structures, general machinery, marine and submarine vessels, etc., the system can autonomously record strain history, strain spectrum or maximum values of the strain over a prolonged period of time using an internal power supply or a power supply combined with an energy harvesting device. The sensor is based on MEMS technology and incorporates a micro array of flexible micro or nano-size cantilevers. The system can have extremely low power consumption while maintaining precision and temperature/humidify independence. |
US10663356B2 |
Method for measuring temperature at each location of pipe in hot water supply system
Provided is a method for measuring the temperature at each location of a pipe in a hot water supply system comprising a water heater, a pipe, and outlets, the method comprising checking for a temperature of a first point (TP1), which is upstream of the outlet, a temperature of a second point (TP2), which is downstream of the outlet and an outdoor temperature (TA), and confirming a length (L) of the pipe from the first point to the second point, then measuring a temperature of the pipe located at a distance of x away from the first point. |
US10663354B2 |
Temperature measurement device
Disclosed is a temperature measurement device (4) and method of using the same. The device (2) comprises a base portion (14), a plate (16), and a temperature sensor (22). The base portion (14) comprises a first surface and a second surface opposite to the first surface and spaced apart from the first surface. The base portion (14) is more thermally insulating than the plate (16). The plate (16) comprises a first surface and a second opposite to the first surface. The plate (16) is disposed on the first surface of the base portion (14) such that the second surface of the plate (16) is in contact with the first surface of the base portion (14). The temperature sensor (22) is coupled to the first surface of the plate (16) such that the temperature sensor (22) measures a temperature of the first surface of the plate (16). |
US10663351B2 |
Three-dimensional interferometer and method for determining a phase of an electric field
A three-dimensional interferometer for measuring a light field produced by an object, comprising a first interferometer arm, a second interferometer arm, a beam splitter arranged between an object point of the object and the first interferometer arm and the second interferometer arm, and is set up to split a beam coming from the object point at the beam splitter into the first beam and the second beam, a detection plane or a detection surface which is arranged downstream of the first interferometer arm and the second interferometer arm and is set up in such a manner that the first beam and the second beam are made to interfere in an interference region on said plane or surface, and an overlapping device which is arranged between the detection plane and the first interferometer arm and the second interferometer arm. |
US10663345B2 |
Raman spectroscopy for minerals identification
An apparatus for identifying materials. The apparatus includes a laser device adapted to produce monochromatic light in the wavelength range of about 400 nm to about 425 nm, a first set of optical components for focusing the laser light on a material sample positioned on a sample stage, a second set of optical components for transmitting light reflected from the material sample, and a spectrograph adapted to receive light reflected from the material sample via at least part of the second set of optical components and adapted to collect data in the Raman shift range of about 100 cm−1 to about 1400 cm−1. The first set of optical components includes a fiber optic cable adapted to transmit the laser light to the material sample. The second set of optical components includes an objective lens having an opening adapted to receive the fiber optic cable. |
US10663340B2 |
Measuring apparatus system and method
Disclosed are a method, device and system for determining a flow rate of an excretion stream within an excretion collection assembly. According to some embodiments of the present invention, one of the constituent elements of the collection assembly includes a sensing module which includes an electrical and/or electromechanical component. |
US10663339B1 |
Powder scooper with a funnel
A powder scooper with a funnel having a unitary body with a bottom wall and a sidewall both defining a scooping cavity, wherein the sidewall defines a funnel entrance aperture and has an upper terminal edge defining an upper aperture. The scooper also includes a funnel portion coupled to the sidewall and a distal terminal end defining a distal opening, and a funnel channel separating the funnel entrance aperture and the distal opening, wherein the funnel portion extends outwardly away from an outer surface of the sidewall. The scooper also includes a handle portion coupled to, and extending outwardly away from, the outer surface of the sidewall in a substantially perpendicular orientation and angle of a funnel axis defined by the funnel channel. |
US10663337B2 |
Apparatus for controlling flow and method of calibrating same
Apparatuses for controlling gas flow are important components for delivering process gases for semiconductor fabrication. In one embodiment, a method of calibrating an apparatus for controlling gas flow is disclosed. Specifically, the apparatus may be calibrated on installation using a two-step process of measuring the volume of gas box downstream from the apparatus by flowing nitrogen gas into the gas box and measuring the resulting temperature and rate of pressure rise. Using the computed volume of the gas box, a sweep of several mass flow rates may be performed using the process gas and the gas map for the process gas. The apparatus is calibrated based on the measured temperature and pressure values, which allow calculation of the actual mass flow rate for the process gas as compared with the commanded mass flow rates. |
US10663336B2 |
Processing chamber gas detection system and operation method thereof
A processing chamber gas detection system is provided, including a chamber, an exhaust pipe, a connection pipe, and a gas detector. The chamber is configured to perform a chemical vapor deposition (CVD) process. The exhaust pipe is connected to the chamber and the pumping unit, and the connecting pipe communicates with the exhaust pipe. The gas detector is disposed on the connecting pipe and configured to detect the oxygen content in the air from the chamber. When the air in the chamber is pumped out via the pumping unit and the air flows through the exhaust pipe and the connecting pipe, the gas detector detects whether oxygen is contained in the air or not. |
US10663328B2 |
Electrical component, in particular sensor, as well as manufacturing methods therefor
In order to minimize a force transfer at electronic components (1), in particular sensors (1) whose electronic circuit in an interior of a housing (2) is encased by an initially liquid or highly viscous hardening encasement compound (20) at an increasing temperature from the hardened encasement compound to the electronic components (4, 24) it is proposed according to the invention to perform the encasement so that in the cured condition all required portions and components (4, 24) are covered by the encasement compound (20) but sufficient cavities (21.1, 22.2) remain in the interior spaces (14.1, 14.2) of the housing (2) so that the hardened encasement compound (20) can expand into the cavities. |
US10663326B2 |
Rayleigh scattering based distributed fiber sensors with optimized scattering coefficients
A fiber sensor includes an optical fiber configured for operation at a wavelength from about 800 nm to about 1600 nm. The optical fiber includes a cladding that is defined by a fiber outer diameter and a core that is surrounded by the cladding. The core of the optical fiber has a Rayleigh scattering coefficient, αs, that is controlled by controlling a concentration of one or more dopants in the core. The Rayleigh scattering coefficient is tuned to be within a predetermined range of an optimum Rayleigh scattering coefficient for a given total length, L, of the optical fiber. The predetermined range is from about 70% of the optimum αs to about 130% of the optimum αs. |
US10663325B2 |
Fiber Bragg grating interrogation and sensing system and methods comprising a first photodetector for measuring filtered light and a second photodetector for measuring unfiltered light
Fiber Bragg grating interrogation and sensing used for strain and temperature measurements. A simple, broadband light source is used to interrogate one or more fiber Bragg grating (FBG). Specifically, a packaged LED is coupled to fiber, the light therefrom is reflected off a uniform FBG. The reflected light is subsequently analyzed using a filter and a plurality of Si photodetectors. In particular, the filter is a chirped FBG or an optically coated filter, in accordance with some embodiments. Measurement analysis is performed by ratio of intensities at the plurality of detectors, at least in part. |
US10663324B2 |
Optical fiber sensor
An optical fiber sensor according to the present invention is provided with a first fixation member which fixes an optical fiber on a base at a fixation position set on the base in a state where FBGs are arranged in one side of the fixation position and the other side of the fixation position respectively. Also, in one side of the fixation position, a second fixation member which fixes the optical fiber on the base in a state where tension is applied to a first FBG is provided. Further, in the other side of the fixation position, a third fixation member which fixes the optical fiber on the base in a state where tension which is different from the tension applied to the first FBG is applied to the second FBG and the Bragg wavelength of the second FBG is different from that of the first FBG is provided. |
US10663318B2 |
Distributing maps, floor plans and blueprints to users based on their location
The method and system described herein is directed to a method and system that provides users with relevant maps, floorplans, blueprints automatically based on the user's location. |
US10663317B2 |
Map display system and map display program
Provided is a map display system including: a destination acquiring section which acquires a destination specified on a map displayed on the display section; a position acquiring section which acquires a starting position of the map when the destination is specified and an ending position of the map which allows a travel route to be displayed; and a display control section which displays so that the position on the display section gradually moves from the starting position to the ending position, acquires a starting scale of the map when the destination is specified and an ending scale of the map which allows display of the entire proposed travel route, and gradually changes a scale of the map displayed from the starting scale to the ending scale during movement, in which the position of the map displayed gradually moves from the starting position to the ending position. |
US10663316B2 |
Navigation device and method
A wearable tactile navigation device and method. The wearable tactile navigation device includes a tactile navigation actuator. The tactile navigation actuator includes a feedback contact and is configured to control the feedback contact based on a direction indication signal to generate a tactile signal having a direction indication. A direction indicated by the tactile signal substantially coincides with a suggested moving direction provided to a user of the wearable tactile navigation device. |
US10663310B2 |
System and method for managing exceptional destination in geo-fence
A system for managing a geo-fence of a vehicle may include a terminal equipped in the vehicle, the terminal configured to determine whether a current position of the vehicle or an input destination is located outside of a previously established geo-fence stored in the terminal, the geo-fence defining an area in which traveling of the vehicle is approved, to generate an alarm indicating that the vehicle has left the geo-fence when the vehicle leaves the geo-fence, to request approval for designating a destination outside of the geo-fence as an exceptional destination, and when the designation of the destination is approved, to prevent the generation of the alarm when the vehicle leaves the geo-fence while traveling to the destination. |
US10663306B2 |
Navigation system
A navigation system which performs route guidance from a vehicle departure location to a target location. After a vehicle has arrived at the target location and completed the route guidance, if the vehicle has moved away from the target location and thereafter has approached the target location again, the navigation system: determines that the vehicle is disorientated and unable to arrive at the target location; and resumes the route guidance. |
US10663304B2 |
Method and apparatus for creating or supplementing a map for a motor vehicle
A method for creating or augmenting a map for a motor vehicle, wherein the motor vehicle establishes its location in a surrounding environment by comparing environment data acquired by at least one sensor with map data stored in the map. The method provides a base map of a surrounding environment of the motor vehicle; provides at least one base segment, wherein the at least one base segment has at least one characteristic feature; and creates or augments the map by generating map data, wherein the map data is generated by a map creation unit by assigning the at least one provided base segment to an associated position in the provided base map. Also disclosed is a corresponding device. |
US10663302B1 |
Augmented reality navigation
A processor of an AR device may receive a plurality of points within a coordinate system corresponding to points in space. The plurality of points may define a path between a starting location within the coordinate system and a navigation destination within the coordinate system. The processor may determine that the AR device is at the starting location. The processor may receive camera data from a camera of the AR device. The camera data may represent at least a portion of the points in space. The processor may generate an AR display. The generating may include overlaying a graphic illustrating the position of at least a portion of the points within the coordinate system over equivalent points in space illustrated by the camera data. |
US10663300B2 |
UAV flight path generating method and device
This invention proposes a new method and software to generate a path with good quality for aerial video shooting in large scale scenes. Using a coarse 2.5D model of a scene, this path generation method consists of several steps: first the user is expected to specify a set of landmarks and designate a superset of key-views for each landmark; our system then automatically generates and evaluates a variety of local camera moves for observing each landmark, which are smooth and collision-free; then automatically determines the optimal order in which the landmarks should be visited, chaining the local camera moves into a single continuous trajectory. Thus, users are able to focus on specifying the visual content that should be captured by the aerial video, rather than on the difficult lower level aspects of designing and specifying the precise drone and camera motions. |
US10663296B2 |
Surveying instrument
Provided is a surveying instrument including a light emitting section for emitting distance measuring light having an intensity distribution in which an intensity is high at the center and it became lower as approaching the periphery, a light receiving section for receiving the distance measuring light via a measurement object; and a distance-measurement optical system for guiding the light to the light receiving section via the measurement object. The surveying instrument performs a prism-mode and non-prism-mode measurements. The optical system includes an aperture diaphragm arranged in a distance-measurement optical path during the prism-mode-measurement. An opening of the aperture diaphragm has widths of greater than 0 and not greater than 0.5 times the full width at half maximum of the intensity distribution in a cross-section of non-prism-distance-measurement beam in the horizontal and vertical direction. |
US10663295B2 |
Distance measurement system, mobile object, and component
A distance measurement system includes a pair of cameras and is arranged on a roof of a mobile object or an upper edge portion of a door of the mobile object. One of the cameras is arranged at a first portion on an upper surface of the roof or on the upper edge portion of the door, includes an optical axis oriented upward from the upper surface, and has a field of view in all directions around the optical axis. The other camera is arranged at a second portion different from the first portion on the upper surface of the roof or the upper edge portion of the door, includes an optical axis oriented upward from the upper surface, and has a field of view in all directions around the optical axis. Distance measurement in all directions from the mobile object is performed by using this pair of cameras. |
US10663294B2 |
Systems and methods for estimation of building wall area and producing a wall estimation report
A wall area estimation system generates an estimated wall area measurement report of a building. Included in the wall area measurement estimate report are multiple line drawings of a building having a roof. Two of the multiple line drawings are perspective views from an angle of view above the building. A first of the perspective views is substantially centered on a first substantially vertical exterior corner of the house that is approximately opposite of a second substantially vertical exterior corner of the house on which a second of the perspective views is substantially centered. The first and second of the perspective views include a line drawing of the roof that is transparent or translucent to show interior surfaces of the walls of the building in the first and second of the perspective views. The walls of the interior surfaces shown are shaded darker than the walls of the exterior. |
US10663287B2 |
Polishing apparatus
A polishing apparatus capable of accurately measuring a film thickness by regulating a quantity of light illuminating a wafer is disclosed. The polishing apparatus includes: a light source; an illuminating fiber having distal ends arranged at different locations in the polishing table; and a light-receiving fiber having distal ends arranged at the different locations in the polishing table. The illuminating fiber includes a first illuminating fiber and a second illuminating fiber. A first dimmer is attached to the first illuminating fiber and the second illuminating fiber, and a second dimmer is attached to at least one of the first illuminating fiber and the second illuminating fiber. |
US10663286B2 |
Measuring thin films on grating and bandgap on grating
Methods and systems disclosed herein can measure thin film stacks, such as film on grating and bandgap on grating in semiconductors. For example, the thin film stack may be a 1D film stack, a 2D film on grating, or a 3D film on grating. One or more effective medium dispersion models are created for the film stack. Each effective medium dispersion model can substitute for one or more layers. A thickness of one or more layers can be determined using the effective medium dispersion based scatterometry model. In an instance, three effective medium dispersion based scatterometry models are developed and used to determine thickness of three layers in a film stack. |
US10663285B2 |
Sensor head
Provided is a sensor head that can increase the flexibility of installation. The sensor head is a sensor head of a sensor for measuring displacement of a measurement object. The sensor head includes: a diffractive lens generating chromatic aberration along an optical axis direction on an incident light, a case part housing at least the diffractive lens inside, and fixing parts and used for fixing to a fixing object. The case part includes a cylindrical part having a cylindrical outer shape, and the outer shapes of the fixing parts and are within the outer shape of the cylindrical part when viewed in a central axis direction of the cylindrical part. |
US10663283B2 |
Three-dimensional coordinate measurement apparatus
A three-dimensional coordinate measurement apparatus capable of reducing shaking of a Y carriage and improving measurement accuracy. The Y carriage is supported by two strut members which are across a surface plate and movable in a Y-axis direction. The two strut members include a first strut member having a driving mechanism and a second strut member which moves following the first strut member. A guide portion parallel to the Y-axis direction is formed in the surface plate on a first strut member side. Side surface support members support the first strut member on the surface plate by holding both opposed side surfaces of the guide portion. The driving mechanism includes a roller having an axis perpendicular to a surface plate surface, and the roller is brought into contact with one side surface of the guide portion and rolled to move the Y carriage relatively to the surface plate. |
US10663278B2 |
Proximity sensor for subsea rotating equipment
A proximity sensing system is configured to sense proximity of a rotating component in subsea rotating equipment such as pumps, compressors and separators. A plurality of sensing probe modules are included to sense proximity at various locations of the rotating shaft. The probe modules can include a fixed length stinger that can be gas-filled to maintain atmospheric pressure. The probe modules can also be a stinger-less design were the sensor is fixed to an inner pump housing and flexible cable is run through a channel of an outer pump pressure casing to a high pressure penetrator. |
US10663276B2 |
Retractable index pins and methods of operating thereof
Provided are self-retractable centering assemblies and methods of using these assemblies for alignment of parts having determinant assembly alignment holes. An assembly includes a center pin having a threaded portion threadably engaging a drive component. The assembly also includes a puller bushing rotatably coupled to the drive component. The center pin protrudes through the puller bushing and can slide with respect to the puller bushing when the drive component is rotated relative to the center pin. The sliding distance is controlled by a limiter disposed within the cavity of the puller bushing. During operation, a portion of the center pin extends from the puller bushing and is inserted into alignment holes of parts being aligned. The drive component is rotated relative to the center pin resulting in the center pin being pulled out of the alignment holes while the puller bushing is being pressed against the parts. |
US10663275B2 |
Method of manufacturing and inspecting gas washed components in a gas turbine engine
Producing a component having an in use gas washed surface includes: obtaining a reference component having a reference shape with an in use gas washed surface; setting one or more performance threshold for the reference shape, the threshold defining an acceptable performance for the reference shape; obtaining a manufactured component made to the reference shape; measuring the manufactured component and determining a displacement distribution indicative of the geometric deviation of the manufactured component from the reference shape; determining a performance sensitivity distribution for the reference component, the sensitivity distribution having a plurality of points, each point indicative of a performance factor for the reference component; combining the sensitivity distribution and displacement distribution to determine a performance prediction for the manufactured component; determining whether the performance prediction is within the performance threshold; accepting or rejecting the component for use if the predicted performance is within or outside the performance threshold, respectively. |
US10663272B1 |
Low toxicity, environmentally friendly violet smoke generating compositions and methods of making the same
The present invention is directed to a novel, low-toxicity and environmentally-friendly violet smoke generating composition. The composition comprises a mixture of at least one red dye and at least one blue dye, a coolant, an oxidizer, a binder, and a non-sulfur particulate fuel that is also a burn-control agent having two different particle size distributions. Preferably the fuel comprises a mixture of granulated sucrose and sucrose 10×. |
US10663270B2 |
Threaded member, fastening member, and dart
A threaded member has a discontinuous helical thread ridge 15 on which a plurality of dividing portions 14 are formed in the middle. At least one of the discontinuous portions of the thread ridge 15, which is interposed between the dividing portions 14, is a locking portion 18 which is configured such that a flank angle of one flank, out of flanks on both sides of the thread ridge 15, is smaller than a flank angle of a flank corresponding to a basic ridge profile and at least part of the flank is disposed on an outside of the flank corresponding to the basic ridge profile. |
US10663269B2 |
Initiator grounding clip
Assemblies and methods for the electrical grounding of an initiator for a vehicle device, e.g. an inflator. Initiator assemblies are provided for inflators in electrical charge transmitting connection via a connector assembly to an electric ground. Initiator assemblies include integrally molded initiator having a molded base forming a connector socket. The molded base includes a grounding clip recess feature. A metallic electrical grounding clip is housed in the grounding clip recess feature. The grounding clip includes a base portion and an extending portion. The extending portion includes a first end proximate and in contact with the base portion and a second end distal from the base portion and with second end in electrical transferring contact with the vehicle device. |
US10663266B2 |
Interdiction system and method of operation
A system for arresting and capturing airborne targets comprising: a projectile comprising an airframe which houses a means for entanglement, a means for propulsion, and a means for producing drag, wherein the means for entanglement is tethered to the airframe, a launcher capable of launching the projectile to within a close distance of an airborne target, wherein as the projectile approaches the airborne target the projectile is first slowed down by the means for producing drag, and second, as the projectile slows down the means for propulsion causes the means for entanglement to be projected towards the airborne target, wherein the means for entanglement arrests and captures the airborne target, thus tethering it to the projectile, and wherein the means for producing drag slows down the speed at which the projectile and tethered airborne target descend to the ground. |
US10663262B2 |
Method of manufacturing a firearm accessory mount
A firearm accessory mount is described herein. The firearm accessory mount is manufactured by securing a raw amount of material, shaping the raw amount of material to generate receiving structures positioned on a mounting base along a common axis, forming apertures through the receiving structures to form accessory rings along a single axis from one direction and at least substantially dividing each of the accessory rings into receivers and caps. |
US10663260B2 |
Low cost seeker with mid-course moving target correction
A targeting system for guidance correction of a projectile along a flight path toward a target. The targeting system includes seeker/guidance system mounted on the projectile which controls guidance of the projectile along the flight path toward the target. A remote fire control system receives and displays a survey image of a battlefield and enables an operator to mark location coordinates of the target in the survey image. Based on the location coordinates, the fire control system defines a reference image and transmits the reference image and location coordinates to the seeker/guidance system for use in guiding the projectile toward the target. If the target moves as the projectile travels toward the target, the remote fire control system enables the operator to update the location coordinates and transmit only an offset of the coordinates to the seeker/guidance system which then adjusts or corrects the flight path of the projectile. |
US10663259B2 |
Firearm training apparatus and methods
A firearm training system includes a firearm, a sensor, a data processor, and a display. The sensor measures and records the motion of the firearm before, during, and after the firearm is shot. In some embodiments, the sensor is located on the firearm. The sensor communicates with the data processor. In some instances this communication is conducted wirelessly. Data regarding the movement of the firearm is analyzed via the data processor and trends are determined. These trends are then correlated with shooting technique deficiencies which can be communicated to a user via the display. In some embodiments, the data processor and display are a single computing device, such as a tablet, smartphone, or laptop. |
US10663254B1 |
Illumination module for a handgun
The subject matter discloses an illumination module for a handgun, comprising a body, a mounting interface protruding from the body, and configured to be in physical contact with the handgun slide, a sight, extending from the body, an illumination module configured to emit light towards a front sight of the handgun, a power source electrically coupled to the illumination module, an activation module coupled to the illumination module, maneuver of the activation module activates the illumination module. |
US10663253B1 |
Foldable iron sight assembly for a firearm
The disclosure relates to a foldable iron sight assembly for a firearm that includes a rail mount including a base, a clamp, a rail pin, and a base locking portion; a windage or elevation sight member that includes a sight member locking portion rotatably connected to the base locking portion, wherein the base locking portion and the sight member locking portion are configured to interlock with each other; and a locking mechanism that includes an axle and a biasing element, wherein the sight member is rotatable between a locked raised position and a locked lowered position when a force applied to the sight member compresses the biasing element. Also disclosed is a firearm having a rail to which the assembly is secured, and a method of operating the assembly. |
US10663250B1 |
Empty-magazine power-off structure of electric toy gun
An empty-magazine power-off structure of electric toy gun includes a bore component and a power source switch; the bore component has a ball firing pipe and a ball feeding pipe connected to the ball firing pipe, a ball chamber is formed in the ball firing pipe, and the ball feeding pipe has a ball guiding channel communicated with the ball chamber from an external side; the power source switch is relatively disposed at an outer side of the ball feeding pipe, and at least has one trigger part protruded into the ball guiding channel. As such, when a bullet ball in the magazine passes the ball guiding channel, the bullet ball is able to press the power source switch to determine whether any bullet ball remains in the magazine. |
US10663249B1 |
Crossbow with quick-shooting device
A crossbow includes a barrel, a cocking device, a bow device, a link device and a cartridge. The retention member is moved by the operation of the string of the bow device. The cocking device detachably holds the string. By repeatedly operating the link device and pulling the trigger, the cocking device is moved back and forth repeatedly, and the retention member moves back and forth to control the restriction member to pivot so that the bullets continuously drop to the groove and located in front of the retention member. Therefore, the crossbow can shoot the bullets continuously. The bullets are allowed to be fed into the cartridge one time of feeding. |
US10663248B1 |
Limb and string pack for crossbow
A limb and string pack for a crossbow includes a base which is installed to an installation recess in the front end of the barrel of the crossbow. The base includes a passage. Two links respectively extend from the base and beyond the two end openings and toward the front end of the barrel. Two limbs are connected to the two links. Two cams are respectively and pivotably connected to the two limbs. A string is connected between the two cams. Two cables respectively extend through the passage of the base and are connected to the limbs and the cams. A bolt secure the base to the links and the barrel. Another bolt secures the links to the front end of the barrel of the crossbow. The base, the links and the limbs are easily removed by unscrewing the two bolts to maintain the strings and the cables. |
US10663245B2 |
Trigger bar for a firearm
A trigger bar for a semi-automatic firearm including a continuous U-shaped body and a single tab extending outward from a base of the U-shaped body. The tab is offset from a centerline located between legs of the U-shaped body. The trigger bar is configured to operate the sear when the legs are coupled to a sear assembly of the firearm, and only the single tab is coupled to a trigger of the firearm via a trigger bar slot of the trigger. |
US10663244B1 |
Fast action shock invariant magnetic actuator for firearms
An electromagnetic actuator in one embodiment includes characteristics of very fast actuation, shock invariant design, and compact size. The actuator may be controlled via a small low voltage power source such as a battery and simple switching logic. Such characteristics are ideally suited for incorporating the actuator into the firing mechanism of a firearm, which are subjected to drop tests to confirm the firearm will not discharge in the absence of trigger pull. Very fast snap-like action is attained by balancing the magnetic forces of two opposing permanent magnets around a stationary yoke and rotating member to create three circulating magnetic flux circuits. A central electromagnet coil on the yoke amplifies the magnetic flux of one side of the rotating member or the other depending on the power source actuation polarity, thereby creating two possible snap-like actuation positions. The actuator is usable in firing mechanism release or blocking applications. |
US10663243B2 |
Firearm pivot pin system
A pivot pin is for engagement and/or disengagement from its position as a pivot axle and/or connector, for example, in a lower receiver of a firearm. The mostly cylindrical main body of the pivot pin includes a longitudinal detent track featuring at least one recessed dimple and an aperture extending radially through the track for transfer of a detent spring and detent pin through the main body into the detent chamber of the lower receiver. A capping device may then encapsulate/control the position of the detent pin relative to the detent chamber, and relative to the aperture and track of the pivot pin, and/or help reduce the migration of water and or debris into the detent track and/or the firearm. |
US10663238B2 |
Detecting and correcting maldistribution in heat exchangers in a petrochemical plant or refinery
A plant or refinery may include equipment such as reactors, heaters, heat exchangers, regenerators, separators, or the like. Types of heat exchangers include shell and tube, plate, plate and shell, plate fin, air cooled, wetted-surface air cooled, or the like. Operating methods may impact deterioration in equipment condition, prolong equipment life, extend production operating time, or provide other benefits. Mechanical or digital sensors may be used for monitoring equipment, and sensor data may be programmatically analyzed to identify developing problems. For example, sensors may be used in conjunction with one or more system components to detect and correct maldistribution, cross-leakage, strain, pre-leakage, thermal stresses, fouling, vibration, problems in liquid lifting, conditions that can affect air-cooled exchangers, conditions that can affect a wetted-surface air-cooled heat exchanger, or the like. An operating condition or mode may be adjusted to prolong equipment life or avoid equipment failure. |
US10663237B2 |
Heat transfer tube having superhydrophobic surface and method for manufacturing the same
The present disclosure relates to a heat transfer tube comprising nanostructures formed on the surface, and a method for manufacturing the same, and by forming nanostructures on a heat transfer tube surface, a superhydrophobic surface may be obtained under a high temperature environment as well. In addition, superhydrophobicity may be enhanced by further forming a hydrophobic coating layer on the nanostructure-formed heat transfer tube surface. By using a method of forming nanostructures by dipping the heat transfer tube surface, complex shapes may be coated, and therefore, a plurality of assembled heat transfer tubes may be coated, and damages occurring during a process of assembling the heat transfer tube after coating may be prevented. |
US10663236B2 |
Tube heat exchanger and method of manufacturing such a heat exchanger
Shell and tube heat exchanger for exchanging heat between a first and second fluid, that comprises a housing in which tubes extend, whereby baffles are affixed in the housing that are provided with passages, whereby the tubes extend through the said passages, whereby the baffles are connected to one another at a distance from one another by means of one or more fastening elements that are affixed in first recesses in the baffles, whereby one or more connections between a baffle and a fastening element are formed by means of one or more lips that are made at an edge of a first recess, whereby the one or more lips form part of the baffle and are bent over, out of the plane defined by the baffle. |
US10663232B2 |
Energy storage system coupling phase change material and dissipation heat pipe
Provided is an energy storage system coupling phase change material(s) and dissipation heat pipe(s). The energy storage system includes several energy storage units serially connected along a same central axis. Each of the energy storage units includes a heat charge flow channel, an annular heat release passage, and an annular energy storage passage disposed concentrically from inside to outside. A dissipation pulsating heat pipe is disposed in the energy storage unit, and the dissipation pulsating heat pipe includes several pulsating-heat-pipe branches uniformly arranged in a circumferential direction. Each of the pulsating-heat-pipe branches includes an evaporation section located in the heat charge flow channel, a transfer section located in the annular heat release passage, and a condensation section located in the annular energy storage passage, and adjacent pulsating-heat-pipe branches are sequentially in communication through a root port of the evaporation section to enable the entire dissipation pulsating heat pipe to form a closed loop. A phase change material in tight contact with the condensation section is filled in the annular energy storage passage. |
US10663219B2 |
Household cooling appliance containing a dispenser unit for liquid and/or free flow refrigerated good
A household cooling appliance has a dispenser unit for dispensing a free flow refrigerated good. The dispenser unit has an insert, which by side walls and a bottom wall bounds a niche, in which a receptacle for receiving the free flow refrigerated good is insertable. A drip tray is provided, which is separate from the insert, for collecting liquid and can be brought into the niche. The drip tray has a drip well and a grip element which extends within the drip well and is accessible from the top for gripping. The drip tray on a bottom wall has a liquid distribution element, which elevated from the top side protrudes upwards and is configured to be narrowing. The drip tray on the bottom wall has a coupling element which for positioning of the drip tray is formed in the insert for coupling with a counter coupling element. |
US10663216B2 |
Refrigeration appliance and door for refrigeration appliance
A refrigeration appliance and a door for a refrigeration appliance. The door includes an inner door-wall, a door plate and a side cover. The side cover includes a first cover member and a second cover member bonded along a length direction of the side cover. A connecting structure connects the first cover member and the second cover member. The connecting structure includes at least two slots and at least two insert portions inserted into the matching slots in the length direction of the side cover. The at least two insert portions include a first insert portion and a second insert portion perpendicular to each other. Accordingly, the first cover member and the second cover member are connected conveniently, and connecting stability and firmness are achieved. |
US10663214B2 |
Refrigerator
A refrigerator includes an evaporator arranged in a heat exchange chamber and having refrigerant pipes through which refrigerant flows and fins configured to guide heat exchange between the refrigerant and cold air, wherein the evaporator includes a first and a second side spaced apart from each other, and the fins of the evaporator guide flow of air such that the cold air introduce into the first and second sides is combined with each other in the space between the first and second sides. |
US10663213B2 |
Defrost heat discharge system and refrigerator having the same
A defrost heat discharge system includes a drain duct configured to discharge heat from a defrost heater and to discharge condensed water that results from melting of frost on an evaporator by heat generated by the defrost heater, a drain pipe that connects a first space to a second space, that is configured to allow condensed water to flow from the first space to the second space, and that is configured to discharge heat generated by the defrost heater from the first space to the second space, a drain cap located at an end of the drain pipe and configured to open and close at least a portion of the drain pipe; and a condensing fan configured to receive heat from the defrost heater and discharge heat toward an outside of the second space based on the drain cap opening the portion of the drain pipe. |
US10663199B2 |
Method and apparatus for common manifold charge compensator
An HVAC system includes an evaporator. A compressor is fluidly coupled to the evaporator via a suction line. A condenser is fluidly coupled to the compressor via a discharge line. The condenser includes a first pass and a second pass. A common manifold fluidly couples the first pass and the second pass. A charge compensator is fluidly coupled to the common manifold above a maximum liquid level of the common manifold. |
US10663198B2 |
Heat pump system and air-conditioner
A heat pump system includes a main heat pump system, a heat retaining layer and a reflecting layer coated on an partial inner surface of a building, a directly expanded strong cool-heat radiation plate having a distance from the reflecting layer, a heat radiating layer located at a side of the directly expanded strong cool-heat radiation plate and having a distance from the directly expanded strong cool-heat radiation plate, a buffer plate disposed between the heat radiating layer and the directly expanded strong cool-heat radiation plate, an anti-condensation trough disposed below the directly expanded strong cool-heat radiation plate. A sealed cavity is enclosed by the heat radiating layer and a wall surface, and the wall surface is formed by a combination of the partial inner surface of the building, the heat retaining layer and the reflecting layer, and, the sealed cavity is filled with air. |
US10663196B2 |
Cooling system
An apparatus includes a flash tank, a load, a first compressor, a coil, a first pipe, and a second compressor. The flash tank stores a refrigerant. The load uses the refrigerant from the flash tank to cool a space proximate the load. The first compressor compresses the refrigerant from the load. The coil within the flash tank receives the refrigerant from the first compressor such that the received refrigerant is within the coil. The refrigerant stored within the flash tank cools the refrigerant within the coil. The first pipe is within the flash tank. The first pipe directs the refrigerant from within the coil out of the flash tank. The second compressor compresses the refrigerant directed out of the flash tank. |
US10663194B2 |
Modular solar air heater
A modular solar air heater comprises an extruded metal frame having fingers operable to secure a glazing, an absorber, and an insulating back sheet to the frame. The heater may also operate as a cooler. The heater further comprises an active air circulation system, such as a fan, which may be coupled with an air inlet of the heater. The heater has an air outlet and may further include a bypass channel to direct the airflow alternatively through one or both the bypass channel and the air outlet. A heating element and a cooling element may be coupled with the air outlet to further heat and also cool the air through the air outlet, respectively. A photovoltaic panel may be included to provide electrical power to the heater. |
US10663189B2 |
Environmental room with reduced energy consumption
An environmental room for controlling temperature and/or humidity levels at very close uniformity control levels, and at reduced energy requirements. Air flow of the system is divided such that only a portion of total air flow for the room is passed through the temperature and/or humidity air conditioning components, while the remainder of the air flow remains untreated. The treated and untreated air flow is then homogeneously mixed to obtain air having the required temperature and/or humidity levels. By passing only a portion of total air flow through the temperature and/or humidity control components, the required size and capacity of these components can be reduced, and energy requirements and costs for the environmental room can also be reduced. In addition, previously unattainable tolerance and uniformity levels are achieved. |
US10663188B2 |
Method for operating a packaged terminal air conditioner
A method for operating a packaged terminal air conditioner includes activating a compressor of the packaged terminal air conditioner such that refrigerant flows through an interior coil of the packaged terminal air conditioner, and, while the compressor is active, periodically cycling a fan of the packaged terminal air conditioner between a low speed active operating state and an inactive operating state. The fan runs at a modulated speed limit of the fan in the low speed active operating state, and the fan is unpowered in the inactive operating state. |
US10663184B2 |
Air conditioner and control method therefor
An air conditioner including a first filter; a second filter located downstream of the first filter; a dust amount sensor located upstream of the first filter and having a hole through which dust passes, the dust amount sensor configured to transmit, per unit of time, each of a first total, which is an amount of dust in a first size range, and a second total, which is an amount of dust in a second size range smaller than the first size range, of the dust passing through the hole; and a controller configured to output a service signal for the first filter if the accumulated value of the first total transmitted from the dust amount sensor exceeds a first set value, and output a service signal for the second filter if the accumulated value of the second total transmitted from the dust amount sensor exceeds a second set value. |
US10663182B2 |
Vapor compression dehumidifier
An apparatus comprises an air inlet configured to receive an inlet airflow. The inlet airflow comprises a process airflow and a bypass airflow. An evaporator unit receives a flow of refrigerant and is cools the process airflow by facilitating heat transfer from the process airflow to the flow of refrigerant. A condenser unit receives the flow of refrigerant and (1) reheats the process airflow by facilitating heat transfer from the flow of refrigerant to the process airflow, and (2) heats the bypass airflow by facilitating heat transfer from the flow of refrigerant to the bypass airflow. The process airflow is discharged via a process airflow outlet and the bypass airflow is discharged via a bypass airflow outlet. |
US10663179B2 |
Heat pump apparatus
A heat pump apparatus includes a refrigerant circuit for circulating combustible refrigerant, and a load unit to be provided in a room and configured to accommodate a load side heat exchanger. The load side heat exchanger allows heat exchange between the combustible refrigerant and a liquid heat medium. The load unit includes a fan, an air inlet for sucking in air from the room, and an air outlet for blowing out the air, sucked in from the air inlet, to the room. The air outlet is provided at a position of a height different from the height of the air inlet. |
US10663177B2 |
Extending rack for a cooking appliance
An apparatus and method of an extending rack for a cooking appliance. One or more bushings slidingly engage one or more sliding rods allowing a wire rack or structure to travel between positions relative to a remaining portion of the extending rack. One or more support rods may be used with the sliding rods. The extending rack may include one or more retaining clips engaging the one or more bushings to the wire rack. |
US10663175B2 |
Home appliance
A home appliance having a support device configured to prevent the home appliance from falling. A home appliance includes a body having an openable front surface, and a support device having a bracket configured to be coupled to the body, and a foot configured to support the body by being coupled to the bracket, wherein the foot is provided such that a point of support supporting the body by making contact with the ground, is formed in one end portion of the foot. |
US10663170B2 |
Flow conditioner to reduce combustion dynamics in a combustion system
A flow conditioner in a combustor of a gas turbine comprises a body and a flow conditioning portion configured to be placed in an air path providing air flow to a combustion chamber, the flow conditioning portion including a plurality of holes tuned to a damping frequency to dampen a pressure fluctuation caused by combustion dynamics from the combustion chamber. |
US10663168B2 |
End rail mate-face low pressure vortex minimization
A combustor assembly for a turbine engine includes a liner panel defining a portion of an inner surface of a combustor chamber. The liner panel includes an end face transverse the inner surface and at least one diffuser through the end face. A method of assembling a combustor for a turbine engine is also disclosed. |
US10663167B2 |
Combustor assembly with CMC combustor dome
Combustor assemblies are provided. An exemplary combustor assembly comprises an annular ceramic matrix composite (CMC) inner liner including an inner liner flange, an annular CMC outer liner including an outer liner flange, and an annular CMC combustor dome comprising a plurality of tiles positioned circumferentially adjacent one another. Each tile has a first end radially opposite a second end. The CMC inner liner, outer liner, and combustor dome form a combustor, and the CMC combustor dome is positioned at a combustor forward end. The combustor assembly also comprises a support structure for supporting the combustor and including an annular frame having a frame channel defining a groove and an inner and outer support flanges. The first end of each tile is disposed within the frame channel groove. The inner liner flange is secured to the inner support flange and the outer liner flange is secured to the outer support flange. |
US10663164B2 |
Gas burner assembly
A gas burner assembly (10), in particular for a gas cooking hob, comprising a burner cap (12) and a burner body (14). The burner cap (12) is arranged or arrangeable upon the burner body (14). The burner cap (12) includes a plurality of flame ports (20). The flame ports (20) are formed within a horizontal portion or within a substantially horizontal portion of the burner cap (12). The burner body (14) includes a mixing chamber (22), a Venturi pipe (24), at least one air inlet (26), a gas injector (28) and a gas supply channel (36). At least the mixing chamber (22), the Venturi pipe (24), the at least one air inlet (26) and the gas supply channel (36) form a single-piece part. The flame ports (20) of the burner cap (12) are arranged above the mixing chamber (22) of the burner body (14), when the burner cap (12) is arranged upon the burner body (14). |
US10663162B2 |
Fluid utilization facility management method and fluid utilization facility management system
A method for optimizing a fluid utilization facility. The method includes monitoring an operating state of a fluid utilization device and an operating state of a drain trap in a fluid utilization facility based on detection information obtained by detectors installed in various places in the fluid utilization facility. A running state of the fluid utilization facility is optimized based on a monitoring result. |
US10663160B2 |
Beverage dispenser and refrigeration appliance with beverage dispenser
A beverage dispenser has a housing enclosing a dispenser recess, at least one light inlet window for lighting the dispenser recess, a printed circuit board, on which a number of LEDs are arranged to feed light into the dispenser recess by way of the at least one light inlet window. The printed circuit board is mounted on the housing of the dispenser recess above an LED housing, which seals the light inlet window. |
US10663158B2 |
Lighting device with smooth outer appearance
A lighting device or a lamp bulb (100, 200) with a smooth appearance comprises at least one light source (101); a heat sink component (104, 204), having a bottom (1043) and a side wall (1044) extending from the bottom (1044), wherein the bottom (1043) comprises a protrusion (1041) and wherein the at least one light source (101) thermally contacts the protrusion (1041) of the heat sink component (104, 204); and a cover provided on the sidewall (1044) opposite to the bottom (1043), thereby defining an air chamber (1051, 2051) between the cover, the side wall (1044), the bottom (1043) and the protrusion (1041). |
US10663157B2 |
Lighting device with integral acoustic dampening
A lighting fixture includes a surround formed to receive a tile therein, the surround having an outward facing side. The surround includes tabs that permit suspension of the surround in a ceiling grid. A light emitting diode (LED) is mounted on the outward facing side of the surround. A driver is connected to the LED to provide power to the LED for directing light from the outward facing side. |
US10663156B2 |
Field-configurable LED tape light
LED tape is provided that employs a plurality of surface-mounted contact terminals. The LED tape can be severed at discrete locations adjacent to the contact terminal to create a tape segment configured to interconnect to a power source or to another tape segment by way of a wire selectively received and secured within corresponding terminal connectors. The use of the connecting wire omits the need for a mechanical connector or integration by soldering currently required to interconnect LED tape segments. |
US10663143B2 |
Materials and optical components for color filtering in a lighting apparatus
Materials and optical components formed thereof that are suitable for use in a lighting apparatus to impart a color filtering effect to visible light. At least a portion of such an optical component is formed of a composite material comprising a polymeric matrix material and an inorganic particulate material that contributes a color filtering effect to visible light passing through the composite material, and the particulate material comprises a neodymium compound containing Nd3+ ions. |
US10663141B2 |
Device that illuminates a defined surface
An illumination device includes a radiation-emitting optoelectronic component and Fresnel optics including a Fresnel structure having annular ridges and annular grooves, wherein the ridges are configured as closed rings, the ridges and the grooves enclose an optical midaxis of the Fresnel structure, at least one first section of a ridge has a different shape in a predetermined angle range in relation to the midaxis than a second section of the ridge in a second angle range, and the ridges of the Fresnel structure include an inner face and an outer face in cross section through a plane of the midaxis, the inner face facing toward the midaxis in the radial direction, the outer face facing away from the midaxis in the radial direction, the outer face of at least one ridge having different angles in relation to the midaxis in two predetermined angle ranges in relation to the midaxis. |
US10663139B2 |
Vehicular lamp
A vehicle lamp (1) includes a light emitting element (26, 56) functioning as a light source, a substrate (8, 11) on which the light emitting element is mounted, at least the portion of the substrate on which the light emitting element is mounted being colored in a dark color, a reflection part (14, 44) configured to reflect light emitted from the light emitting element, and a concealing part (13, 43) configured to hold the substrate and conceal at least a part of the substrate. A first diffusion portion (22, 52) configured to diffuse light is formed in at least a part of a region of the concealing part facing the reflection part. |
US10663138B2 |
Light reflector systems and methods
A light module includes a plurality of optical fibers configured as an optical fiber panel, wherein a first end of the plurality of optical fibers is configured into a bundle; a first solid state light source coupled to the bundle; a second solid state light source; and a reflector configured to reflect light rays transmitted from the second solid state light source towards the optical fiber panel. A method of transmitting light includes transmitting a first set of light rays, via a first solid state light source, to a plurality of optical fibers of an optical fiber panel, wherein the first solid state light source is coupled to the plurality of optical fibers; transmitting a second set of light rays, via a second solid state light source, towards a reflector; and reflecting the second set of light rays from the reflector towards the optical fiber panel. |
US10663137B2 |
Light source unit for vehicle headlight and vehicle headlight
A light source unit for a vehicle headlight includes a circuit board on which four light emitting devices are disposed at each of four directions with respect to a center thereof, and a reflector provided on the circuit board so as to surround the four light emitting devices, wherein the circuit board includes four side areas in which the four light emitting devices are disposed, one center area disposed at a center of the four side areas and four corner areas disposed at corner sections next to the four side areas, and the reflector includes eight first reflective surfaces provided to divide spaces between each of the side areas and the corner areas, and four second reflective surfaces provided to divide sides of each of side areas opposite to the center area. |
US10663136B2 |
Drive circuit for motor and vehicular lamp
A drive circuit for a motor is used in a light scanning vehicular lamp. The drive circuit includes an output stage, a pre-driver that controls the output stage, a clamp circuit that generates intermediate voltage that is limited so as not to exceed given voltage, and a booster circuit that receives the intermediate voltage and supplies internal power-supply voltage higher than the intermediate voltage to a power supply terminal of the pre-driver. |
US10663130B2 |
Lighting arrangement with battery backup
A lighting arrangement can include a light emitter portion and a battery backup portion. The light emitter portion can have a plurality of light emitting diodes and circuitry including a rectifier for driving the light emitting diodes. The battery backup portion can be in electronic communication with the rectifier of the light emitter portion and have a battery portion and a converter portion with a DC-AC inverter and a microcontroller unit configured to route AC power to the rectifier from either a primary AC source or the battery portion. The light emitter portion can be configured to be mounted to at least one of a wall and a ceiling during use. The battery backup portion can be positioned within the trim, with the plurality of light emitting diodes in the array string. |
US10663128B2 |
Lighting fixture having an integrated communications system
In one aspect, a lighting fixture includes a pole having a first section and a second section. The second section of the pole includes a radio frequency (RF) transparent material. The lighting fixture also includes a light housing coupled to the first section of the pole and a light source in the light housing. The lighting fixture further includes an antenna assembly in the second section of the pole. The antenna assembly is configured to wirelessly communicate with a user equipment device (UE). The lighting fixture also includes a communications backhaul interface coupled to the antenna assembly. |
US10663125B2 |
Lighting element for illuminated hardscape
A lighting element for an illuminated hardscape. The lighting element includes a body structure defining a dispersion surface. A light fixture is positioned within the body structure and is configured to provide a light which is dispersed through the body structure to the dispersion surface. The body structure is formed from a clear or translucent material. An illuminated hardscaping is also provided. |
US10663123B2 |
LED lighting system and methods
An LED lighting system includes first, second and third conductive wires, a plurality of light emitting diodes (LEDs), a transparent insulated layer, and a universal serial bus (USB) plug. The first conductive wire is configured to carry a positive charge. The second conductive wire is configured to carry a negative charge. The third conductive wire is configured to carry a ground charge. The first, second and third conductive wires are arranged side-by-side. The plurality of LEDs are mounted to each of the first, second and third conductive wires. The transparent insulated layer extends around and encapsulates the first, second and third conductive wires and the plurality of LEDs. The USB plug is electrically connected to the first, second and third conductive wires. |
US10663122B1 |
Line source sweeping light fixture
A tubular lighting device encloses a plurality of LEDs and delivers light with uniformity, resembling the light delivered by a single linear light source. The tubular lighting device comprises a housing, a lighting chassis mounted on the housing, at least one circuit board with a plurality of LEDs mounted on the lighting chassis, each LED having a length A and two adjacent LEDs being separated by a distance L, a thin film mounted on the base and above the plurality of LEDs, the thin film being separated from the plurality of LEDs by a distance H, and a lens mounted on the lighting chassis and above the thin film. |
US10663121B2 |
Light-emitting device, light source unit, and projection display apparatus
A light-emitting device of an embodiment of the present disclosure includes a first base, a second base that is disposed to face the first base, and a phosphor layer that is provided to be filled with a plurality of phosphor particles between the first base and the second base. |
US10663118B1 |
Extendable LED lamp
An LED lamp includes a mounting mechanism, and an illuminating apparatus mounted on the mounting mechanism. The illuminating apparatus includes two first lighting units mounted on the bottom of the mounting mechanism respectively, and a second lighting unit mounted on the bottom of the two first lighting unit. The second lighting unit extends through the two first lighting unit and is connected with the mounting mechanism. Thus, the two first lighting units are slidable on the bottom of the mounting mechanism, such that the LED lamp is extendable to regulate the lighting range according to requirements of the practical environment or situation. |
US10663116B2 |
Lighting device with dispenser for a reactive substance
A lighting device (100, 300, 400) is disclosed. The lighting device comprises a light source (110, 310, 410), an at least partially light transmitting envelope (120, 320, 420) and a dispenser (140, 340, 440). The envelope is arranged to define a sealed space (130, 330, 430) in which at least a portion of the light source is arranged. Further, the dispenser comprises a chemically reactive substance and is adapted to gradually release at least some of the chemically reactive substance to the sealed space so as to reduce contaminants and by-products that may be present in the sealed space. |
US10663114B2 |
Natural gas home fast fill refueling station
A home-based, low-cost, self-contained, fast-fill natural gas refueling station for providing compress natural gas (CNG) fuel for motor vehicles. The station compresses utility supplied natural gas and stores the CNG in a CNG storage facility located inside the station. In preferred embodiments the refueling station is located adjacent to a driveway at a home. The compressor preferably is a multi-stage gas compressor having at least three stages of compression. Applicant estimates that savings based today prices for CNG as compared to gasoline, a typical family with only one car could pay for the station in three years. If the family has several cars the station could pay for itself much earlier. |
US10663113B2 |
Safety system and method for a portable electrical tool
The present invention relates to a system for increasing the safety of a portable electrical tool (10), comprising: a generator (40) of a radio-electric signal, which generator is electrically coupled to said user (1) so as to inject into the body of the user (1) said radio-electric signal (s(t)), said radio-electric signal (s(t)) then being emitted by said user (1) in the form of an electromagnetic signal; and the portable electrical tool (10), which is arranged to be borne by a member of the user and comprises: a machining member (4); a holding member (2); an actuator connected to the machining member (4); an antenna fastened to the machining member (4) and/or the holding member (2) and arranged to receive a radio-electric signal corresponding to the electromagnetic signal emitted by the user (1). A computing module (30) determines a distance between the user and the machining member and/or holding member on the basis of the electromagnetic signal received by the antenna, and modifies accordingly the speed of the actuator. |
US10663111B2 |
Cartridge device for lubricating a machine
The invention relates to a cartridge device for lubricating a machine, preferably a clipping machine, having a pneumatic system and a pump unit driven by the pneumatic system, the cartridge device comprising a cartridge container for accommodating a supply of lubricant having a longitudinal axis defining a longitudinal direction, wherein the cartridge container comprises a first end portion and a second end portion located opposite the first end portion in the longitudinal direction, and a first closure element for detachably coupling the first end portion of the cartridge container to a suction side of the pump unit, wherein the first closure element has a delivery opening for supplying lubricant contained within the cartridge container to the suction side of the pump unit. The invention is characterized in that the first closure element is detachably coupleable to the first end portion of the cartridge container, the first end portion of the cartridge container being configured so as to allow a collapsible reservoir containing the supply of lubricant to be inserted into and removed from the cartridge container. |
US10663110B1 |
Metrology apparatus to facilitate capture of metrology data
In the present disclosure, systems and apparatuses for stabilizing a metrology device may be provided. The metrology device may be connected with a metrology apparatus that may prevent and/or correct for unintended movement of the metrology device. The metrology apparatus may include a base plate having a top surface and a bottom surface, and the base plate may include a plurality of holes from the top surface to the bottom surface. The metrology apparatus may further include a plurality of suspension rods, and a distal end of a respective suspension rod may be positioned through a respective hole such that a first portion of the distal end is disposed on the top surface of the base plate and a second portion of the distal end is disposed on the bottom surface of the base plate. The metrology device may be connected to the bottom surface of the base plate such that at least a portion of an assembly cell is within a field of view of the metrology device. |
US10663109B2 |
Translation axis assembly and gimbal platform using same
A translation axis assembly includes a supporting arm, a connecting plate, and a center-of-gravity adjusting device connected between the supporting arm and the connecting plate. The center-of-gravity adjusting device is configured to adjust a position of the supporting arm on the connecting plate to adjust a center of gravity of the translation axis assembly. The center-of-gravity adjusting device includes a locking assembly configured to allow the supporting arm and the connecting plate to be in a loose fit or to hold tightly to each other. |
US10663108B2 |
Holder
According to one embodiment, a holder attaches a first electronic device and a second electronic device to a display. The holder includes a base structure, a first holder section, and a second holder section. The first holder section at a first portion of the base structure holds the second electronic device and includes a first through hole that receives a first male screw to be screwed into a first female screw of the first electronic device. The second holder section at a second portion of the base structure holds the second electronic device and includes a second through hole that receives a second male screw to be screwed into a second female screw of the first electronic device. |
US10663107B2 |
Removable tripod with securement
Installation of a removable tripod foot is facilitated by a cross-axis aperture in the foot and loosening of the threaded connection of the foot and the tripod's leg is resisted by a resilient element engaging interfacing surfaces of the foot and the leg. |
US10663106B1 |
TV wall mount
A motorized articulating TV wall mount is provided. The wall mount may include a housing having an interior space and an opening. The mount includes articulating arms operatively coupled to a rear wall of the housing, wherein the articulating arms are moveable between an extended position and a retracted position. The extended position includes the articulating arms extending through the opening of the housing and the retracted position includes the articulating arms within the inner space and not extending through the opening. The mount includes a tv mounting member coupled to the articulating arms, wherein the articulating arms are coupled between the housing and the tv mounting member. Additionally, the mount includes a cable management system coupled to the articulating arms. The wall mount may be installed in-wall or on-wall without modification to the components. |
US10663101B2 |
Method of installing a heat tube on pre-insulated piping
A method is shown for installing a heat tube on a section of pre-insulated piping. A metal carrier pipe is covered with a first layer of foam insulation. Next, a routing device is used to cut a longitudinal slot along the length of the pipe so that the pipe exterior surface is exposed from the insulation. A heat tube is then installed within the longitudinal slot, whereby the heat tube contacts the exterior surface of the metal carrier pipe. A second layer of foam insulation is then sprayed onto the exterior of the metal carrier pipe, covering the previously formed longitudinal slot and installed heat tube. A polyolefin coating is then applied over the insulation to form a protective outer jacket for the insulated pipe. |
US10663100B2 |
Mechanical branch outlet
A mechanical branch outlet including: a housing having an outer surface and an inner surface and defining an outlet bore extending between the outer surface and the inner surface; and an insert having a first end and a second end, the outlet bore of the housing sized to receive the second end of the insert and retain the first end of the insert. |
US10663097B2 |
Rotary joint
First circumferential grooves (first compressed air supply grooves, first pressure oil supply grooves, and a first coolant supply groove) formed on a first sliding surface, and second circumferential grooves (second compressed air supply grooves, second pressure oil supply grooves, and a second coolant supply groove) formed on a second sliding surface are formed in a rotary joint to be opposite to each other when seen from a radial direction of the rotary joint. In one pair of the opposite first circumferential groove and second circumferential groove, a type and a use of a fluid flowing in the first circumferential groove is the same as a type and a use of a fluid flowing in the second circumferential groove. |
US10663092B2 |
Multilayer tube
Provided is a multilayer tube that has a layer containing an aliphatic polyamide (such as Polyamide 11 or Polyamide 12), a layer containing a Polyamide 6 composition or Polyamide 6/66/12 composition, a layer containing a saponified ethylene-vinyl acetate copolymer, and a layer containing a semi-aromatic polyamide composition that contains a semi-aromatic polyamide having a specific structure, and further has a fluorine-containing polymer in which a functional group having reactivity with an amino group is introduced into the molecular chain thereof. |
US10663091B2 |
OCTG pipe system and method of manufacturing thereof
A pipe system for oil country tubular goods (OCTG) and a method of manufacturing the OCTG pipe system is disclosed. The pipe system includes at least one OCTG pipe having a pipe body, the pipe body having at least one connection end formed in unipartite and materially integral manner with the pipe body for coupling to a second OCTG pipe. The OCTG pipe is formed in seamless fashion from a hardenable steel alloy, and the connection end has a yield strength higher than the yield strength of the pipe body. |
US10663089B2 |
Universal cable tie mount
A cable tie mount that provides multiple mounting options and accommodates a plurality of cable bundle positions. The cable tie mount includes a body having a first side, a second side, a first end, a second end, a top surface, and a bottom surface opposite the top surface. The top surface includes a top center opening defined by top inner walls. The bottom surface includes a bottom center opening defined by bottom inner walls. The cable tie mount also includes a center hole extending through the body from the top center opening in the top surface to the bottom center opening in the bottom surface. |
US10663088B2 |
Adapter for mounting cables and cable hangers
An adapter for mounting cable hangers to a mounting structure includes: a plurality of mounting panels, each mounting panel including a mounting hole, the mounting panels attached to each other at edges thereof, each mounting panel being disposed at an angle relative to its adjacent mounting panels; a base attached to the edge of endmost ones of the mounting panels; wherein the mounting panels and the base define an interior of the adapter; the adapter further comprising at least one pair of fingers extending into the interior of the adapter, each pair of fingers being configured to cooperate to grasp a cable. |
US10663086B2 |
System and method for moving an elongate element
A system and method for moving an elongate element from a first position towards a second position against an upright structure on a vessel are disclosed. The system includes a holding element for holding the elongate element in the first position; a first sliding member pivotally connected to an end region of the holding element, and moveable along a base, ground or deck surface; a further sliding member pivotally connected to a further end region of the holding element, and moveable along the upright structure; and a hoist system operably engaged with the upright structure, the end region of the holding element and the further end region of the holding element, for drawing the holding element towards the upright structure such that the elongate element is moved towards the second position, wherein the hoist system comprises a first portion and a further portion, the first portion arranged to exert a force in a first direction and the further portion arranged to exert a force in a further direction. |
US10663084B2 |
Noise-dampening pressure relief valve
A pressure relief valve includes a housing including an air passage chamber defining an airflow passage and a membrane flap secured within the air passage chamber. The membrane flap covers the airflow passage in a closed position. A portion of the membrane flap is configured to move off the airflow passage into an open position. A flap motion dampener is proximate to the airflow passage. The flap motion dampener is configured to control motion of the membrane flap as the membrane flap seats over the airflow passage in order to dampen noise. |
US10663083B2 |
Trim assembly having a side branch resonator array and fluid control valve comprising same
A fluid valve includes a valve body having a fluid inlet and a fluid outlet. A fluid passageway connects the fluid inlet and the fluid outlet. A trim assembly is located within the fluid passageway and the trim assembly cooperates with a control member to control fluid flow through the fluid passageway. The trim assembly includes a cage and a cage retainer. The cage retainer is located downstream of the cage and the cage retainer and the cage are aligned longitudinally within the fluid passageway. The cage retainer includes a side branch resonator array. |
US10663082B2 |
Sealing system of a device for allowing the passage of a medium, in particular in the high pressure range
Sealing system of a device for allowing the passage of a medium, in particular in the high pressure range, is provided with a housing that has a bore hole, a component mounted within the housing such as to oscillate and/or rotate and with a pressure chamber formed within the bore hole. A sealing element surrounding the component adjoins this pressure chamber which can be charged with the medium. An additional metal seal is formed here by the housing and a pressure disc surrounding the component. The outer region is thus tightly closed after the sealing element. In this way, the sealing element is completely tightly encapsulated on the outside. |
US10663076B2 |
Electric actuator and method of manufacturing the same
A rotation stop shape is visually recognizable through an exposing hole. A relative angle between an output shaft and an actuator lever can be freely set while the rotation stop shape, which is visually recognizable through the exposing hole, is used as the reference angle of the output shaft. Therefore, it is possible to limit disadvantageous variations in a fixation angle of the actuator lever. The fixation angle of the actuator lever relative to the output shaft can be freely changed by using the rotation stop shape, which is visually recognizable through the exposing hole, as a reference angle of the output shaft. |
US10663062B2 |
High-precision rear-axle reduction gearbox for scooter
The present invention discloses a high-precision rear-axle reduction gearbox for a scooter, comprising a box body, wherein an inner chamber is formed within the box body, and an opening for communicating the inner chamber with the outside is formed on the box body; a cover for sealing the opening is fitted at the opening of the box body; output shaft hole for allowing an output shaft to pass therethrough and an input shaft hole for allowing an input shaft to pass therethrough are formed on the box body; a driving motor is provided outside the box body; a differential component is provided within the inner chamber of the box body; a driving motor output shaft of the driving motor is linked to an input shaft, and the input shaft is linked to an output shaft via the differential component; and, the opening is relatively located on a radial outer side of the output shaft, and the opening is deviated from the output shaft holes and the input shaft hole. |
US10663061B2 |
Control apparatus for vehicle drive-force transmitting apparatus
A control apparatus for a vehicle drive-force transmitting apparatus including a continuously-variable transmission mechanism whose gear ratio is calculated based on a detected value of an input rotational speed of the transmission mechanism and a processed output-rotational-speed value that is a detected value of an output rotational speed of the transmission mechanism subjected to a filter processing. Updating the gear ratio of the transmission mechanism is inhibited (i) when the processed output-rotational-speed value is in a low rotational speed range with an absolute value of a rate of change of the processed output-rotational-speed value being not smaller than a given value, and also (ii) when the processed output-rotational-speed value is in the low rotational speed range with the absolute value of the rate of change of the processed output-rotational-speed value being smaller than the given value, if a certain operation that increases the absolute value is being executed. |
US10663058B2 |
Vehicle sailing stop control method and control device
A vehicle sailing stop control method is provided for a vehicle including a friction engagement element disposed between a traveling drive source and drive wheels, a torque converter disposed between the friction engagement element and the traveling drive source, and including a lock-up clutch for which a power transmission amount is controlled based on hydraulic pressure, and a hydraulic pressure source that can supply the hydraulic pressure while the traveling drive source is stopped. The vehicle sailing stop control method includes: performing sailing stop control so that coasting is performed by cutting off power transmission of the friction engagement element and stopping the traveling drive source upon a sailing stop travel condition being established; and, during coasting by the sailing stop control, placing the lock-up clutch in a power transmission state in which the hydraulic pressure is applied to the lock-up clutch. |
US10663051B2 |
Electric differential with torque vectoring function
An electric differential with a torque vectoring function. The electric differential includes: a main drive mechanism; a bevel gear differential; a TV control drive mechanism used for outputting control power; a first single-row planetary gear train, of which a first sun gear is coaxially and fixedly connected with a first half shaft and a first planet carrier is connected with a control output end; a second single-row planetary gear train, of which a second planet carrier is fixed to a drive axle housing, a second gear ring is fixedly connected with a first gear ring and a second sun gear is supported on the first half shaft through a bearing. |
US10663047B2 |
Device comprising a transmission assembly having an override clutch with a freewheeling member
A device includes a transmission assembly having a first override clutch. The first override clutch is used especially for transmitting a torque between a first coupling partner and a second coupling partner. The first override clutch engages and disengages in accordance with a change in the load flow between the coupling partners. A freewheeling member which is associated with the first override clutch neutralizes the engagement between the coupling partners. The neutralization is, in particular, temporary. |
US10663046B2 |
Ball screw locking apparatus
An apparatus for positively locking a ball screw in a lift position is described. The apparatus includes defined tooth disc and pawl housings, which interconnect to facilitate interoperation of locking components. A tooth disc is secured to the ball screw and actuators associated with each pawl can exert a downward force on each pawl, in order to force the pawls into engagement with the tooth disc via movement in a vertical plane. Owing to the shape, size and positioning of the pawl and tooth disc components relative to one another, and the vertical movement of the pawl members into engagement with the tooth disc, the apparatus of the present invention is capable of locking the hall screw in position at any point along the length of the ball screw, even if the pawls are out of alignment with the teeth, or recesses between adjacent teeth. |
US10663042B2 |
External circulation ball screw
An external circulation ball screw consisting of a screw shaft, a screw nut, a cover, two reflow members and multiple rolling members is disclosed. The screw nut defines a mounting groove on the outer perimeter and two return holes in the mounting groove. A first half-return channel on a first step in the mounting groove of the screw nut and a second half-return channel in a second step inside the cover constitute a return channel. Alternatively, a third step can be formed in the cover, or the screw nut can be configured to provide a mounting groove and a third step with return holes in the mounting groove. Thus, same size of reflow members can be used with different lengths of return channels. |
US10663040B2 |
Method and precision nanopositioning apparatus with compact vertical and horizontal linear nanopositioning flexure stages for implementing enhanced nanopositioning performance
An enhanced method and precision nanopositioning apparatus for implementing enhanced nanopositioning performance is provided. The nanopositioning apparatus includes a vertical linear nanopositioning flexure stage and a horizontal linear nanopositioning flexure stage. The vertical linear nanopositioning flexure stage includes a stage base, a symmetrically configured flexure linear guiding mechanism with precision motion enhancement structure, and a stage carriage. The horizontal linear nanopositioning flexure stage is mounted on the stage carriage of the vertical linear nanopositioning flexure stage, and includes a middle-bar relative position control mechanism to enhance the stiffness of a flexure linear guiding mechanism. |
US10663032B2 |
Torsional vibration reducing device
In a torsional vibration reducing device, a protrusion projecting radially outward of the rotating body is formed on an inner wall surface. The protrusion is formed on a rotation direction side of a rotating body relative to a straight line passing through a rotation center of the rotating body and a center of a rolling element when the rolling element is located in a middle between both end positions to which the rolling element swings within the roller chamber, and while the rolling element is located at an end portion of a roller chamber on the rotation direction side of the rotating body, a gap is equal to or less than a predetermined value between the rolling element and a wall surface of the roller chamber on a straight line passing through a rotation center of the rotating body and a tip of the protrusion. |
US10663028B2 |
Tunable hydraulic vibration damping mount
A tunable hydraulic vibration damping mount comprises a universal outer housing, inner sleeve, main spring assembly, bottom compliance assembly, and inner bushing. Each of a plurality of flow channel members comprises a cylinder having a common inner diameter, a common outer diameter, and a helical track having a cross-sectional area and a length defining a volume of the helical track. The helical track of each flow channel member defines a different volume. A selected flow channel member is positioned between the inner bushing and the outer housing and between the main spring assembly and the bottom compliance assembly. The selected flow channel member provides a selected dynamic performance of the damping mount. |
US10663022B2 |
Brake drum
A brake drum including a shell portion that has a friction face which is arranged with rotational symmetry with respect to an axis of rotation, and an attachment portion which has a mounting section, wherein the shell portion and the attachment portion are made of different materials and are connected to one another. |
US10663018B2 |
Hydraulic control system of double piston clutch unit for automatic transmission
A hydraulic control system of double piston clutch device configured for an automatic transmission, which includes clutch drum connected to one rotation element, a clutch configured in the clutch drum and configured to transmit rotation power in connection with another rotation element through a clutch hub, and a double piston in which first and second pistons are disposed in series to operate the clutch by hydraulic pressure while a front end is disposed to correspond to the clutch, may include a first hydraulic chamber formed between the first piston and the clutch drum to receive the hydraulic pressure through a first passage hole in a sealed state; and a second hydraulic chamber formed between the first and second pistons to receive the hydraulic pressure through a second passage hole in the sealed state and the hydraulic pressure separately controlled is supplied to the first and second hydraulic chambers, respectively. |
US10663017B2 |
Clutch apparatus
An object is to provide a compact and lightweight clutch apparatus by using a mechanical clutch. A clutch apparatus includes a one-way clutch and a mechanical clutch arranged in parallel in an axial direction, in which the mechanical clutch is movably retained in the axial direction, and when the mechanical clutch moves in the axial direction due to pushing means, the mechanical clutch engages with an end surface of an inner wheel of the one-way clutch. |
US10663016B2 |
Electrostatic rotary clutch
Methods, systems, apparatuses, and devices are provided for an electrostatic rotary clutch. The clutch comprises electrically-conductive housing plates fixed into position in grooves within a housing of the clutch. The clutch also comprises rotor plates that are fixed onto a shaft. The shaft is positioned within the housing such that each rotor plate is adjacently positioned next to each housing plate, thereby forming a plurality of electrically-conductive plate pairs. To produce a torque resistance on the shaft, a voltage differential is applied between the housing and rotor plates, which causes an electrostatic adhesion between the housing and rotor plate in each electrically-conductive plate pair. Alternatively, the housing and rotor plates are not fixed into position, enabling a greater number of housing and rotor plates within the housing and increasing the torque resistance produced on the shaft when applying the voltage differential. |
US10663014B2 |
Hydraulic clutch device
Provided is a hydraulic clutch device capable of securing sufficient performance (oil filtration performance) of a filter for cleaning oil while avoiding an increase in size of the device. The hydraulic clutch device includes an oil pump, a pressure regulating valve which pressure-regulates oil discharged by the oil pump, and a hydraulic clutch engaged by the oil pressure-regulated by the pressure regulating valve, wherein the pressure regulating valve is disposed on a downstream side in an oil flow direction of the hydraulic clutch, and a filter is disposed between a piston chamber of the hydraulic clutch and the pressure regulating valve. The filter is attached to be accommodated in an accommodating portion formed by recessing an inner surface of the piston chamber from the inside of the piston chamber. |
US10663007B2 |
Injection apparatus for molding combined member of constant-velocity joint boot, injection method of combined member of constant-velocity joint boot, and constant-velocity joint boot manufactured by injection method of combined member
An injection apparatus to mold a combined member with excellent performance to a constant-velocity joint boot to seal constant-velocity universal joints. The constant-velocity universal joints are used for smooth operation of a drive shaft which transfers driving power from a differential gear of a vehicle to a hub on which a tire is mounted. An injection method of the combined member of the constant-velocity joint boot. A constant-velocity joint boot manufactured by the injection method of the combined member. |
US10663006B2 |
Polygon spring coupling
A polygonal coupling couples torque source to a torque consumer such that input and output portions of the coupling may elastically rotate relative to one another during torque transfer to accommodate rotational speed variations in delivery of torque from the torque source. In an embodiment the torque source is an internal combustion engine with an integrated switchable coupling between the engine crankshaft and a torque transfer segment supporting a motor-generator. The polygonal coupling includes axially-overlapping polygonal-shaped male and female portions which cooperate to pass torque between the output of the integrated switchable coupling and an input of the torque transfer segment. At least one of the male and female portions includes recesses which form flexible arms adjacent to the lobes of the polygonal shape that allow the portions to rotate relative to one another over small angular displacements, and thereby improve damping of crankshaft rotational vibrations. |
US10663004B2 |
Bearing retention method and apparatus
A method of assembling a bearing assembly includes fitting a first ring onto a first end of a gear shaft. A second ring is fed into a slot in the first ring. The second ring is driven through the slot in the first ring. The second ring is positioned within the first ring. The second ring is positioned about the gear shaft such that a first end and a second end of the second ring are covered by a solid portion of the first ring. |
US10663003B2 |
Sealing apparatus
A sealing apparatus main body includes a reinforcing ring and an elastic material portion which is attached to the reinforcing ring and formed of an elastic material. The elastic material portion has a side lip formed so as to contact a slinger from the inside, a radial lip formed so as to contact the slinger from an outer periphery side, and an outer peripheral annular projection being an annular projection which is arranged on an outer periphery side of the side lip and protrudes to the outside. The slinger has a fitting portion and a flange portion extending from an outer end portion of the fitting portion to the outer periphery side. The elastic material portion forms a labyrinth seal between the outer peripheral annular projection and the side lip between the elastic material portion and the flange portion of the slinger. |
US10663002B2 |
Ball bearing, clutch thrust bearing device including such a bearing, and driveline system including such a device
A ball bearing includes a fixed inner ring able to bear against an axially movable piston, a rotatable outer ring, and one series of balls between the fixed inner ring and the rotatable outer ring. The rotatable outer ring also includes a folded portion able to bear against a resilient biasing member. The ball bearing can be integrated into a clutch thrust bearing device. The clutch thrust bearing device can be integrated into a driveline system. The driveline system can be included in an all-wheel drive driveline system of a motor vehicle. |
US10662999B2 |
Mobile-object-holding tool and mobile object
This mobile-object-holding tool is mounted in place of a track body on a mobile object which moves along the track body, wherein the mobile object includes at least a pair of rolling element load rolling grooves through which a plurality of rolling elements roll and the mobile-object-holding tool includes a pair of holding parts which face the pair of rolling element load rolling grooves and hold the plurality of rolling elements, a biasing linking part which links the pair of holding parts together and biases the pair of holding parts away from each other, and a deformation regulating part which regulates a mounted contraction amount by which the biasing linking part is capable of contracting after being mounted on the mobile object to a predetermined value or less. |
US10662995B2 |
Supporting washer
The present disclosure provides a washer having a generally circular shape and is used for supporting a screw head. The shank of the screw penetrates the central hole of the washer. When viewed from a planar perspective, the outer edges of the washer have a sinusoidal shape with depressions and elevations. |
US10662994B2 |
Self-drilling, self-countersinking fastener
A self-drilling, self-countersinking fastener is provided that includes a shaft, a countersunk head located at a first end of the shaft, and a tapered point located at an opposite end of the shaft. A thread integrally extends from the shaft and extends along at least a portion of a length thereof. The countersunk head includes a frustoconical region having a first, smaller diameter in a shaft connection region and a second, larger diameter at a second end defining an edge area of the head. A plurality of radially extending ribs are located on the frustoconical region and extend from an area of the first, smaller diameter to a respective radially outer rib end spaced radially inwardly by a distance X from the edge area of the head. A respective cutting edge is located on each of the ribs. |
US10662987B2 |
Phase tailoring for resonant flow devices
A device including a resonant array of a plurality of synthetic jet generators where neighboring jet generators are coupled, resulting in the potential for constructive and destructive interference between jets of the plurality of synthetic jet generators depending on the relative phase of a corresponding plurality of drive signals to plurality of synthetic jet generators. The device also includes a controller configured to control the relative phase of the corresponding plurality of drive signals to effect a change in a first jet emitted by a first synthetic jet generator of the plurality of synthetic jets by changing a given phase of a second jet emitted by a second synthetic jet generator of the plurality of synthetic jet generators. |
US10662986B2 |
Use of treating elements to facilitate flow in vessels
A method for facilitating the distribution of the flow of one or more streams within a bed vessel is provided. Disposed within the bed vessel are internal materials and structures including multiple operating zones. One type of operating zone can be a processing zone composed of one or more beds of solid processing material. Another type of operating zone can be a treating zone. Treating zones can facilitate the distribution of the one or more streams fed to processing zones. The distribution can facilitate contact between the feed streams and the processing materials contained in the processing zones. |
US10662984B2 |
Compressed air preparation device and method for operating same
The invention relates to a compressed air preparation device for rail vehicles or utility vehicles, comprising a compressed air inlet, to which an air compressor can be connected, a compressed air outlet, which is connected to the compressed air inlet via a compressed air duct, and an air drying device arranged in the compressed air duct. In the event that the air compressor is switched off, the compressed air duct is vented upstream of the air drying device so that, at restart, the air compressor can start against a reduced counterpressure. |
US10662982B2 |
Fluid pressure cylinder
In a fluid pressure cylinder a piston unit, which is displaced along an axial direction under the supply of a pressure fluid, is disposed in an interior of a cylinder tube of the fluid pressure cylinder. The piston unit includes a disk shaped plate body connected to one end of a piston rod, and a ring body connected to an outer edge portion of the plate body. The ring body is connected together with the plate body by a plurality of third rivets that are punched in an axial direction with respect to the plate body. |
US10662980B2 |
Hydraulic system in work machine
A hydraulic system in of a work machine includes a hydraulic pump to supply pilot hydraulic oil in a hydraulic oil reservoir. A travel pump is to drive a travel motor according to a pilot pressure of the pilot hydraulic oil. A target pilot pressure of the pilot hydraulic oil is input through a travel operation device to control, according to the target pilot pressure, the pilot pressure supplied from the hydraulic pump to the travel pump. A pilot oil path connects the travel operation device and the travel pump to supply the pilot pressure to the travel pump. A drain oil path is divided from the pilot oil path. A pressure adjustment valve is provided in the drain oil path to adjust the pilot pressure to be less than the target pilot pressure when a condition is satisfied. |
US10662977B2 |
Vehicle hydraulic system
A vehicle hydraulic system includes: (a) a hydraulic pump device to be driven by a vehicle drive source to eject a working fluid through first and second outlet ports; (b) a first line passage that guides the working fluid ejected through the first outlet port, with a hydraulic pressure being regulated to a relatively high value; (c) a downstream-side passage in which the hydraulic pressure is regulated to a relatively low value; (d) a path-switching valve device configured to allow the working fluid ejected through the second outlet port, to flow into the first line passage, when the hydraulic pressure is lower than a predetermined value, and configured to allow the working fluid ejected through the second outlet port, to flow into the downstream-side passage, when the hydraulic pressure is higher than the predetermined value; and (e) a bypass passage provided between the second outlet port and the downstream-side passage. |
US10662976B2 |
Electrohydraulic drive unit
An electrohydraulic drive unit is provided, comprising a cylinder-piston assembly having a piston-side first hydraulic working chamber and a piston-rod-side second hydraulic working chamber, a tank, a hydraulic pump, which can be driven at variable rotational speed and which has a tank connection point and a working connection point, a valve assembly, which is connected between the working connection point of the hydraulic pump and the cylinder-piston assembly, and an anti-cavitation valve, which is connected between the tank and the first hydraulic working chamber; and a machine controller. Switching valves of the valve assembly can be switched between loading of the first hydraulic working chamber and loading of the second hydraulic working chamber of the cylinder-piston assembly during pumping operation of the hydraulic pump from the working connection point of the hydraulic pump by the machine controller. |
US10662975B2 |
Fan blade surface features
A fan blade (134) includes a working region (148) having a leading edge (138) and a pressure side (136). A plurality of flow modification features (150-1 to 150-4) are positioned at the working region, including first and second flow modification features (150-1, 150-2, 150-3) each having a wedge shape with a pointed end (152) and a wider end (154), and located on the pressure side. A length of the first flow modification feature is less than a chord length of the fan blade, and the pointed end of the first flow modification feature is spaced from the leading edge. A length of the second flow modification feature is less than the chord length of the fan blade, and the pointed end of the second flow modification feature is spaced from the leading edge. The first and second flow modification features are spaced from each other to define a channel (156) therebetween. |
US10662973B2 |
Reversible flow fan
A reversible flow fan includes: an impeller that includes blade portions; and rear-edge curved portions disposed on surfaces on rear edge sides of the blade portions in a normal rotation direction of the impeller. The rear-edge curved portions are convexly curved from a center of the impeller toward directions of outer peripheral portions of the blade portions in airflow directions during a reverse rotation of the impeller. |
US10662967B2 |
Fluid pump with a rotor
The invention relates to a fluid pump, in particular to a liquid pump having a rotor with at last one rotor blade for conveying the fluid, the rotor being variable with respect to its diameter between a first, compressed state and a second expanded state. In order to produce a simple compressibility and expandability of the rotor of the pump, it is provided according to the invention that at least one rotor blade is deformable between a first state which it assumes in the compressed state of the rotor and a second state which it assumes in the expanded state of the rotor by means of a fluid counterpressure during a rotation of the rotor during pump operation. |
US10662964B2 |
Radial compressor and exhaust gas recirculation system
The invention relates to a radial compressor (2) comprising an impeller (4), a motor (8) for driving the impeller (4), which motor (8) exhibits a shaft (40), a housing (10) for the motor (8) and a distribution system (18) for a service fluid for the motor (8), wherein the distribution system (18) comprises a main feed (28), a manifold (36) and at least two feed branches (37, 38), wherein the service fluid can be conducted through the main feed (28), the manifold (36) and the at least two feed branches (37, 38), and wherein the main feed (28) and the feed branches (37, 38) join in the manifold (36). A radial compressor with an enhanced design may be achieved in that the distribution system (18) is an integral part of the housing (10) and in that the housing (10) comprises several housing parts (12, 14, 16), which are connected to each other and which are arranged adjacent to each other in longitudinal direction of the shaft (40), where the distribution system (18) extends through at least two of the housing parts (14, 16). |
US10662958B2 |
Method and systems for a radiator fan
Systems and a method are provided for determining a change in performance of a radiator fan. In one example, a system includes a controller configured to receive a signal output from an accelerometer positioned proximately to and/or operatively coupled with a bearing of a radiator fan, process the signal to determine a peak to peak acceleration value, and indicate a change in performance of the radiator fan when the peak to peak acceleration value is greater than a designated threshold value. |
US10662956B2 |
Fan device
The invention relates to a fan device with at least one locking element for securing the fan device to a wall portion, in particular to an electrical enclosure wall, with a front and a rear face. The fan device is inserted into a front-face wall portion opening in a pressureless manner, and the locking element is movable in the direction of the rear face of the wall portion in the inserted state. |
US10662954B2 |
Direct numeric affinity multistage pumps sensorless converter
Apparatus, including a pump system controller, features a signal processor or processing module configured at least to: receive signaling containing information about pump differential pressure, flow rate and corresponding power data at motor maximum speed published by pump manufacturers, as well as instant motor power and speed, for a system of pumps arranged in a multiple pump configuration; and determine corresponding signaling containing information about instant pump differential pressure and flow rate for the system of pumps arranged in the multiple pump configuration using a combined affinity equation and numerical interpolation algorithm, based upon the signaling received. |
US10662950B2 |
Progressing cavity device with cutter disks
A stator for a helical gear device includes a first section having first helically convoluted chamber with a set of radially inwardly extending lobes and a second section adjacent to the first section. The second section includes a stack of cutter disks. Each cutter disk includes a front surface, a rear surface, an interior surface defining a central opening extending from the front surface to the rear surface, a forward cutting edge, and a rearward cutting edge. The interior surface forms a same number of lobes for the central opening as the set of radially inwardly extending lobes in the first section. Each cutter disk is aligned along a common centerline, and each cutter disk is rotated slightly relative to each other to form a second helically convoluted chamber with a same pitch as the first helically convoluted chamber. The second helically convoluted chamber exposes, to materials passing through, portions of the forward cutting edge or the rearward cutting edge of each cutter disk. |
US10662948B2 |
Expansion chamber for a brake boost vacuum pump
An expansion chamber for a rotary vane vacuum pump is provided. The expansion chamber is in fluid communication with the discharge side of the rotary vane vacuum pump, such that the expansion chamber attenuates sound as a Helmholtz resonator. The expansion chamber includes an internal volume of between 80 cubic centimeters and 100 cubic centimeters, inclusive, and includes a curved sidewall that extends partially around, and generally conforms to, the exterior of the rotary vane vacuum pump. The expansion chamber also includes a downward extending port, open to the atmosphere, for attachment to a hose in applications in which the expansion chamber is below a water line. |
US10662947B2 |
Oil-flooded screw compressor system and method for modifying the same
An oil-flooded screw compressor system includes: a first lubricating oil supply system for supplying lubricating oil to screw parts; and a second lubricating oil supply system for supplying the lubricating oil to a bearing. The first lubricating oil supply system includes: a gas-liquid separator; a first supply flow passage; and a first supply path. The second lubricating oil supply system includes: a lubricating oil reservoir; a second supply flow passage; a second supply path; a first discharge flow passage; and a discharge path. It is possible to suppress dissolution of a gas to be compressed in lubricating oil and to suppress damage to a bearing due to deterioration of the performance of the lubricating oil, even in a case where the gas to be compressed is compatible with the lubricating oil. |
US10662946B2 |
Electric compressor, control device, and monitoring method
This electric compressor includes a compressor which rotates to compress a fluid, a motor which rotatably drives the compressor, and a control unit which controls current supply to the motor using first and second components. An allowable current for first and second components exposed to the same temperature is set to be smaller in the second component than in the first component. The second component is disposed at a place in which cooling capability is greater than that of the first component so that allowable power of the second component at rated use is greater than allowable power of the first component. This electric compressor includes a temperature sensor which detects the temperature of the first component and a calculation unit which outputs an alarm signal when the detected temperature and a current flowing in the first component satisfy a predetermined condition. |
US10662944B2 |
Vane pump device having multiple discharge pressures
An embodiment provides a vane pump device including a rotation shaft; and a pump unit that discharges oil at multiple discharge pressures, discharges oil to one side in an axial direction of the rotation shaft at a first discharge pressure of the multiple discharge pressures, and discharges oil to the other side in the axial direction at a second discharge pressure of the multiple discharge pressures. |
US10662942B2 |
Oil pump
An oil pump is provided with an inner rotor having external teeth, an outer rotor disposed in a loose-fit state within a pump chamber and having internal teeth meshed with the external teeth, a ring-shaped pressure chamber provided adjacent to the pump chamber in a direction of a rotation axis, a discharge opening for connecting the pump chamber and the pressure chamber, and a cylindrical discharge passage having one end connected to the pressure chamber and the other end serving as a connection opening. A portion of the discharge passage is located to open inside of the outer periphery of the pressure chamber when viewed in the rotation axis direction. The one end reaches to a middle of the pressure chamber when viewed in a radial direction of the rotation axis, and the discharge passage and the pressure chamber are in direct communication with each other. |
US10662941B2 |
Modular pneumatic well pump system
The present disclosure relates to a modular fluid pump system for configuring a fluid pump in a selected one of first and second configurations. The system may have a first pump casing with a first diameter, and a second pump casing with a second diameter smaller than the first diameter. A tubular frame may be included along with a first float having a first diameter positioned over the tubular frame for sliding longitudinal movement along the tubular frame. The first pump casing may be used to configure the fluid pump in the first configuration, to thus provide a first degree of clearance between the first float and an inner surface of the first pump casing, or alternatively the second pump casing may be used to configure the fluid pump in the second configuration, which provides a second degree of clearance between the first float and an inner of the second pump casing. |
US10662940B2 |
High-pressure fuel pump
A high-pressure fuel pump includes a housing, at least one piston, and a sealing device. The device is positioned on the piston so as to surround the piston, and includes a seal carrier. The carrier is connected, at least in sections, to the housing, and includes at least one radially peripheral portion that is materially bonded to the housing via a capacitor discharge weld connection. Such a pump enables improved cycle times and reduced error rates during production. |
US10662939B2 |
Surgical fluid management system
A fluid management system includes a disposable cassette carrying inflow and outflow tubing sections that are configured for releasably mating with a console including a control unit and a pair of roller pump heads. The console may automatically identify the disposable cassette and weigh the fluid in an inflow source. During operation, the system can monitor pressure in the working space, and provide for inflow and outflow control to maintain any desired operating parameters. |
US10662938B2 |
Fluid transportation device
A fluid transportation device comprises a valve main body, a valve chamber base, a valve membrane, an actuator and a cover body. The valve main body comprises an inlet passage and an outlet passage. The valve chamber base comprises an inlet valve passage, an outlet valve passage and a compressible chamber communicating therewith. The valve membrane is arranged between the valve main body and the valve chamber base, having two valve plates respectively form a valve switch structure which seal the inlet valve passage and the outlet valve passage. The actuator covers the compressible chamber. The cover body covers the actuator and has a plurality of screw holes, which are corresponding to the penetration holes of the valve main body, the valve chamber base and the actuator, and several locking elements are inserting the penetration holes and locked with the screw holes to assemble the fluid transportation device. |
US10662936B2 |
Compressor
A compressor includes a compression mechanism configured to suck and compress a refrigerant from a suction space to discharge the refrigerant to a discharge space by a driving force transmitted thereto. The compressor includes an oil storage chamber provided in the discharge space to collect oil separated from the refrigerant discharged from the compression mechanism, an oil recovery passage configured to guide the oil in the oil storage chamber to the suction space, and a decompression mechanism provided in the oil recovery passage to reduce a pressure of the oil passing through the oil recovery passage by an orifice hole having an inner diameter smaller than the oil recovery passage. The decompression mechanism is configured such that, when a pressure in the oil storage chamber is increased, the inner diameter of the orifice hole is reduced. |
US10662933B2 |
Symmetric floating coil compressor
A floating coil configuration for a compressor of a closed cycle cryogenic cooler, the coil configuration comprises a coil having a positive end and a negative end and first and second springs concentrically located within the coil, each spring having a first end and a second end. The positive end of the coil is coupled to the first end of the first spring and the negative end of the coil is coupled to the second end of the second spring. The second end of the first spring is electrically coupled to the first end of the second spring such that the first and second springs define an electrical path across the coil. |
US10662929B2 |
Thermal transpiration generator system
A system includes a thermal transpiration generator having a vacuum-sealed container, a rotatable shaft within the container, bearings supporting the shaft within the container, a first set of vanes secured to the shaft, a second set of vanes secured to the shaft, a first receiving lens for focusing energy on the first set of vanes, a second receiving lens for focusing energy on the second set of vanes, and a flywheel secured to the shaft. An electric generator is located outside the container and is coupled to the rotatable shaft with a magnetic coupler to be driven by rotation of the shaft. The system further includes a light energy collector system concentrating energy on each of the first and second receiving lenses, and an outer housing located about the container and the electric generator. |
US10662917B2 |
Water turbine, and connecting structure of two male screw shafts and connecting structure of two shafts respectively used for water turbine
The present invention relates to a water turbine in which a unit pipe can be joined by an optional number and a rotating shaft integrated with a rotor can be joined by an optional number according to intended use or condition of use, and by which each rotor can be supported stably. A water turbine in which a rotor provided in a water conduit pipe is rotated by a water flow in the water conduit pipe and the rotation of the rotor is utilized as a motive power, wherein pluralities of the unit pipes constituting a part of the water conduit pipe are connected in order by interposing an end plate having a bearing and a water passing part between respective them, wherein pluralities of rotating shafts respectively integrated with the rotor are linearly connected by providing a connecting means between respective them while end portions opposing to each other of a pair of adjacent rotating shafts are brought into contact, wherein each of the rotating shafts is rotatably supported by respective pair of bearings arranged to neighbor each other such that at least one of the rotors is arranged between the respective pair of bearings, and thereby forming a water turbine unit. |
US10662914B2 |
Fuel injection valve
Disclosed is a fuel injection valve comprising: a fuel injection orifice provided in a downstream side of a valve seat which a valve body moves toward and away from; a swirl chamber having a swirl passage formed around the entry opening of the fuel injection orifice; and a transverse passage whose end is opened in an inner circumferential wall of the swirl chamber in order to provide a fuel into the swirl chamber, wherein a center of the entry opening is shifted from a first position where the velocity component in the swirl direction of the fuel can be maximized to a second position where the velocity component in the swirl direction is reduced, and where a velocity component in a center axis direction of the fuel injection orifice is enhanced. Thereby, it is possible to easily adjust a fuel injection amount and a spray angle. |
US10662909B2 |
Engine intake structure for vehicle
An intake structure for an internal combustion engine of a vehicle includes a cover member covering a space defined between a front side of a radiator provided in a front part of an engine room and a vehicle body opening provided in a front end of the engine room from above, and an intake duct member resting on the cover member and having an air inlet. A part of the cover member adjoining the air inlet is formed with an opening communicating the air inlet with the space, the opening defining a larger opening area in a part thereof located on a higher temperature region side of the engine room with respect to a laterally central part of the air inlet than in a part thereof located on a lower temperature region side of the engine room with respect to the laterally central part of the air inlet. |
US10662903B2 |
Waste heat recovery and boost systems including variable drive mechanisms
A powertrain system is provided and may include a combustion engine, a crankshaft, and a turbo-compounding system. The combustion engine may include an intake manifold and an exhaust manifold. The crankshaft may be driven by the engine. The turbo-compounding system may be configured to drive the crankshaft and may include a first turbine and a drive system. The first turbine may include an inlet fluidly communicating with the exhaust manifold. The drive system may include an input shaft driven by the first turbine, and an output shaft engaged with the crankshaft. The drive system may be configured to drive the output shaft at more than one drive ratio relative to the input shaft. |
US10662902B2 |
Purge control solenoid valve
A purge control solenoid valve may include a middle housing in which an inlet flow path is formed and a middle flow path is formed on a center; a valve housing in which a driving module selectively communicating the inlet flow path and the middle flow path is installed; an upper cover coupled to the upper part of the middle housing and including a upper flow path selectively communicated with the middle flow path on the center; and a membrane provided on the upper cover and selectively communicating the middle flow path and the upper flow path. |
US10662901B2 |
Vortex pump
A vortex pump including: a housing including a suction channel, a discharge channel, and a housing space communicating with the suction channel and the discharge channel; and an impeller housed in the housing space and configured to rotate about a rotation axis, where the housing includes an inner channel along an outer circumference of the impeller in the housing space, and a channel cross-sectional area of the inner channel is larger than a channel cross-sectional area of the suction channel and is larger than a channel cross-sectional area of the discharge channel over an entire length of the inner channel. |
US10662899B2 |
Layered diaphragm
A carburetor may have a fuel metering assembly with a metering valve and a metering diaphragm sealed to a body of the carburetor to at least partially define a metering chamber with a portion of the metering diaphragm movable relative to the body to actuate a fuel metering valve. The diaphragm may include a continuous layer, a discontinuous layer, and an intermediate layer received at least partially between the continuous and discontinuous layers and at least partially inhibiting direct contact between the continuous and discontinuous layers. The continuous and discontinuous layers may be different polymer materials and the intermediate layer may be a polymer different than that of the discontinuous layer. The intermediate layer may include voids, segments, or a wire form. |
US10662896B2 |
Nozzle with variable throat and exit areas
A nozzle for a gas turbine engine. An array of convergent petals hingedly coupled to a nozzle exit of fixed diameter. An array of divergent petals, each divergent petal hingedly coupled to one of the array of convergent petals. A cam surface associated with the array of convergent petals. A pivot point coupled to the array of divergent petals by a first linkage and to a fixed point by a second linkage. A cam follower coupled to the second linkage by a third linkage, the cam follower arranged to abut and travel in contact with the cam surface. An actuator coupled to the cam follower and arranged to translate the cam follower along the cam surface to move the convergent and divergent petals. |
US10662893B1 |
Opposed piston engine with improved piston surfaces
An opposed-piston engine contains opposed pistons wherein each piston has a piston face containing a recess. The recesses formed in the piston faces define a combustion chamber when contained within a cylinder. An ignition system is at least partially contained within the combustion chamber to enhance the combustion efficiency of a fuel-air mixture within the combustion system. |
US10662891B2 |
Laser remelting to enhance cylinder bore mechanical properties
An engine block, an automotive structure, and a method of coating an inner surface of an engine cylinder bore of an engine cylinder are provided. The method includes providing an inner bore substrate defining an inner surface of the engine cylinder bore, the inner bore substrate being formed of a first material. The method further includes disposing a thermal spray coating onto the inner surface of the engine cylinder bore. The thermal spray coating is formed of a second material that is different than the first material. The method also includes melting at least a portion of the thermal spray coating with a laser after performing the step of disposing the thermal spray coating onto the inner surface of the engine cylinder bore. The automotive structure and the engine block have a substrate covered by a thermal spray coating and laser remelted sections anchoring the coating to the substrate. |
US10662888B2 |
Control device for internal combustion engine
A control device for internal combustion engine capable of continuously driving a feed pump during automatic stop of the internal combustion engine without increasing the size of a canister is provided. The control device include a fuel supply pump supplying fuel within a fuel tank to a fuel injection device, an automatic stop restarting control unit performing automatic stop of the engine during operation according to vehicle state and then performs automatic restart of the engine during automatic stop, a fuel pump control unit driving the fuel supply pump during operation or automatic stop of the engine, and an idling determination unit determining whether the fuel supply pump is in an idling state. The automatic stop restarting control unit performs automatic restart when the idling determination unit determines that the fuel pump is in the idling state during automatic stop. |
US10662887B2 |
Fuel mixing occurrence detection device and fuel mixing occurrence detection method using fuel property
A fuel mixing occurrence detection device is provided. The device includes a fuel-type identification unit that identifies a type of fuel injected into a vehicle by comparing a fuel pump drive RPM for achieving target fuel pressure with a predetermined reference value upon starting of the vehicle. A communication unit transmits a fuel mixing occurrence to an in-vehicle controller in response to determining that the fuel mixing has occurred. |
US10662884B2 |
Power transfer system with clutch protection through interaction with other vehicle systems
A power transfer assembly for a motor vehicle includes a clutch protection system to prevent damage to an actively-controlled multi-plate mode clutch of the power transfer assembly. The clutch protection system includes a transfer case control module (TCCM) and an engine control module (ECM) configured to regulate the distribution of torque applied from an engine to front and rear output shafts of the power transfer assembly. The TCCM is in operable communication with the engine control module ECM, wherein TCCM is configured to detect slip in the actively-controlled multi-plate friction clutch and to communicate with the ECM to selectively reduce the output torque of the engine in response to detected slip. |
US10662882B2 |
Fuel pressure monitoring system of vaporizer
Provided is a fuel pressure monitoring system of a vaporizer using a safety module which issues a fault signal by detecting a pressure using a fuel pressure sensor disposed in a pressure regulating chamber of the vaporizer within a predetermined time after an engine is stopped and determining that the pressure regulating mechanism fails when the detected pressure exceeds a threshold stored in a storage device to be increased to a predetermined pressure or higher, and the pressure regulating mechanism is determined to fail only when a water temperature of cooling water in the engine of the vaporizer reaches a predetermined temperature at which warming up of the engine can be determined to be completed. |
US10662878B2 |
Compact accessory systems for a gas turbine engine
An accessory system for a gas turbine engine having a driveshaft with an axis of rotation is provided. The accessory system includes a towershaft coupled to the driveshaft and driven by the driveshaft along a towershaft axis of rotation. The accessory system also includes a shaft including a first shaft bevel gear coupled to a towershaft bevel gear. The shaft is rotatable by the towershaft along a shaft axis of rotation. The shaft axis of rotation is transverse to the towershaft axis of rotation. The accessory system includes a first accessory drive shaft having a first accessory bevel gear driven by the shaft. The accessory system also includes a second accessory drive shaft having a second accessory bevel gear driven by the shaft. A first accessory axis of rotation and a second accessory axis of rotation are substantially transverse to the shaft axis of rotation. |
US10662875B2 |
Propulsion unit with selective coupling means
A propulsion unit, notably for an aircraft, including a turbomachine; a propeller that can be selectively coupled to the turbomachine; a rotary electrical machine able to drive at least the turbomachine, and selective coupling of the rotary electric machine to the propeller and/or the turbomachine that is able to couple only the propeller to the rotary electrical machine during a defined stage of operation of the propulsion unit and that is able to couple or not couple the rotary electric machine to a gas generator and/or a free turbine of the turbomachine. |
US10662874B2 |
Constant-volume combustion module for a turbine engine
A combustion module of a turbine engine, in particular of an aircraft, is configured for carrying out constant-volume combustion. The module includes a plurality of combustion chambers angularly distributed in a regular manner around an axis. Each chamber has an intake port for pressurized gas and an exhaust port for combustion gases. Each intake/exhaust port is configured to be opened or closed by a corresponding common rotating intake/exhaust valve which is coaxial with the axis. |
US10662873B2 |
Cylinder bore wall heat insulation device, internal combustion engine, and automobile
A cylinder bore wall thermal insulator includes one or more rubber sections in contact with a wall surface on the cylinder bore side of a groove-like cooling water channel, a base section having a shape conforming to a shape of a one-side half of the groove-like cooling water channel, the one or more rubber sections or one or more members to which the one or more rubber sections are fixed being fixed to the base section, and one or more elastic members for urging the entire one or more rubber sections to be pressed from a rear surface side toward the wall surface on the cylinder bore side of the groove-like cooling water channel. The thermal insulator includes a vertical wall near a boundary of each bore section of the base section and on a near side of the boundary of each bore section of the base section. |
US10662872B2 |
Modular supercharger top plate system
A method and system for restraining the top plate of ballistic cover systems used during a supercharged engine explosion is provided. The restraining system embodies bushing-pin attachment points along the periphery of the top plate for attaching the restraint straps. The attachment points may be set at an angle of incidence relative to the top plate. Each bushing-pin attachment point includes spaced apart bushings for retaining a retention pin. The retention pin is made of a material more malleable than that of the top plate and the bushings so as to absorb a predominance of the stress through the restraint straps during an explosion. Moreover, the retention pins are easily detachable from the bushings for installation and repair purposes. |
US10662871B2 |
Nozzle drive mechanism, turbocharger, variable capacity turbocharger
Provided is a nozzle drive mechanism, including: a bearing having a bearing hole; a drive shaft which is axially supported in the bearing hole so as to be rotatable; a drive lever including: an insertion portion into which another end portion (end portion) of the drive shaft protruding from the bearing hole is inserted; and a coupling portion, which is positioned on the bearing side with respect to a center of the drive shaft in an axial direction, and projects outward in a radial direction of the drive shaft from the insertion portion; a link pin coupled to the coupling portion; and a rod member, which is connected to the link pin, is positioned on a side opposite to the bearing with respect to the coupling portion, and is provided to an actuator. |
US10662870B2 |
Variable geometry wastegate turbine
A variable geometry turbine having a wastegate includes a turbine housing, a power turbine, and a regulating valve. The turbine housing is provided with an inner intake gas flow channel and an outer intake gas flow channel. The turbine housing is further provided with a wastegate pipeline configured to bypass the power turbine, and a wastegate valve configured to control communication of the wastegate pipeline. One of the regulating valve and the wastegate valve has a regulating face having a varying axial height in a rotation direction of the regulating valve, and the other of the regulating valve and the wastegate valve has a linking portion which makes contact and cooperates with the regulating face. Thus, the efficiency of the turbine is improved significantly and backflow of the gas flow is reduced. |
US10662866B2 |
Diesel engine and method for fuel distribution and combustion in combustion chamber of diesel engine
A diesel engine includes a cylinder head, a cylinder sleeve, a piston, an injector, and a combustion chamber. The top side of the piston includes an annular top surface, an annular collision belt and an annular cavity. The collision belt includes a collision surface, an upper guide surface, and a lower guide surface. An annular throat is formed between the upper guide surface and the cylinder head. The collision belt divides the combustion chamber into a headspace and a central portion. The volume of the headspace is more than three times of the volume of the central portion. A major portion of the fuel jet injected by the injector is directed into the headspace. The results are faster mixing of fuel and air and complete combustion in the combustion chamber, and a reduction of fuel consumption rate by 2%. A method for fuel distribution and combustion is also disclosed. |
US10662865B2 |
Method of remanufacturing a prechamber assembly
A method of remanufacturing a prechamber assembly includes determining a width W of an original circumferential weld bead that extends around and joins a proximal end of an outer peripheral wall of a prechamber housing and a distal end of an outer peripheral wall of a body assembly, cutting through the weld bead in order to separate the prechamber housing from the body assembly, and removing material from an outer peripheral portion of a distal end portion of the body assembly. The method includes removing the material in an axial direction parallel to the central axis of the prechamber assembly for a distance that is from 2.5-3 times the width W. |
US10662862B2 |
Engine cooling system with two cooling circuits
A cooling system is disclosed for an internal combustion engine. The cooling system may include a first cooling circuit having a first coolant that flows through cooling channels of an engine, and a second cooling circuit having a second coolant that flows through a charge air cooling component. The cooling system may further include a drain line adapted for fluid communication with the first and second cooling circuits. A first temperature responsive valve disposed on the second cooling circuit may be included, the first temperature responsive valve configured to open to allow mixing of the first and second coolants when the temperature of the second coolant is at a preselected minimum temperature. Also included may be a second temperature responsive valve disposed on the drain line and configured to open to drain both cooling circuits when the temperature of the first and second coolants is at a preselected minimum temperature. |
US10662860B2 |
Coolant control valve unit and engine cooling system having the same
A coolant control valve unit includes: a valve housing including an inlet through which coolant is supplied, first and second coolant chambers fluidly isolated from each other, first and second passages respectively communicating the inlet with the first and second coolant chambers, and first and second outlets respectively communicated with the first and second coolant chambers; first and second valves disposed respectively in the first and second passages to be movable in a predetermined direction and respectively closing or opening the first and second passages; a driving plate connected with the first and second valves respectively through first and second stems and simultaneously moving the first and second valves in the predetermined direction by a distance; and an actuator moving the driving plate in the predetermined direction to control opening or closing of the first and second passages. |
US10662843B2 |
Exhaust after-treatment system and method with dual closed-loop reductant dosing systems
Exhaust after-treatment systems and methods are disclosed. An example system includes a selective catalytic reduction on filter (SCRF) and a selective catalytic reduction (SCR) catalyst positioned downstream of the SCRF. The system also includes a first reductant doser positioned upstream of the SCRF and a second reductant doser positioned downstream of the SCRF and upstream of the SCR catalyst. The system further includes first and second nitrogen oxide (NOx) sensors positioned upstream of the first reductant doser, a third NOx sensor positioned downstream of the SCRF and upstream of the second reductant doser, and a catalyst positioned upstream of the first reductant doser. |
US10662840B2 |
Systems for reducing startup emissions in power plant including gas turbine
Embodiments of emission reduction system including various embodiments of an emission filters for a power plant including a gas turbine are disclosed. The system includes: an emission filter; and a retraction system operably coupled to an exhaust passage of the gas turbine. The exhaust passage defines an exhaust path of exhaust from the gas turbine. The retraction system selectively moves the emission filter between a first location within the exhaust path and a second location out of the exhaust path. In a combined cycle power plant, the first location is upstream of a heat recovery steam generator (HRSG). The systems and filters described allow for temporary positioning of emission filter(s) just downstream of a gas turbine exhaust outlet, or upstream of an HRSG, where provided, for emission reduction at low loads or startup conditions, and removal of the emission filter(s) once operations move to higher loads. |
US10662839B2 |
Exhaust stack assemblies with acoustic attenuation features
An exhaust stack assembly includes an exhaust stack having an internal surface that defines an interior of the exhaust stack. The exhaust stack is configured to receive exhaust gas from at least one turbomachine component and exhaust the exhaust gas to atmosphere. The exhaust gas assembly further includes a plurality of attenuation assemblies disposed in the interior, each of the plurality of attenuation assemblies including a base substrate generally oriented in the direction of flow of the exhaust gas through the interior, each of the plurality of attenuation assemblies further including a plurality of attenuation modules mounted to the base substrate. Each of the plurality of attenuation modules includes a fiber mesh. The fiber mesh is exposed to the exhaust gas in the interior. |
US10662836B2 |
Integrated heater and pressure sensor for PCV system
An integrated heater and pressure sensor assembly for a positive crankcase ventilation (PCV) system for a vehicle internal combustion engine includes a heater assembly configured to fluidly couple a PCV/makeup air (MUA) line and a vehicle air induction system line, the heater assembly configured to heat fluid passing into and out of the PCV/MUA line, and a pressure sensor assembly integrated directly into the heater assembly, the pressure sensor assembly configured to sense pressure pulsations in the PCV/MUA line. |
US10662835B2 |
Apparatus for identifying fluid of a removable fluid container and method of use
An apparatus comprising: an identity determiner configured to determine an identity of a removable fluid container; a characteristic determiner configured to obtain a first characteristic based on testing the fluid of the fluid container; a data obtainer configured to obtain a second characteristic based on the identity; and a processor configured to control a fluid provider to provide fluid from the removable fluid container based on the comparison of the first characteristic and the second characteristic. |
US10662832B2 |
Variable valve drive
The disclosure relates to a variable valve drive, in particular with a sliding cam system, for an internal combustion engine. The variable valve drive has a cam carrier which has a first and second cam and a first, second, and third engagement track. A first actuator is designed to engage into the first engagement track in order to displace the cam carrier in a first axial direction. A second actuator is designed to engage into the second engagement track in order to displace the cam carrier in a second axial direction which is opposite to the first axial direction, and to engage into the third engagement track in order to displace the cam carrier in the first axial direction. The variable valve drive can have the advantage that, even in the event of a failure of the first actuator, a displacement of the cam carrier that is normally effected by means of the first actuator is possible by means of the second actuator. |
US10662825B2 |
Control based on magnetic circuit feedback
A method of operating an internal combustion engine of a type that has a combustion chamber, a moveable valve having a seat formed in the combustion chamber, a camshaft on which a cam is mounted, and a rocker arm assembly having a rocker arm and a cam follower configured to engage the cam as the camshaft rotates. The method includes obtaining rocker arm position data, using the rocker arm position data to obtain camshaft position information, and using the camshaft position information in an engine management operation. |
US10662823B2 |
System and method for recovering waste heat
A power generation system having a combustion engine with a Rankine bottoming cycle, the system including a first flow path for a process fluid and a second flow path for a working fluid, and a heat exchanger arranged along both the first and the second flow paths to transfer waste heat from the process fluid to the working fluid. The heat exchanger includes a first flow conduit being bounded by a first wall section and configured to convey the process fluid, a second flow conduit to convey the working fluid, the second flow conduit being bounded by a second wall section spaced apart from the first wall section to define a gap therebetween, and a thermally conductive structure arranged within the gap and joined to the first and second wall sections to transfer heat therebetween, the gap being fluidly isolated from both the process fluid and the working fluid. |
US10662822B2 |
Heat cycle system
A heat cycle system includes a cooling circuit and a Rankine cycle circuit in which an organic medium circulates. The Rankine cycle circuit includes an evaporator, an expander, and a condenser. Before warm-up of an engine, a control device executes a warm-up mode in which the organic medium is circulated through the condenser, the expander and the evaporator in sequence; after the warm-up of the engine, the control device executes a waste heat recovery mode in which the organic medium is circulated through the evaporator, the expander and the condenser in sequence. In the warm-up mode, by supplying energy to the expander, the control device compresses the organic medium passing through the condenser and supplies the compressed organic medium to the evaporator; in the waste heat recovery mode, by depressurizing the organic medium passing through the evaporator by the expander, the control device recovers the energy generated by the expander. |
US10662820B2 |
Method for controlling a waste heat recovery system and such a waste heat recovery system
The invention relates to a method for controlling a waste heat recovery system associated with a combustion engine of a vehicle, the waste heat recovery system comprising a working fluid circuit; at least one evaporator; an expander; a condenser; a reservoir for a working fluid and a pump arranged to pump the working fluid through the circuit, wherein the at least one evaporator is arranged for heat exchange between the working fluid and a heat source, and wherein the waste heat recovery system further comprises a cooling circuit arranged in connection to the condenser. The method comprises the steps of: predicting a shutdown of a combustion engine associated with the system; determining if a predetermined requirement is fulfilled; and if so reducing the temperature in the waste heat recovery system prior to combustion engine shutdown. |
US10662818B2 |
Gas turbine mannequin
A method of constructing a gas turbine system may include placing a foundation interface of a gas turbine mannequin on a foundation, aligning the gas turbine mannequin with a load and connecting the gas turbine mannequin to the load. The method may include constructing a pipeline and connecting the pipeline to the gas turbine mannequin. The method may include placing a foundation interface of a gas turbine mannequin on a foundation, aligning the gas turbine mannequin with an exhaust structure and connecting the gas turbine mannequin to the exhaust structure. The method also includes removing the gas turbine mannequin and installing a gas turbine. |
US10662817B2 |
Steam turbine
A steam turbine according to an embodiment includes an outer casing, an inner casing, a turbine rotor, and a pair of inner casing regulating portions. The pair of inner casing regulating portions regulates movement of the inner casing in a direction orthogonal to an axial direction of the turbine rotor. The pair of inner casing regulating portions is disposed beneath the inner casing at positions different from each other in the axial direction and is supported by a regulating supporting portion extending upward from a bottom portion of the outer casing. |
US10662812B2 |
Lubricant scoop
A lubricant scoop is disclosed. The lubricant scoop includes an annular body configured for engagement with a shaft rotating about a central axis. The annular body includes a first annular portion and a second annular portion disposed adjacent the first annular portion. The first annular portion includes a radially oriented entrance surface and a first axially oriented transition surface. The second annular portion includes a second axially oriented transition surface, a primary redirection member spaced radially outward from the second axially oriented transition surface, a radially oriented exit surface and an exit conduit having an opening positioned on the radially oriented exit surface. |
US10662811B2 |
Fluid damping structure ring and method of fluid damping
A fluid damping structure is provided that includes a damper ring. The damper ring includes an annular body a plurality of fluid check valves, and at least one fluid stop. The annular body extends circumferentially around an axial centerline, and is defined by a first end surface, a second end surface, an outer radial surface, and an inner radial surface. The outer radial surface and the inner radial surface extend axially from the first end surface toward the second end surface. The body includes one or more check valve passages. Each check valve passage extends axially from an open end disposed at the first end surface inwardly toward the second end surface, and is disposed between the inner radial surface and the outer radial surface. An inlet aperture extends between each check valve passage and the outer radial surface, and an outlet aperture extends between each check valve passage and the inner radial surface. Each fluid check valve is disposed in a check valve passage. The at least one fluid stop is configured to prevent fluid exit from the open end of each check valve passage. |
US10662804B2 |
Profiled bellcrank vane actuation system
A variable vane assembly according to an example of the present disclosure includes an actuator. A connection linkage is pivotable by the actuator. A component receives direct input from the connection linkage providing a cam surface. A driving linkage is interfaced with the cam surface. A variable vane is coupled to the driving linkage. The pivoting of the component and cam surface causes the driving linkage to pivot the vane. |
US10662799B2 |
Wear resistant airfoil tip
A gas turbine engine includes an engine static structure extending circumferentially about an engine centerline axis; a compressor section, a combustor section, and a turbine section within the engine static structure. At least one of the compressor section and the turbine section includes at least one airfoil and at least one seal member adjacent to the at least one airfoil. A tip of the at least one airfoil is metal having a wear resistant coating and the at least one seal member is coated with an abradable coating. The wear resistant coating is formed as a layer in a base metal surface of the airfoil, has a thickness less than or equal to 10 mils (254 micrometers) and includes metal boride compounds. |
US10662798B2 |
Dry gas sealing system, and turbomachine comprising a dry gas sealing system
Dry gas sealing system for a turbomachine, in particular a turbocompressor, having at least one dry gas seal for sealing a part located on the rotor side of the turbomachine from a part located on the stator side of the turbomachine, and a purifying device for purifying process gas that is extracted from the turbomachine and can be fed to the or each dry gas seal as purified sealing gas following the purification process; the purifying device is designed as a centrifugal device that is integrated into the part located on the rotor side of the turbomachine. |
US10662797B2 |
Multi-plane brush seal
A multi-plane annular brush seal includes a front plate, a back plate, and a plurality of bristles. Each of the plurality of bristles has a first lengthwise portion extending from the base end, a second lengthwise portion, and a third lengthwise portion. The front plate and back plate are configured to maintain the bristle first lengthwise portions substantially parallel to a first plane, the second lengthwise portion of the bristles through a transition region, and the bristle third lengthwise portions substantially parallel to a second plane. The first plane is skewed from the second plane by an obtuse angle. At least some of the bristle second lengthwise portions are maintained in contact with the front plate through the transition region and at least some of the bristle second lengthwise portions are maintained in contact with the back plate through the transition region. |
US10662796B2 |
Seal device for turbine, turbine, and thin plate for seal device
A seal device for a turbine includes: a plurality of thin plates arranged along an outer peripheral surface of the rotor, each of the thin plates including a root portion disposed on an outer side in a radial direction of the rotor and supported on a stationary part of the turbine and a tip portion disposed on an inner side in the radial direction of the rotor and having a tip surface facing the outer peripheral surface of the rotor. Each of the thin plates is configured such that a width direction of the thin plate is parallel to an axial direction of the rotor at a side of the root portion, and the tip portion of each of the thin plates is configured such that an end on a side of the high-pressure space is positioned downstream of another end on a side of the low-pressure side. |
US10662787B2 |
Local two-layer thermal barrier coating
A turbine blade with a ceramic thermal barrier coating system has a substrate designed as a blade platform and as a blade airfoil. On the substrate is a first ceramic layer as a thermal barrier coating, which protects the substrate in the exposed high temperature region and there is locally an increase of the thermal barrier coating for locally reinforcing the thermal barrier. The increase includes a material that is different from the material of the first ceramic layer. The local reinforcement is arranged over the first ceramic layer, without the first ceramic layer having a reduced layer thickness. The local reinforcement is provided at most on 30% of the area of the blade airfoil and is arranged close to a platform extending over the entire pressure side in the direction of flow and with an extent thereto in the radial direction of the blade airfoil is at most 30%. |
US10662779B2 |
Gas turbine engine component with degradation cooling scheme
A gas turbine engine component includes a passage and a wall adjacent the passage. The wall includes a first side bordering the passage and a second side opposite the first side. The second side includes an array of cells. The wall also includes an array of channels. Each of the channels is located proximate a corresponding one of the cells. A coating is disposed over the cells. When the coating degrades the channels open to permit impingement air flow through the channel onto sidewalls of the cells. |
US10662778B2 |
Turbine airfoil with internal impingement cooling feature
A turbine airfoil (10) includes an impingement structure (26A, 26B) comprising a hollow elongated main body (28) positioned in an interior portion (11) of an airfoil body (12). The main body (28) extends lengthwise along a radial direction and defines coolant cavity (64) therewithin that receives a cooling fluid (60). The main body (28) is spaced from a pressure side wall (16) and a suction side wall (18) of the airfoil body (12) and may be spaced from an airfoil tip (52), to define respective passages (72, 74, 77) therebetween. A plurality of impingement openings (25) are formed through the main body (28) that connect the coolant cavity (64) with one or more of the respective passages (72, 74, 77). The impingement openings (25) direct the cooling fluid (60) flowing in the coolant cavity (64) to impinge on the pressure and/or suction side walls (16, 18) and/or the airfoil tip (52). |
US10662777B2 |
Structure for cooling turbine blades and turbine and gas turbine including the same
A structure for cooling turbine blades, and a turbine and gas turbine including the same, enhance efficiency in cooling turbine blades by improving the structures of a turbine disk and a retainer for securing a turbine blade. The structure includes a turbine blade connected to a turbine blade root; a turbine disk including a slot for receiving the turbine blade root, a cooling passage through which cooling air flows to the turbine blade root, and a branch passage communicating at one end with the cooling passage; and a retainer fixed to the turbine disk on each of opposite sides of the turbine blade to prevent separation of the turbine blade from the turbine disk, the fixed retainer having a chamber communicating with the other end of the branch passage so that the cooling air of the cooling passage is introduced into the chamber through the branch passage. |
US10662775B2 |
Rotary piston and cylinder devices
A rotary piston and cylinder device (1) comprising a rotor (2), a stator and a shutter disc (3), the rotor comprising a piston (5) which extends from the rotor into the cylinder space, the rotor and the stator together defining the cylinder space, the shutter disc passing through the cylinder space and forming a partition therein, and the disc comprising a slot (3a) which allows passage of the piston therethrough, and a surface of the rotor and a surface of the stator opposing each other forming a close-running surface pair, and at least one of the surfaces comprising an abradable coating (10) which is provided with a plurality of recess formations, and the recess formations are discontinuous from each other. |
US10662774B2 |
Prime mover assembly having fixed center member between rotating members
Prime movers are provided that can include: a pair of cylindrical members about a center rod, a fixed member about the center rod between the pair of cylindrical members; wherein the pair of cylindrical members rotate with the center rod in relation to the fixed member; a housing extending between the cylindrical members; and a plurality of chambers between the opposing bases of the cylindrical members and the fixed member. Methods for rotating members in relation to a fixed member are also provided. The methods can include rotating a pair of cylindrical members in relation to a fixed member about a center rod along a shared axis within a housing extending between the pair of cylindrical members. |
US10662771B2 |
Drill and blast method and apparatus for the same
Disclosed is a drill and blast method for advancing the tunnel face in a mine, which makes use of a mobile canopy. The mobile canopy having vertical supports connected to a frame that supports a shield. The mobile canopy allows for face production activities and ground support activities to occur simultaneously or near simultaneously. This allows for more rapid advancement of the tunnel face compared to traditional batch drill and blast techniques. |
US10662770B2 |
Pick, in particular a round shaft pick
The present invention relates to a pick, in particular, a round shaft pick, having a pick head and a pick shaft, having a support element which has a centering lug on the underside thereof, wherein the centering lug has a centering surface which extends inclined with respect to the central longitudinal axis of the pick and merges into a seat surface. To this end circumferential channel according to the present invention is disposed in the transition region from the centering surface to the seat surface and the depth of the channel relative to the seat surface is greater than or equal to 0.3 mm. The pick has an optimised rotatability and thus a low wear. |
US10662768B2 |
Methods of determining a spatial distribution of an injected tracer material within a subterranean formation
Methods of determining a spatial distribution of an injected tracer material within a subterranean formation are disclosed, including flowing the tracer material, which includes a tracer electrical capacitance that differs from a formation electrical capacitance of a region of the subterranean formation, into the region of the subterranean formation via a wellbore. Subsequent to the flowing, the methods also include providing an input electromagnetic signal to the region of the subterranean formation. Responsive to the providing, the methods further include receiving an output electromagnetic signal from the subterranean formation. The methods further include determining the spatial distribution of the tracer material within the subterranean formation based, at least in part, on the output electromagnetic signal. |
US10662766B2 |
Sealing device test systems and methods
A dynamic testing system for sealing devices includes a shaft that is reciprocated in a bore through a body. The shaft includes a first seal assembly and a second seal assembly disposed a distance apart on the shaft. When the shaft is inserted into the bore, the first seal assembly and the second seal assembly form a fluid-tight seal between the external surface of the shaft and the internal surface of the bore—this forms a fluid-tight cavity between the seal assemblies. Sealing devices in each of the first seal assembly and the second seal assembly experience chemical attack and mechanical wear. One or more axial force measurement sensors measure the force applied by a prime mover to reciprocate the shaft within the bore. Data acquisition circuitry collects the force information and generates a graphical output that plots friction force against reciprocating cycle count. |
US10662761B2 |
Evaluation of cased hole perforations in under-pressured gas sand reservoirs with stoneley wave logging
Production capability of cased hole perforations in a cased completed well lined with a casing in an under-pressured gas producing reservoir is tested. A sonde of a dipole shear or array sonic (full waveform) acoustic well logging tool is moved in a well bore of the cased completed well in the reservoir across a depth interval of interest, which covers cased hole perforations zones in the reservoir. The well logging sonde has in it an acoustic energy source and acoustic energy receivers. Responses are logged at depth intervals of interest to the transit of Stoneley waves along the casing walls from the acoustic energy source to the acoustic energy receivers. Measures of characteristics (e.g., travel time and attenuation) of the Stoneley wave are obtained. The responses are then processed to indicate production capability of the cased hole perforations. |
US10662760B2 |
Eddy-current responses in nested pipes
Described are systems, devices, and methods for processing Eddy-current response signals acquired in a set of multiple nested pipes, such as, e.g., nested casing strings within a completed wellbore. In various embodiments, time boundaries between time slots within the Eddy-current response signals are determined adaptively based on an input response signal specific to the nested pipes (e.g., one of the measured signals itself). Additional embodiments are disclosed. |
US10662759B2 |
Data logger, manufacturing method thereof and pressure sensor thereof
A data logger comprises a mainboard and a jacketing, wherein the mainboard is covered with the jacketing, wherein the data logger is capable to be carried by said drilling fluid traveled in borehole, wherein the data in borehole is collected by the mainboard of the data logger during traveling. |
US10662756B2 |
Apparatus and method for hybrid sonic transmitter integrated with centralizer for cement bond log cased-hole application
A method and system for inspecting cement downhole. The method may comprise inserting an inspection device inside a tube. The inspection device may comprise a centralizing module as well as a tapper attached to the centralizing module. The inspection device may further comprise a receiver, a micro controller unit, and a telemetry module. The method may further comprise actuating the tapper, wherein the tapper produces a nonlinear wave, recording reflections of acoustic waves off a tubing or a casing, and creating a graph with an information handling system for analysis. An inspection device may comprise a centralizing module and a tapper attached to the centralizing module. The inspection device may further comprise a receiver, an information handling system, and a memory module. |
US10662753B2 |
Automated optimal path design for directional drilling
Methods and systems are provided for optimizing a drill path from the surface to a target area below the surface. A method for operating an automated drilling program may comprise drilling to a target location along a drill path, updating a drilling path model based at least on data obtained during the state of drilling to the target location, creating a modified drill path to the target location based on at least the drilling path model in real-time as the step of drilling to the target location along the drill path is being performed, and drilling to the target location along the modified drill path. |
US10662751B2 |
Drilling a wellbore
Methods and systems for controlling a drilling operation based on an MSE value calculated for a depth increment are disclosed herein. In an exemplary method, drilling parameters characterizing a drilling operation in a subterranean formation are received in a control system. The drilling parameters are used by the control system to calculate a depth-based mechanical specific energy (MSE) based on some amount of energy expended by at least a portion of a drilling assembly while drilling at least one identified depth sub-interval of a depth interval of a subterranean formation. The control system uses the calculated depth-based MSE to control the drilling operation. |
US10662744B2 |
Lateral drilling system
A drilling apparatus for drilling a lateral bore to main bore, comprises a casing in the main bore, having at least one window, at least one lateral tube, including a bit or other soil penetrator, the lateral tube which engages with an aperture in the casing, the outer diameter of lateral tube flush with aperture, such that the lateral tube is forced through the casing aperture into the formation when a sufficient pressure differential between the inside of the casing and the outside of the casing and a plurality of packers disposed at intervals along the outside of the casing, capable of sealing the annulus to the passage of fluids. |
US10662740B2 |
Valve apparatus
A valve apparatus that includes a first containment area having a fluid disposed therein at a first fluid pressure and a second containment area disposed below the first containment area having a fluid disposed therein at a selective fluid pressure where the selective fluid pressure can be increased and decreased, the second containment area in fluid communication with the first containment area. The valve apparatus also includes a valve disposed between the fluid in the second containment area at the selective fluid pressure and the fluid in the first containment area at the first fluid pressure. The valve apparatus includes a third containment area disposed below the second containment area having a fluid disposed therein at a third fluid pressure wherein the third fluid pressure is higher than the first fluid pressure, the second containment area in fluid communication with the third containment area. Furthermore, the valve apparatus includes a second valve disposed between the fluid in the third containment area at the third fluid pressure and the fluid in the second containment area at the selective fluid pressure. A method for passing an object through the valve apparatus from a low pressure area to a high pressure system. |
US10662738B2 |
Pressure insensitive counting toe sleeve
A downhole tool has a housing with a communication path extending from a first to a second part of a bore. An indexer disposed in the communication path is movably responsive to applied pressure at the first part. The indexer counts a number of applications of the applied pressure and permits fluid communication of the applied pressure from the first part to the second part in response to the counted number. An insert in the housing bore sealably encloses the second part of the communication path and is movable from a first position covering to a second position uncovering a port in the housing. At least a portion of the insert acted upon by the applied fluid pressure in the second part initiates movement of the insert from the first to the second position. A kit having a modular housing portion and the indexer can adapt the downhole tool for use. |
US10662735B2 |
Wellbore isolation device
A wellbore isolation device includes a tubular body having an inner bore formed longitudinally therethrough. A plurality of centralizing arms is radially extendible from the tubular body. At least one slip is radially extendible from the tubular body. A sealing assembly that is radially extendible from the tubular body is also included and disposed between the centralizing arms and the slip. The sealing assembly includes a radially extendible elastomeric sealing surface and an anti-extrusion device having at least two support members coupled to opposite longitudinal ends of the elastomeric sealing surface. An equalizing port is also included which is disposed in the tubular body and permits, when opened, fluidic communication between external the tubular body and the inner bore thereby equalizing the pressure between external the tubular body and the inner bore. |
US10662728B2 |
Method and apparatus for stuck pipe mitigation
Systems and methods for moving a tubular string within a subterranean well include a collar tool assembly that has a tubular body. The tubular body has an inner bore that is in fluid communication with an inner bore of the tubular string. An outer cavity is located radially outward of the inner bore. An injection port assembly extends from the outer cavity to an outer diameter surface of the tubular body and can move between an injection port closed position and an injection port open position. A hydraulic system can force a treatment fluid of the outer cavity out of the tubular body when the injection port is in the injection port open position. An injection port programmable logic controller is in signal communication with the hydraulic system and can command the injection port assembly to move between the injection port closed position and the injection port open position. |
US10662723B2 |
Method of manufacturing a side pocket mandrel body
A method of producing a side pocket mandrel body for use in a hydrocarbon well side pocket mandrel assembly includes providing a continuous, solid piece of material with the through-going main conduit; in the solid piece of material, forming said at least one side pocket by machining a bore, displaying an external entrance opening, into a laterally offset section of the solid piece of material generally parallel to the main conduit such that an internal wall section of the solid piece of material is brought to separate the main conduit from the machined bore; plugging the entrance opening of the machined bore with a fluid-tight plug; providing at least one opening from an outside of the mandrel body into the at least one side pocket; providing at least one opening in the wall section; and providing the solid piece of material with the first and the second connection arrangements, thereby rendering the mandrel body connectable to the up-hole and down-hole sections of the production tubing. |
US10662719B2 |
Telescopic deployment mast
A lifting mast assembly includes telescoping load bearing arms pivotably coupled to a support base and configured to pivot in unison. Each telescoping arm includes a first arm section and an aligned second arm section. The first arm sections are configured to telescope in unison with one another. Likewise, the second arm sections are configured to telescope in unison with one another. Each first arm section may telescope independently of the second arm section with which it is coaxially aligned. A first support member is coupled to each of the first arm sections, and a second support member is coupled to each of the second arm sections. Different loads can be supported on the first and second support members simultaneously. |
US10662715B2 |
Down-the-hole hammer drill bit retaining assembly
A down-the-hole hammer drill bit retaining assembly is arranged to releasably retain a drill bit at a hammer arrangement of a percussion drilling apparatus. The retaining assembly includes a drive sub and a retainer ring. The drive sub has at least one indent to provide a fluid communication pathway for a flushing fluid extending over a radially outward facing surface of the retainer ring and into an internal region of the drive sub in contact with inwardly projecting splines. |
US10662714B2 |
Drill bit
A rotary drill bit for directional drilling operations, in which a rotating bit with cutters advances a borehole in the earth invention, provides a smaller radius of curvature to increase drilling efficiency. The rotary drill bit comprises a box connection for connecting the bit to the drill string. The drill bit receives a pin connection that seats adjacent the plenum of the bit to shorten the distance between the bit face and steering tools behind the bit so the drill string can be steered more efficiently. |
US10662712B2 |
Modular electro-mechanical assembly for downhole device
A motorized release device for a downhole device includes one or more dogs disposed within a guide of the downhole device. The one or more dogs may move radially within the guide relative to a central axis of the motorized release device, such that the one or more dogs may move between an engaged position and a disengaged position. The motorized release device also includes a cam that is rotatable about the central axis, such that the cam may move between a locked position and an unlocked position. The cam may block the one or more dogs from moving to the disengaged position while the cam is in the locked position. The motorized release device may also include an electronics board. The electronics board may attach to a motor that rotates the cam between the locked position and the unlocked position. |
US10662709B2 |
Local electrical room module for well construction apparatus
An apparatus having a skid, a boom having a first end attached to the skid and pivotable around an axis proximate the first end such that a second end of the boom raises and lowers relative to the skid, and a room mounted on the skid. The apparatus may further include a raisable apparatus supported by the second end of the boom and having one or more plug panels configured to connect to one or more first cables. The apparatus may also include second cables routed from the raisable apparatus and attached to and supported at least in part by the boom, wherein the second cables may be configured to provide electrical power to the raisable apparatus. |
US10662705B2 |
Track system for retractable wall
The invention is a track system for a retractable wall. The track system includes rigid outer guide tracks and flexible inner track inserts that are connected to the guide tracks by means of flanges located on both. The flexible inserts include a channel that engages with a side edge of a retractable wall, holding the wall in place. The flexible nature of the track inserts allows the inserts to bend, which in turn allows the retractable wall to flex when force is exerted on the retractable wall without breaking the tracks or tearing the wall. When excessive force is applied, the channel of the flexible insert, the walls of which are thicker than the rest of the flexible insert, bend open, so that the side edge of the retractable wall disengages from the channel by means of an opening in the channel. |
US10662702B2 |
Security panel framing system and method
A security panel framing system having a base frame; a base plate under a base frame bottom side, the base plate having a stopper; a hollow inner channel defined by the base frame; a wedge having a wedge top side, and a wedge bottom side; a wedge wall extending between the wedge top side and the wedge bottom side; a reinforced end at the wedge bottom side; wherein the reinforced end and a bottom wedge lip are configured to be held in place by the stopper; a cap configured to be associated with the wedge; and wherein the wedge is configured to sit at a base plate front side leaving a gap between the wedge back side and the base frame, the gap being configured to receive a security panel, such that the security panel is snugly encased by the base frame and the wedge. |
US10662698B1 |
Framing bracket and method of cladding building walls
A system, device and method of framing an opening, such as a window, in a clad façade 12 structure to align the window units 22 to be positioned adjustably so that the exterior sight lines align the windows without custom fabrication of the clad façade. This allows irregular variations in the original building structure to be eliminated by a perfectly aligned façade. A frame 20 has wide flanges 40 to allow the defined inner box frame area 34 to be positioned and then the frame can be shimmed to that position. Sections of frame 20 are joined by an angled member 54 with flat portion which are received in slots 56 in frame sections at their edges. |
US10662696B2 |
Detecting objects within a vehicle in connection with a service
A system for monitoring a vehicle used in providing a service is disclosed. The system detects when the service is complete, and upon detecting that the service is complete, the system determines, from one or more sensors of the vehicle, that an object which should have been removed from the vehicle after completion of the transport service, remains in the vehicle. The system then automatically initiates performance of a remedial action. |
US10662693B2 |
Pinch detection switch
A pinch detection switch includes a pressure sensing structure including at least one linear pressure sensing member with multiple conductor wires spaced apart from each other in an inner side of a tubular elastic body, and a tubular cover member to be attached to an end on a forward side in a moving direction of a movable body, and which is formed with a hollow portion which receives the pressure sensing structure. The pressure sensing structure includes a coating member which covers the at least one linear pressure sensing member, and which faces an inner surface of the hollow portion at both its ends in a width direction orthogonal to the moving direction of the movable body and an extending direction of the cover member. A position in the width direction of the at least one linear pressure sensing member in the hollow portion is defined by the coating member. |
US10662690B2 |
Actuating arm drive
An actuating arm drive for a pivotably mounted actuating arm includes a pivotably mounted main lever, a force accumulator for exerting a force for supporting the opening and/or closing movement of the actuating arm drive on the main lever at a force introduction point, and a setting device for setting the force introduction point on the main lever. The force is introduced to the main lever at the force introduction point via a force introduction element which is loaded by the force accumulator via levers, and the setting device is designed to move the force introduction element along a bearing contour formed on the main lever. In each pivoting position of the main lever between the open and closed position of the actuating arm drive, and in each setting of the setting device, the loaded force introduction element is forced along the bearing contour in the same direction. |
US10662689B2 |
Moving machinery safety
Apparatus and method for providing a safety barrier proximate to a hazardous region such as open support truss work of an escalator, comprising an extendable barrier member such as a chainmail panel, slidable on at least one support element securable to a support framework proximate to the hazardous region; wherein the extendable barrier member is movable between a closed and an open position allowing access to the hazardous region to allow for maintenance, and a closed position in which the barrier member provides a barrier over an opening of the support framework. |
US10662685B2 |
Door stop and method of using same
A door stop comprises an elongate threaded member having a flat head section, such as a flat head bolt or elevator bolt, and a mounting panel carried on the threaded member. A cushioning member made of felt or other soft non-abrasive material can be positioned on the head section. A locking nut can be threaded on the threaded member, with the mounting panel between the locking nut and the head section. An alternative door stop comprises a spring-loaded member, and an elongate rod telescopically positioned within the spring-loaded member and adapted for sliding movement therein. A mounting panel can be formed on the spring-loaded member. A head section can be positioned on one end of the rod, and a cushioning member, made of felt or other soft, non-abrasive material can be attached to the outer surface of the head section. |
US10662679B2 |
Invertible boat outboard motor lock
An invertible, boat outboard motor lock that places an impenetrable enclosure around the pivotable arms of a pair of cap screws that are used to frictionally affix a boat motor to the transom of a boat. When in place and locked, access to remove the boat motor from the boat is blocked. The pivotable arms are placed into either end of a trough formed in a unitary block and the assembly is placed into a concave cover housing. The housing may be installed in either of two orientations, 180 degrees apart. A lock cylinder is passed through the housing and block preventing their separation. |
US10662677B1 |
Gate latching system
The present invention is a gate latching system for use in securing a pair of cooperating stock gates together. A preferred embodiment of the invention employs a pair of latching devices for securing a pair of overlapping stock gates together in a closed position. An alternate embodiment of the invention is designed with an extended arm for securing a pair of stock gates closed when the stock gates do not overlap. Both pairs of latching devices are designed so that one of the latching devices is bolted to one gate and the other latching device is bolted to the other gate. Each latching device has a u-shaped receiver for receiving a horizontal member of the opposite gate. The horizontal members enter the u-shaped receivers by lifting one of the gates as the gates are being closed and are secure therein by a lid that closes over one receiver. |
US10662673B2 |
Disposable anti-tampering lock catch
A disposable anti-tampering lock catch is an integrated piece and comprises a handle, a main tearing portion, a locking portion, a limiting portion and an auxiliary tearing arm. A first tearing structure which cannot be restored after being torn is arranged on the main tearing portion. The auxiliary tearing arm is provided with a second tearing structure, wherein when the disposable anti-tampering lock catch is opened, both the first tearing structure and the second tearing structure are torn, and the shape of the auxiliary tearing arm is deformed after being torn and cannot be reset. |
US10662672B2 |
Locking device for product display hooks, showcases, cabinets, fixtures, and casework
Locking devices that may be used with product display hooks, cabinets, and drawers are provided. A locking device according to one implementation comprising a housing and a shell. The housing includes an outer wall that defines an interior. The housing further includes a channel extending at least partially through the interior of the housing. The shell includes a projection. The shell is at least partially disposed within the interior of the housing and is moveable in a longitudinal direction within the interior of the housing. In an unlocked position, the projection is biased away from the first channel. In a locked position, the projection is maintained in the first channel. |
US10662668B1 |
Insect repellant tent
The present invention relates to an insect repellant tent. The an insect repellant tent comprises a frame structure comprising a base ring comprised to a plurality of ring sections, a plurality of poles connectable to the plurality of ring sections, a plurality of connectors for connecting the plurality of ring sections with the plurality of poles, wherein the connector comprises a connector means and a handle means, wherein the connector means is configured to receive the plurality of ring sections, the pole, and the handle section, a top cap to which the plurality of poles connect while extending from the plurality of connectors, wherein the plurality of ring sections, the top cap, the plurality of poles, and the plurality of connectors define a dome like structure in an assembled configuration thereof. The tent further comprises at least one floatation means provided on the plurality of ring sections, and an insect repellant sheet for covering frame structure. |
US10662665B2 |
Lift assembly for a spa cover
A lift assembly includes a lever arm mounting portion connected to a spring mounting portion, a lever arm, a spa cover engaging portion, and a pneumatic spring. A pneumatic spring proximal end portion has a pivoting connection to the spring mounting portion. A pneumatic spring distal end portion has a pivoting connection to the lever arm. The pneumatic spring exerts an extensive force upon the lever arm both when the lever arm is in the cover closed position and when the lever arm is in the cover open position. The extensive force urges the lever arm towards the cover open position when the lever arm is in the cover closed position, and the extensive force urging the lever arm towards the cover closed position when the lever arm is in the cover open position. |
US10662662B2 |
Retrofitted real estate and related technology
A real estate unit in accordance with a particular embodiment of the present technology includes an interior space at the ground floor of a commercial building. The interior space can have a purpose-built use (e.g., retail, warehouse, school, garage, etc.) and can be reversibly retrofitted to accommodate an alternative use (e.g., lodging, residential, office, assembly, etc.). The real estate unit can include reusable components (e.g., bathroom, wall, barrier, etc.) well suited for rapid deployment, removal, and redeployment. Use of these components can allow revenue from operating the real estate unit to exceed costs associated within transitioning the interior space from the purpose-built use to the alternative use even if the real estate unit is only operated for a short period of time. Furthermore, capital embodied in the components can be readily relocatable in response to long-term and short-term (e.g., seasonal) changes in demand. |
US10662660B2 |
Vertical formwork anchor with fixing key to fix to a vertical formwork panel
According to one embodiment an anchor for a vertical formwork is provided that includes a fixed part suitable for being fixed to a formwork panel and fixing means for fixing the fixed part to the formwork panel. The fixing means includes a fixing key suitable for being housed in a hole of the formwork panel, the fixing key comprising an off-centered stop with respect to the axis of rotation of the fixing key, such that in a first angular position the off-centered stop of the fixing key can be introduced in the hole of the formwork panel and in a second angular position the off-centered stop is retained by the formwork panel, and therefore the anchor is fixed to the formwork panel. |
US10662653B1 |
Roofing material applicator using an endless belt to collect and lay a liquid roofing substance
A roofing material applicator features a frame displaceable over a roof deck, a holding tank supported on a frame to contain a liquid roofing substance, an endless flexible belt, and a set of rotatable belt rollers around which the belt is entrained. The belt rollers include a liquid-application roller positioned for rolling movement atop the roof deck. A circuituous path around of the belt around the belt rollers passes through the holding tank so that the liquid roofing substance collects onto the belt. From the tank, the belt is routed rearwardly under liquid-application roller from a front leading side thereof. Rolling movement of the liquid-application roller during travel over the roof lays a swath of the liquid substance from the underside of the belt onto the roof deck. Sheet rollers may be included to lay a sheet of membrane or reinforcement fabric over the applied liquid swath. |
US10662647B2 |
Faceted architectural fixtures
A faceted architectural fixture is provided that include one or more folded elongated strips, each providing a series of alternating faceted surfaces. |
US10662645B2 |
Seismic isolation apparatus
A seismic isolation apparatus includes a laminated body having alternately laminated rubber plates and steel plates; a hollow portion provided inside the laminated body in a hermetically closed manner and extending in a laminated direction; a lead plug filled densely in the hollow portion and adapted to damp the vibration in a shearing direction of the laminated body by absorbing vibrational energy in the shearing direction; and a lid member having a semispherical concave surface which comes into contact with one end portion in the laminated direction A of the lead plug in order to guide and assist the plastic flow of the lead plug at one end portion in the laminated direction of the hollow portion in the deformation in the shearing direction of the lead plug. |
US10662642B2 |
Floor dowel sleeve with integral spacing chambers
A floor dowel sleeve has a body portion with a top wall, a bottom wall, two side walls, and an end wall that together to surround an interior cavity. The interior cavity is configured to receive a dowel plate at an opening in the body portion opposite the end wall. Spacing elements are disposed at each of the two side walls and are configured to interface with opposing edges of the dowel plate to provide a space between the dowel plate and interior surfaces of the two side walls. The spacing elements each have a pair of legs that integrally protrude from the side wall into the interior cavity and interconnect to form a spacing chamber. The spacing elements are each configured to flex into the spacing chamber upon lateral horizontal movement of the dowel plate within the interior cavity. |
US10662641B2 |
Anti-shearing connection of structural members
A hanger for connecting a structural member to a structural support including a base sized and shaped for receiving the structural member thereon. First and second side panels extend upward from the base. First and second back panels each extend from a respective one of the side panels. First and second top flanges each extend from a respective one of the back panels. An opening in one of said first and second side panels and said first and second back panels is configured to receive a fastener to attach the hanger to one of the structural member and the structural support. A slot is adjacent the opening. An area between the opening and the slot defines a yieldable portion selected to deform at a load that is less than the shear load capacity of the fastener when received through the opening for connecting the hanger to one of the structural member and the structural support. |
US10662639B2 |
Methods for erecting a wall panel proximate an outermost edge of a land parcel
A method for erecting a wall panel without wasting valuable floor area for wall panel bracing and erecting the wall panel from within the boundary of the land parcel on which the wall panel is being erected is disclosed. A support structure that is configured to both maintain a prestressed concrete wall panel in a generally vertical position and to provide storage space can be anchored to a floor slab. The wall panel can be lifted from within the land parcel and positioned between the support structure and the boundary of the land parcel. The wall panel can then be anchored to the support structure. |
US10662637B2 |
Inclined plates for CSO
The subject disclosure is directed to a liquid purification assembly featuring an inclined cell separator located within a chamber. The separator features a plurality of plates oriented perpendicular between opposing spaced-apart substantially vertical weirs. The plurality of plates are substantially parallel to one another and extend longitudinally within the chamber. The first and second weirs can have a plurality of orifices extending therethrough between their front and rear surfaces. The chamber features an influent chamber, an effluent chamber and a sediment collection area along the bottom of the chamber below the cell separator. A net extending from the top edge of the first weir and over a portion of the cell separator is further provided. The assembly features a hinged baffle suspended below the bottom edge of the second weir. |
US10662634B2 |
Flush toilet
The bowl portion of the flush toilet includes a bowl-shaped waste receiving surface and a rim portion formed on a top edge of the bowl portion. The rim portion includes a rim inside wall portion located on an inner side of the top edge of the bowl portion. The rim inside wall portion has a rim inside surface located at a lower area of the rim inside wall portion and a rim inside wall upper sloped surface having a section in a vertical plane, the shape of the section being sloped from an upper edge of the rim inside surface to an upper edge of the rim inside wall portion. The ratio between the height of the rim inside surface and the height of the rim inside wall upper sloped surface is 1:1 to 6:1 in a section in a vertical plane at any area other than a rear area. |
US10662633B2 |
Remote control device and wet-area system
A remote control device according to an embodiment includes an operation button, a generator, an electrical storage part, electronic paper, and a controller. The operation button is for remotely operating a wet-area device. The generator generates electrical power by utilizing energy when the operation button is pressed. The electrical storage part stores the electrical power. The electronic paper displays a setting state of the wet-area device. The controller controls a display-switching of the electronic paper and a transmission of a signal to remotely operate the wet-area device. The operation button is for modifying the setting state. The controller performs the display-switching and the transmission of the signal by utilizing the electrical power stored in the electrical storage part. The controller performs the display-switching after the transmission of the signal when the operation button is pressed. |
US10662632B1 |
Fallen undermount sink repair apparatus and method
A fallen undermount sink complete repair apparatus includes a wall bracket having at least one flange portion configured for fixedly fastening to a vertical wall and a second central portion generally perpendicular to said flange portion, with an aperture therethrough. Additionally, there is an expandable elonogated member pivotably attached at a proximal end to the wall bracket, and at the distal end of the elongated member is a sink bracket head portion generally perpendicular to that of the elongated member and configured to press against a portion of the underside rim of a detached sink. |
US10662625B2 |
Sprayer hose assembly
A sprayer hose for a fluid delivery device includes a waterway tube having an outer surface. The sprayer hose further includes at least one energy wire extending helically around the outer surface of the waterway tube and a covering layer positioned outwardly of the waterway tube and the at least one energy wire. |
US10662624B2 |
Work vehicle and method for controlling work vehicle
A work vehicle includes: a work implement having a bucket; a main body to which the work implement is attached, and having a cab; a display device provided in the cab and configured to overlay and thus display work assistance information on an actual view of a work site; a bucket teeth position calculator configured to calculate a position of teeth of the bucket of the work implement in an available display area of the display device; and a following process unit configured to display the work assistance information to follow movement of the bucket of the work implement in the available display area of the display device only at a position above the position of the teeth of the bucket of the work implement as calculated by the bucket teeth position calculator. |
US10662621B2 |
Control of variable gravity driven hydraulic loads
A system for controllably moving a work implement of a work vehicle having a hydraulic fluid pump for providing fluid to the work implement, the system comprising: at least one operator command tool to produce an operator command signal to move the implement of the work vehicle; at least one sensor to sense a cylinder speed signal indicative of a speed of a hydraulic cylinder coupled to the implement; at least one valve to modulate the fluid flow of the hydraulic cylinder; and a controller. |
US10662618B2 |
Construction machine
To prevent increase/decrease in pump flow rate due to load variation with change in the posture of a work attachment and improve the operability in arm pushing operation. A hydraulic excavator 1 with a front mechanism including an arm 33 driven by a hydraulic actuator 43 through operation of an operating lever 50 includes: first and second angle sensors 37 and 38 which detect the posture of the arm 33; and a controller 49 which, when the posture of the arm 33 is at a remoter side from an upperstructure 20 than a preset position and the position of a bucket 35 is adjusted from a maximum or nearly maximum preset operation amount of the operating lever 50 in arm pushing operation by the operating lever 50, changes the flow rate characteristic of pressure oil in relation to discharge pressure of a hydraulic pump 41 for supplying pressure oil to the hydraulic actuator 43, to characteristic PTS with a higher flow rate than flow rate characteristic PT at the time of operation with an operation amount other than the above operation amount, to drive the hydraulic pump 41. |
US10662616B2 |
Control device and control method for construction machine
The present disclosure relates to a control device and a control method for a construction machine. The control device and the control method for the construction machine according to the exemplary embodiment of the present disclosure may adjust an engine revolutions per minute (rpm) according to a load applied to the construction machine, thereby controlling an output of equipment. In the control device and the control method for the construction machine according to the exemplary embodiment of the present disclosure, an output of a pump is increased at an appropriate time, so that good operation performance may be maintained, and in the case of an operation pattern, in which a load is low, the engine rpm is adjusted to be decreased, thereby improving fuel efficiency. |
US10662610B2 |
Hybrid load bucket assembly
A hybrid bucket assembly for a work vehicle having movable loader arms includes a structural skeleton having a frame, one or more support struts mounted to the frame, and one or more brackets coupled to the support struts configured to interface with a carrier at distal ends of the loader arms. A bucket shell is mounted to the skeleton that defines a carry volume for materials. Force loading on the bucket shell is carried by the skeleton through the struts. |
US10662609B2 |
Hybrid loader boom arm assembly
A hybrid loader boom arm assembly for a loader work vehicle includes an arm assembly that includes a first beam formed from a lightweight material and a second beam formed from the lightweight material. The loader boom arm includes a connection assembly having a first steel plate and a pair of knee plates formed from the lightweight material. A portion of the first steel plate is received within the first beam and a second portion of the first steel plate is received within the second beam. The pair of knee plates cooperate to define a first channel that receives the end of the first beam and a second channel that receives the second end of the second beam. The first steel plate and the pair of knee plates are configured for interconnecting the first beam with the second beam. |
US10662604B2 |
Prop
The present disclosure relates to a prop (10) comprising a first tube (14) and a second tube (16). The first tube (14) is telescopically connected to the second tube (16) for axially displacing the second tube (16) between a retracted position and an extended position. The first and second tubes (14, 16) each comprise a loading end for receiving an axial load from opposing load surfaces (62, 64) in the extended position. The first tube (14) and the second tube (16) are made from a plastics material. |
US10662600B2 |
Portable flood barrier system and method of monitoring said system
A flood protection system that includes at least one elongated flexible tube arranged for being filled with a liquid and containing such liquid, at least one rigid coupling unit arranged for interconnecting the flexible tubes, and a monitoring system that includes at least one liquid level indicator arranged for measuring the liquid level inside the at least one coupling unit. The system ensures that that any leak in one or more of the flexible tubes or any malfunction of the coupling unit can easily be detected. |
US10662586B2 |
Cationic polyetheramine dispersants for preparing papermaking stock
A cationic polyether amine dispersant for papermaking fibers comprises the polymeric reaction product of a polyether diamine, a polyether bisepoxide and a quaternary ammonium salt. The polyether diamine, the polyether bisepoxide and the quaternary ammonium salt reactants are reacted in the following molar ratios: the molar ratio of amine functionality of the polyether diamine to epoxide functionality of the polyether bisepoxide is from 0.5:1 to 2:1 and the molar ratio of the amine functionality of the polyether diamine to the epoxide functionality of the quaternary ammonium salt is from 10:1 to 40:1. The dispersant is used in stock preparation used in paper products including absorbent products as well as paperboard. |
US10662583B2 |
Industrial plant, paper mill, control device, apparatus and method for drying drying-stock
A method for drying drying-stock includes separating solvent-containing drying stock within a drying unit into a base material and a solvent with the aid of a first heat transfer medium that flows through a first circuit, where after the solvent has been taken up by the first heat transfer medium, the solvent is extracted from the heat transfer medium via heat energy (condensation), where the heat energy is transferred by a heat exchanger with the aid of an evaporation unit to a second circuit and made available to a second heat transfer medium, and where the heat energy is fed in a condensation unit of the heat pump back to the first circuit with the aid of a heat pump. |
US10662581B2 |
Method for the partial coloring of plastic parts
The present invention concerns a method for the partial dyeing, in particular for the colour laser engraving, of plastic components, in particular thermoplastic plastic components, more particularly thermoplastic plastic components, comprising a layer construction as well as the resulting partially dyed, preferably colour laser engraved plastic components, in particular thermoplastic plastic components. |
US10662578B2 |
Laundry management devices, systems, and methods
A laundry management system may comprise a user interface in communication with a controller. The controller may be configured to at least one of actuate a laundry machine lock in response to receiving a first identifier associated with a user from the user interface, and command sending of a message to a remote communication device associated with the user. |
US10662573B2 |
Vented heat pump dryer
A vented heat pump dryer, comprising: an outer drum, an air-intake drying air duct and an air-exhaust drying air duct for allowing communicating the outer drum with outside respectively. The dryer is also provided with a heat pump system. A condenser of the heat pump system is arranged in the air-intake drying air duct, and an evaporator is arranged in the air-exhaust drying air duct. The air-exhaust drying air duct comprises at least two branches capable of being controlled to open and close. Each branch is provided with a corresponding evaporator. At different drying stage, the dryer makes exhaust air stream flow through different branches independently or at the same time, so that can adjust the working states of the heat pump reasonably and increase the drying efficiency of the dryer. |
US10662572B2 |
Clothes dryer
A clothes dryer includes a main body, a first drying tub having a rotary drum provided rotatably inside the main body, and a second drying tub provided separately from the first drying tub inside the main body. A first supply flow path is provided to supply air to the first drying tub and a second supply flow path branches from the first supply flow path to supply air to the second drying tub. A first discharge flow path is provided to discharge air from the first drying tub, and a second discharge flow path is provided to discharge the air of the second drying tub through the first drying tub. The user can selectively apply a rotating method having a rapid drying speed and a non-rotating method capable of minimizing damage to clothes according to the characteristics of clothes. |
US10662567B2 |
Laundry treating appliance having a user interface and methods of operating same
A laundry treating appliance includes a treating chamber provided for receiving laundry for treatment, a controller having a memory in which is stored a set of executable instructions including a set of cycles of operations. The laundry treating appliance also includes a user interface operably coupled with the controller and having a touchscreen configured to provide an input and output function for the controller. |
US10662563B2 |
Non-transitory computer-readable storage medium and sewing machine
A non-transitory computer-readable medium storing computer-readable instructions. The instructions, when executed, cause a processor of a sewing data generation device configured to generate sewing data to perform steps. The steps include acquiring a sewing area in which a pattern is to be sewn and acquiring a target area in which a pattern is to be arranged. The steps further include generating a plurality of sewing data. Each of the plurality of sewing data is data to form stitches of a plurality of stippling patterns inside the acquired target area. The steps further include associating the sewing data with arrangement information, for each of the plurality of sewing data, and outputting the sewing data and arrangement information that have been associated with each other. The arrangement information indicates an arrangement of each of the stippling patterns to be sewn on the basis of the sewing data. |
US10662561B2 |
Polyamide nanofiber nonwovens
A nanofiber nonwoven product is disclosed which comprises a polyamide with a relative viscosity from 2 to 330, spun into nanofibers with an average diameter of less than 1000 nanometers (1 micron). In general, the inventive products are prepared by: (a) providing a polyamide composition, wherein the polyamide has a relative viscosity from 2 to 330; (b) melt spinning the polyamide composition into a plurality of nanofibers having an average fiber diameter of less than 1 micron, followed by (c) forming the nanofibers into the product. |
US10662558B2 |
Double jersey knitted fabric with yarn selection
A method for producing a double jersey fabric on a double jersey, single jacquard circular knitting machine includes steps of knitting a front side of the fabric on a cylinder (C) and knitting the rear side of the fabric on a dial (D) of the machine, knitting a base yarn on a rear side of the fabric, except for connecting points where the base yarn is knitted on the front side of the fabric. The method additionally includes steps of inserting a pattern yarn before a start of a pattern unit, which is produced using the pattern yarn, knitting the pattern yarn on the front side of the fabric in the pattern unit and cutting off the pattern yarn after the pattern unit. |
US10662554B2 |
Spandex having improved unwinding properties and enhanced adhesive properties with hot melt adhesive and method for preparing same
The present invention relates to a method for preparing spandex having improved unwinding properties and enhanced adhesive properties with a hot melt adhesive and, more specifically, to a method for preparing spandex by means of adding a polystyrene polymer to a polyurethane-urea solution which is a spinning solution. Therefore, when spandex is unwound, irregular ballooning, tension spikes and the like can be effectively improved and other physical properties are unaffected. And the adhesive properties with a hot melt adhesive are enhanced. |
US10662553B2 |
Spinneret for electrostatic spinning
A spinneret (1) for electrostatic spinning is configured from a structure of an electrically conductive metal material. The structure is provided with a long-axis direction (X), a short-axis direction (Z), and a thickness direction (Y). An inflow port (10) for a spinning starting material fluid is provided to one surface of the structure. A plurality of protrusions (5) are formed on another surface of the structure so as to be aligned along the long-axis direction (X). Each of the plurality of protrusion (5) extends so as to protrude from the structure. The protrusions (5) have, provided to apexes (2) thereof, discharge holes (4) for discharging the starting material fluid. The pitch of the discharge holes (4) exceeds 1 mm. |
US10662551B2 |
Spinning beam for producing melt-spun filaments
A spinning beam for producing melt-spun filaments, in which liquid plastics material is conveyed via an externally arranged extruder to at least one pump, which conveys the liquid plastics material to at least one spin pack having a spinneret, at least the pump and the spin pack being heated by a heat transfer medium which is heated in a boiler. The pump, the boiler and an opening for receiving a spin pack are arranged in a modular assembly, which can be installed and fixed singly, or in a plurality one behind the other, in a frame of the spinning beam. |