Document Document Title
US10659930B2 Systems and methods for ad-hoc trigger based data sharing group
Systems and methods for an application allowing a user to set and initiate data sharing group; allowing user to set automatic or semi-automatic trigger for allowing other computing devices to join and disconnect from the group; wherein said computing device receive and send predefined type of information, automatically, semi-automatically or manually to other computing devices in said group.
US10659927B2 Signal transmission method and apparatus
A signal transmission method and apparatus are provided. The signal transmission method provided in embodiments of the present invention includes: determining a modulation type of service data that needs to be transmitted, where the modulation type includes hierarchical modulation and non-hierarchical modulation; modulating, by means of the hierarchical modulation when it is determined that the modulation type is the hierarchical modulation, the service data that needs to be transmitted, and sending a modulated hierarchical modulation signal to UE; and sending modulation configuration information to the UE, where the modulation configuration information includes information used to indicate the modulation type. By using the embodiments of the present invention, the system spectrum utilization efficiency and the system throughput can be greatly improved.
US10659926B1 Sensor platform for geometric physical area
Systems and techniques for a sensor platform for a geometric physical area are described herein. The sensor platform combines sensors installed in the physical area with transient sensors on people and articles within the area. This collaborative sensor data may then be used to identify interactions between people and articles and react by using these interactions to locate documents based on the person, the article, and the interaction within the geometric physical area.
US10659925B2 Positioning method, terminal and server
A positioning method, a terminal and a server, and relates to the field of positioning and navigation, for performing accurate global positioning. The positioning method includes: a terminal sends a first global coordinate to a server, the server receives the first global coordinate from the terminal, the server searches for corresponding local map data and mapping parameters corresponding to the local map data according to the first global coordinate, the server sends the local map data and the mapping parameters to the terminal, and the terminal obtains a local coordinate of the current location according to the local map data and surrounding environment information of the current location, and obtains a second global coordinate of the current location according to the local coordinate of the current location and the mapping parameters. The embodiment of the present disclosure is applied to accurate positioning.
US10659924B2 System and method for displaying mobility trails for mobile clients
The present disclosure discloses a system and a method for displaying mobile trails for mobile client devices. Specifically, a network device obtains a plurality of performance measurements and a corresponding plurality of physical locations for a client device over a period of time. Then the network device generates a plurality of visual representations for the client device over the period of time, each visual representation representing a respective performance measurement and a respective physical location at a respective time during the period of time. Moreover, the network device can display, store, and/or transmit a map of a physical environment with the plurality of visual representations.
US10659919B1 System and method for automated commissioning of one or more networks of electronic devices
Aspects of the present disclosure include methods and systems for the automated commissioning of a network of electronic devices. The locations of large systems of installed electronic devices equipped with wireless communication modules, such as luminaires, light switches, and occupancy sensors, can be rapidly determined by using inter-device distance measurements to calculate the location coordinates of the devices. Increased confidence in the calculated location coordinates can be achieved by comparing the calculated values to an installation plan and assigning the IDs of the specific devices to the location coordinates in the installation plan.
US10659914B1 Geo-location based event gallery
A computer implemented method may include receiving geo-location data from a device of a user; comparing the geo-location data with a geo-location fence associated with an event; determining that the geo-location data corresponds to the geo-location fence associated with the event; responsive to the determining that the geo-location data corresponds to the geo-location fence associated with the event, supplying user-selectable event gallery information, associated with an event gallery of the event, to the device for addition to a destination list on the device; detecting selection of the user-selectable event gallery information in the destination list by the user of the device; and/or responsive to the detecting of the selection of the user-selectable event gallery information by the user of the device, adding the user as a follower of the event, with access to the event gallery.
US10659911B1 Deduplication of points of interest (POIs) from different sources
Methods, systems, and computer program products relate to deduplication of points of interest (POIs) from different sources. In some embodiments, a method is disclosed. According to the method, a first set of POIs are obtained from a first source and a second set of POIs are obtained from a second source. The first set of POIs are divided into a plurality of groups of POIs including a first group of POIs. A second group of POIs to be matched with the first group of POIs are determined from the second set of POIs. Duplicated POIs are identified from the first and second sets of POIs by matching the first group of POIs and the second group of POIs. In other embodiments, a system and a computer program product are disclosed.
US10659905B1 Method, system, and processing device for correcting energy distributions of audio signal
A method and a system for correcting energy distributions of audio signal are proposed. The method is applicable to a head-mounted device having a motion sensor, a left speaker, and a right speaker and includes the following steps. A rotation angle of the head-mounted device is detected by the motion sensor. Dual-channel audio signals corresponding to the left and right speakers are obtained. The dual-channel audio signals are converted to multi-channel audio signals with the number of channels greater than or equal to 5. Four acoustic source positions of the left and right speakers are defined to convert the multi-channel audio signals to four-channel audio signals of the left and right speakers. Energy distributions of the four-channel audio signals of the left and right speakers are corrected according to the rotation angle and the four acoustic source positions to respectively generate a left output signal and a right output signal.
US10659901B2 Rendering system
A rendering system including a plurality of loudspeakers, at least one microphone and a signal processing unit. The signal processing unit is configured to determine at least some components of a loudspeaker-enclosure-microphone transfer function matrix estimate describing acoustic paths between the plurality of loudspeakers and the at least one microphone using a rendering filters transfer function matrix using which a number of virtual sources is reproduced with the plurality of loudspeakers.
US10659899B2 Methods and systems for rendering audio based on priority
Embodiments are directed to a method of rendering adaptive audio by receiving input audio comprising channel-based audio, audio objects, and dynamic objects, wherein the dynamic objects are classified as sets of low-priority dynamic objects and high-priority dynamic objects, rendering the channel-based audio, the audio objects, and the low-priority dynamic objects in a first rendering processor of an audio processing system, and rendering the high-priority dynamic objects in a second rendering processor of the audio processing system. The rendered audio is then subject to virtualization and post-processing steps for playback through soundbars and other similar limited height capable speakers.
US10659898B2 Switching binaural sound
A method provides binaural sound to a person through electronic earphones. The binaural sound localizes to a sound localization point (SLP) in empty space that is away from but proximate to the person. When an event occurs, the binaural sound switches or changes to stereo sound, to mono sound, or to altered binaural sound.
US10659896B2 Methods of an intelligent personal assistant moving binaural sound
A method provides binaural sound to a user. An intelligent personal assistant selects a location for the user where the user hears binaural sound that emanates from a sound localization point (SLP) in empty space away from a head of the user. A wearable electronic device (WED) receives a voice command from the user to move the SLP to another location.
US10659895B2 Failure detection apparatus, audio input/output module, emergency notification module, and failure detection method
A failure detection apparatus includes: an output portion that outputs from an audio output device a confirmation signal having a frequency in a band other than the audible band; an input portion to which an input signal is inputted from an audio input device; and a failure detection portion that detects whether the audio output device and the audio input device are operating normally on the basis of the confirmation signal and the input signal.
US10659893B2 Providing and transmitting audio signal
There is provided a system (100) comprising an audio streaming device (102) having an audio streaming device receiver (104) arranged for receiving a first audio signal (106) comprising a first audio content and a second audio signal (108) comprising a second audio content, the system furthermore comprising a memory device (110) arranged for storing a user defined setting (112), a processor (114) arranged for providing an output audio signal (116), said output audio signal comprising a combination of the first audio content, and the second audio content, wherein the output audio signal comprises a ratio of a level of the first audio content and a level of the second audio content, and the ratio is determined based on the user defined setting (112), and wherein the system is further comprising a system transmitter (118) arranged for wirelessly transmitting the output audio signal (116).
US10659892B2 Hearing device including antenna unit
A hearing device having an antenna unit is disclosed. The hearing device comprises a transmission line connecting a communication unit and the antenna unit, or at least being part of a connection between them. The transmission line may be configured to transfer a signal from the communication unit to the antenna unit and/or from the antenna unit to the communication unit, so as to minimize parasitic effects on the antenna unit.
US10659891B2 Hearing device comprising a feedback detection unit
A hearing device, e.g. a hearing aid, comprises a forward path for processing an electric signal representing sound including a) an input unit for receiving or providing an electric input signal representing sound, b) a signal processing unit, c) an output transducer for generating stimuli perceivable as sound to a user, d) a feedback detection unit configured to detect feedback or evaluate a risk of feedback via an acoustic or mechanical or electrical feedback path from said output transducer to said input unit and comprising d1) a magnitude and phase analysis unit for repeatedly determining magnitude, Mag, and phase, Phase, of said electric input signal and further parameters based thereon, and d2) a feedback conditions and detection unit configured to check criteria for magnitude and phase feedback condition, respectively, based on said values, and to provide a feedback detection signal indicative of feedback or a risk of feedback.
US10659886B2 Electronic device and sound output method thereof
An electronic device and sound output method thereof are provided. The electronic device may include: an input unit comprising input circuitry configured to sense an input from outside of the electronic device; a plurality of piezo drivers including a first piezo driver and a second piezo driver; and a processor functionally connected with the input unit. The processor may be configured to detect an input through the input unit, to use a first piezo driver set including the first piezo driver to output sounds when the detected input corresponds to a first input, and to use a second piezo driver set including the second piezo driver to output sounds when the detected input corresponds to a second input.
US10659884B2 Speaker
The present disclosure provides a speaker, including a frame, a magnetic circuit system and a vibration system accommodated in the frame; the frame includes a main body defining an accommodating space and a mounting portion extending from the main body toward the vibrating diaphragm; the vibrating diaphragm is fixed at the mounting portion; the main body and the mounting portion are integrally formed through double-shot molding by using two kinds of plastics, where the main body is made of PPA, and the mounting portion is made of LCP. According to the speaker provided in the present disclosure, a glued surface between the vibrating diaphragm and the mounting portion has good flatness, which helps to improve waterproof performance and performance yield of the speaker, and firmness of gluing the magnetic circuit system with the main body is high, which helps to improve reliability of the product when the product falls.
US10659882B2 Diaphragm for producing sound and speaker using same
The present disclosure discloses a diaphragm for radiating sound, including: a dome; a suspension surrounding the dome, including a first connecting portion adjacent to the dome and having a first surface and a second surface, a suspending portion extending from and surrounding the first connecting portion, and a second connecting portion extending from and surrounding the suspending portion. The suspending portion includes a convex part along a direction from the second surface to the first surface, an inner edge connecting to the first connecting portion, and an outer edge connecting to the second connecting portion. The diaphragm further includes a stiffening layer located on the first surface of the first connecting portion, extending from the inner edge toward the dome. The present disclosure further includes a speaker incorporating the diaphragm.
US10659880B2 Methods, apparatus and systems for asymmetric speaker processing
A method of processing audio data for replay on a mobile device with a first speaker and a second speaker, wherein the audio data comprises a respective audio signal for each of the first and second speakers, includes: determining a device orientation of the mobile device; if the determined device orientation is vertical orientation, applying a first processing mode to the audio signals for the first and second speakers; and if the determined device orientation is horizontal orientation, applying a second processing mode to the audio signals for the first and second speakers. Applying the first processing mode involves: determining respective mono audio signals in at least two frequency bands based on the audio signals for the first and second speakers; in a first one of the at least two frequency bands, routing a larger portion of the respective mono audio signal to one of the first and second speakers; and in a second one of the at least two frequency bands, routing a larger portion of the respective mono audio signal to the other one of the first and second speakers. Applying the second processing mode involves applying cross-talk cancellation to the audio signals for the first and second speakers.
US10659879B2 Communication system, communication device, and communication device management method
A communication system includes a control terminal device and one or more communication devices. The control terminal device transmits a search message to entire network when the communication device is registered into the communication system. When the communication device is connected to the network, the communication device determines whether a connection position of the connected communication device on the network is the predetermined connection position. When the communication device is not positioned at the predetermined connection position, the communication device cancels the connection with the network and then connects to the predetermined connection position of the network and responds to the search message through the network after the communication device directly connects to the control terminal device and obtains information for connecting to the predetermined connection position of the network.
US10659869B1 Cartilage transducer
The disclosed computer-implemented method may include an apparatus having a support structure of a wearable device and a transducer coupled to the support structure. The transducer may be configured to generate movements in response to an audio input signal. The apparatus may also have a movement-conducting element coupled to the transducer. The movement-conducting element may be configured to apply the generated movements to a top portion of a user's ear. The movement-conducting element may maintain contact with the top portion of the user's ear so that the generated movements are consistently conducted to the user's ear regardless of which portion of the movement-conducting element contacts the top portion of the user's ear. Various other methods, systems, and computer-readable media are also disclosed.
US10659867B2 Identifying an acoustic signal for a user based on a feature of an aural signal
In general, the subject matter described in this disclosure can be embodied in methods, systems, and computer-readable devices. An audio processing device plays a source audio signal with an electroacoustic transducer of a user earpiece, and records an aural signal that is sensed by same said electroacoustic transducer. The audio processing device determines values of one or more features of the aural signal that indicate a characteristic of a space in which the user earpiece is located. The audio processing device compares the determined values of the one or more features of the aural signal with pre-defined values of the one or more features. Based on a result of the comparing, the audio processing device determines whether the user earpiece is located at a user's ear.
US10659866B2 Elastomeric pressure transduction based user interface
Disclosed herein are electronic devices having a deformable surfaces through which a user can provide inputs to the device by applying a force such as a pinch or a squeeze. A particular embodiment is an earpiece with the deformable surface part of an elongate section extending from an earbud. The deformable surface includes an incompressible hyperelastic material and a pressure sensor. The pressure sensor includes a pressure sensing element and a void defined between the pressure sensing element and the incompressible hyperelastic material. An applied force is transferred by the incompressible hyperelastic material to compress the void and change an internal pressure thereof. The changed pressure is detected by the pressure sensor, and can result in changed operation of the electronic device.
US10659862B1 Modular in-ear device
An in-ear device includes a molding shaped to hold the in-ear device in an ear, and an audio package configured to emit sound. The audio package is structured to removably attach to the molding. An electronics package is structured to removably couple to the audio package and removably attach to the molding. The electronics package includes a controller to control the sound output from the audio package.
US10659855B2 Voice activated device with integrated heatsink and speaker
Systems, methods, and computer-readable media are disclosed for voice activated devices with integrated heatsinks and speakers. In one embodiment, an example device may include a light ring, a first light emitting diode, a heatsink having a first side and a second side, and a speaker assembly coupled to the first side of the heatsink assembly. The heatsink and the speaker assembly together may form a first sealed cavity. The device may include a reflector component coupled to the second side and configured to direct light towards the light ring. The reflector component may optionally include a substantially linear member and a bent member.
US10659854B1 Pluggable aggregation module for an optical network
A pluggable aggregation module adapted to be plugged into a network device of an optical network, said pluggable aggregation module comprising optical frontends configured to connect said pluggable aggregation module with a corresponding number of modules to exchange optical signals via optical fibres in legacy signal formats; and an electrical conversion circuit configured to convert the legacy signal formats to an internal signal format used by said network device.
US10659850B2 Displaying information related to content playing on a device
The various implementations described herein include methods and systems for displaying information related to content playing. In one aspect, a method is performed at a device with a display. The device: (1) determines whether media content is playing at a second device in its proximity; (2) in accordance with a determination that media content is playing, displays on the display a first affordance with a first user-selectable election; (3) receives a selection of the first election; (4) samples at the device program information from a media content item playing at the second device; (5) sends the information to a server; (6) receives from the server an identification of the media content item and second user-selectable elections; (7) displays second affordances providing the second elections; (8) receives a selection of a first one of the second elections; and (9) displays information regarding an entity relevant to the identified media content item.
US10659848B1 Display overlays for prioritization of video subjects
Technology for generating camera viewfinder displays for camera people video recording/broadcasting live events such as sporting events, where the viewfinder displays include overlays that include: (i) priority values for objects shown on and/or off the live event view shown in viewfinder display; (ii) identifications of objects that are outside the viewfinder display; and/or (iii) direction to the locations of objects that are outside the viewfinder display. In response to these indications in the overlay, the cameraperson may move the camera to better capture a high priority object and/or capture an object that was outside the viewfinder display.
US10659845B2 Methods, systems, and media for providing video content suitable for audio-only playback
Methods, systems, and media for selecting content to be presented are provided. In some embodiments, the methods comprise: receiving a request for a first video content item from a user device; receiving an indication that the user device is in a background playback mode; determining that the first video content item is not suitable for presentation in the background playback mode based on one or more properties of audio data; based on the determining that the first video content item is not suitable for presentation in the background playback mode, selecting a second video content item that is suitable for presentation in the background playback mode based on the one or more properties of the audio data of the second video content item; and in response to selecting the second video content item, causing the second video content item to be presented by the user device.
US10659841B2 Methods and apparatus to measure exposure to streaming media
Methods, apparatus, systems and articles of manufacture to measure exposure to streaming media are disclosed. An example apparatus includes a video retriever to retrieve an image displayed by a media device presenting the streaming media, the media device separate from the video retriever. A metadata extractor is to extract a video watermark from the retrieved image. A metadata converter is to, in response to the extraction of the video watermark, convert the video watermark into text formatted metadata. A transmitter is to transmit the text formatted metadata to a central facility.
US10659840B2 Video composition by dynamic linking
A computer receives one or more media content source locations. The computer determines two or more media content items associated with the one or more received media content source locations. The computer negotiates digital rights associated with the two or more media content items. The computer pre-fetches the two or more media content items from the one or more media content source locations. The computer determines at least one digital characteristic of a first media content item of the two or more media content items does not match at least one digital characteristic of a second media content item of the two or more media content items. The computer resamples the first media content item of the two or more media content items. The computer publishes a composition of the two or more media content items to appear as one linked asset with uniform digital characteristics.
US10659835B2 Streaming media presentation system
One or more embodiments of the disclosure provide systems and methods for providing media presentations to users of a media presentation system. A media presentation generally includes a one or more media streams provided by one or more capturing users of the media presentation system. In one or more embodiments, a user of the media presentation system may share a media presentation with a viewing user. The media presentation system can provide a number of features to produce a media stream within a media presentation.
US10659834B2 Online backup and restoration of television receiver storage and configuration data
Embodiments described herein provide various techniques for backing up and restoring data and programs at television receiver devices. In some embodiments, various types of data stored locally by television receiver devices may be backed up by uploading the data to a television provider server, cloud-based storage system, and/or other remote storage locations. In the event of a device failure, or other rebuilt or reinstallation process at the television receiver, a receiver set-up process may be implemented to retrieve the receiver backup data from the backup server, and to initiate various set-up processes in which the replacement receiver may use the backup data to implement the various configuration preferences and settings on the new device, re-create the DVR timers, establish new network connections, configure the home device/appliance settings, and the like, automatically based on the receiver backup data.
US10659833B2 Broadcast receiver and broadcast receiving system
The present invention provides a digital broadcast receiver capable of executing functions having higher added values. The broadcast receiver receives a broadcast wave of a digital broadcast service, controls an operation including activation and end of an application that is in cooperation with a broadcast program based on application-related information, and selects control relating to reactivation of the application based on a user's operation. If activation of the application is requested after the end of the application, the broadcast receiver controls the reactivation or non-reactivation of the application in accordance with the selection of control by the user.
US10659831B2 Apparatus and method for presentation of holographic content
A method that incorporates teachings of the subject disclosure may include, for example, receiving, by a system comprising a processor, holographic video data and a descriptor file associated with the holographic video data, where the holographic video data comprises encoded holographic wave front images that are generated by reconstructing holographic interference patterns associated with a target object, determining, by the system, presentation characteristics from the received descriptor file, and presenting, by the system, holographic video content decoded from the holographic video data, at a portion of a display device. Other embodiments are disclosed.
US10659826B2 Cloud streaming service system, image cloud streaming service method using application code, and device therefor
A cloud streaming service system, an image cloud streaming service method using an application code, and a device therefor are disclosed. A still-image-based cloud streaming service can be performed by receiving a first code corresponding to an application result screen image from a web application server, generating a capture image by using image region attribute information included in the first code, still-image-encoded capture image and a second code generated so as to include animation information by converting the first code, such that the user terminal can generate the application result screen image. A cloud streaming server does not have to perform unnecessary rendering and does not perform animation processing, thereby enabling the number of web containers operable in the server to increase.
US10659825B2 Method, system and computer program product for providing a description of a program to a user equipment
The invention relates to a method for providing a description of a program to a user equipment, comprising: receiving a set of text fields associated with the program; selecting a subset of text fields from the set of text fields based on a profile of a user and/or a profile of the user equipment; ordering the selected subset of text fields based on the profile of a user and/or the profile of the user equipment; editing the description of the program based on the ordered subset of text fields; and providing the description of the program to the user equipment.
US10659822B2 Information processing apparatus, information processing method, and medium
An information processing apparatus specifies that material data for generating a virtual-viewpoint content at what time is stored in a storage device that stores a plurality of material data for generating a virtual-viewpoint content; and outputs, based on a result of the specification, information for causing an image to be displayed, the image indicating a time at which a virtual-viewpoint content can be generated.
US10659815B2 Method of dynamic adaptive streaming for 360-degree videos
Disclosed aspects may include, for example, maximizing a quality of experience when selecting encoding bitrates for downloading dynamically adaptive 360-degree panoramic video. Some embodiments include predicting a future orientation of a display region based on a first display region of the video, identifying predicted list of tiles for rendering the second display region, calculating a quality of experience from a plurality of encoding bitrates for the tiles in the second display region and one or more tiles in a margin area so that downloading the plurality of tiles at one or more bitrates is within estimated available embodiments, and downloading tiles for display.
US10659813B2 Method, system and device for coding and decoding depth information
Disclosed is a method for coding and decoding depth information, and the method includes: data in original Depth Look-up Tables (DLTs) of selected views are combined to establish a unified DLT, a value of the number of elements in the unified DLT and each element in the unified DLT are coded respectively and a coded value and each coded element are transmitted to a decoder; and depth information of each view is coded by taking the unified DLT as a whole or in portions and coded depth information of each view is transmitted to the decoder. Further disclosed are a system and device for coding and decoding depth information; by means of the disclosure, it is possible to reduce redundancy of coding information and improve coding and decoding efficiency.
US10659812B2 Method and device for video decoding and method and device for video encoding
Provided is a video decoding method including obtaining, from a bitstream, information about a prediction mode of a current block; when the prediction mode of the current block is an intra mode, obtaining information about an intra prediction mode of the current block; obtaining a predicted sample value of the current block by using at least one sample that is from among samples included in an adjacent reference region of a plurality of lines and is located, from the current block, in an intra prediction direction indicated by an intra prediction mode. The adjacent reference region of the plurality of lines may include a plurality of lines that are in a vertical direction and located at a left side of the current block, or a plurality of lines that are in a horizontal direction and located at an upper side of the current block.
US10659809B2 Efficient rounding for deblocking
The present disclosure relates to deblocking filtering which is applicable to smoothing the block boundaries in an image or video coding and decoding. In particular, the deblocking filtering is either strong or weak, wherein the clipping is performed differently in the strong filtering and the weak filtering.
US10659807B2 Motion vector derivation method, moving picture coding method and moving picture decoding method
A motion vector derivation unit includes a comparison unit for comparing a parameter TR1 for a reference vector with a predetermined value to determine whether it exceeds the predetermined value or not; a switching unit for switching selection between the maximum value of a pre-stored parameter TR and the parameter TR1 according to the comparison result by the comparison unit; a multiplier parameter table (for multipliers); and a multiplier parameter table (for divisors) for associating the parameter TR1 with a value approximate to the inverse value (1/TR1) of this parameter TR1.
US10659805B2 Method and apparatus for video intermodal transcoding
A video intermodal transcoder converts a compressed bitstream formulated according a type-1 compression scheme to a type-2 compressed bitstream formulated according to a type-2 compression scheme. The transcoder includes an augmented type-1 decoder, a transcoder kernel, and an augmented type-2 encoder. The transcoder kernel performs processes of creating motion-vector candidates and pre-computing prediction errors for each cell of a predefined image coding block and for each candidate motion vector for repetitive use in evaluating various image partitions. In an implementation where the type-1 compression scheme follows the H.264 standard and the type-2 compression scheme follows the HEVC standard, the transcoder exploits the flexibility of the coding-tree structure and other HEVC features to significantly reduce the bit rate of the compressed bit stream. The pre-computation of prediction errors significantly reduces the processing effort, hence increases the throughput of the transcoder.
US10659797B2 Video frame codec architectures
Techniques and apparatuses are described for video frame codec architectures. A frame decompressor decompresses compressed frames to produce decompressed frames. A frame decompressor controller arbitrates shared access to the frame decompressor. Multiple cores of an SoC request to receive a decompressed frame from the frame decompressor via the frame decompressor controller. The frame decompressor controller can implement a request queue and can order the servicing of requests based on priority of the requests or requesting cores. The frame decompressor controller can also establish a time-sharing protocol for access by the multiple cores. In some implementations, a video decoder is logically integrated with the frame decompressor and stores portions of a decompressed frame in a video buffer, and a display controller retrieves the portions for display using a synchronization mechanism. In analogous manners, a frame compressor controller can arbitrate shared access to a frame compressor for the multiple cores.
US10659790B2 Coding of HDR video signals in the ICtCp color format
Methods to improve the quality of coding high-dynamic range (HDR) signals in the ICtCp color space are presented. Techniques are described to a) generate optimum chroma Offset and scaling parameters, b) compute chroma mode decisions by optimizing mode selection distortion metrics based on chroma saturation and hue angle values, and c) preserving iso-luminance by maintaining in-gamut values during chroma down-sampling and chroma up-sampling operations.
US10659788B2 Block-based optical flow estimation for motion compensated prediction in video coding
An optical flow reference frame portion (e.g., a block or an entire frame) is generated that can be used for inter prediction of blocks of a current frame in a video sequence. A forward reference frame and a backward reference frame are used in an optical flow estimation that produces a respective motion field for pixels of a current frame. The motion fields are used to warp some or all pixels of the reference frames to the pixels of the current frame. The warped reference frame pixels are blended to form the optical flow reference frame portion. The inter prediction may be performed as part of encoding or decoding portions of the current frame.
US10659783B2 Robust encoding/decoding of escape-coded pixels in palette mode
Approaches to robust encoding and decoding of escape-coded pixels in a palette mode are described. For example, sample values of escape-coded pixels in palette mode are encoded/decoded using a binarization process that depends on a constant value of quantization parameter (“QP”) for the sample values. Or, as another example, sample values of escape-coded pixels in palette mode are encoded/decoded using a binarization process that depends on sample depth for the sample values. Or, as still another example, sample values of escape-coded pixels in palette mode are encoded/decoding using a binarization process that depends on some other fixed rule. In example implementations, these approaches avoid dependencies on unit-level QP values when parsing the sample values of escape-coded pixels, which can make encoding/decoding more robust to data loss.
US10659782B2 Multi-level significance maps for encoding and decoding
Methods of encoding and decoding for video data are described in which multi-level significance maps are used in the encoding and decoding processes. The significant-coefficient flags that form the significance map are grouped into contiguous groups, and a significant-coefficient-group flag signifies for each group whether that group contains no non-zero significant-coefficient flags. If there are no non-zero significant-coefficient flags in the group, then the significant-coefficient-group flag is set to zero. The set of significant-coefficient-group flags is encoded in the bitstream. Any significant-coefficient flags that fall within a group that has a significant-coefficient-group flag that is non-zero are encoded in the bitstream, whereas significant-coefficient flags that fall within a group that has a significant-coefficient-group flag that is zero are not encoded in the bitstream.
US10659779B2 Layered deblocking filtering in video processing systems and methods
A protocol is provided by which a current block and a neighboring block are identified and the current block is processed. In some variants a deblocking filter is applied with a filtering block size set either to the standard blocksize or to the shared blocksize, depending on whether the shared size of the current and neighboring blocks is smaller than a standard blocksize.
US10659776B2 Quality scalable coding with mapping different ranges of bit depths
A more efficient way of addressing different bit-depths, or different bit-depths and chroma sampling format requirements is achieved by using a low bit-depth and/or low-chroma resolution representation for providing a respective base layer data stream representing this low bit-depth and/or low-chroma resolution representation as well as for providing a higher bit-depth and/or higher chroma resolution representation so that a respective prediction residual may be encoded in order to obtain a higher bit-depth and/or higher chroma resolution representation. By this measure, an encoder is enabled to store a base-quality representation of a picture or a video sequence, which can be decoded by any legacy decoder or video decoder, together with an enhancement signal for higher bit-depth and/or reduced chroma sub-sampling, which may be ignored by legacy decoders or video decoders.
US10659770B2 Stereo image display apparatus
A stereo image display apparatus includes a display device, a lens array layer and a directional structure. The display device includes display surface and an image algorithm unit. The lens array layer is disposed adjacent to the display surface of the display device. The lens array layer includes a plurality of lenses. The directional structure disposed between the display device and the lens array layer or disposed on the lens array layer. The directional structure enables light generated by the display device to emit directionally, and the lens array layer is configured to reconstruct an un-reconstructed image displayed by the display surface as an integral image to produce a stereo image, so that a better stereo image display effect can be provided.
US10659766B2 Confidence generation apparatus, confidence generation method, and imaging apparatus
Provided is a confidence generation apparatus including: an acquisition unit configured to acquire a depth image signal which includes depth information representing a depth to an object in each of a plurality of pixels; and a generation unit configured to generate global confidence which represents confidence in a global region of the depth image signal. The generation unit includes: a first generation processing unit configured to generate local confidence which represents the confidence in the depth information in each of the plurality of pixels; a region division processing unit configured to divide the depth image signal into a plurality of regions based on the depth information; and a second generation processing unit configured to generate the global confidence in each of the plurality of regions based on the local confidence.
US10659765B2 Three-dimensional (3D) image system and electronic device
The present application provides a three-dimensional (3D) image system, comprising a structural light module, configured to emit a structural light, wherein the structural light module comprises a first light-emitting unit, the first light-emitting unit receives a first pulse signal and emits a first light according to the first pulse signal, a duty cycle of the first pulse signal is less than a specific value, an emission power the first light-emitting unit is greater than a specific power, and the first light has a first wavelength; and a light-sensing pixel array, configured to receive a reflected light corresponding to the structural light.
US10659760B2 Enhanced high-level signaling for fisheye virtual reality video
A method of processing a file including video data, including processing a file including fisheye video data, the file including a syntax structure including a plurality of syntax elements that specify attributes of the fisheye video data, wherein the plurality of syntax elements include one or more bits that indicate fisheye video type information, determining, based on the one or more bits of the syntax structure, the fisheye video type information for the fisheye video data, outputting, based on the determination, the fisheye video data for rendering.
US10659759B2 Selective culling of multi-dimensional data sets
Method and system for selective culling of multi-dimensional data sets. Selective culling system introduces a feedback control method for remote users (e.g., client-side) to customize the selection, transmission, and display of datasets (e.g., on server-side) or any collection or subset of datasets.
US10659758B2 Image encoding method and image decoding method
A video decoding method that includes: receiving information for deriving motion information of a current block; deriving the motion information of the current block based on the received information for deriving the motion information; and performing prediction to generate predicted pixels of the current block based on the motion information of the current block, wherein the motion information of the current block is determined by using motion information of a reference block, wherein the reference block is determined based on a specific disparity vector, wherein the specific disparity vector is determined for an area in a picture to which the current block belongs, wherein the area which the specific disparity vector is determined is split based on a quad tree structure, and wherein the current block is a block of a texture picture and the reference block is a block in a reference view is disclosed.
US10659756B2 Image processing apparatus, camera apparatus, and image processing method
There is provided an image processing apparatus which is connected to a camera head capable of imaging a left eye image and a right eye image having parallax on one screen based on light at a target site incident on an optical instrument, the apparatus including: an image processor that performs the signal processing of the left eye image and the right eye image which are imaged by the camera head; and an output controller that outputs the left eye image and the right eye image on which the signal processing is performed to a monitor, in which the image processor adjusts an extraction position of at least one of the left eye image and the right eye image in accordance with a user operation based on the left eye image and the right eye image which are displayed on the monitor.
US10659755B2 Information processing device, information processing method, and program
There is provided an information processing device, an information processing method, and a program that can facilitate a user to perceive a stereoscopic vision object, the information processing device including: a display control unit configured to perform movement control of a stereoscopic vision object perceived by a user from a start depth that is different from a target depth to the target depth on a basis of mode specifying information that specifies a mode of the movement control that supports stereoscopic vision by the user, and an information processing method including: performing movement control of a stereoscopic vision object perceived by a user from a start depth that is different from a target depth to the target depth on a basis of mode specifying information that specifies a mode of the movement control that supports stereoscopic vision by the user.
US10659747B1 Video display device
An object is to obtain a visibility-improved video while more favorably maintaining a color rendering property in a video display device. To achieve the object, a video input unit, a video correcting unit that performs video correction on a video input by the video input unit, and a video display unit that displays the video corrected by the video correcting unit are included, and the video correcting unit is configured to perform local luminance correction on the video input by the video input unit, acquire a correction intensity for each part of the local luminance correction, and perform local saturation correction based on the correction intensity.
US10659741B2 Projecting obstructed content over touch screen obstructions
Systems and methods for detecting and projecting obstructed content over touch screen obstructions are disclosed. In embodiments, a computer-implemented method, includes: displaying, by a computing device, content on a touch screen of the computing device; detecting, by the computing device, an obstruction of the content on one or more areas of the touch screen; determining, by the computing device, obstructed content in the one or more areas; determining, by the computing device, a display configuration for a portion of the obstructed content, wherein the display configuration defines a manner in which the portion of the obstructed content is to be projected by at least one wearable projector device; and sending, by the computing device, the display configuration to the at least one wearable projector device adapted to project the portion of the obstructed content over at least one object causing the obstruction of the content.
US10659740B2 Image rendering apparatus, head up display, and image luminance adjusting method
An image rendering apparatus includes a light source unit, a detecting unit, an optical scanner, a light source driving unit, and an adjusting unit. The light source driving unit is configured to control the light source unit in such a way that a rendered image is generated by the scan of the optical scanner inside a scan area scanned by the optical scanner and that a characteristic laser beam is emitted at a position and in a pattern corresponding to a rendered content of the rendered image. The rendered image includes an indicator related to a speed of a vehicle. The light source driving unit is configured to control the light source unit to emit the characteristics detecting laser beam in such a way that a scale for the indicator related to the speed of the vehicle is rendered.
US10659738B2 Image processing apparatus, image processing method, and image processing program product
An image processing apparatus includes a total pixel value calculator that sums pixel values by each color arranged in one direction and other direction, an occurrence start point detector that determines whether a pixel of interest is an axial chromatic aberration occurrence start point or not based on the calculation result or the pixel value of the pixel of interest and detects the start point, an area determining section that determines an area around the start point as an axial chromatic aberration area, a color space information calculator that calculates color space information, a color space difference calculator that calculates the difference of the color space information between the one direction and the other direction, a correction amount calculator that calculates the correction amount of axial chromatic aberration in accordance with the difference, and a corrector that corrects the axial chromatic aberration area.
US10659736B2 Alignment apparatus, lithography apparatus, and article manufacturing method
An alignment apparatus performs alignment of a substrate is provided. The apparatus comprises a stage that moves while holding a substrate, an imaging device that captures an image of a mark on the substrate, and a processor that obtains a position of the mark based on the image of the mark. The imaging device includes an image sensor and a storage device that stores image data obtained by the image sensor. The imaging device performs next image capturing after the image sensor performs accumulation of charge and transfer of image data to the storage device is completed. The apparatus moves the stage for next image capturing concurrently with transfer of the image data to the storage device when capturing an image of the mark using the imaging device at a plurality of positions while moving the stage.
US10659734B2 Handheld communications devices and communications methods
Handheld communications devices include a communications port, at least one battery, and processing circuitry configured to automatically determine a network address of a network node connected to the communications port, to communicate with the network node using the determined network address, and to consume energy stored by the battery. Communications methods include using a handheld communications device connected to a network node, automatically determining a network address of the network node; using the handheld communications device, communicating with the network node using the determined network address; and based on the communicating and using the handheld communications device, verifying that the network node is operational.
US10659732B2 Apparatus for providing multi-party conference and method for assigning encoder thereof
An apparatus for providing multi-party conference and a method for assigning an encoder in the apparatus are provided. The apparatus for providing multi-party conference according to one embodiment of the present disclosure includes: an image quality determination module configured to determine an image providing quality for a terminal connected to a multi-party conference created in the apparatus; and an encoder assignment module configured to assign an encoder to the terminal based on the image providing quality, wherein when an assignable encoder does not exist at the time of assigning the encoder, the encoder assignment module retrieves one encoder among previously assigned encoders and assigns the retrieved encoder to the terminal.
US10659731B2 Automated cinematic decisions based on descriptive models
In one embodiment, a method includes accessing input data from one or more different input sources. The input sources include: one or more cameras, one or more microphones, and a social graph maintained by a social-networking system. Based on the input data, generating a current descriptive model for a current audio-video communication session that comprises one or more descriptive characteristics about (1) an environment associated with the current audio-video communication session, (2) one or more people within the environment, or (3) one or more contextual elements associated with the current audio-video communication session. The method also includes generating one or more instructions for the current audio-video communication session that are based the one or more descriptive characteristics; and sending the one or more instructions to a computing device associated with the one or more cameras and the one or more microphones.
US10659727B2 Device and method for transmitting video signals, and system for playing video signals
The present disclosure relates to a device for transmitting video signals, including: two or more signal channels respectively connected to the signal sources; two or more trigger switch units respectively disposed corresponding to the signal channels; a switch control unit configured to determine a target signal channel according to a channel selection signal, and turn on the trigger switch unit corresponding to the target signal channel and turn off the other trigger switch units; and a signal source control unit disposed at each of the signal sources, and configured to control the operation and standby of the signal source according to the turning on and turning off of the trigger switch unit of the signal channel connected to the signal source.
US10659725B2 Image processing device and image processing method
The present invention discloses an image processing device and an image processing method. The image processing method includes steps of: referring to multiple frames or an auxiliary data associated with the frames to determine whether the frames contain substantially the same frames; selecting the frames according to whether the frames contain substantially the same frames to generate multiple selected frames; and performing video processing on the selected frames. When the frames do not contain substantially the same frames, the selected frames are the same as the frames, and when the frames contain substantially the same frames, the selected frames are part of the frames.
US10659724B2 Method and apparatus for providing dropped picture image processing
A method and apparatus adaptively creates a dropped frame rate converted frame from a plurality of source frames using at least one alternate support frame in lieu of a neighboring source frame, in response to corrupted picture identification information. Stated another way, a frame rate converter, in response to corrupted picture indication information, replaces at least one corrupted source frame with a temporally modified frame created from at least one alternate source frame. The corrupted picture identification information indicates that a source frame, or segment thereof, includes at least one corrupted or dropped source frame (or segment thereof).
US10659720B2 Image sensing system that reduces power consumption and area and operating method of the same
An image sensing system includes a pixel array, an analog-to-digital converter circuit, and a memory. The pixel array includes a first pixel, a second pixel, and a third pixel interposed between the first pixel and the second pixel. During a first sensing time, the analog-to-digital converter circuit converts a first image signal received from the first pixel to first image data and converts a second image signal received from the second pixel to second image data. During a second sensing time, the analog-to-digital converter circuit converts a third image signal received from the third pixel to third image data. The first image data and the second image data are written in the memory during a first write time, and the third image data are written in the memory during a second write time.
US10659717B2 Airborne optoelectronic equipment for imaging, monitoring and/or designating targets
An airborne optronic equipment item comprises: at least one image sensor suitable for acquiring a plurality of images of a region flown over by a carrier of the equipment item; and a data processor configured or programmed to receive at least one acquired image and transmit it to a display device; wherein the data processor is also configured or programmed to: access a database of images of the region flown over; extract from the database information to synthesize a virtual image of the region which would be seen by an observer situated at a predefined observation point and looking, with a predefined field of view, along a predefined line of sight; synthesize the virtual image; and transmit it to a display device. A method for using such an equipment item is provided.
US10659716B2 Imaging element, imaging method and electronic apparatus
There is provided an imaging device including a pixel array section including pixel units two-dimensionally arranged in a matrix pattern, each pixel unit including a photoelectric converter, and a plurality of column signal lines disposed according to a first column of the pixel units. The imaging device further includes an analog to digital converter that is shared by the plurality of column signal lines.
US10659715B2 Fractional-readout oversampled image sensor
Signals representative of total photocharge integrated within respective image-sensor pixels are read out of the pixels after a first exposure interval that constitutes a first fraction of a frame interval. Signals in excess of a threshold level are read out of the pixels after an ensuing second exposure interval that constitutes a second fraction of the frame interval, leaving residual photocharge within the pixels. After a third exposure interval that constitutes a third fraction of the frame interval, signals representative of a combination of at least the residual photocharge and photocharge integrated within the pixels during the third exposure interval are read out of the pixels.
US10659712B2 Signal transfer circuit and image sensor including the same
A signal transfer circuit includes a transmission circuit, a conversion circuit and a sensing output circuit. The transmission circuit outputs a driving signal to a signal line. The conversion circuit receives an input signal that is a single-ended signal transferred through the signal line and converts the input signal to a differential signal including a first output amplified signal and a second output amplified signal. The first output amplified signal swings downwardly from a first output DC level and the second output amplified signal swings upwardly from a second output DC level that is lower than the first output DC level. The sensing output circuit generates an output signal based on the differential signal. The number of the signal lines is reduced without decrease in performance of signal transfer, and sizes of the signal transfer circuit and the device including the signal transfer circuit are reduced.
US10659708B2 Solid-state imaging device, method of driving the same, and electronic apparatus
A solid-state imaging device includes a pixel array unit in which a plurality of imaging pixels configured to generate an image, and a plurality of phase difference detection pixels configured to perform phase difference detection are arranged, each of the plurality of phase difference detection pixels including a plurality of photoelectric conversion units, a plurality of floating diffusions configured to convert charges stored in the plurality of photoelectric conversion units into voltage, and a plurality of amplification transistors configured to amplify the converted voltage in the plurality of floating diffusions.
US10659706B2 Photoelectric conversion device and imaging system
A photoelectric conversion device includes a plurality of pixels each of which includes a photoelectric converter that generates charges by photoelectric conversion, a first transfer unit that transfers charges in the photoelectric converter to a first holding portion, a second transfer unit that transfers charges in the first holding portion to a second holding portion, an amplifier unit that outputs a signal based on charges held in the second holding portion, and a third transfer unit that transfers charges of the photoelectric converter to a drain portion; and a control unit that, in an exposure period in which signal charges are accumulated in the photoelectric converter, changes a potential barrier formed by the third transfer unit with respect to the signal charges accumulated in the photoelectric converter from a first level to a second level that is higher than the first level.
US10659704B2 Imaging device
There is provided an imaging device including: a pixel that outputs a pixel signal corresponding to an amount of incident light; an output signal line that is connected to the pixel to allow the pixel signal from the pixel to be output to the output signal line; a first transistor that has a first gate, a first source, and a first drain, one of the first source and the first drain being connected to the output signal line; and a first circuit that is connected to the first gate, the first circuit being configured to generate a third voltage that is a voltage between a first voltage and a second voltage, the first voltage being a voltage for turning on the first transistor, the second voltage being a voltage for turning off the first transistor.
US10659701B2 Method and system for multiple f-number lens
An imaging lens includes one or more lens elements configured to receive and focus light in a first wavelength range reflected off of one or more first objects onto an image plane, and to receive and focus light in a second wavelength range reflected off of one or more second objects onto the image plane. The imaging lens further includes an aperture stop and a filter positioned at the aperture stop. The filter includes a central region and an outer region surrounding the central region. The central region of the filter is characterized by a first transmission band in the first wavelength range and a second transmission band in the second wavelength range. The outer region of the filter is characterized by a third transmission band in the first wavelength range and substantially low transmittance values in the second wavelength range.
US10659696B2 Electronic device, control method of electronic device, and storage medium
A display control device of the invention accepts a predetermined operation of switching an image to an image moved by a predetermined number of images among multiple images arranged in predetermined order. When a single-image that is not one of group images is displayed on a display unit of the display control device and single-images are arranged from the currently displayed image to an image moved by a predetermined number of images, the image moved by the predetermined number of images is acquired in accordance with a predetermined operation. When one of group images is displayed on the display unit and the group images are arranged within the predetermined number of images, a process of acquiring an image arranged beyond the group images without displaying images included in the group images is performed in accordance with a predetermined operation. Next, the acquired image is displayed on the display unit.
US10659688B2 Imaging system, method, and applications
A multicamera panoramic imaging system having no parallax. In an example, the multicamera panoramic imaging system includes multiple discrete, imaging systems disposed in a side-by-side array, wherein a field of view of each discrete, imaging systems is conjoined with a field of view of each adjacent discrete imaging system, further wherein a stencil of chief rays at the edge of the field of view of any one of the discrete imaging systems will be substantially parallel to a stencil of chief rays at the edge of the field of view of any adjacent ones of the discrete imaging systems such that all of the substantially parallel stencils of chief rays appear to converge to a common point when viewed from object space. A method for forming an image of an object having no parallax.
US10659687B2 Imaging apparatus, imaging display control method, and program
An image processing apparatus including an interface that receives an input identifying a subject, and a processor that controls a display to display information indicating a position of the subject in a graphic representation corresponding to a panoramic image based on an orientation of a device capturing image data for generating the panoramic image.
US10659686B2 Conversion of an interactive multi-view image data set into a video
Various embodiments of the present invention relate generally to systems and methods for analyzing and manipulating images and video. In particular, a multi-view interactive digital media representation can be generated from live images captured from a camera as the camera moves along a path. Then, a sequence of the images can be selected based upon sensor data from an inertial measurement unit and upon image data such that one of the live images is selected for each of a plurality of poses along the path. A multi-view interactive digital media representation may be created from the sequence of images, and the images may be encoded as a video via a designated encoding format.
US10659685B2 Control of viewing angles for 360-degree video playback
In some implementations, a 360-degree camera includes two wide-angle lenses that provide a spherical view of a scene. The 360-degree camera is configured to be connected to a computing device (e.g., a smart phone) for rendering the captured images. The user interface provides options to set camera orientations during playback in order to present a selected orientation in the view while the video is displayed. Additionally, specific orientations may be set in some frames and the video processor provides for smooth transitions from the orientation in one frame to the orientation in the next specified frame. This way, the user may follow the action on a particular sequence during playback. The resulting video playback may be saved as a movie. The user interface also provides the option to set user-defined landmarks and follow these landmarks, for a user-configured amount of time, during playback.
US10659681B2 Information processing apparatus, information processing method, and program
There is provided an information processing apparatus including an emission unit for emitting a projection image onto a subject, which is to be photographed, so as to allow the subject to perform a predetermined operation, a recognizing unit for recognizing operation performed by the subject, and an execution unit for executing a predetermined processing according to the operation of the subject that is recognized by the recognizing unit.
US10659680B2 Method of processing object in image and apparatus for same
Disclosed is a method of processing an object in an image and a system for the same. According to an embodiment of the present disclosure, there is provided a method of processing an object in an image, the method including: detecting a first object from a first image obtained by a first network camera; detecting a second object from a second image obtained by a second network camera; checking similarity between the first and second objects in consideration of feature information of the first and second objects, installation location information of the first and second network cameras, and location information of a terminal device; and determining whether the first object is equal to the second object on the basis of the similarity between the first and second objects.
US10659677B2 Camera parameter set calculation apparatus, camera parameter set calculation method, and recording medium
A camera parameter set calculation apparatus calculates three-dimensional coordinate sets based on a first image obtained by a first camera mounted on a mobile apparatus, a second image obtained by a second camera arranged on or in an object different from the mobile apparatus, a camera parameter set of the first camera, and a camera parameter set of the second camera, determines first pixel coordinate pairs obtained by projecting the three-dimensional coordinate sets onto the first image based on the first camera parameter set and second pixel coordinate pairs obtained by projecting the three-dimensional coordinate sets onto the second image based on the second camera parameter set, calculates an evaluation value based on pixel values at the first pixel coordinate pairs and pixel values at the second pixel coordinate pairs, and updates the camera parameter set of the first camera based on the evaluation value.
US10659675B2 Terminal, shooting method thereof and computer storage medium
The present disclosure provides a terminal, a shooting method thereof and a computer storage medium, the shooting method includes: generating an focus frame corresponding to a shooting target in a preview image; acquiring image data in the focus frame of each shooting target when focus is the clearest during focusing process; composing the image data in the focus frame of all the shooting target to generate a final shooting image, according to a preset image composing technology in a final preview image when determining focal length.
US10659666B2 Camera module and assembly method thereof
An assembly method of a camera module is provided. The camera module includes a first and second lens set respectively including at least one lens. The assembly steps include: providing a substrate, a lens holder, and an image sensing device, wherein the image sensing device is located in a space formed by the substrate and the lens holder, and the lens holder includes a limiting portion; disposing the second lens set in the space; assembling a barrel in the limiting portion, wherein the first lens set is disposed in the barrel, the second lens set is located between the first lens set and the image sensing device, and the first and second lens sets and the image sensing device have a common optical axis; inspecting the imaging of the image sensing device; and adjusting a position of the barrel in the limiting portion according to the inspection result.
US10659665B2 Camera module for a vehicle
A camera module which is particularly provided for vehicles. It includes a lens holder, a shaped part, and a sensor carrier. The lens holder is fastened on the sensor carrier via the shaped part with an adhesive).
US10659658B2 Processor for electronic endoscope, and electronic endoscope system
An electronic endoscope processor has a configuration including: a converting means for converting pieces of pixel data that are made up of n (n≥3) types of color components and constitute a color image in a body cavity into pieces of pixel data that are made up of m (m≥2) types of color components, m being smaller than n; a color component correcting means for correcting the converted pieces of pixel data made up of m types of color components with use of a predetermined color component correction coefficient; and an acquiring means for acquiring an evaluation result related to a target illness based on the corrected pieces of pixel data made up of m types of color components.
US10659657B2 Texture printing system
Systems, apparatuses, and methods are provided herein for texture printing. A system comprises a rasterizer configured to convert an input image with texture information to color data and texture attribute plane data, the rasterizer is configured to set the change bit of pixel n to zero when the texture information associated with pixel n is the same as pixel n−1. The system further comprises a data compressor, a memory device, a data decompressor, a color converter and a halftoner configured to convert the color data to color halftone data, and a texture data generator configured to combine the texture attribute plane data decompressed by the data decompressor and the color halftone data from the halftoner to generate output ink data for a printer engine to print the input image with texture.
US10659655B2 Image reading apparatus and semiconductor device
An image reading apparatus including an image reading chip for reading an image, wherein the image reading chip includes: a terminal; a pixel portion that outputs a pixel signal and includes a light-receiving element that receives and photoelectrically converts light from the image; an output circuit that can output a signal based on the pixel signal with one of a plurality of drive capabilities including a first drive capability and a second drive capability that is larger than the first drive capability; and an output selection circuit that, based on a signal input to the terminal, selects the drive capability of the output circuit.
US10659651B2 System, information processing apparatus, control method for information processing apparatus, and program
An information processing apparatus that can appropriately delete data of an image forming apparatus used when remote support for an image forming apparatus is performed. The information processing apparatus provides remote support to an image forming apparatus through a relay server. For the remote support, the information processing apparatus acquires data used for remote support from the image forming apparatus through the relay server. The information processing apparatus controls execution of a deletion process of data cached in the information processing apparatus within the acquired data. In a preferable embodiment of the present invention, the information processing apparatus performs a deletion process of cache data when the remote support ends or when logged into the relay server.
US10659649B2 Communication between an image forming device and a replaceable supply item
A toner container installable in an image forming device having a controller according to one example embodiment includes a housing having a reservoir for storing toner. A chip is positioned on the housing and configured to receive a first write command from the controller of the image forming device. The chip is further configured to determine whether a transmission cycle bit of the first write command matches a transmission cycle bit of a second write command received by the chip from the controller of the image forming device previous to the first write command. The chip is further configured to resend to the controller of the image forming device a response to the second write command if the transmission cycle bit of the first write command matches the transmission cycle bit of the second write command.
US10659644B2 Image forming device for executing screen saver, and method for controlling image forming device for executing screen saver
An image forming apparatus that executes a screen saver that provides information related with an accessory device connected to the image forming apparatus, and a method of controlling the image forming apparatus that executes a screen saver are provided. The method includes sensing an accessory device connected to the image forming apparatus, requesting execution of a screen saver corresponding to the sensed accessory device, searching for the screen saver corresponding to the sensed accessory device, and executing a found screen saver.
US10659641B2 Image forming apparatus, condition determination method, and computer program
Disclosed is an image forming apparatus, which may execute a job including printing an image. The disclosed image forming apparatus may include: a printer; a detector that may detect a property of a printing paper sheet, the printing paper sheet being a paper sheet used by the printer in the printing; and a determinator that may, on the basis of the property detected by the detector and a situation of the job, determine conditions for executing the printing.
US10659632B2 Display apparatus, image forming apparatus, and non-transitory computer readable medium for menu display
A display apparatus includes a display, a detection unit that detects an operation position of a user on the display, and a controller that displays an entire menu corresponding to the detected operation position at a position corresponding to the operation position, and displays a balloon indicating the operation position.
US10659631B2 Information processing apparatus, information processing method, and non-transitory computer readable medium for displaying simplified operation screen
An information processing apparatus includes an acquisition unit that acquires, from a terminal apparatus, control information including model identification information for identifying a model of the terminal apparatus and setting information concerning display setting of a screen of the terminal apparatus; and a controller that causes a screen on which fewer display items than an ordinary screen are displayed to be displayed on a display in a case where the model identification information included in the control information indicates a specific model or in a case where the setting information included in the control information indicates specific setting.
US10659623B2 Image forming apparatus, information processing method, and program to cancel a job
To address problems, an image forming apparatus includes a detection unit configured to detect an error, a canceling unit configured to cancel a job in a case where the error is not released when a set period of time has elapsed after the error is detected, and a storage unit configured to store a job history including a cancellation factor indicating that the job is canceled since the set period of time has elapsed after the error is detected.
US10659622B2 Image forming apparatus
An image forming apparatus, includes: an image former that forms an image on a sheet; an inspector that inspects an object; and a feed path that conveys the object to the inspector, wherein the feed path is installed to bypass the image former.
US10659621B2 Image processing apparatus, image processing method, and storage medium
An image processing apparatus includes a blank page determination unit configured to determine whether a document is a blank page by using image data obtained by reading the document, a color determination unit configured to determine whether the document is polychrome or monochrome, and a decision unit configured to decide on processing of the image data obtained by reading the document by using a determination result of the blank page determination unit and a determination result of the color determination unit.
US10659620B2 Methods for configuring settings for an image forming apparatus with template sheet
An image forming apparatus prints a template sheet. The template sheet includes a graphical code and operation boxes. The graphical code includes information corresponding to a storage location address that stores information about settings for one or more image forming apparatuses. A user indicates what information is desired or to be changed on the image forming apparatus, marks it on the template sheet and scans the template sheet. Based on the instructions on the template sheet, information for settings is retrieved for an apparatus in a network. Maintenance information for the image forming apparatus also is retrieved using the template sheet and operation boxes.
US10659612B2 Agent efficiency based on real-time desktop analytics
A contact center includes: a microprocessor; a computer readable medium, coupled to the microprocessor, to retrieve, store, and manage desktop analytic data that describes the current state of an agent's desktop. The current state of the agent's desktop can be reported to a contact center where that information can be used as additional information in assigning contacts to the agent. The contact may be sent to the agent having documentation or information readily accessible to response to the issue associated with the contact.
US10659609B2 Hierarchy based graphical user interface generation
One or more embodiments related to a method of generating a graphical user interface. The method includes obtaining an interface hierarchy having multiple nodes, where each node defines a visualization for the node, and the interface hierarchy defining an ordering on the nodes. The method further includes traversing the interface hierarchy starting with a selected node to obtain a subhierarchy, and creating the graphical user interface from a general interface by populating the general interface with the visualization. The method further includes providing the graphical user interface.
US10659603B2 Communication apparatus and communication method
A communication apparatus includes a user signal transmission unit that transmits a user signal required for an end user to perform communication; a manager function implementing unit that implements a function provided to a manager of the present apparatus; a license monitoring unit that monitors a license of the present apparatus, and outputs a function limitation signal when the license has expired; and a function limitation unit that limits the function implemented by the manager function implementing unit when receiving the function limitation signal. In a communication apparatus that transmits a user signal required for an end user to perform communication, a function of the apparatus is limited when a relevant license has expired, while preventing an influence of the limitation upon the end user.
US10659602B1 Using calling party number for caller authentication
Embodiments include a system, method, and computer program product that authenticates a caller using calling party information. In an embodiment, an authentication device receives the call request and associated calling party information that includes a calling party number. The authentication device retrieves parameters associated with the calling party number, where a retrieved parameter is a number of accounts linked to the calling party number. The authentication device determines whether the number of accounts is between one and a threshold value, inclusive, and verifies that the call request originates from a location or a device associated with the calling party number. Based on the verifying and determining, the authentication device generates an authentication result that indicates whether the calling party number is authenticated. Then, the authentication device sends the authentication result to a call processing device that processes the call request from the caller according to the authentication result.
US10659596B1 Systems and methods for presenting content based on user behavior
Disclosed herein are systems and methods for controlling content and/or sound provided to a user including generating content data configured for presentation on a display, transmitting the content data to one of the display, a speaker, or both, collecting behavior data of the user sensed by the tracking sensor, and determining whether behavior data represents a value that satisfies a threshold value. When the value satisfies the threshold value, generating, by the processing module of the device, a change in the content data presented on at least one of the display, the speaker, or both, and when the value does not satisfy the threshold value, presenting, by the processing module, the same content data on at least one of least one of the display, the speaker, or both.
US10659593B2 Method and electronic device for setting alarm
An electronic device includes a housing, one or more input/output (I/O) interfaces included in or on the housing, a processor, and a memory, wherein the memory stores a plurality of templates associated with a plurality of tasks, wherein each of the templates includes a plurality of parameters for at least partially completing a respective one of the tasks, and wherein the memory further stores instructions that, when executed, cause the processor to: receive a user input to set up an alarm associated with a task to be performed at a selected time, wherein the input includes a first time parameter associated with the selected time; select one of the plurality of templates; determine a second time parameter of the plurality of parameters of the selected template; determine a time for the alarm; and provide the alarm at the determined time.
US10659590B2 Electronic system for indirect intercommunication messaging between electronic terminals
An electronic system for indirect intercommunication messaging includes at least one central processing unit acting as a server, and one or more user terminals adapted to be bidirectionally connected to the central processing unit, wherein each one of the user terminals includes components for preparing and sending to the central processing unit a request for contact with another one of the user terminals, the contact request including data relating to at least one interaction genre and to the identification of the other user terminal; components for receiving and displaying a contact request sent by the central processing unit and coming from another one of the user terminals; the central processing unit includes components for receiving and storing the contact requests coming from each one of the user terminals; comparing the data contained in the contact requests; sending to a pair of the terminals the requests for contact with the other terminal of the pair only if and when coincidence is verified between the interaction genre data of the contact requests and the terminals have been mutually identified, so that the contact between the pair of terminals can only be activated upon the coincidence verification.
US10659587B2 Incoming call management method and apparatus
The present disclosure is an incoming call management method, which includes: receiving a call request sent by a calling terminal; determining whether the calling number is stored in an address book corresponding to the called number; if the calling number is stored in the address book, sending the call request to a first called terminal corresponding to the called number to connect to the incoming call; if the calling number is not stored in the address book, configuring the calling terminal to play a preset voice interaction prompt, receiving a voice message sent by the calling terminal; and sending the voice message and the calling number to the first called terminal. The present disclosure also provides an incoming call management apparatus. The present disclosure can initially identify the calling number through voice message including a calling user attribute and an incoming call reason, so as to improve the user experience.
US10659584B2 Display system with a flexible display
A display system includes a continuous flexible display, two book halves, two main display supports, and a movement synchronizing coupling. The two book halves is connected to each other via a hinge mechanism. The hinge mechanism has two hinges, and each hinge is rotatable about respective axis. Each of the two main display supports connects to one of the two book halves and is configured to support the flexible display. The coupling is connected to the two main display supports and rotating about a rotation axis that is parallel to the axis of hinge to enable a synchronized movement of the two main display supports.
US10659582B2 Display screen, terminal display screen assembly, and mobile terminal
The present disclosure provides a display screen, a terminal display screen assembly, and a mobile terminal. The display screen defines a first through hole which penetrates the display screen in a thickness direction of the display screen, and may include: a frame, a display module and a positioning structure. The frame may include a first face and a second face opposite to the first face. The display module may be arranged on the first face of the frame. The positioning structure may be arranged on the second face of the frame. The first through hole may include a first sub-through hole defined in the display module and penetrating the display module in a thickness direction of the display module, and a second sub-through hole defined in the frame and penetrating the frame in a thickness direction of the frame and communicating to the first sub-through hole. The positioning structure is disposed to surround the second sub-through hole.
US10659581B2 Display panel and display device having the same
A display panel and display device having the same are disclosed. In one aspect, the display panel includes a first substrate including a display region configured to display images and a non-display region surrounding the display region. The display panel further includes a metal pattern disposed in the non-display region, a second substrate opposing the first substrate, and a sealant disposed between and substantially sealing the first and second substrates, wherein the sealant at least partially overlaps the metal pattern. The metal pattern includes a body portion surrounding the display region and a plurality of protrusions extending from the body portion in a direction from the display region to the non-display region.
US10659580B2 Connecting sled system for mobile devices
The present invention relates to a sled system for physically attaching a mobile device and a peripheral device and electrically connecting both. A modular sled system according to the present invention comprises a mount unit to physically attach a peripheral device to a mobile device and the mount unit comprises an electrical connection part to be electrically connected to each of the peripheral device and the mobile device.
US10659577B2 Hinge for a foldable-type mobile device
A hinge module including a first body; a second body arranged with respect to the first body; a hinge configured to hinge in response to an angle variation between the first body and the second body; and a display disposed on the first body and the second body. Further, the hinge includes a first hinge housing including an accommodating portion; a second hinge housing having a first end inserted in the accommodating portion; an arc-shaped hinge hole in the second hinge housing; a hinge pin projecting from an inner surface of the accommodating portion of the first hinge housing and penetrating the arc-shaped hinge hole in the second hinge housing; a guide pin coupled to the first hinge housing and inserted into a second end of the second hinge housing; and an elastic member provided in the second end of the second hinge housing and including a curved surface contacting the guide pin.
US10659572B2 Handling different protocol data unit types in a device to device communication system
A method and system for differentiating different Protocol Data Units (PDU) in a D2D communication network. The type of PDU to be differentiated is assigned/associated with a unique data/value and transmitted to the destination, by a transmitting User Equipment. At the receiving end, the receiving User Equipment differentiates between different types of PDU packets received, based on the unique data associated with the collected data. Further, the received PDU data is processed based on a suitable packet processing function that matches the PDU type of the PDU data received.
US10659570B2 Method and device for dynamical protocol selection
The method of the invention envisages estimation and learning of the state of the system using the data traffic of the network itself, with co-ordination of a node, selected as collector, which, in addition to its normal data-collection role, determines and changes dynamically the network-protocol stack used, for optimizing the performance of interest, where for this purpose said node, with a processing unit thereof, implements a computer program referred to as “protocol selector”, which: executes monitoring of the network state and collection of the data on the performance of the network itself; evaluates at periodic intervals the performance of the protocol in the last interval and executes a step of a reinforcement-learning algorithm at the end of which it evaluates whether to change or not the protocol for the next interval and resumes the main execution flow.
US10659566B1 Demo recording utility
A system includes a data storage system, and a processor and program logic. The program logic includes a management console, including interface logic configured to provide a user interface. The interface logic is also configured to receive a request to record a demo of a Web application via the user interface. The program logic also includes a recording utility. The recording utility includes recording logic configured to, upon receiving the request to record, capture a first instance of underlying client-side code and assets utilized to render the Web application. The program logic further includes data consolidation and storage logic configured to save the first instance to a database. Further yet, the program logic includes demo editing logic configured to create a demo of the Web application based on the first instance.
US10659565B2 Information processing system and information processing apparatus
A non-limiting example information processing system includes a plurality of user terminals, and a download task list for each user terminal is managed by a list server. The download task list includes a list for each user terminal and a list for each of groups into which a plurality of user terminals are classified. If the download task list is renewed, the user terminal acquires the download task list from the list server, and acquires a content from a content server according to an acquired download task list.
US10659563B2 Bandwidth reservation for authenticated applications
Methods, systems, devices, and software are disclosed for providing application levels of service over a network. Embodiments of the invention maintain a list of registered applications (or application providers) that have registered with a network resources provider. Customers of the network resources provider may authenticate some or all of the registered applications, indicating a desire to allow traffic relating to those applications over their access networks. Customers may further set application levels of service with respect to those authenticated applications. Certain embodiments may manage network traffic to accord with the application levels of service.
US10659551B1 Method and apparatus for storing information in a browser storage area of a client device
Disclosed is a method and apparatus for performing steps to cause encoded information to be stored at a client device during a first network session between a server and the client device. To cause encoded information to be stored at a client device, the server first determines a set of network resource requests that encode the information. These network resource requests may include requests for one or more specific URLs and/or requests for one or more files. The server then causes the client device to initiate the network resource requests. The server may cause this initiation by, for example, redirecting the client device to the network resources. The client device initiating the network resource requests causes data representative of the network resource requests to be stored at the client device.
US10659549B2 Electronic device and method for providing IP network service
An electronic device, according to one of the various embodiments of the present disclosure, includes: a memory; a communication module that transmits and receives messages; and a processor that, when a non-IP service-based message is received, creates an IP-based message including at least some of the non-IP service-based message, and provides the created IP-based message. In addition, various embodiments are provided.
US10659548B2 Invocation devices in an organization information distribution system
Various techniques provided herein generate trigger events in an organization information distribution system. Various implementations establish a connection between an invocation device and a server using a communication network. Establishing the connection can include authenticating the invocation device to the server and/or authenticating the server to the invocation device. In response to establishing the connection to the server, one or more implementations detect a trigger event, such as the actuation of a hardware mechanism and/or a sensor detecting the trigger event without user-intervention. Some implementations capture content based on a point in time associated with when the trigger event occurs. Upon detecting the trigger event, various implementations forward a notification of the trigger event and/or the captured content.
US10659547B2 Actionable notifications apparatuses, methods and systems
The ACTIONABLE NOTIFICATIONS APPARATUSES, METHODS AND SYSTEMS (“ACNO”) transforms inputs such as actionable notification enrollment input, action input, and trigger messages via ACNO components into actionable notification message output. In one embodiment, the disclosure describes a processor-implemented actionable notification method, which comprises, receiving an actionable notification enrollment request with a device identification, and criteria for receiving actionable notifications, and receiving an actionable notification trigger message. The method further comprises determining an actionable notification message based on the actionable notification trigger message and the criteria for receiving actionable notifications, and determining actionable notification associated actions. The method further comprises transmitting the actionable notification message and the associated actions, and receiving an action selection from the associated actions, and effecting the action selection.
US10659538B2 Wireless device and communication connection method with external device
A method for at a wireless device establishing a communication connection with an external device is disclosed. The wireless device stores unique information of at least one external device connectable with the wireless device in a connection target list, and receives a connection waiting command from a server connected with the wireless device. In response to the received connection waiting command, the wireless device changes a status thereof to a connection waiting status allowing a connection with the external device, and receives a connection request from the external device finding the wireless device which is in the connection waiting status. If unique information of the connection-requesting external device is contained in the connection target list, the wireless device performs a communication connection with the connection-requesting external device, receives a command data regarding a transportation device from the connected external device, and transmits the received command data to the transportation device.
US10659537B2 Cross-jurisdiction workload control systems and methods
At design time, cross-jurisdiction workload controls may be presented by a process platform server to a user (e.g., a workload creator or process builder) who is using the process platform to create or update an application having a workload functionality with zero, one, or more applicable regulation controls. If no regulation control is selected, or if there is no exception provided, the process platform server may operate to block the user from proceeding to complete the workload creation process. The application with the workload thus created/updated is delivered to end user(s). Responsive to a user request to open the application on a client device, a server (the process platform server or an application gateway server) may operate to automatically determine whether a target location associated with the user request is permitted in accordance with a cross-jurisdiction workload control associated the workload defined in the application.
US10659533B1 Layer-aware data movement control for containers
An apparatus in one embodiment comprises a plurality of container host devices of at least one processing platform. The container host devices implement a plurality of containers for executing applications on behalf of one or more tenants of cloud infrastructure. The containers have associated layer structures each characterizing container images of respective different ones of the containers. Movement of container data between different storage devices by at least one of the container host devices for at least one of the containers is controlled based at least in part on one or more characteristics of a corresponding one of the layer structures. For example, controlling movement of container data between the different storage devices may comprise assigning at least one of different prefetching priority weights and different cache-swapping priority weights to different layers of the given layer structure.
US10659525B1 Computer-based platforms/systems, computing devices/components and/or computing methods for one or more technological applications involving real-time data processing between a server, one or more mobile computing devices and near field communication connected interactive posters
Systems and methods involving processing and/or mirroring data in real time involving one or more mobile devices and a plurality of NFC-connected interactive posters are disclosed. In one embodiment, an exemplary computer-implemented method may comprise: connecting a user mobile computing device to a server as well as coupling the device to a plurality of interactive posters via NFC; receiving user selections made on the interactive posters; processing content data related to the posters based on the user selections and/or other information; generating a GUI comprising interactive simulations corresponding to respective posters and/or statistics related to selections made on the posters; tracking, in real time, a specific experience of a user interacting with the posters; and transmitting, in real-time, data regarding the specific experience to the server.
US10659523B1 Isolating compute clusters created for a customer
At the request of a customer, a distributed computing service provider may create multiple clusters under a single customer account, and may isolate them from each other. For example, various isolation mechanisms (or combinations of isolation mechanisms) may be applied when creating the clusters to isolate a given cluster of compute nodes from network traffic from compute nodes of other clusters (e.g., by creating the clusters in different VPCs); to restrict access to data, metadata, or resources that are within the given cluster of compute nodes or that are associated with the given cluster of compute nodes by compute nodes of other clusters in the distributed computing system (e.g., using an instance metadata tag and/or a storage system prefix); and/or restricting access to application programming interfaces of the distributed computing service by the given cluster of compute nodes (e.g., using an identity and access manager).
US10659520B1 Virtual disk importation
Various systems and processes may be used for virtual disk importation. In particular implementations, systems and processes for virtual disk importation may include the ability to receive a request from a customer of a service provider network to import a virtual disk, which is accessible over a communication network, into the service provider network. The systems and processes may also include the ability to download a portion of a virtual disk file corresponding to the virtual disk, determine the type of the virtual disk by analyzing the downloaded portion, and determine the size of the virtual disk by analyzing the downloaded portion. The systems and processes may further include the ability to determine whether the virtual disk is supported by the service provider network based on the determined type of the virtual disk and download the virtual disk if the virtual disk is supported by the service provider network.
US10659517B2 Contextual remote control user interface
A mobile device is coupled to a computer system configured to access media content sources and play media content items provided thereby on a media device. The mobile device receives a first control specification that includes a plurality of first information items each associated with one of the media content sources and a first action definition. The first information items are concurrently displayed on a remote control user interface of the mobile device. In accordance with a selection of one of the first information items corresponding to a first content source, the mobile device transmits a command of a first action definition corresponding to the selected first information item to the computer system, and receives a second control specification that includes a plurality of second information items. Each second information item is associated with a respective content item provided by the first content source and a second action definition.
US10659515B2 System for providing audio questionnaires
An multistep guided system for mobile devices that facilitates the creation and dissemination of multistep guided activities from a source computer/device to a plurality of other recipient mobile devices, wherein the multistep guided activities is disseminated to the recipient mobile devices in a form that is compatible with the capabilities of the respective recipient mobile devices. The audio guided system comprises the source computer/device, the plurality of other recipient mobile devices and a server.
US10659511B2 Automated real-time data stream switching in a shared virtual area communication environment
Switching real-time data stream connections between network nodes sharing a virtual area is described. In one aspect, the switching involves storing a virtual area specification. The virtual area specification includes a description of one or more switching rules each defining a respective connection between sources of a respective real-time data stream type and sinks of the real-time data stream type in terms of positions in the virtual area. Real-time data stream connections are established between network nodes associated with respective objects each of which is associated with at least one of a source and a sink of one or more of the real-time data stream types. The real-time data stream connections are established based on the one or more switching rules, the respective sources and sinks associated with the objects, and respective positions of the objects in the virtual area.
US10659504B2 System and method for client-initiated playlist shuffle in a media content environment
In accordance with an embodiment, described herein is a system and method for client-initiated playlist shuffle in a media content environment. A shuffle logic is configured to provide a shuffle order for a plurality of media content items, including associating each media content item with a placement interval within which the media content item can be placed, and a weight that determines the average position of the placement interval; associating each media content item with a random value that indicates a random offset or position within its placement interval; calculating an ordering score for each media content item based on its weight plus its random offset into its placement interval; collecting indications for the plurality of media content item that reflect their ordering scores; and placing the plurality of media content items into the shuffle order, for subsequent playback by a media device.
US10659500B2 Managing participants in an online session
The present invention relates to an application that is configured to be operated in a multi-participant environment on a computer network. The application manages participants in an online session of a multi-user application so that if one of the participants exits the session, the session can continue without interruption. The application initiates an online session of the multi-user application, wherein the online session includes two or more participants comprised of network computers that are communicatively linked to a computer network. If the application detects that a first participant has disconnected from the online session, wherein the first participant is responsible for managing certain managerial functionality associated with the running of the multi-user application, then the application broadcasts a notification to existing participants of the online session over the communication network, thereby notifying the existing participants that the first participant has disconnected from the online session. The initiating application then re-assigns the functionality associated with the first participant to an existing participant of the online session. The participants can be communicating in a peer-to-peer arrangement or can be performing server duties in a client-server arrangement.
US10659499B2 Providing selectable content items in communications
Implementations relate to providing selectable content items in communications. In some implementations, a method includes determining that a user is or will be participating in a communication using a device, the communication including an exchange of information with one or more other users. The method determines a set of one or more content items to be presented on the device for selection by the user, the content items derived from stored content and being related to activity performed by the user using the device or one or more other devices, and where the activity is external to the communication. The method causes a presentation of the set of content items with the device for selection by the user, and causes at least one content item selected by the user to be sent in the communication to at least one of the other users.
US10659495B1 Dynamic authorization in a multi-tenancy environment via tenant policy profiles
In one example, a method for managing user access is performed by or at the direction of an application, and includes receiving a token from an authentication service, and the token includes an application role and associated privilege mask. An authentication request is then received from a sender seeking access to an application. Information in the authentication request is compared with the token, and the authentication request is approved when the information in the authentication request matches the token. Alternatively, access to the application is denied when the information in the authentication request does not match the token.
US10659494B2 Method for implementing online anti-phishing
A method for implementing online anti-phishing, related to the field of information security, comprising: a browser loads an online anti-phishing control, the control acquires a blacklist and a whitelist, if a received URL of the browser is in the blacklist, the browser is stopped from loading, if the URL is in the whitelist, the browser is notified to load, and if the URL is neither in the blacklist nor in the whitelist, a determination is made on whether or not the URL of the browser satisfies a preset fuzzy match criterion, if same is satisfied, then a user is prompted of danger, when the user chooses to proceed, a preset account combination is acquired, when received keypress information is numerals and an input focus is an input box control, the keypress information is compared with the preset account combination, if both are identical then the user is prompted of danger, and either stop or load as chosen by the user. The method allows processing of the blacklist and the whitelist to be implemented and addition of fuzzy query, thus implementing processing of the blacklist and the whitelist, preventing a hacker from stealing banking information of the user by using a fraudulent URL identical to one in the whitelist, and enhancing security.
US10659491B2 Dynamic detection of geo-location obfuscation in of internet devices
Methods and systems are disclosed for dynamic detection of geo-location spoofing by a networked device, such as fraudulent client connections to a server, in which the connection is made using an internet protocol (IP) tunneling as may be provided by a virtual private network (VPN) connection. A user of a client device may employ spoofing of IP-geo location mechanisms and IP classification for various reasons, such as gaining access to services that are not allowed in certain locations (e.g., certain movie and television content providers); browsing server data while maintaining a higher level of anonymity; and performing fraudulent actions on the server. Detecting a false geographic location (e.g. as indicated by IP address) is helpful for improving computer system security, and for evaluating whether access to particular digital resources should be provided.
US10659490B1 Independent and dissimilar cybersecurity monitoring of critical control systems
Systems and related methods for independent dissimilar cybersecurity monitoring of avionics and other critical control systems (CCS) incorporate security monitors with dissimilar processors to the CCS. The security monitors learn, using AI techniques, to emulate one or more target CCS by learning to predict, or generate, equivalent outputs or equivalent behaviors based on the same control inputs. The security monitors may monitor the CCS, or its individual internal and external subsystems, for cybersecurity faults by observing the control behaviors or outputs of the CCS for a given control input or comparing the control behaviors or outputs to expected normal behaviors and outputs previously learned by the security monitor. Deviance, or lack of equivalence, of observed control behaviors or outputs to the expected normal behaviors or outputs may indicate a cyberintrusion fault of the CCS or of a particular subsystem.
US10659488B1 Statistical predictive model for expected path length
A statistical model for predicting an expected path length (“EPL”) of the steps of an attacker is described. The model is based on utilizing vulnerability information along with an attack graph. Using the model, it is possible to identify the interaction among vulnerabilities and individual variables or risk factors that drive the EPL. Gaining a better understanding of the relationship between the vulnerabilities and their interactions can provide security administrators with a better view and understanding of their security status. In addition, a number of different attributable variables and their contribution in estimating the EPL can be ranked. Thus, it is possible to utilize the ranking process to take precautions and actions to minimize the EPL.
US10659482B2 Robotic process automation resource insulation system
A system for implementing robotic process automation (RPA) to enhance computer network security. Specifically, RPA is used to detect an unauthorized attempt to access a dataset and, in response, the unauthorized entity is provided access to a bot-generated modified dataset that includes modified data elements that are reasonable facsimiles of the actual data elements and do not expose confidential data. Once access to the modified data set is provided, RPA is implemented to track actions by the unauthorized entity accessing the modified data set and, once copied, RPA is implemented to track usage of the data by the unauthorized entity. Additionally, RPA may be implemented to mitigate damages caused by attempts or actual accessing of the actual datasets by performing actions that prevent further damages, such as deactivating/activating resource storage and authorizing previously configured resource events.
US10659480B2 Integrated network threat analysis
The inventive systems and methods aggregate network information to accompany file information in an indicator and warning environment. This system also provides a user interface to search for files using network attributes or file attributes, such as message digest. The system can include threat scoring functionality that can be configured to calculate a threat score based on a combination of the result of file analysis on one or more files and associated network data capture information.
US10659472B2 Method, system, and computer program product for providing security and responsiveness in cloud based data storage and application execution
A storage controller that is coupled to a plurality of storage clouds is maintained. The storage controller determines security requirements for performing a selected operation in the plurality of storage cloud. A subset of storage clouds of the plurality of storage clouds that are able to satisfy the security requirements are determined. A determination is made as to which storage cloud of the subset of storage clouds is most responsive for performing the selected operation. The selected operation is performed in the determined storage cloud that is most responsive.
US10659471B2 Method for virtual machine to access physical server in cloud computing system, apparatus, and system
A method for a virtual machine to access a physical server in a cloud computing system is disclosed. A cloud platform allocates, to the service deployed on the physical server, a publishing IP address and a publishing port and sends a NAT rule to an access network element of the virtual machine. When receiving a service access request for accessing the service, the access network element modifies, according to the NAT rule, a destination address of the service access request into the IP address and the port that are of the physical server, and routes the modified service access request to the physical server, so that the virtual machine can access the service on the physical server without knowing a real IP address and port of the physical server.
US10659468B2 Access control values
In some examples, a system receives, from a sender, an access control value generated based on information of a plurality of recipients. The system sends, to the sender, a signed version of the access control value for sending by the sender to the plurality of recipients with an encrypted message. The system receives, from a first recipient a request for a key to decrypt the encrypted message, a signed access control value and recipient information for deriving the access control value. The system determines whether the first recipient is one of the plurality of recipients using the signed access control value and the recipient information.
US10659462B1 Secure data transmission using a controlled node flow
The disclosed embodiments relate to securely transferring data between a source node and a destination node using an application whitelist. A control flow may be established between a source node and a perimeter gateway. the perimeter controller may receive a request to establish a node flow between an application executing on the source node and the destination node. the perimeter controller may determine whether the first application is included in an application whitelist that includes applications allowed to transfer data to nodes in a private network via a node flow. A node flow between the source node and destination node may be established upon determining that the first application is included in the application whitelist to facilitate secure data transfer between the source node and destination node.
US10659459B1 Caller and recipient alternate channel identity confirmation
A system and method are disclosed that leverage multi-factor authentication features of a service provider and intelligent call routing to increase security and efficiency at a customer call center. Pre-authentication of customer support requests reduces the potential for misappropriation of sensitive customer data during call handling. A contactless card uniquely associated with a client may provide a second factor of authentication to reduce the potential for malicious third-party impersonation of the client. Pre-authorized customer support calls are intelligently and efficiently routed in a manner that reduces the opportunity for malicious call interference and information theft.
US10659453B2 Dual channel identity authentication
Identity authentication comprises: determining, in response to a request from a first device operated by a source user, that an identity authentication is to be performed for the source user; identifying a target user who is deemed to satisfy at least a preset condition, the target user being a user other than the source user; generating validation information to authenticate identity of the source user; sending the validation information to a second device operated by the target user; receiving a validation response from the first device operated by the source user; and performing identity authentication, including verifying whether the validation response received from the first device operated by the source user matches the validation information sent to the second device.
US10659447B2 Communication between a communication device and a network device
A communication device of a communication network receives, via a network, a challenge, generates a first Diffie Hellman, DH, parameter, a first verification code for the first DH parameter, forwards the challenge or a derivative thereof to an identity module, receives at least one result parameter as response from the identity module, determines, based on the result parameter, whether the first DH parameter is authentic, and if the first DH parameter is authentic, generates and sends a second DH parameter to the network device for session key generation based on the first DH parameter and the second DH parameter.
US10659446B2 Conversational authentication
Techniques are disclosed relating to contextual authentication across different applications based on user communications. In some embodiments, a user is preauthenticated to certain actions on a second application based on the user's communication via a first application. The user's communication via a first application provides contextual information that may be used to preauthenticate a request to perform an action on the second application. Contextual information may include the user's communication itself and/or communications characteristics that are determined from the user's communications. In some embodiments, the degree of preauthentication progressively increases or decreases with the degree of use on the first application; that is, the user is preauthenticated to greater or fewer portions of an authentication procedure, to perform greater or fewer actions, or to perform actions more or less critical to security, as additional information regarding the user's communication on the first application becomes available. In some embodiments, preauthentication may be revoked as additional contextual information becomes available on the first application.
US10659444B2 Network-based key distribution system, method, and apparatus
A method includes executing a mobile threat detection function to determine whether an electronic device is corrupt. The method also includes when determining that the electronic device is not corrupt, identifying whether an encrypted user key (UKc-Enc) is stored in the electronic device. The method further includes when the UKc-Enc is not stored in the electronic device, decrypting an application key (AKc) and transmitting the AKc and a unique universal identifier (UUID) that is associated with the application to a gateway for establishing a secure application specific communication channel between the electronic device and the gateway. In addition, the method includes when the UKc-Enc is stored in the electronic device, decrypting the UKc-Enc to form a user key (UKc), extracting a UUID from the UKc, and transmitting the UUID from the UKc to the gateway for establishing the secure application specific communication channel between the electronic device and the gateway.
US10659437B1 Cryptographic system
A circuit arrangement includes an encryption circuit and a decryption circuit. A cryptographic shell circuit has a transmit channel and a receive channel in parallel with the transmit channel. The transmit channel includes an encryption interface circuit coupled to the encryption circuit. The encryption interface circuit determines first cryptographic parameters based on data in a plaintext input packet and inputs the first cryptographic parameters and plaintext input packet to the encryption circuit. The receive channel includes a decryption interface circuit coupled to the decryption circuit. The decryption interface circuit determines second cryptographic parameters based on data in a ciphertext input packet and inputs the second cryptographic parameters and ciphertext input packet to the decryption circuit. The encryption circuit encrypts the plaintext input packet based on the first cryptographic parameters, and the decryption circuit decrypts the ciphertext input packet based on the second cryptographic parameters.
US10659433B2 Encrypting and securing data with reverse proxies across frames in an on-demand services environment
In accordance with embodiments, there are provided mechanisms and methods for facilitating protection of data in a database environment in an on-demand services environment according to one embodiment. In one embodiment and by way of example, a method includes detecting, by a first computing device in the database environment, sensitive data associated with a user having access to a second computing device, where the sensitive data is capable of being communicated within a geographic residency. The method may further include performing, by the first computing device, secured communication of the sensitive data between at least one of multiple computing devices and multiple application frames within the geographic residency, wherein the first computing device includes a proxy server that is locally situated within the geographic residency.
US10659432B2 Network containment of compromised machines
A computing device can install and execute a kernel-level security agent that interacts with a remote security system as part of a detection loop aimed at defeating malware attacks. The kernel-level security agent can be installed with a firewall policy that can be remotely enabled by the remote security system in order to “contain” the computing device. Accordingly, when the computing device is being used, and a malware attack is detected on the computing device, the remote security system can send an instruction to contain the computing device, which causes the implementation, by an operating system (e.g., a Mac™ operating system) of the computing device, of the firewall policy accessible to the kernel-level security agent. Upon implementation and enforcement of the firewall policy, outgoing data packets from, and incoming data packets to, the computing device that would have been allowed prior to the implementation of the firewall policy are denied.
US10659428B2 Name resolving in segmented networks
A method is provided, in one embodiment, which is performed on a client computing device, the method including: connecting a client computing device with a private network, wherein the private network comprises a plurality of name resolving servers, and each name resolving server is configured to resolve name requests for networking devices in a respective segment of a plurality of segments of the private network; receiving a first name request from a first application on the client computing device; in response to receiving the first name request, forwarding the first name request simultaneously to the plurality of name resolving servers; and selecting a name resolution that is first received from the plurality of name resolving servers in response to the first name request.
US10659427B1 Call processing continuity within a cloud network
A system may assist in moving a communication session in a stable state from a virtual network function serving that communication session to another virtual network function at that same site or another site, such as another cloud data center.
US10659423B2 System and method for modifying a domain name system template
A system and method for modifying domain name system (DNS) templates are presented. A DNS template database is configured to store DNS templates. A DNS record database is configured to store a plurality of DNS records for a plurality of domain names. A host computer server is configured to receive an electronic signal encoding a request containing a modification to a DNS template from a user, the DNS template being stored in the DNS template database, access the DNS template database to modify the DNS template according to request containing the modification to create a modified DNS template, identify a plurality of domain names using the DNS template, and, for each domain name in the plurality of domain names, access the DNS record database to at least one of modify and create a DNS record for the domain name using the modified DNS template.
US10659422B2 Content management systems
A method for pairing web pages with keywords may include obtaining a keyword paired with a public web page, the public web page configured to be published at a public address; determining a mapping between the public address of the public web page and an internal address of an internal web page that corresponds to the public web page, the internal address pointing to the internal web page used in a content management system that generates the internal web page and the public web page; creating a keyword-page pairing entry that includes the keyword and the mapping between the public address and the internal address, the keyword-page pairing entry indicating the keyword is paired with the internal web page; and sending the keyword-page pairing entry to the content management system.
US10659417B2 System and method of a relay server for managing communications and notification between a mobile device and application server
Providing a mobile device with web-based access to data objects is disclosed. Authentication information is sent from a mobile device to a relay server. The relay server executes a connection application to establish a connection to a web access server. The authentication information is provided to the web access server associated with a data store hosting a data object. Upon authentication, the data object is provided to the relay server from the data store. The data object is then provided to the mobile device.
US10659413B2 Methods and systems for providing and electronic account to a customer
An electronic account is provided to a customer to enable the customer to access electronic services, such as e-mail and electronic transactions. The electronic account links an electronic address of the customer to a physical address of the customer. Using the electronic account, electronic services can be provided to the customer at either the electronic or physical address, or both. The services can be both secure and non-secure and can be provided by any service provider, such as an online merchant, a government agency, or a bank.
US10659410B2 Smart message delivery based on transaction processing status
A method for message delivery to a transaction processor is presented. The method may include receiving a message having transaction information. The method may also include determining if the received message is prohibited from delivery based on comparing the transaction information with a blacklist, wherein the blacklist is used to block messages. In response to determining that received message is prohibited from delivery, the method may then include refusing message delivery or delaying message delivery. In response to determining that the received message is not prohibited from delivery, the method may further include enqueuing the message in a request queue. The method may also include receiving a reply message with a transaction status update from the transaction processor. The method may then include updating the blacklist based on the received reply message with the transaction status update.
US10659406B2 System and method for suggesting a phrase based on a context
A method and a system to suggest a content item to be included in a message based on a determined context are provided. A context of a message that user is composing via a composition interface is determined based on one or more properties of the message. One or more inputs to the user composition interface are identified, the one or more inputs indicating at least a portion of intended content of the message. One or more suggested content items are provided for inclusion in the message based on the context of the message and the one or more inputs. A suggested content item of the suggested content items are added in the message based at least in part on the one or more properties of the message.
US10659403B2 Systems and methods for navigating nodes in channel based chatbots using natural language understanding
The disclosed systems and methods join a user to a primary communication channel that is associated with an automated human interface module. The automated human interface module includes a plurality of nodes. A message including a text communication is posted by the user and sent to a decision module associated with a plurality of classifiers. The decision module is configured to identify a node that best matches the text communication in accordance with the plurality of classifiers. Each respective classifier produces a respective classifier result thereby producing a plurality of classifier results. Each respective classifier result identifies a respective node of the plurality of nodes best matching the text communication. The plurality of classifier results is collectively considered, and the node best matching the text communication is identified and the text communication is sent to the identified node.
US10659402B2 System and method for automated end-to-end web interaction testing
A system for flexible and scalable automated end-to-end chat-based contact center testing, having a test case management platform, a chat cruncher, a contact center manager, a chat classifier, a desktop automation engine, and headless browser-based virtual agents and customers. The test case management platform allows a user to configure operation of the system. The chat cruncher operates a plurality of virtual customers. The contact center manager operates a plurality of virtual agents to participate in chat session with virtual customers.
US10659397B2 Method for transmitting downlink packet in function-separated core network
The present invention discloses method for transmitting downlink packet in function-separated core network.It is an object of the embodiments of the present disclosure to provide a method for transmitting a downlink packet for a UE in an idle mode which is capable of reducing a data transmission latency for a user and efficiently using network resources in a mobile communication system in which the control plane and the user plane of a gateway node are separated.
US10659394B2 Method and apparatus for extracting data stream information in low-latency mode by ethernet chip
The present invention discloses a method and an apparatus for extracting data stream information by an Ethernet switch chip in a low-latency mode. The method includes: setting, by a data feature extraction module, one piece of starting information including feature information and one piece of ending information including a packet length; performing matching, by a data stream feature comparison module, on the feature information, and if the matching succeeds, sending the starting information and the ending information to a module for collecting statistics on data stream information; and combining, by the module for collecting statistics on data stream information, the feature information in the starting information and the packet length in the ending information into one piece of data stream information, and sending the data stream information to a CPU. By using the method and the apparatus disclosed in the present invention, not only a low-latency requirement is satisfied, but also entire data stream information can be extracted and reported to the CPU, facilitating network management.
US10659383B2 System and method for latency-based queuing
Embodiments of the present invention are directed to systems and methods for queuing and sending messages to recipients according to historical latency values associated with each recipient. In some embodiments, a plurality of messages are received, each message including a network address of a recipient. The messages are sent to the recipients by threads that remain active (i.e., cannot be used to send another message) until confirmation responses are received from the recipients. Latency times are measured between when the messages were sent and when the confirmation responses were received. The latency times may be used to assign future messages to queues designated by certain latency ranges.
US10659380B2 Media buffering
A transmitting device comprising a transmit buffer for buffering a plurality of packets representing a live media stream, the packets having an order in the media stream from oldest to most recent. The transmitting device further comprising a transmitter for transmitting the packets from the buffer live over a network; and a controller arranged to measure an amount of data buffered for transmission in the transmit buffer, and to drop or compress the oldest packet or a predetermined number of the oldest packets on condition that the amount of data buffered for transmission exceeds or is likely to exceed a predetermined threshold.
US10659379B2 Enforcement of latency determinism across a computer network
The disclosed embodiments relate to implementation of a transaction processing system having improved equity among the communications paths between the ingress/egress points of the trading system network, where electronic data transaction messages originated from, or are destined, for different sources/destinations, effectively enter or exit the trading system, to/from the transaction processing component thereof, i.e., the match engine, market data feed generator, where those messages are ultimately processed and outbound messages reflective thereof are generated. The disclosed embodiments attempt to compensate for variances in latencies as between different network communications routes between the electronic ingress/egress points of the electronic trading system and the internal processing components which implement the functions of the trading system.
US10659378B2 Multi-path network communication
A method for data communication between a first node and a second node over a number of data paths coupling the first node and the second node includes transmitting messages between the first node and the second node over the number of data paths including transmitting a first subset of the messages over a first data path of the number of data paths, and transmitting a second subset of the messages over a second data path of the number of data paths. The first data path has a first latency and the second data path has a second latency substantially larger than the first latency, and messages of the first subset of the messages are chosen to have first message characteristics and messages of the second subset are chosen to have second message characteristics, different from the first message characteristics.
US10659375B2 Controlling data rate based on domain and radio usage history
A domain and a mobile device may exchange data via a radio access node included in a mobile network. During a time of peak demand, a data load level of the radio access node may exceed a threshold. To accommodate the peak demand, historical types and volumes of data may be used to manage a data rate related to data associated with the domain. Based on the historical information, the data rate for a mobile device, a radio access node, a range of time, or a data type may be controlled. The data rate may be managed by a network gateway, such as a gateway included in the mobile network.
US10659374B2 Method and apparatus for controlling frame transmission
A frame transmission controlling apparatus includes: a list configuration unit managing a parameter related to a gate control; a cycle timer unit managing a start timing of a cycle; a list executing unit performing the gate control based on the parameter, wherein the list executing unit includes: a cycle executing state machine setting an expiration time of at least one section included in the cycle, checking gate operation information corresponding to a list pointer indicating the at least one section, and performing a control corresponding to the gate operation information; a delaying state machine deducting and updating the expiration time by a predetermined unit; a cycle holding state machine generating a control signal indicating stopping transmission in MAC; and a cycle releasing state machine generating a control signal indicating resuming the transmission in MAC.
US10659370B2 Wireless local area network (WLAN) node, a wireless device, and methods therein
A wireless local area network, WLAN, node (400) is adapted to be comprised in an integrated wireless communications network comprising a WLAN and a cellular communications network. The WLAN node (400) comprises a receiving module (401) adapted to receive traffic data from a wireless device. A differentiation module (403) is adapted to determine whether the received traffic data relates to a first traffic type which is to be routed locally within the WLAN or a second traffic type which is to be routed to the cellular communication network. A processing module (405) is adapted to control the handling of the traffic data according to whether the traffic data is determined as relating to the first traffic type or the second traffic type.
US10659369B2 Decremental autocorrelation calculation for big data using components
The present invention extends to methods, systems, and computing system program products for decrementally calculating autocorrelation for Big Data. Embodiments of the invention include decrementally calculating one or more components of autocorrelation at a specified lag for an adjusted computation window based on the one or more components of an autocorrelation at the specified lag calculated for a previous computation window and then calculating the autocorrelation at the specified lag based on one or more of the decrementally calculated components. Decrementally calculating autocorrelation avoids visiting all data elements in the adjusted computation window and performing redundant computations thereby increasing calculation efficiency, saving computing resources and reducing computing system's power consumption.
US10659364B2 Hybrid AQM controller using RBF for queue utilization approximation as a non-linear system
An adaptive hybrid control method and apparatus are provided for performing active queue management in a data packet routing device which adaptively combines fuzzy controller logic, alone or in combination with RBF-PID control logic, to provide improved management of network congestion by applying a nonlinear model for buffer utilization to at least a buffer size measure for the target buffer to generate at least a fuzzy membership function adjustment signal, and then supplying the fuzzy membership function adjustment signal to a first controller to automatically tune membership function parameters of the first controller, where the first controller calculates a first packet select probability value for the data packet based at least partly on the fuzzy membership function adjustment signal and an error measure between the buffer size setpoint and the buffer size measure.
US10659362B1 Traffic forwarding in large-scale networks
A method for traffic forwarding in a network is provided. The method includes matching a destination IP (Internet protocol) address (DIP) of a packet, in a forwarding information base (FIB) table to point to a next-hop group for the packet, in a first matching operation. The method includes redirecting the packet to a differing next-hop group, responsive to matching each of the next-hop group for the packet and a field of the packet in a second matching operation, wherein the field marks the packet as belonging to a class of service. The method includes routing the packet to a next node, in accordance with the next-hop group or the differing next-hop group as determined for the packet. A network element is also provided.
US10659357B2 Switch with network services packet routing
Virtual machine environments are provided in the switches that form a network, with the virtual machines executing network services previously performed by dedicated appliances. The virtual machines can be executed on a single multi-core processor in combination with normal switch functions or on dedicated services processor boards. Packet processors analyze incoming packets and add a services tag containing services entries to any packets. Each switch reviews the services tag and performs any network services resident on that switch. This allows services to be deployed at the optimal locations in the network. The network services may be deployed by use of drag and drop operations. A topology view is presented, along with network services that may be deployed. Services may be selected and dragged to a single switch or multiple switches. The management tool deploys the network services software, with virtual machines being instantiated on the switches as needed.
US10659349B2 Systems and methods for providing secure network exchanged for a multitenant virtual private cloud
Systems and methods for routing real-time voice communication via a private network exchange. A virtual private cloud (VPC) system receives first configuration for a first private network exchange for a first account of the VPC system. The VPC system assigns a first regional exchange system to the first private network exchange based on the first configuration. The first private network exchange is established between the first regional exchange system and a first outside entity system of the first account by mapping an identifier of the first account to the first private network exchange. Real-time voice communication data for the first account is routed from a first real-time voice communication service of the VPC system to the first outside entity system via the first private network exchange based on the mapping.
US10659347B2 Integrated heterogeneous software-defined network
One embodiment of the present invention provides a switch in a software-defined network. The switch includes at least one port, a flow management module, and forwarding circuitry. The port is capable of receiving a frame belonging to a software-defined data flow and a frame belonging to a regular data flow. The flow management module logically partitions the port for the frame belonging to the software-defined data flow from the frame belonging to the regular data flow. The forwarding circuitry forwards the frame belonging to the software-defined data flow based on a flow definition in a local flow table. The flow definition indicates how the software-defined data flow is processed in a software-defined network.
US10659346B2 End point scaling on segment routing fabrics
Disclosed are systems and methods for scaling Massively Scalable Data Center (MSDC) networks with a large number of end-point tunnels utilizing Equal-cost multi-path routing (ECMP). The systems and methods can use the NO-OP label operations to maintain single ECMP objects to switch a set of segment routing tunnels that share the same ECMP links. The forwarding engine can determine the use of the NO-OP label operation and update a received packet to enable the use of the single ECMP objects of the set of segment routing tunnels.
US10659345B2 Service path protection method, controller, device and system
Embodiments of the present invention provide a service path protection method, a controller, a device and a system. The method includes: receiving, by an end node of a protection path, a path selection instruction sent by an SDN controller, wherein the path selection instruction comprises a service path and protection path activation type, forwarding relationships respectively of a service path and the protection path in the end node; activating at least one forwarding relationship according to the service path and protection path activation type; and when a fault occurs in the service path, updating the at least one forwarding relationship according to the service path and protection path activation type. The embodiments of the present invention relate to the field of communications technologies and resolve a problem that in an SDN technology, when a fault occurs in a service path, a protection path cannot be used.
US10659342B2 Flow entry configuration method, apparatus, and system
A flow entry configuration method, apparatus, and system are disclosed. The method includes: reporting, by a switch, information about a data packet of a first service to a controller, receiving a flow entry delivered by the controller according to the information and a flow table structure, determining a first target service path matching the flow entry of the first service, determining a target hardware flow table according to a preconfigured correspondence between the service path and a hardware flow table of the switch, and configuring a flow entry of the target hardware flow table according to the flow entry of the first service. Therefore, no matter to which controller the switch is connected, the switch can successfully configure, in the hardware flow table, the flow entry used to implement the first service, so as to successfully process the first service, thereby reducing a probability of failure in service processing.
US10659338B1 Isolation of network segments affecting application performance
In one embodiment, an agent process produces synthetic packet traffic and iteratively performs a sub-process that determines isolated network segments of the communication channel between intermediate nodes and computes a set of network metrics for the isolated network segments based at least in part on incrementing TTL expiry error data points. The sub-process also encapsulates, for inclusion within the next packet to be sent, a list of intermediate node IDs along the communication channel up to a latest received node ID and computed sets of network metrics for respective network segments. The agent process may then generate, upon termination of the sub-process, a report, the report including the list of intermediate node IDs along the communication channel up to a latest received node ID and computed sets of network metrics for respective network segments.
US10659337B2 Retimer data communication modules
The present invention is directed to data communication systems and techniques thereof. More specifically, embodiments of the present invention provide a retimer module that includes plurality of communication lanes for interfacing with a host system and a line system. The retimer module includes a link monitor and cross point sections. The retimer also includes a management interface module. There are other embodiments as well.
US10659333B2 Detection and analysis of seasonal network patterns for anomaly detection
In one embodiment, a device in a network determines cluster assignments that assign traffic data regarding traffic in the network to activity level clusters based on one or more measures of traffic activity in the traffic data. The device uses the cluster assignments to predict seasonal activity for a particular subset of the traffic in the network. The device determines an activity level for new traffic data regarding the particular subset of traffic in the network. The device detects a network anomaly by comparing the activity level for the new traffic data to the predicted seasonal activity.
US10659332B2 Network node, a communication system and associated methods
A first network node for communicating with a second network node over a first communication network is described. The second network node is arranged to communicate over the first communication network in a first part of a communication period and arranged to not communicate over the first communication network in a second part of the communication period. The first network node has a send unit for sending data formatted in data packets to the second network node, a statistics unit arranged for determining a success statistics, an availability estimator for deriving an availability estimation from the success statistics, and a send controller arranged to control the send unit in dependence on the availability estimation. Also described is a communication system, a method of estimating availability of a second network node, a method of communicating by a first network node, and an associated computer program product.
US10659329B1 Container distance measurement and clustering
An apparatus in one embodiment comprises a plurality of container host devices of at least one processing platform. The container host devices implement a plurality of containers for executing applications on behalf of one or more tenants of cloud infrastructure. One or more of the container host devices are each configured to compute distance measures between respective pairs of the containers and to assign the containers to container clusters based at least in part on the distance measures. The distance measures may be computed as respective content-based distance measures between hash identifiers of respective layers of layer structures of the corresponding containers. The apparatus may further comprise an interface configured to present a visualization of the container clusters. User feedback received via the interface is utilized to alter at least one parameter of the computation of distance measures and the assignment of clusters to container clusters.
US10659326B2 Cloud computing network inspection techniques
A user interface (UI) may be used to introduce a message into the cloud computing network. The message may be received by a service associated with the cloud computing network. The message may trigger the service to generate data in response to receiving the message. The generated data may include temporal data that includes the date and time data specifying when the message was received by the service. The generated temporal data may be forwarded to a telemetry store associated with the cloud computing network. A user or report generating operator portal may generate a report that includes the generated temporal data. The generated report may be used to determine if the service associated with the cloud computing network is functioning properly.
US10659325B2 Monitoring enterprise networks with endpoint agents
Techniques for monitoring enterprise networks with endpoint agents are disclosed. In some embodiments, a system, process, and/or computer program product for monitoring enterprise networks with endpoint agents includes deploying a plurality of endpoint agents to a plurality of endpoint devices; collecting test results from each of the plurality of endpoint agents, wherein the test results are based on tests executed on each of the plurality of endpoint devices for monitoring network activity; and generating a graphical visualization of an application delivery state for one or more application delivery layers based on the test results, generating an alert based on the test results, or generating a report based on the test results.
US10659319B2 Systems and methods for enabling inter-agent multicast domain name system client roaming in wide area network
Systems, methods, and computer-readable media for implementing roaming services utilizing zero-configuration networking over a wide area network. Disclosed are systems, methods, and computer-readable storage media for implementing zero-configuration networking over a wide area network by utilizing agents, application programming interfaces (API), and a controller. The controller can implement policies for communication between the agents and APIs, enabling zero-configuration network.
US10659314B2 Communication host profiles
The present disclosure pertains to systems and methods for automating the configuration of communication hosts in a software defined network (SDN) associated with an electric power transmission and distribution system. The systems and methods presented herein may utilize communication host profiles to specify various repeatable attributes and customizable attributes that may be utilized to configure the communication host and the SDN. In one embodiment, a system may comprise a communication host profile subsystem configured to select a communication host profile associated with a communication host. The host communication profile subsystem may configure the communication host based on one or more repeatable attributes and on one or more customizable attributes specified in the host communication profile. A traffic routing system may further configure a plurality of communication flows in the SDN based on the communication host based on the host communication profile.
US10659310B1 Discovering and mapping the relationships between macro-clusters of a computer network topology for an executing application
There are disclosed devices, system and methods for mapping relationships between macro-clusters of a network object topology of a computer communication network. A remote network object of the network is selected that has a relationship with one macro-cluster that has a relationship with another macro-cluster. Flow log data, metric data and configuration data are gathered from at least the selected network object. Configuration data and time data are generated for the sets network objects of the two macro-clusters using the gathered flow log data, metric data and configuration data. Network topology information is created using the configuration data and time data. The network topology information includes topology information for the relationship between the macro-clusters, for each macro-cluster and for the sets of network objects of the macro-clusters. The topology information can be stored and used to determine whether performance issues occur in the macro-clusters or relationship over time.
US10659304B2 Method of allocating processes on node devices, apparatus, and storage medium
A method of allocating a plurality of processes on a plurality of node devices coupled through a network, includes: dividing the plurality of processes into one or more process groups including at least one process among the plurality of processes, based on a bandwidth desired for data communication between processes in the plurality of processes; specifying, for each of the one or more process groups, a node device which is able to perform entirety of processes included in the process group among the plurality of node devices; and allocating the process group on the specified node device, for each of the one or more process groups.
US10659303B2 External data collection for REST API based performance analytics
A hosted client instance includes a performance analytics module to present an internal key performance indicator and an external key performance indicator on a performance analytics dashboard. A query is executed to a connection to an external data source over a network to obtain a result set of data associated with the external key performance indicator. REST APIs associated with the performance analytics module are executed to: store the result set of data in a performance analytics storage device on the hosted client instance, the performance analytics storage device storing both the data associated with external and internal key performance indicators; and render, via a UI rendering engine of the performance analytics module, one or more widgets on the performance analytics dashboard. The REST APIs interact with the data associated with the internal and external indicators in the storage device to render the one or more widgets.
US10659302B2 Configuring computing devices using a bootstrap configuration
In the described embodiments, a device configuration file is used to set configuration settings on a computing device during a configuration operation (e.g., an initial configuration or a re-configuration of the computing device). The device configuration file is retrieved from a location where the device configuration file is hosted using a reference to the location from a bootstrap configuration. The bootstrap configuration is provided by a bootstrap configuration server and is retrieved by the computing device from the bootstrap configuration server during the configuration operation.
US10659295B2 Systems for configuring and managing classroom devices
Systems herein allow an administrator to efficiently set up user devices for use in a classroom environment. A management server can display a graphical user interface that includes selection options for defining and using carts of user devices. The carts can be selected and assigned to classes. The GUI also allows the administrator to specify which applications a class will use. Based on these selections, the management server can then manage which user devices install which applications, and allocate licenses accordingly.
US10659294B2 Linking multiple enrollments on a client device
Disclosed are various examples for facilitating enrollment of a client device into more than one management framework. A client device can be enrolled with a management service as a fully managed device. The client device can also be enrolled with the management service as a personal or bring-your-own-device (BYOD), which causes a workspace to be created on the device that is segregated from the rest of the client device. Both enrollments can be managed by a remotely executed management service.
US10659291B2 Label and associated traffic black hole correction
Techniques are described for detecting and correcting mis-programming of label information in a router of a label switched path (LSP) without initially triggering a tear-down of the LSP. For example, techniques described in this disclosure enable an ingress router to determine whether label information is correctly programmed between a routing engine (e.g., control plane) and a forwarding engine (e.g., forwarding plane) of a router in the LSP, and to correct any mis-programming of label information by informing the router to reprogram the forwarding engine with original forwarding label information associated with the LSP.
US10659289B2 System and method for event processing order guarantee
The present approach relates to the use of a unique key for event messages related to the same event and by employing a publication/subscription framework so that like-keyed event messages are only processed by a subscribing server. The message key may be a numeric value (e.g., from 0-99) calculated or generated based on designated event fields so that similar message keys will have the same message key number. The message key may be used to populate an event bucket field and may also be used as the topic of an event message, allowing a subscribing server to subscribe to this message key and receive and process the related event messages in order of arrival. In this manner, there is no distribution of the event messages having the same message key between parallel processing servers.
US10659288B2 Method for controlling server device, recording medium, server device, terminal device, and system
Provided is a method for controlling a server device for providing a service which enables users to be associated with each other and includes a storage unit for storing, for each user provided with the service, information on different users associated with the user, information on each event provided in the service and information on each user participating in the event. The server device transmits an event list including the information on each event to each user device, lets the user participate in an event selected from the event list when receiving a request to participate in the event from each user device, makes the event proceed when receiving a request to proceed with the event from each user device, and associates and stores, when the event is over, the information on the users participated in the event in the storage unit, thus associating the users with each other.
US10659281B2 Method and apparatus for transmitting/receiving a broadcast signal
A method for transmitting a broadcast signal is disclosed. The method for transmitting a broadcast signal according to an embodiment of the present invention includes link layer processing IP/UDP data to output a link layer packet, and physical layer processing the link layer packet based on a PLP.
US10659279B2 Method and device for displaying video corresponding to physical object
A processing method includes acquiring a real-time video captured by a camera disposed on an physical object; acquiring one or more of a moving direction of the physical object, a speed of the physical object, and an acceleration of the physical object; and controlling a display device to display the real-time video corresponding to a first event in response to the first event be triggered according to the one or more of the moving direction of the physical object, the speed of the physical object, and the acceleration of the physical object.
US10659277B2 Method and system in which a remote module assists in counteracting I/Q imbalance and/or DC offset errors
A transceiver comprising a transmitter and a receiver is a component of a user terminal. A transmitter-check signal is transmitted from the transceiver to a remote node. Errors in the transmitter-check signal are measured at the remote node. Transmitter-correction information based on the errors is determined within the remote node and sent back to the user terminal. The user terminal utilizes the transmitter-correction information to set a correction module in the terminal to counteract the errors within the transmitter.
US10659276B2 Transmission method, transmission device, reception method, and reception device
Provided is a transmission method that improves data reception quality in radio transmission using a single-carrier scheme and/or a multi-carrier scheme. The transmission method includes: generating a plurality of first modulated signals s1(i) and second modulated signals s2(i) from transmission data, the plurality of first modulated signals s1(i) being signals generated using a QPSK modulation scheme, and the plurality of second modulated signals s2(i) being signals generated using 16QAM modulation; generating, from the plurality of first modulated signals s1(i) and the plurality of second modulated signals s2(i), a plurality of first signal-processed signals z1(i) and a plurality of second signal-processed signals z2(i) which satisfy a predetermined equation; and transmitting the plurality of first signal-processed signals z1(i) and the plurality of second signal-processed signals z2(i) using a plurality of antennas. A first signal-processed signal and a second signal-processed signal having identical symbol numbers are simultaneously transmitted at the same frequency.
US10659272B2 Apparatus and method for receiving and sending ends of wireless communication system, and soft information estimator
Provided are an apparatus and method for a sending end and a receiving end of a wireless communication system, and a soft information estimator. The apparatus for the sending end of the wireless communication system comprises: an interleave division multiple access unit configured to perform interleave processing on information to be sent; and a filter bank multi-carrier unit configured to use a specific sub-carrier chosen in advance to transmit the interleaved information in a parallel manner.
US10659271B2 Signal processing method and apparatus
The present disclosure provides a signal processing method, including: performing discrete Fourier transform (DFT) on a data symbol block including M data symbols, where the M data symbols obtained after the DFT belong to K carriers, and at least two adjacent carriers in the K carriers are non-contiguous on a spectrum; or the M data symbols obtained after the DFT belong to K resource blocks of one carrier, and at least two adjacent resource blocks in the K resource blocks are non-contiguous on a spectrum; mapping the M symbols obtained after the DFT to M subcarriers corresponding to inverse fast Fourier transformation IFFT; and performing N-order IFFT on a plurality of mapped symbols.
US10659268B2 Wireless communication method and device
Provided are wireless communication methods and devices. In one embodiment, a wireless communication method performed by a wireless communication device comprises: transmitting a data packet repeatedly in multiple subframes including at least one normal subframe and at least one special subframe to another wireless communication device, wherein the available resources in the special subframe are different from that in the normal subframe, the data packet includes multiple modulated symbols which are divided into multiple modulated-symbol sets, in each subframe, each OFDM symbol is mapped by one of the modulated-symbol sets, and in every subframe, the modulated symbols in the same modulated-symbol set are mapped onto REs in one OFDM symbol in a fixed order. In another embodiment, multiple repetitions of the data packet are transmitted in each subframe, and in each special subframe, different repetitions are mapped onto REs with cyclic shift.
US10659264B2 Systems and methods for nonlinear distortion discovery in active carriers
A digital transmission system includes a transmitter configured to transmit an orthogonal frequency division multiplexing (OFDM) signal along a signal path, a receiver for receiving the OFDM signal from the transmitter and extracting OFDM symbols from the received OFDM signal, and a diagnostic unit configured to (i) demodulate the received OFDM signal to create an ideal signal, (ii) compare the received OFDM signal with the ideal signal to calculate an error signal, (iii) cross-correlate the error signal with the ideal signal, and (iv) determine a level nonlinear distortion from one of the transmitter and the signal path based on the correlation of the error signal with the ideal signal.
US10659255B1 Identity-based virtual private network tunneling
Devices, computer-readable media, and methods for routing traffic of a network service via a virtual private network that is configured in accordance with a virtual private network configuration preference of an identified user are described. A method may determine a network service that an endpoint device is attempting to access and may detect an identity of a user of the endpoint device. The processing system may obtain a plurality of virtual private network configuration preferences of the user, each of the plurality of virtual private network configuration preferences matching a virtual private network configuration preference with one or more of a plurality of network services, and route traffic of the endpoint device for the network service via a virtual private network that is configured in accordance with a virtual private network configuration preference of the plurality of virtual private network configuration preferences.
US10659254B2 Access node integrated circuit for data centers which includes a networking unit, a plurality of host units, processing clusters, a data network fabric, and a control network fabric
A highly-programmable access node is described that can be configured and optimized to perform input and output (I/O) tasks, such as storage and retrieval of data to and from storage devices (such as solid state drives), networking, data processing, and the like. For example, the access node may be configured to execute a large number of data I/O processing tasks relative to a number of instructions that are processed. The access node may be highly programmable such that the access node may expose hardware primitives for selecting and programmatically configuring data processing operations. As one example, the access node may be used to provide high-speed connectivity and I/O operations between and on behalf of computing devices and storage components of a network, such as for providing interconnectivity between those devices and a switch fabric of a data center.
US10659253B2 Path detection method and apparatus
A path detection method and apparatus, where the method includes generating M virtual extensible local area network (VXLAN) probe packets according to a source User Datagram Protocol (UDP) port number, a destination UDP port number, and a probe identifier when there are multiple equivalent paths between a source VXLAN tunnel endpoint (VTEP) and a destination VTEP, sending the M VXLAN probe packets to the source VTEP to forward the M VXLAN probe packets to the destination VTEP, receiving VXLAN advertisement packets from the source VTEP, the destination VTEP, and intermediate nodes in the multiple equivalent paths according to the M VXLAN probe packets, and detecting, according to the VXLAN advertisement packets, whether a fault occurs in a path of the multiple equivalent paths between the source VTEP and the destination VTEP.
US10659252B2 Specifying and utilizing paths through a network
For a multi-tenant environment, some embodiments of the invention provide a novel method for (1) embedding a specific path for a tenant's data message flow through a network in tunnel headers encapsulating the data message flow, and then (2) using the embedded path information to direct the data message flow through the network. In some embodiments, the method selects the specific path from two or more viable such paths through the network for the data message flow.
US10659249B2 Activity management device, activity management system, and activity management method
An activity management device includes a data acquirer, an inferrer, an information acquirer, and an outputter. The data acquirer acquires in-residence data relating to a living environment of a user and acquired in a residence of the user. The inferrer infers a past or future change event in the lifestyle pattern of the user based on the in-residence data acquired by the data acquirer. The information acquirer acquires recommendation information which is information corresponding to the change event inferred by the inferrer and which prompts the user to perform an activity according to the change in the lifestyle pattern. The outputter outputs the recommendation information acquired by the information acquirer.
US10659248B2 Location-based device automation
This disclosure describes systems, methods, and computer program products for identifying a presence of a plurality of mobile devices at a geographic location; determining an entertainment option to be played at the geographic location based on the identified plurality of mobile devices; and based on the determination, selecting an entertainment option to be played at the geographic location.
US10659247B2 Computer vision for ambient data acquisition
A system and method for extracting uncoupled information from a user interface output that includes collecting image data; processing the image data associated with the device interface source; and exposing the result to the extracted interface representation.
US10659246B2 Methods to discover, configure, and leverage relationships in internet of things (IoT) networks
The disclosure generally relates to various methods to discover, configure, and leverage relationships in Internet of Things (IoT) networks. More particularly, the methods disclosed herein may support automated processes to create configurable sub-divisions and access controls in an IoT network based on usage associated with objects that are registered in the IoT network and interactions among the registered objects. Furthermore, in one embodiment, relationships between IoT devices that belong to different users may be implicitly discovered and/or ranked based on meetings (e.g., interactions) between the IoT devices, and relationships between the different users may likewise be implicitly discovered and/or ranked. Moreover, locations and interactions associated with IoT devices may be tracked over time to further discover user-specific and potentially asymmetric relationships among the IoT devices and/or the users associated therewith (e.g., where one user considers another user a close friend and the other user considers the first user an acquaintance).
US10659245B2 Technique for delivering schedule information for an MBMS user service
A technique for delivering schedule information for MBMS User Services is presented. A method implementation of this technique comprises the steps of providing schedule information that describes a schedule for an MBMS User Service in the form reoccurring events. Additionally, or in the alternative, the schedule may be described in the form of start/stop lists. A User Service Description (USD) and the schedule information, which is linked to the USD (e.g., via an identifier such as a URI), are then delivered to a mobile client.
US10659243B1 Management of communication bridges between disparate chat rooms
Certain aspects of the disclosure are directed to communication bridging in a telecommunication system. According to a specific example, a Voice over Internet Protocol (VoIP) communication server is provided comprising a uniform resource locator (URL) generation module configured and arranged to form a communication bridge between a first protocol-disparate chat room and a second protocol-disparate chat room in response to receipt of a request from a participant of one of the chat rooms. The URL generation module can identify the participant as being associated with a customer, and redirect the participant to a customer-specific account provided by the communication bridging service. Using the customer-specific account, the URL generation module can generate a URL associated with the communication bridge. Using the generated URL an assimilation and processing module can translate chat messages received, and transmit the translated chat messages between the first chat room and the second chat room.
US10659236B2 Method for superseding log-in of user through PKI-based authentication by using blockchain database of UTXO-based protocol, and server employing same
The present disclosure provides a method for superseding a log-in through PKI-based authentication with respect to a log-in request of a user by using a blockchain database. According to the method, once authentication request information requesting superseding of a log-in through an authentication app is obtained from a service provision app executed on a user terminal, a service provision server transfers authentication request response information to the service provision app and, after an authentication redirection request thereof is transferred to the authentication app and then server challenge request information is obtained, server challenge request response information is transferred to the authentication app, an authentication result message including information on whether certificates of the server and the app are valid is obtained from an authentication server, a predetermined access token is transferred to the service provision app, and thereby the log-in is handled such that a service can be used.
US10659231B2 Identity authentication using a wearable device
A wearable device transmits a service request generated by the wearable device to a server, where the service request is associated to a service application type. The wearable device receives an identity authentication request message associated to the service application type from the server using a preset standard interface. The wearable device verifies a signature in the identity authentication request message according to a public key of the service application type. In response to verifying the signature, the wearable device retrieves service authentication information of an account corresponding to the identity authentication request message from a locally pre-stored service authentication information database. The wearable device transmits a verification response message comprising the acquired service authentication information to the server using the preset standard interface.
US10659230B2 Using biometric features for user authentication
An authentication request is sent to a server. An authentication request reply message is received from the server. A biometric feature input by a user is received. A biometric feature template identifier (ID) corresponding to the received biometric feature is acquired using the received biometric feature. The acquired biometric feature template ID is compared with a stored biometric feature template ID included in an enable record that is used for biometric feature verification and created during a biometric feature verification enabling process. When the two biometric feature template IDs are consistent, an authentication response message is generated. The authentication response message is sent to the server for verification. Verification includes comparing the biometric feature template ID in the authentication response message with the biometric feature template ID in a saved user record. The verification succeeds if the two biometric feature template IDs are consistent; otherwise an error is reported.
US10659229B1 Secure permanent integrated circuit personalization
Methods, systems and devices for using charged particle beams (CPBs) to write different die-specific, non-volatile, electronically readable data to different dies on a substrate. CPBs can fully write die-specific data within the chip interconnect structure during the device fabrication process, at high resolution and within a small area, allowing one or multiple usefully-sized values to be securely written to service device functions. CPBs can write die-specific data in areas readable or unreadable through a (or any) communications bus. Die-specific data can be used for, e.g.: encryption keys; communications addresses; manufacturing information (including die identification numbers); random number generator improvements; or single, nested, or compartmentalized security codes. Die-specific data and locations for writing die-specific data can be kept in encrypted form when not being written to the substrate to conditionally or permanently prevent any knowledge of said data and locations.
US10659221B2 Method for managing key in security system of multicast environment
Provided is a method of managing keys in a security system of a multicast environment. The key managing method according to the embodiments of the present disclosure enables key management that a key renewal regarding a receiver joining or leaving a group does not affect all groups.
US10659213B2 Biometric sensing system
In accordance with a first aspect of the present disclosure, a biometric sensing system is provided, comprising a sensor module; a processing unit communicatively coupled to the sensor module; wherein the sensor module and the processing unit are configured to communicate with each other in a half-duplex mode of communication. In accordance with a second aspect of the present disclosure, a method of communicating between a sensor module and a processing unit in a biometric sensing system is conceived, wherein the sensor module and the processing unit communicate with each other in a half-duplex mode of communication. In accordance with a third aspect of the present disclosure, a corresponding computer program is provided.
US10659212B2 Repeater and methods for use therewith
Aspects of the subject disclosure may include, for example, a repeater device having a first coupler to extract downstream channel signals from first guided electromagnetic waves bound to a transmission medium of a guided wave communication system. An amplifier amplifies the downstream channel signals to generate amplified downstream channel signals. A channel selection filter selects one or more of the amplified downstream channel signals to wirelessly transmit to the at least one client device via an antenna. A second coupler guides the amplified downstream channel signals to the transmission medium of the guided wave communication system to propagate as second guided electromagnetic waves. Other embodiments are disclosed.
US10659207B2 Uplink power control in new radio (NR)
Aspects of the present disclosure implement techniques for power control management between the base station and the UE to support multiple waveforms and services. In one example, the power control management system may implement independent power control loops for each waveform and service (e.g., eMBB, uRLLC, etc.) supported by the wireless communication system. For example, the base station may transmit a first power control command to a UE for first waveform (e.g., CP-OFDM) or service (e.g., eMBB) and a second power control command to the UE for the second waveform (DFT-OFDM) or service (e.g., uRLLC). Features of the present disclosure may also implement techniques that allow the base station to transmit a single power control command for configuring the power control for a plurality of waveforms or services. Upon receiving the power control commands, the UE may configure the transmission power for uplink traffic based on the power control commands.
US10659206B2 Techniques to communicate information using OFDMA tone allocation schemes in frequency bands
Various embodiments are generally directed to an apparatus, method and other techniques to determine a bandwidth in a frequency band to communicate information to stations, determine an Orthogonal Frequency-Division Multiple Access (OFDMA) tone allocation scheme based on the bandwidth, the OFDMA tone allocation scheme to include one or more resource units each comprising a plurality of tones and each having a fixed location in the bandwidth, and communicate information to the stations based on the OFDMA tone allocation scheme.
US10659202B2 Terminal, base station, transmission method, and reception method
A receiver (202) receives the same downlink data over one or more subframes through a downlink resource within a narrow band for MTC terminal. A response signal generator (210) generates a response signal as a response to the downlink data. A transmitter (217) transmits the response signal through an uplink resource a predetermined number of subframes after the last subframe of the one or more subframes, the uplink resource being associated in one-to-one correspondence with the number of a downlink resource to which the downlink data is allocated in the last subframe.
US10659201B2 Method for assigning an input channel as well as signal analyzer
A method for assigning an input channel of a signal analyzer to a signal decoder has the steps of analyzing a digital representation of a signal received by an input channel and generating a characteristic signal parameter of the signal. The parameter is compared to expected values and the corresponding input channel is assigned to the signal decoder according to the result of the comparison. Further, a signal analyzer for measuring a bus signal is shown.
US10659198B2 Puncture bundling of data for a first service in a transmission of a second service
A transmitting node can puncture bundles of data for a first service in a transmission for a second service. The first service has lower latency requirements than the second service. The transmitting node determines data for a first service will be transmitted during a time period when data for a second service will be transmitted, and determines transmission or reception conditions. Based on the determined transmission or reception conditions, the transmitting node determines to adjust the transmission of the first service. The transmitting node then transmits during the time period the data for the first service while data for the second service is transmitted during the time period, wherein the transmission includes an original set of data for the first service and at least one repetition of the original set of data for the first service.
US10659196B2 Wireless communication method supporting multi-user cascading transmission and wireless communication terminal using same
Provided is a wireless communication terminal that communicates wirelessly. The terminal includes: a transceiver; and a processor. The processor is configured to receive a Downlink Multi-User (DL MU) PPDU including information for an Uplink Multi-User (UL MU) transmission from a base wireless communication terminal by using the transceiver, and transmit the UL MU PPDU to the base wireless communication terminal based on the information for UL MU transmission.
US10659193B2 Apparatus, system and method of communicating a transmission encoded according to a low-density parity-check (LDPC) code
Some demonstrative embodiments include apparatus, system and method of communicating a transmission encoded according to a Low-Density Parity-Check (LDPC) code. For example, an apparatus may include logic and circuitry configured to cause a wireless station to encode a plurality of data bits into a plurality of codewords according to an LDPC code having an encoding rate of 7/8 and a codeword length of 1248 bits; and to transmit a transmission over a millimeter Wave (mmWave) frequency band based on the plurality of codewords.
US10659192B2 Apparatus and method for communicating data over an optical channel
An optical module processes first FEC (Forward Error Correction) encoded data produced by a first FEC encoder. The optical module has a second FEC encoder for further coding a subset of the first FEC encoded data to produce second FEC encoded data. The optical module also has an optical modulator for modulating, based on a combination of the second FEC encoded data and a remaining portion of the first FEC encoded data that is not further coded, an optical signal for transmission over an optical channel. The second FEC encoder is an encoder for an FEC code that has a bit-level trellis representation with a number of states in any section of the bit-level trellis representation being less than or equal to 64 states. In this manner, the second FEC encoder has relatively low complexity (e.g. relatively low transistor count) that can reduce power consumption for the optical module.
US10659190B1 Optimizing delay-sensitive network-based communications with latency guidance
Devices, computer-readable media, and methods for selecting a type of transmission for an immersive visual stream based upon a latency estimate. For instance, a processing system including at least one processor may obtain a latency estimate for an immersive visual stream, determine whether the latency estimate exceeds a latency threshold for selecting a type of transmission for the immersive visual stream, and select the type of transmission for the immersive visual stream from among a field of view restricted type of transmission and a field of view plus out of scene type of transmission based upon the determining. When the latency estimate is determined to not exceed the latency threshold, the field of view restricted type of transmission is selected. When the latency estimate is determined to exceed the latency threshold, the field of view plus out of scene type of transmission is selected.
US10659188B2 Transmitter link enhancement techniques
Techniques and apparatus for efficiently performing rate selection and transmit gain selection are provided. The techniques may be performed, for example, by a transmitting entity in the absence of explicit MCS selection reporting by a receiving entity. One technique includes outputting first packets for transmission using a first modulation and coding scheme (MCS) value and via a transmit power amplifier (PA) configured according to a transmit gain parameter associated with the first MCS value. Feedback indicating whether the first packets have been received is obtained, a second MCS value for second packets is selected based on the feedback, and the transmit gain parameter is adjusted if one or more criteria are met. Second packets are output for transmission using the second MCS value and, thereafter, additional packets are output for transmission based on the first MCS value and the adjusted transmit gain parameter.
US10659182B2 System and method for selecting input feeds to a media player
System and methods are provided for playing media feeds via a standard media player in enhanced manner. The media feeds may be obtained via the Internet. A particular signature signal, from a plurality of signature signals, may be determined based on a feedback signal corresponding to an audio output signal of the media player, and based on the determined signature signal, a media feed of a plurality of media feeds may be selected. An input signal configured for the media player may then be transmitted, with the input signal including a plurality of channels, and the selected media feed being conveyed over one of the plurality of channels associated with the determined signature signal. The signature signals may include audio frequency signals and/or acoustic signals inaudible to human hearing. The feedback signal may be an electrical, a wireless or an optical signal.
US10659180B2 Circuit delay self-measurement method, device and system
The present disclosure provides a circuit delay self-measurement method, device and system. The device includes: a first communication interface, configured to receive a first analog signal; a receiving circuit module, configured to perform a first processing on the first analog signal to generate a first digital signal; a main control chip, configured to generate a second analog signal; a first switch module, configured to turn off a path between the first stationary end and the first connection end and turn on a path between the first stationary end and the second connection end; the main control chip is configured to send the second analog signal to the receiving circuit module; the receiving circuit module is configured to perform the first processing on the second analog signal to generate a second digital signal; the main control chip is configured to determine the circuit delay of the receiving circuit module.
US10659177B1 Method of determining a relative phase change of a local oscillator signal and method of determining a relative phase change of a radio frequency signal
A method is provided that determines a relative phase change of a local oscillator signal. A method of determining a relative phase change of a RF signal is also provided. Generally, the methods described ensure that the effect of a swept local oscillator frequency on the measurements can be identified, particularly quantified. Hence, the effect can be considered in the error correction model applied later such that the measurement equipment can be calibrated appropriately.
US10659175B2 System and method for over-the-air (OTA) testing to detect faulty elements in an active array antenna of an extremely high frequency (EHF) wireless communication device
Systems and methods for detecting faulty elements in an active planar antenna array of an extremely high frequency (EHF) wireless communication device. A planar antenna array having a matrix of dual-polarization modulated scattering probes is disposed within a near-field region of the antenna under test (AUT). Electromagnetic energy received from the AUT is converted to a complex electrical signal that is modulated by an electrical modulation signal and radiated as a scattering signal. The resulting electromagnetic scattering signal, received and converted to an electrical signal by another antenna, is used in a holographic image reconstruction operation via a backward-propagation transformation to reconstruct the signal spectrum radiated from the surface of the AUT. A comparison of this reconstructed signal spectrum with a reference signal spectrum radiated from the surface of a known good antenna array enables detection of faulty antenna elements within the AUT.
US10659169B2 Optical transmitter
A transmitter includes a first PCB having a first surface on which first ground wires and anode wires connecting a light-emitting element and a driver are formed, the anode wires being covered with an insulating section, and a second surface on which a second ground wire coupled to the first ground wires is formed, the second surface being opposite the first surface, a connector that supports the first PCB and is coupled to the second ground wire, a conductive housing that covers the first PCB and the connector, a coupling member in contact with the housing and the first ground wires, the coupling member coupling the housing and the first ground wires, and a second PCB on which the connector and the housing are mounted, the second PCB including a third ground wire that is coupled via the connector to the second ground wire and is coupled to the housing.
US10659168B2 Low-power fiber optic transceiver
The present disclosure pertains to systems and methods for low-power optical transceivers. In one embodiment, a low-power optical transceiver may include a microcontroller and an optical receiver and an optical transmitter in communication with and controlled by the microcontroller. The optical receiver may include a photodetector configured to receive a first optical representation of a first signal to be received and to generate an electrical representation of the first signal. An amplifier may amplify the electrical representation of the first signal, and an output in electrical communication with the amplifier may generate an electrical output. The optical transmitter may include a laser diode configured to generate a second optical representation of a second signal to be transmitted. The microcontroller may be configured to control an output power of the laser diode.
US10659164B2 Optical transmitter, optical receiver and optical link
The present invention relates to an optical link, comprising an optical converter circuit (16) having an optoelectronic device (18) and circuitry (20) connected to the optoelectronic device (18). The optoelectronic device (18) has a plurality of individual optoelectronic segments (18a-18i). The optical link further comprises an elongated optical guide (14) having a single optical fiber optically connected at a first end to the optoelectronic device (18) and configured to transmit light away from the optoelectronic device (18), wherein the individual optoelectronic segments (18a-18i) have different positions relative to the first end of the optical fiber so that light beams emitted by the optoelectronic segments (18a-18i) are coupled into the optical fiber under different angles. The optoelectronic device (18) is configured to receive from the circuitry (20) on at least some of the segments (18a-18i) a plurality of data streams and optically send the plurality of data streams as spatially diverse data streams into the optical guide (14). The optical link further comprises a photo detector arrangement (28) optically connected to a second end of the optical guide (14) and having a plurality of photo detector segments (28a-28i) arranged to optically receive the plurality of data streams from the optoelectronic device (18), and a processing unit (30) associated with the photo detector arrangement (28) and configured to extract the plurality of data streams from the photo detector arrangement (28).
US10659160B2 Slip ring
A slip ring for optical fibers includes a first part and a second part that is able to rotate with respect to the first part, the slip ring comprising at least one data transmission channel comprising an optical/electrical converter for transforming an optical signal conveyed by an optical fiber into a first electrical signal, at least one optical emitter, receiving the first electrical signal so as to emit a light beam, at least one optical detector for detecting the light beam and for transforming it into a second electrical signal, the emitter being contained in the first part and the detector being contained in the second part, or vice versa, and an electrical/optical converter to which the second electrical signal is transmitted such that the electrical/optical converter generates another optical signal intended to be conveyed on another optical fiber.
US10659158B1 Signal transmitting and receiving devices, method and system based on visible light communication
The present application discloses a signal transmitting device based on visible light communication, which includes a first control unit and a visible light emitting unit array, wherein the first control unit is configured to acquire target data and generate a light emission control instruction based on the target data according to a set encoding rule, and the light emission control instruction includes an instruction for controlling the light-dark state of each light emitting unit in the visible light emitting unit array, and the visible light emitting unit array is configured to transmit the target data in form of a visible light signal according to the light emission control instruction. The present application further discloses a signal receiving device based on visible light communication, a visible light communication system and a visible light communication method.
US10659157B2 Apparatus and method for registering visible light communication device and combining visible light communication signal and wireless communication signal
Disclosed are a method and apparatus for registering visible light communication devices and combining a visible light communication signal and a wireless communication signal. It is an object of the present disclosure to provide a visible light communication device registration method in which a lighting device allows collective registration of the lighting device and a terminal as the terminal transmits data to a light using wireless communication.
US10659156B2 Apparatus and method for facilitating communication between a telecommunications network and a user device within a building
An apparatus and method are described for facilitating communication between a telecommunications network and a user device within a building. The apparatus has a first unit for mounting adjacent an external surface of a building, and a second unit for mounting adjacent an internal surface of the building so as to be separated from the first unit via an interface structure of the building, for example a window. The first unit has an antenna system to communicate with the telecommunications network over an external wireless communications link that employs signals in a frequency range that is attenuated by the interface structure to a degree inhibiting reception of the signals by a user device within the building. The apparatus further comprises access circuitry for provision within the building to provide an internal communications link with the user device, and the first unit comprises first transducer circuitry coupled to the antenna system whilst the second unit provides second transducer circuitry coupled to the access circuitry. The first and second transducer circuits are then arranged to cooperate to establish a direct wireless communications link through the interface structure between the first and second transducer circuits, to facilitate communication between the antenna system and the access circuitry. This hence enables a reliable connection to be established between the telecommunications network and a user within the building.
US10659149B2 Virtualized software payloads on satellite devices
Systems, methods, and software described herein provide enhancements for deploying software payloads to satellite devices, such as when a satellite device is in orbit. In one example, a satellite device includes a communication interface configured to receive one or more software payloads, and a storage system configured to store the one or more software payloads on the satellite device. The satellite device also includes a payload execution system configured to execute the one or more software payloads as one or more virtual nodes.
US10659148B2 Systems and methods for command and control of satellite constellations
The disclosed technology relates to systems and methods for tasking satellite constellations. A method is disclosed herein for receiving, from a resource database of a satellite control system, knowledge data corresponding to a plurality of components associated with a satellite constellation communications system. The plurality of components can include one or more satellites associated with a constellation. The method includes processing the knowledge data according at least one received mission objective. Processing the knowledge data can include determining a status of at least one satellite in the constellation. The method includes scheduling the satellite control system based at least in part on the received mission objective and the processed knowledge data; initiating communication with the at least one satellite in the constellation according to the scheduling; receiving updated status information for at least one component of the plurality of components; and storing, in the resource database, the updated status information.
US10659145B2 Simulating reception of transmissions
In one implementation, a method includes receiving simulated RF transmission data indicative of anticipated RF transmissions from a plurality of transmitters, wherein individual anticipated RF transmissions carry corresponding messages, and simulated position data indicative of an anticipated position of each of the plurality of transmitters. The method further includes modeling characteristics of a communications channel expected between a satellite-based receiver and at least some of the transmitters, wherein the satellite-based receiver is configured to define one or more beams for receiving anticipated RF transmissions. The method additionally includes determining a likelihood of the receiver successfully extracting one or more components of a message from one of the anticipated RF transmissions based on at least the simulated RF transmission data, the simulated position data, and the modeled characteristics of the communications channel.
US10659140B2 Device and method for guiding electromagnetic waves
A device for receiving and re-radiating electromagnetic signals. The device includes at least a waveguide with a first set of slot radiators for receiving electromagnetic signals, and a second set of slot radiators for transmitting electromagnetic signals generated on the basis of the received electromagnetic signals in the waveguide. The first set of slot radiators includes one or more slot radiators, and the second set of slot radiators includes one or more slot radiators. The device also relates to a method for receiving and re-radiating electromagnetic signals by a device including at least a waveguide, and the use of the device as a repeater of electromagnetic signals, for transferring electromagnetic signals through a structure, and/or as a building product.
US10659136B2 Antenna measurement method and terminal
An measurement method and a terminal, where the method includes: determining, by a first antenna selection module in terminal, at least two measured antennas, setting the at least two measured antennas as a first measurement antenna, adding the first measurement antenna to an occupied antenna set; determining measurement duration of the first measurement antenna; performing a measurement operation on the first measurement antenna; determining, by a second antenna selection module, a second measurement antenna and measurement duration of the second measurement antenna based on the occupied antenna set and the measurement duration of the first measurement antenna, adding the second measurement antenna to the occupied antenna set; performing a measurement operation on the second measurement antenna; and determining, a measurement result of the first measurement antenna and a measurement result of the second measurement antenna when the measurement duration of the first measurement antenna ends.
US10659134B2 Apparatus and method for performing beamforming operation in wireless communication system
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). A method for performing a beamforming operation in a wireless communication system supporting a full-duplex scheme includes acquiring reference information for allocating a resource, determining a user equipment (UE) combination of a transmission (Tx) UE and a reception (Rx) UE which is capable of sharing a resource from combinations of at least Tx UE and at least one Rx UE, based on the acquired reference information, and allocating a Tx antenna beam for the Tx UE of the UE combination and an Rx antenna beam for the Rx UE of the UE combination.
US10659133B2 Method for utilizing full antenna array power to estimate beam from subarray
A method for operating a transmitting node of a wireless communication network. The transmitting node includes or is connected to an antenna array having multiple antenna elements. A signal indication indicating a first and/or reference signaling is obtained. The first reference signaling includes transmission on a first plurality of disjunct frequency bands, and the second reference signaling includes transmission on a second plurality of disjunct frequency bands. The first reference signaling and the second reference signaling are transmitted based on a signal map of the first and the second reference signaling to antenna elements of the antenna array.
US10659132B2 Beam scanning period configuration
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may monitor for a beam scanning period indicator from a base station; configure an interval for beam scanning; and beam scan with a set of beams at the interval for beam scanning. In some aspects, a base station may configure an interval for beam scanning by a user equipment; selectively provide, to the user equipment, a beam scanning period indicator identifying the interval for beam scanning; and provide at least one beam from a set of beams in a synchronization codebook to enable the user equipment to perform beam scanning using the interval. Numerous other aspects are provided.
US10659131B2 Methods and apparatus for channel quality indication feedback in a communication system
Methods and apparatus for feeding back channel quality indication in a communication system. First, a first channel quality indication index is determined in dependence upon a channel quality estimation of a first transmission channel, and a second channel quality indication index is determined in dependence upon a channel quality estimation of a second transmission channel. A differential channel quality indication index of the second channel quality indication index is determined with reference to the first channel quality indication index in dependence upon a differential compression scheme. Then, the first channel quality indication index and the differential channel quality indication index are reported.
US10659124B2 Multiantenna communication device and coefficient update method
A multiantenna communication device forms a directional beam by adding an antenna weight to respective signals of a plurality of antenna elements. The multiantenna communication device includes: a processor that executes performing distortion compensation on a transmission signal by using a distortion compensation coefficient; a plurality of power amplifiers that are provided corresponding to the antenna elements, and that amplify the transmission signal subjected to the distortion compensation by the processor; a multiplexer that multiplexes signals output from the power amplifiers to feed back; and an analog/digital (A/D) converter that A/D converts a multiplex feedback signal that is obtained by the multiplexer, wherein the processor executes updating the distortion compensation coefficient by using the multiplex feedback signal A/D converted by the A/D converter and the transmission signal.
US10659120B2 Communication apparatus and communication method
A communication apparatus includes a PHY frame generating circuit that generates a PHY frame including either of a short Sector Sweep frame and a Sector Sweep frame; and an array antenna that selects, based on the PHY frame, any sector from among a plurality of sectors and transmits the PHY frame. In a case where, in the PHY frame including the short Sector Sweep frame, a Direction field of the short Sector Sweep frame indicates Initiator Sector Sweep, the PHY frame generating circuit replaces a Short Sector Sweep Feedback field indicating a number of a selected best short Sector Sweep with a Short Scrambled Basic Service Set ID field indicating an abbreviated address generated from an address of a destination communication apparatus.
US10659115B1 Dynamic antenna calibration scheduling
Methods and systems are provided for dynamically delaying a calibration of an antenna. It is determined that there is a quantity of user devices above a predetermined threshold on a particular sector of an antenna associated with the base station, or that there is a quantity of user devices above a predetermined threshold in an MU-MIMO group on the particular sector of the antenna. Further, it is determined that there is an upcoming scheduled calibration event of the antenna, and based on the upcoming scheduled calibration event and the occurrence, the upcoming scheduled calibration event of the antenna is delayed or postponed.
US10659114B2 Multi-layered precoding
Apparatuses, methods, and systems for precoding multi-carrier signals are disclosed. One method includes obtaining a transmission channel matrix between a terminal and a plurality of separate users, wherein the transmission channel matrix includes channel estimates for a plurality of subcarriers of the multi-carrier signal, wherein the terminal is one of a plurality of terminals interfaced with a central processing unit, and wherein the terminal communicates with the plurality of spatially separate user with the multi-carrier signals. The method further comprises determining a precoding for the terminal based on a distribution of user signal power across the transmission channel between the terminal and the plurality of spatially separate user, and determining a precoding for the central processing unit based on the precoding for the terminal and based on the transmission channel matrix, wherein a precoding matrix for the central processing unit is multi-carrier signal dependent.
US10659111B2 Method and apparatus for transmitting data
Embodiments of the present invention disclose a method and an apparatus for transmitting data, and the method includes: first setting at least two second resource groups in each first resource group of at least one first resource group, and setting at least two reference signals in each of the second resource groups; then encoding data to be transmitted and generating two data streams from the encoded data; then, mapping the two data streams onto an available resource element of two different antenna ports, in which the reference signals corresponding to the two different antenna ports are set on two different second resource groups; and finally, transmitting, on the available resource element of the two different antenna ports, data on the two antenna ports. The present invention is applicable to the field of communications systems.
US10659110B1 Positional tracking assisted beam forming in wireless virtual reality systems
Embodiments of the present disclosure support a head-mounted display (HMD) wirelessly coupled to a console. The HMD includes a positional tracking system, a beam controller and a transceiver. The positional tracking system tracks position of the HMD and generates positional information describing the tracked position of the HMD. The transceiver communicates with a console via a wireless channel, in accordance with communication instructions, the communication instructions causing the transceiver to communicate over one directional beam of a plurality of directional beams. The beam controller determines a change in the positional information. Based on the change to the positional information, the beam controller determines a directional beam of the plurality of directional beams. The beam controller further generates the communication instructions identifying the determined directional beam, and provides the communication instructions to the transceiver.
US10659106B2 RFID tag
An RFID tag with an RFIC module including a substrate, an RFIC chip disposed on the substrate, and a loop conductor disposed on the substrate and connected to the RFIC chip; and an antenna base material mounted with the RFIC module and including an antenna conductor with a radiating portion radiating radio waves and a coupling portion connected to the radiating portion, for electromagnetic field coupling with the loop conductor. Moreover, the loop conductor includes a first loop pattern formed on a first main surface of the substrate, a second loop pattern formed on a second main surface confronting the first main surface, and an interlayer connection conductor extending through the substrate, for connecting the first and the second loop patterns in series.
US10659103B2 Synchronized multi-channel access system
Systems and methods are provided for synchronizing multiple channels in an access network, where the multiple channels are neighboring channels such that a guard band between them or use of a diplexer to prevent inter-channel interference is not required. Synchronization is achieved by defining channel MAP (media access plan) cycle structures such that all channels work in the same direction (upstream US or downstream DS) at any given time. Moreover, the network controller of channel may send out a beacon to allow new nodes to join. A long MAP cycle (402) may be followed by three consecutive regular MAP cycles (404, 406), and (408). These MAP cycles are repeated between beacon transmissions. Synchronization allows multiple channels to be configured contiguous (without a guard band between neighbouring channels) and without utilizing diplexers. A plurality of customer premises equipment may operate on each of the communications channels.
US10659102B2 Synchronization techniques using frequency hopping in unlicensed radio frequency spectrum
Described techniques provide for transmission of synchronization signals using frequency hopping across a number of hopping frequencies in unlicensed or shared radio frequency spectrum. A base station may identify a set of hop frequencies for transmitting synchronization signals, and transmit synchronization signals using a hopping pattern over the hop frequencies. A user equipment (UE) seeking to identify the base station may monitor one or more of the hop frequencies to identify one or more synchronization signals on the hop frequency. A system timing may be identified in some cases, and one or more base station IDs may be identified. In some cases, a hop frequency may be monitored for a duration that may span the transmission of two or more synchronization signals of a particular base station, based on a periodicity of synchronization signal transmissions on each hop frequency.
US10659098B2 Duplexing apparatus, transceiver apparatus and method of compensating for signal leakage
A duplexing apparatus comprises a hybrid junction module having an antenna port, a transmit port, a receive port and a balance port. The apparatus also comprises a feedforward circuit arranged to be responsive in respect of a first transmit band of frequencies and a second transmit band of frequencies, the feedforward circuit having an input operably coupled to the transmit port of the hybrid junction module and an output. The hybrid junction is arranged to isolate substantially the receive port from the transmit port in respect of the first transmit band of frequencies and substantially not to isolate the receive port from the transmit port in respect of the second transmit band of frequencies. The feedforward circuit is also arranged to favour propagation therethrough of signal frequencies in the second transmit band over signal frequencies in the first transmit band, thereby rendering a compensation signal at the output.
US10659092B2 Channel loss compensation circuits
A receiver circuit includes a plurality of receivers, each of the receivers being associated with a carrier of a plurality of carriers, and a decoupler configured to receive a transmission signal from a transmission channel and output a plurality of divided transmission signals to the plurality of receivers. An equalizer is configured to modify either the transmission signal or one of the divided transmission signals.
US10659086B2 Multi-mode radio frequency circuit
A multi-mode radio frequency (RF) circuit is provided. The multi-mode RF circuit is configured to support simultaneous communication in a pair of different frequency bands via an output node(s) coupled to an RF front-end circuit. A switchable filter circuit is configured to communicate one RF signal in a selected frequency band, while a multi-band filter circuit(s) is configured to communicate second RF signal in other frequency bands outside the selected frequency band. The switchable filter circuit is preconfigured to present various inherent impedances against each of the other frequency bands. A switching circuit is provided between the switchable filter circuit and the output node(s). In various operation modes, the switching circuit is configured to selectively provide one of the various inherent impedances to the output node(s), thus helping to mitigate interference caused by any of the other frequency bands used to support simultaneous communication with the selected frequency band.
US10659084B1 Soft decoding for flash memory
A method of soft decoding received signals. The method comprises defining quantisation intervals for a signal value range, determining a number of bits detected in each quantisation interval, a number of bits in each quantisation interval that are connected to unsatisfied constraints and a probability that the error correction code is unsatisfied, determining an overall bit error rate based on the probability that the error correction code is unsatisfied, determining a log likelihood ratio for each quantisation interval based on the overall bit error rate, the number of bits detected in each quantisation interval and the number of bits in each quantisation interval that are connected to unsatisfied constraints and performing soft decoding using the log likelihood ratios.
US10659081B2 Preprogrammed data recovery
Techniques for recovering preprogrammed data from non-volatile memory are provided that include majority voting and/or use of one or more levels of ECC correction. Embodiments include storage of multiple copies of the data where ECC correction is performed before and after majority voting with respect to the multiple copies. Multiple levels of ECC correction can also be performed where one level of ECC is performed at the local level (e.g. on-chip), whereas another level of ECC correction is performed at a system level.
US10659078B2 Timing for IC chip
A integrated circuit (IC) chip can include a root timer that generates a frame pulse based on a start trigger signal. The IC chip can also include a hardware clock control that provides a clock signal based on a selected one of the frame pulse and the synchronization signal provided from one of the root timer and another IC chip. The IC chip can further include a plurality of analog to digital converters (ADCs). Each of the plurality of ADCs being configured to sample an output of a respective one of a plurality of radio frequency (RF) receivers based on the clock signal.
US10659068B2 DA converter, DA converting method, adjusting apparatus, and adjusting method
A DA converter to reduce second-order harmonic distortion more precisely with convenient configurations. A DA converter including: a DA converting unit to input reference voltage and a digital value and output an analog signal according to the digital value based on the reference voltage; and a superimposing unit to superimpose, on the reference voltage, a superimposing signal based on the analog signal that is output from the DA converting unit, and a DA converting method are provided. The DA converter may further include a setting input unit to input setting regarding at least one of a superimposing amount and a sign of an analog signal to be included in the superimposing signal. Also, an adjusting apparatus and an adjusting method to adjust the DA converter are provided.
US10659065B2 Apparatus and methods for phase synchronization of phase-locked loops
Apparatus and methods for phase synchronization of phase-locked loops (PLLs) are provided. In certain configurations, an RF communication system includes a PLL that generates one or more output clock signals and a phase synchronization circuit that synchronizes a phase of the PLL. The phase synchronization circuit includes a sampling circuit that generates samples by sampling the one or more output clock signals based on timing of a reference clock signal. Additionally, the phase synchronization circuit includes a phase difference calculation circuit that generates a phase difference signal based on the samples and a tracking digital phase signal representing the phase of the PLL. The phase synchronization circuit further includes a phase adjustment control circuit that provides a phase adjustment to the PLL based on the phase difference signal so as to synchronize the PLL.
US10659064B1 Phase lock loop circuits and methods including multiplexed selection of feedback loop outputs of multiple phase interpolators
A phase lock loop circuit includes a phase frequency detector, a voltage controlled oscillator, a phase interpolator, a clock signal selector, a selection module, a multiplexer, and a divider. The phase frequency detector compares phases of a reference clock and frequency divided output signals and generates an error signal. The voltage controlled oscillator, based on the error signal, generates a phase lock loop output signal and output clock signals. The phase interpolator phase interpolates the output clock signals to generate an interpolator output signal. The clock signal selector selects one of the output clock signals. The selection module generates a selection signal based on states of the interpolator output and selected output clock signals. The multiplexer, based on the selection signal, selects the interpolator output signal or the selected output clock signal. The divider frequency divides an output of the multiplexer to provide the frequency divided output signal.
US10659056B1 Gray code counting signal distribution system
A counter distribution system includes an N bit counter to receive a first counting clock to generate a plurality of data bits including lower data bits on lower data bit lines and upper data bits on upper data bit lines. The upper data bits include at least one redundant bit to provide error correction for the counter distribution system. A plurality of latches is coupled to the N bit counter. Each one of the lower data bit lines and each one of the upper data bit lines is coupled to at least one of the latches. The latches are arranged into a plurality of groupings of latches. Each grouping of latches is coupled to a respective latch enable signal. Each latch in each grouping of latches is coupled to latch a respective one of the plurality of data bits in response to the respective latch enable signal.
US10659053B2 Live power on sequence for programmable devices on boards
A PCB includes a programmable logic device (PLD), a memory, a live power ON sequence algorithm, and other electronics. The PLD is connectable to a primary DC power supply. The PLD is configurable by a configuration memory device having stored PLD configuration information. Upon completion of the configuring the PLD generates a PLD control signal or the algorithm triggers generation of a PLD control signal substitute to indicate a configuration of PLD is complete and the PLD is in active mode. Power coupling includes the primary DC power supply coupled to a power input of an electronic switch or the primary DC power supply wiring coupled to a power input of a second DC power supply. The PLD control signal or substitute provides an enable signal that controls power arriving through the electronic switch or from the second DC power supply to the other electronics.
US10659052B2 Regional partial reconfiguration of a programmable device
Devices and methods for reconfiguring a programmable fabric include identifying resources in a programmable fabric of the programmable device as belonging to a partition. Reconfiguring the programmable fabric also includes creating a mask for the partition that indicates that the identified resources belong to the partition. Reconfiguring the partition also includes reconfiguring resources, via a configuration controller, in programmable fabric associated with the partition using the mask without changing resources associated with other partitions in the programmable fabric.
US10659050B2 Level shifter and semiconductor device
A level shifter includes a pair of cross-coupled PMOS transistors, intrinsic-type NMOS transistors, an input node, a control circuit and an output node. A high voltage is supplied to the PMOS transistors. The intrinsic-type NMOS transistors and the PMOS transistors are respectively coupled in serial. The input node is configured to receive input signals. The control circuit is triggered by the voltage Vdd and is configured to generate enable signals and control signals according to the input signal. The output node is configured to output the high Voltage HV or the GND voltage as the output signal. After the node aa is charged, the transistor HVNI_1 is turned off according to the control signal SW to avoid leakage current being generated. After the node MOUT is charged, the transistor HVNI_2 is turned off according to the control signal SWb to avoid leakage current being generated.
US10659048B2 Mixed signal system
A mixed signal system includes a digital domain and an analog domain. The analog domain includes a plurality of BARs. Each BAR includes addressable registers. The digital domain includes an interface configured to communicate with the analog domain, e.g., write data to an addressable register within a BAR by transmitting a first select signal to select a first BAR of the plurality of BARs. The interface transmits an address of the addressable register of the first BAR and broadcasts the write data to the first BAR and at least one BAR other than the first BAR. The analog domain transmits data from a second BAR of the plurality of BARs to the digital domain by gating a select BAR signal associated with each BAR with its corresponding content stored therein to form respective BAR output and further by gating the respective BAR outputs with one another.
US10659045B2 Apparatus with electronic circuitry having reduced leakage current and associated methods
An apparatus includes an integrated circuit (IC), which includes complementary metal oxide semiconductor (CMOS) circuitry. The CMOS circuitry includes a p-channel transistor network that includes at least one p-channel transistor having a gate-induced drain leakage (GIDL) current. The IC further includes a native metal oxide semiconductor (MOS) transistor coupled to supply a bias voltage to the at least one p-channel transistor to reduce the GIDL current of the at least one p-channel transistor.
US10659042B2 Device having an optically sensitive input element
The device has an input element, which can be used for resetting the device. The input element has at least one first photodiode arranged in series to at least one second photodiode. A voltage is applied over the photodiodes. When the user blocks light to only the second photodiode, the voltage at the interconnection between the photodiodes changes, which can be used to trigger the input element. The input element has low power consumption and high reliability.
US10659036B2 Radio-frequency isolated gate driver for power semiconductors
A gate driver for power semiconductors is disclosed. The gate driver includes modulation to modulate signals from a controller to a radio frequency (RF) range that is much higher than frequencies associated with conducted EMI. The gate driver also includes RF transformer and tank circuit to that couples the modulated signals, filters EMI, and provides galvanic isolation. The gate driver further includes a RF demodulator and unfolder circuit for converting the RF signal into a signal appropriate for controlling the gate of a power semiconductor for switching. Additionally, the disclosed gate driver provides active gate control using programmable waveforms with values that can range over a continuous range of voltages.
US10659034B2 Integrated electronic device suitable for operation in variable-temperature environments
An integrated electronic device includes a silicon-on-insulator (SOI) substrate. At least one MOS transistor is formed in and on the SOI substrate. The at least one MOS transistor has a gate region receiving a control voltage, a back gate receiving an adjustment voltage, a source/drain region having a resistive portion, a first terminal coupled to a first voltage (e.g., a reference voltage) and formed in the source/drain region and on a first side of the resistive portion, and a second terminal generating a voltage representative of a temperature of the integrated electronic device, the second terminal being formed in the source/drain region and on a second side of the resistive portion. Adjustment circuitry generates the adjustment voltage as having a value dependent on the control voltage and on the voltage generated by the second terminal.
US10659030B1 Transactional memory that performs a statistics add-and-update operation
A transactional memory (TM) of an island-based network flow processor (IB-NFP) integrated circuit receives a Stats Add-and-Update (AU) command across a command mesh of a Command/Push/Pull (CPP) data bus from a processor. A memory unit of the TM stores a plurality of first values in a corresponding set of memory locations. A hardware engine of the TM receives the AU, performs a pull across other meshes of the CPP bus thereby obtaining a set of addresses, uses the pulled addresses to read the first values out of the memory unit, adds the same second value to each of the first values thereby generating a corresponding set of updated first values, and causes the set of updated first values to be written back into the plurality of memory locations. Even though multiple count values are updated, there is only one bus transaction value sent across the CPP bus command mesh.
US10659027B2 Comparator circuitry
In circuitry to capture differences between magnitudes of first and second comparator input signals in capture operations defined by a clock signal, first and second nodes are connectable to a tail node receiving a cock-signal-independent bias current along first and second paths. During each capture operation, switching circuitry controls connections between the tall node and the first and second nodes based on the input signals to divide the bias current between the first and second paths depending on the input signal magnitude difference. The switching circuitry comprises first and second transistors arranged such that conductivity of connections between the tail node and the first and second nodes Is controlled by the magnitudes of the input signals, and third and fourth non-clocked transistors controlled by a clock-signal independent gate bias signal.
US10659023B2 Apparatus and method for multiplying frequency
An apparatus and a method for multiplying a frequency of an input signal are provided. The apparatus may include a main differential device for converting the input signal into a first differential signal and a second differential signal, a first multiplying device for outputting a first signal obtained by multiplying a frequency of the first differential signal, a second multiplying device for outputting a second signal obtained by multiplying a frequency of the second differential signal, and a compositing device for outputting a third signal obtained by combining the first signal and the second signal to remove a fundamental frequency component.
US10659021B2 Vector sum circuit and phase controller using the same
A vector sum circuit and a phase controller including the vector sum circuit are provided. The vector sum circuit includes an amplifier configured to amplify an input orthogonal signal by using a first metal oxide semiconductor field effect transistor (MOSFET), and a self body-biasing circuit comprising a resistor. The self body-biasing circuit is configured to connect a drain and a body of the first MOSFET to reduce a voltage connected to the body as a current at the drain increases.
US10659013B2 Current-controlled oscillator with start-up circuit
A start-up circuit for a ring current-controlled oscillator (CCO) includes a replica CCO current generator, a replica ring CCO, and a buffer. The ring CCO is connected to a CCO driver and the buffer. The CCO driver generates a CCO current based on a reference current. The ring CCO generates a CCO output voltage at a first oscillating frequency based on the CCO current. The replica CCO current generator generates a replica CCO current based on a reference voltage. The replica ring CCO generates a replica CCO output voltage at a second oscillating frequency based on the replica CCO current. The buffer provides a first current to the ring CCO when the first oscillating frequency is lower than a desired oscillating frequency, and drains a second current from the ring CCO when the first oscillating frequency is greater than the desired oscillating frequency.
US10659006B2 Resonator element, resonator, electronic device, electronic apparatus, and moving object
A resonator element includes: a base portion including a first end surface that faces a first direction and a second end surface that faces a direction opposite to the first direction, a first vibrating arm that is provided integrally with the base portion and is connected to the first end surface; and a second vibrating arm that is provided integrally with the base portion along the first vibrating arm and is connected to the first end surface. When the shortest distance between the first end surface and the second end surface is Wb and an effective width between the shortest distance Wb and the base portion is We, 0.81≤Wb/We≤1.70 is satisfied.
US10659000B2 Fluidic sensor device having UV-blocking cover
A fluidic sensing device includes a first sidewall, a second sidewall, a bulk acoustic resonator structure, a biomolecule, and a cover. A fluidic channel is defined between the first and second sidewalls. The bulk acoustic resonator structure has a surface defining at least a portion of the bottom of the channel. The biomolecule is attached to the surface of the bulk acoustic resonator that forms the bottom of the channel. The cover is disposed over the channel and the first and second sidewalls. A portion of the cover disposed over the channel defines at least a portion of the top of the channel and blocks UV radiation from being transmitted through the cover. A first portion of the cover disposed over the first sidewall is transparent to UV radiation, and a second portion of the cover disposed over the second sidewall is transparent to UV radiation.
US10658998B2 Piezoelectric film transfer for acoustic resonators and filters
A method for forming an acoustic resonator comprising: forming a piezoelectric material on a first substrate; and applying the piezoelectric material to a second substrate on which the acoustic resonator is fabricated upon.
US10658996B2 Rendering wideband ultrasonic signals audible
The invention relates to a method for rendering ultrasonic signals audible that is characterized in that the temporal dynamic range of the ultrasonic signal is maintained. The amplitude profile of the ultrasonic signal picked up in the time domain remains unaltered. The frequency shift from the ultrasonic range to the audible range is possible up to a factor of 32 using the present invention.
US10658995B1 Calibration of bone conduction transducer assembly
Calibration of a headset that uses bone conduction to provide audio content to a wearer is presented. A first tone of a plurality of tones that are at different frequencies is presented to the wearer via an air conduction transducer. A corresponding tone having a same frequency as the first tone is also presented to the wearer via a bone conduction (BC) transducer. The corresponding tone is adjusted such that a level of loudness is within a threshold range of a level of loudness of the first tone. An ear-canal sound pressure (ECSP) resulting from the first tone is recorded and a voltage applied to the BC transducer for generating the adjusted corresponding tone. An equalization filter is generated based in part on the ECSP and the voltage, the equalization filter for filtering an audio signal for presentation via the BC transducer.
US10658991B2 Common base pre-amplifier
In some embodiments, a power amplification system can include a common base amplifier configured to amplify an input signal received at an input node to generate an intermediate signal at an intermediate node. The power amplification system can further include a power amplifier configured to amplify the intermediate signal received at the intermediate node to generate an output signal at an output node.
US10658990B2 High frequency amplifier unit having amplifier modules arranged on outer conductors
The invention relates to a high frequency amplifier unit comprising several amplifier modules to amplify high frequency input signals into high frequency output signals and a coaxial combiner having an outer conductor and an inner conductor arranged coaxially to this to combine the high frequency output signals of the amplifier modules, wherein the amplifier modules are arranged on the outside of the outer conductor of the coaxial combiner and the amplifier modules are connected to the coaxial inner conductor of the coaxial combiner to transmit the high frequency output signals to the coaxial combiner. The invention additionally relates to an amplifier system.
US10658986B2 Methods and apparatus for driver calibration
Various embodiments of the present technology may comprise methods and apparatus for driver calibration. The methods and apparatus may comprise various circuits and/or systems to minimize an offset output current (e.g., a drive current) due to an offset voltage in an operational amplifier. The methods and apparatus may comprise a current comparator circuit and a replica circuit that operate in conjunction with each other to monitor the drive current and provide a feedback signal, which is then used to adjust the drive current and improve the accuracy of the drive current.
US10658984B2 Differential amplifier circuit
A differential amplifier circuit includes a differential pair including a first field-effect transistor (FET) and a second FET, a first current source that generates a current which flows in the first FET and the second FET, and an output circuit that outputs an output voltage corresponding to a difference between a gate voltage of the first FET and a gate voltage of the second FET in accordance with an operation of the differential pair. A back gate of the first FET is connected to a gate of the first FET, and a back gate of the second FET is connected to a gate of the second FET. A first feedback voltage corresponding to the output voltage is input to the gate of the second FET.
US10658980B2 Modulating input device having a full wave rectifier
A circuit that receives AC power for rectification and analog DC control signals for processing. Two voltages may be noted. A first voltage may be between a supply ground and an internal device ground of a rectifier. A second voltage may be between a terminal of an input control signal source and the internal device ground. To get a control signal value, one may need a differential of those two voltages that can be accomplished with an operational amplifier configured as differential amplifier. A range of an input control signal may be from zero to a particular magnitude of voltage. A reasonably priced operational amplifier might not have an ability provide an output to zero. However, a linearized transistor output stage, having an output that can go to zero, may be connected to an output of the operational amplifier so as to effectively provide an output that goes to zero.
US10658976B1 Low power crystal oscillator
A crystal oscillator with a configuration that allows for reduction of power consumption includes a crystal element, a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistor, a sixth transistor, a seventh transistor, an eighth transistor, a ninth transistor, a crystal element. The crystal element includes a first terminal coupled to a control terminal of the seventh transistor and a second terminal coupled to a first terminal of the seventh transistor. The second transistor includes a control terminal coupled to an output terminal of the crystal oscillator and a first terminal of the ninth transistor.
US10658975B2 Semiconductor device and method
A circuit includes a first digital controlled oscillator and a second digital controlled oscillator coupled to the first digital controlled oscillator. A skew detector is connected to determine a skew between outputs of the first digital controlled oscillator and the second digital controlled oscillator, and a decoder is utilized to output a control signal, based on the skew, to modify a frequency of the first digital controlled oscillator using a switched capacitor array to reduce or eliminate the skew.
US10658972B2 Piezoelectric oscillator and piezoelectric oscillation device
A piezoelectric oscillator includes a base member on which a piezoelectric resonator is mounted, a first lid member that seals the piezoelectric resonator on the base member, and a second lid member that seals the first lid member on the base member. The first lid member and the second lid member are each joined to the base member.
US10658971B2 Photovoltaic module and photovoltaic system including the same
Disclosed are a photovoltaic module and a photovoltaic system including the same. The photovoltaic module includes a solar cell module, a converter to convert a DC voltage from the solar cell module, an inverter to convert the DC voltage from the converter into an AC voltage, and a plug to outwardly output the AC voltage from the inverter, the plug having a ground terminal. The ground terminal is electrically connected to a ground of the inverter, and the ground of the inverter is electrically connected to a ground of the solar cell module. Thereby, the AC voltage from the photovoltaic module is directly supplied to an outlet inside or outside a building.
US10658969B2 Photovoltaic solar roof tile assembly
A method of manufacture of a photovoltaic solar roof tile assembly can include forming a laminated structure by laminating one or more sheets that include at least one photovoltaic solar cell, and attaching a junction box to the laminated structure to form a photovoltaic solar panel. The junction box can include a first DC connector and a second DC connector. Attaching the junction box to the laminated structure can include sealing the first DC connector to the laminated structure. The method of manufacture can include forming a roof tile with a hole that extends from a front side of the roof tile to a rear side of the roof tile, and locating the junction box in the hole by inserting the first DC connector from a front side of the roof tile and attaching the second DC connector from the rear side.
US10658968B2 Near-field based thermoradiative device
A thermoradiative device for generating power includes a thermoradiative element having a top surface and a bottom surface, wherein the thermoradiative element is a semiconductor material having a bandgap energy Eg. The device includes a thermal conductive element having a first surface and a second surface, wherein the first surface is arranged to face the bottom surface of the thermoradiative element, and the first surface is a structured surface having a periodic structure, wherein the structured surface is separated from the bottom surface with a distance d to establish near-field resonance between the bottom surface and the structured surface. The device further includes supporters configured to bond the thermoradiative element and the thermal conductive element.
US10658963B2 Flux observer-based control strategy for an induction motor
A method for regulating operation of an induction motor having a rotor includes calculating a rotor flux angle error value, via a flux observer of a controller, using estimated d-axis and q-axis flux values of the rotor, estimating rotor position using a position observer of the controller, and calculating slip position of the rotor using d-axis and q-axis stator currents. The method also includes estimating a rotor flux angle as a function of slip position and estimated rotor position, calculating a corrected rotor flux angle by selectively adding the rotor flux angle error value to the estimated rotor flux angle, and controlling output torque of the motor using the corrected rotor flux angle. A logic switch may be used to selectively add the rotor flux angle.
US10658957B2 Power tool
A power tool includes a brushless motor, a supplying circuit, and a controller. The brushless motor is configured to drive and rotate when a voltage applied to the brushless motor is larger than or equal to an induced voltage. The supplying circuit is configured to apply a driving voltage to the brushless motor. The controller is configured to control the supplying circuit. The supplying circuit includes a rectifying circuit, a capacitor, and a switching circuit. The rectifying circuit is configured to rectify an alternating voltage and output a rectified voltage. The capacitor is configured to smooth the voltage inputted via the rectifying circuit. The switching circuit is configured to perform a switching operation based on a PWM signal to adjust a period during which the driving voltage is applied. The controller is configured to set a duty ratio within a prescribed range, and output the PWM signal of the set duty ratio to the switching circuit to control the switching operation. The controller is configured to perform a constant-number-of-rotation control for controlling the brushless motor to rotate at a target rotation number by changing the duty ratio. The capacitor has a capacitance allowing a smoothed voltage to be always larger than or equal to the induced voltage during the constant-number-of-rotation control.
US10658954B2 Calibration of 3-phase motor current sensing for surgical robotic actuators
A 3-phase motor driver circuit has a first input to be coupled to an output of a first phase current sensor, and a second input that represents a zero reference. A controller adjusts one or more of a first phase voltage, a second phase voltage, and a third phase voltage, until a comparison between the first input and the input indicates that the first input has reached the zero reference, and in response the controller captures an output of a second phase current sensor and an output of a third phase current sensor. The controller then stores, in memory, calibration data that is based on the captured outputs of the second and third phase current sensors. Other aspects are also described.
US10658953B2 Methods and devices for universal braking, safe start protection, and other motor control for alternating current devices
Included herein is a circuit comprising resistors, capacitors, relays, diode bridges, TRIACs, and DIACs mounted to a substrate. The circuit may be electrically connected to a user device containing a wide range of types and specifications of AC induction motors. The circuit may be installed “plug-and-play” onto a user device, without the need for tools, custom installation or deconstruction of a user device. Upon user direction or automatically, the circuit may inject DC current into the user tool which generates a stationary magnetic field inside the AC induction motor causing deceleration/arrestment of the AC induction motor's rotor. The circuit may prevent unintended acceleration of the rotor upon powering on the user device. Also included is a method for prevention of unintended acceleration of the rotor upon powering on the user device. Also included is a method for decelerating/arresting an AC induction motor.
US10658946B2 Device for determining peak current in inverter
Disclosed is a device for detecting an instantaneous maximum output current of an inverting module as a peak-current thereof. The inverting module converts a direct current (DC) link voltage to an alternate current (AC) voltage, and includes three-phases legs. Each leg has lower and upper switching elements connected in series. The device includes a shunt resistor serially connected to a lower switching element of each leg of the inverting module; a current detection module configured for detecting an output current from a signal output from each shunt resistor; and a summer configured for receiving and summing the detected output currents from the current detection module and outputting the instantaneous maximum output current of the inverting module as the peak-current thereof.
US10658942B2 Element unit
There is provided an element unit including high side arm and low side arm transistors, a conductor set formed by disposing a positive bus bar and a negative bus bar to face each other while spaced apart in a Z axis direction, and a first bus bar. The first bus bar extends in the Z axis direction between a first insulating substrate and a second insulating substrate and is electrically connected to copper plates of the first insulating substrate and the second insulating substrate.
US10658938B2 Initial charging system for medium-voltage inverter and method for controlling the system
The present disclosure relates to an initial charging system for a medium-voltage inverter and a method for controlling the system. The initial charging system comprises: a first switch for switching between a medium-voltage inverter and a power supply thereto; a second switch for switching between an output stage of the medium-voltage inverter and an electric motor; a first initial charging unit disposed between and connected to the first switch and the medium-voltage inverter for limiting an initial excitation current to be applied to the phase-shift transformer; and a second initial charging unit disposed between and connected to an input stage of each power cell and the direct current (DC) link capacitor for limiting an initial charging current in the direct current (DC) link capacitor.
US10658936B2 System and method for controlling a converter circuit
Controlling operation of a converter circuit regulating power transfer between first and second voltage sources includes comparing a detected power value in the converter circuit with a power command value; determining a converter gain based on detected first and second voltage levels of the first and second voltage sources; and determining operation signals for transmitting to switches in the converter circuit during a steady state to control switching time and duration. When the detected power value differs from the power command value, the method includes determining values of two or more variables associated with adjustment of switching time and duration based on the detected first and second voltage levels; and determining operation signals to transmit to the switches during a power transition state based on the determined values of the two or more variables to adjust switching time and switching duration of the switches, thereby regulating power transition.
US10658926B2 Charge pump systems, devices, and methods
The present subject matter relates to charge pump devices, systems, and methods in which a plurality of series-connected charge-pump stages are connected between a supply voltage node and a primary circuit node, and a discharge circuit is connected to the plurality of charge-pump stages, wherein the discharge circuit is configured to selectively remove charge from the primary circuit node.
US10658920B2 Fault-tolerant topology for multilevel T-type converters
Systems and methods of fault tolerant power conversion include an inverter with a plurality of inverter phase legs. Each phase leg includes a positive switch, a negative switch, and a bi-directional midpoint switch. Redundant phase leg includes a positive redundant switch connected between the positive switches and the bi-directional midpoint switches. The redundant phase leg includes a negative redundant switch connected between the negative switches and the bi-directional midpoint switches. Upon detection of a fault condition in at least one switch of the plurality of inverted phase legs, one of the positive redundant switch and the negative redundant switch is closed to bypass at least one switch with the fault condition to maintain operation of the power converter.
US10658918B2 Electronic converter and related control method, control circuit and computer-program
A switching cell includes: a half-bridge circuit including a first electronic switch and a second electronic switch connected in series between a first input terminal and a second input terminal of an electronic converter, wherein a first capacitor is connected in parallel to the first electronic switch and a second capacitor is connected in parallel to the second electronic switch; a first inductor connected between a first output terminal of the electronic converter and an intermediate point between the first electronic switch and the second electronic switch; a second inductor and a first capacitor connected in series between a first terminal of the first inductor and the intermediate point; a switching circuit connected between the first terminal of the first inductor and a second output terminal of the electronic converter; and a third capacitance connected between the first terminal of the first inductor and the second input terminal.
US10658917B2 Synchronous rectification circuit, corresponding device and method
A sense terminal is configured to sense a drain-to-source voltage of a field effect transistor and a drive terminal is configured to drive the gate terminal of the field effect transistor to alternatively turn the field effect transistor on and off to provide a rectified current flow in the field effect transistor channel. A comparator is configured to perform a comparison of the drain-to-source voltage of the field effect transistor with a reference threshold and to detect alternate downward and upward crossings of the reference threshold and the drain-to-source voltage. A PWM signal generator is configured to drive the gate terminal of the field effect transistor to turn the field effect transistor on and off as a result of the alternate downward and upward crossings of the reference threshold by the drain-to-source voltage.
US10658911B2 Switched reluctance motor and application thereof
The present invention belongs to the field of motors, and specifically relates to a switched reluctance motor of a novel structure. The switched reluctance motor includes stator tooth poles and rotor tooth poles, the rotor tooth poles are in rotation fit relative to the stator tooth poles, wherein the number of the stator tooth poles is twice as large as that of the rotor tooth poles; the stator tooth poles are fixedly connected in layers along the direction of a rotation axis, the stator tooth pole with thickness corresponding to the thickness range of the rotor tooth pole is called a rotor tooth pole unit, the stator tooth pole is composed of a stator tooth pole iron core and a stator tooth pole coil sleeved at the outside of the stator tooth pole iron core, an end part of the stator tooth pole iron core forming an air gap with the rotor tooth pole is a concave-convex fit circular arc surface, the cooperation relationship between the stator tooth pole and the rotor tooth pole is that no matter the rotor tooth pole rotates to any angle relative to the stator tooth pole, the center line of at least one layer of stator tooth poles forms an included angle α with the center line of the corresponding rotor tooth pole unit, 0<α≤β, β is an angle of a center of the circle corresponding to the circular arc of a cross section of the stator tooth pole iron core or the rotor tooth pole along the direction of the rotation axis.
US10658910B2 Mirroring of high rotor pole switched reluctance machines
A high rotor pole switched reluctance machine (HRSRM) employs an axial and radial mirroring concept and is represented by a first Multiple Rotor Pole (MRP) formula and second Multiple Stator Pole (MSP) formula. A multiple rotor HRSRM comprises at least two rotors each having a plurality of rotor poles and at least two stators having a plurality of stator poles. The at least two rotors and the at least two stators are positioned about a central axis with the stator placed between the rotors. In other embodiments, the number of stators equals the number of rotors and effectively operate as a single stator and rotor. In yet another embodiment, the effective single stator and rotor type high rotor pole switched reluctance machine is realized as single stator and rotor positioned concentrically around a central axis.
US10658905B2 Rotating electrical machine, compressor system, and pump system
A rotating electrical machine includes a rotating electrical machine body including a stator, a rotor, a fan configured to circulate a coolant for cooling the stator and the rotor, and a casing containing the stator, the rotor and the fan; and a cooler connected to the rotating electrical machine body. The coolant flows from the machine body into the cooler. The cooler cools the coolant. The coolant flows out of the cooler into the machine body. The cooler has a flow resistance Ra satisfying a relation 0.15<(Ra/Rm)<(P0/P1), wherein Ra is a flow resistance of the coolant in the cooler, Rm is a flow resistance of the coolant in the rotating electrical machine body, P0 is a shutoff pressure of the fan, and P1 is a pressure at an operating point of the fan when the flow resistance Ra of the cooler is assumed to be zero.
US10658904B2 Rotating electrical machine
A rotating electrical machine includes: a rotor; a stator; a high voltage bushing; power lines connecting the stator coil to the bushing; a support insulator that supports the power lines; a rotating electrical machine outer casing that contains at least the rotor, the stator and a connection portion between the stator coil and the power lines, and is filled with hydrogen gas; and a terminal box which communicates with the outer casing and is attached to a lower portion of the outer casing, the insulator installed in the terminal box, and terminal box containing at least the power lines supported by the insulator and a part of the bushing connected to the supported power lines. The insulator is installed vertically on a bottom face of the terminal box, and the vertically installed insulator and a portion of the bushing in the terminal box are disposed in parallel with each other.
US10658900B2 Power electronics module and hybrid module with an E-motor power connection
The invention relates to a power electronics module for operating a hybrid module for a hybrid drive unit, said hybrid module includes an E-motor which can produce a drive torque of the hybrid drive unit. The power electronics module includes an E-motor connection on the power electronics module side which has a contact device on the power electronics module side which is connected to the power electronics module for directly connecting to a contact device on the hybrid module side provided on the hybrid module, of a hybrid module-sided E-motor power connection. The invention also relates to a hybrid module for a hybrid drive unit and to a method for mounting and/or assembling a hybrid module for a hybrid drive unit.
US10658899B2 Yoke housing, motor, and method for manufacturing yoke housing
A yoke housing includes a tubular case and a flange. The tubular case is formed from a metal sheet in a drawing process. The flange is formed at an end of the tubular case. The flange has a width in the lateral direction that is equal to the outer diameter of the tubular case. The flange has a base including beads and a thick portion. Each of the beads is formed by compressing the base. A portion of the base in which the beads are not formed defines a thick portion. The thick portion is located at a middle portion of the flange in the lateral direction. The beads are located on opposite sides of the thick portion in the lateral direction.
US10658896B2 Coil for a compressor which can be electrically driven, and corresponding production method
A method for producing a coil of a compressor (1) which can be electrically driven, a coil which is produced in accordance with this method, and a stator and a compressor which can be electrically driven. The production process for the coil includes the steps of: producing (100) a first winding (101) of the coil (12), producing (200) a second winding (102) of the coil (12), and compacting (300) the first winding (101) and the second winding (102) by virtue of an external action of force. A cross-sectional area (111, 112, 111′, 112′) of a wire of the first winding (101) and of the second winding (102) is deformed.
US10658895B2 Rotary electric machine
Coolant flow channels include a main flow channel that is spaced apart from a magnet accommodating aperture on an inner circumferential side, and that passes axially through a rotor core; a magnet cooling flow channel that is formed on an inner circumferential side of a permanent magnet, an inner circumferential surface of the permanent magnet being a portion of the magnet cooling flow channel; and a relay flow channel that passes axially through the rotor core in a state in which the main flow channel and the magnet cooling flow channel are linked, a first end plate opens a first axial end of the main flow channel, and closes a first axial end of the magnet cooling flow channel and the relay flow channel, and a second end plate opens second axial ends of the main flow channel, the magnet cooling flow channel, and the relay flow channel.
US10658894B2 Rotor of motor, motor and pump device
A rotor may include a rotation shaft, a magnet on an outer peripheral side, a holding member holding the rotation shaft and the magnet, and a plurality of recessed parts provided in an end face of the magnet in an axial line direction of the rotation shaft so as to be separated from each other in a circumferential direction. A surface of each of the recessed parts is formed in a spherical shape, the holding member has a flange portion which covers the end face of the magnet from an end on an inner peripheral side of the end face of the magnet to an outer peripheral side with respect to the plurality of the recessed parts, and the flange portion is adhered to the surfaces of the recessed parts.
US10658893B2 Rotary electric-machine rotor
A rotary electric-machine rotor includes: a rotor core made of magnetic material, the rotor core having magnet holes; magnets disposed in the magnet holes; resin portions disposed in at least part of gaps between the magnet holes and the magnets, the resin portions extending in the axial direction; and end plates disposed adjacent to end surfaces in an axial direction of the rotor core. The end plates are members made of magnetic material. The end plates cover end surfaces of the magnets in the axial direction and end surfaces of the resin portions in the axial direction, and each of the end plates having at least one holes disposed in a position that faces at least one part of the end surfaces of the magnets.
US10658890B2 Rotor for rotating electric machines
A rotor for a rotating machine having a number n of poles pairs p that define corresponding direct pole axis (D-axis) and quadrature axis (Q-axis), and including a rotor core having a plurality of magnetically conductive laminations stacked in a rotor axial direction z. The magnetically conductive laminations include cut-out portions forming a plurality of flux barriers extending continuously with respect to the Q axis from a first rim portion to a second rim portion of the magnetically conductive laminations, the flux barriers being radially alternated by flux paths. The plurality of flux barriers form a corresponding plurality of cavities extending in the rotor core along the axial direction z, at least some of the plurality of cavities being filled with an electrically conductive and magnetically non-conductive material. The rotor further includes a plurality of channels spaced circumferentially and along the axial direction z, each of the channels transversally connecting two adjacent cavities of the plurality of cavities, at least some of the channels being filled with a non-magnetically conductive material.
US10658886B2 Magnetically isolated phase interior permanent magnet electrical rotating machine
A rotor for a machine includes a plurality of rotor segments, each rotor segment forming a rotor pole and having two permanent magnets interior to the rotor to direct magnetic flux from the permanent magnets through one rotor pole of one rotor segment, through an air gap of a rotor-stator interface between the rotor and the stator, and through a stator pole, wherein at least one rotor segment comprises a saturatable bridge section comprising a structural arch to cause permanent magnet flux from at least one rotor permanent magnet to traverse through an air region of the rotor to core material of the rotor.
US10658885B2 Motor and manufacturing method of motor
A motor includes a rotor that rotates centered on a central axis extending in an axial direction, and a stator. The stator includes a stator iron core in which a plurality of laminated iron cores each including a tooth portion extending in a radial direction are arranged in a circumferential direction, and coils wound around the tooth portion. The laminated iron core includes a plurality of flat plate-shaped iron core pieces laminated in a plate thickness direction. The iron core piece is made of a non-oriented electromagnetic steel plate. A rolling direction of the iron core piece is inclined with respect to the radial direction. The laminated iron core is preferably formed by laminating the iron core pieces to be arranged with a same inclination. At least a pair of the laminated iron cores adjacent to each other in the circumferential direction has inclinations opposite to each other.
US10658882B2 Techniques for selectively powering devices in wireless power delivery environments
Techniques are described herein for determining which power receiver clients are within a set network and limiting power transmission to these select clients. Ignoring some power requests frees up the wireless power transmission system to preferentially supply power to wireless power receiver clients that are determined to be of higher importance. This may be particularly beneficial within a home or business setting where the wireless power transmission system coverage region extends into locations where unknown devices are located.
US10658880B2 Electronic device for operating powerless sensor and control method thereof
An electronic device performing communication with a powerless sensor is provided. The electronic device includes a wireless charging module configured to wirelessly transmit power to a powerless sensor; and a communication module configured to receive data that is sensed in the powerless sensor using the wirelessly transmitted power.
US10658876B2 Power transmission device, power reception device, and power transmission system
A power transmission device according to one embodiment, includes a first power transmission resonator configured to wirelessly transmits power; a second power transmission resonator configured to wirelessly transmits power; a first power supply configured to output AC power to the first power transmission resonator; and a second power supply configured to output AC power having a frequency different from that of the first power supply to the second power transmission resonator. An operating band of the first power transmission resonator includes the frequency of the first power supply and does not include the frequency of the second power supply. An operating band of the second power transmission resonator does not include the frequency of the first power supply and includes the frequency of the second power supply.
US10658874B2 Method and apparatus for protecting wireless power receiver from excessive charging temperature
An apparatus and a method for are provided for a wireless power receiver. The method includes receiving power from a wireless power transmitter; converting the power in an alternating current (AC) form into a direct current (DC) form and providing the converted power to a battery of the electronic device; measuring a temperature of a point in the wireless power receiver during reception of the wireless power; maintaining an amount of the converted power at a first level if the temperature is lower than a first temperature; decreasing the amount of the converted power to a second level which is lower than the first level if the amount of the converted power is at the first level and the temperature is higher than or equal to the first temperature; stopping providing the converted power to the battery if the temperature is higher than a second temperature; and transmitting, to the wireless power transmitter, a signal including status information of the wireless power receiver device and control information to control the wireless power transmitter.
US10658870B2 Combo antenna unit and wireless power receiving module comprising same
Provided are a combo antenna unit, and a wireless power receiving module including the same. The combo antenna unit includes a wireless power transmission antenna and at least one additional antenna using a different frequency band from the wireless power transmission antenna. The wireless power transmission antenna includes a radiator formed of a loop-shape-wound flat coil. According to the present invention, it is possible to reduce resistance so as to decrease heat generation and increase charging efficiency, and minimize the amount of circuit board used, thereby reducing overall production costs.
US10658868B2 Waveguide housing channels for wireless communications
An apparatus includes a housing for an electronic circuit. The housing includes at least three planes that form a structure to house the electronic circuit. At least one channel is formed along at least one of the three planes to provide a waveguide in the housing for wireless communications. A wireless communications module communicates via the waveguide to control the electronic circuit enclosed in the housing.
US10658867B2 Power supply system and method
A power supply system and method includes a power grid input unit and a diesel generator input unit, separately used for supplying an alternating current to a power supply unit. An automatic transfer switch unit is connected to the power grid input unit and the power supply unit or connected to the diesel generator input unit and the power supply unit, which is used for converting the received alternating current into a direct current. A control unit, which is used for monitoring a current load current and current diesel generator power, determines when to turn off a preset number of power supply loads according to a magnitude relationship between the current diesel generator power and the current load power, as well as according to priority levels of current loads. The power supply system also includes a plurality of loads and at least one storage battery pack.
US10658865B2 Vehicle and power transfer system
A vehicle ECU executes a control process including: a step of determining whether or not contact charging is being performed; a step of executing a first slow change process for requested power if it is determined that contact charging is being performed; a step of determining whether or not wireless charging is being performed if it is determined that contact charging is not being performed; and a step of sending a power transmitting device an instruction for execution of a second slow change process for transmission power if it is determined that wireless charging is being performed.
US10658862B2 Peak power caching in a wireless power system
An information handling system includes a wireless charging module, a capacitor, and a control module. The wireless charging module receives wireless power from a wireless charging pad, and provides power to other components in the information handling system. The control module receives a turbo mode request, and determines whether the wireless charging module of the information handling system has sufficient power delivery capability to enable a turbo mode of the information handling system. The wireless power charging module provides power to the capacitor in response to the turbo mode request being received and the wireless charging module having sufficient power delivery capability. The control module determines whether a first voltage of the capacitor is substantially equal to a second voltage of a second capacitor in the information handling system, and in response to the first voltage being substantially equal to the second voltage the capacitor to provide power for the turbo mode.
US10658856B1 Battery pack and discharge method for limiting an excessive discharge current
A battery management system (BMS) used in a battery pack, the battery pack has a discharging switch coupled between a battery and a load, and the load has a capacitor charged by the battery pack. The BMS has a driver circuit having a power supply terminal to receive a drive voltage, a ground reference terminal coupled to receive the battery pack voltage and an output terminal coupled to a control terminal of the discharging switch. The BMS generates a normal drive voltage and a ramp drive voltage, and the normal drive voltage is selected as the drive voltage when the voltage difference between the battery voltage and the battery pack voltage is less than a threshold voltage, and the ramp drive voltage is selected as the drive voltage when the voltage difference between the battery voltage and the battery pack voltage is higher than the threshold voltage.
US10658851B2 Vehicle-mounted charging system with AC/DC conversion
A battery charge system includes an on board charge module, a high voltage battery pack unit and a controller. The on board charge module includes a power conversion device, a switching unit coupled to the power conversion device, and an electrothermal element coupled to the switching unit. The power conversion device includes an AC/DC converter and a bidirectional DC/DC converter. The AC/DC converter has an input terminal coupled to an AC terminal, and an output terminal coupled to an input terminal of the bidirectional DC/DC converter. The high voltage battery pack unit includes a first switching element and a high voltage battery pack. The high voltage battery pack is coupled through the first switching element to an output terminal of the bidirectional DC/DC converter. The controller is coupled to the power conversion device and the switching unit, and is configured to control the power conversion device and the switching unit.
US10658850B2 Battery module and battery system having the same
Disclosed herein is a battery module that includes an external power supply terminal, a battery cell, a monitoring circuit that monitors a state of the battery cell, and a switch circuit that supplies one of an electric power supplied from the external power supply terminal and an electric power supplied from the battery cell to the monitoring circuit based on a switching signal.
US10658847B2 Method of providing a single structure multi mode antenna for wireless power transmission using magnetic field coupling
A method of providing a single structure multiple mode antenna is described. The antenna is preferably constructed having a first inductor coil that is electrically connected in series with a second inductor coil. The antenna is constructed having a plurality of electrical connections positioned along the first and second inductor coils. A plurality of terminals is connected to the electrical connections that facilitate numerous electrical connections and enables the antenna to be selectively tuned to various frequencies and frequency bands.
US10658845B2 Method and system for droop control of power systems
There is provided a system that includes a processor. The system also includes a memory that stores instructions; when executed by the processor, the instructions configure the processor to perform certain operations. The operations include receiving sensor measurements from an electric power source or device and generating, based on the sensor measurements, a droop control procedure that includes a droop control curve having a non-constant slope. The operations further include regulating a power delivery from the electric power source or device to a bus according to the droop control procedure.
US10658839B2 Establishing communication and power sharing links between components of a distributed energy system
Disclosed herein is a method and system for sharing power or energy across various power supply and control modules. More specifically, disclosed herein are systems and methods for distributing energy. As explained herein, the method discloses receiving, at a microgrid, data from a plurality of data sources. The data is then analyzed to forecast power needs associated with the microgrid. Using the data, the microgrid may determine whether and when to share power with the requesting module.
US10658838B2 Method and system for establishing a power feed to systems during operation
A method of adding a power feed to electrical systems includes coupling a set of input lines to a power source such that the input lines are connected to at least one phase of AC power from the power source, and coupling a set of backfeed lines to an output receptacle in a power distribution unit. The output receptacle may be connected in parallel with at least one other output receptacle that is supplying primary power to systems in the data center. The set of backfeed lines and the set of input lines may be tested to determine a match between a pair of lines in the set of backfeed lines and a pair of lines in the set of input lines. Determining the match may include matching the phase of the pair of backfeed lines with the phase of the pair of input lines.
US10658834B2 Receptacle, circuit protection system, and circuit interrupter with over-temperature detection
A receptacle includes an outlet, an interruption mechanism structured to activate to de-energize the outlet, a temperature sensing circuit including a resistor and a thermistor arranged as a voltage divider, wherein the thermistor has a resistance proportional to temperature, a comparator circuit structured to compare an output of the temperature sensing circuit to a predetermined reference voltage and to selectively output a signal based on the comparison of the output of the temperature sensing circuit and the predetermined reference voltage. The interruption mechanism is structured to activate to de-energize the outlet in response to the comparator circuit outputting the signal.
US10658833B2 Conductor temperature detector
Various implementations described herein are directed to a method for detecting, by a device, an increase in temperature at certain parts of an electrical system, and taking appropriate responsive action. The method may include measuring temperatures at certain locations within the system and estimating temperatures at other locations based on the measurements. Some embodiments disclosed herein include an integrated cable combining electrical conduction and heat-detection capabilities, or an integrated cable or connector combining electrical conduction with a thermal fuse.
US10658830B2 Power system and method of forming the same
The power system may include a main circuit arrangement having a power source, a load and a circuit breaker. The power system may additionally include an energy harvesting circuit arrangement connected to the main circuit arrangement. The energy harvesting circuit arrangement may include an operating switch and an energy harvester. The power system may also further include a trigger mechanism, which may be configured to, when detecting a current above a predetermined value in the main circuit arrangement, trigger the circuit breaker to switch from a closed mode to an open mode. The trigger mechanism may also be configured to trigger the operating switch to switch from an open mode to a closed mode for a predetermined duration, and back to the open mode after the predetermined duration, thereby storing electrical energy in the energy harvester.
US10658828B2 System for connecting submarine cables
The system for connecting submarine cables and especially umbilical cables for renewable marine energy farms, is characterized in that it includes an intermediate part for connecting the cables, adapted to be placed between ends for connecting the cables and includes both electrical and mechanical connections for the cables.
US10658824B2 Method and apparatus for removing a cable core from a cable sheath
Apparatus and method for extracting the core and surrounding insulator from an outer sheath of a length of data transmission cable is disclosed. The apparatus comprises a pump operable to generate hydraulic pressure against one end of the core and insulator, and a drawing mechanism operable to simultaneously exert a pulling force on an opposite end of the core and insulator. The arrangement being such that hydraulic pressure applied to one end, and pulling force applied to the opposite end, together displace the core and insulator relative to its outer sheath.
US10658823B2 Hand assist pushing tool for cables
A pushing tool for propelling cable into a duct. The pushing tool includes a drive wheel that is coupled with a base and a rotatable handle. A first cable guide and a second cable guide are configured to hold the cable. A duct guide is configured to hold the duct. Furthermore, a tension wheel is configured to interact with the drive wheel such that an orifice is formed between the tension wheel and the drive wheel, the orifice being configured to receive the cable. Upon rotation of the rotatable handle, the drive wheel interacts with the tension wheel to propel the cable into the duct.
US10658822B2 Remote manipulator for manipulating live multiple sub-conductors in a single phase bundle
A manipulator for separating sub-conductors in an energized single phase bundle includes a rigid support member and first and second actuators mounted on the support member, wherein each actuator is independently actuable of the other. Insulators are mounted on each actuator. A selectively releasable coupler is mounted on each insulator for selectively releasable coupling of each insulator to a corresponding sub-conductor. The actuators extend corresponding insulators independently of one another from the support member to thereby separate from each other by an optimized separation distance the distal ends of each insulator. When the corresponding sub-conductors of the single phase bundle are releasably coupled to the corresponding distal ends of the insulators the surge impedance loading of the single phase bundle may be improved by separation of the corresponding distal ends of the insulators and the sub-conductors by the optimized separation distance.
US10658819B1 Alternating current bussing connector
A bussing connector is provided and includes bus bar connections, output elements and dielectric material. The bus bar connections each include an output section and an input section. The input sections cooperatively form a multiphase alternating current (AC) input. The output elements are arranged along and in electrical communication with the output sections of each of the bus bar connections. The dielectric material is configured to partially surround and partially electrically insulate the input and output sections and the output elements of each of the bus bar connections. The dielectric material is further configured to expose the multiphase AC input and portions of each of the outlet elements of each of the bus bar connections.
US10658812B2 Eye-safe light source
Light emission efficiency is increased in an eye-safe light source by regulating light distribution properties. An eye-safe light source includes a package, a semiconductor laser that emits laser light from a left light emission end surface and a right light emission end surface, and a wire that is joined to the semiconductor laser. The semiconductor laser is joined to the package such that the laser light is emitted parallel to an upper surface of a lead frame of the package. The package includes reflection surfaces that face the left light emission end surface and the right light emission end surface and reflect the laser light. In top view, a direction in which the wire extends is perpendicular to a direction of emission of the laser light.
US10658807B2 Terminal bending tool
A terminal bending tool comprises a plate, a plurality of receiving grooves, and a plurality of rollers. The plate extends in a first horizontal direction. The receiving grooves are disposed in the plate in a row along the first horizontal direction. The rollers are pivotally mounted in the receiving grooves. A terminal is received and positioned in a first receiving groove and is in contact with an outer circumferential surface of a first roller. When the terminal bending tool is moved in a vertical direction perpendicular to the first horizontal direction, the first roller rotates and moves along a surface of the terminal while pressing and bending the terminal.
US10658805B2 Mounting assembly for an electrical fixture
A mounting assembly for an electrical fixture can include an upper unit and a lower unit that be releaseably retained together and including respective contacts that touch when the upper and lower units are retained together to create an electric pathway. The units can further include respective contacts for a neutral or ground connection. The assembly can also include a device in electrical contact with both of the contacts of the lower unit to draw power. The lower unit can also include a third contact and a power distribution circuit to deliver a level of electrical power to the third contact that is different than power available through the other contact of the lower unit. In a system of the mounting assemblies, each mounting assembly can include also include a transceiver to communicate with one another.
US10658803B2 Circuit board coaxial connector
The present invention relates to an adapter (1) for a coaxial connector assembly (2) comprising a tubular outer conductor (3) and a pin-shaped inner conductor (4) both extending in a mounted position in a longitudinal direction (z) and a spacer (5) which in the mounted position is arranged inside the outer conductor (3) encompassing the inner conductor (4) at least partially and by which the inner conductor (4) is positioned with respect to the outer conductor (3). The spacer (5) comprises a first half (5a) and a second half (5b) which are interconnectable to each other along a separation plane extending in the longitudinal direction (z), wherein the first and/or the second half (5a, 5b) comprise at least one holding means (6) to hold the inner conductor (4) in the mounted position.
US10658802B2 Gravity plug and connector
A plug comprising: a plurality of pins or a plurality of sockets; a body portion housing the plurality of pins or the plurality of sockets and the body portion extending parallel to a longitudinal axis of the plurality of pins or the plurality of sockets; a connection section connected to the body portion and extending from the body portion at an obtuse angle; and a cord connected to an end of the connection section; wherein the body portion and the connection section are connected at a joint and the joint includes a sub-flush radius on an underside of the joint.
US10658800B1 Power supply assembly
A power supply assembly for powering and recharging an electronic device includes a power supply unit that is positioned in a housing. The power supply unit is configured to convert alternating current to direct current. A first plug that is operationally coupled to the power supply unit is configured to couple the power supply unit to a source of alternating current. A cord is selectively extensible from and retractable into the housing. The cord is operationally coupled to the power supply unit. A first coupler is coupled to the cord and is positioned external to the housing. Each of a plurality of adaptors is configured to couple a respective electronic device through the first coupler and the cord to the power supply unit. The power supply unit is configured to supply the direct current to power the respective electrical device and to recharge a battery of the respective electrical device.
US10658796B2 Shielding metal plate
The invention relates to a shielding metal plate (3) suitable for connecting at least one shielded conductor. The shielding metal plate (3), which can be held in a housing of a plug connector, protects the held conductor from external, interfering influences. The shielding metal plate (3) can be variably adapted to different conductor cross-sections such that both thin and thick conductors can be connected.
US10658795B2 Cable assembly
A cable assembly includes a plurality of wires and a plurality of electrical contacts. The electrical contacts include contact sections and wire connection sections, and the wire connection sections of the electrical contacts are respectively connected to the wires. Two adjacent electrical contacts for transmitting signals have a first center distance and a reduced center distance. The first center distance is adjacent to the contact sections, and the reduced center distance is between the first center distance and the wire connecting sections. In addition, the first center distance is greater than the reduced center distance to improve signal integrity.
US10658793B2 Reversible power and data connector assembly
A system includes a first electrical connector and a first multiplexer. The first electrical connector has multiple electrical contacts including at least a first data contact, a second data contact, a first power contact and a second power contact. The first multiplexer has a first data input, a second data input and a selector. The first data input is coupled to the first data contact. The second data input is coupled to the second data contact. The selector is coupled to the first power contact or the second power contact. The first multiplexer is configured to; direct the first data input to a first bus and direct the second data input to a second bus, or direct the first data input to the second bus and direct the second data input to the first bus, depending whether a voltage is present at the selector.
US10658790B2 Splice connector assemblies with sealing gland
Various splice connector assemblies are disclosed. The splice connector assembly can include a connection unit mating a female and male terminals. The splice connector assembly can include an outer housing with an inner passage configured to receive the terminals. A first securing mechanism can be engaged with a first end of the outer housing and a second securing mechanism can be engaged with a second end of outer housing. The first and second securing mechanisms can each include a coupling nut engaged with the housing, a washer that is non-rotatably connected to the housing, and a sealing gland that comprises an aperture having a non-concentric cross sectional shape.
US10658789B1 High speed connector with magnetic engagement mechanism
A high speed connector with magnetic engagement mechanism includes a cable end connector and a plate end connector combined with each other; the cable end connector having a cable end body member and a resilient pin connected with a cable; the plate end connector being on a PCB and having a plate end body member and a connection terminal; the cable end body member having a concave portion on a plug end of the cable end body member; the resilient pin being disposed in the concave portion; the plate end body member having a convex portion on a plug end of the plate end body member; the convex portion and a plane of the plug end of the plate end body member including a 20-degree angle. Therefore, the signal integrity is improved, and the safety issue due to an abnormal plugging is prevented.
US10658786B2 Casing for connecting power cords
A casing for connecting first and second power cords, the casing having a set of grip mechanisms with facing grip members that have serrated surfaces arranged to grip the first power cord and provide increased grip pressure in response to tension applied to the first power cord in order to resist the first power cord being pulled through the grip members and out of the casing.
US10658782B2 Stop spring for a contact device, electrical contact de-vice assembly as well as electrical connector
A contact stop spring and contact assembly are disclosed. The contact assembly has a contact housing with a contact chamber and a contact resiliently held in the contact chamber by the contact stop spring.
US10658773B2 Deformable tubular contact with radial recess around contacting region
An electrical contact of an electrical connector includes a mounting leg for being retained within a through hole of the printed circuit board wherein the mounting leg is tubular and is radially deformable to abut against an interior surface of the through hole. The mounting leg is radially thinned in thickness to confront the interior surface of the hole. The mounting leg is formed by rolling a metal plate with a C-shaped cross-section thereof. There are two thinned areas of the mounting leg, symmetrically located by two sides of the slit of the C-shaped cross-sectional configuration.
US10658771B2 Angled bolt T-bar battery terminal clamp
A battery terminal clamp has a body portion with an intermediate aperture for engaging a battery post. The clamp further includes a threaded rod extending upwardly relative to the body portion at an angle to the horizontal of between 45° and 60°. A battery pull bar extends from one side wall to the opposite side wall of the body portion. A wedge-shaped element abuts one side wall of the body portion. Together with the battery pull bar, the wedge-shaped element alternately effects a reduction in, or increase in, the size of the intermediate aperture.
US10658770B1 Press and spring-back type terminal block
A press and spring-back terminal block, includes a housing (1), a conductive terminal (2), a retainer assembly (3) and a rocker (4). The conductive terminal (2) is arranged inside the housing (1). The retainer assembly (3) includes a control member (30) and an elastic sheet (31) actuated by the control member (30). The elastic sheet (31) includes a stopping edge (310) and a retaining end (311) extended from the stopping edge (310) and toward the conductive terminal (2). When the control member (30) is actuated, it is abutted by the stopping edge (310) to allow the retaining end (311) to swing toward one side away from the conductive terminal (2). The rocker (4) is arranged inside the housing (1) and includes a first end portion (41) opposite from the lead wire insertion hole (11) and a second end portion driven to move relative to the control member (30).
US10658769B1 Electronic device
An electronic device includes a casing, a circuit board, an electronic component and a fixing member. The casing includes a fixing pillar and at least one rib. The rib is connected to a periphery of the fixing pillar. The circuit board includes a through hole. The fixing pillar is disposed in the through hole. The circuit board abuts against a second top surface of the rib. A thickness of the circuit board is smaller than a height between a first top surface of the fixing pillar and the second top surface of the rib. The electronic component includes a first metal member. A first ground end of the first metal member is disposed on the first top surface of the fixing pillar. A gap exists between the first ground end and the circuit board. The fixing member fixes the first ground end to the fixing pillar.
US10658768B2 Earth terminal mounting structure
An earth terminal mounting structure includes a boss protruding from a conductive case; and an earth terminal fixed to a distal end surface of the boss. The earth terminal is provided with a terminal-side stopper that extends along a side surface of the boss. A boss-side stopper having a protrusion shape is provided on the side surface of the boss. The boss-side stopper faces the terminal-side stopper in a circumferential direction of the boss. The terminal-side stopper and the boss-side stopper restrict rotation of the earth terminal in a clockwise direction and in a counter-clockwise direction.
US10658763B2 Per-element power control for array based communications
An array based communications system may comprise a plurality of element processors. Each element processor may comprise a combining circuit, a crest factor circuit, and a phase shifter circuit. The combining circuit may produce a weighted sum of a plurality of digital datastreams. The crest factor circuit may be operable to determine whether the weighted sum has a power above or below a power threshold. If the power is above the power threshold, the crest factor circuit is operable to reduce the power. If the power is below the power threshold, the crest factor circuit is operable to increase the power. The phase shifter circuit may introduce a phase shift to out-of-band components of the weighted sum according to the power increase or the power decrease by the crest factor circuit.
US10658750B2 Reduced gain of an antenna beam pattern
The present disclosure relates to a wireless communication node (1) comprising at least one antenna arrangement (2, 2′, 2″). Each antenna arrangement (2, 2′, 2″) comprises at least one antenna port (3), at least two antenna elements (4a, 4b, 5a, 5b, 6a, 6b, 7a, 7b) arranged for providing an antenna beam pattern (8), and a phase control arrangement (9, 9′, 9″) arranged to receive at least one input signal (10) via said antenna port (3) and to determine a plurality of intermediate signal components (11) from said input signal (10) by determining a first set of respective phase shifts (φ1, φ2, 10 φ3, φ4; θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8) for said input signal (3). The phase control arrangement (9) is further arranged to determine a final signal component (12) for each antenna element (4a, 4b, 5a, 5b, 6a, 6b, 7a, 7b) from said intermediate signal components (12) by determining a second set of respective phase shifts (β1, β2, β3, β4: Φ1, Φ2, Φ3, Φ4, Φ5, Φ6, Φ7, Φ8) for said intermediate signal components (12), wherein the second set of phase shifts (β1, β2, β3, β4; Φ1, Φ2, Φ3, Φ4, Φ5, Φ6, Φ7, Φ8) is arranged to provide a lowered gain of the antenna arrangement (2, 2′, 2″) in at least one direction (D). The present disclosure also relates to a corresponding method.
US10658747B2 Antenna arrangement and method for antenna arrangement
An antenna arrangement is described. The antenna arrangement comprises an antenna array that includes a first antenna element having a first feed point, and a second antenna element having a second feed point. The antenna arrangement further comprises a signal processing device configured to receive an input signal (Sin), obtain a first complex weight (w1), obtain a second complex weight (w2), generate a first feed signal (a1) based on the input signal (Sin) and the first complex weight (w1), generate a second feed signal (a2) based on the input signal (Sin) and the second complex weight (w2), provide the first feed signal (a1) to the first feed point, and provide the second feed signal (a2) to the second feed point so as to control the frequency characteristic of the antenna array. A method for such an antenna arrangement is also described.
US10658746B2 Wireless module and image display device
A wireless module includes a substrate, a ground pattern disposed on the substrate, a first antenna, a second antenna, and a base plate that is conductive. The first antenna is disposed between one end of the substrate and the ground pattern, and includes a grounding part and a first power feeding part, the grounding part is connected to the ground pattern, and the first power feeding part is fed with a first signal. The second antenna is disposed between the other end of the substrate and the ground pattern, and includes a second power feeding part fed with a second signal. The base plate includes a first opposed portion that faces the first antenna, a second opposed portion that faces the second antenna, and a third opposed portion that faces the ground pattern and is short-circuited to the ground pattern. The base plate also has, on the third opposed portion, a short-circuit point at which the base plate and the ground pattern are short-circuited to each other. The short-circuit point is disposed on the third opposed portion at a position nearer to the first opposed portion than to the second opposed portion.
US10658744B2 Antenna, shielding and grounding
A portable computing device is disclosed. The portable computing device can take many forms such as a laptop computer, a tablet computer, and no on. The portable computing device can include a single piece housing formed from a radio opaque material with a cover formed from a radio transparent material. To implement a wireless interface, an antenna stack-up can be provided that allows an antenna to be mounted to a bottom of the cover. Methods and apparatus are provided for improving wireless performance. For instance, in one embodiment, a metal housing can be thinned to improve antenna performance. As another example, a faraday cage can be formed around speaker drivers to improve antenna performance.
US10658742B2 Antenna device
An antenna device includes an antenna base including a plurality of first fitting parts, the plurality of first fitting parts being arranged with mutual spaces therebetween in a periphery edge part of the antenna base, an antenna case fixed to the antenna base, an antenna part arranged in a space enclosed by the antenna base and the antenna case, and a cover member including a plurality of a second fitting parts, each of the plurality of the second fitting parts fitting with each of the plurality of the first fitting parts.
US10658740B2 Antenna unit and wireless power transmission module including same
Provided are an antenna unit and a wireless power transmission module. There is provided an antenna unit that includes a circuit board, and a first antenna pattern formed on a surface of the circuit board for wireless power transmission and formed of a single conductor including a plurality of windings. The single conductor has a different line width depending on position. There is provided a wireless power transmission module that includes any one of the antenna units, and a shielding unit disposed on one surface of the antenna unit and configured to shield a magnetic field.
US10658736B2 Dominant H-field multiband loop antenna including passive mixer
An antenna. The antenna includes a plurality of loop antennas sharing a common gap. The antenna also includes a nonlinear mixing component connected to the gap and configured to collect energy from at least one of the plurality of loop antennas.
US10658733B2 Mobile terminal
A mobile terminal can include a terminal body having a display unit disposed on one surface thereof; a frame supporting the display unit; a metal member spaced apart from the frame and exposed to an outside of the mobile terminal; a plurality of connecting members connecting the metal member to the frame and grounding the metal member; and an antenna unit disposed adjacent to the frame and including a radiator configured to radiate wireless signals in a first frequency band, in which the metal member is divided into specific areas by the plurality of connecting members, and one area located adjacent to the radiator, is configured to generate a parasitic resonance at a second frequency band different from the first frequency band, and the plurality of connecting members connected to the metal member are spaced apart from one another at different intervals.
US10658731B2 Antenna device and electronic device comprising same
According to various embodiments, there may be provided an electronic device including a housing having a plurality of sides, a first conductive member constructing at least part of the plurality of sides, a second conductive member disposed inside the housing, a first sensor circuit which provides a first output indicating a first capacitance value related to the first conductive member and/or a change to the first capacitance value, a second sensor circuit which provides a second output indicating a second capacitance value related to the second conductive member and/or a change to the second capacitance value, and a control circuit which receives the first and second outputs from the first and second sensor circuits. In addition, other embodiments are also possible.
US10658730B2 Multi-feeds metal cover antenna for gas detection devices
In an embodiment, an apparatus (e.g., a gas detection device) includes a housing, a printed circuit board (PCB), one or more radio modems with a switching network. The housing includes a conductive cover and the cover plays as an antenna. The PCB may be fixed in the housing and includes a ground plane and a plurality of conductive feeds. Each feed are vertically mounted directly or indirectly on the PCB. When the cover is attached to the housing, each of the feeds electrically contact a respective connection point on the antenna. The switching network is to configure which feed should be connected to the radio modem. A extra grounding resistor is mounted or not to change antenna type to enhance the performance of antenna.
US10658728B2 Antenna assembly for vehicle
An antenna assembly for a vehicle may include: a cover into which a lower end portion of an antenna is inserted; a base coupled to a lower side of the cover to form an internal compartment; a circuit board mounted on an upper surface of the base to be connected to the lower end portion of the antenna; a terminal mounted to the base wherein an upper end portion thereof is connected to the circuit board and a lower end portion thereof penetrates into the base; a wire connector disposed at the lower end portion of the terminal to be connected to a power wire; and a rotating pin coupling the wire connector with the terminal, wherein the wire connector may be rotatable about the rotating pin.
US10658724B2 Waveguide with a non-linear portion and including dielectric resonators disposed within the waveguide
At least some aspects of the present disclosure feature a waveguide for propagating an electromagnetic wave. The waveguide includes a base material and a plurality of resonators disposed in a pattern, the plurality of resonators having a resonance frequency. Each of the plurality of resonators has a relative permittivity greater than a relative permittivity of the base material. At least two of the plurality of resonators are spaced according to a lattice constant that defines a distance between a center of a first one of the resonators and a center of a neighboring second one of the resonators.
US10658723B1 Integrated high pass filter for microwave system in package
A high pass filter includes: an input-impedance-matching taper transition metal layer having an IMT input end and an IMT output end, the IMT input end having an IMT input end width, the IMT output end having an IMT output end width that is wider than the IMT input end width; a substrate integrated waveguide having a SIW input end and a SIW output end; and an output-impedance-matching taper transition metal layer having an OMT input end and an OMT output end, the OMT input end having an OMT input end width, the OMT output end having an OMT output end width that is wider than the OMT input end width. The substrate integrated waveguide is arranged such that the IMT output end is electrically connected to the SIW input end and such that the OMT input end is electrically connected to the SIW output end.
US10658713B2 Cooling device for stored energy sources
A cooling device for stored energy sources, in particular for motor vehicles, is provided. The cooling device includes: multiple separate cooling modules, through which coolant can flow, for absorbing heat from the stored energy source, each module having an inflow and an outflow; a common feed line, from which the inflows of the cooling modules branch off; and a common discharge line, into which the outflows of the cooling modules open.
US10658710B2 Secondary battery structure and system, and methods of manufacturing and operating the same
A secondary battery structure includes a first electrode structure including a plurality of first electrode elements spaced apart from each other and disposed in a form of an array, a second electrode structure spaced apart from the first electrode structure and including a second electrode element, and an electrolyte which allows ions to move between the first electrode structure and second electrode structure, where the first electrode structure and the second electrode structure define a cathode and an anode, and the number of the first electrode elements and the number of the second electrode element are different from each other.
US10658707B2 Detection system
A detection system includes a power generation element; a first outer cover body enveloping the power generation element; a second outer cover body located between the power generation element and the first outer cover body, and enveloping the power generation element; a first space section enclosed by the first outer cover body and the second outer cover body; a second space section enclosed by the second outer cover body; and a detection unit that detects “a gas in the first space section” and “a gas in the second space section.”
US10658704B2 Method of manufacturing electrode laminate and method of manufacturing all-solid-state battery
A method of manufacturing an electrode laminate, which includes an active material layer and a solid electrolyte layer formed on the active material layer, includes: an active material layer forming step of forming an active material layer; and a solid electrolyte layer forming step of forming a solid electrolyte layer on the active material layer by applying a solid electrolyte layer-forming slurry to the active material layer and drying the solid electrolyte layer-forming slurry. In this method, a surface roughness Ra value of the active material layer is 0.29 μm to 0.98 μm when calculated using a laser microscope.
US10658702B2 High-performance thin-film battery with an interfacial layer
An all solid-state lithium-based thin-film battery is provided. The all solid-state lithium-based thin-film battery includes a battery material stack of, from bottom to top, an anode-side electrode, an anode region, an aluminum oxide interfacial layer, a solid-state electrolyte layer, a cathode layer, and a cathode-side electrode layer. The all solid-state lithium-based thin-film battery stack is formed by first forming the anode-side of the battery stack and thereafter forming the cathode-side. All solid-state lithium-based thin-film batteries including the aluminum oxide interfacial layer located between the anode region and the solid-state electrolyte layer have improved performance, high capacity, and high reliability.
US10658699B2 Electrolyte for lithium secondary battery and lithium secondary battery employing the same
An electrolyte for a lithium secondary battery, the electrolyte including: a lithium salt, an organic solvent, and an organic fluorinated ether compound represented by Formula 1: CH3—CH2—O—CF2—CHF—R1  Formula 1 wherein, in Formula 1, R1 is a C1-C10 alkyl group, a C3-C10 cycloalkyl group, a C1-C10 fluorinated alkyl group, or a C3-C10 fluorinated cycloalkyl group.
US10658698B2 Peo-based graft copolymers with pendant fluorinated groups for use as electrolytes
Syntheses of graft copolymers based on PEO and fluorinated functional groups are described. Grafting of fluorinated groups reduces the Tm of PEO and also increases the miscibility of PEO with ionic liquids, so that addition of ionic liquids improves ionic conductivity even at room temperature. The disclosed copolymers containing fluorinated functionality have superior safety and are more flame retardant as compared to traditional electrolytes. Such copolymers can be used as either solid or gel electrolytes in Li batteries.
US10658697B2 Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic device
A secondary battery is provided. The secondary battery includes a positive electrode, a negative electrode including a carbon material and a silicon-based material; and an electrolyte layer. The electrolyte layer includes an electrolytic solution and a polymeric compound and has one or more through-holes extending in a thickness direction of the electrolyte layer.
US10658695B2 Battery having a prismatic metal housing
A battery has a prismatic metal housing that includes a rectangular base having a base inner side and a base outer side, a rectangular cover having a cover inner side and a cover outer side, the size and shape of which substantially correspond to that of the base, and four rectangular side elements connecting the base and the cover and each have an inner side and an outer side. The at least one individual cell is a winding having a first and a second end face and the first end face faces in the direction of the base and the second end face faces in the direction of the cover. Conductor vanes electrically connect to the base of the metal housing exit from the first end face. These are fixed to an electrically conductive collecting and positioning means inserted into a receiving means in the base of the metal housing and fixed therein.
US10658691B2 Method for manufacturing inorganic electrolyte membrane having improved compactness, composition for manufacturing inorganic electrolyte membrane, and inorganic electrolyte membrane manufactured using same
Disclosed are a method of manufacturing an inorganic electrolyte membrane and a composition for manufacturing an inorganic electrolyte membrane, the method including: (a) mixing primary inorganic particles (<50 nm), a dispersant, and a solvent and dispersing the primary inorganic particles, thus preparing a dispersion of secondary inorganic particles having a hydrodynamic diameter of 120 to 230 nm, determined using DLS (Dynamic Light Scattering), (b) adding and mixing the dispersion of secondary inorganic particles with a binder, (c) applying a mixed solution composed of the dispersion of inorganic particles and the binder and drying the mixed solution, thus forming a green sheet, and (d) firing the green sheet, thus forming an electrolyte membrane.
US10658687B2 Air shut-off valve apparatus for fuel cell system and method of controlling same
An air shut-off valve apparatus for a fuel cell system and a method of controlling the same are provided. In particular, hydrogen injected into a fuel cell stack is discharged by being diluted with external air when starting the fuel cell system. The apparatus includes a valve body that has an inlet air path connected to a cathode of the fuel cell stack and through which air injected into the fuel cell stack flows, and an outlet air path through which air discharged from the fuel cell stack flows. A bypass body is provided and includes a bypass air path that connects the inlet air path and the outlet air path and a valve flap is disposed at the valve body and opens and closes the inlet and outlet air paths at a first side thereof, and the bypass air path at a second side thereof.
US10658681B2 Separator for fuel cell and fuel cell stack
An object is to equalize the level of cooling along a top-bottom direction of a fuel cell stack. A fuel cell stack has an anode-side separator placed between a plurality of membrane electrode assemblies. The anode-side separator comprises a separator center area that is arranged to face a power generation area of the membrane electrode assembly; an outer peripheral portion that is extended from the separator center area to outer periphery and has a plurality of openings for cooling medium supply manifolds; and a rib that is firmed from a beam portion provided to separate the adjacent openings for cooling medium supply manifolds from each other, over an area between the openings for cooling medium supply manifolds and the separator center area.
US10658679B2 Printed energy storage device
A printed energy storage device includes a first electrode including zinc, a second electrode including manganese dioxide, and a separator between the first electrode and the second electrode, the first electrode, second, electrode, and separator printed onto a substrate. The device may include a first current collector and/or a second current collector printed onto the substrate. The energy storage device may include a printed intermediate layer between the separator and the first electrode. The first electrode, and the second electrode may include 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode and the second electrode may include an electrolyte having zinc tetrafluoroborate (ZnBF4) and 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode, the second electrode, the first current collector, and/or the second current collector can include carbon nanotubes. The separator may include solid microspheres.
US10658670B2 Anode including functionalized metal oxide nanoparticles, a method for manufacturing the anode, a secondary battery including the anode, and a device including the secondary battery
An anode includes a thin film of an anode material; and a protective layer that is formed on the thin film of the anode material, that is composed of functionalized metal oxide nanoparticles, which are lithium-terminated sulfonated metal oxide nanoparticles, and that has a thickness of 300-5000 nm. A method for manufacturing the anode includes dispersing the functionalized metal oxide nanoparticles into a dispersion medium to form a dispersion; dipping a substrate into water, and introducing the dispersion thereto so that the functionalized metal oxide nanoparticles form a self-assembled molecular film on the water surface; lifting the substrate over the water surface to transfer the self-assembled molecular film onto the substrate, thereby providing a substrate coated with a functionalized metal oxide film; and transferring the functionalized metal oxide film onto the thin film of the anode material to provide an anode coated with the functionalized metal oxide film.
US10658668B2 Lithium-sulfur accumulator
A lithium-sulfur battery which includes an electrolyte containing lithium-ions, an anode and a cathode containing sulfur. The lithium-sulfur battery also contains a surface layer which is arranged between the anode and the cathode. The lithium-sulfur battery further includes areas on the cathode side which contain polysulfides. The surface layer of the lithium-sulfur battery contains at least one graphene layer which is permeable to lithium ions and impermeable to polysulfides.
US10658665B2 Lithium ion secondary battery having a negative electrode active material formed of a graphite material and a conductive carbon material different from the graphite material
A lithium ion secondary battery, improved in durability against high-rate charging/discharging, which includes, in the negative electrode active material layer, a negative electrode active material formed of a graphite carbon material having a graphite structure in at least a part thereof, and a conductive carbon material, which is different from the graphite carbon material and is formed of a conductive amorphous carbon. The negative electrode active material has a bulk density of 0.5 g/cm3 or more and 0.7 g/cm3 or less, and a BET specific surface area of 2 m2/g or more and 6 m2/g or less. The conductive carbon material has a bulk density of 0.4 g/cm3 or less, and a BET specific surface area of 50 m2/g or less.
US10658659B1 Electroactive materials for metal-ion batteries
The invention relates to a particulate material comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework comprising micropores and mesopores having a total pore volume of at least 0.6 cm3/g and no more than 2 cm3/g, where the volume fraction of micropores is in the range from 0.5 to 0.9 and the volume fraction of pores having a pore diameter no more than 10 nm is at least 0.75, and the porous carbon framework has a D50 particle size of less than 20 μm; (b) silicon located within the micropores and/or mesopores of the porous carbon framework in a defined amount relative to the volume of the micropores and/or mesopores.
US10658655B2 Copper foil having improved workability and charge/discharge characteristics, electrode including the same, secondary battery including the same and method for manufacturing the same
Disclosed is a copper foil including a copper layer having a matte surface and a shiny surface, wherein the copper foil has a first surface of a direction of the matte surface of the copper layer and a second surface of a direction of the shiny surface of the copper layer, wherein a dynamic friction coefficient of the first surface is designated by μk1 and a dynamic friction coefficient of the second surface is designated by μk2. A ratio of three-dimensional surface area to two-dimensional surface area of the first surface is designated by Fs1, a ratio of three-dimensional surface area to two-dimensional surface area of the second surface is designated by Fs2.
US10658654B2 Composite anode active material, anode including the same, and lithium secondary battery including the anode
A composite anode active material includes: a core comprising silicon; and a carbonaceous shell, wherein the carbonaceous shell includes a carbonaceous material and lithium titanium oxide.
US10658647B2 Secondary battery and battery module
The present disclosure provides a secondary battery and a battery module. The secondary battery includes: a shell having an opening; an electrode assembly including a first electrode plate, a second electrode plate, and a separator; a cap assembly including a cap plate and a first electrode terminal; a lower insulator located at a side of the cap plate away from the terminal board; and a wiring board including a main body portion and an extension portion, wherein the main body portion is located at a side of the lower insulator away from the cap plate and connected to the first electrode plate, the extension portion extends into the electrode lead-out hole and connected to the first electrode terminal, the first electrode plate is electrically connected to the first electrode terminal through the wiring board, and the first electrode terminal does not extend beyond a lower surface of the lower insulator.
US10658646B2 Integrated current collector for electric vehicle battery cell
Systems and methods to power an electric vehicle are provided. The system can include a battery pack having a plurality of battery modules, each of the of battery modules can include a plurality of battery blocks. The battery blocks can include a plurality of cylindrical battery cells. An integrated current collector device can be formed in a single structure and coupled with the plurality of cylindrical battery cells. The integrated current collector device can include a first current collector to couple with positive terminals of the cylindrical battery cells at first ends of the cylindrical battery cells and a second current collector to couple with negative terminals of the cylindrical battery cells at the first ends of the cylindrical battery cells. An isolation layer can be disposed between the first current collector and the second current collector to electrically isolate the first current collector from the second current collector.
US10658637B2 Apparatus for increasing safety when using battery systems
A battery system includes at least one battery apparatus having at least one apparatus for increasing safety when using a degassing apparatus. The degassing apparatus is suitable for the controlled degassing of battery apparatuses. The battery apparatus and the apparatus are surrounded by a housing. The degassing apparatus is inserted into a wall of a housing. The apparatus generates a physical distance between the battery apparatus and the degassing apparatus such that a space is kept free between the battery apparatus and the degassing apparatus for discharging substances, which emerge from the battery apparatus, to an area surrounding the battery system.
US10658636B2 Power storage device
A power storage device includes a plurality of battery modules, a rack for arranging and housing the plurality of battery modules, and a wall plate attached so as to close a back side-surface of the rack. The wall plate is transparent at least in part and is provided facing the connector terminal detachably connected to the battery module.
US10658630B2 Evaporation plate for depositing deposition material on substrate, evaporation apparatus, and method of depositing deposition material on substrate
The present application discloses an evaporation plate for depositing a deposition material on a substrate. The evaporation plate has a first side and a second side opposite to the first side. The evaporation plate includes a main body plate; a first cooling layer on the main body plate and on the first side of the evaporation plate; and a first heating layer on a side of the first cooling layer distal to the main body plate. The first cooling layer is configured to cool the first heating layer on the first side of the evaporation plate. The first heating layer is configured to heat a material deposited on the first side of the evaporation plate.
US10658628B2 Organic light emitting display device and a method of manufacturing organic light emitting display device
An organic light emitting display device includes a substrate. A buffer layer is disposed on the substrate. The buffer layer includes a first opening exposing an upper surface of the substrate in a bending region. Pixel structures are positioned in a pixel region on the buffer layer. A fan-out wiring is positioned in the peripheral region and the pad region on the insulation layer structure such that the upper surface of the substrate and the first portion of the buffer layer are exposed. A passivation layer is disposed on the fan-out wiring, side walls of the insulation layer structure adjacent to the bending region, and the first portion of the buffer layer. The passivation layer includes a third opening exposing the upper surface of the substrate in the bending region. A connection electrode is positioned in the bending region on the substrate.
US10658625B2 Display device
A display device includes: a substrate; a first organic light-emitting diode including a first electrode provided above the substrate for each of pixels, a second electrode, and a first light-emitting layer provided between the first electrode and the second electrode; and a heat-generating member supplying heat to the first light-emitting layer.
US10658623B2 Electroluminescent display device having a plurality of low-refractive members
An electroluminescent display device includes an overcoat layer on a substrate; a plurality of low-refractive members formed of an inorganic matter and disposed on the overcoat layer; a first electrode on the overcoat layer and the plurality of low-refractive members; a bank layer disposed on the overcoat layer and the first electrode and including an opening configured to expose the first electrode; an emitting layer disposed on the first electrode; and a second electrode disposed on the emitting layer, wherein each of the plurality of low-refractive members includes a first flat surface contacting the first electrode, a second flat surface having an area greater than that of the first flat surface and contacting the overcoat layer and first and second inclined surfaces connecting the first flat surface and the second flat surface, and, wherein a refractive index of each of the plurality of low-refractive members is lower than those of the overcoat layer and the first electrode.
US10658615B2 Display device
A display device includes a display panel and a window coating layer disposed directly on an upper surface of the display panel. The window coating layer includes a first region which has an increasing elastic modulus in a direction from the display panel toward the window coating layer.
US10658613B2 Organic light emitting diode encapsulation structure, display apparatus and encapsulation method of organic light emitting diode
An encapsulation method of an organic light emitting diode, an organic light emitting diode encapsulation structure and an organic light emitting diode display apparatus are provided. The encapsulation method includes: providing an encapsulation cover plate and a base substrate with an organic light emitting diode device; forming a first sealant of the encapsulation cover plate, in which the first sealant includes a plurality of protrusion portions spaced apart with each other; forming a second sealant on the encapsulation cover plate, in which the second sealant includes a plurality of protrusion portions and a height of each of the plurality of protrusion portions of the second sealant is greater than a height of each of the plurality of protrusion portions of the first sealant; and bonding the encapsulation cover plate and the base substrate, in which the second sealant covers the organic light emitting diode device and the first sealant.
US10658612B2 Display panel having passivation layer with protruding portions in peripheral area for sealant
The present application discloses a display panel. The display panel includes a first substrate; and a second substrate facing the first substrate. The first substrate includes a base substrate and a passivation layer on the base substrate. The passivation layer includes a base portion and a protruding portion on a side of the base portion distal to the base substrate. The protruding portion is in a peripheral area of the display panel and encloses a display area of the display panel.
US10658606B2 Quantum dot light emitting device, method of manufacturing the same, and quantum dot light emitting display device
A quantum dot light emitting device is disclosed. The quantum dot light emitting device includes a first electrode and a second electrode. The quantum dot light emitting device includes a quantum dot light emitting layer interposed between the first electrode and the second electrode. The quantum dot light emitting device includes a first hole transport layer located between the quantum dot light emitting layer and the first electrode. The quantum dot light emitting device includes a hole injection layer located between the first hole transport layer and the first electrode. The quantum dot light emitting device includes an electron transport layer located between the quantum dot light emitting layer and the second electrode. The quantum dot light emitting device includes a filling layer located between the electron transport layer and the quantum dot light emitting layer and embedded in the quantum dot light emitting layer.
US10658602B2 Organic EL element production method and organic EL element having conductive member on external connection area of first electrode
A production method for an organic EL element includes a step of forming an organic EL section on an organic EL section arrangement area in a first electrode section while conveying an electrode-attached substrate in a first direction, a step of forming a band-shaped conductive film along the first direction to cover the organic EL section and at least a part of an external connection area in the first electrode section while conveying the electrode-attached substrate on which the organic EL section is formed in the first direction, and a step of forming a groove section that separates the conductive film into a first part and a second part being a second electrode section by removing the conductive film in a predetermined area in a second direction while conveying the electrode-attached substrate on which the conductive film is formed in the first direction, and extends in the first direction.
US10658598B2 Fluorinated aromatic small molecules as functional additives for dispersion of conductive polymers
The present invention relates to a compound having a general formula selected from the group consisting of formula 1a and 1b, wherein K represents an aromatic or heteroaromatic group in which at least one hydrogen atom may be substituted by a functional groups selected from the group consisting of a sulfonic acid group, a sulfuric acid group, an ammonium group and an aliphatic group; X is selected from the group consisting of a C—C-bond, O, S, SO2 and NR′, wherein R′ represents a hydrogen or an aliphatic or aromatic group; A represents a fluorinated or perfluorinated aromatic group; n represents an integer in the range from 2 to 6; m represents an integer in the range from 1 to 3. The present invention also relates to a composition comprising this compound, to a process for the preparation of a conductive layer using this composition, to a conductive layer comprising the compound according to the present invention, to electronic components comprising this conductive layer and to the use of the compound according to the present invention as an additive in a hole-injection layer of an OLED or in an organic solar cell.
US10658586B2 RRAM devices and their methods of fabrication
Embodiments of the present invention include RRAM devices and their methods of fabrication. In an embodiment, a resistive random access memory (RRAM) cell includes a conductive interconnect disposed in a dielectric layer above a substrate. An RRAM device is coupled to the conductive interconnect. An RRAM memory includes a bottom electrode disposed above the conductive interconnect and on a portion of the dielectric layer. A conductive layer is formed on the bottom electrode layer. The conductive layer is separate and distinct from the bottom electrode layer. The conductive layer further includes a material that is different from the bottom electrode layer. A switching layer is formed on the conductive layer. An oxygen exchange layer is formed on the switching layer and a top electrode is formed on the oxygen exchange layer.
US10658582B2 Vertical resistive processing unit with air gap
A vertical resistive unit is provided. The vertical resistive unit includes first and second resistive random access memory (ReRAM) cells. The first ReRAM cell includes first vertically aligned horizontal electrode layers and first vertical electrodes operably extending through the first vertically aligned horizontal electrode layers. The second ReRAM cell includes second vertically aligned horizontal electrode layers and second vertical electrodes operably extending through the second vertically aligned horizontal electrode layers. The first and second ReRAM cells are disposed to define an air gap between the first and second ReRAM cells.
US10658579B2 Storage device
A storage device includes a first conductive layer and a second conductive layer, with an intermediate layer therebetween. The intermediate layer includes a first and second compound regions. The first compound region includes first and second adjacent portions and the second compound region includes third and fourth adjacent portions. Electrical resistance between the first and second conductive layers changes according to a polarity applied across the intermediate layer. In a first polarity state, a concentration of a first element in the first portion is higher than a concentration of the first element in the second portion of the first compound region. A thickness of the third portion in the first polarity state is greater than the thickness of the fourth portion in the first polarity state.
US10658576B2 Magnetoresistive stack/structure and method of manufacturing same
A method of manufacturing a magnetoresistive stack/structure comprising (a) etching through a second magnetic region to (i) provide sidewalls of the second magnetic region and (ii) expose a surface of a dielectric layer, (b) depositing a first encapsulation layer on the sidewalls of the second magnetic region and over a surface of the dielectric layer, (c) thereafter: (i) etching the first encapsulation layer which is disposed over the dielectric layer using a first etch process, and (ii) etching re-deposited material using a second etch process, wherein, after such etching, a portion of the first encapsulation layer remains on the sidewalls of the second magnetic region, (d) etching (i) through the dielectric layer to form a tunnel barrier and provide sidewalls thereof and (ii) etching the first magnetic region to provide sidewalls thereof, and (e) depositing a second encapsulation layer on the sidewalls of the tunnel barrier and first magnetic region.
US10658570B2 Method for producing composite wafer having oxide single-crystal film
A composite wafer has an oxide single-crystal film transferred onto a support wafer, the film being a lithium tantalate or lithium niobate film, and the composite wafer being unlikely to have cracking or peeling caused in the lamination interface between the film and the support wafer. More specifically, a method of producing the composite wafer, includes steps of: implanting hydrogen atom ions or molecule ions from a surface of the oxide wafer to form an ion-implanted layer inside thereof; subjecting at least one of the surface of the oxide wafer and a surface of the support wafer to surface activation treatment; bonding the surfaces together to obtain a laminate; heat-treating the laminate at 90° C. or higher at which cracking is not caused; and applying ultrasonic vibration to the heat-treated laminate to split along the ion-implanted layer to obtain the composite wafer.
US10658569B2 Method for manufacturing niobate-system ferroelectric thin-film device
This method for manufacturing a lead-free niobate-system ferroelectric thin film device includes: a lower electrode film formation step of forming a lower electrode film on a substrate; a ferroelectric thin film formation step of forming a niobate-system ferroelectric thin film on the lower electrode film; an etch mask pattern formation step of forming an etch mask in a desired pattern on the niobate-system ferroelectric thin film; and a ferroelectric thin film etching step of shaping the niobate-system ferroelectric thin film into a desired fine pattern by wet etching using an etchant comprising: a predetermined chelating agent including at least one selected from EDTMP, NTMP, CyDTA, HEDP, GBMP, DTPMP, and citric acid; an aqueous alkaline solution containing an aqueous ammonia solution; and an aqueous hydrogen peroxide solution.
US10658565B2 Actuator assemblies, mechanical assemblies including the actuator assemblies, and methods of fabricating the same
Actuator assemblies, mechanical assemblies including the actuator assemblies, and methods of fabricating the same are disclosed herein. The actuator assemblies include a piezoelectric element having a first side and a second side, a first electrode in electrical communication with the first side, and a second electrode in electrical communication with the second side. The first electrode includes a flexible, electrically conductive membrane. The mechanical assemblies include a first structure, which includes a first interface surface, a second structure, which includes a second interface surface, and the actuator assembly. The actuator assembly is configured to provide a motive force for relative motion between the first structure and the second structure. The methods include defining a first electrode on a first side of a piezoelectric element and defining a second electrode on a second side of the piezoelectric element. The first electrode includes a flexible, electrically conductive membrane.
US10658562B2 Thermoelectric conversion material, method for producing same, and thermoelectric conversion module
In order to provide an Fe2TiSi type full-Heusler thermoelectric conversion material having a high dimensionless figure-of-merit ZT, the full-Heusler thermoelectric conversion material is characterized in that: the full-Heusler thermoelectric conversion material has secondary crystal grains having an Fe2TiSi type composition and a coating layer covering the circumference of the secondary crystal grains and containing an element other than Fe, Ti, and Si as a main component; and the coating layer has a composition containing an element being dissolvable in a crystal structure of the Fe2TiSi type composition and having an electric resistivity lower than the secondary crystal grains.
US10658557B1 Transparent light emitting device with light emitting diodes
A transparent light emitting diode (LED) includes a plurality of III-nitride layers, including an active region that emits light, wherein all of the layers except for the active region are transparent for an emission wavelength of the light, such that the light is extracted effectively through all of the layers and in multiple directions through the layers. Moreover, the surface of one or more of the III-nitride layers may be roughened, textured, patterned or shaped to enhance light extraction.
US10658550B2 Ultraviolet light emitting diode and manufacturing method thereof
A light-emitting diode (LED) package structure includes: a support; an LED chip; and a package cover, wherein: a support circuit is formed over the support; the LED chip is arranged over the support and electrically coupled to the support circuit; a lower surface periphery of the package cover is provided with a groove structure filled with organic binder; and the package cover is arranged over the LED chip and connected to the support via the organic binder.
US10658546B2 High efficiency LEDs and methods of manufacturing
Simplified LED chip architectures or chip builds are disclosed that can result in simpler manufacturing processes using fewer steps. The LED structure can have fewer layers than conventional LED chips with the layers arranged in different ways for efficient fabrication and operation. The LED chips can comprise an active LED structure. A dielectric reflective layer is included adjacent to one of the oppositely doped layers. A metal reflective layer is on the dielectric reflective layer, wherein the dielectric and metal reflective layers extend beyond the edge of said active region. By extending the dielectric layer, the LED chips can emit with more efficiency by reflecting more LED light to emit in the desired direction. By extending the metal reflective layer beyond the edge of the active region, the metal reflective layer can serve as a current spreading layer and barrier, in addition to reflecting LED light to emit in the desired direction. The LED chips can also comprise self-aligned and self-limiting features that simplify etching processes during fabrication.
US10658545B2 Light emitting device in which light emitting element and light transmissive member are directly bonded
Provided is a light emitting device capable of reducing light attenuation within the element and having high light extraction efficiency, and a method of manufacturing the light emitting device. The light emitting device has a light emitting element having a light transmissive member and semiconductor stacked layer portion, electrodes disposed on the semiconductor stacked layer portion in this order. The light emitting element has a first region and a second region from the light transmissive member side. The light transmissive member has a third region and a fourth region from the light emitting element side. The first region has an irregular atomic arrangement compared with the second region. The third region has an irregular atomic arrangement compared with the fourth region. The first region and the third region are directly bonded.
US10658541B2 Selective growth of nitride buffer layer
According to at least some embodiments of the present disclosure, a method of manufacturing semiconductor wafers comprises: selectively growing a nitride buffer layer on a first surface of a patterned substrate, the patterned substrate including at least the first surface and a second surface; and growing an epitaxial layer on the nitride buffer layer, wherein a crystal surface of the epitaxial layer grows along a normal direction of the patterned substrate. The epitaxial layer does not include multiple crystal surfaces having different crystal growth directions that cause a stress at a junction interface where the crystal surfaces having the different crystal growth directions meet.
US10658537B2 Method for manufacturing photoelectric conversion device
In manufacturing a crystalline silicon-based solar cell having an intrinsic silicon-based thin film and a conductive silicon-based thin film in this order on a conductive single-crystalline silicon substrate, plasma treatment is performed after the intrinsic silicon-based thin film is formed on the conductive single-crystalline silicon substrate. In the plasma treatment, a surface of the intrinsic silicon-based thin film is exposed to hydrogen plasma while a hydrogen gas and silicon-containing gases are being introduced into a CVD chamber. The amount of the hydrogen introduced into the CVD chamber during the plasma treatment is 150 to 2500 times the introduction amount of the silicon-containing gases.
US10658532B2 Fabricating thin-film optoelectronic devices with added rubidium and/or cesium
A method for fabricating thin-film optoelectronic devices (100), the method comprising: providing a alkali-nondiffusing substrate (110), forming a back-contact layer (120); forming at least one absorber layer (130) made of an ABC chalcogenide material, adding least one and advantageously at least two different alkali metals, and forming at least one front-contact layer (150) wherein one of said alkali metals comprise Rb and/or Cs and where, following forming said front-contact layer, in the interval of layers (470) from back-contact layer (120), exclusive, to front-contact layer (150), inclusive, the comprised amounts resulting from adding alkali metals are, for Rb and/or Cs, in the range of 500 to 10000 ppm and, for the other alkali metals, typically Na or K, in the range of 5 to 2000 ppm and at most 1/2 and at least 1/2000 of the comprised amount of Rb and/or Cs. The method (200) is advantageous for more environmentally-friendly production of photovoltaic devices on flexible substrates with high photovoltaic conversion efficiency and faster production rate.
US10658527B2 Solar cell and solar cell manufacturing method
A solar cell comprising: a semiconductor substrate; a metallization paste on a surface of the semiconductor substrate; and a tunneling layer between the substrate surface and the metallization paste.
US10658525B2 Solar cells with improved lifetime, passivation and/or efficiency
A method of fabricating a solar cell can include forming a dielectric region on a silicon substrate. The method can also include forming an emitter region over the dielectric region and forming a dopant region on a surface of the silicon substrate. In an embodiment, the method can include heating the silicon substrate at a temperature above 900 degrees Celsius to getter impurities to the emitter region and drive dopants from the dopant region to a portion of the silicon substrate.
US10658519B2 Semiconductor device, semiconductor wafer, module, electronic device, and manufacturing method thereof
A semiconductor device including a highly reliable transistor is provided. A semiconductor device includes a transistor. The transistor includes first and second gate electrodes, first and second gate insulators, a source electrode, a drain electrode, first to sixth oxides, first and second layers, and first and second gate insulators. The third oxide is under the source electrode. The fourth oxide is under the drain electrode. The sixth oxide is under the second gate electrode. The third and fourth oxides each have a function of supplying oxygen to the second oxide. The sixth oxide has a function of supplying oxygen to the second gate insulator.
US10658516B2 Thin film transistor, array substrate, method for manufacturing the same, and display device
Disclosed is a thin film transistor, an array substrate, a method for manufacturing the same, and a display device. The method includes: forming a source and drain on a base substrate and forming a semiconductor layer. Between the step of forming the source and drain and the step of forming the semiconductor layer, the method further includes: forming a diffusion barrier layer. Metal atoms diffused from the source and drain and passing through the diffusion barrier layer react with a part of the semiconductor layer near the source and drain, and a metal transition layer containing metal silicide is formed.
US10658514B2 Gate-all-around fin device
A gate-all around fin double diffused metal oxide semiconductor (DMOS) devices and methods of manufacture are disclosed. The method includes forming a plurality of fin structures from a substrate. The method further includes forming a well of a first conductivity type and a second conductivity type within the substrate and corresponding fin structures of the plurality of fin structures. The method further includes forming a source contact on an exposed portion of a first fin structure. The method further comprises forming drain contacts on exposed portions of adjacent fin structures to the first fin structure. The method further includes forming a gate structure in a dielectric fill material about the first fin structure and extending over the well of the first conductivity type.
US10658511B2 Semiconductor device and manufacturing method therefor
The present disclosure is directed to a semiconductor device and a manufacturing method therefor. In one implementations, a method includes: providing a semiconductor structure, where the semiconductor structure includes: a substrate, and a first fin and a second fin spaced on the substrate; depositing a first interlayer dielectric layer on the semiconductor structure; performing first partial etching on the first interlayer dielectric layer to expose a top of the first fin; after the top of the first fin is exposed, removing a part of the first fin to form a first groove; epitaxially growing a first electrode in the first groove; performing second partial etching on the first interlayer dielectric layer to expose a top of the second fin; after the top of the second fin is exposed, removing a part of the second fin to form a second groove, where the second groove is separated from the first groove; and epitaxially growing a second electrode in the second groove. The present disclosure addresses the problem of bridging of electrode epitaxial bodies of different devices in the prior art.
US10658508B2 Structure and formation method of semiconductor device with low resistance contact
Structures and formation methods of a semiconductor device structure are provided. The method includes forming a fin structure over a semiconductor substrate and forming a gate stack over the fin structure. The method also includes forming an epitaxial structure over the fin structure. The method further includes forming a dielectric layer over the epitaxial structure and forming an opening in the dielectric layer to expose the epitaxial structure. In addition, the method includes forming a modified region in the epitaxial structure. The modified region has lower crystallinity than an inner portion of the epitaxial structure and extends along an entirety of an exposed surface of the epitaxial structure. The method also includes forming a semiconductor-metal compound region on the epitaxial structure. All or some of the modified region is transformed into the semiconductor-metal compound region.
US10658504B2 Semiconductor integrated circuit device
A p−-type isolation region is provided at a part between a p-type ground region and a circuit region (a high potential region and an intermediate potential region) in an n-type well region. The p−-type isolation region is electrically connected with a H-VDD pad and an n+-type drain region of a HVNMOS. The p−-type isolation region has between n+-type pickup connect regions and between n+-type drain regions of two of the HVNMOSs, a protruding part (a T-shaped part, an L-shaped part, a partial U-shaped part) or an additional part that protrudes toward a p-ground region.
US10658502B2 Vertical III-N transistors with lateral overgrowth over a protruding III-N semiconductor structure
III-N transistor including a vertically-oriented lightly-doped III-N drift region between an overlying III-N 2DEG channel and an underlying heavily-doped III-N drain. In some embodiments, the III-N transistors are disposed over a silicon substrate. In some embodiments, lateral epitaxial overgrowth is employed to form III-N islands self-aligned with the vertically-oriented drift region. A gate electrode disposed over a portion of a III-N island may modulate a 2DEG within a channel region of the III-N island disposed above the III-N drift region. Charge carriers in the 2DEG channel may be swept into the drift region toward the drain. Topside contacts to each of the gate, source, and drain may be pitch scaled independently of a length of the drift region.
US10658494B2 Transistors and methods of forming transistors using vertical nanowires
Devices and methods of fabricating vertical nanowires on semiconductor devices are provided. One method includes: obtaining an intermediate semiconductor device having a substrate, a first insulator disposed above the substrate, a material layer over the first insulator, a second insulator above the material layer, and a first hardmask; etching a plurality of vertical trenches through the hardmask, the first and second insulators, and the material layer; growing, epitaxially, a set of silicon nanowires from a bottom surface of the plurality of vertical trenches; etching a first set of vertical trenches to expose the material layer; etching a second set of vertical trenches to the substrate; depositing an insulating spacer material on a set of sidewalls of the first and second set of vertical trenches; and forming contacts in the first and second set of vertical trenches.
US10658493B2 Gate spacer and inner spacer formation for nanosheet transistors having relatively small space between gates
Embodiments of the invention are directed to a nano sheet field effect transistor (FET) device that includes a gate spacer and an inner spacer. The gate spacer includes an upper segment and a lower segment. The inner spacer has a first selectivity to etch compositions used in predetermined fabrication operations for forming the inner spacer. The lower segment has the first selectivity to etch compositions used in predetermined fabrication operations for forming the inner spacer. The upper segment has a second selectivity to etch compositions used in predetermined fabrication operations for forming the inner spacer. The first etch selectivity is greater than the second etch selectivity.
US10658491B2 Controlling profiles of replacement gates
A method includes forming a dummy gate electrode layer over a semiconductor region, forming a mask strip over the dummy gate electrode layer, and performing a first etching process using the mask strip as a first etching mask to pattern an upper portion of the dummy gate electrode layer. A remaining portion of the upper portion of the dummy gate electrode layer forms an upper part of a dummy gate electrode. The method further includes forming a protection layer on sidewalls of the upper part of the dummy gate electrode, and performing a second etching process on a lower portion of the dummy gate electrode layer to form a lower part of the dummy gate electrode, with the protection layer and the mask strip in combination used as a second etching mask. The dummy gate electrode and an underlying dummy gate dielectric are replaced with a replacement gate stack.
US10658490B2 Structure and formation method of isolation feature of semiconductor device structure
Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a fin structure over a semiconductor substrate. The semiconductor device structure also includes active gate stacks over the fin structure. The semiconductor device structure further includes a dummy gate stack over the fin structure. The dummy gate stack is between the active gate stacks. In addition, the semiconductor device structure includes spacer elements over sidewalls of the dummy gate stack and the active gate stacks. The semiconductor device structure also includes an isolation feature below the dummy gate stack, the active gate stacks and the spacer elements. The isolation feature extends into the fin structure from the bottom of the dummy gate stack such that the isolation feature is surrounded by the fin structure.
US10658485B2 Semiconductor device and manufacturing method thereof
A semiconductor device includes plurality of fin structures extending in first direction on semiconductor substrate. Fin structure's lower portion is embedded in first insulating layer. First gate electrode and second gate electrode structures extend in second direction substantially perpendicular to first direction over of fin structures and first insulating layer. The first and second gate electrode structures are spaced apart and extend along line in same direction. First and second insulating sidewall spacers are arranged on opposing sides of first and second gate electrode structures. Each of first and second insulating sidewall spacers contiguously extend along second direction. A second insulating layer is in region between first and second gate electrode structures. The second insulating layer separates first and second gate electrode structures. A third insulating layer is in region between first and second gate electrode structures. The third insulating layer is formed of different material than second insulating layer.
US10658483B2 Non-planar field effect transistor devices with wrap-around source/drain contacts
Non-planar field effect transistor (FET) devices having wrap-around source/drain contacts are provided, as well as methods for fabricating non-planar FET devices with wrap-around source/drain contacts. A method includes forming a non-planar FET device on a substrate, which includes a semiconductor channel layer, and a gate structure in contact with upper and sidewall surfaces of the semiconductor channel layer. First and second source/drain regions are formed on opposite sides of the gate structure in contact with the semiconductor channel layer. First and second recesses are formed in an isolation layer below bottom surfaces of the first and second source/drain regions, respectively. A layer of metallic material is deposited to fill the first and second recesses in the isolation layer with metallic material and form first and second source/drain contacts which surround the first and second source/drain regions.
US10658479B2 Flash memory cell structure with step-shaped floating gate
The present disclosure relates to a flash memory cell that includes a substrate and a floating gate structure over the substrate. The floating gate structure includes a first portion having a first top surface and a first thickness. The floating gate structure also includes a second portion having a second top surface and a second thickness that is different from the first thickness. The floating gate structure further includes a sidewall surface connecting the first and second top surfaces, and an angle between the first top surface and the sidewall surface of the floating gate structure is an obtuse angle. The flash memory cell also includes a control gate structure over the first and second portions of the floating gate structure.
US10658478B2 Semiconductor device
A semiconductor device includes a composite gate structure formed over a semiconductor substrate. The composite gate structure includes a gate dielectric layer, a metal layer, and a semiconductor layer. The metal layer is disposed on the gate dielectric layer. The semiconductor layer is disposed on the gate dielectric layer. The metal layer surrounds the semiconductor layer.
US10658473B2 Gate cut device fabrication with extended height gates
Semiconductor devices include a first dielectric layer formed over a source and drain region. A second dielectric layer is formed over the first dielectric layer, the second dielectric layer having a flat, non-recessed top surface. A gate stack passes vertically through the first and second dielectric layers to contact the source and drain regions and an underlying substrate.
US10658472B2 Direct formation of hexagonal boron nitride on silicon based dielectrics
A scalable process for fabricating graphene/hexagonal boron nitride (h-BN) heterostructures is disclosed herein. The process includes (BN)XHy-radical interfacing with active sites on silicon nitride coated silicon (Si3N4/Si) surfaces for nucleation and growth of large-area, uniform and ultrathin h-BN directly on Si3N4/Si substrates (B/N atomic ratio=1:1.11±0.09). Further, monolayer graphene van der Waals bonded with the produced h-BN surface benefits from h-BN's reduced roughness (3.4 times) in comparison to Si3N4/Si. Because the reduced surface roughness leads to reduction in surface roughness scattering and charge impurity scattering, therefore an enhanced intrinsic charge carrier mobility (3 folds) for graphene on h-BN/Si3N4/Si is found.
US10658466B2 Semiconductor element and method of manufacturing the same
A semiconductor element includes: a semiconductor substrate of a first conduction type; a silicon carbide semiconductor layer of the first conduction type disposed above a principal surface of the semiconductor substrate; a terminal edge region of a second conduction type disposed in the silicon carbide semiconductor layer; an insulating film; a first electrode disposed on the silicon carbide semiconductor layer; and a seal ring surrounding the first electrode. The terminal edge region is disposed to surround part of a surface of the silicon carbide semiconductor layer when viewed in a normal direction of the principal surface of the semiconductor substrate. The terminal edge region includes a guard ring region of the second conduction type, and a terminal edge injection region of the second conduction type. The seal ring is formed on the terminal edge injection region through an opening disposed on the insulating film.
US10658463B2 Semiconductor device having asymmetrical source/drain
A semiconductor device includes a substrate, an active fin protruding from the substrate, and an asymmetric diamond-shaped source/drain disposed on an upper surface of the active fin. The source/drain includes a first crystal growth portion and a second crystal growth portion sharing a plane with the first crystal growth portion and having a lower surface disposed at a lower level than a lower surface of the first crystal growth portion.
US10658460B2 Semi-metal tunnel field effect transistor
A tunnel field effect transistor (100) comprises a source region (102), a drain region (104), and a channel region (106) formed of a single material, in particular a half-metal. The channel extends between the source region and the drain region. The channel region (106) and the drain region (104) are smaller than a threshold size in a first dimension. The threshold size is the size required for the material to exhibit sufficient quantum confinement such that a non-zero band gap results and the material becomes a semiconductor. The source region (102) is larger than this threshold size in the first dimension and is thus metallic.
US10658459B2 Nanosheet transistor with robust source/drain isolation from substrate
A substrate structure for a nanosheet transistor includes a plurality of nanosheet layers and a plurality of recesses between the nanosheet layers. The substrate structure includes at least one trench through portions of the nanosheet layers, the sacrificial layers, and the substrate. The substrate structure includes a u-shaped portion formed at a bottom portion of the at least one trench. The u-shaped portion includes a bottom cavity. The substrate structure further includes a first liner disposed upon the u-shaped portion of the at least one trench, and a second liner disposed on the first liner. The substrate structure further includes a third liner disposed within the at least one trench to fill the bottom cavity of the u-shaped portion to form a bottom inner spacer within the bottom cavity.
US10658457B2 Power semiconductor device having an SOI island
A power semiconductor device includes a semiconductor-on-insulator island having a semiconductor region and an insulation structure, the insulation structure being formed by an oxide and separating the semiconductor region from a portion of a semiconductor body of the power semiconductor device. The insulation structure includes a sidewall that laterally confines the semiconductor region; a bottom that vertically confines the semiconductor region; and a local deepening that forms at least a part of a transition between the sidewall and the bottom, wherein the local deepening extends further along the extension direction as compared to the bottom.
US10658455B2 Metal insulator metal capacitor structure having high capacitance
The present disclosure relates to a semiconductor device and a manufacturing method, and more particularly to a MIM dual capacitor structure with an increased capacitance per unit area in a semiconductor structure. Without using additional mask layers, a second parallel plate capacitor can be formed over a first parallel plate capacitor, and both capacitors share a common capacitor plate. The two parallel plate capacitors can be connected in parallel to increase the capacitance per unit area.
US10658453B2 Aluminum compatible thin-film resistor (TFR) and manufacturing methods
A method for manufacturing a thin film resistor (TFR) module in an integrated circuit (IC) structure may include forming a trench in a dielectric region; forming a TFR element in the trench, the TFR element including a laterally-extending TFR region and a TFR ridge extending upwardly from a laterally-extending TFR region; depositing at least one metal layer over the TFR element; and patterning the at least one metal layer and etching the at least one metal layer using a metal etch to define a pair of metal TFR heads over the TFR element, wherein the metal etch also removes at least a portion of the upwardly-extending TFR ridge. The method may also include forming at least one conductive TFR contact extending through the TFR element and in contact with a respective TFR head to thereby increase a conductive path between the respective TFR head and the TFR element.
US10658451B2 Film element for driving display device and display device using the same
A film element for driving a display device and a display device using the same are disclosed. The film element includes a film substrate including wirings and pads connected to the wirings, and an IC chip mounted on the film substrate to be connected to the wirings. The pads on the film substrate are grouped into a plurality of areas having different thermal correction amounts. Pads in a second area are closer to the IC chip than pads in a first area. A length of the first area is set to a length obtained by subtracting a first thermal correction amount from a first reference length. A length of the second area is set to a length obtained by subtracting a second thermal correction amount from a second reference length. The second thermal correction amount is smaller than the first thermal correction amount or has a negative value.
US10658450B2 Display substrate, manufacturing method thereof, and display device
Embodiments of the present disclosure provide a display substrate, a manufacturing method thereof, and a display device. The display substrate includes: a display area; an edge area; a bent portion between the display area and the edge area, the edge area being bent at a predetermined angle towards a side facing away from a display surface of the display area by means of the bent portion; and a row driving circuit in the edge area.
US10658449B2 Package substrate, method of manufacturing the same, display panel and display device
A package substrate includes a base substrate having a light-transmitting region and a non-light-transmitting region, wherein metal electrodes and a spacer located on at least a part of a surface of the metal electrodes away from the base substrate are provided on the base substrate, an orthogonal projection of the spacer on the base substrate is within an orthogonal projection of the metal electrodes on the base substrate, and an orthogonal projection of the metal electrode on the base substrate is within the non-light-transmitting region of the base substrate, and an interval exists between the spacer and the metal electrodes. A method of manufacturing the package substrate is used for manufacturing the above package substrate. The package substrate provided by the present disclosure is used in a display device.
US10658445B2 Organic light emitting diode display having barrier layer on auxiliary electrode
An organic light emitting diode display is disclosed. The organic light emitting diode display includes a first substrate on which pixels each including an organic light emitting diode are disposed, a second substrate including a power line supplied with a power voltage and facing the first substrate, and a conductive filler layer interposed between the first substrate and the second substrate and including a conductive medium. The first substrate includes an auxiliary electrode, a first barrier disposed on the auxiliary electrode, a cathode divided by the first barrier and exposing at least a portion of the auxiliary electrode, and a protective layer disposed on the cathode, divided by the first barrier, and exposing at least a portion of the auxiliary electrode. One end of the cathode directly contacts the auxiliary electrode.
US10658442B2 Electroluminescent display device
Disclosed is an electroluminescent display device capable of overcoming a problem related with static electricity in a GIP formation area, and improving a profile of an exterior device, wherein the electroluminescent display device may include a substrate having an active area and a non-active area, an active bank for defining an active emission area on the active area, a dummy bank for defining a dummy emission area on the non-active area, an active emission layer provided in the active emission area defined by the active bank, and a dummy emission layer provided in the dummy emission area defined by the dummy bank, wherein the dummy emission layer is relatively larger than the active emission layer.
US10658439B2 Display device
Disclosed is a display device possessing: a substrate having a display region and a peripheral region surrounding the display region; a pixel over the display region; a passivation film over the pixel; a resin layer over the passivation film; a first dam over the peripheral region and surrounding the display region; and a second dam surrounding the first dam. The passivation film includes; a first layer containing an inorganic compound; a second layer over the first layer, the second layer containing an organic compound; and a third layer over the second layer, the third layer containing an inorganic compound. The second layer is selectively arranged in a region surrounded by the first dam. The resin layer is selectively arranged in a region surrounded by the second dam.
US10658437B2 Semiconductor device having a carbon containing insulation layer formed under the source/drain
An organic light emitting display panel including a first electrode, a second electrode on the first electrode, an organic layer between the first electrode and the second electrode and including at least one light emitting layer, an organic cover layer disposed on the second electrode, a lower layer between the organic cover layer and the second electrode and including a first layer, a second layer, and a third layer, which are different from each other and are sequentially stacked, and an upper layer on the organic cover layer. The first layer contacts the second electrode. The second layer and the third layer each include a silicon compound.
US10658425B2 Methods of forming perpendicular magnetic tunnel junction memory cells having vertical channels
A method of forming a transistor, according to one embodiment, includes: forming an doped material, depositing an oxide layer on the doped material, depositing a conducting layer on the oxide layer, patterning the conducting layer to form at least two word lines, depositing a nitride layer above the at least two word lines, defining at least two hole regions, at each of the defined hole regions, etching down to the doped material through each of the respective word lines, thereby creating at least two holes, depositing a gate dielectric layer on the nitride layer and in the at least two holes, depositing a protective layer on the gate dielectric layer, etching in each of the at least two holes down to the doped material, and removing a remainder of the protective layer.
US10658423B2 Method of manufacturing light emitting device
A method of manufacturing a light emitting device includes: providing a wafer that comprises: a supporting substrate, and a plurality of light emitting structures arranged in a two-dimensional array on a first principal surface of the supporting substrate along a first direction and a second direction, each of the plurality of light emitting structures comprising a first semiconductor layer, which includes a first region and a second region, and a second semiconductor layer, which covers the second region of the first semiconductor layer, wherein the plurality of light emitting structures includes a first light emitting structure and a second light emitting structure; forming a recess in the first principal surface of the supporting substrate between the first light emitting structure and the second light emitting structure; forming a resin layer in the recess; and removing the supporting substrate so as to expose the first semiconductor layer.
US10658418B2 Semiconductor device and method of manufacturing thereof
A semiconductor device includes a first semiconductor layer of a first conductivity type having a first surface on one side thereof and a second surface on an opposite side thereof, and having an element therein, a second semiconductor layer of a second conductivity type having a circuit element formed therein, the second semiconductor layer being formed at the one side of the first surface of the first semiconductor layer, an insulating layer disposed on the first surface of the first semiconductor layer, and a charge-attracting layer configured to attract electrical charges generated in the insulating layer when a predetermined voltage is supplied to the charge-attracting layer.
US10658417B2 Solid-state image sensing device and imaging apparatus
A solid-state image sensing device includes a pixel array, control lines, signal lines, a pixel control circuit, and a read circuit. The pixel array includes pixel sub-arrays arranged in a main scanning direction and each including pixels arranged to form rows along the main scanning direction and at least one column along a sub-scanning direction. Each of the control lines is connected to at least one pixel in in one of the pixel sub-arrays. Pixels in each of the least one column is connected to different control lines. Each of the signal lines is connected to all pixels in each of the least one column in one of the pixel sub-arrays. The pixel control circuit generates a pixel signal in each pixel and the read circuit reads the pixel signal from each pixel to cause successive phase differences between the pixel sub-arrays.
US10658416B2 Image sensor and method for manufacturing image sensor
An image sensor may include a semiconductor substrate in which a photodiode is formed; a metal interconnection layer located above the semiconductor substrate; and an absorption layer located between the semiconductor substrate and the metal interconnection layer, wherein the absorption layer is configured to absorb light travelling through the semiconductor substrate.
US10658415B2 Light detection device
A photodetecting device includes a semiconductor substrate, a plurality of avalanche photodiodes each including a light receiving region disposed at a first principal surface side of the semiconductor substrate, the avalanche photodiodes being arranged two-dimensionally at the semiconductor substrate, and a through-electrode electrically connected to a corresponding light receiving region. The through-electrode is provided in a through-hole penetrating through the semiconductor substrate in an area where the plurality of avalanche photodiodes are arranged two-dimensionally. At the first principal surface side of the semiconductor substrate, a groove surrounding the through-hole is formed between the through-hole and the light receiving region adjacent to the through-hole. A first distance between an edge of the groove and an edge of the through-hole surrounded by the groove is longer than a second distance between the edge of the groove and an edge of the light receiving region adjacent to the through-hole surrounded by the groove.
US10658413B2 Semiconductor device including via plug
A semiconductor device includes a lower insulating layer on a lower substrate, a lower pad structure inside the lower insulating layer, an upper insulating layer on the lower insulating layer, an upper pad structure inside the upper insulating layer, and an upper substrate on the upper insulating layer. A via plug passes through at least a portion of each of the upper substrate, the upper insulating layer, and the lower insulating layer, and in contact with the upper pad structure and the lower pad structure. The upper pad structure includes upper pad conductive layers and an upper connection layer between the upper pad conductive layers. The upper connection layer includes a conductive pattern having a shape different from a shape of at least one of the upper pad conductive layers. The via plug is in direct contact with the upper pad conductive layers and the upper connection layer.
US10658412B2 Solid-state image pickup device having pixel separation wall
The present disclosure relates to a solid-state image pickup device and an electronic apparatus that are capable of preventing leakage of charges between adjacent pixels.A plurality of pixels perform photoelectric conversion on light incident from a back surface via different on-chip lenses for each pixel. A pixel separation wall is formed between pixels adjacent to each other, and includes a front-side trench formed from a front surface and a backside trench formed from the back surface. A wiring layer is provided on the front surface. The present disclosure is applicable to, for example, a backside illuminated CMOS image sensor.
US10658407B2 Display panel, method of manufacturing display panel, fingerprint identification device, and method of identifying fingerprint
Embodiments of the present disclosure provide a display panel, a method of manufacturing the display panel, a fingerprint identification device, and a method of identifying a fingerprint. The display panel includes first and second substrates. The first substrate is formed with switch transistors arranged in an array, and photosensitive elements arranged in an array and connected with the switch transistors. The second substrate is formed with conductive contact members, the contact members each have an end adjacent to the first substrate, and the end of each of the contact members is spaced from the first substrate so that when the second substrate is deformed by a force, the end of at least one of the contact members electrically contacts the first substrate so that at least one of the switch transistors in a position corresponding to the at least one of the contact members is turned on.
US10658402B2 Manufacturing methods for low temperature poly-silicon array substrate and low temperature poly-silicon thin-film transistor
Manufacturing methods for a low temperature poly-silicon array substrate and for a low temperature poly-silicon thin-film transistor are provided. The manufacturing method for the low temperature poly-silicon array substrate includes: providing a substrate; forming a poly-silicon semiconductor pattern on the substrate; a first channel region, a first source region and a first drain region being formed on a first portion of the poly-silicon semiconductor pattern that corresponds to the first thin-film transistor and a second thin-film transistor; forming a gate insulation layer; performing an activation treatment; forming a gate on the gate insulation layer after the activation treatment; forming an interlayer insulation layer between the gate insulation layer and the gate; performing a hydrogen treatment; forming a source/drain pattern on the interlayer insulation layer after the hydrogen treatment, and connecting the source/drain pattern to the source region and the drain region in the poly-silicon semiconductor pattern via a through hole.
US10658400B2 Method of manufacturing display device having a multilayered undercoating layer of silicon oxide and silicon nitride
According to one embodiment, a display device includes an underlying insulation layer formed on a surface of a resin layer, and a thin-film transistor formed above the surface of the resin layer via the underlying insulation layer. The underlying insulation layer includes a three-layer multilayer structure of a first silicon oxide film, a silicon nitride film formed above the first silicon oxide film, and a second silicon oxide film formed above the silicon nitride film.
US10658395B2 Semiconductor device
A semiconductor device which can suppress leakage current between a wiring and a connection electrode connected to a floating node is provided. The semiconductor device includes a first insulator, a first conductor over the first insulator, a second conductor over the first insulator, and a second insulator over the first insulator, the first conductor, and the second conductor. The first conductor and the second conductor contain a metal A (one kind or a plurality of kinds of aluminum, copper, tungsten, chromium, silver, gold, platinum, tantalum, nickel, molybdenum, magnesium, beryllium, indium, and ruthenium). The metal A is detected in an interface between the first insulator and the second insulator by an energy dispersive X-ray spectroscopy (EDX). The second insulator includes a groove for exposing the first insulator between the first conductor and the second conductor.
US10658391B2 Hybrid substrate engineering in CMOS finFET integration for mobility improvement
A method for forming a hybrid complementary metal oxide semiconductor (CMOS) device includes orienting a semiconductor layer of a semiconductor-on-insulator (SOI) substrate with a base substrate of the SOI, exposing the base substrate in an N-well region by etching through a mask layer, a dielectric layer, the semiconductor layer and a buried dielectric to form a trench and forming spacers on sidewalls of the trench. The base substrate is epitaxially grown from a bottom of the trench to form an extended region. A fin material is epitaxially grown from the extended region within the trench. The mask layer and the dielectric layer are restored over the trench. P-type field-effect transistor (PFET) fins are etched on the base substrate, and N-type field-effect transistor (NFET) fins are etched in the semiconductor layer.
US10658390B2 Virtual drain for decreased harmonic generation in fully depleted SOI (FDSOI) RF switches
The present disclosure relates to semiconductor structures and, more particularly, to virtual drains for decreased harmonic generation in fully depleted SOI (FDSOI) RF switches and methods of manufacture. The structure includes one or more active devices on a semiconductor on insulator material which is on top of a substrate; and a virtual drain region composed of a well region within the substrate and spaced apart from an active region of the one or more devices, the virtual drain region configured to be biased to collect electrons which would accumulate in the substrate.
US10658382B2 Elevationally-extending string of memory cells individually comprising a programmable charge storage transistor and method of forming an elevationally-extending string of memory cells individually comprising a programmable charge storage transistor
An elevationally-extending string of memory cells comprises an upper stack elevationally over a lower stack. The upper and lower stacks individually comprise vertically-alternating tiers comprising control gate material of individual charge storage field effect transistors vertically alternating with insulating material. An upper stack channel pillar extends through multiple of the vertically-alternating tiers in the upper stack and a lower stack channel pillar extends through multiple of the vertically-alternating tiers in the lower stack. Tunnel insulator, charge storage material, and control gate blocking insulator is laterally between the respective upper and lower stack channel pillars and the control gate material. A conductive interconnect comprising conductively-doped semiconductor material is elevationally between and electrically couples the upper and lower stack channel pillars together. The conductively-doped semiconductor material comprises a first conductivity-producing dopant. The conductive interconnect comprises a lower half thereof having a conductive region comprising at least one of (a) conductive material below the conductively-doped semiconductor material, or (b) a second non-p-type dopant within the conductively-doped semiconductor material that is different from the first dopant, the second dopant being present at an atomic concentration within the semiconductor material of at least 0.1%. Other embodiments, including method, are disclosed.
US10658379B2 Array common source structures of three-dimensional memory devices and fabricating methods thereof
A method for forming a 3D memory device is disclosed. The method comprises: forming an alternating conductive/dielectric stack on a substrate; forming a slit vertically penetrating the alternating conductive/dielectric stack; forming an isolation layer on a sidewall of the slit; forming a first conductive layer covering the isolation layer; performing a plasma treatment followed by a first doping process to the first conductive layer; forming a second conductive layer covering the first conductive and filling the slit; performing a second doping process followed by a rapid thermal crystallization process to the second conductive layer; removing an upper portion of the first conductive layer and the second conductive layer to form a recess in the slit; and forming a third conductive layer in the recess.
US10658377B2 Three-dimensional memory device with reduced etch damage to memory films and methods of making the same
A first memory film and a sacrificial fill structure are formed within each first-tier memory opening through a first alternating stack of first insulating layers and first spacer material layers. A second alternating stack of second insulating layers and second spacer material layers is formed over the first alternating stack, and a second-tier memory opening is formed over each sacrificial fill structure. A second memory film is formed in each upper opening, and the sacrificial fill structures are removed from underneath the second-tier memory openings to form memory openings. A semiconductor channel is formed on each vertically neighboring pair of a first memory film and a second memory film as a continuous layer. The first memory film is protected by the sacrificial fill structure during formation of the second-tier memory openings.
US10658374B2 Vertical semiconductor device
A vertical semiconductor device including a plurality of interlayer insulating layer patterns spaced apart from each other on a substrate and stacked in a vertical direction; a plurality of conductive layer patterns arranged between the interlayer insulating layer patterns and each having a rounded end, wherein at least one of the conductive layer patterns is configured to extend from one side wall of each of the interlayer insulating layer patterns and include a pad region, and the pad region includes a raised pad portion configured to protrude from a surface of the at least one conductive layer pattern; an upper interlayer insulating layer to cover the interlayer insulating layer patterns and the conductive layer patterns; and a contact plug configured to penetrate the upper interlayer insulating layer to be in contact with the raised pad portion of the at least one conductive layer pattern.
US10658370B2 Semiconductor device and manufacturing method thereof
A semiconductor device includes a substrate having a semiconductor fin, in which the semiconductor fin has a first sidewall and a second sidewall opposite to the first sidewall; an epitaxy structure in contact with the first sidewall of the semiconductor fin; and a spacer in contact with the second sidewall of the semiconductor fin and the epitaxy structure.
US10658365B2 Semiconductor device and method of manufacturing the same
A semiconductor device and method of manufacturing the same is provided in the present invention. The method includes the step of forming first mask patterns on a substrate, wherein the first mask patterns extend in a second direction and are spaced apart in a first direction to expose a portion of first insulating layer, removing the exposed first insulating layer to form multiple recesses in the first insulating layer, performing a surface treatment to the recess surface, filling up the recesses with a second insulating layer and exposing a portion of the first insulating layer, removing the exposed first insulating layer to form a mesh-type isolation structure, and forming storage node contact plugs in the openings of mesh-type isolation structure.
US10658362B2 Semiconductor component and fabricating method thereof
A FinFET device includes a fin, an epitaxial layer disposed at a side surface of the fin, a contact disposed on the epitaxial layer and on the fin. The contact includes an epitaxial contact portion and a metal contact portion disposed on the epitaxial contact portion. The doping concentration of the epitaxial contact portion is higher than a doping concentration of the epitaxial layer.
US10658360B2 Semiconductor device with an insulated-gate bipolar transistor region and a diode region
On a front surface side of an n− semiconductor substrate, an emitter electrode and trench gates each including a p base layer, a trench, a gate oxide film and a gate electrode are provided in an IGBT region and a FWD region. Among p base layers each between adjacent trenches, p base layers having an n+ emitter region are the IGBT emitter region and the p base layers not having the n+ emitter region are the FWD anode region. A lateral width of an n+ cathode region is narrower than a lateral width of the FWD anode region. A difference of a lateral width of the FWD anode region and a lateral width of the n+ cathode region is 50 μm or more. Thus, a semiconductor device may be provided that reduces the forward voltage drop while suppressing waveform oscillation during reverse recovery and having soft recover characteristics.
US10658359B2 Semiconductor device
A semiconductor device, which is a diode, includes the following: an n cathode layer, which is an n-type region, disposed in a surface layer of a semiconductor substrate; a p cathode layer, which is a p-type region, disposed in the surface layer; and a cathode electrode, which is a metal electrode, in contact with both of the n cathode layer and the p cathode layer. The cathode electrode includes a first metal layer in contact with both of the n cathode layer and the p cathode layer, and a second metal layer disposed on the first metal layer. A contact surface between the first metal layer and the second metal layer has an oxygen concentration lower than the oxygen concentration of a contact surface between the first metal layer, and the n cathode layer and the p cathode layer.
US10658354B2 Electrostatic discharge handling for lateral transistor devices
A semiconductor transistor device includes a source region, a gate region having a p-type gate region and an n-type gate region, and a drain region having a p-type drain region and an n-type drain region. The p-type gate region, the n-type gate region, the p-type drain region, and the n-type drain region are positioned to provide, in response to an electrostatic discharge (ESD) voltage, a drain-to-gate ESD current path to at least partially discharge the ESD voltage.
US10658352B2 Protective circuit, array substrate and display panel
There is provided a protective circuit, an array substrate and a display panel. The protective circuit includes: a control sub-circuit, having a first end electrically connected to a voltage input terminal and a second end configured to output a common voltage signal supplied by the voltage input terminal; and a discharge sub-circuit, having a first end electrically connected to the second end of the control sub-circuit and a second end electrically connected to at least one data line. The discharge sub-circuit releases electric charges on the at least one data line under the control of the common voltage signal supplied from the control sub-circuit.
US10658346B2 Making semiconductor devices by stacking strata of micro LEDs
A stack of strata containing LEDs is fabricated by repeatedly bonding unpatterned epitaxial structures. Because the epitaxial structures are unpatterned (e.g., not patterned into individual micro LEDs), requirements on alignment are significantly relaxed. One example is an integrated multi-color LED display panel, in which arrays of micro LEDs are integrated with corresponding driver circuitry. Multiple strata of micro LEDs are stacked on top of a base substrate that includes the driver circuitry. In this process, each stratum is fabricated as follows. An unpatterned epitaxial structure is bonded on top of the existing device. The epitaxial structure is then patterned to form micro LEDs. The stratum is filled and planarized to allow the unpatterned epitaxial structure of the next stratum to be bonded. This is repeated to build up the stack of strata.
US10658343B2 Semiconductor module including pressure contact adjustment screws
A pressure contact-type semiconductor module includes a plurality of semiconductor units disposed side-by-side, each of the semiconductor units including: a semiconductor device substrate; a first electrode formed below the semiconductor device substrate, a second electrode formed above the semiconductor device substrate, an electrode plate electrically connected to the second electrode; and a pressure contact adjustment member screwed into the electrode plate, the pressure contact adjustment member having a top surface as a pressure contact-receiving surface to which a lead-out electrode plate that is common to the plurality of semiconductor units is to be pressure-contacted, levels of the respective top surfaces of the pressure contact adjustment members in the plurality of semiconductor units being adjustable to match a reference pressure contact plane so that contact pressures in the respective top surfaces applied by the lead-out electrode plate are substantially the same among the semiconductor units.
US10658337B2 Packages and packaging methods for semiconductor devices, and packaged semiconductor devices
Packages and packaging methods for semiconductor devices, and packaged semiconductor devices are disclosed. In some embodiments, a package for a semiconductor device includes a molding compound and a plurality of through-vias disposed in the molding compound. The package includes an interconnect structure disposed over the plurality of through-vias and the molding compound. The interconnect structure includes a metallization layer. The metallization layer includes a plurality of contact pads and a fuse.
US10658336B2 Stacked semiconductor die assemblies with die support members and associated systems and methods
Stacked semiconductor die assemblies with die support members and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a package substrate, a first semiconductor die attached to the package substrate, and a support member attached to the package substrate. The support member can be separated from the first semiconductor die, and a second semiconductor die can have one region coupled to the support member and another region coupled to the first semiconductor die.
US10658334B2 Method for forming a package structure including a package layer surrounding first connectors beside an integrated circuit die and second connectors below the integrated circuit die
Package structures and methods for forming the same are provided. The method includes providing a first integrated circuit die and forming a redistribution structure over the first integrated circuit die. The method also includes forming a base layer over the redistribution structure. The base layer has first and second openings. The first openings are wider than the second openings. The method further includes forming first bumps over the redistribution structure. The first bumps have a lower portion filling the first openings. In addition, the method includes bonding a second integrated circuit die to the redistribution structure through second bumps having a lower portion filling the second openings. There is a space between the second integrated circuit die and the base layer. The method also includes forming a molding compound layer over the base layer. The molding compound layer fills the space and surrounds the first and second bumps.
US10658331B2 Processor module with integrated packaged power converter
A power management module comprises one or more power converter chips that are mounted on a power management package substrate. First and second electrical contacts are disposed on opposing first and second sides of the power management package substrate. The power management module can be mounted on a processor module to supply power to one or more processor chips in the processor module. In one example, the processor chip(s) are mounted on a first side of a processor package substrate and the power management module is mounted on an opposing second side of the processor package substrate. The power management module and the processor module can be centered and aligned with respect to each other or they can be offset laterally from each other. In another embodiment, the processor chip(s) are embedded in the processor package substrate.