Document Document Title
US10284867B2 Apparatus, a method and a computer program for video coding and decoding
A method and related apparatus, the method comprising receiving a bitstream comprising picture data units on one or more scalability layers; determining a first set of layers that are decoded from the bitstream; decoding, from or along the bitstream, a first indication indicative of an end of a coded picture, wherein the first indication is associated with a first layer identifier; decoding, from or along the bitstream, a second indication indicative of a second set of layers that are not present in an access unit; and determining an end of the access unit, when the first layer identifier is the greatest among the first set of layers, or all layers with a layer identifier greater than the first identifier among the first set of layers are included in the second set of layers.
US10284865B2 Encoding device, encoding method, and recording medium
An encoding device includes a processor configured to execute a process. The process includes: first calculating, based on a first system rate for encoding data and transmitting the encoded data to a terminal and a second system rate representing a rate for reproducing the data at the terminal, a decoder storage time during which the encoded data received by the terminal is stored; and adding information of the decoder storage time to the encoded data and transmitting the encoded data added with the information to the terminal.
US10284864B2 Content initialization for enhancement layer coding
A system for decoding a video bitstream includes receiving a frame of the video that includes at least one slice and at least one tile and where each of the at least one slice and the at least one tile are not all aligned with one another.
US10284863B2 Adaptive constant-luminance approach for high dynamic range and wide color gamut video coding
A device may determine, based on data in a bitstream, a luma sample (Y) of a pixel, a Cb sample of the pixel, and the Cr sample of the pixel. Furthermore, the device may obtain, from the bitstream, a first scaling factor and a second scaling factor. Additionally, the device may determine, based on the first scaling factor, the Cb sample for the pixel, and Y, a converted B sample (B′) for the pixel. The device may determine, based on the second scaling factor, the Cr sample for the pixel, and Y, a converted R sample (R′) for the pixel. The device may apply an electro-optical transfer function (EOTF) to convert Y′, R′, and B′ to a luminance sample for the pixel, a R sample for the pixel, and a B sample for the pixel, respectively.
US10284862B2 Signaling indications and constraints
This invention introduces modification to a syntax signaled in slice segment header related to inter-layer prediction. A syntax optimization is proposed where if syntax element NumActiveRefLayerPics is equal to syntax element NumDirectRefLayers[nuh_layer_id] then the inter_layer_pred_idc[i] syntax elements are not signaled. In this case the value of inter_layer_pred_idc[i] syntax elements is inferred based on other syntax elements already signaled.
US10284861B2 Concurrent image compression and thumbnail generation
A first memory stores values of blocks of pixels representative of a digital image, a second memory stores partial values of destination pixels in a thumbnail image, and a third memory stores compressed images and thumbnail images. A processor retrieves values of a block of pixels from the first memory. The processor also concurrently compresses the values to generate a compressed image and modify a partial value of a destination pixel based on values of pixels in portions of the block that overlap a scaling window for the destination pixel. The processor stores the modified partial value in the second memory and stores the compressed image and the thumbnail image in the third memory.
US10284857B2 Method and apparatus for evaluating video quality
A method and apparatus for evaluating video quality are disclosed. An apparatus for evaluating video quality according to an embodiment of the invention includes: an encoder unit that converts a first-resolution original video sequence into a second-resolution original video sequence and encodes the second-resolution original video sequence; decoder unit that generates a second-resolution decoded video sequence by decoding the encoded second-resolution video sequence and converts the second-resolution decoded video sequence into a first-resolution decoded video sequence by interpolating the second-resolution decoded video sequence to the first resolution; a video quality index calculator unit that calculates a first video quality index by comparing the first-resolution original video sequence with the first-resolution decoded video sequence and calculates a second video quality index by comparing the second-resolution original video sequence with the second-resolution decoded video sequence; and a video quality evaluator unit that calculates a final video quality index by using the first video quality index and the second video quality index.
US10284851B2 Method of determining binary codewords for transform coefficients
A system is provided for creating binary codewords for transform coefficients used for relating transform units (TUs) divided into coding units (CUs) in a High Efficiency Video Coding (HEVC) system. The system provides binarization of the codewords and removes unnecessary operations to reduce system complexity and increase compression performance. The system generates transform coefficients that relate the TUs and begins by providing a parameter variable (cRiceParam) set to an initial value of zero. Significant transform coefficients are converted into binary codewords based on the current value of the parameter variable, and the parameter variable is then updated with a new current value after each transform coefficient has been converted. Updating can be provided with reference to table values or the values can be provided from combination logic.
US10284846B2 Image predictive encoding and decoding device
An image predictive encoding device can efficiently encode an image, while suppressing an increase in prediction information and reducing the prediction error of a target block. In an image predictive encoding device, according to one embodiment, to produce a prediction signal of a partition in a target region, it is decided whether prediction information of a neighbouring region can be used. When prediction information of the neighbouring region can be used, a region width of the partition where the prediction information of the neighbouring region is used to produce the prediction signal is determined. The prediction signal of the target region is produced from a reconstructed signal based on at least one of the region width, the prediction information of the target region, and the prediction information of the neighbouring region. The prediction information, information identifying the region width, and a residual signal are encoded.
US10284843B2 Video coding
Improved video coding is described to encode video data within a sequence of video frames. To this end, at least a portion of a reference frame is encoded to include motion information associated with the portion of the reference frame. At least a portion of a predictable frame that includes video data predictively correlated to said portion of said reference frame is defined based on the motion information. At least said portion of the predictable frame is encoded without including corresponding motion information and including mode identifying data. The mode identifying data indicate that the encoded portion of the predictable frame can be directly derived using at least the motion information associated with the portion of the reference frame.
US10284842B2 Inter-layer reference picture construction for spatial scalability with different aspect ratios
A method of coding video data includes upsampling at least a portion of a reference layer picture to an upsampled picture having an upsampled picture size. The upsampled picture size has a horizontal upsampled picture size and a vertical upsampled picture size. At least one of the horizontal or vertical upsampled picture sizes may be different than a horizontal picture size or vertical picture size, respectively, of an enhancement layer picture. In addition, position information associated with the upsampled picture may be signaled. An inter-layer reference picture may be generated based on the upsampled picture and the position information.
US10284841B2 Method for encoding/decoding an intra-picture prediction mode using two intra-prediction mode candidate, and apparatus using such a method
The method for decoding an intra-picture prediction mode includes the steps of: determining whether the intra-picture prediction mode of a current prediction unit is identical to a first intra-picture prediction mode candidate or a second intra-picture prediction mode candidate based on bit information; and when the intra-picture prediction mode of the current prediction unit is identical to the first intra-picture prediction mode candidate and/or to the second intra-picture prediction mode candidate, determining whether the first intra-picture prediction mode candidate or the second intra-picture prediction mode candidate is identical to the intra-picture prediction mode of the current prediction unit on the basis of additional bit information, and decoding the intra-picture prediction mode of the current prediction unit.
US10284838B2 Method and apparatus for transmitting images captured by first and second image sensors
Methods and apparatuses for transmitting images captured by first and second image sensors are disclosed. In some embodiments, each image sensor generates a plurality of pixel values each represented by a plurality of data bits having a pixel bit length. In some embodiments, a method involves combining pixel values generated by each of the first and second image sensors into a single image data stream, transforming the single image data stream into a plurality of data words having a word bit length, and encoding the data by selection of one of a plurality of symbols having an encoded bit length that is at least one bit longer than the word bit length to reduce a running disparity. The method also involves serializing the symbols to generate and transmit a DC balanced serial bitstream. Methods for synchronizing a receiver for extracting image data from the serial bitstream are also disclosed.
US10284836B2 Depth camera light leakage avoidance
Disclosed are a device and a method of depth sensing that handle light leakage issues. In some embodiments, the depth sensing device includes a light emitter that illuminates an environment of the depth sensing device. The device identifies a first portion of the emitted light that is prevented from reaching the environment of the device due to being redirected by an optical component located in proximity to the light emitter. An imaging sensor of the device detects a second portion of the emitted light that reaches and is reflected by a surface in the environment of the device other than a surface of the optical component. The device generates, based on the second portion of the emitted light, a depth map that includes a plurality of values corresponding to distances relative to the device, wherein said generating excludes from consideration the identified first portion of the emitted light.
US10284835B2 Photo-realistic shallow depth-of-field rendering from focal stacks
Generating an image with a selected level of background blur includes capturing, by a first image capture device, a plurality of frames of a scene, wherein each of the plurality of frames has a different focus depth, obtaining a depth map of the scene, determining a target object and a background in the scene based on the depth map, determining a goal blur for the background, and selecting, for each pixel in an output image, a corresponding pixel from the focus stack.
US10284833B2 Image projection apparatus and associated cooling system and method
An image projection apparatus is configured to project an image onto a projection receiving part. The image projection apparatus includes: a light source; an optical modulator configured to form the image using light from the light source; a control unit configured to control the light source and the optical modulator; and a temperature detector configured to detect an environmental temperature. The control unit is configured to control at least one of the light source and the optical modulator to adjust color tone of the image depending on the environmental temperature detected by the temperature detector.
US10284830B2 3D laser projection of part locations onto communication or utility poles or other structures
Techniques that can overcome challenges for providing a virtual template for placing a part onto a utility or communication pole that includes twists that extend along at least a portion of a length of the pole. A user to use a laser pointer to trace along a corner between faces of a non-cylindrical pole, and feed that location registration information to the laser projection system to use in determining the location at which to place the virtual template on the utility or communication pole.
US10284827B2 Automatic adjustment method and device for color wheel
The disclosure provides an automatic adjustment method and device for a color wheel. The method comprises: collecting a first frame image corresponding to an actual projection region; determining a proportion of normal pixels in the first frame image according to pixel information of the first frame image; determining a target correction value of the color wheel and each color switch according to the proportion of normal pixels in the first frame image; and adjusting the coordination parameter of the color wheel and each color switch to the target correction value, wherein the proportion of normal pixels in the image corresponding to the actual projection region obtained by adjusting the coordination parameter of the color wheel and each color switch to the target correction value is within an interval of [a %, 100%]; and the proportion of normal pixels in the first frame image is lower than a %, a % being lower than or equal to 100%.
US10284826B2 Image sensor and apparatus and method of acquiring image by using image sensor
An image sensor, and an apparatus and method of acquiring an image by using the image sensor are provided. The image sensor includes a color filter having an array of a plurality of types of color filter elements, where each of the color filter elements transmits visible light in a certain wavelength band and blocks visible light outside the certain wavelength band; a photoelectric conversion cell array that detects light that has been transmitted through the color filter; and a modulator, disposed on the photoelectric conversion cell array, which changes a rate of light transmitted to the photoelectric conversion cell array based on an applied voltage.
US10284817B2 Device for and method of corneal imaging
A device for corneal imaging is disclosed. The device comprises a first camera and processing means. The first camera is configured for imaging a cornea of a user of the device and/or an eyewear worn by the user. The processing means is operative to acquire a first image from the first camera, identify a first reflection by the cornea and/or a second reflection by a reflective surface of the eyewear, and determine a first optical transformation representing the first reflection and/or a second optical transformation representing the second reflection. Embodiments of the invention provide an improved corneal imaging solution for user operated computing devices by taking specular reflections originating from one or more reflective surfaces of an eyewear worn by the user into consideration. Also disclosed are a corresponding method, computer program, and computer program product.
US10284816B2 Facilitating true three-dimensional virtual representation of real objects using dynamic three-dimensional shapes
A mechanism is described for facilitating true three-dimensional (3D) virtual imaging on computing devices. A method of embodiments, as described herein, includes computing a virtual 3D model corresponding to an object. The method may further include computing and projecting, based the virtual 3D model, a unified surface image of the object via a dynamic 3D shape component, and generating and rendering a virtual image of the object based on the unified surface image such that the virtual image is capable of floating in air.
US10284811B1 Resistance-type splitting apparatus
A resistance-type splitting apparatus includes a transformer and a resistor distribution circuit. The resistor distribution circuit is electrically connected to the transformer. The resistor distribution circuit includes a plurality of distribution resistors. The distribution resistors are electrically connected to the transformer. The distribution resistors of the resistor distribution circuit are arranged as a radial pattern. The transformer receives a cable television signal. After the transformer receives the cable television signal, the transformer distributes the cable television signal through the distribution resistors. A transformer turns ratio of the transformer is adjusted to perform an impedance matching with the distribution resistors of the resistor distribution circuit.
US10284808B2 System and method for supporting selective backtracking data recording
Systems and methods can support a data processing apparatus. The data processing apparatus can include a data processor that is associated with a data capturing device on a stationary object and/or a movable object. The data processor can receive data in a data flow from one or more data sources, wherein the data flow is configured based on a time sequence. Then, the data processor can receive a control signal, which is associated with a first timestamp, wherein the first timestamp indicates a first time. Furthermore, the data processor can determine a first data segment by applying the first timestamp on the data flow, wherein the first data segment is associated with a time period in the time sequence that includes the first time.
US10284807B2 Apparatus and method for automatically generating an optically machine readable code for a captured image
A method for generating optically machine readable code is provided. The method includes capturing an image with a user device, automatically generating, by the user device, an optically machine readable code comprising information about the image recorded during the capturing of the image, and associating the optically machine readable code and the image. A computer readable storage medium storing one or more programs and an apparatus are also provided.
US10284800B2 Solid-state image pickup element, method of controlling a solid-state image pickup element, and image pickup apparatus
A solid-state image pickup element, including: a pixel array including a plurality of pixels; a first calculator that calculates a phase difference evaluation value for focus detection by a phase difference detection method based on signal from the pixel; and a second calculator that calculates a contrast evaluation value for focus detection by a contrast detection method based on signal from the pixel, wherein, when the first calculator completes calculation of the phase difference evaluation value, the phase difference evaluation value is output regardless of whether or not output of an image signal acquired by the pixel array is completed, and wherein, when the second calculator completes calculation of the contrast evaluation value, the contrast evaluation value is output regardless of whether or not output of the image signal acquired by the pixel array is completed.
US10284798B2 Low-noise high dynamic range image sensor
An image sensor includes a plurality of pixels each including a first photodiode linked to a capacitive readout node by a first transistor, and a second photodiode linked to a first capacitive storage node by a second transistor, the first capacitive node being linked to the readout node by a third transistor, and the readout node being linked to a node for applying a reset potential by a fourth transistor.
US10284797B2 Image generating system, image generation method, imaging element, and recording medium
An image generating system according to an aspect of the present disclosure includes an image obtaining device, an image generating circuit, and an image processing circuit. The image obtaining device includes an illuminating system that irradiates an object included in a module in which the object and an imaging element are integrated together, with light sequentially from a plurality of different radiation directions. The image obtaining device obtains a plurality of images corresponding to the plurality of different radiation directions. The image generating circuit generates a high-resolution image of the object having a higher resolution than each of the plurality of images by combining the plurality of images together. The image processing circuit detects noise resulting from a foreign object located farther from an imaging surface of the imaging element than the object and removes the noise.
US10284795B2 Image processing device, image processing method, and image processing program which control a scan frequency of an imaging unit
An image processing device is an image processing device including a control unit configured to control a scan frequency of a region of an imaging unit, and an analysis unit configured to analyze a captured image captured in the imaging unit, and the analysis unit is configured to analyze the captured image to detect an optical signal transmitted from a signal source, identify an attribute of the signal source on the basis of information included in the detected optical signal, and set a region including the signal source in the captured image in a region with a different scan frequency, and the control unit is configured to control a scan frequency of the imaging unit for each region that is set in the captured image.
US10284794B1 Three-dimensional stabilized 360-degree composite image capture
In some embodiments, a device may include a processor and a memory. The memory may include instructions that, when executed, may cause the processor to generate a 360 degree three-dimensional composite image formed from a stabilized sequence of images of an object taken along a closed loop path about the object. In some embodiments, the instructions may cause the processor to rotate the 360 degree three-dimensional composite image about any selected point on the object. Further, in some embodiments, the instructions may cause the processor to provide an interface configured to enable a user to select a feature on the 360 degree three-dimensional composite image and to associate information with the selected feature.
US10284792B2 Audio/video recording and communication devices with multiple cameras for superimposing image data
Audio/video (A/V) recording and communication devices with multiple cameras for superimposing image data in accordance with various embodiments of the present disclosure are provided. In one embodiment, an audio/video (A/V) recording and communication device comprising: a first camera configured to capture image data at a first resolution; a second camera configured to capture image data at a second resolution that is higher than the first resolution; a memory including a rolling buffer; a communication module; and a processing module comprising: a processor; and a camera application that configures the processor to: capture first image data using the first camera; store the first image data in the rolling buffer of the memory; maintain the second camera in a low-power state; power up the second camera in response to motion detection; capture second image data using the second camera; and superimpose the first image data onto the second image data.
US10284783B2 Imaging apparatus and control method of imaging apparatus
An imaging apparatus includes an imaging unit that captures an image of a subject, a display unit that displays the captured image on a display screen and is moveable so as to change the orientation of the display screen, and a control unit that controls the brightness of the display screen based on the orientation of the display screen. When a predetermined shooting mode is set and the display screen is oriented toward the subject, the control unit lowers the brightness of the display screen compared to a brightness when the display screen is not oriented toward the subject.
US10284778B2 Electronic device capable of displaying updated voltages of power sources, method for controlling electronic device, and storage medium
An electronic device includes a detection unit that detects voltages of main and sub-power sources and a control unit that controls a display of the voltage of the main power source and a display of the voltage of the sub-power source on a display unit such that the displayed voltage of the main power source is updated to a newly-detected voltage even if a change between the new and displayed voltages is smaller than a predetermined threshold, and that the displayed voltage of the sub-power source is not updated to a newly-detected voltage if a change between the new and displayed voltages is smaller than the predetermined threshold, but is updated to the newly-detected voltage if the change between the new and displayed voltages is equal to or greater than the predetermined threshold.
US10284775B2 Electronic device and method for processing captured image associated with preview frames by electronic device
An electronic device and an operation method by the electronic device are disclosed. The electronic device includes a controller that controls to extract at least one frame of a plurality of preview frames inputted through an image capturing device and store an image captured through the image capturing device according to an image capturing request in association with the selected at least one frame; and a storage unit storing the captured image and the selected at least one frame.
US10284768B2 Image processing method and apparatus
Embodiments of the present application provide image processing methods and apparatus. A image processing method disclosed herein comprises: acquiring two images of the same scene shot in the same position with the same aperture pattern and different depth of field parameters; performing frequency-domain conversion on each of the images, to obtain a frequency-domain signal of each image; and obtaining an all-in-focus image of the scene at least according to the frequency-domain signal of each image and the different depth of field parameters.
US10284767B2 Shooting device, shooting method, and non-transitory computer readable recording medium storing program
A shooting device includes a shooting module; a detection unit that detects whether a finder device is mounted on the shooting device; a storage module that stores first information and second information; and a control unit that controls a lens module to perform a first operation based on the first information and a second operation based on the second information, wherein the first information and the second information indicates a range of a parameter for controlling the lens module, the parameter is used for controlling an aperture or an angle of view of the lens module, the range indicated by the first information is determined by excluding a partial range from the range indicated by the second information based on whether the parameter is used for controlling the aperture or the angle of view of the lens module.
US10284766B2 Mobile terminal and controlling method thereof
A mobile terminal and controlling method thereof are disclosed, by which a flying object equipped with a camera can be remotely controlled. The present disclosure includes a wireless communication unit configured to perform a communication with a flying object, a touchscreen configured to output a preview image received from the flying object, and a controller outputting a shot mode list on the preview image, the controller, if at least one shot mode is selected from the shot mode list, remotely controlling a flight location of the flying object in accordance with the selected at least one shot mode.
US10284765B1 System and method for wireless power transfer of an infrared illuminator
A camera system comprising a camera, a wireless power transmitter, a wireless power receiver, and an infrared illuminator. The camera and wireless power transmitter are powered by a power source. The wireless power transmitter wirelessly transmits power to the wireless power transmitter to power the infrared illuminator. The infrared illuminator generates infrared light.
US10284763B2 Electronic device having a band and control method therefor
Provided is an electronic device. The electronic device includes: a main body mounted with an electronic unit including a controller, including a bezel disposed at the outer side thereof, and having a locking groove formed in the bezel; and a band part mounted with an additional device for exchanging an electric signal with the electronic unit and an electronic part providing information related to the additional device for the electronic unit, and including a coupling part detachably coupled to the locking groove. Here, the controller switches an operation mode of the main body according to the information related to the additional device provided by the electronic part when the main body and the band part are coupled to each other. Thus, when the band part mounted with the additional device is connected to the main body, the operation mode of the main body is automatically switched to a mode corresponding to the additional device, thereby providing convenience of use.
US10284759B2 Display with interspaced microlenses and corresponding devices and methods
A display has an array of pixel structures. Each pixel structure includes a plurality of electroluminescent elements. The array of pixel structures can be arranged on a substrate. One or more pixel structures selected from the array of pixel structures each include a microlens interspacing one or more of the electroluminescent elements. Image sensors can then receive light propagating through the microlens. One or more processors can synthesize images capture by the image sensors to form a composite image.
US10284756B2 Camera assembly and system for mounting thereof
Techniques and systems for implementing fast, fixed-focal-length lens imaging systems for molecular biology or genetics applications are provided. In particular, techniques and structures are provided for allowing for precise alignment of the optical and imaging components of such imaging systems during assembly with a minimal amount of adjustment.
US10284752B1 Method for determining a start offset between a video recording device and an inertial measurement unit for use in synchronizing motion data of an object collected by the inertial measurement unit attached to the object with video frames captured by an image sensor of the video recording device of the object in motion
A method is provided for determining a start offset between a video recording device and an inertial measurement unit (IMU) for use in synchronizing motion data of an object collected by the IMU attached to the object with video frames captured by an image sensor of the video recording device of the object in motion. The start offset is then used to synchronize subsequently captured video frames to subsequently collected IMU motion data.
US10284751B2 Optical scanning head-mounted display and retinal scanning head-mounted display
An optical scanning head-mounted display includes an optical scanning controller that emits, as image light, a laser beam in accordance with an image signal; a transmission cable that transmits the image light emitted from the optical scanning controller; and a head mount unit provided with an optical scanner including a mirror for scanning the image light transmitted by the transmission cable, wherein the head mount unit includes an amplifier that amplifies a motion signal corresponding to a tilt of the mirror, the motion signal being output from the optical scanner, and wherein the optical scanning controller includes a difference generator that generates a difference signal from the motion signal output from the amplifier through the transmission cable and a filter that removes noise from the difference signal generated by the difference generator.
US10284746B2 Information processing apparatus, information processing method, and non-transitory computer readable storage medium
An information processing apparatus includes plural communication units, a determination unit, and a controller. The plural communication units are configured to be capable of conducting a wireless communication. The determination unit is configured to determine a communication unit from among the plural communication units in accordance with whether a mobile communication terminal that is attempting to conduct a communication is approaching the information processing apparatus. The controller is configured to perform a control so as to start the communication using the communication unit determined by the determination unit.
US10284743B2 Image processing apparatus and method for controlling the same
An image processing apparatus that performs filtering by reading out an image from an external storage unit, the image being divided into a plurality of banks by a first interleave method according to a transfer length when the image is read out from the external storage unit is provided. The apparatus including: a plurality of local memories; and a control unit configured to divide, into a plurality of pixel fragments, a pixel of a bank which includes at least one of a plurality of pixels needed for the filtering by a second interleave method according to the transfer length and store each of the pixel fragments obtained as a result of division in one of the plurality of local memories in accordance with the transfer length.
US10284741B2 Image reading optical system with an adjustment mirror
Provided is an image reading optical system including an image reading unit in which plural reading devices are arranged in a first direction, and plural image-forming mirrors that guide reflected light, which is acquired by reflecting light from a light source in a reading target, to the image reading unit, wherein any one of the plural image-forming mirrors is an adjustment mirror that has power only in one of the first direction and a second direction intersecting the first direction, and is rotatable or relatively movable with respect to the other image-forming mirrors.
US10284736B2 Paper sheet feed system for portable printer, scanner, and copier
A compact and portable printer, scanner and copier having dimensions and a housing allowing the device to be portable for travel with a laptop computer or other tablet or portable computing device. The three in one printer has a pivotal carriage for linear and rotational movement of the carriage and an ink cartridge. The printer also has an easily accessible removable ink cartridge maintenance system.
US10284733B2 System for distributing image scanning tasks to networked devices
A scan task system includes a plurality of imaging devices, including MFDs, dedicated scanners, or mobile phones with scanning or camera functions. The system notifies a user or a number of users when a particular document needs to be scanned and transmitted to a specific destination. A scan task is sent to available imaging devices, and will appear when the user logs in at any imaging device on the network. When a user executes the scan task at any one of the imaging devices, the scan task is removed from all devices. The scan task can be pre-programmed to appropriately file or send a scanned document when the scan is executed.
US10284732B2 Masking latency in USB photo capture
Methods and devices for masking latency may include detecting a pause in receiving an image stream from an imaging device and generating one or more virtual image frames, each including a status indicator to indicate a status of the imaging device when the pause in receiving the image stream is detected. The methods and devices may also include generating, at the operating system, a data stream with the one or more virtual image frames inserted after a last image frame of the received image stream. In addition, the methods and devices may include transmitting the data stream to an application.
US10284730B2 Method and apparatus for adaptive charging and performance in a software defined network
Aspects of the subject disclosure may include, for example, a method including instantiating a virtual network function to provide a network resource in the network, accessing data usage information associated with facilitation of a service to a communication device via the network, determining whether the communication device exceeds a data limit threshold according the data usage information, accessing a data limit instruction associated with the communication device responsive to determining that the communication device exceeds the data limit threshold, determining a modification to the virtual network function associated with the facilitation of the service according to the data limit instruction, and communicating with the network to cause the modification to the virtual network function. Other embodiments are disclosed.
US10284726B2 System and method for replacing hold-time with a call-back in a contact center environment
System and method for handling a transaction between a waiting party and queuing party include an independent communication system (ICS) managing calls between the waiting party and calling party for handling sensitive data as well as call-attached data. The ICS manages the transaction in different stages and with different levels of sensitivity. Either party is allowed to modify the call or call preferences during the transaction. The ICS works independently from the queuing party calling system.
US10284725B2 Systems and methods for syncing data related to voice calls via a dynamically assigned virtual phone number
The present disclosure is directed to syncing data related to voice calls via dynamically assigned virtual phone numbers. A system receives a voice call entry from a content provider. The system access a lot data structure to parse the log data structure. The system matches a device identifier of the voice call entry with a device identifier of the log entry. The system determines that a predetermined threshold is satisfied by a time or duration of the log entry. The system retrieves a virtual phone number from the log entry. The system performs a lookup to determine a content item impression identifier. The system stores data provided via the voice call entry.
US10284720B2 Systems and methods for automatically conducting risk assessments for telephony communications
Systems and methods for using machine-learning techniques for labeling incoming calls with categories relating to a risk level. A model is generated using call log data. The call log data is augmented using information from additional data sources to generate features for the model. The model may then be used to categorize additional incoming calls. The model may be used in real-time to categorize incoming calls, or categorization results may be stored for a plurality of calling numbers. Various embodiments provide various technical advantages by virtue of how the components of the system are deployed between an endpoint communication device, a telephony provider system, and possibly other systems.
US10284713B2 Non-invasive diagnostic transmission line testing
A probing signal transmitted on a twisted pair telephone line in a DSL system is reflected and received at a DSL device. An estimate of one of a DSL data transmission signal or DSL synch symbol transmission signal is removed from the received probing signal to recover the reflected probing signal. The recovered reflected probing signal is processed to determine characteristics information of the twisted pair telephone line.
US10284709B2 Apparatus and method for in-vehicle location of a mobile device
In at least one embodiment, an apparatus including a controller that is electrically coupled to a plurality of transceivers within a vehicle for enabling bi-directional wireless communication via Bluetooth Low Energy (BLE) between the controller and an occupant communication device (OCD). The controller is further configured to: transmit an advertisement signal indicative of the vehicle being in motion from each transceiver to the OCD via BLE and to receive, at each transceiver, a scan request signal from the OCD via BLE at a first power level. The controller is further configured to determine the location of the OCD in the vehicle in response to receiving the scan request signal at each transceiver at the first power level.
US10284703B1 Portable full duplex intercom system with bluetooth protocol and method of using the same
A portable full duplex intercom system using Bluetooth and method of use are provided in which the intercom system has a built in microphone and speaker in a device. In one embodiment, the portable full duplex intercom system using Bluetooth may be used in a vehicle to allow the people in the vehicle to communicate with each other.
US10284702B2 Vehicle-dependent visualization of map and navigation data
A portable device is configured to provide geographic information to a head unit of a vehicle equipped with a display device. One or more processors determine a user context related to a geographic location and detect that the portable device has been communicatively coupled to the head unit of a vehicle. The one or more processors transmit to the head unit, without an express user command, a request that the head unit accept data from the portable device for output via the display device. In response to receiving an indication that that the request has been granted, the one or more processors cause information related to the geographic location to be displayed via the display device, without an express user input at the portable device.
US10284701B1 Portable system for institutional telephone service provision
One exemplary embodiment provides a device comprising: a connection panel configured to accept a removable connection to a telephone of a controlled access residential institution; a network router connected to the connection panel and configured to connect to a remote network; and an access and security module connected to the network router and configured to control access by the telephone to telephone services provided by accessing a remote call processing center via the remote network. The connection panel, the network router, and access and security module can be at least partially enclosed within a portable enclosure. The device may further comprise a power distribution unit within the enclosure and connected to provide power to the network router and to the access and security module.
US10284698B1 Speech station for intercom network
The invention relates, inter alia, to a speech station (10) for an intercom network (11), comprising an in particular parallepipedal housing (12), with a housing front (13) and a rear housing side (14), wherein a plurality of programmable operator controls (15a, 15b, 15c, 15d) and multiple displays (16a, 16b, 16c, 16d) are tightly packed on the housing front (13), wherein the operator controls comprise a plurality of selector keys (17a, 17b, 17c, 17d), wherein the speech station as a result of a selector key being actuated by an operator provides a direct listen and/or talk connection to a selected other speech station (18a, 18b) of the intercom network via a switching station (19), wherein a plurality of connectors (20a, 20b, 20c, 20d), such as power-supply connector, data cable connector, BNC connector, are mounted on the rear housing side (14), wherein at least one loudspeaker (24a, 24b) is fixed on the speech station, wherein the loudspeaker is accommodated in a seat (25) between the housing front (13) and rear housing side (14), offset to the rear (26) relative to the housing front (13), and wherein the loudspeaker (24a, 24b) has a sound exit surface (27) from which the sound is propagated to an opening (28) in the housing front (13), wherein the opening has an opening cross-section (29) that amounts to only a fraction of the sound exit surface (27).
US10284688B2 Tiered framework for proving remote access to an application accessible at a uniform resource locator (URL)
Method and systems of providing remote access to an application in a tiered remote access framework that includes a server tier and a client tier. In the server tier, an application that is remotely accessed and a server remote access application execute on a server. In the client tier, a client remote access application executes on a client device. A server SDK may be associated with the application in the server tier, where the server SDK being adapted to communicate display information to the client tier. A client SDK may be associated with a client application executing on the client device, where the client SDK receives the display information from the server tier. The client device connects to the server at an enumerated Uniform Resource Locator (URL) to initiate the reception of the display information.
US10284685B2 Monitoring cloud resource objects during deployment of a blueprint
Tools are provided to assist users of cloud computing systems to create, monitor, and debug the resource instances they need. Specifically, resource instances are created in a cloud computing system based on a blueprint that is provided to a blueprint processor. The blueprint declaratively defines the resources that the user needs to have created in the cloud. Based on the information contained in blueprint, the blueprint processor causes the cloud to orchestrate the creation of resource instances, doing so in parallel when possible, and to configure those resource instances as specified in blueprint. Techniques are described for generating a timeline to convey status during the deployment process, and for performing debugging operations.
US10284684B2 IoT hardware certification
The disclosed technology is generally directed to device certification in an IoT environment. For example, such technology is usable in managing relationships between IoT devices and an IoT Hub. In one example of the technology, an IoT Hub receives a registration request. Next, the IoT Hub sends a registration verification to the IoT device. Next, the IoT Hub receives a ping from the IoT device. Next, the IoT Hub sends a response to the ping to the IoT device. Next, the IoT Hub receives verification of a validation of a log file output by a device based on running a plurality of unit tests on a device with a software development kit. Next, the IoT Hub automatically sends code to the IoT device.
US10284680B2 Organization targeted status updates
A social networking server receives a request from a member of an organization to configure a targeted update for the organization. The targeted update may be intended for a particular group of members of a social network service. The social networking server may provide various follower dimensions to associate with the targeted update, where each of the follower dimensions include one or more selectable attributes. When the social networking server receives a request for an organization's webpage from a member of the social network service, the social networking server may compare member attributes of a member profile associated with the member with the follower dimension attributes associated with the targeted update. The social networking server may provide the targeted update for display with the webpage of the organization based on the member attributes satisfying at least one follower dimension attribute associated with the targeted update.
US10284679B2 Maintaining privacy during personalized content delivery
Embodiments of the present invention relate to systems, methods, and computer-storage media for maintaining privacy while delivering advertisements based on encrypted user profile identifiers. In embodiments, a Public key Encryption with Keyword Search (PEKS) is used to generate a public key and a private key. In embodiments, a public key and a private key are used to encrypt user profile identifiers and generate trapdoors associated with defined profile identifiers, respectively. A portion of the encrypted user profile identifiers are compared to a portion of the trapdoors. If a match is present between at least one encrypted user profile identifier and an associated trapdoor, a delivery engine is provided with an identification of content to be delivered to the user. The provided description is then used to determine an advertisement to present to a user. The advertisement is then presented to the user.
US10284677B2 Method and apparatus for obtaining content from a media server
A method performed by a communication network node of enabling retrieval of an object, such as an element of web-page, is provided. The location of the object is defined by a Uniform Resource Locator, URL, in a distributed caching system. The method comprises restructuring the URL into a format being readable by a DNS server, and sending a DNS query comprising the restructured URL to the DNS server. Furthermore, the method comprises receiving an IP-address of a cache in the distributed caching system, wherein the cache stores the object. Moreover, the method comprises sending an http-get request for the object to the cache having the received IP-address, and receiving an http-response comprising the object from the cache.
US10284674B2 Cache key based request routing
Disclosed are systems and methods for performing consistent request distribution across a set of servers based on a request Uniform Resource Locator (URL) and one or more cache keys, wherein some but not all cache keys modify the content requested by the URL. The cache keys include query string parameters and header parameters. A request director parses a received request, excludes irrelevant cache keys, reorders relevant cache keys, and distributes the request to a server from the set of servers tasked with serving content differentiated from the request URL by the relevant cache keys. The exclusion and reordering preserves the consistent distribution of requests directed to the same URL but different content as a result of different cache key irrespective of the placement of the relevant cache keys and inclusion of irrelevant cache keys in the request.
US10284668B2 Managing a logical client for an application
A logical client includes a primary client device and one or more secondary client devices. Each of the secondary client devices may be coupled to one or more peripherals. The primary client in the logical client may use a virtual machine and/or an application that uses one or more peripheral devices. The primary client device may not be coupled to the one or more peripheral devices used by the application and/or the VM. The primary client device may access the peripheral devices coupled to secondary client devices in order to use the application and/or the VM.
US10284667B2 Methods and apparatus to determine media impressions using distributed demographic information
Examples to determine media impressions using distributed demographic information are disclosed. An example apparatus includes a communication interface to receive a network communication at an impression monitor system based on a login event at a client device, the login event associated with an Internet-based service of a first Internet domain different from a second Internet domain of the impression monitor system. The example communication interface also sends a response to the client device, the response to cause the client device to include first and second cookie identifiers in a login reporting message and to send the login reporting message to a computer of a database proprietor that provides the Internet-based service, the first cookie identifier associated with the first Internet domain of the Internet-based service, and the second cookie identifier associated with the second Internet domain of the impression monitor system.
US10284666B1 Third-party cross-site data sharing
Approaches, techniques, and mechanisms are disclosed for third-party tracking of user data. Instructions provided in association with a first document cause a client at which the first document is viewed to load a second document in a tracking document container associated with the first document. The second document belongs to a third-party domain that is different than a first domain to which the first document belongs. Instructions provided in association with the second document cause the client to retrieve a particular identifier from a local storage area for the third-party domain at the client. The instructions provided in association with the second document further cause the client to send a message to a server comprising the particular identifier.
US10284665B2 Systems, methods, and apparatus to identify media devices
Systems, methods, and apparatus to identify media devices are disclosed. An example method includes establishing a table of device identifiers and respective media access control (MAC) addresses corresponding to devices on a home network, the device identifiers provided by a panelist associated with the home network during a registration process. The home network is monitored for a network communication sent by a requesting device separate from a network communications monitor, the network communications monitor installed in the home network associated with a panelist home. A device identifier of the requesting device is identified from the table of device identifiers and respective MAC addresses based on a MAC address of the requesting device. In response to a failure to identify the device identifier, the panelist is prompted to provide the device identifier for the requesting device.
US10284664B2 Application testing
The claimed subject matter includes techniques for providing an application testing service. An example method includes receiving context information from a client system, the context information comprising parameters that describe details of a user interaction with an application under test (AUT). The method also includes receiving a set of potential actions from the client system. The method also includes identifying a selected action from the set of potential actions and sending the selected action to the client system, wherein the AUT is customized based on the selected action. The method also includes receiving reward data from the client system based on a user's interaction with the AUT. The method also includes storing the context information, the selected action, and the reward data to a log of application test data.
US10284662B1 Electronic logging device (ELD) for tracking driver of a vehicle in different tracking modes
An improved system and method for defining an event based upon an object location and a user-defined zone and managing the conveyance of object location event information among computing devices where object location events are defined in terms of a condition based upon a relationship between user-defined zone information and object location information. One or more location information sources are associated with an object to provide the object location information. One or more user-defined zones are defined on a map and one or more object location events are defined. The occurrence of an object location event produces object location event information that is conveyed to users based on user identification codes. Accessibility to object location information, zone information, and object location event information is based upon an object location information access code, a zone information access code, and an object location event information access code, respectively.
US10284661B2 Efficient prioritized restoration of services in a control plane-based optical network
Systems and methods for efficient prioritized restoration of services implemented in a node in a network utilizing a control plane include releasing higher priority services affected by a fault on a link adjacent to the node immediately via control plane signaling such that the higher priority services mesh restore; tracking mesh restoration of the released higher priority services; and releasing lower priority services based on the tracking, subsequent to the mesh restoration of the higher priority services, wherein the higher priority services and the lower priority services comprise one or more of Optical Transport Network (OTN) connections, Dense Wavelength Division Multiplexing (DWDM) connections, and Multiprotocol Label Switching (MPLS) connections.
US10284660B1 Data flow tokens to trace execution of services in a service provider network
A service provider network offers various services to users. Some of the services may be stateless services. Data flow tokens may be generated and embedded in packets that are provided to the various services. A data flow token uniquely identifies the data flow for a set of services that are invoked by, for example, an application programming interface (API) call to the service provider network. The various services that are invoked as part of a common data flow write diagnostics data to a diagnostics log service. The diagnostics data may include the data flow token as well as a time stamp when the service was invoked and a time stamp when the service completes. The time stamps can be used to determine the period of time that the service took to execute. Analysis of the execution times can assist in, for example, auto-scaling the services for better performance.
US10284657B2 Application connection for devices in a network
A method for application connection includes receiving a list of application active sessions by a first electronic device based on location of the active sessions in relation to a location of the first electronic device. An active session is selected using the first electronic device to gain access for connection to a first application by the first electronic device.
US10284656B2 Techniques for communication between service capability server and interworking function for device trigger recall/replace
Examples may include techniques for a device trigger recall or a device trigger replace procedure as implemented at a machine type communication-interworking function (MTC-IWF) in response to a command received from a service capability server (SCS). Examples may also include the SCS generating a command for a device trigger recall or a device replace to cause the MTC-IWF to implement the device trigger recall or device trigger replace procedure to either recall or replace a trigger message destined for user equipment. Both the MTC-IWF and the SCS may operate in compliance with one or more 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) standards.
US10284648B2 Application multi-versioning in a traditional language environment
Operating an online transaction processing system to perform an application including a first module call by performing the following steps (not necessarily in the following order): (i) assigning a dedicated search path to the application, where the search path specifies an ordered set of location(s) for searching for module code, the set of location(s) includes at least a first dynamic module library and the first dynamic module library is ahead of any other locations which may be included in the dedicated search path; (ii) running the application through the transaction processing system; (iii) receiving the first module call, from the running of the application, specifying a requested module using a requested module name; and (iv) in response to the module call, locating the requested module based on the requested module name and the dedicated search path.
US10284646B2 Application multi-versioning in a traditional language environment
Operating an online transaction processing system to perform an application including a first module call by performing the following steps (not necessarily in the following order): (i) assigning a dedicated search path to the application, where the search path specifies an ordered set of location(s) for searching for module code, the set of location(s) includes at least a first dynamic module library and the first dynamic module library is ahead of any other locations which may be included in the dedicated search path; (ii) running the application through the transaction processing system; (iii) receiving the first module call, from the running of the application, specifying a requested module using a requested module name; and (iv) in response to the module call, locating the requested module based on the requested module name and the dedicated search path.
US10284643B2 System and method for cloud deployment optimization
Systems and methods of cloud deployment optimization are disclosed. In some example embodiments, a method comprises running original instances of an application concurrently on original servers to implement an online service, receiving, by the original instances of the application original requests for one or more functions of the online service, receiving a command to deploy a number of additional instances of the application, transmitting synthetic requests for the function(s) of the online service to one of the original servers according to a predetermined optimization criteria, deploying the number of additional instances of the application on additional servers using a copy of the original instance of the application, and running the deployed additional instances of the application on their corresponding additional servers concurrently with the original instances of the application being run on their corresponding original servers.
US10284639B2 Synchronized view architecture for embedded environment
Systems and methods for synchronizing information between devices are provided. An exemplary method receives, at first computing device, electronic content and data identifying one or more peer computing devices and establishes respective connections between the first device and each of the peer devices. The method sends, from the master device, to each of the peer devices, the content. When the content is received by the peer devices, at least a portion of the content is simultaneously displayed by the master device and the peer computing devices. In an embodiment, each of a group of devices at a location is configured to execute a player application within a browser in order to simultaneously display website content in a synchronized manner. One of the devices is referred to as a master device. The master device obtains current website content from a content repository and propagates the website content to the peer devices.
US10284638B2 Autonomous and adaptive monitoring of workloads
As disclosed herein a computer-implemented method includes determining an initial workload configuration corresponding to a workload and requesting a new custom monitoring agent and a new custom monitoring profile corresponding to the initial workload configuration, and determining updated monitor tuning information corresponding to the workload. The method further includes updating one or more monitoring thresholds according to updated monitor tuning information responsive to determining the workload configuration has changed, requesting a new monitoring agent that includes a monitor corresponding to a changed workload configuration, and installing the new monitoring agent in the workload. Also disclosed herein a computer-implemented method includes receiving a request from a requester for a new monitoring agent corresponding to a workload, and creating the new monitoring agent according to a custom monitoring profile. The method further includes providing the new monitoring agent to the requester. A computer system and computer program product are also disclosed herein.
US10284632B2 Electronic testing device
Systems and methods for cabling verification may include one or more operations including, but not limited to: receiving floor plan data representing a floor plan of a premises; receiving at least one user input specifying a location of at least one cabling endpoint relative to the floor plan; receiving at least one user input selecting at least one cabling verification test for the at least one cabling endpoint; receiving one or more cabling verification test results for the at least one cabling endpoint obtained by at least one testing device; and updating at least one database element associated with the at least one cabling endpoint and maintained by the cloud-based server.
US10284631B2 Management-as-a-service for on-premises information-technology systems
A Management-as-a-Service (MaaS) agent running on a SOPS creates collecting management statistics relating to the health, utilization, and performance of a subscriber on-premises system (SOPS). The MaaS agent forwards the collected data to a MaaS server, which stores the data in association with a tenant identifier (TID) in a multi-tenant database. The MaaS server tags user queries with the TID, so that the query result is based on management data for the respective SOPS, to the exclusion of SOPS associated with different TIDs. The use of multi-tenant techniques with non-multi-tenant SOPS allows one MaaS to manage plural SOPS while maintaining isolation of the management data for the respective SOPS. In addition, the use of multi-tenant techniques allows SOPS to be managed together with cloud-based subscriber applications, facilitating common management of hybrid cloud and on-premises systems.
US10284627B2 Data management for an application with multiple operation modes
A method and system for managing an application with multiple modes are described. A device manager that manages a mobile device may monitor the mobile device. The device manager may detect that a first type of application that runs in a managed mode (or in multiple managed modes) and an unmanaged mode is installed on the mobile device. When the application is executed on the device, the application executes in accordance with the selected application mode, e.g., based on location, user, role, industry presence, or other predefined context.
US10284623B2 Optimized browser rendering service
Implementations optimize a browser render process by identifying content neutral embedded items and rendering a web page without fetching the content neutral items. An example method includes identifying a URL pattern common to a plurality of URLs stored in fetch records and selecting a sample of URLs from the plurality. The method also includes, for each URL in the sample, determining whether the URL is optional by generating a first rendering result using content for the URL and a second rendering result without using the content for the URL and calculating a similarity score for the URL by comparing the first rendering result and the second rendering result, the URL being optional when the similarity score is greater than a similarity threshold. The method may also include storing the URL pattern in a data store of optional resource patterns when a majority of the URLs in the sample are optional.
US10284621B2 Session management
Methods, systems, and computer program products include, for example, transmitting, by one or more processor, session copy data from a server for storage on a client, and requesting, by the one or more processor, transmission of the stored session copy data from the client in response to loss of session data being detected on the server.
US10284620B2 Graphical mapping of application programming interface parameters
Designing an Application Programming Interface (API) may include parsing a first API definition for an input element, and outputting a user interface (UI) for display to a user. The UI may include a UI control set corresponding to the input element. The UI control set may include a text control for receiving a name for the input element in a second API definition, and a type control for receiving a type for the input element in the second API definition. Designing the API may also include receiving the name and type via the text control and the type control, respectively, and generating the second API definition. The generating may include positioning the received name within a command syntax of the second API definition according to the received type.
US10284619B2 Method for scalable distributed network traffic analytics in telco
Exemplary methods for performing distributed data aggregation include receiving Internet Protocol (IP) traffic from only a first portion of the network. The methods further include utilizing a big data tool to generate a summary of the IP traffic from the first portion of the network, wherein a summary of IP traffic from a second portion of the network is generated by a second network device utilizing its local big data tool. The methods include sending the summary of the IP traffic of the first portion of the network to the third network device, causing the third network device to utilize its local big data tool to generate a summary of the IP traffic of the first and second portion of the network based on the summaries received from the first and second network devices, thereby allowing the IP traffic in the network to be characterized in a distributed manner.
US10284618B2 Dynamic media content
Systems, methods, and computer-readable storage media for dynamic radio content. The system generates a media item to be inserted into a media stream. The media item can include multiple segments associated with a set of discrete components. Next, the system inserts the media item into the media stream. In response to a triggering event, the system then re-generates the media item by assembling the multiple segments using a new set of the discrete components. The system then inserts the re-generated media item into the media stream.
US10284616B2 Adjusting a media stream in a video communication system based on participant count
An example method includes receiving, by the computing device, a first video stream from a first client device of a plurality of client devices, wherein the computing device is communicatively coupled to each client device of the plurality of client devices. The method further includes detecting a participant count associated with the first client device based on the first video stream from the first client device and based on the participant count associated with the first client device, adjusting the first video stream. The method further includes receiving a second video stream from a second client device of the plurality of client devices and adjusting at least one of video stream display size or video stream resolution of the second video stream. The method further includes sending the adjusted first video stream and the adjusted second video stream to at least one client device of the plurality of client devices.
US10284608B2 Method and apparatus for providing state information
Methods and apparatus are provided for providing state information of a digital apparatus. State information for a user of the digital apparatus is determined based on the user's intention to perform communication. The state information is transmitted to a server. A display request for a contact list is received. A screen having a plurality of user items is displayed. Each of the plurality of user items corresponds to a respective one of a plurality of users in the contact list. At least one of the plurality of user items includes identification information of a user corresponding to the at least one of the plurality of user items, state information of the corresponding user that is received from the server, and at least one category indicator representing at least one recommended communication service category determined based on the state information of the corresponding user.
US10284606B2 Setting up communication between a web application and a terminal
A method and apparatus are provided for setting up a communications session between an instance of a web application installed in a terminal and a called entity. The method includes sending a first request for setting up a communications session between the application instance and the called entity, the first request being formulated in a first protocol; receiving a response indicating that it is not possible to route the first request, and sending a second request for setting up the communications session formulated in a second protocol.
US10284604B2 Data processing and scanning systems for generating and populating a data inventory
In particular embodiments, a data processing data inventory generation system is configured to: (1) generate a data model (e.g., a data inventory) for one or more data assets utilized by a particular organization; (2) generate a respective data inventory for each of the one or more data assets; and (3) map one or more relationships between one or more aspects of the data inventory, the one or more data assets, etc. within the data model. In particular embodiments, a data asset (e.g., data system, software application, etc.) may include, for example, any entity that collects, processes, contains, and/or transfers personal data (e.g., such as a software application, “internet of things” computerized device, database, website, data-center, server, etc.). The system may be configured to identify particular data assets and/or personal data in data repositories using any suitable intelligent identity scanning technique.
US10284600B2 System and method for updating downloaded applications using managed container
A managed container may be configured to manage enterprise applications, manage enterprise information stored on a device, manage a protected storage area used by the managed container to store and reference the enterprise applications during execution, and manage a database storing enterprise rules related to management of the enterprise applications and the enterprise information. The managed container may communicate with an application gateway server to control download and update of the enterprise applications, the enterprise information, and the enterprise rules. The application gateway server may be coupled to a backend enterprise application. At least one of the enterprise applications may be configured to execute in conjunction with the backend enterprise application according to at least one of the enterprise rules, and is configured to, according to another one of the enterprise rules, manage the enterprise information associated with the backend enterprise application.
US10284598B2 Honeypot network services
In general, in one aspect, a system for providing honeypot network services may monitor network activity, and detect network activity indicative of network service discovery by a first device, for example, port scanning. The system may present a temporarily available network service to the first device in response to detecting the activity indicative of port scanning, for example, by redirecting traffic at an unassigned network address to a honeypot network service. The system may monitor communication between the first device and the presented honeypot network service to determine whether the monitored communication is indicative of a threat, and determine that the first device is compromised based on the monitored communication between the first device and the presented honeypot network service. The system may initiate measures to protect the network from the compromised first device.
US10284591B2 Detecting and preventing execution of software exploits
In non-limiting examples, anti-exploit systems and methods described herein monitor a memory space of a process for execution of functions. Stack walk processing is executed upon invocation of one of the functions in the monitored memory space. During execution of the stack walk processing, at least one memory check is performed to detect suspicious behavior. An alert of suspicious behavior is triggered when the performing of the memory check detects at least one of: code execution attempted from non-executable memory, identification of an invalid base pointer, identification of an invalid stack return address, attempted execution of a return-oriented programming technique, the base pointer is outside a current thread stack, and a return address is detected as being inside a virtual memory area. If an alert of suspicious behavior is triggered, execution of a payload is prevented for the invoked function.
US10284579B2 Detection of email spoofing and spear phishing attacks
A computer-implemented method of detecting an email spoofing and spear phishing attack may comprise generating a contact model of a sender of emails; determining, by a hardware processor, a statistical dispersion of the generated contact model that is indicative of a spread of a distribution of data in the generated model and receiving, over a computer network, an email from the sender. If the determined statistical dispersion is lower than a dispersion threshold, the received email may be evaluated in the processor against a plurality of conditions associated with email spoofing and spear phishing attacks, using the generated contact model, to generate a features vector that is constituted of a plurality of binary values and a plurality of dispersion values between 0 and 1, and using at least the generated features vector to classify with a supervised learning algorithm the received email as a likely legitimate email or as a likely malicious email spear phishing attack; and notifying a recipient of the email when the received email is classified as a likely malicious email spear phishing attack.
US10284578B2 Creating a multi-dimensional host fingerprint for optimizing reputation for IPV6
A mechanism is provided for blocking IP connection addresses and prefixes. Header information is extracted from an incoming connection request. A determination is made as to whether a portion of an Internet Protocol address comprised in the header information is blacklisted. Responsive to a portion of the Internet Protocol address being blacklisted, a fingerprint is generated, and a determination is made as to whether the fingerprint is blacklisted. Responsive to the fingerprint being blacklisted, the underlying physical connection is dropped; data associated with the incoming connection request is stored in a buffer, the fingerprint is associated to the incoming connection request; the incoming connection request is merged with stored blacklisted requests of a related originating system; and shared prefixes of the Internet Protocol address of the stored blacklisted requests are filtered out.
US10284577B2 Method and apparatus for file identification
The present application discloses a method and an apparatus for file identification. The method for file identification comprises: determining a virus family of each malicious file sample in a plurality of the file samples resulting in a plurality of virus families; dividing the plurality of the virus families into at least one sample group based on a number of the malicious files belonging to each of the plurality of virus families; training the malicious file samples in each of the at least one sample group with a different training rule to obtain at least one file identification model; and determining, using the at least one identification model whether a file is a malicious file. The method for file identification of the present application may provide different identification models for various types of malicious files and thus improves the accuracy of the file identification.
US10284573B1 Friction management
One or more embodiments of techniques or systems for session management, security scoring, and friction management are provided herein. Sessions may be monitored for commonalties or other attributes or aspects and closed, terminated, or a freeze placed on additional sessions from being initiated. A security score may be provided which is indicative of how secure a user is with respect to one or more ways the user interacts with a resource. One or more suggested actions or score improvement strategies may be suggested to facilitate improvement of a security score for a user. Friction management may be provided by having one or more additional layers of security applied to an account of a user or an entity based on suspicious behavior or other factors.
US10284569B2 Email based SLAs management for effective business
A method includes determining that a message sent using a sender account to a first user account of an email application is unopened for a first predetermined amount of time. The method further includes, in response to determining that the message is unopened for the first predetermined amount of time, transmitting the message to a second user account on a predetermined escalation list, wherein the predetermined escalation list is configured using the sender account prior to sending the message to the first user account. The method further includes restricting the first user account from performing an action associated with the message.
US10284568B2 System and method for secure transmission of streamed data frames
Data acquired, for example by a mobile platform, such as a sequence of images observed by a mobile platform, is grouped. A signature is computed for each group and is transmitted along with frame data to a reception system, which verifies correct transmission based on the group signature. The signature may be a root value of a hash tree that has at least selected ones of each group as inputs. Transmission events may also be separately signed as a whole using an event validation system. Although the signature maybe computed for all frames in a group, it may also be computed based on only a subset, selected pseudo-randomly.
US10284566B2 Proximity detection system
Various systems and methods for providing a walk away lock are provided herein. A plurality of data packets may be received at a compute device from a user device. Here, each packet has corresponding time-to-receive value. A baseline latency value of the plurality of data packets may be determined based on their respective time-to-receive values. Additional data packets may be received from the user device, each of these additional data packets having their own corresponding time-to-receive values. A current latency value of the additional data packets may be calculated based on the respective time-to-receive values. A security operation may be performed based on the baseline latency value and the current latency value.
US10284564B1 Systems and methods for dynamically validating remote requests within enterprise networks
The disclosed computer-implemented method for dynamically validating remote requests within enterprise networks may include (1) receiving, on a target system within an enterprise network, a request to access a portion of the target system from a remote system within the enterprise network, (2) performing a validation operation to determine whether the remote system is trustworthy to access the portion of the target system by (A) querying an enterprise security system to authorize the request from the remote system and (B) receiving, from the enterprise security system in response to the query, a notification indicating whether the remote system is trustworthy to access the portion of the target system, and then (3) determining whether to grant the request based at least in part on the notification received from the enterprise security system as part of the validation operation. Various other methods, systems, and computer-readable media are also disclosed.
US10284563B2 Transparent asynchronous network flow information exchange
A method for providing a transparent asynchronous network flow exchange is provided. The method may include receiving a query request from a requester, whereby the received query request is associated with a network packet. The method may also include determining if the network packet contains a plurality of defined signatures. The method may further include in response to determining that the network packet contains a plurality of defined signatures, authenticating a plurality of information associated with the network packet. The method may additionally include determining a plurality of flow related security information associated with the network packet based on the authentication of the plurality of information. The method may include sending the determined plurality of flow related security information to the requester.
US10284562B2 Device authentication to capillary gateway
It is disclosed a method and a capillary gateway, CGW, (50, 60, 204, 304) capable to determine whether to allow a first machine-to-machine, M2M, device network access. The CGW is adapted to intercept (310) an authentication request message sent from a M2M device, and intercept (318) an authentication response message sent from a M2M management service. If the CGW determines that the authentication is successful based on the authentication response message and that there is a valid subscription for the M2M device and the authentication response message is received from a trusted management service, the CGW may allow (414) the first M2M device network access. Embodiments of the present disclosure have the advantage that disclosure can provide low-powered devices Internet reachability based on user subscriptions in non-traditional scenarios such as where devices are deployed straight out-of-the-box, i.e., without any customization.
US10284556B1 Systems and methods for verifying authentication requests using internet protocol addresses
A computer-implemented method for verifying authentication requests using IP addresses may include (i) collecting, by a computing system, data on IP address changes from a set of endpoint devices, (ii) creating, by the computing system using the data on IP address changes, a virtual IP address distance map based on a likelihood of change from at least one origin IP address to at least one destination IP address, (iii) automatically detecting, by the computing system, a change in an IP address of a client device, (iv) determining, by the computing system and based on the virtual IP address distance map, that the change in the IP address of the client device indicates that an authentication request from the client device is suspicious, and (v) performing, by the computing system, a security action to secure the client device. Various other methods, systems, and computer-readable media are also disclosed.
US10284550B2 Method for supporting subscriber's service provider change restriction policy in mobile communications and apparatus therefor
The present invention relates to a method and an apparatus for employing an embedded subscriber identity module (hereinafter referred to as eSIM) to apply a policy such as a subsidy policy to, activate, deactivate, add to, update, and delete a user profile in a mobile communications network. The present invention enables a mobile device to determine whether to host the policy of a new service provider when it changes the present service provider or to perform a lock for prohibiting the policy change, and to change the profile related to the determination. The present invention also enables a mobile device to replace the policy related to the service provider by applying the policy, or to employ eSIM so as to activate, deactivate, revise, add, or delete the rules of the policy related to the service provider. The present invention provides various examples of hosting and applying the policy and various examples of activating, deactivating, revising, adding, deleting the policy rules so as to make eSIM identify the subscriber as the existing subscriber identity module. The invention also enables the device or eSIM to be reused when changing the service provider throughout the life cycle thereof without limiting the use of eSIM to a single service provider. The invention also provides a method for locking the policy applied per service provider, and the use of eSIM when changing to another service provider by the policy per service provider. The present invention also provides a method for checking the criteria of decision and verifying the power of decision when administering the policy rules and eSIM through deleting, adding, revising, activating, and deactivating the profile management plan and policy rules by applying the service provider's policy. Thus the present invention enables the device to host a new service provider's policy for communicating therewith when changing from the existing service provider to the new service provider, or when the government changes the service provider for an M2M device related to the electricity, infrastructure, etc. under an environment such as EUTRAN (Evolved Universal Terrestrial Radio Access Network) or UTRAN (Universal Terrestrial Radio Access Network)/GERAN (GSM/EDGE Radio Access Network). The present invention also is advantageous in that if the change of a service provider is not allowed according the policy of the existing service provider, the information related to communication and the security information are set revised safely by locking, thus enhancing the communication efficiency and security. The present invention also enables the device to verify the power of the user or to revise safely the information of eSIM for adding, revising, deleting, activating, and deactivating the policy rules for managing the operation profile for administration of the policy of the service provider under an environment such as EUTRAN (Evolved Universal Terrestrial Radio Access Network) or UTRAN (Universal Terrestrial Radio Access Network)/GERAN (GSM/EDGE Radio Access Network), thus enhancing the communication efficiency and security.
US10284547B2 Facilitating users to obfuscate user credentials in credential responses for user authentication
A system and method for facilitating users to obfuscate user credentials in credential responses for user authentication are disclosed. A string sequence may be presented to a user for prompting the user to input credential characters sequentially but not continuously. The string sequence may comprise a set of prompt strings containing a prompt character sequence associated with the user and a set of noise strings that do not contain the prompt character sequence. The individual prompt strings in the set of prompt strings may be composed by obfuscating the prompt sequence among noise characters. A user credential response may be received and a user provided credential may be extracted from the received user credential for user authentication.
US10284543B2 System and method for secure online authentication
Disclosed are systems and methods for secure online authentication. An exemplary method comprises: determining, via a processor of a computing device, a connection being established between a browser application installed on a computer system and a protected website; obtaining information relating to the protected website in response to obtaining a request for authentication from the protected website; establishing a protected data transmission channel with the protected website to receive at least one certificate of the protected website; performing authentication and transmitting authentication data to the protected website; and in response to an indication of a successful authentication from the protected website, transmitting identification information to the browser application for enabling access to the protected website.
US10284541B1 System and method for generating enhanced distributed online registry
A system for generating an enhanced distributed online registry that utilizes an interoperable framework, and machine learning and natural language processing technologies to automatically provide compatible registry items. A persistent secure connection across distributed systems facilitates automatic synchronization of the generated online registry items across the distributed systems and devices accessing those systems. The online registry application processor utilizes machine learning and natural language technologies to generate an acquisition trending model which may be utilized to generate an enhanced distributed online registry that may determine and provide registry items that are compatible with the customer acquisition. Utilizing a persistent bi-directional connection, the online registry application processor may automatically synchronize the enhanced distributed online registry in real time as registry items are added and purchased.
US10284536B2 System and method for concurrent address allocation and authentication
A method for coordinating network entry of a device includes authenticating the device coupled to the controller, and allocating an address for the device, wherein allocating the address for the device occur concurrently with but independently of authenticating the device. The method also includes completing the network entry of the device upon successful completion of authenticating the device and allocating the address for the device.
US10284535B2 Secure database
Methods, systems, and apparatus, including a system that includes a secure hardware unit; and a database system including one or more processors; and a computer-readable medium having stored instructions that, when executed by the one or more processors, cause the one or more processors to perform operations including: receiving a client request to perform a database operation using first encrypted data as an encrypted value of a field to be operated on by the database operation, where the first encrypted data has been encrypted by a database client using a first encryption key; providing, to the secure hardware unit, a system request for performing one or more data processing operations, the system request including (i) the first encrypted data and (ii) data identifying the first encryption key; and receiving, from the secure hardware unit, output data representing an output of the one or more data processing operations.
US10284532B2 Managing access to resources
Methods and systems for managing access to a resource by one of a plurality of applications. The method comprises: storing, in a first storage area associated with a first application, a first credential for use in accessing the resource; receiving, at a second application, a message comprising data for determining that the first application stores a validated credential for accessing the resource; sending a request for the validated credential from the second application to the first application; receiving the first credential at the second application from the first application in response to the request sent; and storing the first credential in a second storage area associated with the second application; wherein the message received at the second application is received from a server system, remote from the plurality of applications, which maintains data indicating a subset of the plurality of applications which store respective validated credentials for accessing the resource.
US10284531B2 Collision avoidance in a distributed tokenization environment
A client receives sensitive data to be tokenized. The client queries a token table with a portion of the sensitive data to determine if the token table includes a token mapped to the value of the portion of the sensitive data. If the mapping table does not include a token mapped to the value of the portion of the sensitive data, a candidate token is generated. The client queries a central token management system to determine if the candidate token collides with a token generated by or stored at another client. In some embodiments, the candidate token includes a value from a unique set of values assigned by the central token management system to the client, guaranteeing that the candidate token does not cause a collision. The client then tokenizes the sensitive data with the candidate token and stores the candidate token in the token table.
US10284530B1 Secure computer peripheral devices
A method for improving security of peripheral devices is described. In one embodiment, the method includes sending, by a processor of a peripheral device, at least one packet of data to an operating system of a computing device, identifying, by the processor, execution of a software application on the computing device, performing, by the processor, a handshake protocol between the secure input device and the software application based at least in part on the execution of the software application, and establishing, by the processor, a secure session over a secure channel between the secure input device and the software application based at least in part on the handshake protocol. In some cases, the at least one packet of data identifies the peripheral device to the operating system as two or more peripheral devices such as a default input device and a secure input device.
US10284529B2 Information processing apparatus and information processing method
The present disclosure relates to an information processing apparatus and an information processing method which facilitate reproduction of the data obtained by encrypting prepared multiple patterns regarding at least part of data of content with unique keys. An image acquiring unit receives an image file containing: encrypted data that is obtained by encrypting with unique keys multiple pieces of pattern data regarding forensic object data which is at least part of encoded image data of video content and that has an identical size; unencrypted data, of the encoded image data of video content, which is not encrypted with any one of the keys; size information that represents the size of the encrypted data; and position information that represents a position of the encrypted data in the file. The present disclosure can be applied to a video reproducing terminal and the like.
US10284528B2 Remote monitoring and management of an instant issuance system
A system and method for remote monitoring and management of an instant issuance system is provided. The embodiments provide secure communication between different entities within the instant issuance system. Security can be established via mutual authentication between the communicating entities of the instant issuance system prior and/or concurrent with a communication taking place.
US10284524B2 Secure auto-provisioning device network
A system comprising a gateway capable of connecting to an Internet router, and at least one Internet-connected device, said Internet-connected device comprising a digital certificate limiting its Internet access to a particular server or servers, said gateway capable of verifying the certificate and connecting the Internet-connected device to its server or servers.
US10284516B2 System and method of determining geographic locations using DNS services
Systems, methods, architectures, mechanisms or apparatus for monitoring DNS services by causing one or more client devices to resolve a unique Fully Qualified Domain Name (FQDN) to collect query records useful in determining client device and DNS service host address and location information.
US10284509B1 Storage and processing of ephemeral messages
A server includes volatile and non-volatile memories for storing messages received from a client device. A message reception module of the server stores a message received from a first client device in the volatile memory for an extended time period based on an indicator included in the message. The message reception module deletes the message from the volatile memory based on detection of a triggering event or stores the message in the non-volatile memory based on not detecting the triggering event before the extended time period has expired. The triggering event may include the message having been read by all specified recipients of the message. The indicator may be included in the message based on a relationship of the message to other messages. The message including the indicator may be related to other messages as part of a same conversation that has been determined to be suitable for short-term storage.
US10284505B2 Social media interaction aggregation for duplicate image posts
A social media platform is searched by a computer to identify a set of duplicate images including a first image that was posted to the platform by a first user and a second image that was posted to the platform by a second user. A notification is provided by the computer to the first user and the second user indicating that the set of duplicate images exists. A host is selected by the computer for a single consolidated image of the set of duplicate images. The first image or the second image is used by the computer to provide the single consolidated image. One or more social media interactions associated with the first image are consolidated by the computer with one or more social media interactions associated with the second image to generate a single set of social media interactions for the single consolidated image.
US10284503B2 Mobile terminal and control method thereof
The present invention relates to a mobile terminal enabling data transmission and reception and a control method thereof. A mobile terminal according to the present invention includes: a display unit for outputting an image including a specific object and outputting a data input window on the basis of a predetermined user input to the specific object; a wireless communication unit for transmitting the input data to an external terminal corresponding to the specific object on the basis of data inputted to the data input window; and a controller for outputting the input data on the image and for outputting the received data on the image on the basis of data received from the external terminal.
US10284499B2 Dedicated control path architecture for systems of devices
A dedicated control path architecture for systems of devices, such as stacking systems, is provided. In one embodiment, a network device for use in a system of devices can comprise a CPU complex; a first set of ports for establishing a data path between the network device and other network devices in the system of devices; and a second set of ports for establishing a control path between the network device and the other network devices in the system of devices. The control path can be separate from the data path and can allow the CPU complex to exchange control plane traffic with other CPU complexes resident in the other network devices.
US10284495B2 Slice management system and slice management method for dynamically adjusting resources allocated to a slice based on a resource utilization status
A slice management system and a slice management method that can dynamically adjust the amount of resources when the amount of resources is insufficient to create a slice. A storing unit of a NFVO stores slice utilization status information. In a BSS/OSS, an allocation determination unit determines to create a new slice or extend an existing slice, and when resources for creation of a new slice or extension of an existing slice are insufficient, a resource change determination unit determines a slice for reduction based on the slice utilization status information. A resource request unit of the NFVO reduces resources of the determined slice.
US10284490B2 Increased network resources in exchange for sharing of device resources
An indicator can be received from a client device. The indicator can indicate an agreement by a user of the client device to share device resources of the client device with an entity distinct from the client device and distinct from the user of the client device. Responsive to receiving from the mobile device the indicator indicating the agreement of the user of the of the mobile device to share the device resources of the mobile device with the entity, a level of a quality of service provided by a communication network to the mobile device can be increased. The mobile device can be allowed to enter sleep mode only after a particular duration of time in which use of the device resources has been shared or when a charge level of a battery providing power to the mobile device falls below a threshold level.
US10284488B1 Aggregate socket resource management
Aggregate socket resource management is presented herein. A system can comprise a processor; and a memory that stores executable instructions that, when executed by the processor, facilitate performance of operations, comprising: determining a present aggregate amount of data associated with processing requests from a socket; setting a defined aggregate data limit on the present aggregate amount of data; and in response to determining changes in a difference between the defined aggregate data limit and the present aggregate amount of data, modifying a defined data capacity limit on a data capacity of a receive buffer of the socket. In an example, the determining of the changes in the difference between the defined aggregate data limit and the present aggregate amount of data comprises reducing/increasing the defined data capacity limit in response to the difference being determined to be decreasing/increasing.
US10284486B2 System and method for resource isolation and consumption in a multitenant application server environment
In accordance with an embodiment, described herein is a system and method for resource isolation and consumption in an application server environment. The system can provide, at one or more computers, including an application server environment executing thereon, a plurality of resources which can be used within the application server environment, and one or more partitions, wherein each partition provides an administrative and runtime subdivision of a domain. The system can also configure a resource consumption management module to monitor each partition's usage of the plurality of resources. The resource consumption management module can comprise at least one member of the group consisting of resource reservations, resource constraints, and resource notifications.
US10284482B2 Stateful connectionless overlay protocol for information transfer across multiple datalinks
A method and system for data communications is provided. The method reduces the overall transmission time of the information to a destination by simultaneously sending different segments of the information over a plurality of data connections. The method comprises presenting information content for transmission to a destination entity, and simultaneously sending different segments of the information over a plurality of data link connections. All segments of the information are received from the plurality of data link connections at the destination entity, and the data segments are reconstructed back into the information content at the destination entity.
US10284478B2 Packet processing device, packet processing method and program
A packet processing device includes: a storage unit that holds an action table including actions that define processing contents of packets and a rule table including rules to search for actions to be applied to packets; a rule control unit that updates rules included in the rule table; and a packet processing unit that searches the action table for an action to be applied to a received packet using the rule table, processes the packet in accordance with the searched action, and accumulates a pointer with respect to the searched action, wherein the packet processing unit determines whether the rule table has been updated by the rule control unit after accumulation of the pointer and, if not updated, extracts an action to be applied to a received packet from the action table in accordance with the accumulated pointer.
US10284475B2 Distributed leaky bucket based multi-modem scheduler for multimedia streams
Systems, methods, and devices of the various embodiments provide a multipath communication scheduler for an in-vehicle computing device, such as a vehicle's autonomous driving system, vehicle's telematics unit, vehicle's control system, etc. In various embodiments, a distributed leaky bucket based scheduler for an in-vehicle computing device may assign packets for transport to a plurality of modems based at least in part on the determined delivery delays. In various embodiments, delivery delays may be determined based on leaky bucket levels, burst sizes, delivery rates, and end to end delay estimates for each of the plurality of modems. In various embodiments, the scheduler may be one of a plurality of schedulers each associated with a separate stream of packets assigned to the plurality of modems and the leaky bucket levels may be determined on a per stream basis.
US10284474B2 Providing policy information
There is described a method for mapping data representing an instance of a service model for a network onto policy information for controlling one or more Software Defined Network (SDN) switches in the network. The instance of a service model comprises a topology of one or more network functions and at least one virtual network function and a data flow through the topology, and the at least one virtual network function defines a dynamic flow control policy in dependence upon which data flow through the virtual network function to or from one or more of the network functions is selectively controlled. The policy information is provided to one or more SDN control entities for controlling the one or more SDN switches in the network so that data flows through the network in accordance with the service model instance.
US10284472B2 Dynamic and compressed trie for use in route lookup
In one embodiment, a method includes receiving a request to add a prefix to memory for a route lookup at a forwarding device, the memory comprising a plurality of pivot tiles for storing pivot entries, each of the pivot entries comprising a plurality of prefixes and a pointer to a trie index, searching at the forwarding device, a dynamic pool of the pivot tiles based on a base-width associated with the prefix, allocating at least a portion of the pivot tile to the base-width and creating a pivot entry for the prefix and other prefixes with a corresponding base-width, and dynamically updating prefixes stored on the pivot tiles based on route changes to optimize storage of prefixes on the pivot tiles. An apparatus and logic are also disclosed herein.
US10284467B2 Method and apparatus for controlling packet transmission and network functions virtualization system
A method and an apparatus for controlling packet transmission and a network functions virtualization (NFV) system, where the method includes determining, by a control device, at least two target service processing units and at least one associated service processing unit, where packets of a target service need to be transmitted to the at least two target service processing units through the at least one associated service processing unit, a first target service processing unit in the at least two target service processing units is configured to perform, on packets of the target service, service processing corresponding to a first software version, and a second target service processing unit in the at least two target service processing units is configured to perform, on packets of the target service, service processing corresponding to a second software version; and sending first control information according to a preset first threshold.
US10284460B1 Network packet tracing
Network packet tracing may be implemented on packet processors or other devices that perform packet processing. As network packets are received, a determination may be made as to whether tracing is enabled for the network packets. For those network packets with tracing enabled, trace information may be generated and the network packets modified to include the trace information such that forwarding decisions for the network packets ignore the trace information. Trace information indicate a packet processor as a location in a route traversed by the network packets and may include ingress and egress timestamps. Forwarding decisions may then be made and the network packets sent according to the forwarding decisions. Tracing may be enabled or disabled by packet processors for individual network packets. Trace information may also be truncated at a packet processor.
US10284459B2 Topology discovery in fabric network
An N-port virtualizer (NPV) in a Fabric network receives a register request and sends an NPV register message to an FCoE forwarder (FCF). The NPV register message comprises an identity of a device that sent the register request and forwarding history information. The forwarding history information is information describing a forwarding path of the NPV register message.
US10284457B2 System and method for virtual link trunking
A method, an information handling system (IHS), and a virtual link trunking (VLT) system for determining VLT ports to block and unblock in an IHS. The method includes calculating a forwarding table index for a local switch of currently active and inactive switch peers for a VLT port. A pre-determined forwarding table is retrieved from a memory containing a plurality of port blocking and unblocking actions for the switch peers. Current port blocking and unblocking actions are identified in the pre-determined forwarding table corresponding to the forwarding table index. Changes are determined between the previous port blocking and unblocking actions and the current port blocking and unblocking actions. The input/output (I/O) ports are configured for the local switch based on the determined changes in the port blocking and unblocking actions.
US10284455B2 Method, terminal and system for cluster terminal to feed back downlink channel information
A method, a terminal, and a system for a cluster terminal to feedback downlink channel information are provided. In the method, a cluster terminal in an idle state configures a group call context and measures a current downlink channel in a preset period, after receiving a group call signaling sent by a base station. The cluster terminal sends an RRC connection request carrying a measurement result to the base station after determining that the measurement result meets a preset report triggering condition. The base station modifies an air interface resource configuration when determining that a preset condition for modifying the air interface resource configuration is met according to the measurement result and sends an instruction carrying the modified air interface resource configuration to the cluster terminal. The cluster terminal receives group call data according to the instruction after receiving the instruction.
US10284454B2 Automatic increasing of capacity of a virtual space in a virtual world
A system for automatically increasing a capacity of a virtual space in a virtual world may include a processor and a module operating on the processor for detecting an attempt by an avatar to enter a virtual space in a virtual world. The system may also include another module for determining if an allowable number of avatars is currently in the virtual space. The allowable number of avatars may be determined by at least a capacity of a server that is hosting the virtual space. Another module may be provided for increasing a capacity of the virtual space when the allowable number of avatars is currently in the virtual space. Increasing the capacity of the virtual space may include spawning a replicate new virtual space on a different server in response to the capacity of the server that is hosting the virtual space reaching the allowable number of avatars.
US10284453B2 System event analyzer and outlier visualization
An event analysis system receives events in a time-series from a set of monitored systems and identifies a set of alert threshold values for each of the types of events to identify outliers in the time-series at an evaluated time. Portions of historic event data is selected to identify windows of event data near the evaluated time at a set of seasonally-adjusted times to predict the value of the event type. The alert threshold value may also account for a prediction based on recent, higher-frequency events. Using the alert threshold values for a plurality of event types, the event data is compared with the alert threshold values to determine an alert level for the data. The event data types are also clustered and displayed with the alert levels to provide a visualization of the event data and identify outliers when the new event data is received.
US10284447B2 Using liveness of protocols and/or interfaces to make routing decisions
The liveness of routing protocols can be determined using a mechanism to aggregate liveness information for the protocols. The ability of an interface to send and receive packets and the forwarding capability of an interface can also be determined using this mechanism. Since liveness information for multiple protocols, the liveness of interfaces, the forwarding capability of interfaces, or both, may be aggregated in a message, the message can be sent more often than could individual messages for each of the multiple protocols. This allows fast detection of failures, and sending connectivity messages for the individual protocols, such as neighbor “hellos,” to be sent less often.
US10284446B2 Optimizing content management
A system and method for monitoring the performance associated with fulfilling resource requests and determining optimizations for improving such performance are provided. A processing device obtains and processes performance metric information associated with processing a request for an original resource and any embedded resource. The processing device uses the processed performance metric information to determine a CDN service provider for alternatively hosting at least a portion of the original resource and/or any embedded resources. In some embodiments, in making such a determination, the processing device assesses performance metric information collected and associated with subsequent resource requests for the original resource and any embedded resources using each of a variety of alternative CDN service providers. Aspects of systems and methods for generating recommendations associated with monitoring the operation and performance of CDN service providers with respect to specific resource requests are also provided.
US10284444B2 Visual representation of end user response time in a multi-tiered network application
A method for visual representation of end user response time (EURT) in a multi-tiered network application is provided. Search criteria for searching a repository of client statistics records is received. The search criteria specifies identification information pertaining to a user of a multi-tiered network application experiencing application performance problems and a time period associated with the application performance problems. The identification information identifies an IP address of user's computing device. A plurality of client statistics records matching the search criteria is retrieved from the repository. The retrieved plurality of client statistics records is sorted based on measurements of performance parameters. A graph representing relevant topology hierarchy of the multi-tiered network application is presented to a user based on the sorted client statistics records. The graph visually identifies connections between nodes of the multi-tiered application. The identified connections include potential root-causes of the specified application performance problems.
US10284442B2 Information management method
An information management method collects log information of one or more home electrical apparatuses corresponding to service providers. Display screen data is generated which indicates a status of the log information. The display screen data includes groups of information which each contain information on an apparatus, a service provider corresponding to the apparatus, and log information output from the apparatus. Provision of the log information of each group is individually selectable. The display screen data is provided via a network to a display terminal that performs access to a server device. Information is received from the display terminal, which indicates that selection on whether or not provision of the log information is performed. Provision of the log information is stopped on the selected group when a determination is made that refusal of provision of the log information on the selected group is performed.
US10284437B2 Cloud-based virtual machines and offices
Cloud-based virtual machines and offices are provided herein. Methods may include establishing a cloud-based virtual office using a runbook that is pre-configured with computing resource settings for VMs as well as VM dependencies and sequences that create the virtual office or virtual private cloud. Multiple runbooks can be created to cover various scenarios such as disaster recovery and sandbox testing, by example.
US10284422B2 Resource-limited device interactivity with cloud-based systems
Resource limited devices may be provided with a communications module enabling the resource limited device to communicate with a more powerful user computing system using a personal area networking protocol. The communications with the user computing system may be used to configure the resource limited device and/or its communications module to communicate with a remote computing system using a local or wide area networking protocol. This technology may shift processing functions that cannot be performed by resource-limited processors of the electronic device to more powerful computing systems, including, but not limited to cloud based systems. Bridges may also coordinate communications between multiple resource limited devices and the more powerful computing systems. Shifting these processing functions to more powerful computing systems may avoid the need for device manufacturers to include more expensive processors and may reduce device manufacturing costs. Devices and methods are provided.
US10284418B2 Network switch management via embedded management controller using management information base (MIB) to JSON parser
Certain aspects direct to systems and methods for network switch management via a management controller using a management information base (MIB) to JavaScript Object Notation (JSON) parser. At a computing device, an administrator provides a MIB file corresponding to a network switch to be managed. Then the administrator utilizes a parser application to parse the MIB file at the computing device to retrieve Object Identifiers (OIDs) from the MIB file, and then converts the OIDs to JSON objects, in order to generate parsed information of the MIB file including the JSON objects. Thus, the administrator may use a browser to access a web user interface at a management controller to upload the parsed information of the MIB file to the management controller. The management controller may then manage and configure the network switch through a Simple Network Management Protocol (SNMP) interface based on the parsed information of the MIB file.
US10284411B2 Signal processing method and apparatus
The present invention discloses a signal processing method and apparatus, and pertains to the field of communications technologies. The apparatus includes: a processor and a memory. The method includes: setting each sampling point signal on an orthogonal frequency division multiplexing OFDM symbol, and obtaining an input signal; calculating a constraint matrix according to a frequency selective fading channel characteristic; and calculating an output signal according to the sampling point signal, the input signal, and the constraint matrix. The present invention resolves a problem that frequency selective fading has an impact on transmission of the OFDM symbol, and a constraint matrix obtained according to a flat fading channel characteristic is not applicable to the OFDM symbol, thereby achieving an effect of reducing the impact of the frequency selective fading on the transmission of the OFDM symbol.
US10284410B1 Signal communication with decoding window
Aspects of the present disclosure are directed to processing signals received from different sources, such as may be relevant to receiving signals having respective time-offsets based upon a distance via which the respective signals travel, and/or due to an oscillator clock mismatch. As may be implemented in accordance with one or more embodiments, respective fast Fourier transform (FFT) series are generated for symbols in respective ones of communications received in parallel. For each message that the receiver is trying to decode, channel estimation is performed on the respective FFT series, and one of the FFT series is selected based upon metrics indicative of interference in the respective FFT series, for that particular message. A decoding timing window is set based on the selected FFT series, and the selected FFT series is decoded.
US10284403B2 Transmission of a signal according to a single- or multi-carrier modulation scheme
A method performed by a communication node for transmission of a signal according to a single- or multiple carrier modulation scheme in a wireless communications network. The communication node modulates at least a first part of the signal into at least a first symbol with a shorter duration than a complete symbol according to the modulation scheme. The communication node modulates at least a second part of the signal into at least a second symbol with a shorter duration than a complete symbol according to the modulation scheme. The duration of the at least first and second symbols are equal to the duration of a complete symbol according to the carrier modulation scheme. Then, the communication node transmits the at least first and second symbol as a complete symbol according to the modulation scheme without time domain separation.
US10284395B2 Time-based decision feedback equalization
A time-based decision feedback equalizer (TB-DFE) circuit may include a voltage-to-time converter configured to convert a communication signal into a time-based signal. A timing of when an edge of the time-based signal occurs is indicative of a voltage level of the communication signal. The circuit may include a plurality of delay circuits arranged to process the time-based signal in series to generate a delay data signal. The delay circuits may adjust the timing of when the edge of the time-based signal occurs, and a corresponding time delay introduced by each of the delay circuits may be based on a respective weighting factor applied to one or more samples of an output digital signal previously generated by the TB-DFE circuit. A phase detector may compare a timing of an edge of the delay data signal with a reference clock signal and generate the output digital signal based on the comparison.
US10284394B1 Input termination circuits for high speed receivers
The present invention is directed to communication systems and electrical circuits. According to an embodiment, an input termination circuit includes a first attenuation resistor and a second attenuation resistor. The resistance values of these two resistors are adjusted in opposite directions to maintain a stable output impedance. There are other embodiments as well.
US10284390B2 Techniques for efficient service chain analytics
A method is provided in one example embodiment and includes receiving at a network element an encapsulated packet including an encapsulation header, in which the encapsulation header includes an Analytics Proxy Function (“APF”) flag; determining whether the APF flag is set to a first value; if the APF flag is set to the first value, forwarding the encapsulated packet to a local APF instance associated with the network element, in which the encapsulated packet is processed by the local APF instance to replicate at least a portion of the encapsulated packet, construct a record of the encapsulated packet, or both; and if the APF flag is not set to the first value, omitting forwarding the encapsulated packet to the local APF instance associated with the network element. The local APF instance is implemented as a service function anchored at the forwarding element.
US10284387B2 Hybrid intra-vehicle communication network
Technical solutions are described for facilitating intra-vehicle wireless communication among a plurality of electronic control units. An example method includes determining, by a first electronic control unit in a vehicle, a wait-time for a message, which is to be transmitted to a second electronic control unit in the vehicle via a wireless channel. The first electronic control unit executes a first availability-check, by determining availability of the wireless channel. In response to the first availability-check indicating that the wireless communication channel is available, the method includes delaying transmission of the message by the wait-time. The method also includes executing, by the first electronic control unit, after passage of the wait-time, a second availability-check. In response to the second availability-check indicating that the wireless communication channel is still available, the method includes transmitting the message for receipt by the second electronic control unit.
US10284385B2 Environmental control method and apparatus
Described herein are techniques and systems for controlling, from a mobile device, an environmental control system including at least one appliance for influencing one or more environmental parameters at a premises. The mobile device comprising a user-interactive application for sending commands to the environmental control system. The application having a foreground state for controlling the environmental control system based on user-adjustable parameters; and a background state, in which user notifications are generated. A method can comprise: when the application is in a background state: determining the mobile device has crossed a geolocation threshold; determining an environmental parameter of the premises satisfies a condition; displaying a notification to a user, comprising an option to initiate a command to control an appliance; detecting the user has selected an option; and sending a message to effect the command to the environmental control system.
US10284382B2 Network-based quick-connect meeting service
A network-accessible service enables participating end users to collaborate with one another over a network. End users have computing devices (e.g., computers, mobile phone, tablet devices, or the like) that include hardware and software to enable the device to access a network, such as the public Internet, a Wi-Fi network connected to the Internet, a 3G or higher wireless network connected to the Internet, a private network, or the like. The network-accessible service provides a publicly-available site (such as a Web site) or a local software application from which a first participating end user initiates a “meeting,” e.g., by selecting a “share” button. In response, the site or software application provides an HTTP link that includes a “meeting” code, which may be a one-time unique code. The first participating end user then shares the link with whomever he or she desires to collaborate. Upon receiving the link (e.g., by e-mail, instant message, SMS, MMS, orally, or the like), a second participating end user joins the meeting “on-the-fly” by simply selecting the link or navigating to the site and entering the “meeting” code (in a “join” field). The service connects the second participating end user to the meeting immediately and without requiring any registration, software download, or the like.
US10284376B2 Code signing system with machine to machine interaction
A code signing system operating a web portal for user clients and a web service for automated machine clients. The web service can receive an operation request from a code signing module running on a remote machine client, the operation request including a request for a cryptographic operation and user credentials retrieved from a hardware cryptographic token connected to the machine client. The code signing system can perform the requested cryptographic operation and return a result to the machine client if the code signing system authenticates the machine client and the requested cryptographic operation is within a permissions set associated with the machine client.
US10284372B2 Method and system for secure management of computer applications
Processing information is disclosed including receiving an application retrieval request sent by a terminal, the application retrieval request including identifying information of the terminal, generating, based on a preset key generation technique, an encryption key based on the identifying information included in the application retrieval request, encrypting, based on the encryption key and a preset encryption technique, designated data in an application to obtain an encrypted application, and sending the encrypted application to the terminal.
US10284371B2 Brute force attack prevention system
A system for preventing a brute force attack includes an output interface, an input interface, and a processor. An output interface is to provide a workfactor, a challenge token, and a login page to a client. An input interface is to receive a response token, a username, and a password. A processor is to determine whether the response token satisfies a condition based at least in part on the workfactor and determine whether the username and password are valid in the event that it is determined that the response token satisfies the condition based at least in part on the workfactor.
US10284369B2 Secure app-to-app communication
Secure application-to-application communication is disclosed. A shared encryption key may be used to encrypt data to be transferred from a first mobile application to a second mobile application. The encrypted data is provided to a shared storage location. The second mobile application is configured to retrieve the encrypted data from the shared storage location.
US10284359B2 Clock synchronization frequency offset estimation method adapted to WIA-PA network
The present invention claims a clock synchronization frequency offset estimation method adapted to a WIA-PA network, and belongs to the technical field of industrial wireless sensor networks. The method comprises the following steps: A. receiving a beacon frame, broadcast by a time source device, by a child node in the WIA-PA network in each time synchronization period to obtain a sending timestamp and a receiving timestamp, then adjusting a local time by taking a difference value between the two timestamps as a time adjustment quantity, repeating the process above, and after a plurality of synchronization periods, separately estimating a frequency offset with a statistical signal estimation method; and B. when anode is required to report its own time, compensating a node time with the estimated relative frequency offset. With the method, the time synchronization precision is effectively increased, a synchronization error is restrained from freely increasing in the time synchronization period, the synchronization period is prolonged, and both the communication overhead of the network and the energy consumption of the node are reduced.
US10284358B1 Clock and frame synchronization carried as a single composite signal allows the use of a single transmission line with a narrower bandwidth
An embodiment generates a composite high speed clock with embedded frame synchronization using simple digital encoding of a high speed reference clock. The high speed reference clock and self-aligned frame synchronization signal are recovered by standard logic gate circuitry. The encoding and decoding circuits are comprised of basic digital logic gates with low propagation delay skew and timing jitter. The encoded clock is easier to transmit from source unit to destination unit over common transmission media (i.e., digital transceivers, amplifiers, splitters, connectors and coaxial cable) because only a single interface is required and because the encoding scheme reduces the composite clock to a minimal transmission bandwidth with constrained waveform harmonic content, relative to a low frequency frame sync with fast rise time that requires a broadband transmission media.
US10284355B2 Communication device and electronic device including the same
A communication device includes: a communication module configured to discover a network capable of communication; a processor configured to identify a first frequency band of the network and to output a control signal for changing a pass band of a band pass filter; a multiplexer configured to change the pass band of the band pass filter to correspond to the first frequency band of the network; and a tunable tuner circuit configured to change an impedance thereof according to the control signal.
US10284352B2 Method and apparatus for configuring channel quality indicator and method and apparatus for configuring modulation and coding scheme
A method for configuring a User Equipment (UE) with a Channel Quality Index (CQI) table, the method includes: calculating a Precoding Matrix Indicator (PMI) and Rank Indication (RI) according to a channel estimated result; determining a configured CQI index table according to received CQI index table indication information transmitted by a base station, the base station configuring the CQI index table by selecting the CQI index table from at least two CQI index tables; and calculating a CQI index according to the calculated PMI and the RI using the configured CQI index table.
US10284346B2 Systems and methods for signal classification
This disclosure describes systems, and methods related to signal classification in a wireless communication network. A first computing device comprising one or more processors and one or more transceiver component may receive a signal transmission packet comprising a physical layer (PHY) preamble. The first computing device may identify within the PHY preamble, one or more signal (SIG) fields, wherein at least one of the one or more SIG fields includes at least a length field indicating a length of the signal transmission packet. The first computing device may determine based at least in part on the length field, that the signal transmission packet is associated with a predetermined communication standard utilized to transmit the signal transmission packet. The first computing device may decode the signal transmission packet based at least in part on the determination that the signal transmission packet is associated with the predetermined communication standard.
US10284344B2 Method and system for centralized distributed transceiver management
A master application device comprises a plurality of distributed transceivers, a central baseband processor, and a network management engine that manages operation of the master application device and end-user application devices. The master application device communicates data streams to the end-user devices utilizing one or more distributed transceivers selected from the plurality of distributed transceivers. The selected distributed transceivers are dynamically configured to switch between spatial diversity mode, frequency diversity mode, multiplexing mode and MIMO mode based on corresponding link quality and propagation environment. Digital signal processing needed for the selected distributed transceivers is performed by the central baseband processor. The network management engine continuously monitors communication environment information to configure beamforming settings and/or antenna arrangement for the selected distributed transceivers. Connection types, communication protocols, and/or transceiver operation modes are determined for the selected distributed transceivers. Resources are allocated to the selected distributed transceivers to continue subsequent data communication.
US10284341B2 System and method to request a portion of a media content item
A method includes concurrently receiving, at a first communication interface of a media device, a first media content stream and a second media content stream. The method includes sending, from the media device to an output device, decoded first media content processed from the first media content stream. The method includes storing decoded second media content processed from the second media content stream in a buffer. The method includes detecting an error associated with a portion of the second media content stream during receipt of the first media content stream and the second media content stream. The method also includes sending, from a second communication interface of the media device to a media content source, a request for the portion. The second communication interface is distinct from the first communication interface.
US10284340B2 Multicast sending apparatus, multicast receiving apparatus, and multicast transmission determining method
Embodiments of the present invention relate to the communications field, and provide a multicast sending apparatus, a multicast receiving apparatus, and a multicast transmission determining method. The method includes: sending at least one multicast frame to multiple stations in a multicast manner; generating a multicast indication request frame, where the multicast request indication frame includes an identifier of the at least one multicast frame, the multicast indication request frame is used to instruct the multiple stations to send an indication frame within a specified timeslot in a unicast and contention-based manner, and the indication frame includes an identifier of a to-be-retransmitted multicast frame; and sending the multicast indication request frame to the multiple stations in a multicast manner.
US10284334B2 Methods and devices for sequential sphere decoding
Embodiments of the invention provide a decoder for decoding a signal received through a transmission channel in a communication system, said signal comprising a vector of information symbols, said transmission channel being represented by a channel matrix, wherein the decoder comprises: an initial radius determination unit (307) configured to determine an initial radius; a symbol estimation unit (309) configured to iteratively determine a current radius to search a lattice point inside a current spherical region defined by said current radius, said current radius being initially set to said initial radius, said symbol estimation unit (309) being configured, for each lattice point found in said current spherical region, to store said lattice point in association with a metric, said symbol estimation unit (309) being further configured to update said current radius using a linear function, said linear function having a slope parameter strictly inferior to one, The decoder being configured to determine at least one estimate of said vector of information symbols from at least one of the lattice points found by the symbol estimation unit (309).
US10284328B2 Motion-aware modulation and coding scheme adaptation
According to an example, motion-aware MCS adaptation may include determining whether a device is static relative to a wireless AP, moving towards the wireless AP, or moving away from the wireless AP. A device static rate probing interval, a device moving rate probing interval, first and second frame retransmission limits, a device static PER smoothing factor, and a device moving PER smoothing factor may be determined. In response to a determination that the device is static relative to the wireless AP, moving towards the wireless AP, or moving away from the wireless AP, an appropriate rate probing interval, an appropriate frame retransmission limit, and an appropriate PER smoothing factor may be used to determine a MCS value from a plurality of available MCS values to be used for transmitting data between the device and the wireless AP.
US10284320B2 Network node, wireless device, methods therein, for sending and detecting, respectively, synchronization signal and an associated information
Methods are disclosed which can be performed by a network node for sending to a wireless device a first synchronization signal and an associated information message, for synchronization of the wireless device with the network node. The network node and the wireless device operate in a wireless communications network. The network node sends the first synchronization signal in N OFDM symbols within a subframe, at least once in a time and frequency position in every one of the N OFDM symbols. N is equal or larger than 2. For each sending of the first synchronization signal, the network node sends an associated information message at a pre-defined time and frequency position in an OFDM symbol. The pre-defined time and frequency position is relative to the time and frequency position of the first synchronization signal. The associated information message is associated with the first synchronization signal.
US10284316B2 Method for predicting indoor three-dimensional space signal field strength using an outdoor-to-indoor propagation model
The present invention relates to a method for predicting indoor three-dimensional space signal field strength by an outdoor-to-indoor propagation model, which comprises the steps of: establishing a three-dimensional space scene model from a transmitting base station to a target building; predicting space field strength of an outer envelope of the target building according to an extended COST-231-Walfisch-Ikegami propagation model; generating, on the outer envelope of the target building, a series of out-door-to-indoor virtual rays in accordance with a certain resolution; simulating a propagation procedure of the virtual rays using a ray tracing propagation model algorithm, to predict three-dimensional space signal field strength in the target building. In the present invention, an extended COST231-Walfisch-Ikegami propagation model is adopted for the transmitting base station and the outdoor region of the target building, while a ray tracing propagation model algorithm is adopted for the indoor region of the target building, which effectively combines an outdoor empirical propagation model and an indoor deterministic propagation model, so that a good equilibrium is achieved between calculation efficiency and calculation accuracy, and the algorithm has a strong engineering applicability.
US10284313B2 Method and apparatus for monitoring, detecting, testing, diagnosing and/or mitigating interference in a communication system
A system that incorporates aspects of the subject disclosure may perform operations including, for example, receiving, via an antenna, a signal generated by a communication device, detecting passive intermodulation interference in the signal, the interference generated by one or more transmitters unassociated with the communication device, and the interference determined from signal characteristics associated with a signaling protocol used by the one or more transmitters. Other embodiments are disclosed.
US10284312B2 Method and apparatus for managing a fault in a distributed antenna system
Aspects of the subject disclosure may include, for example, receiving, by a first antenna system of a distributed antenna system, a first wireless signal from a second antenna system of the distributed antenna system, the second antenna system included in a first series of antenna systems of the distributed antenna system, detecting an operational fault in the second antenna system, and redirecting, by the first antenna system, a first wireless transmission to a third antenna system of the distributed antenna system, the third antenna system included in a second series of antenna systems of the distributed antenna system, the first series of antenna systems providing first communication services, the second series of antenna systems providing second communication services, and the second communication services utilized at least in part as backup communication services when a communication fault is detected in the first series of antenna systems. Other embodiments are disclosed.
US10284309B2 Systems, methods, and devices for electronic spectrum management
Methods for tracking a signal origin by a spectrum analysis and management device are disclosed. Signal characteristics of other known emitters are used for obtaining a position of an emitter of a signal of interest. In one embodiment, frequency difference of arrival technique is implemented. In another embodiment, time difference of arrival technique is implemented.
US10284307B2 Radio frequency interconnect including calibration system and method of using
A radio frequency interconnect (RFI) includes a transmitter side connected to a first end of a channel, a receiver side connected to a second end of the channel opposite the first end and a calibration system. The receiver side includes at least one of the following configurations: (a) at least one gain control amplifier (GCA) or at least one analog to digital converter (ADC). The calibration system is configured to transmit a predetermined data set through the channel, receive an output from the at least one ADC or the at least one GCA, and calibrate the at least one ADC or the at least one GCA based on a measured data set. The output includes the measured data set based on the predetermined data set transmitted through channel.
US10284301B2 Multi-channel transceiver with laser array and photonic integrated circuit
A laser module can include: a laser chip having a plurality of laser diodes; a focusing lens optically coupled to each of the plurality of distinct laser diodes; and a photonic integrated circuit (PIC) having a plurality of optical inlet ports optically coupled to the plurality of laser diodes through the focusing lens. The laser module can include an optical isolator optically coupled to the focusing lens and PIC and positioned between the focusing lens and PIC. The laser chip can include a fine pitch laser array. The laser module can include a plurality of optical fibers optically coupled to an optical outlet port of the PIC. The laser module can include a hermetic package containing the laser chip and having a single focusing lens positioned for the plurality of laser diodes to emit laser beams there through.
US10284300B2 Monolithic silicon coherent transceiver with integrated laser and gain elements
Disclosed are structures and methods for a monolithic silicon (Si) coherent transceiver with integrated laser and gain elements wherein an InP chip is bonded to the Si chip in a recess formed in that Si chip.
US10284299B2 Optimizing placement of a wireless range extender
Described are systems, devices, and techniques for extending wireless networks and associated systems, devices, and techniques for determination of optimal locations of a wireless range extender, such as by evalauating a quality of a wireless signal originating from a wireless gateway or access device and determining whether an alternative placement of a wireless range extender would result in improved quality. Also described are systems, devices, and techniques for automatically grouping multiple bands of a single wireless access device as well as systems, devices, and techniques that simplify connection of wireless devices to a wireless access device, such as by evaluating wireless messages transmitted on different bands to determine that the wireless messages originate from the same wireless access device.
US10284294B2 RF ingress in fiber-to-the-premises
An apparatus and method for monitoring an individual premise return band at the side of the home, in a pedestal TAP, or in an aerial TAP is disclosed. The apparatus may be configured to be connected one to eight homes to analyze the return band spectrum, communicate this spectrum to a server for storage and/or alarm, and/or take action when the spectrum exceeds predefined limits or based on instructions received from a server.
US10284293B2 Selective pixel activation for light-based communication processing
Disclosed are methods, systems, devices, apparatus, computer-/processor-readable media, and other implementations, including a method to process one or more light-based signals that includes determining mobile device data and coarse previous field-of-view (FOV) data representative of pixels of a light-capture device of a mobile device that detected light-based signals from at least one light device located in an area where the mobile device is located, determining, based on the mobile device data and the coarse previous FOV data, predicted one or more pixels of the light-capture device of the mobile device likely to receive light signals from one or more light devices, in the area where the mobile device is located, capable of emitting one or more light-based communications, and activating the predicted one or more pixels of the light-capture device.
US10284289B1 Signal modulator
A reflective modulator which comprises a coupler, two diodes and two DC block units. The coupler has an input end used to output an output signal, an output end used to output an output signal, a first load end connected to one of the diodes and a second load end connected to another one of the diodes. The DC block units connect between the diodes and the coupler for DC blocking. A message signal is selectively inputted to both of the two DC block units for operating the state of the two diodes. The two diodes turn on when the message signal is large enough. The two diodes turn off when the message signal is not large enough. The two diodes are implemented by PIN diodes. A BPSK modulator using the reflective modulator and a quadrature modulator using the BPSK modulator is also introduced.
US10284288B2 Secured fiber link system
A fiber link system, method and device for masking signals on a fiber link system. The system includes sending a desired sequence of information in the form of a true signal that is typically intended to be transferred between legitimate users at both ends of a link. Sending chaff signals, or subterfuge signals, alongside the true signal to mask such legitimate signals in the fiber cable from intruders tapping into the fiber cable.
US10284287B2 Method for transmitting and receiving confirmation response signal for uplink multi-user data in wireless LAN system, and apparatus therefor
A method by which a station (STA) receives a Multi-STA BlockAck (M-BA) frame in a wireless LAN system supporting an OFDMA, according to one embodiment of the present invention, comprises the steps of: transmitting an uplink multi-user (ULMU) frame on the basis of a trigger frame; receiving an M-BA frame based on an OFDMA physical layer protocol data unit (PPDU) including an SIG B field; and acquiring a data stream including an ACK/NACK for the STA from the OFDMA PPDU-based M-BA frame, wherein the STA acquires the data stream according to an indication of a user field identified by a predetermined ID among a plurality of user fields included in the SIG B field, and the data stream indicated by the user field identified by the predetermined ID can be equally allocated to other STAs performing the UL MU transmission on the basis of the trigger frame.
US10284285B2 Autonomous anonymity
An autonomous anonymity system includes a universal access transceiver. The universal access transceiver is designed and arranged to selectively provide a notification when autonomous aircraft operation is authorized.
US10284283B2 Access switch network with redundancy
This disclosure provides systems, methods and apparatus for implementing an arrangement of electromechanical switches. In one aspect, the arrangement includes rings of electromechanical switches configured to provide access to communication processing channels and redundancy access rows of electromechanical switches configured to provide access to redundant communication processing channels.
US10284278B2 Beam management for various levels of beam correspondence
Techniques are described for wireless communication. One method includes performing a first beam sweep procedure to determine a first beam pair that includes a transmit beam of a first wireless node and a receive beam of a second wireless node, identifying a level of correspondence at one or both of the first wireless node and the second wireless node, the level of correspondence being between a transmit beam and a receive beam of a respective wireless node and determining, based on the level of correspondence, a range of a second beam sweep procedure to be performed in determining a second beam pair that includes a transmit beam of the second wireless node and a receive beam of the first wireless node.
US10284277B2 Remote tuner clock distribution using serializer/deserializer technology
A communication system includes a first radio module and a second radio module. The first radio module includes a tuner communicatively coupled to a reference signal generator that is configured to generate a first reference signal for the tuner. The first radio module further includes a serializer configured to serialize a signal output by the tuner. The second radio module includes a deserializer configured to receive a serialized version of the signal from the serializer of the first radio module and deserialize the serialized version of the signal. The second radio module further includes a second tuner that is communicatively coupled to a clock recovery circuit. The clock recovery circuit is configured to generate a second reference signal for the second tuner based on a deserialized version of the first signal, where the second reference signal is frequency and phase locked to the first reference signal.
US10284273B2 Systems and methods for enhanced MIMO operation
A method for channel state information (CSI) reporting by a wireless communication device is described. The method includes determining a codebook for a CSI report corresponding to four transmit antenna (4Tx) transmissions from a base station. The codebook has a dual codebook structure. The method also includes generating the CSI report using the codebook. The method further includes transmitting the CSI report to a base station.
US10284272B2 Channel estimation apparatus and method
A channel estimation apparatus and method are provided to ensure that a channel estimation value can correctly reflect a transmission channel status, so that an orthogonal frequency division multiplexing (OFDM)-based wireless system can correctly transmit an aggregate long frame according to the channel estimation value. The channel estimation apparatus determines a first channel estimation value, receives a first symbol group of a long frame according to the first channel estimation value, and determines a second channel estimation value according to the first symbol group, and if a difference between the first channel estimation value and the second channel estimation value is less than or equal to a first threshold, determines a third channel estimation value according to the first channel estimation value and the second channel estimation value.
US10284260B2 Electronic device and communication method between electronic devices
An electronic device includes: a connection establishing unit and a power line communication module; wherein, the connection establishing unit is configured to establish power line connections; the power line communication module comprising: a listening unit is configured to listen to a data packet, transmitted over a power line, from the other electronic devices after the power line connections are established; and a broadcast unit is configured to broadcast data packets after the power line connections are established, and broadcast no data packet and keep silent upon detection on data packet from other electronic devices has been received in a preset time duration. With the technical solutions of the disclosure, electromagnetic conductive radiation and interference produced by the electronic device to other power consuming devices can be avoided.
US10284254B2 Wireless communication device and wireless communication method
According to one embodiment, a wireless communication device includes a communicator, a transmitter and controlling circuitry. The communicator is communicable using a plurality of first frequency channels. The transmitter transmits a signal using a second frequency channel having a bandwidth larger than that of each of the plurality of first frequency channels. The controlling circuitry selects the first frequency channel, of the plurality of first frequency channels, belonging to a band of the second frequency channel and uses the selected first frequency channel to perform channel estimation to acquire first channel information representing a state of the selected first frequency channel. The controlling circuitry calculates second channel information representing a state of the second frequency channel on a basis of the first channel information and control a directivity of the signal on the basis of the second channel information.
US10284248B2 RF transceiver with test capability
An RF front-end circuit of an RF transceiver is described herein. In accordance with one exemplary embodiment, the fronted circuit includes a local oscillator (LO) configured to generate an RF transmit signal, an RF output port coupled to the local oscillator, wherein the RF transmit signal is output at the RF output port, and a monitoring circuit receiving an input signal and configured to determine the phase of the input signal or the power of the input signal or both. A directional coupler is coupled to the RF output port and configured to direct a reflected signal incoming at the RF output port as input signal to the monitoring circuit, and a controller is configured to detect, based on the determined phase or power or both, a defect in a signal path operably connected to the RF output port.
US10284245B2 Enhanced modem based carrier auto-selection algorithm
Aspects of the present disclosure includes a method of performing enhanced auto-selection in a UE including initiating the UE having at least a first subscriber identify module (SIM) card and a second SIM card, obtaining a current ICCID associated with the first SIM card, obtaining, from a cache of the UE, a previous ICCID used in a previous connection to a previously identified carrier, determining whether the current ICCID matches the previous ICCID, in response to determining that the current ICCID does not match the previous ICCID, creating a new card information using data stored in the first SIM card, obtaining one or more selection policies, identifying a carrier based on the one or more selection policies, and connecting to the identified carrier using data stored in the second SIM card associated with the identified carrier.
US10284243B2 Apparatus and method for tuning frequency
A frequency tuning apparatus includes: a frequency tuner configured to tune an oscillation frequency of an oscillator based on target information extracted from a mapping table in correspondence to a target frequency, and oscillation information collected from the oscillator; and a frequency compensator configured to compensate for a compensation error between the tuned oscillation frequency and the target frequency based on an offset table.
US10284235B2 Wireless transceiver with switch to reduce harmonic leakage
Disclosed herein are wireless transceivers with switches to reduce harmonic leakage. In some embodiments, a transmitter system includes a power amplification system including a first power amplifier configured to amplify a signal at a first cellular frequency band and a second power amplifier configured to amplify a signal at a second cellular frequency band. The transmitter includes a switch coupled between an output of the second power amplifier and a ground potential. The transmitter includes a controller configured to, based on a band select signal, control the switch and selectively enable or disable each of the first power amplifier and the second power amplifier. Selective control of the switch can reduce harmonic leakage compared to a system that does not include the disclosed switches and controls.
US10284230B2 Linked storage system and host system error correcting code
Systems, methods, and software are provided herein for error correction in writing and reading data to and from a data storage device. In one implementation, an encoder matrix is used to generate, for a data set, first error correcting code (ECC) parity data on a host system, and second ECC parity data for tracks on data storage device coupled to the host system. Once generated, the data storage device will store the data set and the first and second ECC parity data on storage media for the device. When a read is required, the storage device will provide a first version of the data set with the first and second ECC parity data to the host system, permitting the host system to use the parity data to generate a corrected version of the data set.
US10284229B2 Bit interleaver for low-density parity check codeword having length of 64800 and code rate of 3/15 and 64-symbol mapping, and bit interleaving method using same
A bit interleaver, a bit-interleaved coded modulation (BICM) device and a bit interleaving method are disclosed herein. The bit interleaver includes a first memory, a processor, and a second memory. The first memory stores a low-density parity check (LDPC) codeword having a length of 64800 and a code rate of 3/15. The processor generates an interleaved codeword by interleaving the LDPC codeword on a bit group basis. The size of the bit group corresponds to a parallel factor of the LDPC codeword. The second memory provides the interleaved codeword to a modulator for 64-symbol mapping.
US10284228B2 Apparatus for time interleaving and method using the same
An apparatus and method for time interleaving corresponding to hybrid time interleaving mode are disclosed. An apparatus for time interleaving according to an embodiment of the present invention includes a twisted block interleaver configured to perform intra-subframe interleaving corresponding to time interleaving blocks; and a convolutional delay line configured to perform inter-subframe interleaving using an output of the twisted block interleaver.
US10284227B2 Parity puncturing device for fixed-length signaling information encoding, and parity puncturing method using same
A parity puncturing apparatus and method for fixed length signaling information are disclosed. A parity puncturing apparatus according to an embodiment of the present invention includes memory configured to provide a parity bit string for parity puncturing for the parity bits of an LDPC codeword whose length is 16200 and whose code rate is 3/15, and a processor configured to puncture a number of bits corresponding to a final puncturing size from the rear side of the parity bit string.
US10284226B1 Performing parallel deflate compression
A computing system includes a network interface, a processor, and a decompression circuit. In response to a compression request from the processor the decompression circuit compresses data to produce compressed data and transmits the compressed data through the network interface. In response to a decompression request from the processor for compressed data the decompression circuit retrieves the requested compressed data, speculatively detects codewords in each of a plurality of overlapping bit windows within the compressed data, selects valid codewords from some, but not all of the overlapping bit windows, decodes the selected valid codewords to generate decompressed data, and provides the decompressed data to the processor.
US10284223B2 Method of performing analog-to-digital conversion
The invention describes a method of performing analog-to-digital conversion on an input signal (Pin) within a range (R1) using a sigma-delta modulator (1) comprising a feedback digital-to-analog conversion arrangement (12, 120), which method comprises the steps of: obtaining an amplitude estimate (E1, E2, E3, E4) of the input signal (Pin); defining a subsequent subrange (R2, R3, R4) on the basis of the amplitude estimate (E1, E2, E3); and adjusting operation parameters of the feedback digital-to-analog conversion arrangement (12, 120) on the basis of the subsequent subrange (R2, R3, R4); whereby the method steps are repeated a predefined number of iterations (N). The invention further describes a sigma-delta modulator (1), an analog-to-digital converter (50), and a monitoring device (5) for monitoring an analog input signal (Pin).
US10284221B2 Power-efficient flash quantizer for delta sigma converter
A multibit flash quantizer circuit, such as included as a portion of delta-sigma conversion circuit, can be operated in a dynamic or configurable manner. Information indicative of at least one of an ADC input slew rate or a prior quantizer output code can be used to establish a flash quantizer conversion window. Within the selected conversion window, comparators in the quantizer circuit can be made active. Comparators outside the conversion window can be made dormant, such as depowered or biased to save power. An output from such dormant converters can be preloaded and latched. In this manner, full resolution is available without requiring that all comparator circuits within the quantizer remain active at all times.
US10284220B1 Equalization circuit, a method of operating an equalization circuit and a system comprising an equalization circuit and an ADC
The present application relates to an EQ circuit, a method of operating it and a system comprising the EQ circuit and an ADC. The EQ circuit has a configurable load section, which is provided for selectively exposing one of a plurality of distinct loads to a reference source connected to a reference voltage signal input of the equalization circuit, and a logic section, which is arranged to accept a state signal from the ADC and to selectively connect one distinct load out of the plurality of distinct loads in response to the state signal. The state signal is indicative of an actual operation state of the ADC.
US10284217B1 Multi-path analog front end and analog-to-digital converter for a signal processing system
In accordance with embodiments of the present disclosure, a processing system may include multiple selectable processing paths for processing an analog signal in order to reduce noise and increase dynamic range. Techniques are employed to transition between processing paths and calibrate operational parameters of the two paths in order to reduce or eliminate artifacts caused by switching between processing paths.
US10284214B2 Filter circuit for filtering an input signal of an analogue-to-digital converter
The invention relates to a filter circuit (200) comprising at least a first filter line (210). The first filter line (210) has a first input circuit (10), a first integration circuit (20) and a first output circuit (30). The first input circuit (10) is configured in such a way that, as a function of the value of the input signal, it converts an input signal into at least two distinguishable, first first-stage output signals and relays the first-stage output signals to the first integration circuit (20, 240) during a prescribed period of time. The first integration circuit (20) is configured to integrate the first first-stage output signals of the first input circuit (10) over the prescribed period of time and to generate a first integration signal (25). The first output circuit (25) is configured to compare the first integration signal (25) to a first output reference value and to generate a first second-stage output signal (35). The invention also relates to an appertaining filtering method.
US10284204B2 Logic unit circuit and pixel driving circuit
There are provided a logic unit circuit and a pixel driving circuit, which relate to a display technical field and are used to solve the problem that technical difficulties are increased due to mixed use of different types of transistors in the logic unit circuit. The logic unit circuit includes a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistor, a sixth transistor, a seventh transistor, an eighth transistor, a ninth transistor and a tenth transistor of a same type. The logic unit circuit is used to realize logic gate operation.
US10284201B1 High range positive voltage level shifter using low voltage devices
A voltage level shifter is provided. The voltage level shifter includes an input stage and at least one level shifting stage. The input stage receives an input voltage and a complementary input voltage and receives a first supply voltage and a ground voltage. The input stage outputs one of the first supply voltage and the ground voltage over a first output voltage node and a first complementary output voltage node based on the input voltage and the complementary input voltage. A level shifting stage is coupled to the input stage. The level shifting stage receives the first supply voltage and a second supply voltage and outputs one of the ground voltage, the first supply voltage and the second supply voltage over second and third output voltage nodes and second and third complementary output voltage nodes based on voltages of the first output voltage node and the first complementary output voltage node.
US10284199B2 Voltage tolerant termination presence detection
Apparatuses and methods associated with voltage tolerant termination presence detection for universal serial bus type-C connectors are disclosed herein. In embodiments, an apparatus to enable voltage tolerant termination presence detection may include sensor circuitry to determine whether a device coupled to the sensor circuitry is to operate in host mode or device mode based on a signal on a configuration channel between the device and the sensor circuitry. In embodiments, the apparatus may further include termination circuitry to bias the configuration channel in accordance with the host mode or the device mode based on the determination of whether the device is to operate in the host mode or the device mode. Other embodiments may be described and/or claimed.
US10284197B2 Key
A key is provided, including: a magnetic component arranged to generate a magnetic field; a closed loop, herein the closed loop includes a preset device in series connection and a conductor set in the magnetic field; a voltage drop detection chip, herein the voltage drop detection chip has two pins respectively connected to two ends of the preset device and an output port arranged to output a detected voltage drop signal between the two pins; and a key body movably connected on a supporting part, herein the key body is connected to the conductor, the key body can move in two opposite directions on the supporting part, and the key body drives the conductor to cut magnetic induction lines in the magnetic field during motion.
US10284188B1 Delay based comparator
A comparator includes a pair of back-to-back negative-AND (NAND) gates and a delay circuit coupled to the pair of back-to-back NAND gates. The delay circuit is configured to modulate a triggering clock signal by an input voltage to generate a delayed clock signal with a delay that is based on the input voltage. Each of the pair of back-to-back NAND gates is configured to receive the delayed clock signal and generate a comparator output signal based on the delayed clock signal.
US10284184B2 Booster circuit
A charge pump unit including a capacitor that accumulates a charge on an output node according to a first clock signal and a transfer gate that takes in and applies a voltage of an input node to the output node according to a second clock signal received at a control terminal is controlled in the following manner. If the ratio of the total time of periods in which the voltage of the output node is higher than a target voltage in a predetermined monitoring period is smaller than or equal to a first threshold, i.e., if the charge pump unit executes a boosting operation for a relatively long period, a pulse voltage value of the second clock signal is increased.
US10284182B2 Duty cycle correction scheme for complementary signals
A complementary signal path may include an amplifier circuit configured to receive a pair of complementary input signals and a data alignment circuit configured to output a pair of complementary output signals in response to the pair of complementary input signals. A control circuit may detect duty cycle distortion in the pair of complementary output signals and perform a duty cycle correction process to remove the distortion. To do so, the control circuit may search for target current amounts in response to the duty cycle distortion and inject a control current into the amplifier circuit at the target current amounts.
US10284181B2 Variable capacitor and electronic device
A variable capacitor includes: capacitors connected in series between first and second signal terminals, capacitances of the capacitors varying in accordance with variable voltage applied to a variable terminal; a first resistor connected between a first node between adjacent capacitors of the capacitors and the variable terminal, a second resistor connected between a second node between adjacent capacitors of the capacitors and a fixed terminal applied with fixed voltage, and a third resistor connected between a third node and the fixed terminal, the third node being located between the first and/or second signal terminal and a capacitor located closest to the first and/or signal terminal among the capacitors, wherein a resistance of the second resistor is less than 1 and ½ or greater with respect to a resistance of the third resistor, and the resistance of the second resistor is not equal to a resistance of the first resistor.
US10284174B2 Acoustic filter employing inductive coupling
Disclosed in one embodiment is filter circuitry having first and second paths extending between first and second nodes. The first path has a first inductor and a second inductor coupled in series between the first node and the second node, wherein the first inductor and the second inductor are positively coupled with one another, and a first common node is provided between the first inductor and the second inductor. First shunt acoustic resonators are coupled between the first common node and a fixed voltage node. The second path includes a third inductor and a fourth inductor coupled in series between the first node and the second node. The third inductor and the fourth inductor are negatively coupled with one another, and a second common node is provided between the third inductor and the fourth inductor. Second acoustic resonators are coupled between the second common node and a fixed voltage node.
US10284168B2 Bulk acoustic wave resonator
A bulk acoustic wave (BAW) resonator includes: an acoustic reflector disposed in a substrate; a lower electrode disposed over the acoustic reflector; a piezoelectric layer disposed over the lower electrode; and an upper electrode disposed over the piezoelectric layer. A contacting overlap of the lower electrode, the piezoelectric layer and the upper electrode over the acoustic reflector comprising an active area of the BAW resonator. An opening exists in the upper electrode in a region of the BAW resonator susceptible to unacceptable overheating.
US10284166B2 Transmitter matching network using a transformer
An apparatus for a network matching switch is provided. The apparatus includes a primary winding, a first secondary winding, a second secondary winding and a plurality of matching network paths. The primary winding is configured to generate a magnetic field based on an analog input signal. The first secondary winding is configured is inductively coupled to the primary winding. The second secondary winding is inductively coupled to the primary winding. The plurality of matching network paths are coupled to the first secondary winding and the second secondary winding. An active path is selected from the plurality of matching network paths and provides power to an active load.
US10284161B1 Electronic device with in-pocket audio transducer adjustment and corresponding methods
An electronic device includes one or more microphones, one or more sensors, and one or more processors operable with the one or more microphones and the one or more sensors. The one or more processors, upon the one or more sensors detecting the electronic device is disposed within a repository container, such as a pocket, apply an audio signal adjustment function to signals received from the one or more microphones, thereby mitigating noise in the signals caused by the repository container.
US10284155B2 Multi-level class D audio power amplifiers
A multi-level class D audio power amplifier for supplying an N-level drive signal to a loudspeaker. The multi-level class D audio power amplifier includes a switching matrix having controllable semiconductor switches where the switching matrix include at least (N−2) switch inputs, coupled to respective ones of (N−2) DC input voltage nodes, and at least 2*(N−2) switch outputs coupled to respective ones of 2*(N−2) intermediate nodes of a first output driver. A control circuit is configured to sequentially connect each of the (N−2) DC input voltages to a predetermined set of nodes of the 2*(N−2) intermediate nodes of the first output driver via the switching matrix in accordance with one or more of the 2*(N−1) modulated control signals of the first output driver. N is a positive integer larger than or equal to 3.
US10284152B2 Amplifier, audio signal output method, and electronic device
The present technology relates to an amplifier, an audio signal output method, and an electronic device that can inhibit unintended sound output in a class D amplifier that changes a peak value of a PWM signal. The amplifier includes: a positive-side amplitude generating circuit configured to generate positive-side amplitude of an output PWM signal that is a PWM signal to be output outside an apparatus; a negative-side amplitude generating circuit configured to generate negative-side amplitude of the output PWM signal; and a feedback circuit configured to feed back a difference between the amplitude generated by the positive-side amplitude generating circuit and the amplitude generated by the negative-side amplitude generating circuit to the positive-side amplitude generating circuit and the negative-side amplitude generating circuit. The present technology is applicable, for example, to an amplifier or the like of an electronic device such as an audio player.
US10284148B2 RF amplifier
An RF amplifier is described including an input, an output, a parallel arrangement of a first branch and at least one further branch, each branch comprising a bipolar transistor in a degenerative emitter configuration having a base coupled to the input, a collector coupled to a common collector node, and an emitter degeneration impedance arranged between the emitter and a common rail. The common collector node is coupled to the output, the base of the first branch bipolar transistor is biased at a first bias voltage and the base of the at least one further branch bipolar transistor is biased at a bias voltage offset from the first bias voltage. In operation of the RF amplifier a IM3 distortion current output by the first branch bipolar transistor is in antiphase to a IM3 distortion current output by the at least one further branch bipolar transistor.
US10284147B2 Doherty amplifiers and amplifier modules with shunt inductance circuits that affect transmission line length between carrier and peaking amplifier outputs
A Doherty amplifier module includes first and second amplifier die. The first amplifier die includes one or more first power transistors configured to amplify, along a first signal path, a first input RF signal to produce an amplified first RF signal. The second amplifier die includes one or more second power transistors configured to amplify, along a second signal path, a second input RF signal to produce an amplified second RF signal. A phase shift and impedance inversion element is coupled between the outputs of the first and second amplifier die. A shunt inductance circuit is coupled to the output of either or both of the first and/or second amplifier die. Each shunt inductance circuit at least partially resonates out the output capacitance of the amplifier die to which it is connected to enable the electrical length of the phase shift and impedance inversion element to be increased.
US10284142B2 Electrode for a microelectromechanical device
A microelectromechanical device structure comprises a supporting structure wafer. A cavity electrode is formed within a cavity in the supporting structure wafer. The cavity electrode forms a protruding structure from a base of the cavity towards the functional layer, and the cavity electrode is connected to a defined electrical potential. The cavity electrode comprises a silicon column within the cavity in the supporting structure wafer, which is partially or entirely surrounded by a cavity. One or more cavity electrodes may be utilized for adjusting a frequency of an oscillation occurring within the functional layer.
US10284140B2 Smart sensor devices for measuring and verifying solar array performance and operational methods for use therewith
A device comprises a platform constructed and arranged to be mounted to one or more solar array modules and one or more solar irradiance sensors on the platform configured to receive incident solar energy, the one or more solar irradiance sensors oriented on the platform so that the received incident solar energy is comparable to that received by the solar array modules, the one or more solar irradiance sensors providing solar irradiance signals in response to the incident solar energy. A processor is on the platform, the processor configured to receive the solar irradiance signals and, in response, generating a performance reference metric based on the solar irradiance signals, the performance reference metric related to the expected performance of the one or more solar array modules to which the platform is mounted. A transmitter is on the platform, the transmitter configured to periodically transmit the performance reference metric to a receiver.
US10284139B2 Soiling measurement system for photovoltaic arrays
A system for measuring the power or energy loss in a photovoltaic array due to soiling, which is the accumulation of dust, dirt, and/or other contaminants on the surfaces of photovoltaic modules, comprising: a pair of photovoltaic reference devices placed within or near the photovoltaic array and co-planar to the modules comprising the array, wherein one reference device is a module or cell similar to those of the array and is allowed to accumulate soiling at the natural rate, and wherein the second reference device is a module or a cell and is maintained clean; and a measurement and control unit which measures and compares the electrical outputs of the soiled reference device and the clean reference device in order to determine the fraction of power lost by the soiled reference module due to soiling.
US10284137B2 Brackets for installing building attachments
Roof brackets for attaching a structure such as a patio cover to a building, and methods for installing the brackets. The brackets have a saddle for receiving a support beam of the structure. The brackets can be attached to the building roof, but do not penetrate the roof substrate, thus preventing leakage and other structural problems. The roof brackets comprise a plate that is installed between the roof substrate and the shingles or tile on the roof. The brackets are available in different configurations depending on the roof pitch for easy installation. One roof bracket has a riser so that the saddle is lifted above the roof. Another roof bracket is configured so that when installed the saddle is located beyond the edge of the roof. Other brackets can be attached to the rafters under the roof. These also come in different configurations depending on roof pitch, and they are configured to extend below and outward from the fascia.
US10284132B2 Driver for high-frequency switching voltage converters
A drive includes: an inverter power circuit that applies power to an electric motor of a compressor from a direct current (DC) voltage bus; and a power factor correction (PFC) circuit that outputs power to the DC voltage bus based on input alternating current (AC) power. The PFC circuit includes: (i) a switch; (ii) a driver that connects a control terminal of the switch to a first reference potential when a control signal is in a first state and that connects the control terminal of the switch to a second reference potential when the control signal is in a second state; and (iii) an inductor that charges and discharges based on switching of the switch. The drive also includes a control module that generates the control signal based on a measured current through the inductor and a predetermined current through the inductor.
US10284130B2 PSC motor having multiple speed and voltage configurations
A permanent split capacitor (PSC) motor includes a stator defining an axis of rotation and a rotor disposed adjacent the stator. The stator includes a start winding, a capacitor electrically coupled in series with the start winding, a first plurality of windings, and a second plurality of windings. At least one winding of the first plurality of windings is energized in parallel with at least one winding of the second plurality of windings at a first voltage and in series with the at least one winding of the second plurality of windings at a second voltage. The first and second pluralities of windings are energized to produce a plurality of motor speeds. The rotor rotates relative to the stator about the axis of rotation at a selected one of the plurality of motor speeds induced at least partially by a magnetic output of the windings of the stator.
US10284129B2 Three-phase variable reference pulse width modulation
A system includes a three phase AC or brushless DC motor, an inverter and a controller. The inverter is electrically coupled to the motor. The controller is -electrically coupled to the inverter. The controller is configured to control the inverter to deliver a three phase pulse width modulated voltage to the AC motor, wherein the three phase pulse width modulation comprises a repeating two-cycle pattern.
US10284123B2 Motor unit
A motor unit includes a motor; a driving circuit that supplies a driving current to the motor; a shunt resistor; a rotation command input terminal; a pulse output terminal; a current detection unit detects a driving current measured by the shunt resistor; a driving control unit that controls supplying of the driving current; a storage unit that previously stores allowable range information; a current value determination unit that determines whether or not the current value of the driving current is included in the allowable range, and the allowable range information stored in the storage unit; and a signal generation unit that generates the pulse signal by setting a duty ratio of the pulse signal as a first duty ratio, and setting the duty ratio of the pulse signal as a second duty ratio different from the first duty ratio.
US10284118B2 Two-axis angular pointing device and methods of use thereof
A two-axis angular pointing device includes a pivot bearing configured to support a payload. A first actuator is positioned to contact the payload at a first drive point. A second actuator is positioned to contact the payload at a second drive point. The first actuator is configured to generate a first movement of the payload in a direction substantially orthogonal to a plane defined by a center of the pivot bearing, the first drive point, and the second drive point to cause the payload to rotate around a first rotation axis. The second actuator is configured to generate a second movement of the payload at the second drive point in the direction substantially orthogonal to the plane to cause the payload to rotate around a second rotation axis. A method of making a two-axis angular pointing device is also disclosed.
US10284115B2 Inverter system
An inverter system includes an input inverter including a positive and a negative DC input terminals and first and second AC output terminals; and a bidirectional inverter device, including a first bidirectional subinverter and a second bidirectional subinverter. The first and second bidirectional subinverters have DC terminals that are interconnected in parallel with a DC power storage device. The first bidirectional subinverter have first and second AC terminals. The first AC terminal is connected to the first AC output terminal of the input inverter. The second bidirectional subinverter have first and second AC terminals. The first AC terminal is connected to the second AC output terminal of the input inverter. The second AC terminal of the first bidirectional subinverter and the second AC terminal of the second bidirectional subinverter are interconnected.
US10284114B1 Modulation method for inverter AC waveform
The present invention discloses a modulation method for inverter AC waveform. The detailed steps of the modulation method comprise: generating an AC waveform which includes at least three time periods, wherein a middle time period corresponds to a peak segment of the AC waveform, and the remaining time periods are averaged corresponding to the rise and decline segments of the AC waveform; and during the at least three time periods, a duty ratio modulated driving signal is generated according to different duty ratios, so as to modulate the AC waveform and generate a stepping AC waveform converted from the AC waveform. The stepping AC waveform generated by the modulation method of the present invention will have a longer dwell time at zero potential, so as to turn on the AC electric tool more efficiently.
US10284111B2 Power conversion apparatus having connection conductors having inductance which inhibits ripple current
A power conversion apparatus includes a first power conversion circuit including a first switching element, a second power conversion circuit including a second switching element, a DC conductor which is provided in the first power conversion circuit and supplies a DC power to the first power conversion circuit, and a connection conductor which is provided in the first power conversion circuit, has a length having an inductance for inhibiting a flow of a ripple current caused by switching of the second switching element of the second power conversion circuit, and connects the DC conductor and the second power conversion circuit.
US10284103B2 Power converter operable during a fault condition
A power converter includes first and second DC terminals between which the power converter is operable to generate a voltage difference. The power converter also includes a control unit that is configured to operate in a normal mode during normal operation of the power converter and in a fault mode when a fault occurs in a respective DC power transmission medium that is operatively connected in use to one of the first or second DC terminals. The control unit in the normal mode generates a normal operating voltage difference between the first and second DC terminals. The control unit in the fault mode generates a modified operating voltage difference between the first and second DC terminals while maintaining the respective voltage potential with respect to earth of the other of the first and second DC terminals. The modified operating voltage difference is lower than the normal operating voltage difference.
US10284099B2 Hybrid power converters combining switched-capacitor and transformer-based stages
A hybrid power converter circuit includes a switched-capacitor power converter stage and a pulse-width modulation (PWM) or resonant output circuit coupled to a switching node of the switched-capacitor power converter stage. In particular, the PWM or resonant output circuit can include a transformer having a primary winding and a secondary winding magnetically coupled to each other, and the secondary winding is coupled to the output node of the power converter. The switched-capacitor power converter stage is coupled between the input node of the power converter and the primary winding of the transformer, and includes capacitors and switches configured to connect the capacitors to the input node during a first phase of operation and connect the capacitors to the primary winding of the transformer of the PWM or resonant output circuit during a second phase of operation.
US10284098B2 Load current adjusting circuit and adjusting method thereof
A load current adjusting circuit can include: a counter configured to generate first and second digital signals in accordance with a pulse signal, where a numerical relationship between the first and second digital signals is determined in accordance with a duty cycle of the pulse signal; and an adjusting circuit configured to adjust a load current to vary along with the duty cycle of the pulse signal in accordance with the first and second digital signals.
US10284097B2 Apparatus and efficiency point tracking method for high efficiency resonant converters
A system comprises an input power stage coupled to a primary side of a transformer, an output power stage coupled to a secondary side of a transformer, a first common node capacitor and a common node resistor connected in series between a midpoint of the secondary side of the transformer and ground and a detector having an input connected to a common node of the first common node capacitor and the common node resistor, and an output connected to a control circuit, wherein the control circuit is configured to dynamically adjust a switching frequency of the system based upon an output of the detector.
US10284094B2 Current balance adjustment circuit and power conversion system
A circuit configured to, for each of values of output currents output from power conversion devices connected in parallel to one another and driven based on common ON signals applied to the power conversion devices, output a difference between the output current value and a reference value when a polarity of the output current value is positive, and output a difference between an absolute value of the output current value and an absolute value of the reference value when the polarity of the output current value is negative; and a circuit configured to output adjustment time signals each of which indicates an amount of a delay time of a rising timing or a falling timing of the ON signal, according to an output value of the output current difference calculation circuit.
US10284093B2 Power conversion apparatus and method for configuring the same
The present disclosure discloses a power conversion apparatus and a method for configuring the same. The power conversion apparatus includes a boost unit and at least two power conversion units; each of the power conversion units has two input ends; an input end of the boost unit is connected with one end of an alternating-current power supply, and an output end of the boost unit is connected with one input end of a first power conversion unit of the plurality of power conversion units; one input end of a last power conversion unit of the plurality of power conversion units is connected with the other end of the alternating-current power supply; and the input ends of the plurality of power conversion units are connected in series, and the output ends of the plurality of power conversion units are connected in parallel.
US10284090B2 Combined boost converter and power converter
In accordance with embodiments of the present disclosure, a system may include a series combination of a boost converter and a power converter coupled together in series, such that the series combination boosts an input voltage to the series combination to an output voltage greater than the input voltage such that a voltage boost provided by the series combination is greater than a voltage boost provided by the boost converter alone. The system may also include an amplifier, wherein an input of the amplifier is coupled to an output of the series combination of the boost converter and the power converter.
US10284089B2 Integrated bi-directional driver with modulated signals
According to some embodiments, a bi-directional converter is configured to operate in a boost mode or a buck mode. The bi-directional converter includes a hysteresis control unit that includes a comparator that can be configured to determine whether the reference voltage has a positive slope or a negative slope in conjunction with the bi-directional converter operating in boost mode or buck mode. In addition, the comparator is configured to compare a fractional load voltage to a reference voltage so that the output load voltage corresponds to the waveform shape of the reference voltage.
US10284088B1 Power conversion device, time signal generator and method thereof
A time signal generator includes a time signal circuit and a timing circuit. The time signal circuit includes a current source and a current source circuit, and has a first mode and a second mode. The time signal generator provides a first on-time signal according to the current source in the first mode. The timing circuit is connected to the time signal circuit, and includes a first timing circuit. When the timing circuit counts to a first predetermined time, the first timing circuit provides a first control signal to the current source circuit, such that the time signal generator provides a second on-time signal according to the current source and the current source circuit in the second mode. A width of the second on-time signal is less than a width of the first on-time signal.
US10284084B2 Power control circuit and method thereof
A power control circuit provides a supply voltage, and includes a voltage regulating circuit and a signal selecting circuit. The voltage regulating circuit is coupled to a power supply voltage and the output end of the power control circuit, and receives a first control signal for outputting the supply voltage. The signal selecting circuit has a first input end, a second input end and a third input end. The first input end of the signal selecting circuit receives a first input signal, the second input end of the signal selecting circuit receives a second input signal, and the third input end of the signal selecting circuit receives a second control signal. The first input signal is related to the power supply voltage. One of the first input signal and the second input signal is chosen and outputted as the first control signal according to the second control signal.
US10284078B1 Apparatus and method for limiting electromagnetic interferences in a switching converter
A method and apparatus for limiting or preventing electromagnetic interferences in a switching converter are presented. In particular, a power circuit provided with an active electromagnetic interference filter is presented. There is an electromagnetic interference EMI reduction circuit for use with a switching converter. This EMI reduction circuit has a current source and is adapted to regulate a voltage across the current source to provide a current having a constant average value. The switching converter is adapted to provide a converter current, and the current source constant average value may be substantially equal to an average value of the converter current. The circuit has a variable resistance; and an adjuster adapted to adjust the variable resistance based on the converter current. The adjuster may have a comparator, which is adapted to compare a voltage value at a terminal of a transistor switch, and a reference value.
US10284077B1 PFC controller providing reduced line current slope when in burst mode
A Power Factor Correction (PFC) controller includes an error amplifier for amplifying a difference between Vout and intended Vout to provide a power demand (Pdem) output at a compensation pin. A burst mode controller includes soft-start circuitry coupled to receive Pdem and to a drive pin which provides pulses to a control node of a power switch of a DC-DC converter during burst periods. The pulses slow ramping of line current over a first 2 to 36 switching cycles at a beginning of bursts when energizing the inductor to reduce a line current slope as compared to without ramping up, and for slowing ramping down of line current over the last 2 to 36 switching cycles to reduce a line current slope when de-energizing the inductor as compared to a line current without ramping down. The PFC controller does not utilize zero-crossings of the line voltage for burst period synchronization.
US10284067B2 Linear motor
A linear motor includes a housing; a vibrating assembly arranged in the housing, the vibrating assembly including coils, a weight and a connecting piece connecting the coils with the weight; a magnet assembly connecting with the housing, the magnet assembly including a first magnet group and a second magnet group; a magnetic gap formed between the first magnet group and the second magnet group for at least partially receiving the coils; and an elastic connecting piece supporting the vibrating assembly in the housing elastically. The first magnet group and the second magnet group comprise at least one pair of magnets which are arranged oppositely to each other and have opposite magnetizing directions; and magnetizing directions of the magnets at the corresponding locations in the first magnet group and the second magnet group are the same.
US10284062B2 Method for manufacturing workpiece and method for manufacturing laminated core
This disclosure relates to a method for manufacturing a workpiece for a segmented laminated core. This method includes (A) feeding a plate for processing drawn from a roll thereof to a progressive die and (B) stamping out a workpiece in the progressive die, the workpiece including a plurality of pieces aligned in the circumferential direction with a circumferential part. At the step (B), an overall portion configured to be each piece of the workpiece is displaced in the thickness direction of the plate for processing, with portions on both sides of the piece being fixed, to form at least one cutting line across a region configured to be the circumferential part.
US10284058B2 Method and apparatus for manufacturing laminated cores
At the time of manufacturing both a laminated rotor core 13 and a laminated stator core 14 by punching out a plurality of iron core pieces 11 and 12 from a same strip material 10 and laminating the punched out iron core pieces 11 and 12, respectively, a plurality of kinds of laminated rotor cores 13 and 13a are manufactured by further punching out a plurality of iron core pieces 11a from the strip material 10 and laminating the punched out iron core pieces 11a. Here, the plurality of kinds of the laminated rotor cores 13 and 13a can be used for different electric motors.
US10284057B2 Stator manufacturing device and stator manufacturing method
A highly versatile stator manufacturing device is provided. A stator manufacturing device 7 includes: an engagement portion 8 engageable with a distal end of an extension portion 5 of each of a plurality of conductor segments 4 extending from a plurality of extension positions that differ in a radial direction R in each slot 3 of a stator core 2; a circumferential direction drive portion 9 that drives the engagement portion 8 engaging with the extension portion 5 in a circumferential direction C, to bend the extension portion 5; and a radial direction drive portion 10 that drives the engagement portion 8 in the radial direction R.
US10284056B2 Brush holder apparatus having brush terminal
A brush holder apparatus has a stationary support member having two opposing grooves, a fork electrical connector, and a conductive bar passing through a main body of the stationary support member. A brush holder is releasably affixed to the stationary support member, and has two rails that slide along the grooves. The brush holder's knife electrical connector mates with the fork electrical connector. A brush spring is clipped on the brush holder, and presses a brush against a collector. A brush lead connects the brush to a brush terminal. The brush terminal has a generally L-shaped body with a lower part thereof retained under a terminal compression plate, and an upper part thereof located on a front side of the terminal compression plate. The brush terminal is removed from or installed into a front side of the brush holder, and by hand or without the use of any tools.
US10284054B2 Motor control device
A motor control device is provided that enables smooth rotation control from a low-speed region to a high-speed region. A microcomputer of the motor control device calculates the rotation speed of a rotor from the time between edges that appear per 60° electrical angle at the time of starting the motor, from a signal that is output when a the hall sensor detects the magnetic field of a rotating rotor and, in conjunction with an increase in the rotation speed of the rotor, calculates the rotation speed of a rotor from the time between edges that appear at electrical angles that are larger than the electrical angle 60° in the signal, per 180° electrical angle, per 360° electrical angle, per 900° electrical angle, and per 1800° electrical angle.
US10284050B2 Apparatus for avoiding harmful bearing currents
The present invention relates to an apparatus for reducing and/or avoiding harmful bearing currents in an electrical machine (M) such as preferably a three-phase EC motor (M), with a rotor (2) and a stator (3) which is constructed in an insulated manner, wherein at least one outer bearing ring (4a) and one inner bearing ring (4b) are provided between rotor (2) and stator (3), comprising connecting electronics (10) for connecting the motor (M), wherein the stator (3) is connected by means of an electrical connection (20) to a high-frequency electronics potential (11) which differs from the earth potential (UE) and is stable with respect to the latter at a potential tap (20a) of the connecting electronics (10).
US10284049B2 Electric motor having labyrinth
An electric motor including a labyrinth having a function for preventing foreign particles from entering an inside of the motor. A labyrinth member having a generally annular shape is fixed to a portion of a rotation shaft positioned on a front side than a front bearing with respect to an axis, by interference fit, etc., and the labyrinth member is configured to rotate integrally with the rotation shaft. The labyrinth member has at least one first opening formed on a front surface of thereof, and at least one second opening formed on an outer lateral surface thereof. The first opening and the second opening are fluidly communicated with each other within the labyrinth member.
US10284048B2 Electric motor for suppressing entry of foreign substances
An electric motor is provided with an annular member supported by a cylindrical member of a front housing. The annular member includes an opposite part spaced from a surface of a ring member in a rotary shaft, which extends in the circumferential direction. The annular member includes first cover part opposed to first surface of the ring member, and second cover part opposed to second surface of the ring member. The first cover part and the second cover part are spaced from the ring member so that a pressure in a space sandwiched by the first cover part and the first surface is equalized with a pressure in a space sandwiched by the second cover part and the second surface.
US10284046B2 DC brush motor
There is provided a DC brush motor that is provided with: a magnet; an armature configured to rotate relative to the magnet about a rotary axis, the armature comprising a commutator; a bracket configured to cover one end portion of the magnet and the armature at one side along the rotary axis; a female terminal that is fixed to the bracket; a brush that is electrically connected to the female terminal, and a sealing member that is fixed to the bracket. The bracket is provided with a recessed portion formed on an outer periphery thereof and configured to accommodate therein the female terminal. The sealing member is configured to seal between the recessed portion and a space where the commutator and the brush exist.
US10284039B2 Rotor of rotary electric machine
In order to improve cooling performance of a rotor of a rotary electric machine, attention is paid to the relation between the secondary flow of a cooling gas generated inside ventilation holes for the cooling gas provided in a rotor winding formed by stacking a conductor and an interlayer insulating layer and the main flow of the cooling gas during the rotary motion of the rotor, and the secondary flow of the cooling gas is suppressed by changing the shape of bulges appearing in a linear shape in the stacked direction on an inner wall surface of each rotor winding ventilation hole on a negative pressure side.
US10284037B2 Brushless motor with permanent magnet rotor with magnetic poles with flux blocking parts/through holes towards the shaft forming angles
A rotor core includes: an annular part around a through hole; a plurality of fan-shaped magnetic pole pieces radially formed around the annular part; and a plurality of magnet holders radially formed between adjacent magnetic pole pieces, and a plurality of first magnetic flux blocking parts formed in respective areas between adjacent magnet holders. The magnet holder includes a second magnetic flux blocking part at an end of the magnetic holder toward the rotating shaft. The rotor core includes two magnetic paths formed between the first magnetic flux blocking part and the two second magnetic flux blocking parts adjacent to the first magnetic flux blocking part. The two magnetic paths branch in different directions toward the annular part from the end of the magnetic pole piece toward the rotating shaft.
US10284031B2 Stator, and electrical machine comprising such a stator
The invention relates to a stator tooth (8) for an electrical machine, the stator tooth being intended for holding an electrical wire winding (10). The tooth includes a central portion (24) formed with a contiguous assembly of precut magnetic metal sheets (24a). The metal sheets are secured to one another. The tooth is characterized in that the central portion (24) is enclosed between two longitudinal end portions (25) which are secured to the central portion (24) and each have a radial attachment bolt (11) passing therethrough. The longitudinal end portions (25) have a rounded outer shape (25a) for forming, on the ends of the tooth, a continuous contact surface for the electrical wire(s) wound onto the tooth.
US10284030B2 Permanent magnet embedded electric motor, compressor, and a refrigerating and air conditioning device
A permanent magnet embedded electric motor includes a stator core disposed inside the frame and having a back yoke and a plurality of magnetic pole teeth; a rotor disposed on an inner diameter side of the plurality of magnetic pole teeth; and compression sections in which compression stress higher than compression stress occurring in the back yoke due to pressing force generated between the frame and the back yoke occurs. A compression section group having a set of two or more compression sections and of the plurality of compression sections is disposed on an outer circumferential section of the stator core. A sum of the rotating direction widths of the plurality of compression sections constituting the compression section group is smaller than a radial direction thickness of the frame.
US10284022B2 Wireless power transmission and reception system
A wireless power transmission method and a wireless power transmitter are provided that may selectively transmit wireless power to a plurality of target devices. According to an aspect, a wireless power transmitter may include: a detecting unit configured to detect a plurality of target devices; a controller configured to determine a plurality of resonance frequencies between a source resonator and the plurality of detected target devices and to control the plurality of resonance frequencies to transmit the power to the plurality of detected target devices; and a source resonance unit configured to transmit the power to the plurality of detected target devices.
US10284016B2 System for multi-band power transmission with multiple protocols
An apparatus for receiving a wireless power signal includes a detection unit configured to discover a power signal having plural components, each generated by plural wireless charging techniques, a recognition unit configured to analyze the power signal to recognize which component of the power signal can be corresponding to each of the plural wireless charging techniques, a combination unit configured to combine outputs of the recognition unit into a single energy signal, and a charging unit configured to use the energy signal for charging a battery.
US10284013B2 Radio frequency transmission device with reduced power consumption
A system for enhancing power efficiency of a wireless device is disclosed. In one embodiment, the wireless device includes a transmitter having a transmitter antenna and configured to transmit a signal, as well as an energy receiver having a plurality of energy receiver antenna elements positioned across one or more surfaces of the wireless device. The energy receiver antenna elements are each configured to receive a portion of the signal, convert the portion of the signal into power, and provide the power to one or more components of the wireless device.
US10284012B2 Systems and method for high power constellations for wireless charging and power delivery
A system for high powered wireless power delivery and charging includes an electronic device having a wireless charging module. The wireless charging module includes a power management module, the power management module configured and executing instructions to enable and disable the power delivery or charging of the electronic device based on whether a valid charging circuit exists, the power management module additionally configured and executing instructions to prevent a detection of an invalid load.
US10284009B2 Uninterruptible power supply
An uninterruptible power supply includes a battery unit including battery racks divided into at least one first battery rack including a first battery and at least one second battery rack including a second battery; an overall control unit configured to determine an operation mode of the battery unit from among a discharge mode and a charge mode, and a measurement unit configured to monitor an amount of accumulated power consumption of the load during each of a plurality of time periods and transmitting data associated with the monitoring to the overall control unit.
US10284008B2 Isolated parallel ups system with fault location detection
An uninterruptible power supply (UPS) system is provided. The UPS system includes a plurality of UPSs, a ring bus that electrically couples the UPSs together, a static switch coupled between an associated UPS of the UPSs and the ring bus, and a controller. The controller receives current data representative of an inverter current and a load current associated with the associated UPS. An output capacitor of the associated UPS is coupled to a node that conducts the inverter current and the load current. The controller further calculates a measured current based on the received current data, determines a voltage of said output capacitor, generates a derived current based on the determined voltage and a predetermined capacitance of said output capacitor, compares the measured current and the derived current to identify a fault location, and controls said static switch based on the identified fault location.
US10284007B2 Protection methods and switches in uninterruptible power supply systems
A system is provided. The system includes a plurality of uninterruptible power supplies (UPSs), a ring bus, a plurality of chokes, each choke of the plurality of chokes electrically coupling an associated UPS of the plurality of UPSs to the ring bus, and at least one switch electrically coupled between at least one UPS of the plurality of UPSs and the ring bus, the at least one switch having an opening time of less than 10 milliseconds.
US10284003B2 End-user based backup management
A device includes a network interface and a processor. The network interface is configured to receive one or more preferences of a customer related to the charging of at least one backup device of the consumer. The network interface is also configured to receive at least one notification of at least one predicted power disturbance. The processor is configured to utilize the one or more consumer preferences and the at least one notification to generate a charging schedule of the at least one backup device and to generate one or more charging notifications for charging the at least one backup device. The one or more charging notifications are based on the charging schedule.
US10283999B2 Advanced convectively-cooled inductive charging
An information handling system (IHS) includes a base station that has a transmitter coil to generate a magnetic field for charging a portable power source of a battery-powered electronic device. A receiver coil magnetically receives power from the transmitter coil of the base station. A power control module connected to the portable power source and the receiver coil charges the portable power source with the received power. A flexible ferrite shield is positioned on a side of the receiver coil opposite to the transmitter coil to shield the IHS electronics. A pneumatic diaphragm is formed by a portion of the flexible ferrite shield that is positioned for oscillating movement into a center cavity of the receiver coil. A diaphragm actuator is attached to the pneumatic diagram and is responsive to a triggering signal to oscillate the pneumatic diaphragm to disperse thermal energy that is generated by the receiver coil.
US10283997B2 Wireless power transmission structures
A wireless power transfer apparatus includes a support structure having a top surface and a side surface. The support structure is configured to support a mobile device on the top surface and a wearable device at the side surface. The wireless power transfer apparatus also includes a plurality of transmit coils within the support structure. The plurality of transmit coils are configured to wirelessly transmit power to the mobile device on the top surface and the wearable device at the side surface.
US10283994B2 Switching charging circuit
A switching charging circuit works by receiving an input voltage and then correspondingly outputting an output voltage to a battery. Within a standby duration, to assure that there is sufficient voltage provided for turning on switches in a switching circuit alternately when the switching charging circuit works in the charging duration again, a bootstrap capacitor is charged by a supply voltage. When the bootstrap capacitor is charged, a reverse current is generated by the battery and the reverse current flows towards the input end of the switching charging circuit. In addition, by means of the circuit configuration of this switching charging circuit, the reverse current originally flowing towards the input end of the switching charging circuit can flow back to the battery or to a system load.
US10283992B2 Energy management system
An energy management system includes a power supply module, a charging module, an interface module and an energy management module. The power supply module provides an input power. The charging module generates, based on the input power, a first charge power and a second charge power in response to a first charge control signal and a second charge control signal. The interface module detects electrical energy stored in an energy storage device to generate a detection result. In response to the detection result, the energy management module determines an operating state of the energy storage device, and generates one of the first and second charge control signals.
US10283989B1 Electrical power converter and detachable energy storage reservoir
A power converter provides a first output voltage and a second output voltage in accordance with a control input, wherein the first output voltage is higher than the second output voltage. A switch that is series coupled between i) an energy reservoir node and ii) a power supply node or a power return node. A charge maintenance circuit is coupled to the energy reservoir node, and when the switch is closed can maintain a selected amount of charge in or a selected voltage across an energy reservoir element that may be coupled to the energy reservoir node. Other aspects are also described and claimed.
US10283988B2 Electronic apparatus
An electronic apparatus includes a power receiving unit that receives power from an external apparatus connected to an interface unit, a first generating unit that generates a first control signal, a second generating unit that generates a second control signal, a third generating unit that generates a third control signal, a fourth generating unit that generates a fourth control signal using the first to third control signals, a charge control unit that charges a battery with power received from the external apparatus when the fourth control signal is in a low state, and that stops charging the battery when the fourth control signal is in a high state, and a power supply unit that starts supplying power from the battery to the second generating unit when the fourth control signal is changed into a high state.
US10283987B1 Dynamic adjustment of capacity threshold for a battery unit
Described herein is a smart battery unit capable of assessing its suitability to support a particular load. In some embodiments, the battery unit may receive an indication of power requirements for the particular load with respect to a period of time and may evaluate a total electrical capacity that would be required to support such a load based on those power requirements. The battery backup unit may monitor and dynamically update a full-charge capacity value related to its battery cells as well as the capacity requirement related to the load. The two values may then be compared to determine whether the battery backup unit is capable of supporting the load. If the full-charge capacity value is less than the capacity requirement for the load, then the battery unit may determine that it is not suitable for that load.
US10283986B2 Methods and devices for presenting auxiliary energy delivery indicia on a display
An electronic device includes one or more processors, a display, a primary energy storage device, and an auxiliary energy delivery device. The auxiliary energy delivery device selectively delivers energy to the primary energy storage device. When this occurs, the one or more processors present an icon at least partially superimposed upon a graphical representation of the primary energy storage device on the display.
US10283974B2 Systems and methods for intelligent, adaptive management of energy storage packs
Systems and methods for intelligent, adaptive management of energy storage packs are disclosed. A method comprises receiving a first current measurement of a first energy storage cell electrically connected to a first converter circuit. The first converter circuit controls the charge and discharge of the first energy storage cell. A first voltage measurement of the first energy storage cell is received. A first temperature measurement of the first energy storage cell is received. The first current measurement, the first voltage measurement, and the first temperature measurement are translated into a state of charge of the first energy storage cell.
US10283968B2 Power control system with power setpoint adjustment based on POI power limits
A power control system includes a battery, a battery power inverter configured to control an amount of the electric power stored or discharged from the battery, a photovoltaic power inverter configured to control a power output of a photovoltaic field, and a controller. The power outputs of the battery power inverter and the photovoltaic power inverter combine at a point of interconnection. The controller adjusts a setpoint for the photovoltaic power inverter in response to a determination that the total power at the point of interconnection exceeds a point of interconnection power limit.
US10283967B2 Power system management device and program
A power system management device manages the operational states of a plurality of power systems each including a power generator and a power conditioner connected to each other, and can promptly inform a user of erroneous setting of configuration information. The management device stores configuration information in correspondence with each power system including a power generator (photovoltaic array) and a power conditioner connected to each other. The configuration information indicates the configuration of each power system and includes one or more configuration information elements set by a user. The management device determines whether the configuration information includes at least one configuration information element that has been possibly set erroneously using information obtained from the power conditioner of each power system, and outputs a message prompting verification and correction of configuration information determined to include at least one configuration information element that has been possibly set erroneously.
US10283961B2 Voltage and reactive power control system
An object of the invention is to economically operate a voltage reactive power control device by reducing a transmission loss and reducing the number of tapping operations affecting the life span of a facility. Provided is a voltage reactive power control device including a central monitoring device that includes a loss prediction information output unit calculating a bus voltage on the basis of a generation probability of a power generation pattern, and outputting loss prediction information associated with the bus voltage from system configuration information, and includes a control amount determination unit determining a control pattern of the voltage reactive power control device from the loss prediction information. According to the invention, it is possible to economically operate a voltage reactive power control device by reducing a transmission loss and reducing the number of tapping operations affecting the life span of a facility.
US10283959B2 ESD state-controlled semiconductor-controlled rectifier
Circuits and methods of fabricating circuits that provide electrostatic discharge protection, as well as methods of protecting an integrated circuit from an electrostatic discharge event at an input/output pin. The protection circuit includes a silicon-controlled rectifier having a well and an anode in the well. The anode is coupled with the input/output pin. The protection circuit further includes a control circuit coupled with the well. The control circuit is configured to supply a first control logic voltage to the well that places the silicon-controlled rectifier in a blocking state, and a second control logic voltage to the well that places the silicon-controlled rectifier in a low impedance state. When placed in its low impedance state, the silicon-controlled rectifier is configured to divert current from the electrostatic discharge event at the input/output pin away from the integrated circuit.
US10283958B2 Protection circuit
An example system includes a channel over which signals are transmitted between test equipment and a device under test (DUT); and limiting circuitry to limit a voltage on the channel. The limiting circuitry includes a PN-junction device connected to pass current in response to the voltage on the channel exceeding a limit.
US10283957B2 Supplying load having inrush-current behaviour
Devices and methods are provided relating to supplying a load having an inrush-current behavior, e.g. charging of a capacitance e.g. at power up of a circuit. A first load path and a second load path are provided which are used in an alternating manner.
US10283954B2 Connection shield for power distribution networks
A shield for spliced electrical connections includes a cover for T-tap electrical connections. In embodiments, the cover includes complementary halves designed to quickly and securely snap together when the halves are mated with each other to create a shield for a T-tap connection. Fully assembled, the shield provides sleeves that allow the cables being spliced to enter and/or exit the shield. Each of the sleeves is provided with an adhesive sealant that tightly seals the shield against contamination from the elements. Integrated with the cover are structural elements such as gussets that enhance the resistance of the shield to impact damage such as crushing. The shield may be molded from a polymer that, when cured, provides a rigid or semi-rigid cover that generally protects the t-tap connection from all types of environmental damage.
US10283953B2 Process for forming a divided conduit
A method of producing a divided conduit containing, in order forming a strip-shaped textile having a first longitudinal edge and a second longitudinal edge, extruding a molten thermoplastic polymer into the form of an at least partially molten conduit having an inner surface and an outer surface, and placing at least one strip-shaped substrate within the at least partially molten conduit during or directly after conduit formation such that the first longitudinal and second longitudinal edges of the strip-shaped substrate embed into the inner surface of the conduit. The strip-shaped textile is selected from the group consisting of a woven, non-woven, and knit and the strip-shaped textile is air permeable. The inner surface and outer surface of the conduit is continuous.
US10283949B2 Weather resistant floor box with draining chamber
A floor box for accommodating and protecting an electrical device such as a receptacle includes a housing and a cover. The floor box can be placed within a floor or ground. Rain water or other liquids that enter the floor box are isolated from the electrical device within the box and are removed from the interior of the box by a drain.
US10283944B2 Systems for motor control center buckets
A control house includes a motor control center. The motor control center includes a body, and the body includes a face. The motor control center also includes a first orientation bucket that is configured to be disposed at least partially within the body at a first plurality of positions. The first position of the first plurality of positions extends a first distance from the face, and the first position of the first plurality of positions is configured to couple the first orientation bucket to first contacts. A second position of the first plurality of positions extends a second distance from the face that is greater than the first distance, and the second position of the first plurality of positions is configured to decouple the orientation bucket from the first contacts. Additionally, the second distance is less than or equal to 160 millimeters.
US10283937B2 Optoelectronic device with enhanced lateral leakage of high order transverse optical modes into alloy-intermixed regions and method of making same
Optoelectronic device undergoes selective chemical transformation like alloy compositional intermixing forming a non-transformed core region and an adjacent to it periphery where transformation has occurred. Activated by selective implantation or diffusion of impurities like Zinc or Silicon, implantation or diffusion of point defects, or laser annealing, transformation results in a change of the refractive index such that the vertical profile of the refractive index at the periphery is distinct from that in the core. Therefore the optical modes of the core are no longer orthogonal to the modes of the periphery, are optically coupled to them and exhibit lateral leakage losses to the periphery. High order transverse optical modes associated to the same vertical optical mode have higher lateral leakage losses to the periphery than the fundamental transverse optical mode, thus supporting single transverse mode operation of the device. This approach applies to single transverse mode vertical cavity surface emitting lasers, edge-emitting lasers and coherently coupled arrays of such devices.
US10283930B2 Method of producing a cap substrate, and packaged radiation-emitting device
The invention relates to methods of producing a cap substrate, to methods of producing a packaged radiation-emitting device at the wafer level, and to a radiation-emitting device. By producing a cap substrate, providing a device substrate in the form of a wafer including a multitude of radiation-emitting devices, arranging the substrates one above the other such that the substrates are bonded along an intermediate bonding frame, and dicing the packaged radiation-emitting devices, improved packaged radiation-emitting devices are provided which are advantageously arranged within a cavity free from organics and can be examined, still at the wafer level, in terms of their functionalities in a simplified manner prior to being diced.
US10283925B2 Method for forming an electrical connection
A method for forming an electrical connection in a pipe for transporting a fluid. The pipe comprises an internal hollow tube and a heating layer comprising first fibers made of carbon. There are performed a groove-formation step in which a groove is formed in the heating layer, an interface-preparation step in which a junction layer is placed on the heating layer of the groove, and a placement step in which a connection strip comprising second fibers formed of a second electrically conducting material is wound on the junction layer.
US10283923B2 Resolver
A resolver includes: a stator core; and an insulator that is mounted on the annular stator core, wherein a terminal pin base that extends outward in a radial direction is integrally formed in the insulator, wherein a plurality of terminal pins are disposed on the terminal pin base, wherein each of the terminal pins has a first connecting portion at one end and a second connecting portion at the other end, wherein first and second covers are provided on the terminal pin base at each sides in an axial direction, wherein the first connecting portion and the second connecting portion of the terminal pin are sealed in a filler which fills a first space and a second space, the first space being formed between the first cover and the terminal pin base, and the second space being formed between the second cover and the terminal pin base.
US10283920B2 Interface device
Disclosed is an interface device capable of simultaneously connecting an audio device and charger to an electronic device. An interface device may enable an electronic device with a single USB type-C connector but no analog audio jack to connect to both an audio device and a charger through the USB type-C connector. The interface device may provide automated quick charging when connected with the charger but not with the audio device.
US10283919B2 Raceway with connectivity receptacles
In various implementations, a raceway system may provide power and/or data connectivity to one or more locations. The raceway system may include modular receptacles. The modular receptacles may include power sockets and/or modular communication sockets.
US10283911B2 Methods and systems for compensating for alien crosstalk between connectors
The present invention relates to methods and systems for minimizing alien crosstalk between connectors. Specifically, the methods and systems relate to isolation and compensation techniques for minimizing alien crosstalk between connectors for use with high-speed data cabling. A frame can be configured to receive a number of connectors. Shield structures may be positioned to isolate at least a subset of the connectors from one another. The connectors can be positioned to move at least a subset of the connectors away from alignment with a common plane. A signal compensator may be configured to adjust a data signal to compensate for alien crosstalk. The connectors are configured to efficiently and accurately propagate high-speed data signals by, among other functions, minimizing alien crosstalk.
US10283909B2 Method of operating a connector latch
Connector latch used to securely hold together a connector apparatus, such that the connector apparatus has at least a first connector assembly and a second connector assembly which can be mated together. Initially, after the connector latch is manufactured, the connector latch is in an undeflected position. After manufacture, the connector latch is subjected to a pre-mating deflection process, in order to move the connector latch into a preloaded position. After the pre-mating deflection process has been completed, the connector latch is locked in the preloaded position. The preloaded connector latch provides a number of desirable characteristics, including at least an extra loud “click” sound when the first connector assembly and the second connector assembly are mated together.
US10283908B1 Connector with releasable latch member
An electrical connector includes a housing that holds multiple electrical conductors, a latch member pivotably coupled to an outer surface of the housing, and a shell surrounding the housing. The latch member includes stem extending between a front end and an opposite rear end. The latch member has a hook tip at the front end, a ramp surface at the rear end, and a pivot location disposed therebetween. The hook tip couples to a locking tab of a mating connector. A ridge of the shell protrudes inward from an interior surface of the shell and engages the ramp surface. Rearward movement of the shell causes the latch member to pivot from a locking position to a release position due to sliding engagement between the ridge and the ramp surface. The hook tip is disposed more proximate to the housing in the locking position than in the release position.
US10283907B2 Floating connector and electronic device module
A floating connector includes a base portion, a contact portion that comes into contact with a counter connector, and an arm portion that connects the base portion to the contact portion, the arm portion includes an elastically deformable portion extending from the base portion in a direction parallel to a fitting axis, a tip end of the arm portion extends in a direction intersecting the fitting axis, the contact portion is formed at the tip end of the arm portion, and the elastically deformable portion twists and deforms, whereby the contact portion is floated in an arcuate motion within a plane perpendicular to the fitting axis.
US10283901B2 Waterproof component with wiring structure
A waterproof component includes a housing body, a mat seal, mat seal cover, and an elastic ring. The housing body includes an attachment-hole-insertion portion having a mat-seal-accommodating chamber, an abutting portion to abut a first peripheral surface of the attachment hole, a locking claw provided on an insertion tip side of the attachment hole insertion portion, the locking claw to be locked to a second peripheral surface of the attachment hole, and a cover locking portion provided on an insertion tip side of the attachment-hole-insertion portion. The mat seal has an electric wire press-fitting hole. The mat-seal-accommodating chamber accommodates the mat seal. The mat seal cover locks to the cover-locking portion, the mat seal cover interposes the mat seal between the mat seal cover and a bottom wall of the mat-seal-accommodating chamber. The elastic ring is disposed on an outer periphery of the attachment-hole-insertion portion.
US10283895B1 Electrical terminal assembly with split shroud
An electrical terminal assembly includes a contact member with a contact base. A plurality of contact arms extend from the contact base in an arm direction. The contact arms are arranged on opposed sides of a terminal plane. The electrical terminal assembly includes a spring member supported on the contact member. The spring member includes a spring base. A plurality of spring arms extend from the spring base on opposed sides of the terminal plane in the arm direction. The spring arms engage the plurality of contact arms and bias the contact arms toward the terminal plane. The spring member also includes a shroud. The shroud extends in the arm direction around and beyond the contact arms. The shroud includes a terminal pass that the terminal plane is located in.
US10283891B2 Shield terminal
A shield terminal (12) includes a dielectric (22) made of synthetic resin and formed with conductor accommodation chambers (39) inside, inner conductors (15) accommodated in the conductor accommodation chambers (39), an outer conductor (14) for surrounding the dielectric (22), and wall portions (24, 35) constituting the conductor accommodation chambers (39) and formed with air chambers (42, 43, 45 and 46). Focusing on the fact that air has a lower dielectric constant than synthetic resin, the air chambers (42, 43, 45 and 46) are formed in the wall portions (24, 35) constituting the conductor accommodation chambers (39). This enables an impedance to be enhanced even if the dielectric (22) is made of a material having high rigidity.
US10283876B1 Dual-polarized, planar slot-aperture antenna element
An electronically scanned array (ESA) is configured for a high-degree of isolation between adjacent radiating elements and between co-located ports. Radiating elements of the ESA include a centrally located slot-aperture configured as a radiating source, and multiple via-apertures positioned around and between each port of the co-located ports. An amount of metamaterial structures found in a unit cell of an antenna layer ascendingly increases from a bottom antenna layer to a top antenna layer, with groups of metamaterial structures differing in orientation with respect to unit cells of two or more antenna layers and with respect to two groups found within a unit cell of the top antenna layer.
US10283875B2 Mobile active and adaptive antenna arrays
A system and method to control active and adaptive antenna arrays processes information to determine one or more areas of interest for subsequent transmission. The method includes selecting one or more antennas among a set of available antennas in different locations of a vehicle to perform the subsequent transmission. Each of the one or more antennas includes one or more antenna elements. The method also includes assigning a magnitude and phase for the subsequent transmission by each of the one or more antenna elements of each of the one or more antennas.
US10283872B2 Methods and apparatus for enhanced radiation characteristics from antennas and related components
Aspect of the present disclosure are directed to methods and apparatus producing enhanced radiation characteristics, e.g., wideband behavior, in or for antennas and related components by providing concentric sleeves, with air or dielectric material as a spacer, where the sleeves include one or more conductive layers, at least a portion of which includes fractal resonators closely spaced, in terms of wavelength. A further aspect of the present disclosure is directed to surfaces that include dual-use or multiple-use apertures. Such aperture engine surfaces can include a first layer of antenna arrays, a second layer including a metal-fractal backplane player, and a third layer including solar cells for solar cell or solar oriented power collection. Fractal metamaterial ribbons with multiple closely-packed fractal resonators are also disclosed.
US10283869B2 MIMO antenna and wireless device
A MIMO antenna is provided that includes a ground plane, and a plurality of dipole antenna elements that are arranged in the vicinity of the ground plane. Each of the plurality of dipole antenna elements includes a radiating element including a conductor portion extending along an outer edge portion of the ground plane, and a feeding portion that feeds the radiating element.
US10283865B2 Multiband antenna and electronic device including the same
An electronic device is provided. The electronic device includes a housing including a first surface, a second surface facing the first surface, and side surfaces surrounding a space between the first surface and the second surface, a first conductive member and a second conductive member forming at least part of the side surfaces, being parallel to the first surface, and extending parallel to each other, a first nonconductive member disposed between the first conductive member and the second conductive member to electrically isolate the first conductive member and the second conductive member from each other, and a communication circuit that performs wireless communication by using the first conductive member and the second conductive member as radiators.
US10283861B2 Device and a method for antenna alignment
The present invention relates to a node in a wireless communication network. The node comprises an antenna arrangement which in turn comprises an array antenna. The array antenna comprises a first set of antenna elements forming a first antenna aperture, and a second set of antenna elements forming a second antenna aperture. The antenna arrangement further comprises a switching arrangement that is adapted to switch between a first mode of operation and a second mode of operation. In the first mode of operation, the first antenna aperture is arranged to generate a first antenna beam. In the second mode of operation, the first antenna aperture and the second antenna aperture are combined and arranged to generate a second antenna beam, the first antenna beam having a wider antenna beamwidth than the second antenna beam. The present invention also relates to a corresponding method.
US10283860B2 Antenna device and antenna device control method
An antenna device (100) according to the present invention includes a primary radiation means (10) for guiding and emitting radio waves at transmission, and guiding radio waves at reception, an antenna member (20) for reflecting radio waves emitted by the primary radiation means (10) and forming a transmission beam at transmission, and reflecting received waves on the primary radiation means (10) at reception, an angle adjustment means (40) for changing a relative angle between the primary radiation means (10) and the antenna member (20), an angle calculation means (81) for calculating the relative angle to be formed between the primary radiation means (10) and the antenna member (20) for displacement of an azimuth occurring in the primary radiation means (10), and a control means (82) for controlling the angle adjustment means based on the calculated relative angle.
US10283859B2 Selective shielding of radio frequency modules
Aspects of this disclosure relate to selectively shielded radio frequency modules. A radio frequency module can include a package substrate, a radio frequency shielding structure extending above the package substrate, a radio frequency component over the package substrate and in an interior of the radio frequency shielding structure, and an antenna on the package substrate external to the radio frequency shielding structure. The shielding structure can include a shielding layer providing a shield over the radio frequency component and leaving the radio frequency module unshielded over the antenna.
US10283856B2 Monopole antenna
The present invention relates to a monopole antenna comprising: a radiator arranged in the center of a front surface of a dielectric substrate, and including a plurality of loops formed in a structure in which a Mobius strip is cut at least one time along the circumference; a first bridge for sequentially connecting one end of each loop; and a second bridge for connecting via-holes respectively formed at one end of the innermost loop and the outermost loop, thereby obtaining an effect of enabling an antenna, to which a quasi-Mobius strip and a via-hole structure are applied, to be miniaturized.
US10283855B2 Antenna element and method of manufacturing the same
An antenna defined by a conductive pattern is in contact with a laminate including insulator layers, one of which has a conductive pattern thereon. A first insulator layer has a surface that is a first principal surface of the laminate. The laminate includes a thick wall portion and a thin wall portion, and an antenna defined by the conductive pattern is located on the surface of the first insulator layer and a portion of the antenna traverses a boundary between the thick wall portion and the thin wall portion.
US10283849B2 Antenna device
An antenna device includes: an antenna unit; a radio unit processing a radio signal transmitted or received by the antenna unit; and a heat sink unit mounted on the radio unit and externally dissipating heat of the radio unit. The antenna unit is disposed on a side identical to the heat sink unit relative to the radio unit.
US10283847B2 Antenna device and mobile device
An antenna device includes a metal mechanism element, a ground plane, a feeding element, a grounding extension element, and a dielectric substrate. The metal mechanism element has a slot. The feeding element has a feeding point coupled to a signal source. The feeding element extends across the slot. The grounding extension element is coupled to the ground plane. A vertical projection of the grounding extension element at least partially overlaps the slot. An antenna structure is formed by the feeding element, the grounding extension element, and the slot of the metal mechanism element. The antenna structure is capable of covering a low-frequency band and a high-frequency band. The distance between the feeding point and one end of the slot is less than or equal to 0.1 wavelength of a central frequency of the low-frequency band.
US10283845B2 Loop antenna structure with one or more auxiliary electronic elements for use in an electronic device
The present application provides a housing for an electronic device sub-assembly for use in an electronic device having wireless communication capabilities. The electronic device sub-assembly includes a loop antenna structure having a conductive ground structure, and a conductive loop element separate from the conductive ground structure. The conductive loop element has two ends and a conductive path, which extends between the two ends a distance away from the conductive ground structure. The conductive loop element is coupled to the conductive ground structure at each of the two ends, and the distance that the conductive path of the conductive loop element extends away from the conductive ground structure encloses an area forming a loop which is internal to the loop antenna structure. The electronic device sub-assembly further includes a signal source coupled between the conductive loop element and the conductive ground structure across the loop for applying a drive signal. The electronic device sub-assembly still further includes one or more auxiliary electronic elements, where the one or more auxiliary electronic elements each have a primary purpose that is separate from the loop antenna structure. The one or more auxiliary electronic elements each include a ground which is coupled to the conductive ground structure via the conductive loop element.
US10283844B2 Electronic devices having housing-integrated distributed loop antennas
An electronic device may include a metal housing and a distributed loop antenna. The antenna may include a dielectric carrier. The antenna may include a distributed loop antenna resonating element that extends around the carrier and a loop antenna feed element on the carrier. Portions of the feed element and loop antenna resonating element may be formed from the housing. The feed element may be directly fed and may indirectly feed the distributed loop antenna resonating element via near field electromagnetic coupling. The loop antenna resonating element may include a conductive sheet on the carrier. The conductive sheet and the housing may form a conductive loop path of the loop antenna resonating element. A capacitance may be interposed in the conductive loop path and may be formed by a gap between the conductive sheet and the housing. A speaker driver may be placed within a cavity in the carrier.
US10283843B2 Antenna system including closely spaced antennas adapted for operating at the same or similar frequencies
The present application provides an antenna system for use in an electronic device. The antenna system includes a conductive housing for the electronic device having a perimeter, which extends around the device. The conductive housing has a plurality of arms formed in the conductive housing at or near the perimeter. The antenna system further includes a conductive substrate, coupled to the conductive housing and located within the perimeter of the conductive housing. The conductive substrate has a notch located proximate the position of one of the plurality of arms in the conductive housing, where each of the plurality of arms respectively couples to the conductive substrate proximate the perimeter, and where the notch causes one of the plurality of arms to couple to the conductive substrate at a point having a different relative distance along the length of the perimeter of the conductive housing. The antenna system still further includes a plurality of signal sources, respectively coupled between the conductive substrate and a corresponding one of the plurality of arms. In at least some or other embodiments a selectable shunt circuit can be used to affect the polarization of the wireless signals associated with one or more of the antenna arms.
US10283840B2 Multi-band WLAN antenna device
A multi-band WLAN antenna device, comprising a layer of conductive material forming a planar ground plane, having a first side edge in which a first cutout is formed, having an indented cutout edge and first and second connecting edges. A first antenna structure is formed in the cutout, comprising a first member projecting from the first connecting edge and extending parallel to the indented cutout edge. The antenna structure also includes a second member having a first part projecting from a feed point at the indented cutout edge, extending through the first member, and a second part connected to the first part and extending parallel to the first member away from the first connecting edge.
US10283839B2 Dual band SRR loaded cavity antenna
A dual band antenna based on open waveguide topology incorporating a radiation slot and integrating a planar resonator for dual band and miniaturization purposes and a cassette for holding a direct radiography sensor provided with at least one such antenna for wireless data transmission.
US10283833B2 Connector device and communication device
A connector device of the present disclosure includes a waveguide tube having a coupling portion at a distal end portion and adapted to transmit a high-frequency signal while an open end is arranged in a state contacting or placed close to another waveguide tube having a coupling portion at a distal end portion. Additionally, the coupling portion of the waveguide tube has a metallic tube and a dielectric substance provided inside at least a part of the metallic tube. Furthermore, a communication device of the present disclosure includes the waveguide tube having, at the distal end portion, the coupling portion configured as described above, and the communication device is coupled to another communication device including a waveguide tube and transmits a high-frequency signal thereto in a state where open ends of both of the waveguide tubes contact each other or are located close to each other.
US10283832B1 Cavity backed slot antenna with in-cavity resonators
A compact wideband RF antenna for incorporating into a planar substrate, such as a PCB, having at least one cavity with a radiating slot, and at least one transmission line resonator disposed within a cavity and coupled thereto. Additional embodiments provide stacked slot-coupled cavities and multiple coupled transmission-line resonators placed within a cavity. Applications to ultra-wideband systems and to millimeter-wave systems, as well as to dual and circular polarization antennas are disclosed.
US10283830B2 Hybrid TM-TE-TM triple-mode ceramic air cavity filter
An apparatus includes a filter. The filter includes a metal structure forming a cavity and includes a ceramic block, which is suspended in the cavity. The ceramic block has two removed portions, the removed portions removed from two opposing sides of the ceramic block. The ceramic block further has one or more slots that that span a region of ceramic between the two removed portions and connects chambers formed by the two regions with chambers formed by the one or more slots, wherein a combined structure of the ceramic block, cavity, and metal structure supports multiple fundamental TM modes and one fundamental TE mode. The filter comprises multiple coupling structures to couple radio frequency signals into and out of the filter. The apparatus may include multi-cavity filters including one and typically multiple ones of the filters.
US10283827B2 Electrochemical cell, battery module including the same, and battery pack including the same
An electrochemical cell includes: a positive current collector in which an injection part, an ejection part and a passage are defined, where air including an oxygen is injected through the injection part, an exhaust gas is ejected though the ejection part ejecting, and the passage defines a single path which connects the injection part and the ejection part; and a unit cell disposed to be adjacent to the positive current collector. The unit cell includes a positive electrode layer, an active material of which is the oxygen gas, a negative electrode metal layer disposed on an opposite to the positive current collector with respect to the positive electrode layer, and an electrolyte membrane interposed between the positive electrode layer and the negative electrode metal layer.
US10283822B2 Battery module assembly
A battery module assembly according to one embodiment of the present invention includes: a heat pipe having a battery module in which a plurality of battery cells are stacked in one direction, a coupling part which is in contact with and coupled to the side surface part of the battery module, and a cooling part which extends from the coupling part so as to project away from the battery module; and a cooling plate, one surface of which is in contact with and coupled to the cooling part of the heat pipe. A cooling passage may be formed on the other surface of the cooling plate. According to the present invention, heat generated from the battery module including the battery cell can be cooled effectively.
US10283821B2 Battery and method for operating same
The invention relates to a battery comprising a battery housing and at least one battery cell and at least one fiber optic sensor which has at least one waveguide with a core and a material surrounding said core. At least one fiber Bragg grating is introduced in the core and is mechanically coupled to the battery housing and/or to the battery cell in order to detect a change in size of the battery housing and/or of the battery cell. At least a second fiber Bragg grating is introduced in the core and is mechanically decoupled from the battery housing and the battery cell. The invention further relates to a method for the open loop or closed loop control of the charging and/or discharging of a battery, measurement values being acquired by at least one fiber optic sensor.
US10283817B2 Battery charger and method of charging a battery
A battery pack including a battery cell assembly, the battery cell assembly having a battery cell with a first end and a second end. A circuit board is adjacent to the battery cell and extending from the first end to the second end. A first electrical connector is disposed at the first end and connects a first end of the circuit board to the first end of the battery cell. A second electrical connector is disposed at the second end and connects a second end of the circuit board to the second end of the battery cell. A third electrical connector is disposed at the first end of the circuit board, the third electrical connector can be electrically connected to a powered device so that power from the battery cell may be provided to the powered device through the third electrical connector. A housing houses the battery cell assembly.
US10283815B2 Production method of laminate for a battery
A method for producing a laminate for a battery in which a first active material layer and a solid electrolyte layer are stacked, includes irradiating the laminate with a laser from a side of the laminate faced by the first active material layer to remove a part of the first active material layer. The reflectance of the laser by the solid electrolyte layer is 80% or more.
US10283814B2 Electrolyte for lithium-based energy stores
The invention relates to an electrolyte, comprising at least one lithium salt, a solvent, and at least one compound according to general formula (1). The invention further relates to lithium-based energy stores comprising such an electrolyte.
US10283812B2 Sulfide solid-state cell
A rechargeable sulfide solid-state cell. The sulfide solid-state cell may include: a cathode active material layer containing at least one kind of cathode active material selected from LiCoPO4 and LiFePO4; an anode active material layer; a sulfide-based solid electrolyte layer containing a sulfide-based solid electrolyte and being disposed between the cathode active material layer and the anode active material layer; and a blocking layer containing at least one kind of phosphoric acid compound with a NASICON structure, covering at least a part of the surface of the cathode active material and/or the surface of the sulfide-based solid electrolyte, being disposed between the cathode active material layer and the sulfide-based solid electrolyte layer, and being configured to prevent the cathode active material layer from contact with the sulfide-based solid electrolyte layer, the phosphoric acid compound being selected from LATP and LAGP.
US10283810B2 Lithium-ion battery
A lithium-ion battery includes: a cathode; an anode; and a non-aqueous electrolyte solution, in which the cathode includes a current collector and a cathode mixture applied on at least one side of the current collector, the cathode mixture includes a lithium transition metal oxide as a cathode active material, the anode includes a lithium titanium complex oxide as an anode active material, and the non-aqueous electrolyte solution includes a fluorine-containing boric acid ester.
US10283809B2 Lithium-ion battery system
A lithium-ion battery system includes: a lithium-ion battery including a cathode and an anode, the cathode containing a lithium manganese-nickel complex oxide as a cathode active material, and the anode containing a lithium-titanium complex oxide as an anode active material; and a charge regulation means which regulates an end-of-charge voltage Vf within a range of 3.6 V≤Vf≤4.0 V.
US10283808B2 Method for producing electrode for lithium ion batteries
A binder layer formation step of forming a binder layer of which an initial sticking strength of a surface is 1 or more on a current collector; a sticking step of sticking a powder having an angle of repose of 45° or less onto the surface of the binder layer by bringing the powder into contact with the surface; and a compression step of compressing the powder stuck in the sticking step into a predetermined density are included.
US10283802B2 Fuel cell integration within a heat recovery steam generator
Systems and methods are provided for incorporating molten carbonate fuel cells into a heat recovery steam generation system (HRSG) for production of electrical power while also reducing or minimizing the amount of CO2 present in the flue gas exiting the HRSG. An optionally multi-layer screen or wall of molten carbonate fuel cells can be inserted into the HRSG so that the screen of molten carbonate fuel cells substantially fills the cross-sectional area. By using the walls of the HRSG and the screen of molten carbonate fuel cells to form a cathode input manifold, the overall amount of duct or flow passages associated with the MCFCs can be reduced.
US10283801B2 Resin film, laminate, method for producing same, and method for producing fuel cell
A polymer film comprises a polymer composition containing (A) a cyclic olefin polymer containing an olefin unit having a C3-10alkyl group as a side chain thereof and (B) a chlorine-containing polymer. The chlorine-containing polymer (B) may comprise a vinylidene chloride-series polymer. The ratio of the chlorine-containing polymer (B) relative to 100 parts by weight of the cyclic olefin polymer (A) may be 0.5 to 60 parts by weight. The film has a moderate releasability from an electrolyte membrane and an electrode membrane of a polymer electrolyte fuel cell and a moderate adhesion to the electrolyte membrane and the electrode membrane and can adhere to a commonly-used substrate film without interposition of an adhesive layer such as an easily adhesive layer. The film is thus suitable as a release film for producing a membrane electrode assembly of a polymer electrolyte fuel cell.
US10283800B2 Liquid composition, method for its production, and method for producing membrane/electrode assembly for polymer electrolyte fuel cell
To provide a liquid composition capable of forming a catalyst layer that is excellent in resistance to hydrogen peroxide and peroxide radicals, can further increase the output voltage of a membrane/electrode assembly, and can maintain a high output voltage for a long period of time; a method for its production; and a membrane electrode assembly for a polymer electrolyte fuel cell using said liquid composition. Provided is a liquid composition to be used for forming a catalyst layer constituting an electrode of a membrane electrode assembly for a polymer electrolyte fuel cell, wherein the liquid composition comprises a liquid medium, a fluoropolymer (H) having sulfonic acid groups and ring structures, and trivalent or tetravalent cerium ions, and the content of the trivalent or tetravalent cerium ions is from 1.6 to 23.3 mol % to the sulfonic acid groups (100 mol %).
US10283798B2 Fluid flow guide plate for electrochemical reactor, and assembly comprising said plate
A fluid flow guide plate for an electrochemical reactor. The plate includes, on a single surface: a flow collector; a plurality of flow channels, provided on the plate to ensure fluid flow and extending in a single longitudinal direction; an exchange channel, extending in a direction transverse to the flow channels; a plurality of supply channels that are fluidly connected, on a first side, to the flow collector by a first end and, on a second side, to the exchange channel by a second end. The exchange channel puts the flow channels in communication with one another and includes at least one obstacle provided to partially close off the flow between the second ends and the flow channels.
US10283797B2 Method for storing electric energy by production, storage, and dissociation of methane having closed carbon circuit
The invention relates to a method for storing electric energy, which comprises the steps a) production of methane from water and soot using electric energy, b) storage of the methane, c) dissociation of the methane into hydrogen and soot, with the hydrogen being used for energy generation, or energy generation by conversion of the methane into soot and water in a cyclic bromination-oxidation process, wherein the soot formed in the dissociation of methane or in the cyclic bromination-oxidation process in step c) is collected and, in a renewed pass through the method, is used for methane production in step a), so that a closed carbon circuit is formed, and also a system comprising a power-methane conversion plant in which electric power is converted together with soot and water into methane and also a methane-power conversion plant in which methane is converted into hydrogen with elimination of soot.
US10283796B2 Fuel cell system
A complete fuel cell system (10) is disclosed. The fuel cell system (10) comprises at least two fuel precursors (16, 18) that react to create hydrogen. A solid fuel precursor (18) can be carried in disposable fuel cartridges (100). A passive pressure control system including a dose pump (22) and a pressure equalization system (24, 300, 504) is provided to dose a liquid fuel precursor (16) to the solid fuel precursor (18) in the fuel cartridge (100). The solid fuel precursor (18) may include larger metallic particles coated by another fine metallic particles such that multiple micro galvanic cells are formed on the surface of the larger metallic particles. The fuel cell system (10) may also include a gas buffer (40) that stores produced hydrogen that is unneeded by the fuel cell, a water trapping mechanism (604) and an electronic vent (46) that consumes unneeded hydrogen.
US10283795B2 Method and system for combined hydrogen and electricity production using petroleum fuels
A solid oxide fuel cell (SOFC) system including a steam reformer, a hydrogen purification system, a pre-reformer, and a solid oxide fuel cell.
US10283793B2 Combined generation system and method for collecting carbon dioxide for combined generation system
A combined generation system according to one embodiment of the present invention comprises: a natural gas synthesizing apparatus for receiving coal and oxygen, generating synthetic gas by a gasifier, and permitting the synthetic gas to pass through a methanation reactor so as to synthesize methane; a fuel cell apparatus for receiving fuel that contains methane from the natural gas synthesizing apparatus and generating electrical energy; and a generating apparatus for producing electrical energy using the fluid discharged from the fuel cell apparatus.
US10283789B2 Fuel cell stack
A fuel cell stack includes a stack body, a stack casing, and an exhaust duct. The stack body includes a first end, a second end, a bottom, a top, a side, and a downwardly inclined portion. The top has a substantially flat portion with an end point. The side extends between the top and the bottom and between the first end and the second end. The downwardly inclined portion connects the end point of the substantially flat portion and the side. The stack casing accommodates the stack body. The stack casing includes an upper wall and a side wall. The side wall is opposite to the side of the stack body. The exhaust duct is connected to the upper wall of the stack casing. The exhaust duct has an opening on the upper wall. The opening is arranged between the end point and the side wall.
US10283788B2 Fuel system for fuel cells
Fuel cell structure and method of producing electrical energy from a methanol-based initial material. The fuel cell structure is comprised of a fuel cell for decomposing hydrocarbon-based fuel in order to produce electrical energy, a fuel tank from which fuel can be fed into the fuel cell, and a treatment unit for decomposition products, into which unit it is possible to direct the decomposition products of the fuels. The fuel tank and the treatment unit are at least partly separated from each other by a movable wall, and the wall is arranged to move to even out the pressure difference and the volume difference between the fuel tank and the treatment unit. The movable wall makes it possible to remove disadvantageous pressure differences between the fuel tank and the treatment unit, in which case a continuous feed of fuel into the fuel cell is achieved, which feed continues until either the fuel is expended or the treatment of the decomposition products is brought to an end.
US10283785B2 Amorphous carbon film, process for forming amorphous carbon film, electrically conductive member and fuel cell bipolar plate having amorphous carbon film
An amorphous carbon film contains carbon as a main component, not more than 30 at. % of hydrogen, not more than 20 at. % of nitrogen and not more than 3 at. % of oxygen (all excluding 0 at. %), and when the total amount of the carbon is taken as 100 at. %, the amount of carbon having an sp2 hybrid orbital is not less than 70 at. % and less than 100 at. %. Nitrogen and oxygen are concentrated on a surface side of the film and when detected from a surface layer by X-ray photoelectron spectroscopy, oxygen content ratio is not less than 4 at. % and not more than 15 at. % and nitrogen content ratio is not less than 10 at. % and not more than 30 at. %.
US10283777B2 Secondary battery
Provided is a secondary battery that includes an electrode active material including an organic compound represented by the following General Formula 1. Ar—(OH)n   In the General Formula 1, Ar denotes at least one selected from the group consisting of 1,1-binaphthalene, anthracene, triphenylene, tetraphenylene, and pyrene, and is optionally substituted with a substituent. The substituent of Ar is at least one selected from the group consisting of an OH group, a carbonyl group produced through oxidization of the OH group, an alkyl group containing 3 or less carbon atoms, a halogen atom, and an amino group. n denotes an integer in a range of from 2 through 8.
US10283774B2 Bipolar electrode, bipolar secondary battery using the same and method for manufacturing bipolar electrode
A bipolar electrode is composed of a first active material layer which is, for example, a positive electrode active material layer formed to include a first active material on one side of a collector, and a second active material layer which is, for example, a negative electrode active material layer formed to include a second active material with less compressive strength than that of the first active material on the other side of the collector. Then, a density adjusting additive which is an additive material with larger compressive strength than that of the second active material is included in the second active material layer.
US10283760B2 Nonaqueous electrolyte secondary battery and battery pack of same
A nonaqueous electrolyte secondary battery, wherein the negative electrode contains a titanium-containing oxide; the positive electrode contains a spinel type lithium manganate, and a cobalt-containing compound and/or a lithium-transition metal composite oxide having a stratified rock salt type structure; and the nonaqueous electrolyte contains one compound selected from the group consisting of an organic compound having an oxalic acid backbone, an organic compound having an isocyanate group, a lithium salt of an organic compound having a sulfonic acid backbone, and a succinic anhydride compound having a side chain with 3 or more carbon atoms in a content of 0.01 to 5% by weight with respect to 100% by weight of the nonaqueous electrolyte.
US10283759B2 Silicon-based anode and method for manufacturing the same
A silicon-based anode comprising silicon, a carbon coating that coats the surface of the silicon, a polyvinyl acid that binds to at least a portion of the silicon, and vinylene carbonate that seals the interface between the silicon and the polyvinyl acid. Because of its properties, polyvinyl acid binders offer improved anode stability, tunable properties, and many other attractive attributes for silicon-based anodes, which enable the anode to withstand silicon cycles of expansion and contraction during charging and discharging.
US10283758B2 Positive-electrode mixture, manufacturing method therefor, and all-solid-state lithium-sulfur battery
The present invention aims to maximize the advantageous physical properties of sulfur and provide a cathode mixture that can be suitably used in a cathode mixture layer of an all-solid-state lithium-sulfur battery having excellent charge/discharge capacity. The present invention also aims to provide an all-solid-state lithium-sulfur battery including a cathode mixture layer containing the cathode mixture. The present invention relates to a cathode mixture for use in a cathode mixture layer of an all-solid-state lithium-sulfur battery, the cathode mixture containing the following components (A) to (D): (A) sulfur and/or its discharge product; (B) elemental phosphorus and/or PxSy where x and y independently represent an integer that gives a stoichiometric ratio; (C) an ion-conductive material; and (D) a conductive material.
US10283754B2 Battery parts and associated systems and methods
Battery parts, such as battery terminals, and associated systems and methods for making same. In one embodiment, a battery part has a sealing region or sealing bead located on a lateral face of an acid ring for increasing resistance to leakage therepast as the battery container shrinks. Another embodiment includes a forming assembly for use with, for example, a battery part having a bifurcated acid ring with spaced apart lips. The forming assembly can include movable forming members that can be driven together to peen, crimp, flare or otherwise form the lips on the bifurcated acid ring.
US10283750B2 Rechargeable battery module
A rechargeable battery module that effectively imparts a curvature using a rechargeable battery formed as a pin-shaped rechargeable battery with a very small diameter is provided. The rechargeable battery module includes a plurality of rechargeable batteries arranged in parallel, wherein each rechargeable battery comprises a case and terminals that extend from respective ends of the case along a length direction of the case. The module includes a plurality of caps, wherein each cap is coupled to an end of a rechargeable battery of the plurality of rechargeable batteries and is electrically connected to one of the terminals of the rechargeable battery. The module also includes a connector on each cap connecting adjacent caps coupled to corresponding rechargeable batteries. The adjacent caps are moveable relative to the connector such that a curvature between the corresponding rechargeable batteries changes in a direction crossing the length direction.
US10283746B2 Small pore size nonwoven mat with hydrophilic/acid resistant filler used in lead acid batteries and applications therefor
According to one embodiment, a nonwoven fiber mat includes between 10% and 50% by weight of a plurality of first glass fibers having an average diameter of less than 5 μm and between 50% and 90% by weight of a plurality of second glass fibers having an average diameter of greater than 6 μm. The nonwoven fiber mat also includes an acid resistant binder that binds the first and second glass fibers together. The nonwoven fiber mat has an average pore size of between 1 and 100 μm and exhibits an air permeability of below 100 cubic feet per minute per square foot (cfm/ft2) as measured by the Frazier test at 125 Pa according to ASTM Standard Method D737.
US10283745B2 Battery pack and production method therefor
This battery pack is assembled by welding an opening portion (20) of a waterproof bag (2) to provide an insertion opening (23) that is smaller than the total opening width (W) but allows a battery core pack (1) to be inserted, inserting the battery core pack (1) into the waterproof bag (2), then, closing the opening portion (20) of the waterproof bag (2), and placing the waterproof bag (2), in which the battery core pack (1) has been placed, into an external case (3). In this way, this battery pack can be assembled efficiently, with the battery core pack having been given a waterproof structure by the waterproof bag (2) while in an ideal state.
US10283744B2 Battery module and battery pack
Disclosed herein are a battery module and a battery pack. The battery module, having a plurality of battery cells, includes a unit module stack configured to have a structure in which a plurality of unit modules, each of which has a structure in which the battery cells are mounted to a cartridge, are stacked in a vertical direction on the basis of a ground, an upper end plate and a lower end plate for supporting an upper end and a lower end of the unit module stack, respectively, the upper end plate being provided with first fastening holes, the lower end plate being provided with second fastening holes, and a module housing provided with third fastening holes communicating with the second fastening holes, wherein first fastening members and second fastening members are inserted and fastened into the first fastening holes, the second fastening holes, and the third fastening holes.
US10283735B2 Organic light emitting display device
An optical assembly in a display device includes a linear polarizer; a first quarter wave plate (QWP) layer under the linear polarizer, the first QWP layer having a negative dispersion characteristic; and a cholesteric liquid crystal (CLC) layer under the linear polarizer.
US10283732B2 OLED packaging method and package structure
The present invention provides an OLED packaging method and an OLED package structure. The OLED packaging method according to the present invention is such that a first outer bound confinement layer is first formed and then, a first organic layer is formed on the first inorganic layer in an area enclosed by the first outer bound confinement layer so that facilities for forming the first organic layer can be diversified and an organic material used to form the first organic layer is not subjected to constraint in respect of viscosity thereof, whereby using an organic material with a reduced viscosity allows for better homogeneity of the first organic layer, the thickness reduced, and thus helping reduce a curving radius of the OLED package structure to realize rollable displaying with a reduced curving radius. Further, the first outer bound confinement layer helps block external moisture and oxygen from corroding the first organic layer in a sideway direction so that the OLED package structure so manufactured exhibits better capability for blocking moisture and oxygen and extended service life. The OLED package structure according to the present invention allows for realization of rollable displaying with a reduced curving radius and also exhibits better capability for blocking moisture and oxygen and extended service life.
US10283727B2 Organic EL element and organic EL display panel
An organic EL element includes an anode, a cathode opposing the anode, a light-emitting layer disposed between the anode and the cathode, an electron transport layer disposed in contact with a cathode-side surface of the light-emitting layer, and an electron injection layer disposed between the electron transport layer and the cathode, in contact with the electron transport layer. Lowest unoccupied molecular orbital (LUMO) level of the electron transport layer is lower than at least one of LUMO level of the electron injection layer and Fermi level of a metal material included in the electron injection layer, and film thickness of the electron injection layer is greater than film thickness of the electron transport layer.
US10283726B2 Electricity-generating layer of solar cell, method for producing same, and solar cell
An electricity-generating layer of a solar cell includes a carbon nanotube group containing vertically oriented carbon nanotubes. A fullerene is encapsulated in the carbon nanotube, an n-type dopant 113 is encapsulated between the fullerene and one end of the carbon nanotube, and a p-type dopant is encapsulated between the fullerene and the other end of the carbon nanotube.
US10283724B2 Method for producing an organic CMOS circuit and organic CMOS circuit protected against UV radiation
An organic CMOS circuit including a substrate having an N-type organic transistor and a P-type organic transistor formed thereon, the transistors respectively including a layer of N-type semiconductor material and a layer of P-type semiconductor material. A surface of each of the semiconductor material layers, opposite to the substrate, is covered with an anti-ultraviolet layer made of electrically-insulating material absorbing and/or reflecting ultra-violet rays.
US10283723B2 Display device
A display device includes: an insulating substrate having flexibility and including a bent portion that is bent at 90 degrees or more outside a display area provided with an image display function; and a spacer disposed inside the bent portion and including a curved area around which the bent portion is wrapped and a plane area facing the insulating substrate, wherein the insulating substrate includes a flat portion adjacent to the bent portion and provided so as to face the plane area.
US10283718B2 Charge transporting material, organic electroluminescent element, light emitting device, display device and illumination device
A charge transporting material comprising a compound represented by any one of the following general formula (1-1) to general formula (1-3): wherein R111 to R114, R121 to R125 and R131 to R135 each independently represent a hydrogen atom or a substituent, and may be bound together to form a ring; L111 to L113 each independently represent O or S; L121 to L123 each independently represent a single bond or a divalent linking group; and Ar111 to Ar113 each independently represent an aryl group or a heteroaryl group.
US10283715B2 Conductive polymer in organic solvent with fluorinated compound
The present invention relates to a composition comprising: a) at least one organic solvent; b) at least one conductive polymer, preferably a cationic polymer; c) at least one fluorinated compound; d) at least one polymeric anion, wherein the at least one polymeric anion is a copolymer comprising ionic and non-ionic repeating units. The present invention also relates to a layered structure comprising the composition, to a process for the production of the composition, to a process for the production of the layered structure and to devices comprising the layered structure as well as to the use of the composition in devices to achieve a prolongation of lifetime.
US10283710B2 Resistive random access memory device containing replacement word lines and method of making thereof
A method of forming a resistive memory device includes forming an alternating stack of insulating layers and sacrificial material layers that extend along a first horizontal direction over a substrate, forming a laterally alternating sequence of vertical conductive lines and dielectric pillar structures that alternate along the first horizontal direction on sidewalls of the alternating stack, forming lateral recesses by removing the sacrificial material layers selective to the insulating layers, selectively growing resistive memory material portions from physically exposed surfaces of the vertical conductive lines in the lateral recesses, and forming electrically conductive layers over the resistive memory material portions in the lateral recesses.
US10283708B2 Methods and apparatus for three-dimensional nonvolatile memory
A method is provided that includes forming a word line above a substrate, the word line disposed in a first direction, forming a bit line above the substrate, the bit line disposed in a second direction perpendicular to the first direction, forming a nonvolatile memory material between the word line and the bit line, and forming a memory cell including the nonvolatile memory material at an intersection of the bit line and the word line. The word line includes a first portion and a second portion including an electrically conductive carbon-containing material. The nonvolatile memory material includes a semiconductor material layer and a conductive oxide material layer, with the semiconductor material layer disposed adjacent the second portion of the word line.
US10283707B2 Superlattice memory having GeTe layer and nitrogen-doped Sb2Te3 layer and memory device having the same
According to one embodiment, a superlattice memory comprises substrate, a first electrode provided on the substrate, a second electrode arranged in opposition to the first electrode, and a superlattice structure part provided between the first electrode and the second electrode, which includes first chalcogen compound layers, second chalcogen compound layers the composition of which is different from the first chalcogen compound, and contains Ge, and third chalcogen compound layers in which one of N, B, C, O, and F is added to the first chalcogen compound, stacked one on another.
US10283703B2 Cross-point memory and methods for forming of the same
The disclosed technology generally relates to integrated circuit devices, and in particular to cross-point memory arrays and methods for fabricating the same. Line stacks are formed, including a storage material line disposed over lower a conductive line. Upper conductive lines are formed over and crossing the line stacks, exposing portions of the line stacks between adjacent upper conductive lines. After forming the upper conductive lines, storage elements are formed at intersections between the lower conductive lines and the upper conductive lines by removing storage materials from exposed portions of the line stacks, such that each storage element is laterally surrounded by spaces. A continuous sealing material laterally surrounds each of the storage elements.
US10283700B2 Semiconductor memory structure with magnetic tunnel junction (MTJ) cell
A semiconductor memory structure is provided. The semiconductor memory structure includes a bottom electrode formed over a substrate and a magnetic tunneling junction (MTJ) cell formed over the bottom electrode. The semiconductor memory structure also includes a top electrode formed over the MTJ cell; and a first sidewall spacer layer formed on a top surface of the MTJ cell and an outer sidewall surface of the top electrode.
US10283697B2 Magnetic memory including a magnetoresistive device that includes a first magnetic layer having a fixed magnetization and a second magnetic layer having a changeable magnetization
A magnetic memory according to an embodiment includes: a magnetoresistive device including a first magnetic layer, a second magnetic layer, and a first nonmagnetic layer between the first magnetic layer and the second magnetic layer; a first wiring electrically connected to the first magnetic layer; a second wiring that is electrically connected to the second magnetic layer and contains an antiferromagnetic material; a third wiring crossing the second wiring; an insulating layer between the second wiring and the third wiring; a first write circuit for applying a voltage between the second wiring and the third wiring; and a read circuit electrically connected to the first wiring and the second wiring.
US10283693B2 Multiloop interferometers for quantum information processing
Structures and techniques, using superconducting Josephson-junction based circuits, to directly engineer physical multiqubit (or “many-qubit”) interactions in a non-perturbative manner. In one embodiment, a system for multiqubit interaction includes: a multispin coupler including a plurality of loops, each loop having a pair of Josephson junctions; and a plurality of qubits each inductively coupled to the multispin coupler.
US10283688B2 Light emitting device
A light emitting device includes a mounting board, a first light emitting element and a second light emitting element. The mounting board includes an insulator which includes a front face and a back face, a pair of front face wiring parts disposed on the front face of the insulator, a connection wiring part disposed on the front face of the insulator and spaced apart from the front face wiring parts, a pair of back face terminals disposed on the back face of the insulator, first interlayer wiring parts penetrating the insulator and electrically connecting the front face wiring parts and the back face terminals, and one or more second interlayer wiring parts embedded in the insulator to be in contact with the connection wiring part, and spaced apart from the back face terminals.
US10283682B2 LED package structure and LED light-emitting device
The present disclosure provides a LED package structure and a LED light-emitting device. The LED package structure comprises a LED chip and a wavelength converting layer covering the LED chip. The wavelength converting layer contains red phosphor, which has lower amount in edge portion than in center portion. It is possible to avoid direct or indirect excitation for generating red light in edge portion of the LED chip by adjusting the amount of red phosphor in edge portion to be lower, so that the color temperature in edge portion may be adjusted toward to high color temperature, and thus the phenomenon of yellow halo may be alleviated.
US10283680B2 Method for the production of an electronic module having an electronic component embedded therein
An electronic module and method for the production of the electronic module in accordance with some embodiments of the invention are disclosed. The electronic module includes at least one electronic component affixed to a conductive layer by means of sticky electrically insulating layer, where the electronic component is embedded in a transparent foil. The electronic module is produces by providing an electrically conductive layer. At least one electronic component is affixed to the electrically conductive layer by means of a sticky electrically insulating layer and embedded in a transparent foil. The at least one electronic component is electronically contacted with the conductive layer.
US10283678B2 Light-emitting-device package and production method therefor
A light-emitting-device package according to one aspect of the present invention includes: a metal substrate; a light emitting device disposed on a first surface of the metal substrate and configured to emit at least ultraviolet light; a pair of electrodes disposed to be spaced apart from each other on at least the first surface of the metal substrate, and electrically connected to the light emitting device; and an insulating layer provided between the metal substrate and the pair of electrodes. UV reflectance of the first surface of the metal body is higher than UV reflectance of the pair of electrodes.
US10283670B2 Method for manufacturing light emitting device
A soluble member is provided on a light emitting surface of a light emitting element. The soluble member is soluble in a solvent. The soluble member has a first surface facing the light emitting surface, a second surface opposite to the first surface in the light emitting direction, and a soluble member outer peripheral side surface provided between the first surface and the second surface. A light-blocking member made of a material which is not soluble in the solvent is provided to cover a light emitting element outer peripheral side surface and the soluble member outer peripheral side surface so that an inner side wall of the light-blocking member contacts the soluble member outer peripheral side surface. The soluble member is removed using the solvent to provide a recess surrounded by the inner side wall of the light-blocking member. A first light-transmissive member is provided in the recess.
US10283664B2 Avalanche diode including vertical PN junction
An avalanche diode includes a PN junction with a first deep trench structure adjacent to the PN junction. An area via which photons impinge is provided, the PN junction extending substantially vertically with respect to the area. An avalanche diode array can be formed to include a number of avalanche diodes.
US10283661B2 Photovoltaic module assembly
A photovoltaic module assembly, comprising: a first layer; a back layer, wherein the back layer comprises a second layer, a third layer, and a support layer located between the second layer and the third layer; and a photovoltaic layer comprising photovoltaic cells, wherein the photovoltaic layer is located between the first layer and the back layer; wherein the support layer comprises a stiffening element.
US10283656B2 Photoelectric conversion device
A photoelectric conversion device includes a quantum dot layer formed by integrating a plurality of quantum dots on a main surface of a semiconductor substrate. The quantum dot layer contains not less than two types of organic molecules having different carbon numbers, among the quantum dots. The quantum dots are bonded to one another by lower-carbon-number organic molecules having a lower carbon number to form aggregates of the quantum dots. Higher-carbon-number organic molecules having a higher carbon number are bonded to the outer sides of the aggregates.
US10283654B2 Method of manufacturing cigs-based solar cell and cigs-based solar cell
A method of manufacturing a CIGS-based solar cell including a transparent rear electrode, the method comprising forming a rear electrode layer including a transparent oxide material; forming rear electrode patterns including a metal material on the rear electrode layer; forming a CIGS-based light absorption layer on the rear electrode layer on which the rear electrode patterns are formed; forming a buffer layer on the light absorption layer; and forming a front electrode including a transparent material on the buffer layer, wherein the rear electrode patterns are provided with a transmissive portion, through which light is transmitted, formed between patterns of the metal material.
US10283652B1 Electrode stack structure capable of preventing moisture from entering photodiode
The present invention provides an electrode stack structure capable of preventing moisture from entering a photodiode, comprising: a semiconductor layer; an inner electrode layer provided on the semiconductor layer; a dielectric layer coating a sidewall of the semiconductor layer; an intermediate metal layer provided on, bonded to, and in electrical conduction with the inner electrode layer, wherein the intermediate metal layer has a bottom side extending over and covering a portion of the dielectric layer to provide airtightness; and an anti-reflection layer coating on an outer side of the semiconductor layer, an outer side of the intermediate metal layer, and an outer side of the dielectric layer, with a groove formed in the anti-reflection layer by leaving a predetermined area of a top side of the intermediate metal layer uncoated or by removing a portion of the anti-reflection layer that coats the predetermined area of the top side of the intermediate metal layer, and an outer electrode layer plated on the predetermined area of the top side of the intermediate metal layer.
US10283651B2 Photodetection device and system having avalanche amplification
A photodetection device includes a semiconductor substrate; and a pixel including a first semiconductor region having signal charges as majority carriers, and an electrode disposed on the semiconductor substrate with a dielectric member interposed therebetween. The pixel is configured to detect a signal based on avalanche-amplified electric charges. A quenching circuit configured to suppress a current generated by the avalanche amplification is connected to the first semiconductor region. A second semiconductor region of a conductive type opposite that of the first semiconductor region is disposed under the electrode and in a front surface of the semiconductor substrate. When a predetermined potential is supplied to the electrode, an inversion layer is formed in the second semiconductor region, and the inversion layer is electrically connected to the first semiconductor region.
US10283649B2 Schottky barrier diode and electronic apparatus
A Schottky barrier diode includes a graphene nanoribbon, a first electrode connected to one end of the graphene nanoribbon, and a second electrode connected to the other end of the graphene nanoribbon. The graphene nanoribbon includes a first part and a second part which are connected in the length direction of the graphene nanoribbon and which differ in electronic state. For example, edges of the first part in a length direction of the graphene nanoribbon are terminated with a first modifying group and edges of the second part in the length direction of the graphene nanoribbon are terminated with a second modifying group.
US10283648B2 PN junction-based electrical fuse using reverse-bias breakdown to induce an open conduction state
A fuse device is formed by a PN junction semiconducting region that is electrically insulated from other portions of an integrated circuit. The fuse device includes a first semiconducting zone having P type of conductivity and a second semiconducting zone having N type of conductivity in contact at a PN junction. First and second electrically conducting contact zones are provided on the first and second semiconducting zone, respectively, without making contact with the PN junction. One of the first and second semiconducting zones is configured with a non-homogeneous concentration of dopants, where a region with a lower value of concentration of dopant is located at the PN junction and a region with a higher value of concentration of dopant is locates at the corresponding electrically conducting contact zone.
US10283636B2 Vertical FET with strained channel
A transistor in an integrated circuit device is formed using fabrication processes that include techniques to create a strain in the channel material, thereby improving the performance of the transistor. In one or more embodiments, an initial transistor structure is formed including a substrate, a dummy fin, and a hard mask. The dummy fin structure is narrowed. A channel is epitaxially grown on the dummy fin structure to create a strain on the channel. A first gate stack is formed over the channel. The hard mask and dummy fin are removed. A second gate stack is formed over the channel. Excess material is removed from the second gate stack. The formation of the transistor is finalized using a variety of techniques.
US10283634B2 Power MOSFET semiconductor
A semiconductor device includes a source metallization, a source region of a first conductivity type in contact with the source metallization, a body region of a second conductivity type which is adjacent to the source region. The semiconductor device further includes a first field-effect structure including a first insulated gate electrode and a second field-effect structure including a second insulated gate electrode which is electrically connected to the source metallization. The capacitance per unit area between the second insulated gate electrode and the body region is larger than the capacitance per unit area between the first insulated gate electrode and the body region.
US10283631B2 Semiconductor device and method of fabricating the same
In one aspect of the present disclosure, a semiconductor device includes a channel layer, an AlxIn1-xN layer on the channel layer with a thickness of t1, and a reverse polarization layer on the AlxIn1-xN layer with a thickness of t2. The thickness is 0.5×t1≤t2≤3×t1. In another aspect of the present disclosure, a method of manufacturing a semiconductor device is provided. The method including: forming a channel layer on a substrate; forming an AlxIn1-xN layer on the channel layer with a thickness of t1; and forming a reverse polarization layer on the AlxIn1-xN layer with a thickness of t2. The thickness is 0.5×t1≤t2≤3×t1.
US10283626B2 Semiconductor device and manufacturing method of the same
A semiconductor device may include a nitride semiconductor layer, an insulation gate section, and a heterojunction region, wherein the nitride semiconductor layer may include an n-type vertical drift region, a p-type channel region adjoining the vertical drift region, and an n-type source region separated from the vertical drift region by the channel region, wherein the insulation gate section is opposed to a portion of the channel region that separates the vertical drift region and the source region, the heterojunction region is in contact with at least a part of a portion of the vertical drift region that is disposed at the one of main surfaces, and the heterojunction region is an n-type nitride semiconductor or an i-type nitride semiconductor having a bandgap wider than a bandgap of the vertical drift region.
US10283622B1 Extended drain transistor on a crystalline-on-insulator substrate
A high voltage (HV) transistor is integrated on a silicon-on-insulator (SOI) substrate. The HV transistor is disposed in a HV device region disposed on a bulk substrate of the SOI substrate. The HV device region includes a top field oxide which includes at least a part of a buried oxide (BOX) of the SOI substrate. A HV gate is disposed in HV region overlapping the HV top field oxide and includes first and second HV gate sidewalls. A drain is disposed on the bulk substrate and displaced from the first HV gate sidewall by the HV top field oxide. A source is disposed on the bulk substrate adjacent to the side of the second HV gate sidewall.
US10283614B1 Semiconductor structure including high electron mobility transistor device
Provided is a semiconductor structure including a substrate, a first semiconductor layer, a second semiconductor layer, a gate electrode, a source electrode and a drain electrode. The first semiconductor layer contains a group III-V-VI semiconductor compound layer and is disposed on the substrate. The second semiconductor layer includes a group III-V semiconductor compound and is disposed on the first semiconductor layer. The gate electrode is disposed on the second semiconductor layer. The source electrode and the drain electrode are disposed on the second semiconductor layer beside the gate electrode.
US10283613B2 3D capacitor and method of manufacturing same
A three-dimensional (3D) capacitor includes a semiconductor substrate; a fin structure including one or more fins formed on the semiconductor substrate; an insulator material formed between each of the one or more fins; a dielectric layer formed on a first portion of the fin structure; a first electrode formed on the dielectric layer; spacers formed on sidewalls of the first electrode; and a second electrode formed on a second portion of the fin structure. The first and second portions are different. The second electrode includes a surface that is in direct contact with a surface of the spacers.
US10283611B2 Electronic device including topological insulator and transition metal oxide
An electronic device may include a topological insulating layer including first and second surfaces facing each other and a transition metal oxide layer provided on the first surface of the topological insulating layer. The topological insulating layer may have a thickness ranging from 1 nm to 10 nm.
US10283607B2 Circuits using gate-all-around technology
A semiconductor structure includes a first GAA transistor and a second GAA transistor. The first GAA transistor includes: a first diffusion region, a second diffusion region, and a first nanowire. The second GAA transistor includes: a third diffusion region, a fourth diffusion region, and a second nanowire. The first diffusion region, the second diffusion region, and the first nanowire are symmetrical with the third diffusion region, the fourth diffusion region, and the second nanowire respectively, the first GAA transistor is arranged to provide a first current to flow through the first nanowire, and the second GAA transistor is arranged to provide a second current to flow through the second nanowire.
US10283606B2 Vertical fin with a gate structure having a modified gate geometry
A method of forming a gate structure with a modified gate geometry, including, forming two gate spacers and a dummy gate fill on a channel, wherein the dummy gate fill is between the two gate spacers, forming a stressed layer on the two gate spacers, wherein the stressed layer is on the surfaces of the gate spacers opposite the dummy gate fill, and wherein the stressed layer applies a tensile stress to the two gate spacers, and removing a portion of the dummy gate fill, wherein the tensile stress applied to the two gate spacers is no longer balanced by the dummy gate fill, such that each of the two gate spacers becomes inclined at an obtuse angle relative to a top surface of the remaining dummy gate fill.
US10283604B2 Contact structure for high aspect ratio and method of fabricating the same
A method of fabricating semiconductor device includes forming a plurality of gate structures on a semiconductor substrate. A first inter layer dielectric layer is deposited on the gate structures. A first contact plug is formed in the first inter layer dielectric layer in between every two immediately adjacent gate structures. An etch stop layer is deposited on the first inter layer dielectric layer. A second inter layer dielectric layer is deposited on the first inter layer dielectric layer. A second contact plug is formed in the second inter layer dielectric layer aligning with the first contact plug. A metal layer is deposited overlying the second inter layer dielectric layer and the second contact plug.
US10283602B2 Fully depleted SOI device for reducing parasitic back gate capacitance
A method is presented for forming a semiconductor structure. The method includes forming a bilayer buried insulator over a substrate, forming an extremely thin silicon-on-insulator (ETSOI) over the bilayer buried insulator, forming a dummy gate, and forming a source/drain next to the dummy gate, the source/drain defining a raised source/drain region. The method further includes depositing a dielectric material over the raised source/drain regions, removing the dummy gate to define a recess, implanting a species within a first layer of the bilayer buried insulator, and depositing a gate dielectric and a conducting material within the recess. The method further includes removing the substrate, etching the implanted portion of the first layer of the bilayer buried insulator to expose a surface of a second layer of the bilayer buried insulator, and forming a back gate over the exposed second layer, the back gate self-aligned to the ETSOI channel.
US10283598B2 III-V heterojunction field effect transistor
Disclosed is a novel III-V heterojunction field effect transistor comprising a substrate layer, a first semiconductor layer, a second semiconductor layer, a drain electrode, a source electrode, a gate electrode, a first dielectric layer, second dielectric layers and the like, wherein the first semiconductor layer has a greater bandgap compared with the second semiconductor layer, and the second semiconductor layer and the first semiconductor layer are combined to form a heterostructure. The thickness of the first semiconductor layer is not greater than the critical thickness of two-dimensional electron gas formed in a heterojunction channel, and thus natural 2DEG in the heterojunction channel is depleted. The novel III-V heterojunction field effect transistor has the advantages of being simple in structure, simple in preparation process, stable in performance, high in reliability and the like.
US10283596B2 Silicon carbide single crystal substrate, silicon carbide epitaxial substrate, and method of manufacturing silicon carbide semiconductor device
A silicon carbide single crystal substrate includes a first main surface and an orientation flat. The orientation flat extends in a <11-20> direction. The first main surface includes an end region extending by at most 5 mm from an outer periphery of the first main surface. In a direction perpendicular to the first main surface, an amount of warpage of the end region continuous to the orientation flat is not greater than 3 μm.
US10283595B2 Silicon carbide semiconductor substrate used to form semiconductor epitaxial layer thereon
A silicon carbide semiconductor substrate according to an aspect of the present disclosure has a first principal surface and a second principal surface opposite to the first principal surface. The silicon carbide semiconductor substrate includes a silicon carbide semiconductor crystal, and a first affected layer having crystal disturbances and disposed under the first principal surface. A thickness of the first affected layer in a first region including a center of the first principal surface is smaller than a thickness of the first affected layer in a second region surrounding the first region in a plane view.
US10283591B2 Silicon carbide semiconductor device and method of manufacturing the silicon carbide semiconductor device
A vertical MOSFET of a trench gate structure includes an n−-type drift layer and a p+-type base layer formed by epitaxial growth. The vertical MOSFET includes a trench that penetrates the n−-type drift layer and the p+-type base layer. A low-concentration thin film is provided in the trench. The low-concentration thin film is in contact with the p+-type base layer and is of the same conductivity type as the p+-type base layer. Further, the low-concentration thin film has an impurity concentration that is lower than that of the p+-type base layer.
US10283585B2 Process of forming capacitor
A process of forming a metal-insulator-metal (MIM) capacitor is disclosed. The process includes steps of (i) forming an insulating film as a dielectric film of the MIM capacitor; (ii) forming a first portion of an upper electrode by a metal evaporation and a lift-off technique subsequent to the metal evaporation; and (iii) forming a second portion of the upper electrode by the metal evaporation and the lift-off technique subsequent to the metal evaporation for the second portion.
US10283583B2 3D resistor structure with controlled resistivity
The present application provides a 3D resistor structure that is embedded within an interconnect dielectric material in which the resistivity of an electrical conducting resistive material of the 3D resistor structure can be tuned to a desired resistivity during the manufacturing of the 3D resistor structure. Notably, a patterned doped metallic insulator is formed straddling over an dielectric pillar. A controlled surface treatment process is then performed to an upper portion of the patterned doped metallic insulator to convert the upper portion of the patterned doped metallic insulator into an electrical conducting resistive material. An interconnect dielectric material can then be formed to embed the entirety of the remaining patterned doped metallic insulator and the electrical conducting resistive material.
US10283580B2 Display device
A display device including a substrate, a drive signal line, a first sub-pixel unit, and a second sub-pixel unit is provided. The first sub-pixel unit includes a first light-emitting unit, a first drive transistor, and a first reset transistor, wherein the first reset transistor has a first channel region and is electrically connected to the first light-emitting unit and the first drive transistor. The second sub-pixel unit includes a second light-emitting unit, a second drive transistor, and a second reset transistor, wherein the second reset transistor has a second channel region and is electrically connected to the second light-emitting unit and the second drive transistor, and the width of the first channel region is different from the width of the second channel region.
US10283579B2 Semiconductor device, display unit, method of manufacturing display unit, and electronic apparatus
There is provided a semiconductor device that includes a substrate, an electric field shielding layer, and a semiconductor element. The electric field shielding layer is provided on the substrate. The semiconductor element includes an electrode, and is provided on the electric field shielding layer with an insulating film in between.
US10283578B2 Organic light emitting diode display device
An organic light emitting diode display device includes a substrate, a plurality of organic light emitting diodes on the substrate, a thin film encapsulation layer on the organic light emitting diodes, and at least one sensor on the thin film encapsulation layer, the sensor including a sensing gate electrode, an oxide semiconductor layer overlapping the sensing gate electrode, a sensing source electrode connected to the oxide semiconductor layer, and a sensing drain electrode spaced apart from the sensing source electrode and connected to the oxide semiconductor layer.
US10283576B2 Organic light emitting display substrate in which light emitted from light emitting unit has increased uniformity, manufacturing method thereof and display device
An organic light emitting display substrate comprises a substrate, a first pixel defining layer provided on the substrate and a second pixel defining layer provided on the first pixel defining layer. The first pixel defining layer includes a plurality of first openings, and the second pixel defining layer includes a plurality of second openings in one-to-one correspondence with the plurality of first openings. An edge of each of the plurality of second openings extends outwards beyond an edge of the corresponding first opening so as to expose a portion of the first pixel defining layer, and a difference in length between each of the plurality of second openings and the corresponding first opening is greater than a difference in width between the second opening and the corresponding first opening.
US10283571B2 Organic light emitting display device with bank structure for enhanced image quality and head mounted display including the same
An organic light emitting display device that can prevent non-emission areas from being visible as lattice patterns and a head-mounted display including the organic light emitting display device are provided. The organic light emitting display device includes anode electrodes, banks that define the anode electrodes, organic light-emitting layers that are disposed on the anode electrodes, and color filters that are disposed on the organic light-emitting layers. The banks include a color changing film that changes light emitted from the organic light-emitting layer into a predetermined color and outputs the changed color light.
US10283568B2 Light emitting apparatus having first luminous body and second luminous body
A first luminous body is formed on a substrate and is linear. A second luminous body is also formed on the substrate and is linear. The second luminous body extends in parallel with the first luminous body. A first anode and a first cathode are formed on the substrate, and supply electric power to the first luminous body. A second anode and a second cathode are also formed on the substrate, and supply electric power to the second luminous body. The first anode and the first cathode extend in parallel with each other, and the second anode and the second cathode extend in parallel with each other. In a range overlapping with the first luminous body when seen in a plan view, the first anode is not connected to the second anode, and the first cathode is not connected to the second cathode.
US10283564B1 Semiconductor structure and the method of making the same
The present invention provides a semiconductor structure, the semiconductor structure includes a substrate comprising a diffusion region, a transistor structure on the substrate, and a resistive random access memory (RRAM) on the substrate, wherein the resistive random access memory includes at least one metal silicide layer in direct contact with the diffusion region, and a lower electrode, a resistive switching layer and an upper electrode are sequentially disposed on the metal silicide layer.
US10283563B2 Resistive memory cell having a compact structure
The disclosure relates to a memory cell formed in a wafer comprising a semiconductor substrate covered with a first insulating layer, the insulating layer being covered with an active layer made of a semiconductor, the memory cell comprising a selection transistor having a control gate and a first conduction terminal connected to a variable-resistance element, the gate being formed on the active layer and having a lateral flank covered with a second insulating layer, the variable-resistance element being formed by a layer of variable-resistance material, deposited on a lateral flank of the active layer in a first trench formed through the active layer along the lateral flank of the gate, a trench conductor being formed in the first trench against a lateral flank of the layer of variable-resistance material.
US10283562B2 Process for fabricating three dimensional non-volatile memory system
A non-volatile storage apparatus is proposed that includes a plurality of serially connected non-volatile reversible resistance-switching memory cells, a plurality of word lines such that each of the memory cells is connected to a different word line, a bit line connected to a first end of the serially connected memory cells and a switch connected to a second end of the serially connected memory cells. In one embodiment, the memory cells include a reversible resistance-switching structure comprising a first material, a second material and a reversible resistance-switching interface between the first material and the second material, a channel, and means for switching current between current flowing through the channel and current flowing through the reversible resistance-switching interface in order to program and read the reversible resistance-switching interface. A process for manufacturing the memory is also disclosed.
US10283560B2 Light emitting diodes (LEDs) with integrated CMOS circuits
Disclosed is a device which includes first and second major substrate surfaces. The first substrate surface includes an LED with first and second terminals while the second substrate surface includes CMOS circuit components. The CMOS components and LED are coupled by through silicon via (TSV) contacts which extend through the second substrate surface.
US10283558B1 Floating diffusion of image sensor with low leakage current
An image sensor including a photodiode, a floating diffusion region, a first, second, and third doped region of a semiconductor material, and a first capacitor is presented. The photodiode is disposed in the semiconductor material to generate image charge in response to incident light. The floating diffusion region is disposed in the semiconductor material proximate to the photodiode. The floating diffusion region is at least partially surrounded by the first doped region of the semiconductor material. The second doped region and the third doped region of the semiconductor material each have an opposite polarity of the floating diffusion region and the first doped region. The floating diffusion region and at least part of the first doped region are laterally disposed between the second doped region and the third doped region.
US10283557B2 Radiation detector assembly
Various approaches are discussed for using four-side buttable CMOS tiles to fabricate detector panels, including large-area detector panels. Fabrication may utilize pads and interconnect structures formed on the top or bottom of the CMOS tiles. Electrical connection and readout may utilize readout and digitization circuitry provided on the CMOS tiles themselves such that readout of groups or sub-arrays of pixels occurs at the tile level, while tiles are then readout at the detector level such that readout operations are tiered or multi-level.
US10283556B2 Photoelectric conversion device, image pickup system, and driving method of the photoelectric conversion device
A photoelectric conversion device has a pixel area including an effective pixel row and a reference pixel row, the reference pixel row containing a plurality of reference pixel pairs, each pair composed of a first reference pixel and a second reference pixel arranged adjacent to each other. The first and second reference pixels output reference signals having different signal levels and independent of the quantity of incident light.
US10283555B2 Radiation detection apparatus, manufacturing method therefor, and radiation detection system
A radiation detection apparatus employs a sensor panel having first and second opposing surfaces with a pixel array and electrical contacts arranged on the first surface side. A first supporting portion is secured to the panel with an adhesive layer, and supports the pixel array from the second surface side of the panel. A second supporting portion is fixed to the panel so as to inhibit the second supporting portion from being removed from the panel. The second supporting portion supports the electrical contacts from the second surface side of the panel. The elastic modulus of the second supporting portion is higher than that of the adhesive layer, and a number of wiring members are pressure-bonded to the electrical contacts.
US10283553B2 Visible and infrared image sensor
A method of image sensor fabrication includes forming a second semiconductor layer on a back side of a first semiconductor layer. The method also includes forming one or more groups of pixels disposed in a front side of the first semiconductor layer. The one or more groups of pixels include a first portion of pixels separated from the second semiconductor layer by a spacer region, and a second portion of pixels, where a first doped region of the second portion of pixels is in contact with the second semiconductor layer. Pinning wells are also formed and separate individual pixels in the one or more groups of pixels, and the pinning wells extend through the first semiconductor layer. Deep pinning wells are also formed and separate the one or more groups of pixels.
US10283551B2 Back-illuminated solid-state imaging element
A back-illuminated solid-state imaging element includes a semiconductor substrate which has a front surface and a back surface provided with a recess, and in which a thinned section, which is a bottom section of the recess, is an imaging area, a signal read-out circuit formed on the front surface of the semiconductor substrate, a boron layer formed on at least the back surface of the semiconductor substrate and a lateral surface of the recess, a metal layer formed on the boron layer, and provided with an opening opposing a bottom surface of the recess, and an anti-reflection layer formed on the bottom surface of the recess.
US10283547B2 Stacked image sensor having a barrier layer
An image sensor includes a sensor portion and an ASIC portion bonded to the sensor portion. The sensor portion includes a first substrate having radiation-sensing pixels, a first interconnect structure, a first isolation layer, and a first dielectric layer. The ASIC portion includes a second substrate, a second isolation layer, and a second dielectric layer. The material compositions of the first and second isolation layers and the first and second dielectric layers are configured such that the first and second isolation layers may serve as barrier layers to prevent copper diffusion into oxide. The first and second isolation layers may also serve as etching-stop layers in the formation of the image sensor.
US10283544B2 Solid-state imaging element and imaging device
To improve detection efficiency in a solid-state imaging element including a SPAD in which an electrode and wiring are placed in a central portion.A solid-state imaging element includes a photodiode and a light collecting section. The photodiode includes a light receiving surface and an electrode placed on the light receiving surface, and that outputs an electrical signal in accordance with light incident on the light receiving surface in a state where a voltage exceeding a breakdown voltage is applied to the electrode. The light collecting section causes light from a subject to be collected in the light receiving surface other than a region where the electrode is placed.
US10283540B2 Image sensor and method for fabricating the same
An image sensor is provided. The image sensor includes, a substrate including a light-receiving region and a pad region disposed around the light-receiving region, wherein the light-receiving region receives light to generate image data, a photoelectric conversion layer disposed on the light-receiving region of the substrate, an anti-reflection layer disposed on the photoelectric conversion layer and including a plurality of subsidiary anti-reflection layers, a microlens disposed on the anti-reflection layer, a delamination-preventing layer disposed on the pad region of the substrate, and a wiring layer disposed on the delamination-preventing layer, wherein a lowermost one of the subsidiary anti-reflection layers of the anti-reflection layer includes a first material composition and the delamination-preventing layer includes a second material composition different from the first material composition.
US10283539B2 Gateless reset for image sensor pixels
Some embodiments of the present disclosure are directed to an image sensor pixel that is configured for gateless reset of a floating diffusion. Some embodiments are directed to an image sensor comprising a plurality of pixels, at least one pixel comprising a floating diffusion formed in a semiconductor substrate; a transfer gate configured to selectively cause transfer of photocharge stored in the pixel to the floating diffusion; and a reset drain formed in the semiconductor substrate and spaced away from the floating diffusion by an intervening semiconductor region having a dopant type opposite to the dopant type of the reset drain and the floating diffusion, wherein the reset drain is configured to selectively reset the electrostatic potential of the floating diffusion in response to a voltage pulse applied to the reset drain.
US10283528B2 Thin film transistor array panel, liquid crystal display including the same, and manufacturing method thereof
A thin film transistor array panel, including: a first insulating substrate; a gate line disposed on the first insulating substrate and including a gate electrode; a semiconductor layer disposed on the gate electrode; a data conductor layer disposed on the semiconductor layer, and including a data line crossing the gate line, a source electrode connected to the data line and exposing at least a part of the semiconductor layer, and a drain electrode facing the source electrode; a capping layer disposed on the data conductor layer, the semiconductor layer exposed between the source electrode and the drain electrode, and the entire surface of the first insulating substrate; and a first passivation layer disposed on the capping layer. The capping layer and the semiconductor layer include the same material.
US10283525B2 Non-volatile memory device having at least one metal and one semiconductor body extending through an electrode stack
According to an embodiment, a non-volatile memory device includes a first conductive layer, electrodes, an interconnection layer and at least one semiconductor layer. The electrodes are arranged between the first conductive layer and the interconnection layer in a first direction perpendicular to the first conductive layer. The interconnection layer includes a first interconnection and a second interconnection. The semiconductor layer extends through the electrodes in the first direction, and is electrically connected to the first conductive layer and the first interconnection. The device further includes a memory film between each of the electrodes and the semiconductor layer, and a conductive body extending in the first direction. The conductive body electrically connects the first conductive layer and the second interconnection, and includes a first portion and a second portion connected to the second interconnection. The second portion has a width wider than the first portion.
US10283524B1 Methods of filling horizontally-extending openings of integrated assemblies
Some embodiments include a method of forming an integrated structure. An assembly is formed to include a stack of alternating first and second levels. The first levels have insulative material, and the second levels have voids which extend horizontally. The assembly includes channel material structures extending through the stack. A first metal-containing material is deposited within the voids to partially fill the voids. The deposited first metal-containing material is etched to remove some of the first metal-containing material from within the partially-filled voids. Second metal-containing material is then deposited to fill the voids.
US10283521B2 Semiconductor device having vertical cell strings and a vertical common source line
Disclosed are a semiconductor device and a manufacturing method thereof. The semiconductor device includes source select lines, word lines, drain select lines, and a bit line stacked on a substrate in which a first cell string region and a second cell string region are defined; channel layers and memory layers vertically passing through the source select lines, the word lines, and the drain select lines in each of the first cell string region and the second cell string region; and a common source line vertically passing through the source select lines, the word lines, and the drain select lines at centers of the first cell string region and the second cell string region, and extended to a lower side of the source select lines.
US10283519B2 Three dimensional NAND string memory device
A memory device including a substrate, at least one first stacked structure and at least one second stacked structure disposed on the substrate is provided. The first stacked structure includes a plurality of alternately stacked metal layers and oxide layers. The second stacked structure is disposed adjacent to the first stacked structure and includes a plurality of alternately stacked semiconductor layers and oxide layers. The metal layers of the first stacked structure are connected to the semiconductor layers of the second stacked structure.
US10283516B1 Stacked nanosheet field effect transistor floating-gate EEPROM cell and array
Semiconductor device, memory arrays, and methods of forming a memory cell include or utilize one or more memory cells. The memory cell(s) include a first nanosheet transistor located on top of a substrate and connected to a first terminal, a second nanosheet transistor located on top of the first nanosheet transistor and connected in parallel to the first nanosheet transistor and connected to a second terminal, where the first and second nanosheet transistors share a common floating gate and a common output terminal, and an access transistor connected in series to the common output terminal and a low voltage terminal, the access transistor configured to trigger hot-carrier injection to the common floating gate to change a voltage of the common floating gate.
US10283510B2 Semiconductor structure and method for forming the same
A semiconductor structure includes a semiconductor substrate, at least one raised dummy feature, at least one memory cell, and at least one word line. The raised dummy feature is present on the semiconductor substrate and defines a cell region on the semiconductor substrate. The memory cell is present on the cell region. The word line is present adjacent to the memory cell.
US10283505B2 Dummy gate used as interconnection and method of making the same
Process of using a dummy gate as an interconnection and a method of manufacturing the same are disclosed. Embodiments include forming on a semiconductor substrate dummy gate structures at cell boundaries, each dummy gate structure including a set of sidewall spacers and a cap disposed between the sidewall spacers; removing a first sidewall spacer or at least a portion of a first cap on a first side of a first dummy gate structure and forming a first gate contact trench over the first dummy gate structure; and filling the first gate contact trench with a metal to form a first gate contact.
US10283499B2 Heterojunction diode having an increased non-repetitive surge current
A heterojunction diode is provided, including first and second semiconductor layers made of III-N material, the layers being superposed to form a two-dimensional electron gas; an anode and a cathode that are selectively electrically connected to each other by the electron gas; a third semiconductor layer positioned under the gas; a p-doped first semiconductor element contacting the anode the third layer, and forming a separation between the anode and the third layer; and an n-doped second semiconductor element contacting the cathode and the third layer, and forming a separation between the cathode and the third layer, the third layer and the first and second elements forming a p-i-n diode.
US10283498B2 LED chip having ESD protection
Disclosed herein is a light emitting diode chip having ESD protection. An exemplary embodiment provides a flip-chip type light emitting diode chip, which includes a light emitting diode part aligned on a substrate, and a reverse-parallel diode part disposed on the substrate and connected to the light emitting diode part. Within the flip-chip type light emitting diode chip, the light emitting diode part is placed together with reverse-parallel diode part, thereby providing a light emitting diode chip exhibiting strong resistance to electrostatic discharge.
US10283496B2 Integrated circuit filler and method thereof
Provided is a method for inserting a pre-designed filler cell, as a replacement to a standard filler cell, including identifying at least one gap among a plurality of functional cells. In some embodiments, a pre-designed filler cell is inserted within the at least one gap. By way of example, the pre-designed filler cell includes a layout design having a pattern associated with a particular failure mode. In various embodiments, a layer is patterned on a semiconductor substrate such that the pattern of the layout design is transferred to the layer on the semiconductor substrate. Thereafter, the patterned layer is inspected using an electron beam (e-beam) inspection process.
US10283495B2 Mask optimization for multi-layer contacts
A semiconductor device includes two elongated active regions that include source/drain regions for multiple transistor devices, a first contact layer that includes an electrical connection between the two active regions, a second contact layer that includes a connection between two gate lines, and a gate contact layer that provides connections to the gate lines.
US10283493B1 Three-dimensional memory device containing bonded memory die and peripheral logic die and method of making thereof
A first die includes a three-dimensional memory device and first copper pads. A second die includes a peripheral logic circuitry containing CMOS devices located on the semiconductor substrate and second copper pads. A bonded assembly is formed by bonding the first copper pads with the second copper pads through copper interdiffusion to provide multiple bonded pairs of a respective first copper pad and a respective second copper pad at an interface between the first die and the second die.
US10283489B2 Light emitting device
A light emitting device, includes: three light emitting elements with different emission colors; and a package including a plurality of lead frames to individually drive the three light emitting elements, and a resin molding formed integrally with the plurality of lead frames and including an opening in a surface of the resin molding to house the light emitting elements, a portion of each of the plurality of lead frames being exposed on a bottom surface of the opening, and another portion of each of the plurality of lead frames being exposed on an outer surface of the resin molding, the three light emitting elements being disposed on one of the lead frames exposed on the bottom surface of the opening and arranged so as to form an isosceles triangle with a bottom angle of 30 to 60 degrees, and a distance between two of the light emitting elements located on a base of the isosceles triangle is one to two times a length of a side of the light emitting element located at an apex of the isosceles triangle.
US10283487B2 Methods of forming integrated circuit package with thermally conductive pillar
Embodiments of the present disclosure relate to an integrated circuit (IC) package, including a molding compound positioned on a first die and laterally adjacent to a stack of dies positioned on the first die. The stack of dies electrically couples the first die to an uppermost die, and a thermally conductive pillar extends through the molding compound from the first die to an upper surface of the molding compound. The thermally conductive pillar is electrically isolated from the stack of dies and the uppermost die. The thermally conductive pillar laterally abuts and contacts the molding compound.
US10283485B2 Semiconductor device including conductive bump interconnections
A semiconductor device is disclosed including semiconductor die stacked in a stepped, offset configuration, where die bond pads of semiconductor die on different levels are interconnected using one or more conductive bumps.
US10283484B2 Low cost substrates
A mask is formed over a first conductive portion of a conductive layer to expose a second conductive portion of the conductive layer. An electrolytic process is performed to remove conductive material from a first region and a second region of the second conductive portion. The second region is aligned with the mask relative to an electric field applied by the electrolytic process. The second region separates the first region of the second conductive portion from the first conductive portion. The electrolytic process is concentrated relative to the second region such that removal occurs at a relatively higher rate in the second region than in the first region.
US10283482B2 Wire bonding methods and systems incorporating metal nanoparticles
Wire bonding operations can be facilitated through the use of metal nanoparticle compositions. Both ball bonding and wedge bonding processes can be enhanced in this respect. Wire bonding methods can include providing a wire payout at a first location from a rolled wire source via a dispensation head, contacting a first metal nanoparticle composition and a first portion of the wire payout with a bonding pad, and at least partially fusing metal nanoparticles in the first metal nanoparticle composition together to form an adhering interface between the bonding pad and the first portion of the wire payout. The adhering interface can have a nanoparticulate morphology. Wire bonding systems can include a rolled wire source, a dispensation head configured to provide a wire payout, and an applicator configured to place a metal nanoparticle composition upon at least a portion of the wire payout or upon a bonding pad.
US10283480B2 Substrate structure with selective surface finishes for flip chip assembly
The present disclosure relates to a substrate structure with selective surface finishes used in flip chip assembly, and a process for making the same. The disclosed substrate structure includes a substrate body, a metal structure with a first finish area and a second finish area, a first surface finish, and a second surface finish. The metal structure is formed on a top surface of the substrate body, the first surface finish is formed over the first finish area of the metal structure, and the second surface finish is formed over the second finish area of the metal structure. The first surface finish is different from the second surface finish.
US10283478B2 Pressure contact type semiconductor device stack
To provide a pressure contact type semiconductor device stack which can uniformly pressurize pressure contact type semiconductor devices irrespective of presence or absence of a notch portion of the pressure contact type semiconductor device, and can prevent thermal destruction of the relevant pressure contact type semiconductor device.A pressurizing device for pressurizing between pressure contact type semiconductor devices and heat sinks which have been stacked is provided with pressuring bodies arranged at the upper and lower surfaces, metal fittings for insulating plate each for distributing a pressure applied by the pressuring body to an outer circumferential surface, and insulating plates each for pressuring the relevant heat sinks by the pressure applied to a pressurizing surface of the relevant metal fitting for insulating plate, the pressure contact type semiconductor device has a notch portion at a part of a peripheral portion of a post surface of any one of a collector post surface or an emitter post surface, and a device for making a distance from a pressurizing surface of the metal fitting for insulating plate pressurized by the upper surface pressurizing body to a front surface of a chip equal to a distance from a pressurizing surface of the metal fitting for insulating plate pressurized by the lower surface pressurizing body to a back surface of a chip is provided.
US10283476B2 Adhesive bonding composition and electronic components prepared from the same
A curable resin or adhesive composition includes at least one monomer, a photoinitiator capable of initiating polymerization of the monomer when exposed to light, and at least one energy converting material, preferably a phosphor, capable of producing light when exposed to radiation (typically X-rays). The material is particularly suitable for bonding components at ambient temperature in situations where the bond joint is not accessible to an external light source. An associated method includes: placing a polymerizable adhesive composition, including a photoinitiator and energy converting material, such as a down-converting phosphor, in contact with at least two components to be bonded to form an assembly; and, irradiating the assembly with radiation at a first wavelength, capable of conversion (down-conversion by the phosphor) to a second wavelength capable of activating the photoinitiator, to prepare items such as inkjet cartridges, wafer-to-wafer assemblies, semiconductors, integrated circuits, and the like.
US10283475B2 Power module assembly with dual substrates and reduced inductance
A power module assembly has a first substrate including a first layer, second layer and a third layer. The first layer is configured to carry a switch current flowing in a first direction. A second substrate is operatively connected to the first substrate and includes a fourth layer, fifth layer and a sixth layer. A conductive joining layer connects the third layer of the first substrate and the fourth layer of the second substrate. The conductive joining layer may be a first sintered layer. The third layer of the first substrate, the first sintered layer and the fourth layer of the second substrate are configured to function together as a unitary conducting layer carrying the switch current in a second direction substantially opposite to the first direction. The net inductance is reduced by a cancellation effect of the switch current going in opposite directions.
US10283466B2 Polymer resin and compression mold chip scale package
A method for fabricating a chip scale package, comprising: providing a wafer; applying a polymer resin on at least part of a first surface of the wafer and to one or more sides of the wafer; and applying a compression mold on at least part of a second surface of the wafer and to one or more sides of the wafer, said first and second surfaces opposing each other.
US10283464B2 Electronic device and manufacturing method of electronic device
An electronic device includes a semiconductor device including a semiconductor chip, a first grounded layer formed on a surface of the semiconductor chip, a mold resin arranged on a side of the semiconductor device, an insulating layer arranged over the semiconductor device and the mold resin, a second grounded layer formed between the semiconductor device and the insulating layer, and the resin mold and the insulating layer, a second wiring layer formed over the insulating layer and includes a first area disposed at a part overlapping with the second grounded layer and a second area disposed on a side of an end part of the second grounded layer, a via that couples the first wiring layer and the second area of the second wiring layer, and a grounded conductor formed inside the insulating layer at a position overlapping with the second area of the second wiring layer.
US10283450B2 Method for forming semiconductor device structure having conductive structure with twin boundaries
A method, for forming a semiconductor device structure, includes: forming a conductive structure over a substrate, wherein the conductive structure includes twin boundaries. The forming the conductive structure includes: manipulating process conditions so as to promote formation of the twin boundaries and yet control a density of the twin boundaries to be outside a range for which a portion of a curve is an asymptote of a constant value, the curve representing values of an atomic migration ratio corresponding to values of the density of the twin boundaries.
US10283447B1 Power semiconductor module with partially coated power terminals and method of manufacturing thereof
A power semiconductor module includes one or more power semiconductor dies attached to a first main face of a substrate, a plastic housing attached to the substrate, which together with the substrate encloses the one or more power semiconductor dies, a plurality of power terminals attached to the first main face of the substrate at a first end, and extending through the plastic housing at a second end to provide a point of external electrical connection for the one or more power semiconductor dies, a potting compound embedding the one or more power semiconductor dies, the first main face of the substrate and at least part of the first end of the plurality of power terminals, and an insulative coating applied only to parts of the plurality of power terminals disposed inside the plastic housing and in contact with just air. A corresponding method of manufacture also is provided.
US10283444B2 Semiconductor device and method of manufacturing the same
Even when a stiffener is omitted, the semiconductor device which can prevent the generation of twist and distortion of a wiring substrate is obtained. As for a semiconductor device which has a wiring substrate, a semiconductor chip by which the flip chip bond was made to the wiring substrate, and a heat spreader adhered to the back surface of the semiconductor chip, and which omitted the stiffener for reinforcing a wiring substrate and maintaining the surface smoothness of a heat spreader, a wiring substrate has a plurality of insulating substrates in which a through hole whose diameter differs, respectively was formed, and each insulating substrate contains a glass cloth.
US10283441B2 Method of integrating capacitors on lead frame in semiconductor devices
In an embodiment, a method of integrating capacitors in semiconductor devices includes: providing a lead-frame for a semiconductor device, the lead-frame including one or more electrically conductive areas, forming a dielectric layer over the electrically conductive area or areas, forming an electrically conductive layer over the dielectric layer thus forming one or more capacitors including the dielectric layer sandwiched between an electrically conductive area and the electrically conductive layer, and arranging a semiconductor die onto the lead-frame by providing electrical contact between the semiconductor die and the electrically conductive layer.
US10283439B2 Fan-out semiconductor package including electromagnetic interference shielding layer
A fan-out semiconductor package includes: a first connection member having a through-hole and having a passive component disposed in the first connection member; a semiconductor chip disposed in the through-hole of the first connection member and having an active surface having connection pads disposed therein and an inactive surface opposing the active surface; an encapsulant encapsulating at least portions of the first connection member and the inactive surface of the semiconductor chip; and a second connection member disposed on the first connection member and the active surface of the semiconductor chip. The first connection member and the second connection member include, respectively, redistribution layers electrically connected to the connection pads of the semiconductor chip, and the passive component is electrically connected to the connection pads of the semiconductor chip through the redistribution layer of the second connection member.
US10283435B2 Heat dissipation component and terminal device including heat dissipation component
A heat dissipation component includes a plate that presses a heat receiving portion against a heat generating portion, and a heat pipe installed at a first surface side of the plate to be in contact with the heat receiving portion, wherein the plate has a shape of an equilateral triangle in plan view from a normal direction of the first surface of the plate, an outer circumferential portion of the plate, except for a portion between each two vertexes of the equilateral triangle, is bent to the first surface side of the plate, and the heat pipe extends to an outside of the plate through a non-bent portion in the outer circumferential portion of the plate.
US10283429B2 Semiconductor device
A semiconductor device includes: a semiconductor element; a heat sink including a first surface and a second surface, the semiconductor element being joined to the first surface, the second surface being a surface on an opposite side of the first surface; and a package that is in contact with the semiconductor element and the first surface of the heat sink, the package including a recess portion in an outer face, wherein the heat sink includes a thick portion, and a thin portion having a thickness that is smaller than that of the thick portion, and the thin portion is located on a line connecting an outer face of the semiconductor element and the recess portion in a shortest distance.
US10283426B2 Fan-out semiconductor package and photosensitive resin composition
A fan-out semiconductor package includes: a semiconductor chip having an active surface with connection pads disposed thereon and an inactive surface opposing the active surface; an encapsulant encapsulating at least portions of the semiconductor chip; and a first connection member disposed on the active surface of the semiconductor chip, wherein the encapsulant is a cured photosensitive resin composition including a thermosetting resin, a carboxylic resin, an ethylenically unsaturated compound, and a reinforcing agent. The photosensitive resin composition may be used in the fan-out semiconductor package.
US10283423B2 Test structure macro for monitoring dimensions of deep trench isolation regions and local trench isolation regions
Embodiments are directed to a method Embodiments are directed to a test structure of a fin-type field effect transistor (FinFET). The test structure includes a first conducting layer electrically coupled to a dummy gate of the FinFET, and a second conducting layer electrically coupled to a substrate of the FinFET. The test structure further includes a third conducting layer electrically coupled to the dummy gate of the FinFET, and a first region of the FinFET at least partially bound by the first conducting layer and the second conducting layer. The test structure further includes a second region of the FinFET at least partially bound by the second conducting layer and the third conducting layer, wherein the first region comprises a first dielectric having a first dimension, and wherein the second region comprises a second dielectric having a second dimension greater than the first dimension.
US10283417B1 Self-protective layer formed on high-k dielectric layers with different materials
Semiconductor device structures having metal gate structures with tunable work function values are provided. In one example, a semiconductor device includes a first gate structure and a second gate structure on a substrate; wherein the first gate structure includes a first gate dielectric layer having a first material, and the second gate structure includes a second gate dielectric layer having a second material, the first material being different from the second material, wherein the first and the second gate structures further includes a first and a second self-protective layers disposed on the first and the second gate dielectric layers respectively, wherein the first self-protective layer includes metal phosphate and the second self-protective layer includes boron including complex agents and a first work function tuning layer on the first self-protective layer in the first gate structure.
US10283416B2 Vertical FETS with variable bottom spacer recess
A method of forming a variable spacer in a vertical transistor device includes forming a first source/drain of a first transistor on a substrate; forming a second source/drain of a second transistor on the substrate adjacent to the first source/drain, an isolation region arranged in the substrate between the first source/drain and the second source/drain; depositing a spacer material on the first source/drain; depositing the spacer material on the second source/drain; forming a first channel extending from the first source drain and through the spacer material; forming a second channel extending from the second source/drain and through the spacer material; wherein the spacer material on the first source/drain forms a first spacer and the spacer material on the second source/drain forms a second spacer, the first spacer being different in thickness than the second spacer.
US10283399B2 Sensor array with anti-diffusion region(s) to extend shelf life
The inventive concepts disclosed herein are generally directed to a sensor array device that has a prolonged shelf life but requires only a minimal amount of sample volume in order to test two or more analytes concurrently. In order to ensure the sensor array has a sufficient shelf life, anti-diffusion regions are positioned among the reaction wells in order to slow the processes of diffusion. The use of anti-diffusion regions, as described herein, can be used to optimize the number of sensors that can be fit into a sensor array designed for reduced sample liquid volumes (e.g., less than 100 μL) as well as extending the test strip's shelf life.
US10283398B2 Substrate placing table
A substrate placing table, which is installed inside a processing container for processing a wafer, includes: a stage configured to place a water on an upper surface thereof and including an inner peripheral flow channel and an outer peripheral flow channel formed therein to circulate a heat medium of a predetermined temperature therethrough; a support table configured to support the stage; and a temperature adjusting plate installed between the stage and the support table, and including a temperature adjusting mechanism configured to adjust a temperature of a heat radiation portion at which heat is radiated between the stage and the support table.
US10283397B2 Substrate lift pin actuator
Implementations described herein provide a lift pin actuator. The lift pin actuator has a housing. The housing has an interior volume. A track is disposed in the interior volume and coupled to the housing. A center shaft is at least partially disposed in the interior volume of the housing. A guide is movably coupled to the track. At least one internal bellows is disposed in the interior volume, the internal bellows form a seal between the center shaft and the housing. An elastic member is disposed in the interior volume and configured to apply a force that retracts the center shaft into the housing. An inlet port is configured to introduce fluid into the interior volume between the internal bellows and the housing. The fluid generates a force opposing the elastic member to extend the center shaft relative to the housing.
US10283394B2 Article transport device
An article transport device includes an article support member for supporting an article having a plate-shaped flange portion in an upper portion thereof, with the article placed on its receiving member. The article support member further includes a restricting member which is positioned such that at least a portion of the restricting member is located across from at least a portion of a front side surface of the flange portion when the article is in the supported state, and which is configured to restrict the article in the supported state from moving at least in the front direction by distances greater than a movement distance specified in advance. The restricting member includes a pair of front restricting portions that are so located to be spaced apart from each other to form a gap, wherein the restricting member and the receiving member are fixedly connected to each other.
US10283386B2 Processing room
A processing room includes a processing chamber, a discharge chamber, a sealing member, a blocking member, and a reclaiming member. The discharge chamber includes a main body communicating with the processing chamber, and a receiving portion and a discharge portion communicating with the main body. The receiving portion is aligned to the discharge portion. The sealing member includes a sealing portion and a sealing valve mounted on the sealing portion. The sealing portion is partially and moveably received in the receiving portion and resists against a sidewall of the receiving portion. The blocking member is detachably mounted on an end of the discharge portion and seals the discharge portion. The reclaiming member is partially received in the main body.
US10283385B2 Vortex pattern wet processing tool and etching method
A wet chemical processing tool is provided, which includes an assembly of a container and at least three nozzles. The container includes a volume configured to contain at least one substrate therein. The wet chemical processing tool includes a flow controller configured to actuate and de-actuate flow of the liquid through each of the at least three nozzles. The flow controller can be operated by an automated program that includes a plurality of wet processing steps. At least two of the plurality of wet processing steps generate a respective unique processing-step vortex flow pattern by de-actuating flow of the liquid from a respective set of at least one deactivated nozzle selected from the at least three nozzles while actuating each of the at least three nozzles that does not belong to the set of at least one deactivated nozzle.
US10283384B2 Method for etching etch layer and wafer etching apparatus
A method for etching an etch layer formed on a front side of a wafer and a wafer etching apparatus are provided. The wafer etching apparatus includes a first flow channel, a temperature-regulating module, and a second flow channel. The first flow channel is configured to carry a preheated/precooled liquid for controlling a temperature of a wafer. The temperature-regulating module is coupled to the first flow channel. The temperature-regulating module is configured to control a temperature of the liquid in the first flow channel. The second flow channel is configured to carry an etchant for etching an etch layer formed on a front side of the wafer. The method includes: controlling the temperature of the wafer by using the preheated/precooled liquid; and etching the etch layer with the etchant.
US10283383B2 Planarization method and planarization apparatus
According to one embodiment, a planarization method and a planarization apparatus are provided. In the planarization method, a work surface of a work piece is planarized by bringing the work surface of the work piece containing a silicon oxide film and a surface of a solid plate onto which hydrogen ions are adsorbed, into contact or extremely close proximity with one another in a state in which a process liquid containing fluorine ions is supplied to the surface of the solid plate.
US10283381B2 Apparatus for plasma dicing
An apparatus is for plasma dicing a semiconductor substrate of the type forming part of a workpiece, the workpiece further including a carrier sheet on a frame member, where the carrier sheet carries the semiconductor substrate. The apparatus includes a chamber, a plasma production device configured to produce a plasma within the chamber suitable for dicing the semiconductor substrate, a workpiece support located in the chamber for supporting the workpiece through contact with the carrier sheet, and a frame cover element configured to, in use, contact the frame member thereby clamping the carrier sheet against an auxiliary element disposed in the chamber.
US10283379B2 Batch LED heating and cooling chamber or loadlock
Apparatus and methods for heating and cooling a plurality of substrate wafers are provided. LED lamps are positioned against the back sides of a plurality of cold plates. In some embodiments, wafers are supported on a wafer lift which can move all wafers together. In some embodiments, wafers are supported on independent lift pins which can move individual wafers for heating and cooling. Some embodiments of the disclosure provide for decreased time between wafer switching in a processing chamber.
US10283378B2 Fluxing underfill compositions
This invention relates to thermosetting resin compositions useful for fluxing underfill applications, particularly in the form of a preapplied film.
US10283377B1 Integrated fan-out package and manufacturing method thereof
An integrated fan-out (InFO) package includes at least one die, a plurality of conductive structures, an encapsulant, an enhancement layer, and a redistribution structure. The die has an active surface and includes a plurality of conductive posts on the active surface. The conductive structures surround the die. The encapsulant partially encapsulates the die. The enhancement layer is over the encapsulant. A top surface of the enhancement layer is substantially coplanar with top surfaces of the conductive posts and the conductive structures. A material of the enhancement layer is different from a material of the encapsulant. A roughness of an interface between the encapsulant and the enhancement layer is larger than a roughness of the top surface of the enhancement layer. The redistribution structure is over the enhancement layer and is electrically connected to the conductive structures and the die.
US10283374B2 Structures, methods and applications for electrical pulse anneal processes
Structures and methods are provided for nanosecond electrical pulse anneal processes. The method of forming an electrostatic discharge (ESD) N+/P+ structure includes forming an N+ diffusion on a substrate and a P+ diffusion on the substrate. The P+ diffusion is in electrical contact with the N+ diffusion. The method further includes forming a device between the N+ diffusion and the P+ diffusion. A method of annealing a structure or material includes applying an electrical pulse across an electrostatic discharge (ESD) N+/P+ structure for a plurality of nanoseconds.
US10283373B2 CMP polishing liquid and polishing method
An embodiment of the present invention relates to a CMP polishing liquid used for polishing a polishing target surface having at least a cobalt-containing portion and a metal-containing portion that contains a metal other than cobalt, wherein the CMP polishing liquid contains polishing particles, a metal corrosion inhibitor and water, and has a pH of 4.0 or less, and when the corrosion potential EA of cobalt and the corrosion potential EB of the metal are measured in the CMP polishing liquid, the absolute value of the corrosion potential difference EA−EB between the corrosion potential EA and the corrosion potential EB is 0˜300 mV.
US10283371B2 Spacer-damage-free etching
A method of patterning a semiconductor device is disclosed. A tri-layer photoresist is formed over a plurality of patterned features. The tri-layer photoresist includes a bottom layer, a middle layer disposed over the bottom layer, and a top layer disposed over the middle layer, the top layer containing a photo-sensitive material. The top layer is patterned via a photolithography process, the patterned top layer including an opening. The opening is extended into the bottom layer by etching the bottom layer and continuously forming a protective layer on etched surfaces of the bottom layer and on exposed surfaces of the patterned features. The bottom layer is removed. At least some portions of the protective layer remain on the exposed surfaces of the patterned features after the bottom layer is removed.
US10283369B2 Atomic layer etching using a boron-containing gas and hydrogen fluoride gas
Embodiments of the invention provide a method for atomic layer etching (ALE) of a substrate. According to one embodiment, the method includes providing a substrate, and exposing the substrate to hydrogen fluoride (HF) gas and a boron-containing gas to etch the substrate. According to another embodiment, the method includes providing a substrate containing a metal oxide film, exposing the substrate to HF gas to form a fluorinated surface layer on the metal oxide film, and exposing the substrate to a boron-containing gas to remove the fluorinated surface layer from the metal oxide film. The exposures may be repeated at least once to further etch the metal oxide film.
US10283364B2 Method for assembling substrates by bonding indium phosphate surfaces
The invention concerns an assembly method comprising the following steps: a) providing a first substrate comprising a first face made from crystalline indium phosphide, b) providing a second substrate comprising a second crystalline face different from the indium phosphide, c) forming an intermediate layer of crystalline indium phosphide on the second face of the second substrate, d) forming an assembly, via a direct bonding step, by bringing the first face of the first substrate into contact with the intermediate layer, the direct bonding step being carried out in an atmosphere having a pressure greater than 10−4 Pa, and preferably higher than 10−3 Pa, e) subjecting the assembly formed in step d) to heat treatment.
US10283354B2 Methods of growing thin films at low temperatures using electron stimulated desorption (ESD)
The invention includes a method of promoting thin film growth on a solid substrate, wherein derivatization of the substrate comprises formation of at least one surface species. In certain embodiments, the method comprises desorbing the surface species from the substrate using electron stimulated desorption (ESD).
US10283353B2 Method of reforming insulating film deposited on substrate with recess pattern
A method of reforming an insulating film deposited on a substrate having a recess pattern constituted by a bottom and sidewalls, includes: providing the film deposited on the substrate having the recess pattern in an evacuatable reaction chamber, wherein a property of a portion of the film deposited on the sidewalls is inferior to that of a portion of the film deposited on a top surface of the substrate; adjusting a pressure of an atmosphere of the reaction chamber to 10 Pa or less, which atmosphere is constituted by H2 and/or He without a precursor and without a reactant; and applying RF power to the atmosphere of the pressure-adjusted reaction chamber to generate a plasma to which the film is exposed, thereby reforming the portion of the film deposited on the sidewalls to improve the property of the sidewall portion of the film.
US10283352B2 Precursors of manganese and manganese-based compounds for copper diffusion barrier layers and methods of use
Semiconductor devices and methods of making semiconductor devices with a barrier layer comprising manganese nitride are described. Also described are semiconductor devices and methods of making same with a barrier layer comprising Mn(N) and, optionally, an adhesion layer.
US10283343B2 Double-ended high intensity discharge lamp and manufacturing method thereof
A double-ended high intensity discharge lamp includes a luminous tube which comprises an inner tube and an outer tube. At least one electrical member is securely fastened inside the luminous tube and at least one illuminator supported inside the luminous tube with a distributor connected with the electrical member to receive power and supply the illuminator. The outer tube is another protective shield to stop spreading in explosion of the illuminator.
US10283341B2 Microscale mass spectrometry systems, devices and related methods
Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm2 to about 25 cm2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.
US10283337B2 Microparticle composition analyzing apparatus
Despite the desire to measure the composition and concentration of the microparticles included in a gaseous body sample serving as the measurement target, there is a problem that measurement cannot be performed accurately due to the effect of substances other than the gaseous body sample adsorbing to a trapping body of the analyzing apparatus that traps the microparticles, for example. Therefore, provided is a microparticle composition analyzing apparatus that analyzes composition of microparticles contained in a gaseous body sample, comprising a gas analyzer and a control section that sequentially introduces into the gas analyzer a comparative gas and a sample gas caused by the microparticles generated by irradiating the gaseous body sample with a laser.
US10283332B2 Cu—Ga binary alloy sputtering target and method of producing the same
A Cu—Ga binary alloy sputtering target having excellent mechanical workability, high density, and high bending strength, and a method of producing the sputtering target are provided. The sputtering target has a composition including 28 to 35 atomic % of Ga and the balance made of Cu and inevitable impurities. In addition, the sputtering target has a coexistence microstructure in which a low-Ga-containing Cu—Ga binary alloy phase is surrounded by a high-Ga-containing Cu—Ga binary alloy phase. The low-Ga-containing Cu—Ga binary alloy phase includes 26 atomic % or less of Ga and a balance made of Cu. The high-Ga-containing Cu—Ga binary alloy phase includes 28 atomic % or more of Ga.
US10283330B2 Systems and methods for achieving a pre-determined factor associated with an edge region within a plasma chamber by synchronizing main and edge RF generators
Systems and methods for achieving a pre-determined factor associated with the edge region within the plasma chamber is described. One of the methods includes providing an RF signal to a main electrode within the plasma chamber. The RF signal is generated based on a frequency of operation of a first RF generator. The method further includes providing another RF signal to an edge electrode within the plasma chamber. The other RF signal is generated based on the frequency of operation of the first RF generator. The method includes receiving a first measurement of a variable, receiving a second measurement of the variable, and modifying a phase of the other RF signal based on the first measurement and the second measurement. The method includes changing a magnitude of a variable associated with a second RF generator to achieve the pre-determined factor.
US10283325B2 Distributed multi-zone plasma source systems, methods and apparatus
A processing chamber including multiple plasma sources in a process chamber top. Each one of the plasma sources is a ring plasma source including a primary winding and multiple ferrites. A plasma processing system is also described. A method of plasma processing is also described.
US10283316B2 Aperture for inspecting multi beam, beam inspection apparatus for multi beam, and multi charged particle beam writing apparatus
In one embodiment, an aperture for inspecting a multi-beam allows passage of one beam among multi-beams applied in a multi-beam writing apparatus. The aperture includes a scattering layer that is provided with a through-hole through which the one beam passes, and by which the other beams are scattered, and an absorbing layer that is provided with an opening having a diameter greater than the diameter of the through-hole and that absorbs at least some of the beams entering it.
US10283315B2 Measuring spherical and chromatic aberrations in cathode lens electrode microscopes
An electron microscope system and a method of measuring an aberration of the electron microscope system are disclosed. An aperture filters an electron beam at a diffraction plane of the electron microscope to pass through electrons having a selected energy and momentum. A displacement of an image of the passed electrons is measured at a detector in an image plane of the electron microscope. An aberration coefficient of the electron microscope is determined from the measured displacement and at least one of the energy and momentum of the passed electrons. The measured aberration can be used to alter a parameter of the electron microscope or an optical element of the electron microscope to thereby control the overall aberration of the electron microscope.
US10283314B2 Charged particle beam writing apparatus, and charged particle beam writing method
A charged particle beam writing apparatus includes a number of shots calculation circuit to calculate the number of shots in the case where a deflection region is irradiated with a shot of a charged particle beam, a deflection position correcting circuit to correct a deflection position of the charged particle beam to be shot in the deflection region, depending on the number of shots to be shot in the deflection region, and a deflector to deflect the charged particle beam to a corrected deflected position on the target object.
US10283312B2 System and method for reducing relative bearing shaft deflection in an X-ray tube
An X-ray tube is provided. The X-ray tube includes a bearing configured to couple to an anode. The bearing includes a stationary member, a rotary member configured to rotate with respect to the stationary member during operation of the X-ray tube, and a support feature configured to minimize bending moment along a surface of the stationary member to reduce deflection of the stationary member relative to the rotary member due to radial loads during operation of the X-ray tube.
US10283310B2 Remote fuse operation indicator assemblies and related systems and methods
A fuse operation indicator assembly includes an elongate tube having first and second ends, a fuse striker receiving member at the first end of the tube and configured to receive a fuse striker, an actuating member at the second end of the tube and configured to be actuated responsive to the fuse striker member, and a detector configured to detect actuation of the actuating member.
US10283308B2 Busbar
A busbar includes a plurality of main terminals (upstream side terminal, downstream side terminals) and one auxiliary terminal conductively connected to one of the main terminals and is press-formed in an integrated manner. The auxiliary terminal is connected to the main terminals through connection bars which are all cut off, except for one, in a cutting process after a pressing process, and the circuit configuration can be changed by selectively cutting off the connection bars. Therefore, there is no need to change the shape of a press die, and the production efficiency can be improved using a die having a uniform shape.
US10283305B2 Fuse
The invention provides a fuse that has a simple structure without having a flap included in a conventional fuse but can prevent a terminal of a different fuse from entering from an opening of an insulating housing. A fuse includes a pair of conductive terminals (10), a fuse element (30) including a fusing part (20) provided between the conductive terminals (10), and an insulating housing (40) covering the fusing part (20) and at least part of the conductive terminals (10) and having an open bottom end. The insulating housing (40) has an open end (50) provided, on an inner wall surface thereof, with a projection (60).
US10283302B2 Remote controlled circuit breaker panel system
A electrical distribution system has been developed to provide a remote central control point for individual circuits, and methods have been developed for retrofitting it to existing service panels or installing it into new service panels. This system provides a power circuit monitoring and control system that fits inside standard residential service panels, both new and retrofitted panels. The entire system can be retrofitted into existing breaker panel systems without the need of removing any permanent structure such as a wall. During this retrofit process, the panel cover on the existing distribution panel is first removed after the power to it is disconnected. The old breaker assembly is removed from the panel, and a circuit controller is then installed in the now available space within the panel. A new service panel enclosure with a circuit breaker assembly is installed directly over top of the enclosure.
US10283300B2 Bimetal plate to provide two different current ratings within frame of circuit breaker
A circuit breaker having a frame comprises a bimetal plate having a longitudinal length wherein the bimetal plate is cut along the longitudinal length into a narrow section and a wider section both being parallel to each other such that the bimetal plate is configured to control when and how a trip mechanism of a trip unit activates. The circuit breaker comprises a heating element coupled to the bimetal plate to heat the narrow section and the wider section when a current goes through the heating element. The narrow section and the wider section of the bimetal plate to deflect differently when a same amount of heat is applied in a same amount of time to control when and how the trip mechanism activates such that to allow to have two different current ratings in the frame in that the bimetal plate allows to increment a current protection level from a lower current rating to a higher current rating.
US10283298B2 Chip fuse
A method for manufacturing a chip fuse, comprises: a liquid film forming step for forming a liquid film of dispersion liquid having metal nanoparticles dispersed therein on a principal surface of a substrate; a fuse film forming step for forming a fuse film on the principal surface by irradiating the liquid film with laser light; and a first terminal forming step for forming first terminals that each connects to the fuse film on each of both end sides in a longitudinal direction of the fuse film on the principal surface.
US10283289B2 Keyswitch structure
A keyswitch structure includes a base, a keycap, a first support, a second support, and a connection structure. The keycap moves up and down relative to the base through the first support and the second support. The connection structure is disposed on the base and includes a vertical-motion limiting part and a horizontal-motion limiting part. The first support includes a rod-shaped connection portion and is connected to the connection structure through the rod-shaped connection portion. The vertical-motion limiting part prevents the rod-shaped connection portion from vertically moving. The horizontal-motion limiting part limits the horizontal movement of the rod-shaped connection portion. The vertical-motion limiting part and the horizontal-motion limiting part are separated in the rotation axis of the rod-shaped connection portion.
US10283288B2 Vacuum switching apparatus, and contact assembly and method of securing an electrical contact to an electrode therefor
A contact assembly is for a vacuum switching apparatus. The vacuum switching apparatus includes a vacuum envelope. The vacuum envelope has an interior. The contact assembly includes: a number of electrical contacts located in the interior of the vacuum envelope, at least one electrical contact having a hole; and a number of electrodes each engaging a corresponding one of the number of electrical contacts, at least one electrode including a base and a protrusion. The protrusion extends from the base into the hole of the electrical contact in order to secure the electrical contact to the electrode.
US10283287B2 Electrical power distribution system including pressure release mechanism
An electrical power distribution system includes at least one circuit protection device and a housing defining an interior space to receive the at least one circuit protection device. The housing includes a door positionable between an opened position in which the door allows access to the interior space and a closed position in which the door inhibits access to the interior space. The housing also includes a hinge pivotably coupling the door to the case and a pressure release mechanism coupled to the door and the hinge. The pressure release mechanism includes a tongue positionable between a first position and a second position and a biasing member arranged to bias the door towards the case when the door is in the closed position.
US10283284B2 Method and apparatus for producing microporous metal foil
A method and an apparatus for producing a microporous metal foil by forming fine pores in a metal foil passing through a gap between a pattern roll having high-hardness fine particles on the surface and a hard metal roll; (a) a plastic sheet laminate comprising a soft plastic layer and a hard plastic layer having high tensile strength being interposed between the metal foil and the hard metal roll, with the soft plastic layer on the metal foil side; and (b) mechanical vibration being given to at least one of the pattern roll and the hard metal roll.
US10283283B2 Separator for power storage device, and power storage device using same
A separator for an electric double-layer capacitor is provided having a double-layer structure made of a fibrous layer A obtained by papermaking using a Fourdrinier net or a tanmo net, and a fibrous layer B obtained by papermaking using a cylinder net. The fibrous layer A is a layer that is refined until a CSF value decreases once to 0 ml (lower limit), and further refined until it turns to rise to 10 to 600 ml, the fibrous layer B is a layer that is refined until a CSF value of 700 to 0 ml, and the fibrous layer A and the fibrous layer B contain 70% by mass or more refinable, regenerated cellulose fibers. The density of the entire double-layer structure is 0.25 to 0.65 g/cm3, and the thickness of the same is 10 to 150 μm. This allows provision of a separator for an electric double-layer capacitor having excellent tensile strength and tear strength, provision of a degree of mechanical strength such that the separator does not break in a manufacturing process of a wound or a stacked type electric double-layer capacitor, and improvement of productivity without adversely affecting internal resistance and leakage current properties of the capacitor as an energy storage device.
US10283282B2 Strain capacitor energy storage devices and assemblies
Energy storage devices are disclosed that store both electrical and mechanical energies, making the total energy stored larger than either an electrical or mechanical means alone. The energy storage device is charged by the application of a voltage, which charges a capacitor to store electrical energy while simultaneously exerting a force on the mechanical system that deforms the mechanical system, resulting in mechanical energy storage. When the charged device is discharged, both the electrical and mechanical energy are extracted in electrical form. Its unique features include, but are not limited to, the potential for long lifetime, improved safety, better portability, a wide operating temperature range, and environment friendliness. Arrays of energy storage devices can be assembled in various configurations to build high capacity energy storage units.
US10283280B2 Process for flexible and shape-conformal rope-shape supercapacitors
Provided is a process for producing a rope-shaped supercapacitor comprising: (a) impregnating a first mixture of a first electrode active material (e.g. activated carbon or isolated graphene sheets) and a first electrolyte into pores of a first porous rod to form a first electrode; (b) encasing a porous separator around the first electrode to form a separator-protected first electrode; (c) impregnating a second mixture of a second electrode active material and a second electrolyte into pores of a second conductive porous rod to form a second electrode; (d) combining the separator-protected first electrode and second electrode form a braid or twist yarn; and (e) wrapping or encasing a protective sheath around the braid or yarn to form the supercapacitor.
US10283275B2 Feedthrough seal apparatus, system, and method
In various examples, a feedthrough seal apparatus is configured to seal an opening in a device. The device includes a case surrounding an interior space, the case including the opening therein to allow access to the interior space from an exterior of the case. The feedthrough seal apparatus includes a plug disposed within the opening of the case. The plug is formed from at least one of a polymeric material and an adhesive material. The lead wire extends through the plug, such that a first end of the lead wire is disposed within the interior space of the case and a second end extends from the plug to the exterior of the case. The plug is configured to electrically insulate the lead wire from the case. Some examples include a method of making the feedthrough seal apparatus.
US10283273B2 Method of manufacturing a ceramic electronic component
A ceramic electronic component includes a rectangular or substantially rectangular parallelepiped-shaped stack in which a ceramic layer and an internal electrode are alternately stacked and an external electrode provided on a portion of a surface of the stack and electrically connected to the internal electrode. The external electrode includes an inner external electrode covering a portion of the surface of the stack and including a mixture of a resin component and a metal component and an outer external electrode covering the inner external electrode and including a metal component. A volume occupied by the resin component in the inner external electrode is within a prescribed range.
US10283272B2 Multilayer ceramic capacitor and method for producing the same
A multilayer ceramic capacitor having inner electrodes containing at least one metal selected from Cu, Ag, Pd, Pt, Rh, Ir, Ru, and Os in an amount of 0.1 atom % or more that is dissolved in Ni and Sn to form a solid solution. The percentage of Sn with respect to the total amount of Ni and Sn in near-surface regions each located at a depth of 2 nm from a surface of the inner electrode in contact with an adjacent ceramic dielectric layer is 1.4 or more atom %, and X−Y≥1.0, where X represents the atomic percentage of Sn in the near-surface regions and Y represents the atomic percentage of Sn in mid-thickness regions of the inner electrodes. A method for producing a multilayer ceramic capacitor includes annealing the ceramic multilayer body to increase, in the inner electrodes, the percentage of Sn in the near-surface regions.
US10283270B2 Electronic component and component-embedded substrate
An electronic component includes: a component body into which elements are built; and a metal plate electrode that is joined to the component body by conductive paste so as to be electrically coupled to the elements, wherein the metal plate electrode exceeds in size a surface of the component body onto which the conductive paste is deposited.
US10283269B2 Multilayer ceramic capacitor and multilayer ceramic capacitor mount structure
A multilayer ceramic capacitor satisfies L≤about 1.4 mm, about 1.1≤L/W≤about 1.6, e≥about 0.10 mm, i/L>about 0.40 and i/g>about 2. L and W are maximum outer dimensions in length and width directions, e is a length direction distance along which a first or second end surface outer electrode located on a first side surface extends or along which the first or second end surface outer electrode located on a second side surface extends, g is a smallest distance among length direction distances between the first end surface outer electrode and a first or second side surface outer electrode and between the second end surface outer electrode and the first or second side surface outer electrode, and i is a distance on the side where g is among distances in the length direction along which the first and second side surface outer electrodes extend.
US10283268B2 Multilayer capacitor and board having the same
A multilayer capacitor includes a capacitor body including a first capacitance forming region and a second capacitance forming region disposed to face each other with a connection region of a predetermined thickness in which an internal electrode is not formed disposed therebetween, a thickness of the first capacitance forming region being greater than a thickness of the second capacitance forming region. The first capacitance forming region includes first and second internal electrodes. The second capacitance forming region includes a third and fourth internal electrodes. The connection region includes at least one dummy electrode disposed to have a shorter average distance to the first capacitance forming region than to the second capacitance forming region.