Document Document Title
US10263672B2 Integer forcing scheme for multi-user MIMO communication
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transmission rate successive to a 4G communication system such as LTE. The present disclosure provides a communication method of a Base Station (BS) using an Integer Forcing (IF) scheme in a Multi-User Multiple-Input and Multiple-Output (MU-MIMO) communication system, the method including: receiving a reception signal including a desired signal transmitted from at least one User Equipment (UE) served by the BS and an interference signal transmitted from at least one UE served by a neighboring BS; determining an IF filter considering the interference signal based on information on the interference signal received from the neighboring BS; filtering the reception signal using the determined IF filter; and detecting or decoding at least one of the desired signal and the interference signal using the filtered reception signal.
US10263668B2 Dual-band wireless headphones
Embodiments of wireless audio systems, wireless transceivers, and methods for wirelessly communicating audio information are disclosed herein. In one example, a wireless audio system includes a primary wireless transceiver and a secondary wireless transceiver. The primary wireless transceiver includes a first radio frequency (RF) module configured to receive, from an audio source, first audio information at a first frequency. The primary wireless transceiver further includes a second RF module configured to transmit second audio information at a second frequency lower than the first frequency. The second audio information is generated based on the first audio information. The secondary wireless transceiver includes a third RF module configured to receive, from the second RF module, the second audio information at the second frequency. The first RF module implements a first short-range wireless communication protocol. Each of the second and third RF modules implements a second short-range wireless communication protocol amended from the first short-range wireless communication protocol.
US10263657B2 Determining and controlling radiation absorption in a user terminal
An instantaneous value for the specific absorption rate of user terminal is determined, the instantaneous value is compared to a predetermined threshold; and the voice call and data transfer capabilities of the user terminal are controlled on the basis of the comparison and the call connection and data transfer status of the user terminal.
US10263649B2 Fully integrated power amplifier employing transformer combiner with enhanced back-off efficiency
A fully integrated power amplifier (PA) employing a transformer combiner with enhanced back-off efficiency includes a first PA to amplify a first radio frequency (RF) signal and a second PA to amplify a second RF signal. A first variable capacitor is coupled between differential output nodes of the first PA. A second variable capacitor is coupled between differential output nodes of the second PA. The differential outputs of the first PA and the second PA are coupled via respective first and second transformers to a load. Capacitance values associated with the first and second variable capacitors are dynamically adjustable based on an amplitude of the RF signal to achieve a desired power efficiency at an output power level.
US10263648B2 Low cost millimeter wave receiver and method for operating same
A low cost millimeter wave receiver and method for operating same is disclosed. In one embodiment, the method comprises receiving the first signal, converting the first signal of the first bandwidth into an intermediate frequency band, splitting the converted first signal into N of intermediate signals, each having a bandwidth less than the digital processor bandwidth, wherein N is an integer greater than one, downconverting each of the N intermediate signals to the second frequency band, processing the downconverted plurality of signals with the digital processor to generate N processed signals, upconverting each of the N processed signals to the intermediate frequency band, converting the upconverted signals to the third frequency band, and transmitting the converted signals.
US10263644B1 Hybrid architecture for LDPC channel coding in data center
Methods and systems are presented in this disclosure for implementing forward error correction in cloud and data center storage devices based on low-density parity-check (LDPC) channel coding. A forward error correction circuit presented herein includes a first LDPC decoder configured to perform hard-decision LDPC decoding of data read from a storage medium through a first read channel. The forward error correction circuit further includes a hybrid LDPC decoder selectively configurable to perform a selected one of hard-decision LDPC decoding and soft-decision LDPC decoding of data read from the storage medium through a second read channel, wherein, responsive to a control signal generated based, at least in part, on one or more parameters indicative of condition of the storage medium, the hybrid LDPC decoder is switchable between hard-decision LDPC decoding and soft-decision LDPC decoding.
US10263643B2 Method and system of multi-fold data protection for high-density storage appliance with improved availability and robustness
A first set of data is encoded using a first code to obtain a first-code codeword which includes the first set of data and first-code parity information. The first set of data is stored on a plurality of drives, wherein the first set of data is distributed amongst the plurality of drives. A second set of data is encoded using a second code to obtain a second-code codeword which includes the second set of data and second-code parity information. The second-code codeword is stored on the plurality of drives, wherein the second set of data and second-code parity information are distributed amongst the plurality of drives.
US10263640B2 Low density parity check (LDPC) decoder with pre-saturation compensation
Method and apparatus for decoding data. In some embodiments, an LDPC decoder has a variable node circuit (VNC) with a plurality of variable nodes configured to store bit reliability values of m-bit code bits. A check node circuit (CNC) has a plurality of check nodes configured to perform parity check operations upon n-bit messages from the VNC. Each n-bit message is formed from a combination of the bit reliability values and stored messages from the check nodes. A pre-saturation compensation circuit is configured to maintain a magnitude of each n-bit message received by the CNC below a saturation limit comprising the maximum value that can be expressed using p bits, with p less than n and each of the n-bit messages received by the CNC having a different magnitude. The pre-saturation compensation circuit may apply different scaling and/or bias factors to the n-bit messages over different decoding iterations.
US10263639B2 Managing soft information in high-capacity solid state drive
A technique for managing soft information decoding for a solid state drive (SSD) is disclosed. The technique includes performing soft decoding of data read from an SSD using at least some of a plurality of soft information tables and monitoring a set of one or more soft information properties associated with the plurality of soft information tables. The technique also includes adjusting the at least some of the plurality of soft information tables based at least in part on the set of the one or more soft information properties and repeating the soft decoding of data read from the SSD using at least the one or more adjusted soft information tables.
US10263638B2 Lossless compression method for graph traversal
To enable lossless compression, an auxiliary bitmap is used to provide side information about the graph bitmap. Each bit in the auxiliary bitmap represents a word in the graph bitmap. A zero bit in the auxiliary bitmap means that the corresponding word in the graph bitmap is not transmitted. Therefore, it is set to the default value, λ, during decompression. This default value could be either an all-zeros word, or all-ones word depending on the BFS step. A one bit in the auxiliary bitmap means that the corresponding word in the graph bitmap is transmitted.
US10263635B2 Method and apparatus for mitigation of outlier noise
Method and apparatus for nonlinear signal processing include mitigation of outlier noise in the process of analog-to-digital conversion and adaptive real-time signal conditioning, processing, analysis, quantification, comparison, and control. Methods, processes and apparatus for real-time measuring and analysis of variables include statistical analysis and generic measurement systems and processes which are not specially adapted for any specific variables, or to one particular environment. Methods and corresponding apparatus for mitigation of electromagnetic interference, for improving properties of electronic devices, and for improving and/or enabling coexistence of a plurality of electronic devices include post-processing analysis of measured variables and post-processing statistical analysis.
US10263632B2 Method and system for gain control for time-interleaved analog-to-digital convertor (ADC)
Methods and systems are provided for gain control during communications. A first electronic device may communicated data to a second electronic device; may monitor conditions and/or parameters affecting estimated reception performance at the second electronic device; and may communicated to the second electronic device, via a connection separate from and different than a connection used in communicating the data, information relating to the monitored conditions, to enable adjusting functions relating to reception of the data at the second electronic device. Based on the received information, at least one reception related function in the second electronic device may be controlled. The controlling may include determining, based on the received information, adjustments to the at least one reception related function or to a related parameter. The at least one reception related function may include applying gain to at least a portion of signals received by the second electronic device.
US10263625B1 TDC circuit and PLL circuit
A TDC circuit includes a plurality of delay elements connected in series. The TDC circuit includes a reference signal supply circuit that randomly selects one of the plurality of delay elements to supply a reference signal. The TDC circuit includes a plurality of latch circuits that latch a clock signal in response to outputs of the plurality of delay elements. The TDC circuit includes an output circuit that codes output signals output from the plurality of latch circuits and outputs a digital code indicating a relative time relationship of the clock signal with respect to the reference signal.
US10263621B2 Level shifter with improved voltage difference
A level shifter that comprises an input operating in an input voltage domain and an output for outputting an output signal in an output voltage domain. The level shifter further includes an inverter circuit operating in the input voltage domain for inverting an input signal to create an inverted input signal. The level shifter also includes an intermediate circuit operating in an intermediate voltage domain for generating an intermediate signal. An output buffer circuit generates the output signal based at least in part on the inverted input signal and the intermediate signal.
US10263619B1 Low leakage isolation cell
An isolation cell clamps a signal passing from a first, powered-down power domain to a second, power-on power domain. To reduce leakage current, some of the circuits and devices are connected to a voltage supply of the first or “from” power domain, while other circuits and devices are connected to a voltage supply of the second or “to” power domain.
US10263616B1 Radio frequency switch
A radio frequency switch having a first node, a second node, and a plurality of switch cells that are coupled in series between the first node and the second node is disclosed. Each of the plurality of switch cells is made up of a main field-effect transistor (FET) having a main drain terminal, a main source terminal, a main gate terminal, and a main body terminal. Further included is a first body bias FET having a first drain terminal coupled to the main gate terminal, a first gate terminal coupled to the main drain terminal, a first body terminal coupled to the main body terminal, and a first source terminal, and a second body bias FET having a second drain terminal coupled to the main gate terminal, a second body terminal coupled to the main body terminal, and a second source terminal coupled to the first source terminal.
US10263615B2 Circuit and method for driving a device through drive cycles
Methods and circuitry for driving a device through drive cycles wherein each drive cycle has a plurality of drive stages are disclosed. An example of the circuitry includes an output for coupling the circuitry to the device and a plurality of drive slices coupled in parallel to the output. Control circuitry selectively activates individual drive slices in the plurality of drive slices during each stage of a drive cycle.
US10263614B2 Systems and methods to switch radio frequency signals for greater isolation
In semiconductor switches, the isolation can be limited by the capacitive coupling between the switch input and the switch output. Ultra-high isolation can be achieved by adding a coupled transmission line to the semiconductor switch. The coupled transmission line introduces inductive coupling, which cancels at least a part of the capacitive coupling between the switch input and the switch output.
US10263613B2 Safety-oriented load switching device and method for operating a safety-oriented load switching device
A safety-oriented load switching device for the electric switching of an automation component, the device including a first branch circuit and a second branch circuit which extend from a respective supply-side supply connection to a respective load-side load connection, wherein a switching assembly including a parallel circuit of a switching means designed for an opening and a closing of the respective branch circuit and of a resistor means is formed in each branch circuit, and further including at least one measuring point located between the switching assembly and the load connection, and wherein a potential measuring device, which is electrically connected to a reference point and configured for providing a potential-dependent measuring signal, is connected to the measuring point.
US10263610B2 Control method and control circuit for switch circuit and switch circuit device
The present invention provides a control method and a control circuit for a switch circuit and a corresponding switch circuit device. The control circuit comprises: an acquiring module, configured to acquire first time; a comparing module, connected with the acquiring module and configured to compare first time with first fixed time; and an adjusting module, connected with the comparing module. The adjusting module adjusts a cycle of a turn-on signal of a first switch transistor to second fixed time when the first time is less than the first fixed time. The adjusting module adjusts the sum of second time and the first fixed time to the second fixed time to achieve spread spectrum when the first time is more than the first fixed time. The control circuit for the switch circuit provided by the present invention is used for controlling the switch circuit for spread spectrum.
US10263609B2 Oven controlled crystal oscillator device cover
A device cover for temperature control of a component device includes at least one heating element enclosed using the device cover, and multiple sections. Each section is located at a distinct location on the device cover and includes a reflection angle for the distinct location. The reflection angle is configured to reflect heat to the component device enclosed using the device cover, the heat originating from the at least one heating element.
US10263604B2 Triangular wave generator
A triangular wave generator includes a wave generator configured to generate a triangular wave according to a clock signal and a control signal. The triangular wave generator further includes a wave controller configured to adjust a value of the control signal in a correction mode. The control signal includes a first bias control signal, a second bias control signal, and a capacitance control signal.
US10263603B2 Method for managing the operation of a synchronous retention flip-flop circuit exhibiting an ultra-low leakage current, and corresponding circuit
The synchronous retention flip-flop circuit comprises a first circuit module suitable for being powered by an interruptible power source and a second circuit module suitable for being powered by a permanent power source. The first circuit module includes first and second latch stages, which are configured to store at least one datum while said interruptible power source is supplying power, transmitting means suitable for being controlled by a second control signal and configured to deliver said at least one datum to the second circuit module before an interruption of said interruptible power source, the second circuit module being configured to preserve said at least one datum during said interruption, and restoring means suitable for being controlled by a first control signal and configured to restore said at least one datum at the end of said interruption. Only the second control signal remains active during interruption of the interruptible power source.
US10263602B2 Surface acoustic wave filter with temperature sensor
Aspects of this disclosure relate to a surface acoustic wave filter with an integrated temperature sensor. The integrated temperature sensor can be a resistive thermal device configured as a reflective grating for a surface acoustic wave resonator, for example. A radio frequency system can provide over temperature protection by reducing a power level of a radio frequency signal provided to the surface acoustic wave filter responsive to an indication of temperature provided by the integrated temperature sensor satisfying a threshold.
US10263601B2 Tunable bulk acoustic resonator device with improved insertion loss
A tunable BAW filter device operating in an allocated channel of a predetermined frequency band includes a voltage source and multiple BAW resonators. The voltage source selectively provides non-zero DC bias voltage based on a location of the allocated channel within the frequency band. Each BAW resonator has a resonance frequency, and includes a bottom electrode, a piezoelectric layer and a top electrode disposed over the piezoelectric layer, the top electrode being electrically connected to the voltage source via a resistor. The voltage source is activated, applying the non-zero DC bias voltage to the top electrode of each BAW resonator, when the location of the allocated channel is near an upper or lower corner of the frequency band. The resonance frequency of each BAW resonator is shifted in response to the non-zero DC bias voltage toward a center of the frequency band, improving insertion loss of the BAW filter device.
US10263600B2 Band-pass filter and branching filter
A branching filter includes a first band-pass filter provided between a common port and a first signal port, and a second band-pass filter provided between the common port and a second signal port. The first band-pass filter includes a first LC resonant circuit and a first resonant circuit section provided in series. The first resonant circuit section includes a first acoustic wave resonator. The second band-pass filter includes a second LC resonant circuit and a second resonant circuit section provided in series. The second resonant circuit section includes a second acoustic wave resonator and an inductor connected in parallel.
US10263591B1 Device and method for reduction of electrical noise from pulsed signal devices
A device and method for reducing ground currents and electromagnetic interference in pulsed signal devices are described. In one embodiment, the device may include, in addition to regular filtering components and circuits, a separate noise-suppressing choke in the ground wire to reduce current in the ground wire that causes damage to bearings and electrical overstress. Such choke may be of a saturation type that offers high inductance and good noise-blocking properties in normal operating conditions and sufficiently low impedance at fail currents which provides proper tripping of safety circuits.
US10263590B2 Electronic component
An electronic component including a substrate, a capacitor lower electrode disposed on the substrate, an inorganic dielectric layer disposed on the substrate to cover the lower electrode, a capacitor upper electrode disposed directly on the inorganic dielectric layer and facing the lower electrode via the inorganic dielectric layer, and a coil disposed on the inorganic dielectric layer and electrically connected to the lower electrode or the upper electrode.
US10263589B2 Noise filter
A noise filter is provided with a filter circuit including a first condenser and a second condenser; the first condenser and the second condenser are connected in parallel with each other by a first wiring lead for connecting one terminal of the first condenser with one terminal of the second condenser and a second wiring lead for connecting the other terminal of the first condenser with the other terminal of the second condenser; the first wiring lead and the second wiring lead are arranged in such a way as to intersect each other odd-number times.
US10263584B1 Calibration of a dual-path pulse width modulation system
A system may include a digital pulse width modulator subsystem, a first path coupled to an output of the digital pulse width modulator subsystem, a second path coupled to the output of the digital pulse width modulator subsystem and configured to drive a closed-loop analog pulse width modulator, a controller to select between the first path and the second path for processing a signal based on one or more characteristics of the signal, wherein a first gain of the first path and a second gain of the second path are approximately equal at the time of switching selection between the first path and the second path or vice versa, in order to minimize artifacts due to the switching.
US10263582B1 Variable gain amplifier with gain-based compensation
The present disclosure describes variable gain amplifiers with gain-based compensation. In some embodiments, a variable gain amplifier (VGA) includes a gain stage, an output stage, a compensation stage, and a capacitor coupled between respective outputs of the gain stage and compensation stage. A gain of the VGA is configured, based on a gain setting, to amplify signals received by the variable gain amplifier. A gain of the compensation stage is configured, based on the gain setting, to alter an effective capacitance of the capacitor, which is applied to the output of the gain stage for compensation of the VGA. By altering the effective capacitance based on the gain setting of the VGA, compensation capacitance is adjusted continuously with changes in the gain setting and at a similar resolution. In various embodiments, the continuous adjustment of the compensation capacitance across different gain levels prevents discontinuities in amplifier compensation.
US10263580B2 Power supplying apparatus for neural activity recorder reducing common-mode signal applied to electrodes connected to the neural activity recorder
Disclosed is a differential voltage supplying apparatus configured to supply, to a neural activity recorder, an input signal generated by combining, with a direct current (DC) power supply, a common-mode signal determined from a voltage applied to a detection electrode and a reference electrode connected to the neural activity recorder, and improve a common-mode rejection ratio of the neural activity recorder and generate a DC power supply.
US10263574B2 Radio frequency receiver
A radio frequency receiver device comprises: a receiver input arranged to receive signals having one or more frequency components within a frequency spectrum; a filter having a filter output impedance; and an amplifier comprising: an amplifier input (134a, 134b) connected to the filter output; an amplifier output 72a, 72b); at least one radio frequency input transistor (144a, 144b); and a feedback circuit including at least one feedback resistor (146a, 146b). The device is arranged to be selectably operable in: a first mode wherein the amplifier has first feedback resistance and transconductance values respectively such that the amplifier input impedance and the filter output impedance are substantially the same; and a second mode having second feedback resistance and transconductance values such that upon connection of a predetermined external impedance matching circuit (160) between the filter and the amplifier, the amplifier input impedance and the filter output impedance are substantially the same.
US10263572B2 Radio frequency apparatus and method with dual variable impedance components
A radio frequency (RF) transmitter apparatus and method are provided with dual variable impedance components. Included is at least one RF transmitter with a power amplifier and a filter. Further, a first variable impedance component is in electrical communication between the filter and an antenna port. Also included is a second variable impedance component in electrical communication between the power amplifier and the filter.
US10263567B2 Amplifier circuit
An amplifier circuit includes a first transistor; a first resistor to which a first potential is applied, the first resistor being connected to an emitter of the first transistor; a second resistor to which a second potential is applied, the second resistor being connected to a collector of the first transistor; and a signal control circuit configured to apply, to a base of the first transistor, a voltage that has been level-shifted based on an average value of a voltage at the collector of the first transistor, the signal control circuit being provided between the collector and the base of the first transistor.
US10263559B2 Synchronous machine controller
When a failure of current detection parts occurs while a synchronous machine is operating, the failure of the current detection parts is detected and the operation of the synchronous machine is continued. An open-loop control part for performing control without using the detected current values of the current detection parts and a closed-loop control part for performing control using the detected current values are included, and a failure of the current detection parts is detected while the open-loop control part is operating.
US10263551B2 Method for controlling regulating device for regulating automotive vehicle alternator, corresponding regulating device and alternator
The method of control according to the invention slaves a DC voltage generated by the alternator to a predetermined setpoint value by controlling an excitation current flowing in an excitation circuit comprising an excitation winding of a rotor of the alternator. The excitation current is controlled by means of a semiconductor switch, in turn controlled by a control signal having a predetermined period. The method comprises a detection of a failure of the excitation circuit. At least one short-circuit of the excitation winding is detected. According to another characteristic of the method, the control signal is generated on the basis of a combination of a setpoint signal formed by pulses of the predetermined period exhibiting a duty ratio representative of the setpoint value and of a detection signal indicative of the short-circuit.
US10263549B2 Driving device with stepper motor
A driving device includes a case with a cover mounted thereto. A transmission device is received in the case and has a stepper motor and a gear reduction unit which includes multiple gears engaged with each other. The stepper motor drives the gear reduction unit which is connected to an object. A circuit board is connected with the transmission device and provides power to the stepper motor and controls the stepper motor. A sensing device has a sensor and a detector which is connected to one of the gears of the gear reduction unit. When the gear reduction unit drives the detector to pass the sensor, the sensor sends a signal to the circuit board which keeps on providing the power to the stepper motor. When no signal is sent to the circuit board by the sensor, the circuit board cuts off the power to the stepper motor.
US10263548B2 Method and system for feedback-controlling
Disclosed are a method and a system for feedback-controlling including controlling a current supply unit in a controller so that an output applied to a driving unit from the current supply unit is repeatedly turned on/off by predetermined period and duty. The method also includes feedback-controlling of an output value of the controller applied to the current supply unit from the controller so that the output of the current supply unit follows a target value. The feedback-controlling includes an integration control process and stops the integration control process in the period that the current supply unit turns off the output thereof.
US10263547B2 Permanent magnet motor control for electric subsea pump
A method includes monitoring electrical output in an open control loop from a variable speed drive to a remote permanent magnet motor, the variable speed drive electrically connected to the permanent magnet motor via a power transmission line. The method includes, in response to detecting a variation in the electrical output at the variable speed drive, synchronizing a frequency of a rotor shaft of the permanent magnet motor with a constant electromagnetic field frequency of a stator of the permanent magnet motor for a predetermined period of time. After the predetermined period of time, the method includes increasing the electromagnetic field frequency of the stator to an operational frequency threshold to accelerate the frequency of the rotor shaft of the permanent magnet motor. In response to reaching the operational frequency threshold, the method includes determining an internal position of the rotor based on the variable electromagnetic field frequency.
US10263543B2 Electric tool system
A power tool system includes a battery pack, a charger connectable to the battery pack, and a power tool body connectable to the battery pack. The battery pack includes a battery pack memory that stores identification information in a smallest unit allowing for communication with the charger and the power tool body. Each of the charger and the power tool body includes a device memory that stores at least one piece of identification information of a usable battery pack. Each of the charger and the power tool body or the battery pack includes a determination unit that determines whether or not the at least one piece of identification information stored in the device memory includes the identification information stored in the battery pack memory.
US10263542B2 Plate, transducer and methods for making and operating a transducer
A plate, a transducer, a method for making a transducer, and a method for operating a transducer are disclosed. An embodiment comprises a plate comprising a first material layer comprising a first stress, a second material layer arranged beneath the first material layer, the second material layer comprising a second stress, an opening arranged in the first material layer and the second material layer, and an extension extending into opening, wherein the extension comprises a portion of the first material layer and a portion of the second material layer, and wherein the extension is curved away from a top surface of the plate based on a difference in the first stress and the second stress.
US10263540B2 Suppression of a DC component in a transformer of a voltage converter
The present invention relates to a voltage converter comprising a primary side which has a full bridge device which is configured for the purpose of receiving a first DC voltage from a voltage source at a first amplitude and to transmit same to a primary coil arranged in the primary side, comprising a control unit which is designed for the purpose of controlling the full bridge device using PWM signals having phases shifted counter to one another, wherein the control unit is configured to detect an asymmetry in the current supplied to the primary coil based on a current profile in the primary coil, wherein the control unit is designed to compensate for a detected asymmetry by adjusting the PWM signals. The present invention further relates to a corresponding method.
US10263536B2 Apparatus and method for control of multi-inverter power converter
A control apparatus includes a control logic circuit that is configured to generate control signals for controlling at least two inverters (e.g., 3-phase inverters) that are coupled in parallel. The control logic circuit is configured to sample output currents present in common load terminals of the inverters, and to compare the sampled currents to generated current references. The output currents may be sampled, and/or the current references generated, at a fixed rate. Errors between the sampled currents and current references are evaluated against hysteresis dead bands around the current references. The control signals are generated based on (i) retrieved modulator output values for a selected one of the inverters and (ii) the errors as evaluated against the hysteresis dead bands. The control logic circuit may implement first and second counters for coordinating the current reference generation, sampling the output currents, retrieving the modulator output values, etc.
US10263535B2 Method and device for voltage balancing of DC bus capacitors of neutral-point clamped four-level inverter
A method and a device for voltage balancing of DC bus capacitors of an NPC four-level inverter are disclosed. The method includes: determining an optimal zero-sequence voltage, determining an actual reference voltage of each phase based on the optimal zero-sequence voltage; comparing respectively three preset carrier signals with the actual reference voltage of each phase to obtain three first control signals; determining three duty-cycle adjustment values based on a voltage of the intermediate bus capacitor; adjusting correspondingly the three first control signals based the three duty-cycle adjustment values to obtain three second control signals; inputting correspondingly the three second control signals to three first switches of an upper bridge corresponding to each phase; and inputting correspondingly complementary signals of the three second control signals to three second switches of a lower bridge corresponding to each phase.
US10263532B2 Multiple power sources for a switching power converter controller
An electronic system includes two power supplies to supply an operating voltage to a switching power converter. The first power supply, referred to as a start-up power supply, includes a first source follower transistor to conduct a start-up current for a controller and supply an operating voltage for the controller. The controller controls operation of the switching power converter. A second power supply, referred to as an auxiliary power supply, includes a second source follower transistor to conduct a steady-state operational current for the controller and supply an operating voltage for the controller. In at least one embodiment, once the second power supply begins supplying the operating voltage to the controller, the start-up power supply automatically ceases supplying the start-up current to the controller.
US10263527B1 Power converter
To provide a power converter not to stop a DC power conversion of the power converter, when there is no abnormality in the main circuit of the power converter, and the command signal of output voltage has an abnormality. A power conversion circuit is provided with a voltage command upper limit circuit that upper-limits the voltage signal which is inputted to the switching control circuit by a preliminarily set upper limit voltage, wherein the voltage command upper limit circuit is provided with a Zener diode or a shunt regulator, wherein the Zener diode or the shunt regulator upper-limits the voltage signal by an upper limit voltage corresponding to Zener voltage or shunt voltage, and wherein a voltage command represented by the upper limit voltage is set to a voltage less than the protection determination voltage of the output overvoltage protection circuit.
US10263524B2 Multi-phase parallel converter and controlling method therefor
A multi-phase parallel converter can include: sampling circuits corresponding to power stage circuits to form a plurality of phases of the multi-phase parallel converter, where each sampling circuit samples an inductor current of a corresponding power stage circuit, and generates a sense signal; a current-sharing circuit that generates a current-sharing control signal according to a superimposed signal that is generated by adding the sense signal to a bias voltage signal; switching control circuits corresponding to the power stage circuits, where each switching control circuit receives the current-sharing control signal, and controls a switching operation of a corresponding power stage circuit; and a bias voltage generator that generates the bias voltage signal to gradually increase/decrease when a selected phase is to be disabled/enabled.
US10263523B1 Programmable pulse time limit for switching DC-DC converters
A DC-DC converter with a programmable pulse time limit. A charge pulse begins when the output voltage reaches a minimum threshold and terminates in response to a discharge indication, in which charge current flows through an inductive element while the charge pulse is provided. The discharge indication is provided to initiate a discharge pulse when the charge current reaches a peak threshold, which terminates in response to a reset indication. Current is discharged from the inductive element during the discharge pulse. A zero crossing detector provides the reset indication when the discharge current reaches a minimum level. A programmable timing circuit limits a duration of either one or both of the charge pulse and the discharge pulse to prevent hangup or excessive output voltage ripple. The DC-DC converter may include a memory that stores a digital value used to program the programmed time duration of the programmable timing circuit.
US10263519B2 Resonant virtual supply booster for synchronous digital circuits having a predictable evaluate time
A booster for a digital circuit block provides speed and reliability at lower static power supply voltages, reducing overall power consumption of the circuits. The booster includes a transistor that couples a dynamic power supply node to a static power supply and is disabled in response to a boost clock. An inductor and capacitance, which may be the block power supply shunt capacitance, coupled to the dynamic power supply resonates so that the voltage of the dynamic power supply increases in magnitude to a value greater the static power supply voltage. A boost transistor is included in some embodiments to couple an edge of the clock to the dynamic power supply, increasing the voltage rise. Another aspect of the booster includes multiple boost transistors controlled by different boost clock phases so that the resonant boost circuit is successively stimulated to increase the amount of voltage rise.
US10263518B2 System and method for switched power supply with delay measurement
According to an embodiment, a method of operating a switching power supply includes applying a periodic switching signal to a first switch that is coupled to an output node, detecting an offset delay between applying the periodic switching signal and a change in voltage of the output node, calculating a corrected midpoint of a half phase of the periodic switching signal based on the offset delay, generating a sampling pulse based on the corrected midpoint, and sampling a current at the output node according to the sampling pulse.
US10263517B2 Voltage boosting circuit capable of modulating duty cycle automatically
The present invention relates to a voltage boosting circuit capable of modulating duty cycle automatically, which comprises an inductor, a switching module, and a control circuit. The inductor is coupled to an input for receiving an input power. The switching module is coupled among the inductor, a ground, and an output for switching so that the input power can charge the inductor and produce charged energy, or for switching so that the charged energy of the inductor can discharge to the output and produce an output voltage. The control circuit outputs at least a control signal according to the charged energy and the output voltage for controlling the switching module to switch the inductor and provide the input power to the output, to switch the charged energy of the inductor to discharge to the output, or to switch the input power to charge the inductor.
US10263506B2 Circuit arrangement and method for gate-controlled power semiconductor devices
A switch module includes a collector connection, an emitter connection, and a gate connection. The switch module includes a plurality of parallel connected switching elements, e.g., insulated-gate bipolar transistors, each having a collector electrode electrically connected to the collector connection, an emitter electrode electrically connected to the emitter connection, and a gate electrode electrically connected to the gate connection. A fault protection device is operatively electrically connected between the gate connection and the switching elements and comprises passive electrical components which are selected such that in the event of a fault in at least one of the plurality of switching elements, a gate-emitter voltage is provided to the gate electrodes of non-faulty switching elements in a passive manner.
US10263504B2 Synchronizing interval data despite loss of time
A meter mechanism and method are disclosed for recording relative interval data accumulated when the meter loses real time due to a power failure and synchronizing the relative interval data with real-time intervals in the meter memory. The disclosed meter mechanism and method ensure that all usage is accounted for while the meter is online, the metered usage is closer to the actual interval boundaries in which the usage occurred, accounts for all real time intervals in a day, and is power fail tolerant during both the analysis and synchronization.
US10263501B2 Vibration generator and electronic device having the same
A vibration generator including a coil, a plunger including a first shaft and a second shaft, and a frame. The first shaft is received in the coil such as to be movable in a first direction. The second shaft extends in a second direction orthogonal to the first direction, is disposed on the other side in the first direction relative to the coil with a gap therebetween. The first and second shafts are partly made of a magnetic material so as to be magnetically attractable to the coil and thereby movable to one side in the first direction. The frame is fixed to the first and second shafts at positions on the one and other sides, respectively, in the first direction relative to the coil, and elastically deformable at least partly as a result of movement of the first and second shafts.
US10263500B2 Electrical machine including a magnetic flux weakening apparatus
An electric machine includes a rotor having a magnetic field generating device for generating a magnetic flux. A flux changing apparatus of the electric machine includes an axially displaceable body that is disposed axially outside the magnetic field generating device for changing a magnetic flux within a gap between the rotor and a stator in dependence upon an axial position of the body relative to the rotor. The flux changing apparatus includes an adjusting device for axially adjusting the axial position of the body relative to the rotor. The adjusting device includes an actuator and an adjusting element. The actuator acts on the body via the adjusting element. The adjusting element engages the body and/or the actuator in such a manner that a rotational movement of the body can be decoupled from the adjusting element, a housing of the electric machine, the rotor and/or the actuator.
US10263499B2 Motor
A motor includes: a motor main body; a power board including a switching element and electrically connected to the motor main body; a control board electrically connected to the power board and disposed on an axial counter output side of the motor main body; a control board holder attached to the motor main body to hold the control board; a sensor magnet located on a counter output side of a stator and fixed to a shaft; a rotation sensor attached to the control board to face the sensor magnet; and a power board case directly or indirectly attached to the motor main body to hold the power board. The power board is positioned radially outward of the motor main body. Board surfaces of the power board are inclined with respect to board surfaces of the control board.
US10263498B2 Cooled stator winding with temperature detection element configuration for improved accuracy
A rotating electric machine includes a rotor, a stator, a temperature detecting element, and a cooling apparatus. The stator includes a stator core that is disposed so as to oppose the rotor in a radial direction of the rotating electric machine, and a stator winding that is wound around the stator core. The temperature detecting element is set in the stator winding. The cooling apparatus drips a liquid coolant onto coil end portions of the stator winding, thereby performing cooling. The stator winding has a plurality of input and output lines that are electrically connected to an external apparatus. At least one input or output line among the plurality of input and output lines is disposed vertically above the temperature detecting element.
US10263493B2 Vibratory sieving machine
In a vibratory sieving machine having two rotary shafts provided with eccentric spindles disposed parallel to each other, motors are disposed so as to reduce the capacity or power consumption of the motors required in the vibratory sieving machine, and to drive the two rotary shafts independently, and a rotary drive control mechanism is configured such that either one of the two rotary shafts can be started upon a start, while the other of the two rotary shafts can be started after a rotary drive state of the one of the two rotary shafts is transferred to a stationary state.
US10263490B2 Apparatus and method for fixing power line terminal in motor
An apparatus for fixing a power line terminal may include a terminal guide configured to be mounted at one end of a motor cover to support a motor coil terminal and to have an upper surface provided with a plurality of insertion grooves, and a plurality of insert nuts configured to be inserted into the plurality of insertion grooves, the insert nuts manufactured separate from the terminal guide.
US10263489B2 Motor housing and motor including same
The present invention provides a housing of a motor including a bearing pocket portion which is formed to protrude from an inner lower portion of the housing and in which an accommodation space of a bearing configured to support a shaft is formed and a shaft hole through which the shaft passes is formed in a bottom surface thereof, wherein the bearing pocket portion includes a stepped portion, the stepped portion protrudes upward along a circumference of the shaft hole, and an accommodation groove is formed between the stepped portion and an inner wall of the bearing pocket portion, thereby providing an advantageous effect of preventing foreign materials discharged from the housing of the motor, the wave washer, the bearing, and the like from exiting through the shaft hole.
US10263485B2 Alternator with integrated engine controller
An engine control system includes an engine, crankshaft, and a flywheel. The flywheel is coupled to the crankshaft of the engine and includes a number of magnets arranged axially along a first side. The system further includes a printed circuit board including a number of coils integrated into the circuit board. The printed circuit board is positioned such that a first face of the printed circuit board is positioned parallel to the first side of the flywheel. Power is generated by the flywheel rotating and causing the magnetic fields associated with the magnets to induce a current though the coils integrated into the printed circuit board.
US10263484B2 Stator of rotary electric machine
A stator for a rotary electric machine includes a stator core, three-phase coils, and a neutral point connection conductor. The three-phase coils are wound around the stator core. The neutral point connection conductor is connected to each of the three-phase coils. The neutral point connection conductor includes a linear conductor that is bent. The linear conductor includes two end portions and an overlapping portion in which the conductor is folded back and doubled up. One of the two end portions is connected to one-phase coil of the three-phase coils. The other of the two end portions is connected to another-phase coil of the three-phase coils. The overlapping portion is connected to the remaining-phase coil of the three-phase coils.
US10263483B2 Stator winding for a transverse flux machine and method for the production of a stator winding
The invention relates to a stator winding for a transversal flow machine, the stator winding (98) being embodied as a cord (244) and said cord (244) having a plurality of individual wires (242). Said stator winding (98) is embodied as a coil with several windings (245), characterized in that one or more windings (245) are layered in the axial direction or radial direction.
US10263482B2 Permanent magnet embedded-type rotating electric machine and manufacturing method thereof
Cracking and flying around of permanent magnets in a permanent magnet embedded-type rotating electric machine is prevented. Thermally hardening FRP is used as a reinforcement sheet, and the reinforcement sheet is wrapped around the periphery of a permanent magnet and caused to adhere to the surface of the permanent magnet by being thermally hardened. Subsequently, the permanent magnet to which the reinforcement sheet is adhering is embedded in magnet embedding holes of the rotor. The surface of the reinforcement sheet after thermal hardening is in a state of not being attached to the inner wall surface of the magnet embedding holes. Consequently, no stress caused by the difference between the linear expansion coefficients of the rotor and permanent magnets acts on the permanent magnets when the temperature of the rotor rises, and cracking of the permanent magnets can thus be prevented.
US10263481B2 Electric motor or generator
An electric motor or generator having a stator with stator teeth for mounting electrical coils and a rotor, wherein the stator has a first surface that is substantially perpendicular to an axis of rotation of the rotor and the rotor has a second surface that is formed in substantially the same radial position as the stator's first surface, wherein upon the rotor being pivoted perpendicular to the axis of rotation of the rotor the first surface and the second surface are arranged to prevent the rotor coming into contact with the stator teeth.
US10263480B2 Brushless electric motor/generator
Disclosed are various embodiments for a motor/generator comprising: a rotor adapted to rotate about a longitudinal axis, the rotor comprising a first partial toroidal magnetic cylinder defining a semi-circular tunnel, wherein the plurality of magnets forming the first partial toroidal magnetic cylinder have substantially all like poles facing inward toward the semi-circular tunnel, the semi-circular tunnel having an entrance and an exit forming an open throat defined by a space between the entrance and the exit, and a stator positioned about the longitudinal axis within a rotational path of the rotor.
US10263476B2 Transmitter board allowing for modular antenna configurations in wireless power transmission systems
A transmitter including a transmitter board comprising multiple electrical ports, each port configured to: receive any of a plurality of antenna boards, and provide electrical signals to a received antenna board. Each respective antenna board comprises antenna elements configured to transmit radio frequency (RF) power waves using the provided signal. The transmitter board further includes a processor configured to: determine whether antenna boards are connected to respective ports of the multiple electrical ports, and after determining that a respective antenna board has been received at a respective port: (i) instruct the transmitter board to provide, via the respective electrical port, electrical signals to the antenna board, and (ii) control transmission of RF waves by antenna elements of the respective antenna board to cause each of the RF waves to constructively interfere with at least one other RF wave at a receiver device located within a transmission field of the transmitter.
US10263472B2 Contactless power transfer system and power transmission device
A contactless power transfer system includes a power supply ECU configured to control an inverter to stop power transmission from a power transmission unit when a current generated in the power transmission unit exceeds a predetermined threshold value due to short-circuiting of a power reception coil. The power supply ECU estimates a coupling state between a power transmission coil and the power reception coil, and changes the predetermined threshold value in accordance with the estimated coupling state.
US10263471B2 Multiple interleaved coil structures for wireless power transfer
In one embodiment, a multiple interleaved coil structure for wireless power transfer includes a plurality of incomplete coils, each of the plurality of incomplete coils configured such that an alternating current flowing in the incomplete coil produces a magnetic field, and at least one interconnect between the plurality of incomplete coils, the at least one interconnect including a plurality of conductors arranged in such a way that the alternating current flowing in the plurality of conductors does not produce a magnetic field. Each of the plurality of incomplete coils includes a plurality of non-contiguous segments arranged in such a way that the incomplete coil will emit magnetic flux in response to an applied alternating current. The multiple interleaved coil structure can be implemented in a wireless power transmitter or a wireless power receiver.
US10263468B2 Apparatus for transmitting data and energy between two objects moving relative to one another
The invention relates to an apparatus for the transmission of data and energy between two objects moving relative to one another about a common axis of rotation. The objects each comprise coils which are disposed opposite and are spaced apart axially with respect to the axis of rotation such that an energy transmission between the coils is possible by inductive coupling. A respective electrode carrier having a respective electrical conductor is provided coaxially to and rotationally fixed with respect to the respective coils, wherein the electrode carriers are disposed opposite and spaced apart axially and the electrical conductors are arranged such that a data transmission between the electrical conductors is possible by electrical coupling. The electrical conductors are circular or part-circular and are concentric to the axis of rotation of the relative movement. In addition, the respective coil windings and electrical conductors are arranged concentric to one another. The respective coil carriers and electrode carriers are formed in one piece and as a respective circuit board. A respective arrangement of conductive material for shielding is provided between the first coil and the electrical conductor coaxial thereto and/or between the second coil and the electrical conductor coaxial thereto. The arrangement for the electrical shielding comprises bores in the circuit board in the radial region between the coil and the electrical conductor in which bores conductive material is located. The invention furthermore relates to a laser scanner having such a transmission apparatus in accordance with the invention.
US10263466B2 Magnetic field shaping for inductive power transfer
An IPT system magnetic flux device for generating or receiving a magnetic flux, has a magnetically permeable core and at least one coil magnetically associated with the core. A shield repels magnetic flux and is located on the opposite side of the core such that the shield includes an outer portion that extends beyond at least part of the perimeter of the core.
US10263465B2 Radiative wireless power transmission
A wireless power transmission system (100) includes a conductive waveguide (110) at least partially filled with a dielectric material (115), the waveguide extending along a first direction (e.g., z-axis) from a first end (111a) to an opposing end (111b) thereof, the waveguide having a bottom face (112), a top face (114) and a pair of side faces (116a, 116b) that together form a substantially rectangular cross-section of the waveguide, the top face having a plurality of slots (118) oriented substantially orthogonal to the first direction and distributed between the first end and the opposing end, the slots separated from each other by a first distance (l1) measured along the first direction. In one illustrative embodiment, the waveguide includes a plurality of barriers (120) interleaved with the plurality of slots, the barriers separated from each other by the first distance, each of the barriers extending between the top and bottom faces and having a barrier cross-section with an area smaller than an area of the waveguide cross-section and an input port (130) coupled with the first end of the waveguide, the input port configured to receive an input waveform (101) to be guided by the waveguide.
US10263462B2 Electrical system control using simulation-based setpoint determination, and related systems, apparatuses, and methods
The present disclosure is directed to systems and methods for controlling an electrical system using simulation-based setpoints. Some embodiments include control methods that enable recalculation of the optimal setpoints during demand windows. Some embodiments include a multi-mode controller to control an electrical system in a charge mode and a demand mode. Some embodiments include techniques for load and generation learning and prediction. Some embodiments include consideration of external data, such as weather.
US10263461B2 Smart DC microgrid parking structures using power line communications
A power system for a vehicle parking structure is disclosed. The power system comprises: a DC voltage bus arranged throughout the vehicle parking structure and configured to distribute DC power throughout the vehicle parking structure; at least one DC power source operably connected to the DC voltage bus and configured to provide DC power to the DC voltage bus; a plurality of DC loads arranged throughout the vehicle parking structure and operably connected to the DC voltage bus, the plurality of DC loads being configured to operate using DC power from the DC voltage bus; and a control system operably connected to the DC voltage bus and configured to communicate with at least one DC load in the plurality of DC loads using data signals transmitted via the DC voltage bus.
US10263458B2 Uninterruptible power supplies with control capabilities
A distributed low voltage power system can include a primary power source that distributes line voltage power during a first mode of operation and fails to distribute the line voltage power during a second mode of operation. The system can also include a secondary power supply coupled to the primary power source, where the secondary power supply includes a controller and an energy storage device. The system can further include a power distribution module (PDM) coupled to the primary power source and the secondary power supply, where the PDM includes a first power transfer device and a first output channel. The system can also include at least one first LV device coupled to the first output channel of the PDM, where the at least one first LV device operates using a reserve LV signal based on the reserve signal during the second mode of operation.
US10263456B1 Integrated three-port bidirectional DC-DC converter for renewable energy sources
A three-port bidirectional DC-DC converter for grid-interactive renewable energy source system applications. The three-phase topology is suitable for residential power requirements. The control of the backup battery system and the renewable energy source system are naturally decoupled. In addition, the port interface with the renewable energy is current type, which can implement maximum power point tracking (MPPT) and soft switching under wide variations in the renewable energy source terminal voltage.
US10263452B2 Wireless charging control method and apparatus in wireless power transmission system
The present disclosure provides a wireless charging control method. The wireless charging control method in an apparatus having a wireless power reception module, includes sensing an event in a wireless charging mode, determining whether the sensed event is a predetermined wireless-charging indirect-associated event, when the sensed event is a predetermined wireless-charging indirect-associated event, identifying a wireless charging operation corresponding to the wireless-charging indirect-associated event and controlling wireless charging according to the identified wireless charging operation.
US10263449B2 Battery charging systems and methods
A loudspeaker battery charging device comprises a three-position selector that establishes one of a first, second, or third charging mode for charging a battery of a loudspeaker. The first charging mode pertains to an off state of the loudspeaker. The second charging mode pertains to an on state of the loudspeaker. The third charging mode pertains to a fast charge state of the loudspeaker. A controller receives a signal from the three-position power switch indicating a selected charging mode of the first, second, or third charging mode. A switch circuit outputs a first power-supplying level in response to the first or second charging mode and outputs a second power-supplying level higher than the first power-supplying level in response to the third charging mode.
US10263448B2 Power storage system and method of controlling the same
A power storage system supplies electric power to a load, and includes: a secondary battery; a capacitor connected in parallel to the secondary battery; and a controller performing control to prioritize charging and discharging of the capacitor over charging and discharging of the secondary battery.
US10263443B2 Power capacity indicator
A wireless electronic device is provided which comprises a rechargeable power supply and a power capacity indicator unit. The power capacity indicator unit comprises one or more sensors configured to detect that the wireless electronic device is out of a base charger and is in an idle state for a predetermined idle threshold. The one or more sensors are further configured to detect when a power level of the rechargeable power supply is within at least one predetermined power threshold range. The control unit is configured to activate at least one power status indicator corresponding to the at least one predetermined power threshold range when the wireless electronic device is detected to be out of the base charger and in the idle state for the predetermined idle threshold, and the detection of the power level of the rechargeable power supply is within at least one predetermined power threshold range.
US10263439B2 Method and apparatus for protecting battery
Various example embodiments of the present disclosure disclose a method and an apparatus for protecting a battery in an electronic device. According to various example embodiments of the present disclosure, the electronic device includes: a battery configured to supply power to the electronic device; a timer configured to maintain time information of the electronic device; a thermistor configured to measure a temperature of the battery; and a processor electrically connected with the battery, the timer, and the thermistor, and the processor is configured to: determine a state of the battery when the electronic device is powered off; cause the electronic device to enter a suspend mode to protect the battery based on a result of the determining; be woken up by the timer in a sleep state accompanied by entering of the suspend mode, and acquire state information of the battery; and perform a function related to battery protection of the battery based on the acquired state information.
US10263438B2 Battery management system for vehicle
A battery management system for a vehicle is provided. The system is capable of preventing vehicle malfunction by preventing overcharge and over-discharge of a low-voltage battery by providing a controller that is configured to receive power transmitted from a first connection line and power transmitted from a second connection line. The battery management system includes a relay configured to electrically connect and disconnect power that is supplied from a battery to loads. The system also includes a controller configured to receive a first regular power transmitted through a connection line between the battery and the relay and a second regular power transmitted through a connection line between the relay and the loads. The controller is further configured to turn the relay on and off.
US10263437B1 Tabletop mobile device recharger
A tabletop mobile device recharging station is capable of simultaneously recharging a plurality of electronic devices including laptops, mobile phones, and tablets. A plurality of retractable power harnesses enable recharging through USB cables by transmission of a variable quantity of electrical energy following compliance with a predetermined condition, i.e., payment of a fee. The recharging station is also capable of wireless recharging and direct conversion of AC to appropriate levels of DC current to effect recharging.
US10263426B2 System stabilizing control device and method
A system stabilizing controller for estimating and controlling stability of a power grid includes a collection unit collecting grid information including a power flow amount from the power grid and a calculation unit calculating a generator shedding amount at a fault observation point on the basis of the grid information and estimating a correlation line on the basis of the power flow amount and generator shedding amount. The calculation unit determines a generator phase angle curve that is the relationship between the internal generator phase angle of a generator connected to the power grid and the power flow amount, determines a stability limit power flow amount on the basis of the amounts of generator acceleration energy and deceleration energy in the generator phase angle curve, determines a stability limit generator shedding amount corresponding to the stability limit power flow amount, and estimates a correlation line including a stability limit point.
US10263425B2 Power transmission network
A power transmission network including a single-phase or multi-phase AC electrical system, a converter including an AC terminal, a point of common coupling, a phase reactance connecting the common coupling to each AC terminal, and a transmission medium to interconnect the common coupling and the electrical system. The network includes a controller to: process the voltage and current at the common coupling to compute a state vector; derive a converter demand by combining the state vector with control parameters, including the capacitance of the power transmission medium presented at the common coupling and the impedance of the phase reactance; and operate the converter according to demand controlling the voltage at each terminal and/or the common coupling to inhibit any perturbation in the converter voltage from a target converter voltage or range resulting from the interaction between the capacitance of the power transmission medium and the impedance of the phase reactance.
US10263423B2 Method for controlling an electrical installation from a remote location
A method for controlling an electrical installation from a remote control station is provided, the installation including a coupling network powering one or more electrical loads, a main switch to connect a main power source to the network, and an auxiliary switch to connect an auxiliary power source to the network, the method including synchronizing the auxiliary power source with the main power source including a phase of measuring electric data relative to the main power source and to the auxiliary power source and a verification phase, from the remote station, to ensure that the measured data relative to the main and auxiliary power sources is compatible; sending an order to close the auxiliary switch from the remote control station; sending an order to open the main switch from the remote station; and checking, from the remote station, that the loads are correctly powered by the auxiliary power source.
US10263422B2 Shutdown controlling method for power system
A shutdown controlling method is applied to a system that has a host computer, a PDU and multiple electric apparatus connected to the PDU. The PDU has multiple outlets and stores preset shutdown periods for the outlets respectively. The PDU communicates with the electric apparatus and obtains their required shutdown periods. When PDU is controlled to cut off an outlet, the PDU determines whether the preset shutdown period of the outlet is larger than the required shutdown period. If yes, the PDU cuts out the AC power of the outlet. If not, the PDU cancels the shutdown command and notifies the host computer. Therefore, a manager may update the preset shutdown period of the outlet to ensure that each electric apparatus has enough time to be safely shut down.
US10263420B2 Bi-directional snapback ESD protection circuit
An ESD protection circuit having a discharging transistor and a body snatching circuit. The discharging transistor is electrically coupled between a first node and a second node. The gate and the body of the discharging transistor are electrically coupled together. The body snatching circuit receives the voltages at the first and second nodes and outputs either the voltage at the first node or the voltage at the second node based on which of these two voltages have a lower value. The output voltage of the body snatching circuit is provided to the body of the discharging transistor.
US10263419B2 Transient voltage protection circuits, devices, and methods
A transient voltage protection circuit includes a first input/output pad, a second input/output pad, and a trigger circuit coupled between the first input/output pad and the second input/output pad. The trigger circuit includes a first trigger element which includes a first input/output node, a second input/output node, a third input/output node, and a first substrate diode coupled to the third input/output node of the first trigger element. The trigger circuit further includes a first resistor coupled between the first input/output node of the first trigger element and the second input/output node of the first trigger element. The trigger circuit further includes a second trigger element which includes a first input/output node, a second input/output node, a third input/output node, wherein the second input/output node of the first trigger element is coupled to the first input/output node of the second trigger element, and a second substrate diode coupled to the third input/output node of the second trigger element. The trigger circuit further includes a second resistor coupled between the first input/output node of the second trigger element and the second input/output node of the second trigger element.
US10263417B2 Transient voltage suppressing integrated circuit
A transient voltage suppressing (TVS) integrated circuit includes an input output pin, a ground pin, a substrate, a first TVS die and a second TVS die. The substrate provides a common bus. The first TVS die is disposed on the substrate, and includes a first input output terminal and a first reference ground terminal. The second TVS die is disposed on the substrate and includes a second input output terminal and a second reference ground terminal. The second reference ground terminal is electrically coupled to the first reference ground terminal through the common bus, and the first input output terminal is coupled to the first input out pin, and the second input output terminal is coupled to a ground pin.
US10263416B2 Overvoltage protection apparatus and method
An overvoltage protection apparatus and method. The overvoltage protection apparatus includes: a determining unit, having an input end connected to an input end of the apparatus and an output end connected to an input end of a soft-start unit, and configured to determine whether an input voltage at the input end of the apparatus exceeds a preset protection voltage; and the soft-start unit, having an input end connected to the input end of the apparatus and an output end connected to an output end of the apparatus, where if the determining unit determines that the input voltage does not exceed the preset protection voltage and remains stable in a preset delay time, the soft-start unit delivers the input voltage to the output end of the apparatus; and otherwise, the soft-start unit does not deliver a voltage signal to the output end of the apparatus.
US10263411B2 Electronic fuse system and a method therefore
The disclosure relates to an electronic fuse system, and to a method for an electronic fuse system. The method comprises determining (201) if the number of engaged electronic circuit breaker modules (108) has changed compared to the stored configuration. Upon determining that the number of engaged electronic circuit breaker modules (108) has changed, determining (202) if the configuration of the electronic fuse system has changed by means of comparing a stored configuration in the power distribution controller (105) and a stored configuration in the electronic circuit breaker module (108). Upon determining that the configuration of the electronic fuse system has changed, determining (203) if a stored configuration is available from the bus (101). Upon determining (203) that a stored configuration is available from the bus, fetch (204) the stored configuration from the bus and start operation of the electronic fuse system according to the fetched configuration. Upon determining (203) that a stored configuration is not available from the bus, determining (205) if a stored configuration is available from the connectable external main processor. Upon determining (205) that a stored configuration is available from the connectable external main processor, fetch (206) the configuration from the connectable external main processor and start operation of the electronic fuse system according to the fetched configuration. Upon determining (205) that a stored configuration is not available from the connectable external main processor, start operation of the electronic fuse system according to a default configuration (207).
US10263409B2 Cable connecting assembly
A cable connecting assembly includes a tubular member, a securing member, a seal unit, and a hollow barrel member that defines an accommodating space. The tubular member is disposed in the accommodating space and has two annular grooves. The securing member has a coupling portion abutting against the tubular member and threadedly engaging the barrel member, and an abutment portion abutting against the barrel member. The seal unit includes two first seal rings respectively disposed in the annular grooves and sealingly contacting an inner surface of the barrel member, and a second seal ring sleeved on the coupling portion of the securing member and sealingly contacting the inner surface of the barrel member and the abutment portion of the securing member.
US10263407B1 Electric vehicle inverter module laminated bus bar
A laminated bus bar of an inverter module to power an electric vehicle is provided. The laminated bus bar can include a first insulating layer and a current layer disposed over the first insulting layer. The current layer can include an output terminal. The laminated bus bar can include a second insulating layer disposed over the current layer. The laminated bus bar can include a third insulating layer disposed over the second insulating layer. The laminated bus bar can include a first polarity (e.g., negative) layer disposed over the third insulating layer. The first polarity layer can include a first polarity (e.g., negative) input terminal. The laminated bus bar can include a fourth insulating layer disposed over the first polarity layer. The laminated bus bar can include a second polarity (e.g., positive) layer disposed over the fourth insulating layer and that includes a second polarity (e.g., positive) input terminal.
US10263402B2 Conductor cover applicator
Methods and applicators for applying tubular conductor cover to a cable. The applicator may retain a user's hand. The applicators may stop a user's hand from moving relative to the applicator in a direction opposed to a path of conductor cover passage through the applicator. An applicator for applying a tubular conductor cover to a cable, the conductor cover being split longitudinally to define a first longitudinal edge and a second longitudinal edge, the applicator comprising: a separator shaped to contact, in operation of the applicator, an interior surface of the conductor cover to spread open the first longitudinal edge and the second longitudinal edge along a portion of the conductor cover to allow the portion of the conductor cover to be applied to a cable; and a hand retainer connected to or forming part of the separator. A method of applying tubular conductor cover to a cable, the conductor cover being split longitudinally to define a first longitudinal edge and a second longitudinal edge, the method comprising: positioning a hand in a hand retainer connected to or forming part of a separator; spreading open the first longitudinal edge and the second longitudinal edge of a portion of the conductor cover with a separator, the separator contacting an interior surface of the conductor cover; and applying a length of conductor cover to the cable through the separator.
US10263401B2 Pressure tank, gas insulated switchgear using same, and pressure tank manufacturing method
To obtain a pressure tank that achieves a high manufacturing efficiency and does not hamper storage of an open/close portion such as a vacuum valve in a pressure tank. A pressure tank of the present invention includes: a tank body having at least one penetrating slit-shaped mortise and having a space formed inside the tank body; a reinforcing member having a tenon portion formed at an end thereof so as to be directed in one direction, and having an electric field relaxation portion on a side opposite to the tenon portion, the reinforcing member being attached to an inner wall surface of the tank body with the tenon portion inserted into the mortise; and a welding portion sealing and fixing the mortise and the tenon portion with no gap therebetween, the welding portion being formed by melting an end of the tenon portion from outside of the tank body.
US10263398B2 Direct-current distribution panel and migration device
A DC distribution panel unit and a migration device are stored in a DC distribution panel. The migration device and the DC distribution panel unit are configured to be compatible with each other in terms of a structure and a position of connection to a power supply of the DC distribution panel, a structure and a position of connection to loads, and a fixation position of fixation to the panel. The migration device and the DC distribution panel unit are replaceable with each other.
US10263385B1 Wavelength locker
An apparatus and method for calculating the frequency of the light.
US10263383B2 Gain fiber for high power lasers and amplifiers
An optical gain fiber for use in high power (e.g., greater than 500 W pump power) is proposed that is configured to exhibit a minimum bend radius such that the bend loss for the propagating LP01 mode is greater than about 0.03 dB/m. It has been discovered that this bend radius criteria, which is less stringent than that typically suggested in the art (e.g., bend loss less than about 0.03 dB/m), meets the modal stability requirements at high power operation, since the increase in operating temperature of the fiber laser or amplifier has been found to somewhat relax the bend radius requirement (which was heretofore only measured at “room temperature”, not “operating temperature”). Modal stability is defined in terms of a reduced presence of unwanted higher-order modes (such as the LP11 mode) in the amplified output signal.
US10263381B2 Sealed corrosion-resistant contacts
Contacts and connector assemblies that may be space efficient, provide direct connections to flexible circuit boards, provide corrosion resistance, prevent moisture leakage into an electronic device housing the connector assembly, are readily assembled, and have an aesthetically pleasing appearance.
US10263376B1 Connector cleaner
A connector cleaner having an elongate portion of material extending from a first end portion to a second end portion; a first paddle element extending from the first end portion, and wherein at least a portion of a first side surface of the first paddle element includes an abrasive element or portion; a second paddle element extending from the first end portion, wherein at least a portion of a first side surface of the second paddle element includes an abrasive element or portion, and wherein the first side surface of the first paddle element is positioned adjacent the first side surface of the second paddle element; and a singular paddle element extending from the second end portion of the elongate portion of material, and wherein at least a portion of a first side surface of the singular paddle element includes an abrasive element or portion.
US10263372B2 Electrical connector having insulative housing with a rear stepped portion assisting in formation of a waterproof sheet
An electrical connector includes: an insulative housing comprising a base portion defining a rearward surface and a tongue portion extending forwardly from the base portion; plural conductive terminals affixed to the insulative housing and each having a contacting portion exposed to the top and bottom surfaces of the tongue portion, a fixing portion embedded in the base portion, and a soldering portion extending backwardly out of the base portion; a shielding plate affixed to the insulative housing; a shielding shell covering the insulative housing and defining a sol space with the rearward surface of the base portion; and a waterproof sheet; wherein the base portion further comprises a stepped portion in the sol space, the waterproof sheet is formed by solidification of liquid insulative material flowing from the stepped portion to the rearward surface, and the waterproof sheet encloses the stepped portion.
US10263362B2 Fluidically sealed enclosure for window electrical connections
According to aspects of the present disclosure, a method of environmentally sealing an electrical joint formed between an electrical connection element and an electrical conductor disposed on a transparent pane is described. The method includes adhering a mechanically protective enclosure to the transparent pane to define an internal volume therebetween and filling at least a portion of the internal volume with a sealing material that inhibits ingress of liquid into the volume and provides a fluidic environmental barrier about the electrical joint. The electrical joint is disposed within the internal volume and spaced from the enclosure.
US10263361B1 Transition fitting for photovoltaic installations
A transition fitting for achieving a rain-tight transition at the entry of photovoltaic cables with EMT. The transition fitting includes a fitting body with an internal bore, a grommet seated within the bore, a nut for tightening the grommet against the fitting body, a compression fitting and a ground lug extending from the nut. A plurality of bores extend partially through the grommet. Photovoltaic (PV) cables may be inserted within one or more of the bores in the grommet and the nut tightened upon the fitting body to form a rain-tight fit around the PV cables. The skins of the grommet remain intact in any unused bores to maintain a rain-tight seal on any unused bores. The transition fitting will maintain a rain-tight seal at the entry of PV cables to EMT. The ground lug provides a means of grounding the EMT to the transition fitting.
US10263358B2 Connector module having a detachable floating connector assembly
A connector module (100) includes a base (1) including a front face (101), a rear face (102) opposite to the front face, a top face (103) connecting the front face and the rear face, and a mounting slot (104) extending through the front face and the rear face; a first connector assembly (2) mounted on the base; a second connector assembly (3) mounted on the base through the mounting slot along a rear to front direction, and extending beyond the front face for being mated with a mating connector; and a block member (4) mounted on the base with a portion projected into the mounting slot to block a rear end of the second connector assembly to prevent the second connector assembly from withdrawing from the base.
US10263355B2 Female terminal having a projection provided on a lower edge of a front covering wall to a position to overlap a bottom wall
A terminal (10) includes a rectangular tube (21) with a bottom wall (21A), side walls (21B) rising from both sides of the bottom wall (21A) and a ceiling wall (21C) facing the bottom wall (21A). A contact (22) is inside the rectangular tube (21) and is folded from a front edge of the bottom wall (21A). Front covering walls (30) are in a front end part of the rectangular tube (21) at positions to cover a folded portion (22D) of the contact (22) from the front. Projections (31) on lower edges of the front covering walls (30) project to positions to overlap with the bottom wall (21A) in a front-rear direction. Coupling walls (32) are at positions to couple the front covering walls (30) and the side walls (21B). The coupling walls (32) are flush with the side walls (21B) and located above lower ends of the projections (31).
US10263351B2 Orthogonal electrical connector system
In accordance with one embodiment, an electrical connector system can include an electrical signal connector and an electrical power connector. The electrical signal connector and the electrical power connector can be mounted on opposed surfaces of a printed circuit board. The electrical power connector can be constructed as a hermaphroditic power connector that includes at least one header power contact supported by a connector housing, and at least one receptacle power contact supported by the connector housing.
US10263347B2 Connecting structure and connecting method for electric cables
There is provided a connecting structure for electric cables. A first electric cable includes a first core and a first cover covering the first core. A portion of the first core is exposed from an end of the first cover. A second electric cable includes a second core made of a different metal from that of the first core and a second cover covering the second core. A portion of the second core is exposed from an end of the second cover. A tube is shrunk in a state where the tube accommodates thereinside the portion of the first core and the portion of the second core which are connected to each other. An inside of the tube except for the portion of the first core and the portion of the second core is filled with cured hot-melt.
US10263346B2 Single-package phased array module with interleaved sub-arrays
Embodiments of the present disclosure are directed to a single-package communications device that includes an antenna module with a plurality of independently selectable arrays of antenna elements. The antenna elements of the different arrays may send and/or receive data signals over different ranges of signal angles. The communications device may further include a switch module to separately activate the individual arrays. In some embodiments, a radio frequency (RF) communications module may be included in the package of the communications device. In some embodiments, the RF communications module may be configured to communicate over a millimeter-wave (mm-wave) network using the plurality of arrays of antenna elements.
US10263338B2 Display panel for front-side wireless communication
In some examples, an apparatus includes a display panel, a shielding layer having an opening formed within a periphery of the shielding layer, the shielding layer adjacent to a back side of the display panel, and an antenna adjacent to the back side of the display panel, wherein the shielding layer is received in the opening formed in the shielding layer, and does not extend beyond an edge of the display panel to allow for wireless communication with the apparatus from a front side of the display panel.
US10263335B2 Electronic device antennas having shared structures for near-field communications and non-near field communications
An electronic device may be provided with wireless circuitry. The wireless circuitry may include antenna structures such as an antenna resonating element arm and an antenna ground. A split return path may be coupled between the antenna resonating element arm and the antenna ground. The antenna structures may form one or more inverted-F antennas when operated at non-near-field communications frequencies. The antenna structures may be coupled to near-field communications transceiver circuitry using a conductive path. When operated at near-field communications frequencies, near-field communications signals may be conveyed using the conductive path, the antenna resonating element arm, the return path, and the antenna ground. A capacitor may be coupled between the conductive path and an antenna ground. The capacitor may short non-near-field communications signals to the antenna ground and block near-field communications signals from passing from the conductive path to the antenna ground.
US10263334B2 Antenna device and mobile terminal
The present disclosure provides an antenna device including: a peripheral frame made of a signal shielding material and provided with at least two micro seam bands which partition the peripheral frame into at least two frame bodies, the frame bodies including a first antenna, the micro seam band having at least one micro seam; a first matching circuit electrically coupled to the first antenna; and a first radio-frequency receiving and emitting circuit electrically coupled to the first matching circuit. The frame bodies further includes a second antenna including a second matching circuit and a second radio-frequency receiving and emitting circuit, the second matching circuit is electrically coupled between the second antenna and the second radio-frequency receiving and emitting circuit, and the two radio-frequency receiving and emitting circuits deal with different radio-frequency signals. The micro seam band further includes a frame strip. The present disclosure further provides a mobile terminal.
US10263333B2 Metal housing, antenna device, and mobile terminal
The present disclosure provides a metal housing; the metal housing includes a first edge and a second edge arranged opposite to each other, and a third edge and a fourth edge arranged opposite to each other. The third edge and the fourth edge are connected between the first edge and the second edge. A partitioning seam is provided in the metal housing so that at least one radiating part is formed in the metal housing. In the antenna device provided by embodiments of the present disclosure, the metal housing is enabled to be a radiator through a combination of the partitioning seam and a radiating circuit. The present disclosure further provides an antenna device and a mobile terminal.
US10263332B2 Antenna arrays with etched substrates
An electronic device may be provided with wireless communications circuitry and control circuitry. The wireless communications circuitry may include centimeter and millimeter wave transceiver circuitry and a phased antenna array. A dielectric cover may be formed over the phased antenna array. The phased antenna array may transmit and receive antenna signals through the dielectric cover. The dielectric cover may have first and second opposing surfaces. The second surface may face the phased antenna array and may have a curvature. The antenna elements of the phased antenna array may be formed on a dielectric substrate. The dielectric substrate may have one or more thinned regions between antenna elements of the phased antenna array to promote bending. The dielectric substrate may have a smaller thickness in the thinned region than in the regions under the antenna elements. The dielectric substrate may be totally removed in the thinned region.
US10263330B2 Antenna elements and apparatus suitable for AAS calibration by selective couplerline and TRX RF subgroups
An antenna arrangement includes an antenna element and a corresponding feeder line configured to feed a signal to and from the antenna element, and includes a portion of a couplerline spaced apart from but proximate to the antenna element, the feeder line, and a selectivity element. The portion of the couplerline is configured to receive via inductive coupling the signal from one or both of the feeder line and the antenna element, and to transmit a signal via inductive coupling to the feeder line and/or the antenna element. The antenna arrangement includes the selectivity element, which is spaced apart from but proximate to the antenna element, the feeder line, and the portion of the couplerline, and which is configured to select or not select the antenna element for coupling to the portion of the couplerline. An apparatus may include multiple antenna arrangements (with subgroups) and be configured for AAS calibration.
US10263322B2 Vehicle antenna
Disclosed is a vehicular antenna. The antenna, according to an embodiment of the present invention, comprises: a spring part which is perpendicularly disposed on the roof of a vehicle; and a metal part perpendicularly disposed on the top of the spring part. The metal part comprises: a first part extending from the body; a second part which extends from the body and is disposed to have a predetermined interval from the first part; and a third part which extends from the body, is disposed between the first and second parts, and is bent to form a predetermined angle with the first and second parts.
US10263319B2 Antenna with swappable radiation direction and communication device thereof
An antenna with swappable and selective radiation direction includes a first arm, a second arm electrically connected to the first arm, a third arm is electrically connected to the first arm, a first impedance tuning circuit coupled to the second arm for connecting the second arm to a ground or a first matching component according to a control signal, and a second impedance tuning circuit coupled to the third arm for connecting the third arm to the ground or a second matching component according to the control signal. By tuning impedance of the antenna, the antenna operates in a first mode corresponding to a first radiation direction or a second mode corresponding to a second radiation direction.
US10263318B2 Mobile terminal
A mobile terminal is disclosed. The mobile terminal includes a metal housing with an accommodation space, the metal shell including a metal housing having a metal cover, a metal ring disposed outside of the metal cover, and a metal rear housing; an antenna module received in the accommodation space. The antenna module includes a main board with a grounding terminal, the main board including a switching circuit connected with the grounding end of the main board electrically and an LDS antenna controlled by the switching circuit. The main board is connected with the metal cover and the metal ring electrically, the metal cover and the metal ring is coupled with the LDS antenna.
US10263316B2 Deployable reflectarray antenna structure
The invention is directed to deployable reflectarray antenna structure. In one embodiment, the deployable reflectarray antenna structure includes a pair of flexible electrical elements, a feed antenna, and a deployment mechanism that employs a plurality of tapes to respectively transition the pair of flexible electrical elements from an undeployed state in which the elements are folded towards a deployed state in which the deployment mechanism and electrical elements cooperate to form a reflectarray and a subreflector of a reflectarray antenna structure. Further, the deployment mechanism also operates to position the reflectarray and subreflector relative to one another and to the feed antenna so as to realize a reflectarray antenna structure.
US10263314B2 Coupling high-frequency signals with a power combiner
A power combiner in the form of a balanced LC combiner is provided. Inputs of the power combiner are isolated from one another via at least one RC matching element. The at least one RC matching element is dimensioned such that the connection between the inputs is at a stable potential during operation of the power combiner at at least one position. The power combiner can be formed in a planar design and have electrically conductive layers running parallel to one another. At least an inductor and a combiner capacitor are formed in the electrically conductive layers. A power combiner arrangement including the power combiner and high-frequency signal sources attached at least two inputs is also provided. The high-frequency signal sources can be in the form of frequency-agile transistor amplifiers.
US10263313B2 Guided wave coupler, coupling module and methods for use therewith
Aspects of the subject disclosure may include, for example, a coupler including a receiving portion that receives a first electromagnetic wave conveying first data from a transmitting device. A guiding portion guides the first electromagnetic wave to a junction for coupling the first electromagnetic wave to a transmission medium. The first electromagnetic wave propagates via at least one first guided wave mode. The coupling of the first electromagnetic wave to the transmission medium forms a second electromagnetic wave that is guided to propagate along the outer surface of the transmission medium via at least one second guided wave mode that differs from the at least one first guided wave mode. Other embodiments are disclosed.
US10263310B2 Waveguides and transmission lines in gaps between parallel conducting surfaces
A microwave device, such as a waveguide, transmission line, waveguide circuit, transmission line circuit or radio frequency part of an antenna system, is disclosed. The microwave device comprises two conducting layers arranged with a gap there between, and a set of periodically or quasi-periodically arranged protruding elements fixedly connected to at least one of said conducting layers, thereby forming a texture to stop wave propagation in a frequency band of operation in other directions than along intended waveguiding paths, thus forming a so-called gap waveguide. All protruding elements are connected electrically to each other at their bases at least via the conductive layer on which they are fixedly connected, and some or all of the protruding elements are in conductive or non-conductive contact also with the other conducting layer. A corresponding manufacturing method is also disclosed.
US10263308B2 Solar flow battery
A solar flow battery comprising: a positive compartment containing at least one positive electrode in contact with a positive electrolyte containing a first redox active molecule; a negative compartment containing at least one negative electrode in contact with a negative electrolyte containing a second redox active molecule, wherein said first and second redox active molecules remain dissolved in solution when changed in oxidation state; at least one of said negative or positive electrodes comprises a semiconductor light absorber; electrical communication means between said electrodes and an external load for directing electrical energy into or out of said solar flow battery; a separator component that separates the positive and negative electrolytes while permitting the passage of non-redox-active species; and means for establishing flow of the positive and negative electrolyte solutions past respective electrodes. Methods of using the solar flow battery for storing and releasing electrical energy are also described.
US10263293B2 Manufacturing method of lithium secondary battery
Provided is a method of preparing a lithium secondary battery which may simultaneously improve output characteristics and lifetime characteristics of the lithium secondary battery by preparing an electrode on which an SEI film is formed through a pretreatment process, putting an electrode assembly including the electrode in a battery case, and injecting an electrolyte thereinto.
US10263289B2 Solid state battery
A method of producing a solid state battery includes pre-coating a solid electrolyte surface with a metal to form a sacrificial layer and contacting a metal alloy with the sacrificial layer such that the sacrificial layer and the metal alloy react to form a eutectic liquid metal interface layer, at room temperature and between the electrolyte and a lithium anode, configured to alloy with the liquid metal interface layer at operating potential.
US10263286B2 Secondary battery electrolyte and secondary battery
The present invention relates to a secondary battery electrolyte, which contains a first fluorine-containing ether compound, a second fluorine-containing ether compound, and at least one selected from fluorine-containing phosphate ester compounds and sulfone compounds, wherein the fluorine substitution rate of the first fluorine-containing ether compound is lower than that of the second fluorine-containing ether compound, and the content of the first fluorine-containing ether compound is higher than that of the second fluorine-containing ether compound. According to the present invention, with respect to batteries operating at a high voltage, and batteries supposed to be used at a high temperature for a long period, there can be provided a lithium secondary battery suppressed in the decomposition reaction of the electrolyte and improved in the life characteristics.
US10263281B2 All-solid ion battery
The present invention provides an all-solid ion battery having improved stability and power characteristics and comprising: a powder-form solid electrolyte; a powder-form electrode active material; a first conductive polymer coating film coated on at least a portion of the solid electrolyte and capable of transporting ions; and a second conductive polymer coating film coated on at least a portion of the electrode active material and capable of transporting ions and electrons.
US10263280B2 9,10-Bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene polymers and use thereof
The problem addressed was that of providing novel polymers which are preparable with a low level of complexity, with the possibility of controlled influence on the physicochemical properties thereof within wide limits in the course of synthesis, and which are usable as active media in electrical charge storage elements for high storage capacity, long lifetime and stable charging/discharging plateaus.9,10-Bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene polymers consisting of an oligomeric or polymeric compound of the general formula I have been found.
US10263278B2 Battery, electrolyte, battery pack, electronic apparatus, electrically driven vehicle, electrical storage device, and electric power system
Provided is a battery including a positive electrode, a negative electrode, a separator, and an electrolyte that contains particles, a resin, and an electrolytic solution. The shape of the particles includes a plane, a plane rate of the particles is greater than 40% and equal to or less than 100%, and a refractive index of the particles is equal to or greater than 1.3 and less than 2.4.
US10263274B2 Fuel cell manifold including a coating to reduce the possibility of an electrical short
An illustrative example fuel cell manifold includes a manifold structure having at least one surface situated where the surface may be exposed to phosphoric acid. The surface has a coating that reduces a possibility of an electrical short between the manifold and the fuel cell stack adjacent the manifold if that surface is exposed to phosphoric acid during fuel cell operation.
US10263271B2 Redox type fuel cell
The present invention is to provide a redox type fuel cell that is able to quickly regenerate a mediator. The present invention is such a redox type fuel cell that a mediator is circulated in a cathode electrode, wherein a regenerator for oxidizing the mediator includes: a first chamber configured to store a mediator-containing solution; a second chamber configured to store an oxygen reduction reaction medium solution; a power source; a first electrode disposed in the first chamber and connected to a positive electrode of the power source: a second electrode disposed in the second chamber and connected to a negative electrode of the power source; an ion exchange path configured to connect the first chamber and the second chamber; and a gas supplier configured to supply an oxygen-containing gas into the second chamber.
US10263267B2 Battery pack manufacturing method using hot-melt fixing structure and battery pack manufactured using the same
Disclosed herein is a method of manufacturing a battery pack including a battery cell having an electrode assembly received in a battery case, made of a laminate sheet including a resin layer and a metal layer, together with an electrolytic solution.
US10263263B2 Frame body, cell frame for redox flow battery, and redox flow battery
There is provided a frame body used for a cell of a redox flow battery, that can improve heat dissipation of an electrolyte in a slit and can suppress rise of the temperature of the electrolyte. It is a frame body used for a cell of a redox flow battery, comprising: an opening formed inside the frame body; a manifold allowing an electrolyte to pass therethrough; and a slit which connects the manifold and the opening and forms a channel of the electrolyte between the manifold and the opening, the slit having a pair of sidewalls facing each other in a cross section orthogonal to a direction in which the electrolyte flows, the slit having, at at least a portion thereof in the slit's depthwise direction, a width narrowing portion allowing the sidewalls to have a spacing narrowed in the depthwise direction.
US10263262B2 Fuel cell with porous material-gasket integrated structure
Disclosed is a fuel cell with a porous material-gasket integrated structure, which can facilitate the flow of gas and water by stacking a porous material-gasket integrated structure, in which a porous material and a gasket are integrally molded, on a separator. In particular, the present invention provides a fuel cell with a porous material-gasket integrated structure, in which a porous material and a gasket are integrally molded and stacked on a separator such that the porous material is located between a manifold, through which gas is supplied, and a reaction surface, where an electrochemical reaction takes place, so as to serve as a diffuser for gas fed through the manifold.
US10263260B2 Electrode catalyst for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the same
A method for producing an electrode catalyst for a fuel cell is provided. The electrode catalyst includes a carbon support and a catalyst supported on the carbon support. The catalyst is one of platinum and a platinum-alloy. The method includes supporting the catalyst on the carbon support; and treating the carbon support carrying the catalyst with a nitric acid and cleaning the treated carbon support, such that an amount of an acid present on the carbon support becomes in a range from 0.7 mmol to 1.31 mmol of the acid per gram of the electrode catalyst.
US10263259B2 Method for producing core-shell catalyst particles
The present invention is to provide a method for producing core-shell catalyst particles with high catalytic activity per unit mass of platinum. Disclosed is a method for producing core-shell catalyst particles including a core containing palladium and a shell containing platinum and covering the shell, wherein the method includes: a step of depositing copper on the surface of the palladium-containing particles by applying a potential that is nobler than the oxidation-reduction potential of copper to the palladium-containing particles in a copper ion-containing electrolyte, and a step of forming the shell by, after the copper deposition step and inside the reaction system kept at −3° C. or more and 10° C. or less, substituting the copper deposited on the surface of the palladium-containing particles with platinum by bringing the copper into contact with a platinum ion-containing solution in which platinum ions and a reaction inhibitor that inhibits a substitution reaction between the copper and the platinum, are contained.
US10263258B2 Air electrode material, air electrode, metal-air battery, and fuel cell
An air electrode material according to the present disclosure contains a plurality of composite particles, wherein each of the composite particles contains a core particle and a plurality of covering particles covering the core particle, the core particle is formed of a material with catalytic activity for an oxygen reduction reaction, the covering particles are formed of an electrically conductive material and are mechanically bonded to the core particles or other covering particles, and the median size of the core particles ranges from 100 to 1000 times the average primary particle size of the covering particles.
US10263256B2 Spinel type lithium nickel manganese-containing composite oxide
Relating to a 5 V-class spinel type lithium nickel manganese-containing composite oxide having an operating potential of 4.5 V or more with respect to a Li metal reference potential, the present invention proposes a composite oxide being capable of improving cycle properties while suppressing the amount of gas generation under high temperature environments and of increasing thermodynamical stability of a positive electrode in a fully charged state. Proposed is a spinel type lithium nickel manganese-containing composite oxide represented by a general formula [Li(LiaNiyMn2-a-b-y-z-αTibAlzMα)O4-σ] (where 0
US10263254B2 Tin-containing compounds
The invention relates to novel materials of the formula: AuM1vM2wM3x02±δ wherein A is one or more alkali metals; M1 comprises one or more redox active metals with an oxidation state in the range +2 to +4; M2 comprises tin, optionally in combination with one or more transition metals; M3 comprises one or more transition metals either alone or in combination with one or more non-transition elements selected from alkali metals, alkaline earth metals, other metals, metalloids and non-metals, with an oxidation state in the range +1 to +5; wherein the oxidation state of M1, M2, and M3 are chosen to maintain charge neutrality and further wherein δ is in the range 0≤δ≤0.4; U is in the range 0.3
US10263253B2 Method of preparing a vanadium oxide compound and use thereof in electrochemical cells
Electrochemical cell comprising an anode and a cathode is provided. The anode and the cathode independently comprises or consists essentially of a vanadium oxide compound having general formula MnV6O16, wherein M is selected from the group consisting of ammonium, alkali-metal, and alkaline-earth metal; and n is 1 or 2. Method of preparing a vanadium oxide compound having general formula MnV6O16 is also provided.
US10263252B2 Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
A non-aqueous electrolyte secondary battery including a silicon material as a negative electrode active material has good discharge rate characteristics. A negative electrode according to an exemplary embodiment includes a negative-electrode current collector and a negative-electrode mixture layer formed on the current collector. The negative-electrode mixture layer contains graphite and a silicon material. A first region that extends from the surface of the mixture layer remote from the negative-electrode current collector in the thickness direction of the negative-electrode mixture layer and has a thickness equal to 40% of the thickness of the mixture layer contains a larger amount of the silicon material than a second region that extends from the surface of the mixture layer adjacent to the negative-electrode current collector and has a thickness equal to 40% of the thickness of the mixture layer. The first region has a lower density than the second region.
US10263251B2 Battery negative electrode, battery, and manufacturing method of battery negative electrode
A battery negative electrode includes a hydrogen storage alloy as a negative electrode active material, wherein the hydrogen storage alloy has a mean volume diameter within a range from 4 μm to 12 μm, and is disposed to be capable of being in contact with hydrogen in a hydrogen containing part in which hydrogen is contained.
US10263249B2 Carbon-silicon composite, method of preparing the same, and anode active material including the carbon-silicon composite
Provided are a carbon-silicon composite having improved capacity and cycle stability, and a method of preparing the same. More particularly, the present invention relates to a carbon-silicon composite, in which surfaces of silicon particles are coated with a carbon-based material that is doped with at least one type of doping atoms selected from the group consisting of nitrogen (N), phosphorous (P), boron (B), sodium (Na), and aluminum (Al), and a method of preparing the same.
US10263246B2 Lithiated and passivated lithium ion battery anodes
An electrode material includes a lithium active material composition. The lithium active material composition includes lithium and an active anode material. The lithium active material composition is coated with a lithium ion conducting passivating material, such that the electrode material is lithiated and pre-passivated. An electrode and a battery are also disclosed. Methods of making an electrode material, electrode and battery that are lithiated and pre-passivated are also disclosed.
US10263240B2 Sandwich cathode lithium battery with high energy density
A lithium electrochemical cell with increased energy density is described. The electrochemical cell comprises an improved sandwich cathode design with a second cathode active material of a relatively high energy density but of a relatively low rate capability sandwiched between two current collectors and with a first cathode active material having a relatively low energy density but of a relatively high rate capability in contact with the opposite sides of the two current collectors. In addition, a cathode fabrication process is described that increases manufacturing efficiency. The cathode fabrication process comprises a process in which first and second cathode active materials are directly applied to opposite surfaces of a perforated current collector and laminated together. The present cathode design is useful for powering an implantable medical device requiring a high rate discharge application.
US10263237B2 Cylindrical battery, and collector member used therefor, and manufacturing method thereof
A cylindrical battery according to one aspect of the present invention includes an electrode body in which a negative electrode plate and a positive electrode plate to which a plurality of positive electrode leads is connected are wound with a separator interposed therebetween; an electrolyte liquid; a cylindrical outer can having a bottom portion which receives the electrode body and the electrolyte liquid; and a sealing body sealing an open portion of the outer can. The positive electrode leads extend along an outer circumference portion of a collector member disposed on the electrode body and are connected to a surface of the collector member at an outer side of the battery. The collector member includes a collector plate to which the positive electrode leads are connected and a first insulating plate fitted to a surface of the collector plate at an inner side of the battery.
US10263235B2 Separator, nonaqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
A separator includes a substrate layer that is porous, and a surface layer that is provided on at least one main face of the substrate layer and that has an uneven shape. The surface layer includes first particles that are for forming convexities of the uneven shape and that are a main component of the convexities, second particles that have a smaller average particle size than the first particles, cover at least a part of a surface of the first particles, and cover at least a part of a surface of the substrate layer that is exposed between the first particles, and a resin material.
US10263232B2 Nonaqueous electrolyte secondary battery separator heating device and nonaqueous electrolyte secondary battery separator production method
A drying device includes a first cylindrical member and a second cylindrical member. The first cylindrical member has an outer peripheral surface having a surface temperature that is higher on one width wise side where an end is present than on the other widthwise side where another end is present, whereas the second cylindrical member has an outer peripheral surface having a surface temperature that is lower on the one widthwise side where an end is present than on the other widthwise side where another end is present.
US10263229B2 Battery block
Cells are arranged in a predetermined arrangement and are held by holding unit. The holding unit includes a first holding unit, a second holding unit, and a third holding unit. The first holding unit holds cells so as to partially cover the one side of the outer peripheral surfaces of the cells in the longitudinal direction. The second holding unit holds the cells so as to partially cover the other side of the outer peripheral surfaces of the cells in the longitudinal direction. The third holding unit holds the cells so as to cover a region that is covered with neither the first holding unit nor the second holding unit, of the outer peripheral surfaces of the cells in the longitudinal direction.
US10263228B2 Electric device including sealing member between attachment part and battery pack
The sealing property obtained when a battery pack is attached to an electric power tool is improved. An electric power tool to/from which a battery pack retaining a battery cell is attachable/detachable has: a tool main body being provided with an attachment part to/from which the battery pack is attached/detached; a guide groove which is provided in the attachment part and which determines a direction of the attachment/detachment of the battery pack; a device-side terminal which is provided in the attachment part and which is connected to a battery-side terminal provided in the battery pack; and a seal member which is provided in the attachment part and which seals a connecting part between the battery-side terminal and the device-side terminal.
US10263221B2 Method for manufacturing light-emitting device
A method for exposing an electrode terminal covered with an organic film in a light-emitting device without damaging the electrode terminal is provided. In a region of the electrode terminal to which electric power from an external power supply or an external signal is input, an island-shaped organic compound-containing layer is formed and the organic film is formed thereover. The organic film is removed by utilizing low adhesion of an interface between the organic compound-containing layer and the electrode terminal, whereby the electrode terminal can be exposed without damage to the electrode terminal.
US10263214B2 Optoelectronic component and method for producing an optoelectronic component
In various embodiments, an optoelectronic component is provided. The optoelectronic component includes an optically active layer structure on a surface of a planar substrate. The surface in a predefined region is free of optically active layer structure. The optoelectronic component further includes an encapsulation structure having an inorganic encapsulation layer. The inorganic encapsulation layer is formed on or above the optically active layer structure and the surface of the substrate in the predefined region. The inorganic encapsulation layer at least in the predefined region is formed in direct contact with the surface of the substrate. The surface of the substrate at least in the predefined region includes a structuring. The structuring is configured to increase the roughness of the surface. The substrate at least in the predefined region at the surface thereof includes or is formed from an inorganic material.
US10263208B2 Organic electro-luminescent display device
An organic electroluminescent display device according to an embodiment of the present invention includes a lower electrode, an upper electrode, an organic EL layer positioned between the lower electrode and the upper electrode and a light emitting material containing layer that contains a light emitting material and is arranged on an opposite side of the upper electrode from the organic EL layer.
US10263207B2 Perovskite light emitting device containing exciton buffer layer and method for manufacturing same
Provided are a perovskite light emitting device containing an exciton buffer layer, and a method for manufacturing the same. A light emitting device of the present invention comprises: an exciton buffer layer in which a first electrode, a conductive layer disposed on the first electrode and comprising a conductive material, and a surface buffer layer containing fluorine-based material having lower surface energy than the conductive material are sequentially deposited; a light-emitting layer disposed on the exciton buffer layer and containing an organic-inorganic hybrid perovskite light emitting body; and a second electrode disposed on the light-emitting layer. Accordingly, an organic-inorganic hybrid perovskite is formed with a combined FCC and BSS crystal structure in a nanoparticle light-emitting body; the present invention forms a lamellar structure in which an organic plane and an inorganic plane are alternatively deposited; and an exciton is bound by the inorganic plane, thereby being capable of expressing high color purity.
US10263204B2 Organic light-emitting display device
Disclosed herein is an organic light-emitting display device having a first flexible substrate; a second flexible substrate; a plurality of organic light-emitting pixels on the first flexible substrate and between the first flexible substrate and the second flexible substrate; an encapsulation unit covering the pixels; and an adhesive layer on the encapsulation unit. The Young's modulus of the adhesive layer is equal to or larger than a value so that the first flexible substrate is not deformed by bending stress when it is rolled up.
US10263197B2 Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof.
US10263193B2 Heterocyclic compound and organic light-emitting element using same
Disclosed are a heterocyclic compound represented by the following Chemical Formula having proper energy level, and excellent electrochemical stability and thermal stability, and an organic light emitting device using the same:
US10263191B2 Aromatic amine derivative, and organic electroluminescent element comprising the same
An aromatic amine derivative represented by the following formula (1) wherein at least one of Ar1 to Ar4 is a heterocyclic group represented by the following formula (2) wherein X1 is an oxygen atom or a sulfur atom.
US10263190B2 Difluorobithiophene-based donor-acceptor polymers for electronic and photonic applications
An organic compound, a donor-acceptor conjugated polymer, a formulation and a thin film, wherein a solution of the donor-acceptor conjugated polymer exhibits a peak optical absorption spectrum red shift of at least 100 nm when the donor-acceptor conjugated polymer solution is cooled from 140° C. to room temperature.
US10263185B2 Method of manufacturing OLED display device, mask, and method of designing mask
A method of manufacturing an OLED display deposits an OLED material onto an electrode surface of a substrate through a mask while moving a linear source having nozzles in a first direction. The mask has holes in a surface facing the linear source. Each hole has a first opening and a larger second opening located between the first opening and the linear source. θT<90−θM and SX>D1×tan θM are satisfied. D1 is a distance from the first opening to the electrode surface. θM is the largest incident angle in the first direction of the OLED material. SX is a distance in the first direction from an edge of the first opening to an adjacent sub-pixel electrode. θT is a taper angle defined by a line connecting the edge of the first opening and the edge of the second opening and the first direction.
US10263184B2 Switching device and non-volatile memory device including the same
A switching device includes a first switching element having a snap-back behavior characteristic, an output voltage of the first switching element decreasing when an input current increases from a turn-on threshold current of the first switching element. The switching device further includes a second switching element having a continuous-resistance behavior characteristic, an output voltage of the second switching element increasing when the input current increases from a turn-on threshold current of the second switching element. The turn-on threshold current of the first switching element is lower than the turn-on threshold current of the second switching element.
US10263177B2 Semiconductor device
The vertical Hall element includes: a second conductivity type semiconductor layer formed on a first conductivity type semiconductor substrate; a plurality of high-concentration second conductivity type electrodes formed in a straight line on a surface of the semiconductor layer having substantially the same shape, and spaced at a first interval; a plurality of electrode isolation layers each formed between two electrodes out of the plurality of electrodes to isolate the plurality of electrodes from one another having substantially the same shape, and spaced at a second interval; and a first added layer and a second added layer each formed along the straight line outside of the outermost electrodes, and each having substantially the same structure as that of each electrode isolation layer.
US10263176B2 Semiconductor device having vertical hall element
A vertical Hall element having an improved sensitivity and reduced offset voltage includes: a second conductivity type semiconductor layer formed on a semiconductor substrate and having an impurity concentration that is distributed uniformly; a second conductivity type impurity diffusion layer formed on the semiconductor layer and having a concentration higher than in the semiconductor layer; a plurality of electrodes formed in a straight line on a surface of the impurity diffusion layer, and each formed from a second conductivity type impurity region that is higher in concentration than the impurity diffusion layer; and a plurality of first conductivity type electrode isolation diffusion layers each formed between two electrodes out of the plurality of electrodes on the surface of the impurity diffusion layer, to isolate the plurality of electrodes from one another.
US10263175B2 Piezoelectric element and piezoelectric element-applied device
A piezoelectric element includes a first electrode, a second electrode, and a piezoelectric layer provided between the first and second electrodes. In the piezoelectric element, the piezoelectric layer is made from a perovskite composite oxide represented by Pb(Ni, Nb, Zr, Ti)O3 and the total of the Ni and Nb contents in the perovskite composite oxide is not less than 1 [mol %] and not more than 5 [mol %] based on a total content of elements contained in a B site.
US10263169B2 PEDOT:PSS composite films having enhanced thermoelectric properties
A PEDOT:PSS film having enhanced thermoelectric properties is doped with DMSO and a binary secondary dopant, such as PEO. The composition of such film causes the ratios of PEDOT in bipolaron states to be increased. As a result, the Seebeck coefficient, the electrical conductivities, and power factor of the film are increased, thereby increasing the efficiency of the film. Thus, a thermoelectric device that uses the film is able to achieve enhanced operating performance.
US10263164B2 Electronic component including a material comprising epdxysilane-modified polyorganosiloxane
The present invention relates to an optoelectronic component comprising a semiconductor (1) and a polyorganosiloxane. The polyorganosiloxane is obtainable by crosslinking a composition comprising a first organosiloxane having at least one terminal vinyl group, a second organosiloxane having at least one silicon-hydrogen bond and an alkoxysilane having at least one epoxy group. Additionally specified is a method of producing an optoelectronic component.
US10263162B2 Light emitting device and image displaying system
A light emitting device includes a light emitting element disposed on a substrate which emits blue light, a green phosphor that emits green light upon being excited by the blue light, a red phosphor that emits red light upon being excited by the blue light, and a transparent resin including the green phosphor and the red phosphor dispersed therein. The red phosphor is arranged to be in contact with the light emitting element and the substrate. The transparent resin includes a constitutional unit including an ionic liquid including a polymerizable functional group or a derivative of the ionic liquid.
US10263161B2 Resin molding, surface mounted light emitting apparatus and methods for manufacturing the same
The present invention provides a surface mounted light emitting apparatus which has long service life and favorable property for mass production, and a molding used in the surface mounted light emitting apparatus.The surface mounted light emitting apparatus comprises the light emitting device 10 based on GaN which emits blue light, the first resin molding 40 which integrally molds the first lead 20 whereon the light emitting device 10 is mounted and the second lead 30 which is electrically connected to the light emitting device 10, and the second resin molding 50 which contains YAG fluorescent material and covers the light emitting device 10. The first resin molding 40 has the recess 40c comprising the bottom surface 40a and the side surface 40b formed therein, and the second resin molding 50 is placed in the recess 40c. The first resin molding 40 is formed from a thermosetting resin such as epoxy resin by the transfer molding process, and the second resin molding 50 is formed from a thermosetting resin such as silicone resin.
US10263159B2 Light-emitter mounting package, light-emitting device, and light-emitting module
A light-emitter mounting package includes an insulating base, a wiring conductor, and a metal layer. The insulating base has a main surface including a recess in which a light emitter is mountable. The wiring conductor is arranged on a peripheral portion of a bottom surface of the recess that is adjacent to an inner wall of the recess. The insulating base has a side surface including a sloping surface adjacent to the main surface. The metal layer is spaced from the wiring conductor, and extends on the inner wall of the recess, the main surface, and the sloping surface.
US10263156B2 Light emitting diode structure
A light emitting diode structure including a substrate, a semiconductor epitaxial structure, a first insulating layer, a first reflective layer, a second reflective layer, a second insulating layer and at least one electrode. The substrate has a tilt surface. The semiconductor epitaxial structure at least exposes the tilt surface. The first insulating layer exposes a portion of the semiconductor epitaxial structure. The first reflective layer is at least partially disposed on the portion of the semiconductor epitaxial structure and electrically connected to the semiconductor epitaxial structure. The second reflective layer is disposed on the first reflective layer and the first insulating layer, and covers at least the portion of the tilt surface. The second insulating layer is disposed on the second reflective layer. The electrode is disposed on the second reflective layer and electrically connected to the first reflective layer and the semiconductor epitaxial structure.
US10263154B2 Light-emitting device and light-emitting device package comprising same
An embodiment relates to a light-emitting device comprising: a light-emitting structure which comprises a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer, and comprises a plurality of first recesses passing through the second conductive semiconductor layer and active layer and disposed on a part of an area of the first conductive semiconductor layer; a first electrode which is electrically connected to the first conductive semiconductor layer inside the plurality of first recesses; a conductive support substrate which is electrically connected to the first electrode; a second electrode which is electrically connected to the second conductive semiconductor layer; and an insulating layer which is disposed between the conductive support substrate and second conductive semiconductor layer, wherein a second recess passes through the first conductive semiconductor layer, second conductive semiconductor layer and active layer and is disposed on a part of an area of the insulating layer.
US10263153B2 Light-emitting diode (LED) display array, manufacturing method thereof, and wearable device
A light-emitting diode (LED) display array, a manufacturing method thereof and a wearable device are provided. The LED display array comprises a first substrate and a second substrate arranged oppositely to each other. At least one pixel unit is formed on a surface of the first substrate facing the second substrate. At least one drive unit is formed on a surface of the second substrate facing the first substrate. Each pixel unit on the first substrate corresponds to a drive unit on the second substrate. A metal block is formed between each pixel unit and the drive unit corresponding to the pixel unit. The pixel unit is electrically connected with the drive unit corresponding to the pixel unit through the metal block.
US10263151B2 Light emitting diodes
The present disclosure generally relates to semiconductor structures and, more particularly, to light emitting diodes and methods of manufacture. The method includes: forming fin structures with a doped core region, on a substrate material; forming a first color emitting region by cladding the doped core region of a first fin structure of the fin structures, while protecting the doped core regions of a second fin structure and a third fin structure of the fin structures; forming a second color emitting region by cladding the doped core region of the second fin structure, while protecting the doped core regions of the first fin structure and the third fin structure; and forming a third color emitting region by cladding the doped core region of the third fin structure, while protecting the doped core regions of the first fin structure and the second fin structure.
US10263147B2 Light emitting diode and fabrication method thereof
A light-emitting diode (LED) chip includes from bottom to up: a conductive substrate, a p-type nitride layer, an active layer, an n-type recovery layer, an n-type nitride layer and an n electrode, wherein, the n-type nitride layer has a nitride polarity crystal and a gallium polarity crystal, and the surfaces of the nitride polarity and the gallium polarity regions appear different in height, the n-type recovery layer surface approximate to the n-type nitride layer has consistent mixed polarity with the n-type nitride layer, and the surface far from the n-type nitride layer is a connected gallium polarity surface.
US10263146B2 Ultra-wideband, free space optical communication apparatus
Devices, systems, and methods for providing wireless personal area networks (PANs) and local area networks (LANs) using visible and near-visible optical spectrum. Various constructions and material selections are provided herein. According to one embodiment, a free space optical (FSO) communication apparatus includes a digital data port, an array of light-emitting diodes (LEDs) each configured to have a transient response time of less than 500 picoseconds (ps), and current drive circuitry coupled between the digital data port and the array of LEDs.
US10263142B2 Plasmonic light emitting diode
A light emitting diode includes a square quantum well structure, the quantum well structure including III-V materials. A dielectric layer is formed on the quantum well structure. A plasmonic metal is formed on the dielectric layer and is configured to excite surface plasmons in a waveguide mode that is independent of light wavelength generated by the quantum well structure to generate light.
US10263141B2 Semiconductor light-emitting device and method of manufacturing semiconductor light-emitting device
A semiconductor light-emitting device according to an embodiment of the present disclosure includes a nitride-based first light-emitting layer. The first light-emitting layer has an InaGa1−aN layer (a≥0), and has a plurality of first island-shaped regions that include InbGa1−bN (b>a) inside the InaGa1−aN layer.
US10263140B2 Semiconductor light-emitting device and method for manufacturing the same
The disclosed invention relates to a semiconductor light-emitting element comprising: a plurality of semiconductor layers which are provided with a growth substrate eliminating surface on the side where a first semiconductor layer is located; a support substrate which is provided with a first electrical pathway and a second electrical pathway; a joining layer which joins a first surface side of the support substrate with a second semiconductor layer side of the plurality of semiconductor layers, and is electrically linked with the first electrical pathway; a joining layer eliminating surface which is formed on the first surface, and in which the second electrical pathway is exposed, and which is open towards the plurality of semiconductor layers; and an electrical link for electrically linking the plurality of semiconductor layers with the second electrical pathway exposed in the joining layer eliminating surface.
US10263139B2 Fabrication method of nitride light emitting diodes
A fabrication method of a nitride semiconductor LED includes, an AlxInyGa1-x-yN material layer is deposited by CVD between an AlN thin film layer by PVD and a gallium nitride series layer by CVD, to reduce the stress effect between the AlN thin film layer and the nitride layer, improve the overall quality of the LED and efficiency. An AlN thin film layer is deposited on a patterned substrate having a larger depth by PVD, and a thin nitrogen epitaxial layer is deposited on the AIN thin film layer by CVD, which reduces the stress by reducing the thickness of the epitaxial layer and improves warpage of the wafer and electric uniformity of the single wafer; the light extraction efficiency is improved by using the large depth patterned substrate; further, the doping of high-concentration impurity in the active layer effectively reduces voltage characteristics without affecting leakage, thereby improving the overall yield.
US10263137B2 Light-emitting device
A light-emitting device includes an active structure, wherein the active structure includes a well layer and a barrier layer. A first semiconductor layer of first conductivity type and a second semiconductor layer of second conductivity type sandwich the active structure. A first intermediate layer is between the first semiconductor layer and the active structure, wherein the first semiconductor layer has a first band gap, the second semiconductor layer has a second band gap, the well layer has a third band gap, and the first intermediate layer has a fourth band gap, wherein the first band gap and the second band gap are both larger than the fourth band gap, and the fourth band gap is larger than the third band gap. A first window layer is on the first semiconductor layer, wherein the first intermediate layer includes Alz1Ga1-z1As, the first window layer includes Alz2Ga1-z2As, and z1>z2.
US10263134B1 Multijunction solar cells having an indirect high band gap semiconductor emitter layer in the upper solar subcell
The present disclosure provides a multijunction solar cell comprising: an upper solar subcell having an indirect band gap semiconductor emitter layer composed of greater than 0.8 but less than 1.0 mole fraction aluminum and a base layer, the emitter layer and the base layer forming a heterojunction solar subcell; and a lower solar subcell disposed beneath the upper solar subcell, wherein the lower solar subcell has an emitter layer and a base layer forming a photoelectric junction. In some embodiments, the emitter layer of the upper solar subcell is an n-type AlxGa1-xAs layer with 0.8
US10263132B2 Solar energy devices
Solar energy device (100) comprising at least one of a photovoltaic cell or a solar thermal collector (101) having an absorption bandwidth in the infrared wavelength region of the solar spectrum; a visible light-transmitting reflector (103); and at least one of a graphic film or lighted display (105). The graphic film or a lighted display present is visible through the visible light-transmitting reflector. The solar energy devices can be used, for example, as a sign (e.g., an advertising sign or a traffic sign), on the side and/or roof, as well as in a window, of a building.
US10263130B2 Assembly method for a backsheet for photovoltaic panels with double contacting face conductive elements of the non-through type
Assembly method for backsheet for photovoltaic panels with conductive interface elements intended to simplify the electrical connection of the terminal points of the circuit to the back junction box. The conductive elements are of the non-through type through the backsheet, with double contacting face, and are integrated on the front side towards the cells within recessed seats and in correspondence of through-holes in such a way as to enable an electrical connection by contact from the back side through the holes, in a guided way, by means of respective conductive elements protruding and fastened to the junction box. In particular, such a simplified contacting solution can be realized with extreme precision, without manual operations and at extremely low costs, with an automated assembly method.
US10263125B2 Varactor diode with heterostructure
Embodiments of the present disclosure describe apparatuses, methods, and systems of an integrated circuit (IC) device, such as a varactor diode. The IC device includes a composite collector and heterostructure. A layer of wider band gap material is included as part of the collector at the collector/base interface. The presence of the wide band gap material may increase breakdown voltage and allow for increased hyperabrupt doping profiles in the narrower band gap portion of the collector. This may allow for increased tuning range and improved intermodulation (IMD) performance without the decreased breakdown performance associated with homojunction devices. Other embodiments may also be described and/or claimed.
US10263123B2 Electrostatic discharge device and method of fabricating the same
Provided are an electrostatic discharge (ESD) device and method of fabricating the same where the ESD device is configured to prevent electrostatic discharge which can be a cause to product failure. More particularly, the ESD device provided includes a Zener diode and a plurality of PN diodes by improving the architecture of an area wherein a Zener diode is configured compared to alternatives, to provide improved functionality when protecting against ESD events.
US10263120B2 Method for manufacturing semiconductor device and method for manufacturing liquid crystal display panel
An embodiment is a semiconductor device which includes a first oxide semiconductor layer over a substrate having an insulating surface and including a crystalline region formed by growth from a surface of the first oxide semiconductor layer toward an inside; a second oxide semiconductor layer over the first oxide semiconductor layer; a source electrode layer and a drain electrode layer which are in contact with the second oxide semiconductor layer; a gate insulating layer covering the second oxide semiconductor layer, the source electrode layer, and the drain electrode layer; and a gate electrode layer over the gate insulating layer and in a region overlapping with the second oxide semiconductor layer. The second oxide semiconductor layer is a layer including a crystal formed by growth from the crystalline region.
US10263119B2 Programmable device with high reliability for a semiconductor device, display system, and electronic device
A novel semiconductor device is provided. The semiconductor device includes a programmable logic device including a programmable logic element, a control circuit, and a detection circuit. The programmable logic device includes a plurality of contexts. The control circuit is configured to control selection of the contexts. The detection circuit is configured to output a signal corresponding to the amount of radiation. The control circuit is configured to switch between a first mode and a second mode in accordance with the signal corresponding to the amount of radiation. The first mode is a mode in which the programmable logic device performs processing by a multi-context method, and the second mode is a mode in which the programmable logic device performs processing using a majority signal of signals output from the logic element multiplexed by the plurality of contexts.
US10263118B2 Semiconductor device with oxide semiconductor layer
A semiconductor device with reduced parasitic capacitance is provided. A stack is formed on an insulating layer, the stack comprising a first oxide insulating layer, an oxide semiconductor layer over the first oxide insulating layer, and a second oxide insulating layer on the oxide semiconductor layer; a gate electrode layer and a gate insulating layer are formed on the second oxide insulating layer; a first low-resistance region is formed by adding a first ion to the second oxide semiconductor layer using the gate electrode layer as a mask; a sidewall insulating layer is formed on an outer side of the gate electrode layer; a second conductive layer is formed over the gate electrode layer, the sidewall insulating layer, and the second insulating layer; and an alloyed region in the second oxide semiconductor layer is formed by performing heat treatment.
US10263117B2 Semiconductor device
A semiconductor device having favorable electric characteristics is provided. An oxide semiconductor layer includes first and second regions apart from each other, a third region which is between the first and second regions and overlaps with a gate electrode layer with a gate insulating film provided therebetween, a fourth region between the first and third regions, and a fifth region between the second and third regions. A source electrode layer includes first and second conductive layers. A drain electrode layer includes third and fourth conductive layers. The first conductive layer is formed only over the first region. The second conductive layer is in contact with an insulating layer, the first conductive layer, and the first region. The third conductive layer is formed only over the second region. The fourth conductive layer is in contact with the insulating layer, the third conductive layer, and the second region.
US10263112B2 Vertical non-planar semiconductor device for system-on-chip (SoC) applications
Vertical non-planar semiconductor devices for system-on-chip (SoC) applications and methods of fabricating vertical non-planar semiconductor devices are described. For example, a semiconductor device includes a semiconductor fin disposed above a substrate, the semiconductor fin having a recessed portion and an uppermost portion. A source region is disposed in the recessed portion of the semiconductor fin. A drain region is disposed in the uppermost portion of the semiconductor fin. A gate electrode is disposed over the uppermost portion of the semiconductor fin, between the source and drain regions.
US10263109B2 Semiconductor devices including silicide regions and methods of fabricating the same
A semiconductor device has a silicide source/drain region is fabricated by growing silicon on an epitaxial region including silicon and either germanium or carbon. In the method, a gate electrode is formed on a semiconductor substrate with a gate insulating layer interposed therebetween. An epitaxial layer is formed in the semiconductor substrate at both sides of the gate electrodes. A silicon layer is formed to cap the epitaxial layer. The silicon layer and a metal material are reacted to form a silicide layer. In a PMOS, the epitaxial layer has a top surface and inclined side surfaces that are exposed above the upper surface of the active region. The silicon layer is grown on the epitaxial layer in such a way as to cap the top and inclined surfaces.
US10263105B2 High voltage semiconductor device
In an embodiment, on an n−type SiC layer on an n+-type SiC semiconductor substrate and a p+ layer selectively formed on the n−type SiC layer, a p base layer is formed on which, a p+ contact layer is selectively formed. From a surface, an n counter layer penetrates the p base layer to the n−type SiC layer. A gate electrode layer is disposed via a gate insulating film, on an exposed surface of the p base layer between the p+ contact layer and the n counter layer; and a source electrode contacts the p+ contact layer and the p base layer. In a back surface, a drain electrode is disposed. A portion of the p+ layers are joined at a region of a drain electrode side of the n counter layer, by a joining unit and a p+ layer contacts a drain electrode side of the p+ layer.
US10263104B2 FET transistor on a III-V material structure with substrate transfer
A method of manufacturing a III-V semiconductor circuit; the method comprising: forming a first layer of a III-V material on a growth substrate; forming a second layer of a III-V material on the first layer of III-V material; forming a FET transistor having a source electrode and a drain electrode in contact with a top surface of the second layer of a III-V material; forming a top dielectric layer above the FET transistor; forming a metal layer above the top dielectric layer, wherein said metal layer is connected to said source electrode; attaching a handle substrate to a top surface of the metal layer; removing the growth substrate from the bottom of the first layer of a III-V material; and forming a bottom dielectric layer on the bottom of the first layer of a III-V material.
US10263103B2 Semiconductor apparatus
A semiconductor apparatus includes an electron transit layer formed of a nitride semiconductor over a substrate; an electron supply layer formed of a nitride semiconductor including In over the electron transit layer; a cap layer formed of a nitride semiconductor over the electron supply layer; an insulation film formed over the cap layer; a source electrode and a drain electrode formed over the electron transit layer or the electron supply layer; and a gate electrode formed over the cap layer. A quantum well is formed by the cap layer.
US10263102B2 Semiconductor device and method of manufacturing the same
An object of the present invention is to provide a semiconductor device capable of preventing an occurrence of oscillation of voltage and current and a method of manufacturing the same. A semiconductor device according to the present invention includes an n type silicon substrate and a first n type buffer layer formed in a back surface of the n type silicon substrate and having a plurality of peaks of concentration of protons whose depths from the back surface are different from each other. In the first n type buffer layer, a concentration gradient of the protons from the peak located in a position closer to the back surface toward the surface of the n type silicon substrate is smaller than a concentration gradient of the protons from the peak located in a position farther away from the back surface toward the surface.
US10263100B1 Buffer regions for blocking unwanted diffusion in nanosheet transistors
Embodiments of the invention are directed to a method of fabricating a semiconductor device. A non-limiting example of the method includes performing fabrication operations to form a nanosheet field effect transistor device. The fabrication operations include forming a sacrificial nanosheet and a channel nanosheet over a substrate, forming a diffusion barrier layer between the sacrificial nanosheet and the channel nanosheet, wherein a diffusion coefficient of the diffusion barrier layer is selected to substantially prevent a predetermined semiconductor material from diffusing through the diffusion barrier layer.
US10263097B2 Method of semiconductor arrangement formation
Methods of semiconductor arrangement formation are provided. A method of forming the semiconductor arrangement includes forming a first nucleus on a substrate in a trench or between dielectric pillars on the substrate. Forming the first nucleus includes applying a first source material beam at a first angle relative to a top surface of the substrate and concurrently applying a second source material beam at a second angle relative to the top surface of the substrate. A first semiconductor column is formed from the first nucleus by rotating the substrate while applying the first source material beam and the second source material beam. Forming the first semiconductor column in the trench or between the dielectric pillars using the first source material beam and the second source material beam restricts the formation of the first semiconductor column to a single direction.
US10263091B2 Multiple gate field effect transistors having oxygen-scavenged gate stack
A method includes forming a silicon cap layer on a semiconductor fin, forming an interfacial layer over the silicon cap layer, forming a high-k gate dielectric over the interfacial layer, and forming a scavenging metal layer over the high-k gate dielectric. An anneal is then performed on the silicon cap layer, the interfacial layer, the high-k gate dielectric, and the scavenging metal layer. A filling metal is deposited over the high-k gate dielectric.
US10263087B2 Nonvolatile charge trap memory device having a deuterated layer in a multi-layer charge-trapping region
A memory is described. Generally, the memory includes a number of non-planar multigate transistors, each including a channel of semiconducting material overlying a surface of a substrate and electrically connecting a source and a drain, a tunnel dielectric layer overlying the channel on at least three sides thereof, and a multi-layer charge-trapping region overlying the tunnel dielectric layer. In one embodiment, the multi-layer charge-trapping region includes a first deuterated layer overlying the tunnel dielectric layer and a first nitride-containing layer overlying the first deuterated layer. Other embodiments are also described.
US10263085B2 Transistor with source field plates and non-overlapping gate runner layers
A transistor device includes a field plate that extends from a source runner layer and/or a source contact layer. The field plate can be coplanar with and/or below a gate runner layer. The gate runner layer is routed away from a region directly above the gate metal layer by a gate bridge, such that the field plate can extend directly above the gate metal layer without being interfered by the gate runner layer. Coplanar with the source runner layer or the source contact layer, the field plate is positioned close to the channel region, which helps reduce its parasitic capacitance. By vertically overlapping the metal gate layer and the field plate, the disclosed HEMT device may achieve significant size efficiency without additional routings.
US10263083B2 Thin film transistor array substrate and display panel thereof
A thin film transistor array substrate comprises: a substrate, a plurality of thin film transistors disposed on the substrate, wherein each of the plurality of thin film transistors comprises: a gate electrode structure, an isolate protective layer disposed on the gate electrode structure, an active layer disposed on the isolate protective layer, a source electrode layer disposed on a side of the active layer and forming an ohmic contact with the active layer, a drain electrode layer disposed on other side of the active layer and forming an ohmic contact with the active layer, a first concentration doping layer disposed on the active layer and between the source electrode layer and the drain electrode layer, a passivation layer covered onto the active layer, the source electrode layer and the drain electrode layer, and a pixel electrode layer covered onto the passivation layer and the drain electrode layer.
US10263080B2 Transistor with fluorinated graphene spacer
An integrated circuit (IC) device may include a semiconductor structure. The semiconductor structure may include a source contact, a drain contact, and a gate. A first fluorocarbon spacer may be between the gate and the source contact. A second fluorocarbon spacer may be between the gate and the drain contact.
US10263079B2 Apparatus and methods for forming a modulation doped non-planar transistor
Embodiments of an apparatus and methods for providing three-dimensional complementary metal oxide semiconductor devices comprising modulation doped transistors are generally described herein. Other embodiments may be described and claimed, which may include forming a modulation doped heterostructure, comprising forming an active portion having a first bandgap and forming a delta doped portion having a second bandgap.
US10263077B1 Method of fabricating a FET transistor having a strained channel
Method for fabricating at least one FET transistor (100a, 100b) comprising: fabrication of at least one first semiconducting portion (114) that will form a channel of the FET transistor, fabrication of second semiconducting portions (122, 124, 126) that will be used to form source and drain regions, such that the first semiconducting portion is located between first ends of the second semiconducting portions and such that second ends of the second semiconducting portions opposite the first ends, are in contact with bearing surfaces, and comprising at least one semiconducting material for which the crystalline structure or the atomic organisation, can be modified when a heat treatment is applied to it; heat treatment generating a modification to the crystalline structure of the semiconducting material of the second semiconducting portions and creating a strain (128) in the first semiconducting portion.
US10263072B2 Integrated RF front end system
Systems and methods are disclosed for integrating functional components of front-end modules for wireless radios. Front-end modules disclosed may be dual-band front-end modules for use in 802.11ac-compliant devices. In certain embodiments, integration of front-end module components on a single die is achieved by implementing a high-resistivity layer or substrate directly underneath, adjacent to, and/or supporting SiGe BiCMOS technology elements.
US10263067B2 Chip capacitor circuit and structure therefor
A radio frequency (RF) chip capacitor circuit and structure are provided. The circuit and structure include a plurality of capacitors connected in series. Each capacitor of the plurality includes a first plate formed from a first metal layer and a second plate formed from a second metal layer. A first two adjacent capacitors of the plurality include first plates formed in a first contiguous portion of the first metal layer or second plates formed in a second contiguous portion of the second metal layer. Each capacitor of the plurality may include a dielectric layer disposed between the first plate and the second plate.
US10263065B2 Metal resistor forming method using ion implantation
Methods of forming a metal resistor are provided. The methods may include: depositing a metal layer, e.g., tungsten, on a substrate; and forming the metal resistor by implanting a semiconductor species, e.g., silicon and/or germanium, into the metal layer to form a semiconductor-metal alloy layer from at least a portion of the metal layer. In certain embodiments, an adhesion layer may be deposited by ALD prior to metal layer depositing. The metal resistor has a sheet resistance that remains substantially constant prior to and after subsequent annealing.
US10263062B2 Flexible display
A flexible display is disclosed. In one aspect, the display includes at least one first pattern including a plurality of display elements configured to display an image and extending in a first direction. The display device also includes at least one second pattern extending in a second direction and overlapping at least a portion of the first pattern. The second pattern has a curved shape in the first direction and the second direction crosses the first direction. The first and second patterns form at least one cavity region defining a space therebetween and the first and second patterns form a mesh structure.
US10263059B2 Light emitting device
A light emitting device is provided which can prevent a change in gate voltage due to leakage or other causes and at the same time can prevent the aperture ratio from lowering. A capacitor storage is formed from a connection wiring line, an insulating film, and a capacitance wiring line. The connection wiring line is formed over a gate electrode and an active layer of a TFT of a pixel, and is connected to the active layer. The insulating film is formed on the connection wiring line. The capacitance wiring line is formed on the insulating film This structure enables the capacitor storage to overlap the TFT, thereby increasing the capacity of the capacitor storage while keeping the aperture ratio from lowering. Accordingly, a change in gate voltage due to leakage or other causes can be avoided to prevent a change in luminance of an OLED and flickering of screen in analog driving.
US10263057B2 Organic light emitting display panel and manufacturing method thereof
The present disclosure discloses an OLED panel, including: a substrate and a driving thin film transistor, a switching thin film transistor, a storage capacitor, an organic light emitting device, and a light emitting device formed on the substrate, an external voltage signal is stored in the storage capacitor via the switching thin film transistor, the external voltage signal controls a magnitude of on-current of the driving thin film transistor to control the gray scale of the organic light emitting device. The present disclosure further discloses a manufacturing method of OLED panel. In the present disclosure, the drain of the low temperature polysilicon thin film transistor is in contact with the bottom electrode of the organic light emitting device so that the current supplied to the organic light emitting device is stabilized; metal-oxide-semiconductor thin-film transistor has a low leakage current, so that a better circuit-closing effect can be achieved.
US10263053B2 Organic light-emitting diode display and method for manufacturing the same
Provided is an OLED display that includes, for example, a substrate having a plurality of pixel regions defined in a matrix; a thin film transistor in each pixel region; an anode connected to the thin film transistor in each pixel region; and a bank covering an edge of the anode and having an inside boundary at a first distance from the edge of the anode and an outside boundary at a second distance from the edge of the anode.
US10263052B2 Display panel, display method thereof and manufacturing method thereof
A display panel, a display method thereof, and a manufacturing method thereof are provided. The display panel includes a plurality of sub-pixel units. Each of the sub-pixel units includes a first display area and a second display area; the first display area includes an active emitting display unit; and the second display area is configured to switch between a transparent state and an opaque state.
US10263046B2 Organic EL display panel and method of manufacturing organic EL display panel
An organic EL display panel having a plurality of pixels arranged, the pixels each including blue, green and red sub-pixels, includes: a substrate; a first pixel electrode layer, a first hole injection layer, a first hole transport layer and a blue organic light-emitting layer provided in regions of the blue sub-pixels over the substrate in this order from the substrate side; a second pixel electrode layer, a second hole injection layer, a second hole transport layer and a green organic light-emitting layer provided in regions of the green sub-pixels over the substrate in this order from the substrate side; a third pixel electrode layer, a third hole injection layer, a third hole transport layer and a red organic light-emitting layer provided in regions of the red sub-pixels over the substrate in this order from the substrate side; and a counter electrode layer provided over the blue, green and red organic light-emitting layers.
US10263042B2 Organic photoelectric device and image sensor
An organic photoelectric device includes a first electrode and a second electrode facing each other, and an active layer between the first electrode and the second electrode, wherein the active layer includes an n-type semiconductor compound that is transparent in a visible ray region and represented by Chemical Formula 1, and a p-type semiconductor compound having a maximum absorption wavelength in a wavelength region of about 500 nm to about 600 nm of a visible ray region.
US10263040B2 Memory device and method of manufacturing the same
A memory device includes a first electrode line layer including a plurality of first electrode lines extending on a substrate in a first direction and being spaced apart from each other, a second electrode line layer including a plurality of second electrode lines extending on the first electrode line layer in a second direction that is different from the first direction and being spaced apart from each other, and a memory cell layer including a plurality of first memory cells located at a plurality of intersections between the plurality of first electrode lines and the plurality of second electrode lines, each first memory cell including a selection device layer, an intermediate electrode and a variable resistance layer that are sequentially stacked. A side surface of the variable resistance layer is perpendicular to a top surface of the substrate or inclined to be gradually wider toward an upper portion of the variable resistance layer. The first memory cell has a side surface slope so as to have a width gradually decreasing toward its upper portion.
US10263039B2 Memory cells having resistors and formation of the same
The present disclosure includes memory cells having resistors, and methods of forming the same. An example method includes forming a first conductive line, forming a second conductive line, and forming a memory element between the first conductive line and the second conductive line. Forming the memory element can include forming one or more memory materials, and forming a resistor in series with the one or more memory materials. The resistor can be configured to reduce a capacitive discharge through the memory element during a state transition of the memory element.
US10263037B2 Electronic device
An electronic device may be provided to include: first and second active regions arranged adjacent to each other in a second direction; a gate structure extended in the second direction; a first source region and a first drain region formed in the first active region; a second source region and a second drain region formed in the second active region; a source line contact formed over the first and second source regions and connected to the first and second source regions; a source line connected to the source line contact over the source line contact and extended in a first direction; first and second stacked structures formed over the first and second drain regions; and first and second bit lines formed over the first and second stacked structures, wherein the first and second bit lines are extended in the first direction.
US10263035B2 Magnetoresistive random access memory devices and methods of manufacturing the same
An MRAM device includes a lower electrode on a substrate, an MTJ structure on the lower electrode, a metal oxide pattern on the MTJ structure, a conductive pattern on at least a portion of a sidewall of the metal oxide pattern, and an upper electrode on the metal oxide pattern and the conductive pattern. The conductive pattern has a thickness varying along the sidewall of the metal oxide pattern in a plan view.
US10263032B2 Photodiode with different electric potential regions for image sensors
An image sensor pixel is disclosed. The pixel may include a photodiode having a first region with a first potential and a second region with a second, higher potential, with the second region being offset in depth from the first region in a semiconductor chip. A storage node may be positioned at substantially the same depth as the second region of the photodiode. A storage gate may be operable to transfer charge between the photodiode and the storage node.
US10263029B2 Photoelectric conversion device and manufacturing method of the photoelectric conversion device
A manufacturing method includes a first process for forming a first gate electrode for a first MOS transistor and a second gate electrode for a second MOS transistor on a substrate including a semiconductor region defined by an insulator region for element isolation, a second process for masking a portion located above the semiconductor region of the first gate electrode to introduce an impurity to a source-drain region of the first MOS transistor, and a third process for forming a first conductor member being in contact with the portion of the first gate electrode through a first hole disposed on an insulator member covering the substrate and a second conductor member being in contact with the second gate electrode through a second hole disposed on the insulator member.
US10263022B2 RGBZ pixel unit cell with first and second Z transfer gates
An image sensor is described having a pixel array. The pixel array has a unit cell that includes visible light photodiodes and an infra-red photodiode. The visible light photodiodes and the infra-red photodiode are coupled to a particular column of the pixel array. The unit cell has a first capacitor coupled to the visible light photodiodes to store charge from each of the visible-light photodiodes. The unit cell has a readout circuit to provide the first capacitor's voltage on the particular column. The unit cell has a second capacitor that is coupled to the infra-red photodiode through a first transfer gate transistor to receive charge from the infra-red photodiode during a time-of-flight exposure. The first capacitor is coupled to the infra-red photodiode through a second transfer gate transistor to receive charge from the infra-red photodiode during the time-of-flight exposure.
US10263021B2 Global shutter pixels having shared isolated storage capacitors within an isolation structure surrounding the perimeter of a pixel array
Disclosed herein is an electronic device including an integrated circuit substrate, with a pixel array area within the integrated circuit substrate. A first deep trench isolation structure is formed in the integrated circuit substrate about a perimeter of the pixel array area. First, second, third, and fourth pixels are within the pixel array area and spaced apart from one another. A storage capacitor area is within the integrated circuit substrate and interior to the first deep trench isolation structure. A second deep trench isolation structure is formed in the integrated circuit substrate about a perimeter of the storage capacitor area. The second deep trench isolation structure may serve to electrically isolate the storage capacitor area from the first, second, third, and fourth pixels.
US10263019B2 Flexible panel and method for manufacturing the same
A flexible panel includes a substrate, a first insulating layer, a second insulating layer, a sacrificial layer, and a metal wiring layer. The substrate has an active area, a peripheral area, and an intermediate area. The first insulating layer is in the three areas of the substrate, and the first insulating layer in the intermediate area has a first pattern. The second insulating layer is on the first insulating layer. The second insulating layer in the intermediate area has a first opening extending along a first direction, so that the second insulating layer does not cover the first pattern of the first insulating layer. The sacrificial layer is between the first insulating layer and the second insulating layer in the intermediate area, and does not cover the first pattern of the first insulating layer. The metal wiring layer extends between the active area and the peripheral area.
US10263017B2 Pixel structure, display panel and manufacturing method of pixel structure
A pixel structure, a display panel and a manufacturing method of the pixel structure are disclosed. The pixel structure includes: gate lines extending in parallel in a first direction; data lines extending in parallel in a second direction; and a plurality of pixel units defined by the gate lines and the data lines. One of the data lines is disposed between two pixel units which are adjacent to each other in the first direction, and two of the gate lines are disposed between two pixel units which are adjacent to each other in the second direction. Each of the pixel units comprises two pixel regions which are arranged side by side in the first direction, each of the pixel regions comprises a pixel electrode, and each of the pixel units comprises a unitary common electrode which covers the two pixel regions.
US10263016B2 Active matrix substrate and method for producing the same
An active matrix substrate includes a first TFT (10), a second TFT (20) disposed per pixel, and a circuit including the first TFT. The first and second TFTs each include a gate electrode (102A, 102B), a gate insulating layer (103), an oxide semiconductor layer (104A, 104B), and source and drain electrodes in contact with an upper surface of the oxide semiconductor layer. The oxide semiconductor layer (104A, 104B) has a stacked structure including a first semiconductor layer (104e, 104c) in contact with the source and drain electrodes and a second semiconductor layer that is disposed on a substrate-side of the first semiconductor layer and that has a smaller energy gap than the first semiconductor layer. The oxide semiconductor layers (104A) and (104B) are different from each other in terms of the composition and/or the number of stacked layers. The first TFT has a larger threshold voltage than the second TFT.
US10263014B2 Fin-type field-effect transistor
This invention relates to a fin field-effect transistor semiconductor structure. The method of forming the semiconductor structure can include patterning a plurality of precursor fins on a semiconductor layer having a layer portion A and a layer portion B. The semiconductor layer can be located on a substrate. The layer portion B can be selectively etched to form B fins and a top half of precursor fins. The layer portion A can be selectively etched to form A fins and the substrate can be etched to form a bottom half of the decoupling fins. The precursor fins can be removed to expose the A fins, the decoupling fins, and the B fins. One of the A fins and the B fins can form n-type fins and the other can form p-type fins.
US10263013B2 Method of forming an integrated circuit (IC) with hallow trench isolation (STI) regions and the resulting IC structure
Disclosed is an integrated circuit (IC) formation method, wherein trenches are formed within a semiconductor layer to define semiconductor mesa(s). Instead of immediately filling the trenches with an isolation material and performing a planarizing process to complete the STI regions prior to device formation, the method initially only form sidewall spacers within the trenches on the exposed sidewalls of the semiconductor mesa(s). After the sidewall spacers are formed, device(s) (e.g., field effect transistor(s), silicon resistor(s), etc.) are formed using the semiconductor mesa(s) and, optionally, additional device(s) (e.g., polysilicon resistor(s)) can be formed within the trenches between adjacent semiconductor mesas. Subsequently, middle of the line (MOL) dielectrics (e.g., a conformal etch stop layer and a blanket interlayer dielectric (ILD) layer) are deposited over the device(s), thereby filling any remaining space within the trenches and completing the STI regions. Also disclosed is an IC structure formed using the method.
US10263010B2 Semiconductor device and manufacturing method thereof
A semiconductor device includes a first semiconductor layer, a second semiconductor layer spaced apart from the first semiconductor layer and disposed on the first semiconductor layer, a gate stack structure disposed on the second semiconductor layer, a third semiconductor layer positioned between the first and second semiconductor layers, and a channel pillar passing through the gate stack structure, the second semiconductor layer and the third semiconductor layer and extending into the first semiconductor layer.
US10263004B2 Semiconductor device and method of manufacturing
The present disclosure relates to a method of forming sidewall spacers configured to improve dielectric fill between adjacent gate structures. In some embodiments, the method may be performed by depositing a sidewall spacer material over a first gate structure and a second gate structure. A first etching process is performed on the sidewall spacer material to form a first intermediate sidewall spacer surrounding the first gate structure and a second sidewall spacer surrounding the second gate structure. A masking material is formed over the substrate. Parts of the first intermediate sidewall spacer protrude outward from the masking material, while the second sidewall spacer is completely covered by the masking material. A second etching process is then performed on the parts of the first intermediate sidewall spacer protruding outward from the masking material to form a first sidewall spacer recessed below an uppermost surface of the first gate structure.
US10263001B2 Method of forming semiconductor memory device
A method of forming semiconductor memory device including following steps. Firstly, a substrate having a memory cell region and a peripheral region is provided, and a first semiconductor layer is formed on the substrate within the periphery region. Next, an insulating layer and a second semiconductor layer are formed on the substrate, and the second semiconductor layer covers the substrate, the first semiconductor layer and the insulating layer. Then, a sacrificial layer is formed on the second semiconductor layer, wherein top surfaces of the sacrificial layer within the memory cell region and the periphery region are coplanar. Following these, a removing process is performed to remove the sacrificial layer, the second semiconductor layer and the insulating layer, to expose the first semiconductor layer. After that, a top surface of the first semiconductor layer is leveled with a top surface of the second semiconductor layer.
US10263000B2 Device comprising capacitor and forming method thereof
A device including a capacitor includes an isolation structure, a first control gate, a first selective gate and a first dielectric layer. The isolation structure is disposed in a substrate. The first control gate and the first selective gate are disposed directly above the isolation structure. The first dielectric layer is vertically sandwiched by the first control gate and the first selective gate, thereby constituting the capacitor. The present invention also provides a method of forming the device including the capacitor.
US10262997B2 High-voltage LDMOSFET devices having polysilicon trench-type guard rings
A high-voltage semiconductor device including a semiconductor layer formed on a substrate is provided. A first well region having a first conductivity type and a second well region having a second conductivity type are formed in the semiconductor layer. Source and drain regions are respectively formed in the first and second well regions. A gate structure is disposed on the semiconductor layer. A first isolation trench structure is disposed in the semiconductor layer and surrounds the first and second well regions. The first isolation trench structure includes a first polysilicon layer filling a first trench and having the second conductivity type, a first heavy doping region formed in an upper portion of the first polysilicon layer and having the second conductivity type, and a first insulating liner disposed on sidewalls of the first trench and surrounding the first polysilicon layer.
US10262996B2 Third type of metal gate stack for CMOS devices
A third type of metal gate stack is provided above an isolation structure and between a replacement metal gate n-type field effect transistor and a replacement metal gate p-type field effect transistor. The third type of metal gate stack includes at least three different components. Notably, the third type of metal gate stack includes, as a first component, an n-type workfunction metal layer, as a second component, a p-type workfunction metal layer, and as a third component, a low resistance metal layer. In some embodiments, the uppermost surface of the first, second and third components of the third type of metal gate stack are all substantially coplanar with each other. In other embodiments, an uppermost surface of the third component of the third type of metal gate stack is non-substantially coplanar with an uppermost surface of both the first and second components of the third type of metal gate stack.
US10262994B2 FinFET LDMOS devices with additional dynamic control
A FinFET semiconductor device having semiconductor body including a source region of a first type, and a drain region of a second type, and a drain-region shallow trench isolation (STI) disposed in the drain region. The device includes a plurality of fins attached to the semiconductor body and extending across the semiconductor body, a channel gate disposed over a section of the plurality of fins; a supplemental gate disposed on the drain-region STI.
US10262988B2 Electrostatic discharge protection device
An electrostatic discharge protection device and a method of making the same. The device includes a device area located on a semiconductor substrate. The device also includes an array of coextensive, laterally spaced fingers located within the device area. Each finger includes an elongate source and an elongate drain separated by an elongate gate. The fingers are electrically connected in parallel for conducting an electrostatic discharge current during an electrostatic discharge event. The device further includes a plurality of body contact regions. A layout of the body contact regions is graded such that a greater number of the body contact regions, larger body contact regions, or both are located towards a periphery of the device area than towards a central part of the device area. The layout of the body contact regions may encourage triggering of the electrostatic discharge protection device within the central part of the device area.
US10262987B2 Electrostatic discharge protection circuit
The present invention provides an ESD protection circuit electrically connected between a high voltage power line and a low voltage power line, and the ESD protection circuit includes a bipolar junction transistor (BJT) and a trigger source. A collector of the BJT is electrically connected to the high voltage power line, and an emitter and a base of the BJT are electrically connected to the low voltage power line. The trigger source is electrically connected between the base of the BJT and the high voltage power line.
US10262986B2 Protection device and method for fabricating the protection device
A protection device as provided includes a doped well with a first-type impurity, formed in a substrate. A first semiconductor terminal with a second-type impurity is formed on the doped well. A second semiconductor terminal with a second-type impurity is formed on the doped well separating from the first semiconductor terminal. The first semiconductor terminal is connected to a voltage level and a second semiconductor terminal is connected to a ground voltage.
US10262985B2 Circuits and methods for lowering leakage in ultra-low-power MOS integrated circuits
A block of logic gates has MOS transistors whose body terminals are connected with a body voltage rail and whose source terminals are connected with a logic reference voltage rail. The logic reference voltage rail is connected to the body voltage rail via a resistor. The resistor creates a negative feedback loop for leakage currents that stabilizes a reverse body bias voltage and reduces the influence of temperature, voltage, and process variations.The block may be NMOS, PMOS, or CMOS. In the case of CMOS, there are two body voltage rails, powered by a voltage source, two logic reference voltage rails, and two resistors. The reverse body bias voltages over the two resistors may be stabilized by decoupling capacitors. The two resistors may be trimmable. The resistors may be calibrated such that leakage currents are at a minimum value and the logic gates can switch just fast enough.
US10262982B2 Integrated circuits with standard cell
The present invention provides an integrated circuit with a standard cell of an inverter. The integrated circuit includes: a first metal line and a second metal line stretching along a first direction; a first dummy gate and a second dummy gate stretching along a second direction; Plural fin structures stretching along the first direction; A gate structure disposed on the fin structures and stretching along the second direction; Two long contact plugs disposed at one side of the gate structure; two short contact plugs disposed at the other side of the gate structure; a gate contact plug disposed on the gate structure; Plural via plugs disposed on the long contact plugs, the short contact plugs and the gate contact plugs; A metal layer includes the first metal line, the second metal line, a third metal line and a fourth metal line.
US10262981B2 Integrated circuit, system for and method of forming an integrated circuit
A method of forming an integrated circuit is disclosed. The method includes generating, by a processor, a layout design of the integrated circuit, outputting the integrated circuit based on the layout design, and removing a portion of a conductive structure of the integrated circuit to form a first conductive structure and a second conductive structure. Generating the layout design includes generating a standard cell layout having a set of conductive feature layout patterns, placing a power layout pattern with the standard cell layout according to at least one design criterion, and extending at least one conductive feature layout pattern of the set of conductive feature layout patterns in at least one direction to a boundary of the power layout pattern. The power layout pattern includes a cut feature layout pattern. The cut feature layout pattern identifies a location of the removed portion of the conductive structure of the integrated circuit.
US10262980B2 LED module
The invention relates to an LED module with a circuit which comprises an LED (106) and a resonant circuit (106, 108, 110) for coupling in energy for operation of the LED, wherein the circuit is formed without connections and is fully encapsulated in the LED module.
US10262966B2 Methods for surface attachment of flipped active components
An active substrate includes a plurality of active components distributed over a surface of a destination substrate, each active component including a component substrate different from the destination substrate, and each active component having a circuit and connection posts on a process side of the component substrate. The connection posts may have a height that is greater than a base width thereof, and may be in electrical contact with the circuit and destination substrate contacts. The connection posts may extend through the surface of the destination substrate contacts into the destination substrate connection pads to electrically connect the connection posts to the destination substrate contacts.
US10262965B2 Display device and manufacturing method thereof
A display device includes: a flexible substrate having a display area for displaying an image and a peripheral area outside the display area; a first pad electrode in the peripheral area of the flexible substrate; and a driver connected to the first pad electrode. The driver includes: a circuit board including a driving circuit; a second pad electrode on one side of the circuit board and facing the first pad electrode; a convex structure on one side of the second pad electrode and having an oval cross-section; and a bump electrode on one side of the convex structure and connected to the first pad electrode. The bump electrode includes a column covering the convex structure and a convex portion extending from one side of the column and protruding to the first pad electrode.
US10262963B2 Conductive barrier direct hybrid bonding
A method for forming a direct hybrid bond and a device resulting from a direct hybrid bond including a first substrate having a first set of metallic bonding pads, preferably connected to a device or circuit, capped by a conductive barrier, and having a first non-metallic region adjacent to the metallic bonding pads on the first substrate, a second substrate having a second set of metallic bonding pads capped by a second conductive barrier, aligned with the first set of metallic bonding pads, preferably connected to a device or circuit, and having a second non-metallic region adjacent to the metallic bonding pads on the second substrate, and a contact-bonded interface between the first and second set of metallic bonding pads capped by conductive barriers formed by contact bonding of the first non-metallic region to the second non-metallic region.
US10262961B2 Semiconductor devices having discretely located passivation material, and associated systems and methods
Semiconductor devices having discretely located passivation material are disclosed herein. In one embodiment, a semiconductor device assembly can include a bond pad having a bonding surface with a process artifact. A passivation material can be positioned to at least partially fill a portion of the process artifact. A conductive structure can be positioned to extend across the bonding surface of the bond pad.
US10262957B2 Millimeter wave integrated circuit with ball grid array package including transmit and receive channels
An integrated circuit (IC) package includes an IC die and a wave channel that electrically couples the IC die to a solder ball array. The wave channel is configured to resonate at an operating frequency band of the IC die.
US10262953B2 Semiconductor device
A semiconductor device includes a heat dissipating unit that includes a primary part made of a first metal material and an embedded part that is embedded in a front surface of the primary part and that is made of a second metal material, a front surface of the heat dissipating unit having a mounting region on which a rear surface of a semiconductor element substrate is mounted so as to dissipate heat generated by the semiconductor element; and a sealing member that seals the semiconductor element, the substrate, and a sealed region of the front surface of the heat dissipating unit, wherein the embedded part is formed in the sealed region, and an absolute difference of the linear expansion coefficient of the second metal material and that of the sealing member is less than or equal to 25% of a value of the linear expansion coefficient of the sealing member.
US10262951B2 Radiation hardened microelectronic chip packaging technology
A novel radiation hardened chip package technology protects microelectronic chips and systems in aviation/space or terrestrial devices against high energy radiation. The proposed technology of a radiation hardened chip package using rare earth elements and mulitlayered structure provides protection against radiation bombardment from alpha and beta particles to neutrons and high energy electromagnetic radiation.
US10262950B1 Visible alignment markers/landmarks for CAD-to-silicon backside image alignment
A metal oxide semiconductor (MOS) integrated circuit (IC) has a plurality of fiducial standard cells of different cell sizes. The different cell sizes are non-equally utilized. The plurality of fiducial standard cells are placed to have a random offset from a uniform global placement pattern. Each of the fiducial standard cells has at least four power rails and various sets of active regions. The power rails extend in a first direction. The active regions are provided adjacent to the power rails but are disconnected from contacts and interconnects and thus do not draw power from the power rails. Instead, the active regions are disjoint and collinear thereby creating islands of active regions among spacings of inactive regions. These inactive regions more easily allow electromagnetic radiation to pass through thereby allowing the MOS fiducial standard cell to be visible for a CAD-to-silicon backside image alignment even with 7 nm feature sizes.
US10262947B2 Active chip on carrier or laminated chip having microelectronic element embedded therein
A structure including a first semiconductor chip with front and rear surfaces and a cavity in the rear surface. A second semiconductor chip is mounted within the cavity. The first chip may have vias extending from the cavity to the front surface and via conductors within these vias serving to connect an additional microelectronic element to the active elements of the first chip. The structure may have a volume comparable to that of the first chip alone and yet provide the functionality of a multi-chip assembly. A composite chip incorporating a body and a layer of semiconductor material mounted on a front surface of the body similarly may have a cavity extending into the body from the rear surface and may have an additional microelectronic element mounted in such cavity.
US10262939B2 Configurable routing for packaging applications
Various structures having a fuse and methods for forming those structures are described. An embodiment is a method. The method comprises attaching a first die to a first side of a component using first electrical connectors. After the attaching, at least one of (i) the first die comprises a first fuse, (ii) the first side of the component comprises a second fuse, (iii) a second side of the component comprises a third fuse, the second side being opposite the first side, or (iv) a combination thereof. The method further comprises after the attaching the first die to the first side of the component, blowing the first fuse, the second fuse, the third fuse, or a combination thereof.
US10262937B2 Integrated circuit device
An integrated circuit device includes at least one fin-type active region, a gate line on the at least one fin-type active region, and a source/drain region on the at least one fin-type active region at at least one side of the gate line. A first conductive plug is connected to the source/drain region and includes cobalt. A second conductive plug is connected to the gate line and spaced apart from the first conductive plug. A third conductive plug is connected to each of the first conductive plug and the second conductive plug. The third conductive plug electrically connects the first conductive plug and the second conductive plug.
US10262936B2 Semiconductor device and manufacturing method thereof
A semiconductor device according to the present embodiment includes a stacked body having an end which is step-shaped and a contact in each of the steps of the end. Each of the steps includes alternating a plurality of conductive layers and a plurality of insulating layers. The contact includes a plurality of conductive films contacting each of the conductive layers, and a plurality of insulating films contacting each of the insulating layers, the insulating films being provided between the conductive films.
US10262934B2 Three plate MIM capacitor via integrity verification
A three plate MIM capacitor structure includes a three plate MIM capacitor, a first wire in a metal layer above/below the three plate MIM, a second wire below/above the three plate MIM, a third wire below/above the three plate MIM, a first via connected to the first test wire, a second via connected to a middle plate of the three plate MIM, and a third via connected to the top and bottom plates of the three plate MIM. The test structure may verify the integrity the MIM capacitor by applying a potential to the first test wire, applying ground potential to both the second test wire and the third test wire, and detecting leakage current across the first wire and the second and third wires or detecting leakage current across the second wire and the third wire.
US10262933B2 Semiconductor package
A semiconductor package includes a substrate, a first semiconductor chip and a second semiconductor chip adjacent to each other on the substrate, and a plurality of bumps on lower surfaces of the first and second semiconductor chips. The first and second semiconductor chips have facing first side surfaces and second side surfaces opposite to the first side surfaces. The bumps are arranged at a higher density in first regions adjacent to the first side surfaces than in second regions adjacent to the second side surfaces.
US10262929B2 Semiconductor device with lead frame
A semiconductor device and a semiconductor device manufacturing method that may prevent positional displacement of an electronic component mounted on a lead frame. The semiconductor device includes a lead frame, and an electronic component that has a protruding or recessed structure at a bonding face that bonds to the lead frame and is bonded to the lead frame, in a state in which a portion of the lead frame is fitted together with the protruding or recessed structure.
US10262925B2 Semiconductor device and method of manufacturing semiconductor device
A semiconductor device includes a base plate to which a stacked substrate is bonded, the stacked substrate being mounted on a semiconductor chip. The semiconductor device further includes a heat sink mounted to the base plate, via thermal paste and a metal ring. A center hole of the metal ring is provided to face the semiconductor chip and the thermal paste fills the center hole. Further, the metal ring is formed using a material having about a same hardness as the heat sink, or a material having a lower hardness than the hardness of the heat sink.
US10262923B2 Semiconductor device, manufacturing method for semiconductor device, electronic component, circuit substrate, and electronic apparatus
A semiconductor device includes an integrated circuit that is disposed at a first face side of a semiconductor substrate, the semiconductor substrate having a first face and a second face, the second face opposing the first face, the semiconductor substrate having a through hole from the first face to the second face; an external connection terminal that is disposed at the first face side; a conductive portion that is disposed in the through hole, the conductive portion being electrically connected to the external connection terminal; and an electronic element that is disposed at a second face side.
US10262921B2 Semiconductor module
A semiconductor module includes a baseplate, a cover element attached to the baseplate so that detaching the cover element from the baseplate requires material deformations, and a semiconductor element in a room defined by the baseplate and the cover element. The semiconductor element is in a heat conductive relation with the baseplate and an outer surface of the baseplate is provided with laser machined grooves suitable for conducting heat transfer fluid. The laser machining makes it possible to make the grooves after the semiconductor module has been assembled. Therefore, regular commercially available semiconductor modules can be modified, with the laser machining, to semiconductor modules as disclosed.
US10262915B2 Thermally enhanced semiconductor package with thermal additive and process for making the same
The present disclosure relates to a thermally enhanced semiconductor package, which includes a module substrate, a thinned flip chip die over the substrate, a first mold compound component, and a thermally enhanced mold compound component. The first mold compound component resides over the module substrate, surrounds the thinned flip chip die, and extends above an upper surface of the thinned flip chip die to form a cavity over the upper surface of the thinned flip chip die. The thermally enhanced mold compound component includes a lower portion filling a lower region of the cavity and residing over the upper surface of the thinned flip chip die, and an upper portion filling an upper region of the cavity and residing over the lower portion. A first average thermal conductivity of the lower portion is at least 1.2 times greater than a second average thermal conductivity of the upper portion.
US10262914B2 Resin composition for encapsulation, and semiconductor device
Provided is a resin composition for encapsulation used for encapsulating a power semiconductor element formed from SiC, GaN, Ga2O3, or diamond, the resin composition for encapsulation including a thermosetting resin (A) and silica (B), in which the silica (B) includes Fe, the content of Fe is equal to or less than 220 ppm with respect to the total amount of the silica (B), and the resin composition is in a granular form, a tablet form, or a sheet form.
US10262913B2 Wafer level package solder barrier used as vacuum getter
An electronic device and methods of manufacture thereof. One or more methods may include providing a lid wafer having a cavity and a surface surrounding the cavity and a device wafer having a detector device and a reference device. In certain examples, a solder barrier layer of titanium material may be deposited onto the surface of the lid wafer. The solder barrier layer of titanium material may further be activated to function as a getter. In various examples, the lid wafer and the device wafer may be bonded together using solder, and the solder barrier layer of titanium material may prevent the solder from contacting the surface of the lid wafer.
US10262910B2 Method of feature exaction from time-series of spectra to control endpoint of process
Methods and systems for using a time-series of spectra to identify endpoint of an etch process. One method includes accessing a virtual carpet that is formed from a time-series of spectra for the etch process collected during a training operation. And, running a fabrication etch process on a fabrication wafer, such that while the fabrication etch process is performed portions of a carpet defined from a time-series of spectral is generated for the fabrication etch process. Then, comparing the portions of the carpet of the fabrication etch process to the virtual carpet. End pointing is processed for the fabrication etch process when said comparing indicates that a desired metric has been reached for the fabrication wafer. In one example, said portions of the carpet include a current frame of captured spectra and at least one previous frame of captured spectra. The portions of the carpet of the fabrication etch process are fitted to the virtual carpet to identify a virtual frame number and associated floating parameters that are used in a correlation to predicted a value for the metric. Further, each of the carpets produced during the training operation and the virtual carpet are defined by a polynomial. The coefficients of the carpets produced during the training operation are a subset of the coefficients of the polynomial of the virtual carpet.
US10262909B2 Semiconductor device and method for manufacturing the same
Semiconductor layer is formed on semiconductor substrate. Semiconductor layer has a plurality of well regions in a surface remote from semiconductor substrate. Semiconductor layer includes drift region in addition to the plurality of well regions. The plurality of well regions each include body region, source region, and contact region. Source region is in contact with body region. Contact region is in contact with both body region and source region. Body region, source region, and source wire are at an identical potential because of contact region. Semiconductor layer includes ineffective region R at the surface remote from semiconductor substrate.
US10262906B2 Method of producing a functional inlay and inlay produced by the method
The method of manufacturing a functional inlay, comprises at least the steps of: (1) providing a substrate with a wire antenna embedded therein and with an aperture wherein two wire antenna portions are positioned over said aperture; (2) acquiring the positions and the dimensions of said wire antenna portions and of said aperture; (3) determining if the acquired positions and dimensions meet predetermined tolerances; (4) if the acquired dimensions and positions meet said tolerances, then placing a chip in fie aperture so that said wire portions are positioned over connections pads of said chip and then bonding said wire portions to said connection pads.
US10262903B2 Boundary spacer structure and integration
The present disclosure relates to semiconductor structures and, more particularly, to an N-P boundary spacer structure used with finFET devices and methods of manufacture. The method includes forming a plurality of first fin structures, forming a blocking layer between a first fin structure of the plurality of fin structures and a second fin structure of the plurality of fin structures, and forming an epitaxial material on the first fin structure, while blocking the epitaxial material from extending onto the second fin structure by at least the blocking layer formed between the first fin structure and the second fin structure.
US10262901B2 Fabrication of a vertical fin field effect transistor with reduced dimensional variations
A method of forming a fin field effect transistor (finFET) having fin(s) with reduced dimensional variations, including forming a dummy fin trench within a perimeter of a fin pattern region on a substrate, forming a dummy fin fill in the dummy fin trench, forming a plurality of vertical fins within the perimeter of the fin pattern region, including border fins at the perimeter of the fin pattern region and interior fins located within the perimeter and inside the bounds of the border fins, wherein the border fins are formed from the dummy fin fill, and removing the border fins, wherein the border fins are dummy fins and the interior fins are active vertical fins.
US10262900B2 Wimpy device by selective laser annealing
A method for co-integrating wimpy and nominal devices includes growing source/drain regions on semiconductor material adjacent to a gate structure to form device structures with a non-electrically active material. Selected device structures are masked with a block mask. Unmasked device structures are selectively annealed to increase electrical activity of the non-electrically active material to adjust a threshold voltage between the selected device structures and the unmasked device structures.
US10262895B2 Method for forming semiconductor device
The present invention provides a method for fabricating a semiconductor device, comprising at least the steps of: providing a substrate in which a memory region and a peripheral region are defined, the memory region includes a plurality of memory cells, each memory cell includes at least a first transistor and a capacitor, the peripheral region compress a second transistor, a first insulating layer is formed within the memory region and the peripheral region by an atomic layer deposition process, covering the capacitor of the memory cells in the memory region and the second transistor in the peripheral region, and a second insulating layer is formed, overlying the first insulating layer and the peripheral region. Finally, a contact structure is formed within the second insulating layer, and electrically connecting the second transistor.
US10262891B2 Substrate having two semiconductor materials on insulator
A method for forming a semiconductor device includes forming a first insulator layer on a first substrate of a first semiconductor material, implanting hydrogen ions into the first substrate to form a hydrogen-implanted layer, forming a recessed region in the first substrate, forming a second semiconductor material in the recessed region, and forming a second insulator layer over the second semiconductor material and the first substrate. The method also includes providing a second substrate with a third insulator layer disposed thereon, bonding the first substrate with the second substrate, and removing a lower portion of the first substrate at the hydrogen-implanted layer. A portion of the first substrate is removed to expose a surface of the second semiconductor material in the recessed region, thereby providing a layer of the first semiconductor material adjacent to a layer of the second semiconductor material on the second insulator layer.
US10262890B1 Method of forming silicon hardmask
A method for manufacturing a semiconductor device includes patterning a plurality of fins on a semiconductor substrate, wherein a hardmask is formed on each of the plurality of fins, forming a dielectric layer on the semiconductor substrate between the plurality of fins, removing the hardmasks from each of the plurality of fins, forming a plurality of cap layers in place of the removed hardmasks on each of the plurality of fins, wherein the plurality of cap layers comprise at least one of amorphous silicon and polycrystalline silicon, and selectively recessing the dielectric layer with respect to the plurality of cap layers.
US10262886B2 Electrostatic chuck device
Disclosed is an electrostatic chuck device for increasing electrostatic adsorptive force for a focus ring and uniformly cooling the focus ring. In such a device, a mounting table has a holder in the periphery of a placing surface along the circumferential direction of a focus ring, the holder has a pair of banks in the circumferential direction, and an annular groove formed between these banks, and in at least a bank on an outer circumferential position of the focus ring among the pair of the banks, a micro-protruding part including a plurality of micro-protrusions is on a surface facing the focus ring, or convex parts are on a bottom of the groove. The convex parts do not contact the focus ring, and the pair of banks or plurality of micro-protrusions contacts the focus ring and electrostatically adsorbs the focus ring in coordination with the convex parts.
US10262884B2 Systems, apparatus, and methods for an improved load port
Embodiments provide systems, apparatus, and methods for an improved load port that includes a frame supporting a dock and a carrier opener; an elevator operable to raise and lower the carrier opener; an isolation compartment within which the elevator is operable to move, the isolation compartment including a volume isolated from a volume of an equipment front end module (EFEM); and a purge supply within the isolation compartment operable to purge the isolation compartment of reactive gas trapped within the isolation compartment. Numerous additional aspects are disclosed.
US10262883B2 Method for improving performance of a substrate carrier
A method of modifying a substrate carrier to improve process performance includes depositing material or fabricating devices on a substrate supported by a substrate carrier. A parameter of layers deposited on the substrate is then measured as a function of their corresponding positions on the substrate carrier. The measured parameter of at least some devices fabricated on the substrate or a property of the deposited layers is related to a physical characteristic of substrate carrier to obtain a plurality of physical characteristics of the substrate carrier corresponding to a plurality of positions on the substrate carrier. The physical characteristic of the substrate carrier is then modified at one or more of the plurality of corresponding positions on the substrate carrier to obtain desired parameters of the deposited layers or fabricated devices as a function of position on the substrate carrier.
US10262880B2 Cover plate for wind mark control in spin coating process
Techniques disclosed herein provide an apparatus and method of spin coating that inhibits the formation of wind marks and other defects from turbulent fluid-flow, thereby enabling higher rotational velocities and decreased drying times, while maintaining film uniformity. Techniques disclosed herein include a fluid-flow member, such as a ring or cover, positioned or suspended above the surface of a wafer or other substrate. The fluid-flow member has a radial curvature that prevents wind marks during rotation of a wafer during a coating and spin drying process.
US10262879B2 Mold device
According to one embodiment, a mold device includes a first mold. The first mold includes a substrate clamping surface, a cavity, a suction part, a vent, first and second intermediate cavities and an opening/closing part. The substrate clamping surface contacts a surface of a processing substrate. The cavity is recessed from the substrate clamping surface. The suction part is recessed from the substrate clamping surface. The vent is provided on a path between the cavity and the suction part, and is recessed from the substrate clamping surface to a vent depth. The first intermediate cavity is provided between the vent and the suction part, and is recessed from the substrate clamping surface. The second intermediate cavity is provided between the first intermediate cavity and the suction part, and is recessed from the substrate clamping surface to a second intermediate cavity depth. The opening/closing part opens and closes the path.
US10262877B2 Apparatus and method for reducing substrate sliding in process chambers
Methods and apparatus for processing a substrate are disclosed herein. In some embodiments, an apparatus for processing a substrate includes: a substrate support having a substrate supporting surface including an electrically insulating coating; a substrate lift mechanism including a plurality of lift pins configured to move between a first position disposed beneath the substrate supporting surface and a second position disposed above the substrate supporting surface; and a connector configured to selectively provide an electrical connection between the substrate support and the substrate lift mechanism before the plurality of lift pins reach a plane of the substrate supporting surface.
US10262868B1 Self-aligned planarization of low-K dielectrics and method for producing the same
A method of forming a uniform self-aligned low-k layer with a large process window for inserting a memory array with pillar/convex topography and the resulting device are provided. Embodiments include forming a substrate with a first region and a second region; forming a first low-K layer over the substrate; forming an oxide layer over the first low-K layer; forming a spacer over the oxide layer; etching the spacer to expose the oxide layer in the first region; removing the oxide layer and a portion of the first low-K layer in the first region and a portion of the oxide layer and a portion of the spacer in the second region; removing the spacer in the second region; cleaning the first low-K layer and the oxide layer, a triangular-like shaped portion of the oxide layer remaining; and forming a second low-K layer over the substrate.
US10262867B2 Fast-gas switching for etching
A method for etching a layer in a plasma chamber with an inner injection zone gas feed and an outer injection zone gas feed is provided. The layer is placed in the plasma chamber. A pulsed etch gas is provided from the inner injection zone gas feed at a first frequency, wherein flow of pulsed etch gas from the inner injection zone gas feed is ramped down to zero. The pulsed etch gas is provided from the outer injection zone gas feed at the first frequency and simultaneous with and out of phase with the pulsed etch gas from the inner injection zone gas feed. The etch gas is formed into a plasma to etch the layer, simultaneous with the providing the pulsed etch gas from the inner injection zone gas feed and providing the pulsed gas from the outer interjection zone gas feed.
US10262864B2 Point-of-use enrichment of gas mixtures for semiconductor structure fabrication and systems for providing point-of-use enrichment of gas mixtures
Point-of-use enrichment of gas mixtures for semiconductor structure fabrication, and systems for providing point-of-use enrichment of gas mixtures, are described herein. In an example, a system for fabricating a semiconductor structure includes a process chamber for processing a substrate of a semiconductor structure. A gas supply is coupled to the process chamber. A point-of-use gas enrichment module is coupled to the gas supply. The point-of-use gas enrichment module is configured to concentrate a first gas composition to provide a second gas composition to the gas supply for the process chamber. The second gas composition has a relative amount of a hydride species greater than a relative amount of corresponding hydride species in the first gas composition.
US10262862B1 Method of forming fine interconnection for semiconductor devices
The present disclosure provides a method of forming fine interconnection for semiconductor devices. The method includes the following steps: A substrate is provided. A first core layer is formed over the substrate. The first core layer includes a base portion, a plurality of extending line portions extending from the base portion along a first direction, and a plurality of isolated line portions isolated from the base portion. Subsequently, a spacer is formed on the sidewalls of the first core layer. A second core layer is then formed to over the substrate. The second core layer includes a plurality of surrounding line portions surrounding the plurality of isolated line portions, and includes a plurality of enclosed line portions enclosed by the plurality of extending line portions. The spacer is removed to form a plurality of openings between the first core layer and the second core layer. The first core layer and the second core layer are alternately arranged along a second direction perpendicular to the first direction after removing the spacer.
US10262860B2 Method of fabricating electrodes, method of fabricating thin film transistor, method of fabricating array substrate, thin film transistor, array substrate, and display apparatus
The present application discloses a method of fabricating a plurality of electrodes. The method includes forming a hydrophobic pattern containing a hydrophobic material on a base substrate, the hydrophobic pattern has a first ridge on a first edge of the hydrophobic pattern, the hydrophobic pattern has a thickness at the first ridge greater than that in a region outside a region corresponding to the first ridge; removing a portion of the hydrophobic pattern outside the region corresponding to the first ridge; and forming a first electrode on a first side of the first ridge and a second electrode on a second side of the first ridge.
US10262856B2 Selective oxidation of transition metal nitride layers within compound semiconductor device structures
Methods for integrating transition metal oxide (TMO) layers into a compound semiconductor device structure via selective oxidation of transition metal nitride (TMN) layers within the structure.
US10262854B2 Deposition of SiN
Methods and precursors for forming silicon nitride films are provided. In some embodiments, silicon nitride can be deposited by atomic layer deposition (ALD), such as plasma enhanced ALD. In some embodiments, deposited silicon nitride can be treated with a plasma treatment. The plasma treatment can be a nitrogen plasma treatment. In some embodiments the silicon precursors for depositing the silicon nitride comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%). In some embodiments, a method for depositing silicon nitride films comprises a multi-step plasma treatment.
US10262852B2 Atmospheric pressure ionization method
An atmospheric pressure ionization method uses: a gas flow passage control unit (26) and a gas outlet nozzle (24) configured to jet argon gas to an atmospheric atmosphere; a needle electrode (19) arranged between an outlet port of the gas outlet nozzle (24) and an introduction port of an ion introduction pipe (6) that includes a tip end portion formed into a two-sheeted hyperboloid of revolution having a radius of curvature of 1 μm or more and less than 30 μm; a needle electrode support mechanism (20); and an electric power generation unit (22) configured to apply a voltage to the needle electrode (19). The atmospheric pressure ionization method includes: applying a voltage of 1.8 kV or more to the needle electrode (19) from the voltage generation unit (22) to generate a dark discharge; exciting the argon gas with the dark current; and causing the excited argon gas and the sample to react with each other, to thereby ionize the sample.
US10262849B2 Active stabilization of ion trap radiofrequency potentials
Disclosed are improved methods and structures for actively stabilizing the oscillation frequency of a trapped ion by noninvasively sampling and rectifying the high voltage RF potential at circuit locations between a step-up transformer and a vacuum feedthrough leading to the ion trap electrodes. We use this sampled/rectified signal in a feedback loop to regulate the RF input amplitude to the circuit. By employing techniques and structures according to the present disclosure we are advantageously able to stabilize a 1 MHz trapped ion oscillation frequency to <10 Hz after 200 s of integration, representing a 34 dB reduction in the level of trap frequency noise and drift, over a locking bandwidth of up to 30 kHz.
US10262847B2 Photomultiplier tube and method of making it
A photomultiplier tube (PMT) suitable for detecting a photon, comprising: an electron ejector configured for emitting primary electrons in response to an incident photon; a detector configured for collecting electrons and providing an output signal representative of the incident photon; and a series of vertical electrodes between the electron ejector and the detector, wherein each of the vertical electrodes is configured for emitting secondary electrons in response to incident electrons, and each of the vertical electrodes is parallel to a straight line connecting the electron ejector and the detector.
US10262846B2 Apparatus and methods for focussing electrons
An apparatus for generating and focusing electrons is provided. The apparatus has an emissive material configured to emit an electron, an electron target, and an electrical potential gradient generator configured to generate an electrical potential gradient within the emissive material. The electrical potential gradient is oriented so as to vary from positive to negative in the general direction toward the electron target. In operation, an electron emitted from the emissive materials is deflected away from the emissive material and generally toward the electron target. The apparatus may be incorporated in scientific analytical equipment such as an electron multiplier.
US10262844B2 Oxide sintered body and method for manufacturing the same, sputtering target, and semiconductor device
There is provided an oxide sintered body including indium, tungsten and zinc, wherein the oxide sintered body includes a bixbite type crystal phase as a main component and has an apparent density of higher than 6.6 g/cm3 and equal to or lower than 7.5 g/cm3, a content rate of tungsten to a total of indium, tungsten and zinc in the oxide sintered body is higher than 0.5 atomic % and equal to or lower than 5.0 atomic %, a content rate of zinc to the total of indium, tungsten and zinc in the oxide sintered body is equal to or higher than 1.2 atomic % and equal to or lower than 19 atomic %, and an atomic ratio of zinc to tungsten is higher than 1.0 and lower than 60. There are also provided a sputtering target including this oxide sintered body, and a semiconductor device.
US10262842B2 Analysis method and semiconductor etching apparatus
There is provided a method of analyzing data obtained from an etching apparatus for micromachining a wafer using plasma. This method includes the following steps: acquiring the plasma light-emission data indicating light-emission intensities at a plurality of different wavelengths and times, the plasma light-emission data being measured under a plurality of different etching processing conditions, and being obtained at the time of the etching processing, evaluating the relationship between changes in the etching processing conditions and changes in the light-emission intensities at the plurality of different wavelengths and times with respect to the wavelengths and times of the plasma light-emission data, and identifying the wavelength and the time of the plasma light-emission data based on the evaluation result, the wavelength and the time being to be used for the adjustment of the etching processing condition.
US10262841B2 Plasma monitoring device
A plasma monitoring device includes a fixing unit, a plasma measuring unit disposed to be in contact with the fixing unit, and measuring a luminous intensity of emitted light of a plasma to output a luminous intensity measurement value, a reference light source unit irradiating reference light having a uniform luminous intensity to the plasma measuring unit, and a control unit receiving the luminous intensity measurement value to calculate a luminous intensity value of the emitted light, controlling a voltage applied to the reference light source unit to uniformly control a luminous intensity of the reference light, comparing a luminous intensity of the reference light irradiated to the plasma measuring unit with a previously stored luminous intensity reference value to detect a correction factor, and applying the correction factor to a luminous intensity value of the emitted light to correct the luminous intensity measurement value.
US10262837B2 Plasma uniformity control by gas diffuser hole design
Embodiments of a gas diffuser plate for distributing gas in a processing chamber are provided. The gas distribution plate includes a diffuser plate having an upstream side and a downstream side, and a plurality of gas passages passing between the upstream and downstream sides of the diffuser plate. The gas passages include hollow cathode cavities at the downstream side to enhance plasma ionization. The depths, the diameters, the surface area and density of hollow cathode cavities of the gas passages that extend to the downstream end can be gradually increased from the center to the edge of the diffuser plate to improve the film thickness and property uniformity across the substrate. The increasing diameters, depths and surface areas from the center to the edge of the diffuser plate can be created by bending the diffuser plate toward downstream side, followed by machining out the convex downstream side. Bending the diffuser plate can be accomplished by a thermal process or a vacuum process. The increasing diameters, depths and surface areas from the center to the edge of the diffuser plate can also be created computer numerically controlled machining. Diffuser plates with gradually increasing diameters, depths and surface areas of the hollow cathode cavities from the center to the edge of the diffuser plate have been shown to produce improved uniformities of film thickness and film properties.
US10262835B2 Plasma processing equipment and plasma generation equipment
A plasma processing equipment includes a vacuum processing chamber, an insulating material, a gas inlet, a high frequency induction antenna provided at an upper outside of the vacuum processing chamber, a magnetic field coil, a yoke for controlling distribution of a magnetic field in the vacuum processing chamber, a high frequency power supply for generating plasma and supplying a high frequency current to the antenna, and a power supply for supplying power to the magnetic field coil. The antenna is divided into n high frequency induction antenna elements are arranged in tandem on one circle so that a high frequency current delayed sequentially by λ (wavelength of high frequency power supply)/n flows clockwise through the antenna elements arranged in tandem via a delay unit, and a magnetic field is applied from the magnetic field coil to generate electron cyclotron resonance (ECR) phenomenon.
US10262833B2 Temperature controlled ion source
An ion source with improved temperature control is disclosed. A portion of the ion source is nestled within a recessed cavity in a heat sink, where the portion of the ion source and the recessed cavity are each shaped so that expansion of the ion source causes high pressure thermal contact with the heat sink. For example, the ion source may have a tapered cylindrical end, which fits within a recessed cavity in the heat sink. Thermal expansion of the ion source causes the tapered cylindrical end to press against the recessed cavity in the heat sink. By proper selection of the temperature of the heat sink, the temperature and flow of coolant fluid through the heat sink, and the size of the gap between the heat sink and the ion source, the temperature of the ion source can be controlled.
US10262831B2 Method and system for weak pattern quantification
A weak pattern identification method includes acquiring inspection data from a set of patterns on a wafer, identifying failing pattern types on the wafer, and grouping like pattern types of the failing pattern types into a set of pattern groups. The weak pattern identification method also includes acquiring image data from multiple varied instances of a first pattern type grouped in a first group, wherein the multiple varied instances of the first pattern type are formed under different conditions. The weak pattern identification method also includes comparing images obtained from common structures of the instances of the first pattern type to identify local differences within a portion of the first pattern type. Further, the weak pattern identification method includes identifying metrology sites within the portion of the first pattern type proximate to a location of the local differences within the portion of the first pattern type.
US10262829B2 Protection circuit assembly and method for high voltage systems
A circuit assembly and method use a breakover device that changes states in response to a change in electric energy in a helper circuit that supplies current from a power source to a powered system. The helper circuit includes an inductive element connected with the powered system. The breakover device is in a non-conducting state prior to a discharge event from the powered system to prevent the current from the power source from being conducted through the resistive element. The breakover device changes to a conducting state responsive to the powered system discharging current into the helper circuit. The breakover device conducts the current that is discharged from the powered system through the resistive element to reduce the electric energy in the helper circuit from the current that is discharged.
US10262827B2 Fault state indication device for circuit breaker
A fault state indication device for a circuit breaker includes: a contact group; and a transmission assembly and an indication assembly that are mounted inside a housing. The contact group implements a normally open contact group and a normally closed contact group. The transmission assembly acts on a contact support, different open and closed states of the contact group are realized via the contact support. The indication assembly indicates a fault state, the indication assembly is linked with the circuit breaker, and carries out a corresponding state indication in response to a fault.
US10262820B2 High voltage circuit breaker, system, vacuum interrupter module and associated drive module
A high voltage circuit breaker comprises a vacuum interrupter module, a drive module, and an actuator. The vacuum interrupter module has a vacuum interrupter housing and a pair of electrical contacts disposed in the vacuum interrupter housing. At least one of the pair of electrical contacts is movable relative to the other of the pair of electrical contacts to engage and disengage the electrical contacts from one another for switching a high voltage on and off. The drive module has a drive module housing and a drive member coupled with the at least one movable electrical contact. A central part of the drive member is disposed in the drive module housing and insulated from an ambient air. The actuator is coupled to the drive member and moves the pair of electrical contacts relative to one another.
US10262819B2 Vacuum circuit breaker
Disclosed is a vacuum circuit breaker (1) including a vacuum interrupter (3) accommodated in a ground tank (2) filled with insulating gas. At least one of a fixed electrode (10) and a movable electrode (11) of the vacuum interrupter (3) uses an electrode material in which particles containing a solid solution of a heat resistant element and Cr are finely and uniformly dispersed and in which Cu textures as a high conductive component are finely and uniformly dispersed. The electrode material contains 20 to 70% by weight of Cu, 1.5 to 64% by weight of Cr and 6 to 76% by weight of the heat resistant element relative to a weight of the electrode material. The particles of the solid solution in the electrode material have an average particle size of 20 μm or smaller.
US10262815B2 Button locking device
A button locking device includes a panel, a button installed on the panel, a bottom plate installed under the button, a first cylinder spring installed between the button and the bottom plate for resetting the button, an actuator assembly installed between the panel and the bottom plate, a toggle member installed under the button and pushed by the actuator assembly to rotate from a first position to a second position and rotated from the second position to the first position. At the first position, the toggle member stops the button from moving downward. At the second position, the toggle member allows the button to move downward. The present invention has the features of simple structure, convenient operation, low power consumption, high safety, and broad scope of applicability.
US10262814B2 Low travel switch assembly
A low travel switch assembly and systems and methods for using the same are disclosed. The low travel dome may include a domed surface having upper and lower portions, and a set of tuning members integrated within the domed surface between the upper and lower portions. The tuning members may be operative to control a force-displacement curve characteristic of the low travel dome.
US10262810B1 Moveable contact support structure and supporting method
An exemplary contactor assembly includes, among other things, a moveable contact that moves back and forth between an electrically coupled position with a plurality of stationary contacts, and an electrically decoupled position with the stationary contacts. A support structure is configured to limit flexing of the moveable contact when in the electrically coupled position. An exemplary support method includes, among other things, transitioning a moveable contact from an electrically decoupled position to an electrically coupled position with a plurality of stationary contacts. The method further includes limiting a flexing movement of the moveable contact with a support structure.
US10262809B2 Electric energy storage device having improved terminal structure
An electric energy storage device has an inner terminal disposed in a cylindrical metal case and connected to an electrode of a bare cell, wherein the inner terminal includes a plate-shaped terminal body having a circular outer circumference; at least one electrolyte impregnation hole formed through the terminal body in a thickness direction; a flange located at the outer circumference of the terminal body and extending perpendicular to a plane of the terminal body; and a spacer formed to protrude at a periphery of at least one impregnation hole among the impregnation holes or formed by protruding a part of the plane of the terminal body.
US10262808B2 Conductive composite and capacitor utilizing the same
A conductive composite is provided, which includes a conductive conjugated polymer and a mixture. The mixture includes (a) boron oxide, and (b) sulfur-containing compound, nitrogen-containing compound, or a combination thereof. A capacitor is also provided, which includes an anode electrode, a dielectric layer on the anode electrode, a cathode electrode, and an electrolyte between the dielectric layer and the cathode electrode, wherein the electrolyte includes the described conductive composite.
US10262807B2 Electrode foil, winding capacitor, electrode foil manufacturing method, and winding capacitor manufacturing method
An electrode foil that progresses an enlargement of the surface area of a dielectric film and that barely causes cracks which would even break a core part at the time of winding, a winding capacitor obtained by winding the electrode foil, an electrode foil manufacturing method, and a winding capacitor manufacturing method are provided. An electrode foil is formed of a belt-like foil, and has a surface enlarged part, a core part, and a plurality of separation parts. The surface enlarged part is formed on the surface of the foil, and the core part is a part remained when excluding the surface enlarged part within the foil. The separation part extends in a width direction of the belt in the surface enlarged part, dividing the surface enlarged part. The plurality of separation parts share bending stress when the electrode foil is wound, preventing concentration of stress.
US10262803B1 High voltage fringe-effect capacitor
A multilayer chip capacitor includes electrodes comprised of numerous, closely spaced conductive layers interposed within a dielectric laminate. Adjacent conductive layers are essentially non-overlapping, so that fringe capacitance between opposing electrodes provides substantially all of the capacitance. The conductive layers may be shaped to form a non-planer boundary between electrodes. An additional high frequency integrated capacitor is formed from external electrode plates. The non-planar electrode boundary principle is also applied to discoidal capacitors in the form of a non-concentric electrode boundary.
US10262799B2 Multilayer ceramic capacitor
A multilayer ceramic capacitor includes a multilayer body and first and second outer electrodes that include first and second base electrode layers, respectively, first and second electroconductive resin layers, respectively, and first and second plating layers, respectively. The first and second base electrode layers are only located on the end surfaces of the multilayer body. The first and second electroconductive resin layers reach portions of the surfaces of the primary surfaces and portions of the surfaces of the lateral surfaces of the multilayer body. The first and second plating layers cover at least a portion of the base electrode layers and at least a portion of the electroconductive resin layers.
US10262796B2 Dielectric composition and electronic component
A dielectric composition is provided. The dielectric composition includes a tungsten bronze type complex oxide expressed by a chemical formula (K1-xNax)Sr2Nb5O15 as a main component, x satisfying 0≤x≤0.50, wherein the dielectric composition includes a secondary phase of at least one or more selected from: MgO.SiO2; BaO.2MgO.2SiO2; and 2MgO.B2O3; or the dielectric composition includes a tungsten bronze type complex oxide expressed by a chemical formula (K1-xNax)Sr2Nb5O15 as a main component, x satisfying 0≤x≤0.40, wherein the dielectric composition includes: MgO; BaO; B2O3; SiO2; and P2O5 as a first accessory component in a total content of 2.5 mol to 20.0 mol per 100 mol of the main component.
US10262795B2 Multilayer ceramic electronic component including ceramic-metal compound layers
A multilayer ceramic electronic component includes a ceramic body in which dielectric layers and internal electrodes are alternately disposed. Ceramic-metal compound layers are disposed on interfaces between the internal electrodes and the dielectric layers. Additionally, in some examples, spaces between adjacent internal electrodes are fully occupied by the dielectric layers and the dielectric layers contain a ceramic-metal compound containing metal particle. The ceramic-metal compound layer may have an embossing type configuration or a dendrite type configuration.
US10262793B2 Manufacturing method of surface mounted inductor
A manufacturing method of a surface mounted inductor involves using a coil and a tablet in a molding die. The coil is placed on the tablet. The coil and the tablet are arranged in the molding die and pressurized and compressed to the size of the cavity in the molding die at a first temperature. The coil and the tablet are pressurized in the molding die at a second temperature higher than the first temperature to form a formed body incorporating the coil.
US10262792B2 Near field communication for field devices
A device for wireless communication with a process automation field device. The device may include an inductive interface in the field device embodied to couple with a complementary inductive interface of a service tool. The field device inductive interface may be embodied to inductively transfer data to the service tool and to inductively receive data and energy from the service tool. The energy received from the service tool may be sufficient for operating the field device's inductive interface. A method of wireless communication is also disclosed.
US10262786B2 Stepped-width co-spiral inductor structure
A stepped-width, co-spiral inductor structure includes a first exterior layer having a first exterior width. The stepped-width, co-spiral inductor structure also includes a first interior layer coupled to the first exterior layer. The first interior layer includes a first interior width that is wider than the first exterior width of the first exterior layer. The stepped-width, co-spiral inductor structure further includes a second exterior layer coupled to the first interior layer. The second exterior layer includes a second exterior width that is narrower than the first interior width of the first interior layer.
US10262785B2 Press-clamp with clamping force sensor for electric transformer winding
A press-clamp for an electric transformer winding formed by an upper plate having a free inner face with a first concentric circular protrusion, and an outer face joined to a concentric nut that can be screwed along a threaded bolt; a clamping force sensor having a ring-shaped body; and a lower plate having a peripheral wall defining a cavity with a second concentric protrusion and housing the ring-shaped body of the clamping force sensor and the upper plate by its inner face, the ring-shaped body of the clamping force sensor placed concentrically when aligned with the first protrusion and the second protrusion.
US10262783B2 Stack-type inductor element and method of manufacturing the same, and communication device
A stack-type inductor element includes a stack including a magnetic element layer, a coil conductor pattern provided in the stack and the magnetic element layer defines a magnetic element core, a plurality of first pad electrodes provided on one main surface of the stack, and a plurality of second pad electrodes provided on the other main surface of the stack so as to be symmetric to the plurality of first pad electrodes. One end and the other end of the coil conductor pattern are electrically connected to two of the plurality of first pad electrodes, respectively, and the plurality of second pad electrodes are all electrically open.
US10262780B2 Analytical instrument inductors and methods for manufacturing same
Analytical instrument inductors are provided that can include bundled wired conductive material about a substrate. Analytical instrument inductors are also provided that can include: a tubular substrate defining a plurality of flanges extending outwardly from a core of the substrate wherein opposing flanges define portions of the core; at least one pair of wires wound about a first portion of the core and between at least two flanges, the pair of wires extending to and wound about a second portion of the core; and wherein the one pair of wires are operatively coupled to an analytical instrument to provide inductance. Methods for preparing an instrument inductor are provided. The methods can include bundling wires about and within multiple exterior openings of a hollow-cored substrate; and connecting each of the bundles across the openings.
US10262779B2 R-T-B-based magnet material alloy and method for producing the same
Provided is an R-T-B-based magnet material alloy including an R2T14B phase which is a principal phase and R-rich phases which are phases enriched with the R, wherein the principal phase has primary dendrite arms and secondary dendrite arms diverging from the primary dendrite arms, and regions where the secondary dendrite arms have been formed constitute a volume fraction of 2 to 60% of the alloy, whereby excellent coercive force can be ensured in R-T-B-based sintered magnets even when the amount of heavy rare earth elements added to the alloy is reduced. The inter-R-rich phase spacing is preferably at most 3.0 μm, and the volume fraction of chill crystals is preferably at most 1%. Furthermore, the secondary dendrite arm spacing is preferably 0.5 to 2.0 μm, and the ellipsoid aspect ratio of R-rich phase is preferably at most 0.5.
US10262777B2 Compound having exponential temperature dependent electrical resistivity, use of such compound in a self-regulating heating element, self-regulating heating element comprising such compound, and method of forming such compound
A novel compound having exponential temperature dependent electrical resistivity comprises an electrically insulating bulk material (11), electrically conductive particles (12) of a first kind, and electrically conductive particles (13) of a second kind covered by a lubricant. The bulk material holds the particles of the first and second kinds in place therein; the particles of the second kind are smaller than the particles of the first kind; the particles of the second kind are more in number than the particles of the first kind; and the particles of the second kind have higher surface roughness than the particles of the first kind, wherein the particles of the second kind comprise tips (13a) and the particles of the first kind comprise even surface portions (12a). The particles of the first and second kinds are arranged to form a plurality of current paths (14) through the compound, wherein each of the current paths comprises galvanically connected particles of the first and second kinds and a gap (14a) between a tip (13a) of one of the particles of the second kind and an even surface portion (12a) of one of the particles of the first kind, which gap is narrow enough to allow electrons to tunnel through the gap via the quantum tunneling effect. The bulk material has a thermal expansion capability such that it expands with temperature, thereby increasing the gap widths (w) of the current paths, which in turn increases the electrical resistivity of the compound exponentially.
US10262775B2 Energy efficient noise dampening cables
Energy efficient noise dampening coaxial and twisted pair cables include certain layers to improve the quality of signals transmitted over the cables. A coaxial cable includes a conductive core, a first insulating layer surrounding the conductive core, a metal shield layer surrounding the first insulating layer, a second insulating layer surrounding the metal shield layer, a carbon material layer surrounding the second insulating layer, and a protective sheath wrapping the carbon material layer. A twisted pair cable section includes a core section. The core section includes a carbon material core, an insulating layer surrounding the carbon material core, and a metal shield layer surrounding the insulating layer. A plurality of twisted pair cables are disposed in sections or compartments defined by the core section, and between the core section and a protective sheath. Methods for constructing the cables are also disclosed.
US10262771B2 Method for manufacturing a torque balanced electromechanical cable
An electromechanical cable that is crush-resistant and torque balanced is provided as well as a method for manufacturing a crush-resistant and torque balance electromechanical cable. The cable can include a core having a conductor surrounded by a first jacket layer, a second jacket layer surrounding the first jacket layer, a first armor layer surrounding second jacket layer, a third jacket layer surrounding the first armor layer, a second armor layer surrounding the third jacket layer, and a fourth jacket layer surrounding the second armor layer. The first armor layer can be constructed as a plurality of wires and compressed partially into the second jacket layer. The second armor layer can be constructed from a plurality of three-wire strands and/or single wires and compressed partially into the third jacket layer. The three-wire strands can be symmetric or asymmetric and can be compacted or non-compacted.
US10262769B2 Wire harness
A wire harness includes a flat shielded cable, a first device connected to one end of the flat shielded cable, and a second device connected to the other end of the flat shielded cable. The flat shielded cable includes a plurality of conductors arranged in parallel, an insulating jacket section that covers the plurality of conductors and has an exposed conductor section which exposes a part of at least one of the conductors, and a shielding member that covers an outer periphery of the jacket section. A signal is transmitted from the first device to the second device through a conductor other than the conductor provided with the exposed conductor section. The at least one of the conductors is connected to a ground at a position between the exposed conductor section and the second device.
US10262761B1 Apparatus and methods for causing selection of an advertisement based on prevalence of a healthcare condition in a plurality of geographic areas
A computer system and method causes selection of an advertisement based on the prevalence of a healthcare condition in each of a plurality of geographic areas. The prevalence is calculated by an entity that matches healthcare data with consumer data to determine, in each of the geographic areas, how many individuals have an unidentified healthcare condition. The entity is unable to identify the healthcare condition without decoding data received in response to a certification that the entity no longer has access to any data associating the individuals with the unidentified healthcare condition code, so that the privacy of the personal healthcare information is maintained.
US10262758B2 Scoring, evaluation, and feedback related to EMS clinical and operational performance
A method for evaluating emergency medical service according to embodiments of the present invention includes receiving emergency medical service data from a database, filtering the emergency medical service data based on a selection criteria to form a filtered emergency medical service data set, determining a first score from the filtered emergency medical service data set, where the first score indicates objective clinical performance quality for the filtered emergency medical service data set, determining a second score from the filtered emergency medical service data set, where the second score indicates objective operational performance quality for the filtered emergency medical service data set, merging the first score and the second score to form a composite score; and visually displaying the composite score to a user.
US10262757B2 Enhanced pathology diagnosis
A system includes a microscope configured to magnify a pathology sample, a camera positioned to record magnified pathology images from the microscope, a pathology database including reference pathology images, and a display configured to show the magnified pathology images. A processing apparatus is coupled to the camera, the pathology database, and the display. The processing apparatus includes instructions that when executed by the processing apparatus cause the system to perform operations. The operations include comparing the magnified pathology images to the reference pathology images included in the pathology database; identifying one or more regions of interest in the magnified pathology images; and alerting, using the display, a user of the microscope to the one or more regions of interest in the magnified pathology images while the pathology sample is being magnified with the microscope.
US10262756B2 System for gap in care alerts
The present invention is a gap in care alert system for alerting someone associated with a patient (including in one embodiment the patient himself) that a gap in heath care will soon occur or in another embodiment that a gap in care has occurred for the patient based on the occurrence of a triggering event and the absence of a follow-up event occurring. Health insurance claims data may be used in the process to determine gaps in care.
US10262755B2 Detecting cancer mutations and aneuploidy in chromosomal segments
The invention provides methods, systems, and computer readable medium for detecting ploidy of chromosome segments or entire chromosomes, for detecting single nucleotide variants and for detecting both ploidy of chromosome segments and single nucleotide variants. In some aspects, the invention provides methods, systems, and computer readable medium for detecting cancer or a chromosomal abnormality in a gestating fetus.
US10262754B2 Fine grained online remapping to handle memory errors
An error in a physical memory realization at a physical memory address is detected. A first physical memory line corresponding to the physical memory address is determined. It is ensured that a duplicate of data content associated with the first physical memory line is associated with a second physical memory line. The physical memory address is remapped to use the second physical memory line for data content.
US10262753B2 Auxiliary test device, test board having the same, and test method thereof
The test board may include sockets in which a plurality of devices-under-test (DUTs) is inserted, and an auxiliary test device connection tree electrically connected to the sockets. The auxiliary test device connection tree includes at least one first auxiliary test device receiving and outputting a test request from an external apparatus, and at least one second auxiliary test device generating a test clock and a test pattern in response to the test request outputted from the at least one first auxiliary test device, performing a test operation about at least one among the DUTs using the generated test pattern, and outputting whether or not of an error of the test operation to the at least one first auxiliary test device.
US10262752B2 Method and apparatus for identifying erroneous data in at least one memory element
A method for identifying erroneous data in at least one memory element, particularly a register, that includes at least one flip-flop that is intended to allow reliable detection of soft errors. To this end, writing of data to the at least one memory element involves at least one write security bit being produced from these data and stored in an associated security memory element, wherein at least one output security bit is computed from the data continuously in the same way as for writing and is compared with the corresponding write security bit.
US10262741B2 Read and write control circuit and method of flash chip, and AMOLED application circuit
A read and write control circuit for a flash chip is disclosed which includes a timing control circuit for generating a read and write timing signal for the flash chip, and a first non-volatile memory for storing a plurality of flags corresponding to a plurality of blocks in the flash chip, each of the flags indicating whether a respective one of the blocks that corresponds thereto has been written to normally. Also disclosed is a read and write control method of a flash chip, as well as an AMOLED application circuit having the read and write control circuit for use in an electrical compensation mechanism.
US10262738B2 Content addressable memory cell and content addressable memory
In order to provide a technique for reducing an area of a content addressable memory cell and suppressing a leak current in a content addressable memory which calculates similarity, a content addressable memory cell of the present invention, comprising: a resistance network which includes plural current paths, a logic circuit for selecting a current path in response to input data, and a variable-resistance-type non-volatile memory element that is arranged on at least one current path and stores data and whose resistance value is changed according to a result of logical calculation based on the input data and the stored data; and a charge/discharge circuit which is connected with the resistance network and a match line and whose delay time from inputting a signal through the match line until outputting the signal is changed according to the result of logical calculation based on the input data and the stored data.
US10262737B2 Semiconductor integrated circuit
According to one embodiment, a semiconductor integrated circuit includes a ROM, an SRAM, a memory and a selector. The ROM stores initialization data. At least part of the initialization data is writable to the SRAM. The memory stores information indicating whether data is written to the SRAM. The selector outputs one of data supplied from the SRAM and data supplied from the ROM in accordance with the information stored in the memory.
US10262735B2 Devices and methods to program a memory cell
Subject matter disclosed herein relates to memory devices and, more particularly, to programming a memory cell.
US10262732B2 Programmable array logic circuit and operating method thereof
This disclosure introduces a programmable array logic (PAL) circuit and a method which are capable of preventing a read disturbance effect on memory cells of the PAL circuit. The PAL circuit comprises a memory array coupled to a plurality of input lines and a plurality of source lines, a plurality of input transition detection (ITD) circuits, a pulse generator and a plurality of sense amplifiers. The plurality of ITD circuits detect a transition in level of the plurality of input signals in the input lines. The pulse generator generates an enable signal according to the transition in level of the input signals. The sense amplifiers are enabled to sense the voltage levels of the source lines when the transition in levels of the input signals is detected, and the sense amplifiers are disabled when no transition in levels of the input signals is detected.
US10262727B2 Gradiometric flux qubit system
One example includes a flux qubit readout circuit. The circuit includes a gradiometric SQUID that is configured to inductively couple with a gradiometric flux qubit to modify flux associated with the gradiometric superconducting quantum interference device (SQUID) based on a flux state of the flux qubit. The circuit also includes a current source configured to provide a readout current through the gradiometric SQUID during a state readout operation to determine the flux state of the gradiometric flux qubit at a readout node.
US10262725B1 Selective bit-line sensing method and storage device utilizing the same
A selective bit-line sensing method is provided. The selective bit-line sensing method includes the steps of: generating a neuron weights information, the neuron weights information defines a distribution of 0's and 1's storing in the plurality of memory cells of the memory array; and selectively determining either the plurality of bit-lines or the plurality of complementary bit-lines to be sensed in a sensing operation according to the neuron weights information. When the plurality of bit-lines are determined to be sensed, the plurality of first word-lines are activated by the artificial neural network system through the selective bit-line detection circuit, and when the plurality of complementary bit-lines are determined to be sensed, the plurality of second word-lines are activated by the artificial neural network system.
US10262721B2 Apparatuses and methods for cache invalidate
The present disclosure includes apparatuses and methods for cache invalidate. An example apparatus comprises a bit vector capable memory device and a channel controller coupled to the memory device. The channel controller is configured to cause a bulk invalidate command to be sent to a cache memory system responsive to receipt of a bit vector operation request.
US10262720B2 Semiconductor device
A semiconductor device includes: a first cell; a second cell; a first match line and a second match line; a first search line pair, first data being transmitted through the first search line pair; a second search line pair, second data being transmitted through the second search line pair; a first logical operation cell connected to the first search line pair and the first match line, and configured to drive the first match line based on a result of comparison between information held by the first and second cells and the first data; and a second logical operation cell connected to the second search line pair and the second match line, and configured to drive the second match line based on a result of comparison between information held by the first and second cells and the second data.
US10262719B1 DRAM and refresh method thereof
The present disclosure provides a dynamic random access memory (DRAM) and a method of operating the same. The DRAM includes a memory array, a refresh device and an access device. The refresh device is configured to perform a self-refresh operation on the memory array, wherein the self-refresh operation is interrupted in response to an access command. The access device is configured to access the memory array in response to the access command and the interruption of the self-refresh operation.
US10262716B2 Temperature dependent modes of operation of a semiconductor memory device
A first threshold temperature is maintained for operating a solid state drive (SSD) in a first mode. A second threshold temperature is maintained for operating the SSD in a second mode in which read and write operations are performed at a higher rate than in the first mode, wherein the second threshold temperature is higher than the first threshold temperature. The SSD is switched from the first mode to the second mode, in response to an operating temperature of the SSD exceeding the first threshold temperature.
US10262715B2 Multiple plate line architecture for multideck memory array
Methods, systems, and devices for multiple plate line architecture for multideck memory arrays are described. A memory device may include two or more three-dimensional arrays of ferroelectric memory cells overlying a substrate layer that includes various components of support circuitry, such as decoders and sense amplifiers. Each memory cell of the array may have a ferroelectric container and a selector device. Multiple plate lines or other access lines may be routed through the various decks of the device to support access to memory cells within those decks. Plate lines or other access lines may be coupled between support circuitry and memory cells through on pitch via (OPV) structures. OPV structures may include selector devices to provide an additional degree of freedom in multideck selectivity. Various number of plate lines and access lines may be employed to accommodate different configurations and orientations of the ferroelectric containers.
US10262707B2 Semiconductor memory device for stably reading and writing data
In a semiconductor memory device, static memory cells are arranged in rows and columns, word lines correspond to respective memory cell rows, and word line drivers drive correspond to word lines. Cell power supply lines correspond to respective memory cell columns and are coupled to cell power supply nodes of a memory cell in a corresponding column. Down power supply lines are arranged corresponding to respective memory cell columns, maintained at ground voltage in data reading and rendered electrically floating in data writing. Write assist elements are arranged corresponding to the cell power supply lines, and according to a write column instruction signal for stopping supply of a cell power supply voltage to the cell power supply line in a selected column, and for coupling the cell power supply line arranged corresponding to the selected column at least to the down power supply line on the corresponding column.
US10262706B1 Anti-floating circuit
An anti-floating circuit including a first pull-high circuit, a first pull-low circuit and a first control circuit is provided. The first pull-high circuit includes a first P-type transistor and a second P-type transistor and is coupled to a first power terminal. The first pull-low circuit includes a first N-type transistor and a second N-type transistor and is coupled to a second power terminal. A first path is between the first P-type transistor and the first N-type transistor. A second path is between the second P-type transistor and the second N-type transistor. A third path is between the first P-type transistor and the second power terminal. In the first mode, the control circuit turns on the first and second paths and turns off the third path. In the second mode, the control circuit turns off the first and second paths and turns on the third path.
US10262693B2 Direct media feed enhanced recordings
The systems and methods discussed herein relate to technology for enhancing media recordings of a live event based on a media feed corresponding to the live event. The media recordings may be media items that include audio and image data captured by a user device. The user device may be associated with a member of an audience that is experiencing the live event. The user device may generate the media item using one or more sensory input devices and may receive additional media data via a media feed. The media feed may include media data that corresponds to the live event and includes content that is similar to the media item recorded by the user device but may have been derived from a higher quality recording or include supplemental data. The media data may then be used to enhance the media item.
US10262692B2 Method and system for automatic television production
It is provided a method for a computerized, server autonomously producing a TV show of a sports game in a scene. The method includes receiving from several video cameras a stream of video images of the scene for capturing a panoramic view of the scene, analyzing the stream of video images for allowing definition of several frame streams, determining location data of the frame streams accordingly, and rendering an active frame stream with images imaging a respective portion of the panoramic view of the scene. The method includes also transmitting for broadcasting a stream of image frames imaging the respective portion of the panoramic view. The step of analyzing the stream of video images includes identifying a playing object, tracking the playing, object and identifying players. The method also includes calibrating the cameras using points in the playing field. The method may include analyzing the stream of video images for identifying an event in the scene for switching between the active frame stream and a different frame stream. Also, the method may include directing a directed sensor to a region of interest in accordance with location data of the active, frame stream.
US10262691B1 Systems and methods for generating time lapse videos
Video information may define spherical video content having a duration. Spherical video content may define visual content viewable from a point of view as a function of progress through the spherical video content. Path information may define a path selection for the spherical video content. Path selection may include movement of a viewing window within the spherical video content. The viewing window may define extents of the visual content viewable from the point of view as the function of progress through the spherical video content. Time lapse parameter information may define at least two of a time portion of the duration, an image sampling rate, and a time lapse speed effect. A time lapse video may be generated based on the video information, the path information, and the time lapse parameter information.
US10262689B2 Nesting disk separator plates for use in hard disk drives
A hard disk drive with a multiple disk stack normally utilizes disk separator plates near the disk surfaces to reduce wind induced vibrations in the disks and the read/write heads. The manufacturing methods currently used to make these separator plates, metal casting and machining, or injection molded plastic, or extruding and machining, or cold forging tends to be expensive and creates unwanted weight and bulk without the desired precision. Stamping disk separator plates from metal provides exceptional dimensional control at reduced cost, but cannot readily provide the thicknesses required. Stamping and extruding the offsets, or stamping and folding the offsets, is a manufacturing process that provides the required dimensions for the offsets, and dimensional control and reduced cost.
US10262688B1 Method for screening tunnel valve tape heads for magnetic noise
A computer-implemented method for screening a multichannel head, according to one embodiment, includes measuring a channel signal to noise ratio value for each read transducer over a plurality of sense currents, wherein each transducer is one of a plurality of transducers in a multichannel head. The measured channel signal to noise ratio values are compared to a specification of a pre-defined value. The multichannel head is dispositioned to enable the multichannel head to perform to the specification of the pre-defined value, if possible.
US10262685B2 Low profile multidentate lubricants for use at sub-nanometer thicknesses in magnetic media
In one embodiment, a multidentate perfluoropolyether (PFPE) lubricant has the formula Se-So-Si-SL-Si-So-Se, where each So includes at least one perfluoroethyl ether unit, SL is a linker segment, and each Se and Si include at least one functional group configured to attach to a surface. In another embodiment, a multi dentate PFPE lubricant has the formula Se-So(a)-Si-Sm-Si-So(b)-Se, where each So(a), So(b), and Sm include at least one perfluoroethyl ether unit with the proviso that Sm has a different number of perfluoroethyl ether units than at least one of So(a) and So(b), and each Se and Si include at least one functional group configured to attach to a surface.
US10262682B2 Segmented magnetic recording write head for writing timing-based servo patterns
An apparatus according to one embodiment includes a plurality of first modules each having a first write transducer, and a plurality of second modules each having a second write transducer. Planes of deposition of write gaps of the second write transducers are oriented at an angle of greater than 4 degrees relative to planes of deposition of write gaps of the first write transducers. An apparatus according to another embodiment includes a first module having a plurality of first write transducers, and a second module having a plurality of second write transducers. Planes of deposition of write gaps of the second write transducers are oriented at an angle of greater than 4 degrees relative to planes of deposition of write gaps of the first write transducers.
US10262681B2 Reliable data reading with data set screening by error injection
According to one embodiment, a system includes a controller configured to determine whether a position error signal (PES) is invalid while reading data from a magnetic medium using at least one data channel. An invalid PES indicates off-track reading or a defect in the magnetic medium. The controller is also configured to determine whether a PES value is above a first predetermined threshold in response to a determination that the PES is valid. Moreover, the controller is configured to inject error bits into a data stream in place of corresponding bits of decoded data in response to a determination that the PES is invalid, a determination that the PES value is above the first predetermined threshold, or a determination that the PES is invalid and the PES value is above the first predetermined threshold. Other systems and methods are described in accordance with more embodiments.
US10262680B2 Variable sound decomposition masks
Variable sound decomposition masking techniques are described. In one or more implementations, a mask is generated that incorporates a user input as part of the mask, the user input is usable at least in part to define a threshold that is variable based on the user input and configured for use in performing a sound decomposition process. The sound decomposition process is performed using the mask to assign portions of sound data to respective ones of a plurality of sources of the sound data.
US10262677B2 Systems and methods for removing reverberation from audio signals
Disclosed herein are systems and methods for removing reverberation from signals. The systems and methods can be applicable to audio signals, for example, to voice, musical instrument sounds, and the like. Signals such as the vowel sounds in speech and the sustained portions of many musical instrument sounds can be composed of a fundamental frequency component and a series of harmonically related overtones. The systems and methods can exploit the intrinsically high degree of mutual correlation among the overtones. When such signals are passed through a reverberant channel, the degree of mutual correlation among the partials can be reduced. An inverse channel filter for the removal of reverberation can be found by employing an adaptive filter technique that maximizes the cross-correlation among signal overtones.
US10262676B2 Multi-microphone pop noise control
Disclosed is a method and a headset for reducing pop-noise in voice communication between a user and a far-end device. The headset has a first, a second and a third electro-acoustic input transducer for reception of audio input signals. The headset also has a first beamformer to provide a voice signal. The first beamformer is configured to optimize the voice-to-background noise ratio. The headset comprises a second beamformer configured for providing a pop-noise signal. The pop-noise signal is based on the first input signal from the first input transducer, the second input signal from the second input transducer, and a third input signal from the third input transducer. The second beamformer is adaptively configured to cancel voice and background noise while not cancelling pop-noise. The headset compares the pop-noise signal to the voice signal to determine time periods and frequency bands having pop-noise.
US10262672B2 Audio processing for speech
A method, a device, and a non-transitory storage medium are described in which a power of late reverberation of a speech signal is estimated based on early samples of the speech signal. The power of the late reverberation may be subtracted linearly or non-linearly from the speech signal.
US10262671B2 Audio coding method and related apparatus
An audio coding method and a related apparatus are disclosed. The audio coding method includes: estimating reference linear prediction efficiency of a current audio frame; determining an audio coding scheme that matches the reference linear prediction efficiency of the foregoing current audio frame; and performing audio coding on the foregoing current audio frame according to the audio coding scheme that matches the reference linear prediction efficiency of the foregoing current audio frame. The technical solutions provided in embodiments of the present disclosure help reduce overheads of audio coding.
US10262667B2 Audio decoder and method for providing a decoded audio information using an error concealment modifying a time domain excitation signal
An audio decoder for providing a decoded audio information on the basis of an encoded audio information. The audio decoder has an error concealment configured to provide an error concealment audio information for concealing a loss of an audio frame, wherein the error concealment is configured to modify a time domain excitation signal obtained for one or more audio frames preceding a lost audio frame, in order to obtain the error concealment audio information.
US10262666B2 Processor, method and computer program for processing an audio signal using truncated analysis or synthesis window overlap portions
A processor for processing an audio signal has: an analyzer for deriving a window control signal from the audio signal indicating a change from a first asymmetric window to a second window, or indicating a change from a third window to a fourth asymmetric window, wherein the second window is shorter than the first window, or wherein the third window is shorter than the fourth window; a window constructor for constructing the second window using a first overlap portion of the first asymmetric window, wherein the window constructor is configured to determine a first overlap portion of the second window using a truncated first overlap portion of the first asymmetric window, or wherein the window constructor is configured to calculate a second overlap portion of the third window using a truncated second overlap portion of the fourth asymmetric window; and a windower for applying the first and second windows or the third and fourth windows to obtain windowed audio signal portions.
US10262661B1 User identification using voice characteristics
Embodiments of methods, systems, and storage medium associated with providing user records associated with characteristics that may be used to identify the user are disclosed herein. In one instance, the method may include obtaining features of an individual, determining identifying characteristics associated with the obtained features, and initiating a search for a record associated with the individual based in part on the identifying characteristics associated with the obtained features, and, based on a result of the search, a verification of the record associated with the individual. The method may further include receiving at least a portion of the record associated with the individual, based at least in part on a result of the verification. The verification may be based in part on a ranking associated with the record. Other embodiments may be described and/or claimed.
US10262659B2 Hotword recognition
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for receiving audio data corresponding to an utterance, determining that the audio data corresponds to a hotword, generating a hotword audio fingerprint of the audio data that is determined to correspond to the hotword, comparing the hotword audio fingerprint to one or more stored audio fingerprints of audio data that was previously determined to correspond to the hotword, detecting whether the hotword audio fingerprint matches a stored audio fingerprint of audio data that was previously determined to correspond to the hotword based on whether the comparison indicates a similarity between the hotword audio fingerprint and one of the one or more stored audio fingerprints that satisfies a predetermined threshold, and in response to detecting that the hotword audio fingerprint matches a stored audio fingerprint, disabling access to a computing device into which the utterance was spoken.
US10262656B2 Multi-tier intelligent infrastructure management systems for communications systems and related equipment and methods
Methods of identifying available connector ports on rack mounted equipment use an image capture device to capture an image of a front face of an equipment rack. The captured image is compared to at least one stored image. A patch cord insertion status of at least one connector port included on an item of equipment that is mounted on the equipment rack is then determined based at least in part on the comparison of the captured image to the at least one stored image.
US10262655B2 Augmentation of key phrase user recognition
Examples for augmenting user recognition via speech are provided. One example method comprises, on a computing device, monitoring a use environment via one or more sensors including an acoustic sensor, detecting utterance of a key phrase via data from the acoustic sensor, and based upon the selected data from the acoustic sensor and also on other environmental sensor data collected at different times than the selected data from the acoustic sensor, determining a probability that the key phrase was spoken by an identified user. The method further includes, if the probability meets or exceeds a threshold probability, then performing an action on the computing device.
US10262648B2 Method for controlling interference in audio service and terminal
A method for controlling interference in an audio service and a terminal, where the method includes sending, by a first terminal, a first message using a short-range wireless communications technology when executing an audio service, determining, by a second terminal according to the first message, whether the second terminal supports interference control, and adjusting, by the second terminal, a setting of the second terminal according to the interference control parameter when the second terminal supports the interference control, and the second terminal falls within a controlled range. It can be learned that in a process in which the first terminal performs interference control on the second terminal, the first terminal may send the first message to the second terminal without a need of a noise reduction device such that the second terminal adjusts the setting of the second terminal.
US10262647B1 Clippable multi-tone whistle
Example clippable multi-tone whistles, as well as systems and methods for manufacturing the same are described. An example clippable multi-tone whistle may comprise: a clip attached to a whistle body. The whistle body comprises a flat surface under the clip; a first opening configured to allow air flow to come into the whistle body; and on the flat surface a second opening configured to allow air flow to come out of the whistle body. The second opening is at least partially blocked by the clip, which controls direction of one or more air flows coming out of the second opening. The whistle part is configured to generate a plurality of different sound tones in accordance with user finger movements around the clip and the second opening. The whistle may further comprise a glass breaker, a length scale, and a bolt action switch, which may function as a fire starter.
US10262646B2 Multi-source switched sequence oscillator waveform compositing system
The present disclosure is directed to multi-source switched sequence oscillator waveform compositing system that allows for real-time modulation of a specific fraction of the cycle period within the output waveform, resulting in a greater and more dynamic number of waveform variations than simple assembly of various shapes.
US10262645B1 Method and system for artificial reverberation using modal decomposition
In general, the present invention relates to a method and system for synthesizing artificial reverberation using modal analysis of a room or resonating object. In one embodiment of the inventive system, a collection of resonant filters is employed, each driven by the source signal, and their outputs summed. With filter resonance frequencies and dampings tuned to the modal frequencies and decay times of the acoustic space or resonating object being simulated, and filter gains set according to the source and listener positions within the space or object, any number of acoustic spaces and resonant objects may be simulated.
US10262643B1 MIDI mapping system and process for multiple chord and arpeggio triggering
Systems and processes that use MIDI mapping technology for multiple chord and arpeggio triggering are disclosed, including a multiple chord and arpeggio triggering MIDI mapping system and process that assigns, selects, and records chord and multi-arpeggio functions into a digital audio workstation (DAW) host program or an internalized sequencer and a two-phase multiple chord and time-delayed arpeggio triggering MIDI mapping process for recording a chord progression and enabling multi-arpeggio functions of the chords in the chord progression to be worked on at any time-delayed instance after recording the chord progression. The system divides output from a MIDI controller into chord generators and arpeggiators to allow users to define full chords with a single key selection, while also making immediate or time-delayed single key selections for different arpeggios.
US10262640B2 Musical performance support device and program
A musical performance support device includes: a tempo analysis unit that analyzes a tempo of musical piece sound data, the musical piece sound data indicating a musical piece sound; a sound generation unit that generates a sound based on the analyzed tempo, the generated sound indicating a beat of the musical piece sound data; and a sound processing unit that adds the generated sound to the musical piece sound.
US10262638B2 Interactive performance direction for a simultaneous multi-tone instrument
A musical instrument performance solution is described. Labels with visual indicators provide a reference to performers such that a proper combination of instrument inputs may be selected at the appropriate time. The visual indicators include colors and/or shapes. The visual indicators may be presented using differently-colored lyrical text, where each color corresponds to a set of notes. Each set of notes may for a chordal group such as a triad. The visual indicators may be associated with labels that are able to be adhered to various instrument inputs such as keys of a keyboard or piano.
US10262634B2 Bow for stringed instruments
A stringed instrument bow includes an elongated stick (102) having a head (110) and a frog (112) holding a ribbon of bow hair (108). The head and frog are configured such that bow hair (108) held under tension between the head and the frog forms a longitudinally twisted ribbon as held.
US10262629B2 Display device
A display device in one aspect of the present disclosure includes an object detection unit that detects an object positioned ahead of a host vehicle, a distance detection unit that detects a distance between the host vehicle and the object, a display unit that projects and displays information on the object onto a windshield of the host vehicle; and a display control unit that controls the display unit. The display control unit reduces a display brightness or a display area when the distance between the host vehicle and the object is smaller than a first threshold as compared to when the distance between the host vehicle and the object is equal to or larger than the first threshold and stops the display when the distance between the host vehicle and the object is smaller than a second threshold that is smaller than the first threshold.
US10262628B2 Display method
A display method includes: receiving an input signal; performing a color separation process on the input image to generate color information and an intensity image; performing a filtering process on the intensity image to generate an intensity coarse image and an edge image; generating a color coarse image according to the intensity coarse image and the color information; performing a pure color analysis on the color coarse image to generate a first pure color coarse image, a second pure color coarse image and a third pure color coarse image; and displaying the first pure color coarse image, the second pure color coarse image, the third pure color coarse image and the edge image in a first time period, a second time period, a third time period and a fourth time period respectively.
US10262627B2 Methods, systems, and media for managing output of an HDMI source
Mechanisms for managing output of an HDMI source are provided. In accordance with some implementations of the disclosed subject matter, a method for controlling output of an HDMI source is provided, the method comprising: establishing a connection between the HDMI source and an HDMI sink at a first address of a consumer electronic control bus of the HDMI sink; sending a request for an identity of the active source connected to the HDMI sink; monitoring signals on the consumer electronic control bus; receiving a message over the consumer electronic control bus identifying a second address on the consumer electronic control bus different from the first address as an address of an active source; setting a status of the HDMI source as inactive in response to receiving the message; and inhibiting output of video from the HDMI source to the HDMI sink in response to the status being set as inactive.
US10262625B2 Display device and display method
A display device includes: a first detection unit that detects an external signal from a second external device via a second connection unit, and outputs a first detection result indicating presence of an external signal; and a control unit that determines whether the second external device is connected with a second input unit based on the first detection result, and performs control so that a video signal to be supplied to a display unit is switched from a first video signal to a second video signal to cause the display unit to display an image based on the second video signal in a case where the control unit that determines that the second external device is connected with the second input unit.
US10262623B2 Methods of operating application processors and display systems with display regions having non-rectangular shapes
In a method of operating an application processor to control a display device including a non-rectangular valid display region, screen information regarding the non-rectangular valid display region is received, and a plurality of pieces of valid pixel data selected based on the screen information and corresponding to the non-rectangular valid display region are output to the display device.
US10262622B2 Low power display on mode for a display device
This application relates to systems, methods, and apparatus for transitioning a display device between operating modes using a single dedicated pin of a circuit connected to the display device. The dedicated pin can receive a packet signal corresponding to an operating mode for the display device, and the circuit can thereafter cause the display device to transition into the desired operating mode in response to receiving the packet signal. The operating mode can be a low power on mode where an interface connected to the circuit is deactivated and at least some circuitry of the display device is throttled or powered off. The display device can be driven in an all black state while in the low power on mode, thereby allowing the display device to more quickly transition out of the low power on mode compared to when the display device is completely off.
US10262621B2 Display device for mitigation of DC voltage stress, and driving method thereof
Disclosed are a display device and a driving method thereof, which when a frame having a long time length and a frame having a short time length are alternately provided, prevent a DC voltage stress from being accumulated. One frame of a plurality of frames may be driven in the line inversion method, and a polarity may be delayed up to a next frame, thereby allowing polarities to be alternately supplied. Therefore, a time length of the positive voltage may be the same as that of the negative voltage, and thus, the positive voltage and the negative voltage may be continuously supplied based on a frequency of another frame, thereby solving a problem where the DC voltage stress is accumulated due to a difference between the time length of the positive voltage and the time length of the negative voltage.
US10262618B2 Gate driver on array circuit and liquid crystal display using the same
A GOA circuit includes GOA circuit units. Each GOA circuit has a holding module A first transistor and a second transistor in the holding module holds the voltage imposed on the first control node to be at high voltage level. Also, the transistors form a direct current passage between the first control node and a first fixed voltage at high voltage level so the voltage imposed on the first control node is not lowered due to electricity leakage. The GOA circuit unit can resolve the problem of easy leakage of electricity. When the scanning signals are output by the GOA circuit unit, the stability is highly ensured.
US10262615B2 Shift register, driving method, and gate electrode drive circuit
A shift register includes: a plurality of clock signal terminals; and a plurality of input terminals. The plurality input terminals are configured to provide input signals under control by one or more clock signals from one or more of the plurality of clock signal terminals to realize both a forward scan and a backward scan of the shift register.
US10262611B2 Display device and display method thereof
The present disclosure illustrates a display device. The displaying device comprises a display panel, at least one scan driving unit and a data driving unit. The display panel is divided into display regions respectively having pixel sets. At least one scan driving unit having scanning lines couples to the pixel sets. The at least one scan driving unit outputs scanning signals to corresponding display regions upon receiving a first control signal. The data driving unit outputs data signals to the corresponding display regions upon receiving a second control signal. In response to respectively receiving the first or second control signals, the scan driving unit outputs the scanning signals or the data driving unit outputs the data signals to the corresponding display regions, so as to simultaneously scan the display regions respectively having the pixel sets in sequence with corresponding scanning patterns.
US10262608B2 Display device and driving method thereof
A display device includes a display unit including a plurality of pixels, a plurality of gate lines and a plurality of data lines which are connected to the plurality of pixels, a data driver applying data voltages to the plurality of data lines, and a gate driver delaying and outputting first gate signals applied to gate lines among the plurality of gate lines in a first sub-frame included in one frame and advancing and outputting second gate signals which are applied to remaining gate lines among the plurality of gate lines in a second sub-frame.
US10262605B2 Electronic display color accuracy compensation
Systems, methods, and non-transitory media are presented that provide for improving color accuracy. An electronic display includes a display region having multiple pixels each having multiple subpixels. The electronic device also includes a display pipeline coupled to the electronic display. The display pipeline is configured to receive image data and perform white point compensation on the image data to compensate for a current drop in the display to cause the display to display a target white point when displaying white. The display pipeline also is configured to correct white point overcompensation on the image data to reduce possible oversaturation of non-white pixels using the white point compensation. Finally, the display pipeline is configured to output the compensated and corrected image data to the electronic display to facilitate displaying the compensated and corrected image data on the display region.
US10262600B2 Method and apparatus for grayscale adjustment
A method and apparatus for grayscale adjustment are provided. The method includes steps of: obtaining pixel grayscale values or at least one region grayscale value of an original image; selecting a predetermined grayscale compensation interval, from multiple predetermined grayscale compensation intervals, which corresponds to the pixel grayscale values or the region grayscale value as a ready-to-use grayscale compensation interval; obtaining a grayscale compensation value which corresponds to the ready-to-use grayscale compensation interval; and performing compensation on pixel grayscale values of the original image according to the grayscale compensation value.
US10262594B2 Pixel driver circuit, pixel driving method, display panel and display device
A pixel driver circuit includes a driving transistor, a first storage capacitor, a second storage capacitor, a threshold compensation unit, a data writing and a light-emitting control unit. The threshold compensation is configured to control the driving transistor to be turned on at a threshold compensation stage and discharge toward a resetting voltage line until the driving transistor is turned off. The data writing is configured to write a data voltage into a gate electrode of the driving transistor at a data writing stage. The light-emitting control is configured to enable the driving transistor to be turned on at a light-emitting stage, so as to drive a light-emitting element to emit light.
US10262592B2 Sub-pixel of organic light emitting display device and organic light emitting display device including the same
A sub-pixel of an organic light emitting display device comprising an organic light emitting diode connected to a first node; a driving transistor comprising a first electrode, a second electrode connected to the first node, and a gate electrode connected to a second node; a first capacitor connected between the first node and the second node; a second capacitor connected between a programming line and the second node; a first transistor comprising a first electrode connected to the first electrode of the driving transistor, a second electrode connected to the second node, and a gate electrode connected to a scan line; and the first capacitor and the second capacitor are configured to couple the voltage of the first node and the voltage of the second node based on the programming voltage applied to the programming line.
US10262582B2 Image sticking compensating device and display device having the same
A image sticking compensating device according to example embodiments includes a degradation calculator configured to calculate a degradation weight based on input image data, and to calculate degradation data of a frame, an accumulator configured to accumulate the degradation data, and to generate age data using the accumulated degradation data, and a compensator configured to determine a grayscale compensation value corresponding to the age data and an input grayscale of the input image data, and to output age compensation data by applying the grayscale compensation value to the input image data.
US10262571B2 Method and apparatus for controlling image display of WOLED display apparatus and display apparatus
The present disclosure provides a method and an apparatus for controlling image display of a WOLED display apparatus and a WOLED display apparatus. The method includes: converting gray scale data of respective lights with various colors inputted by a signal source into brightness data of the respective lights with various colors; acquiring brightness adjustment data of white sub-pixel lights and brightness adjustment data of the respective lights with various colors on the basis of the brightness data of the respective lights with various colors and proportions of the respective lights with various colors in the white sub-pixel lights; converting the brightness adjustment data of white sub-pixel lights and brightness adjustment data of the respective lights with various colors into gray scale data and outputting and displaying the gray scale data. The above method and apparatus provides a simple calculating method when adjusting the display data and may eliminate color cast.
US10262566B2 Shift register, gate driving circuit and display apparatus
A shift register is disclosed which includes at least one shift register unit group. Each shift register unit group includes a plurality of stages of shift register units cascaded to one another, each of the plurality of stages of shift register units including a pull-up node and a pull-up node reset terminal. The pull-up node of an (n+k)-th stage of shift register unit of each shift register unit group is connected to the pull-up node reset terminal of an n-th stage of shift register unit of the shift register unit group. Also disclosed are a gate driving circuit and a display apparatus.
US10262563B2 LED display
This application provides a LED display by utilizing flexible wires and the locations of the conductive pins on the bottom side of each single color LEDs or full color LEDs to make each of the single color LEDs or full color LEDs mount on each pixel defined by the flexible wires formed on a transparent substrate, and this LED display is characterized in separating the wires crossing with each other by a so-called bridge technology and utilizing a single-layered substrate to save costs of processes and materials.
US10262561B2 Self laminating labels
A labeling assembly is shown and described herein. A labeling assembly for laminating labels may include a label sheet, a laminating sheet and an alignment member. The alignment member may allow folding of the label sheet and laminating sheet. The label sheet may include a facestock sheet and a liner sheet. Labels may be pre-cut in the facestock sheet. The laminating sheet may include a laminae film sheet and a liner sheet. Protective covers may be pre-cut in the liner sheet and laminae overlays may be pre-cut in the laminae film sheet. The protective covers may be removed to expose an adhesive portion of the laminae overlay. The label sheet and the laminating sheet may be folded onto each other at the alignment member. The laminae overlay may include an image thereon and adhere to the label to form a removable laminated label.
US10262558B2 Celestial globe assembly
A celestial globe assembly includes a celestial body pointing pen. The celestial body pointing pen includes a light emitting mechanism. The celestial body pointing pen includes a reference marking at a bottom end. The celestial globe assembly includes a celestial globe. The celestial globe includes a spherical body. The spherical body has at least one star marking on a surface of the spherical body. The celestial globe assembly includes a celestial body recording cover. The celestial body recording cover is in semi-spherical shape. The celestial body recording cover is at least partially transparent such that a user can see through.
US10262555B2 Facilitating awareness and conversation throughput in an augmentative and alternative communication system
Speech generating devices, communication systems, and methods for communicating using the devices and systems are disclosed herein. In certain examples, a communication system is configured to receive a generated communication, establish a connection between a speech generating device and a computing device subsequent to receipt of the generated communication, and transmit the generated communication to the computing device. In other examples, a computing device is configured to establish a connection with a speech generating device, and receive a transmission generated by the speech generating device following the connection, the transmission including previously generated communications or real-time communication segments or proxies. In other examples, a speech generating device is configured to establish a connection with one or more computing devices, receive one or more suggestions from at least one computing device during generation of the communication, and display a suggestion on the display device as a shortcut input key.
US10262552B2 Ball movement state measuring system and method thereof
In a ball movement state measuring system with a ball, a sensing module, a wireless communication module, a power supply and an induction coil, the speed, rotation speed, rotation axis and trace of the ball at first movement state are calculated based on first accelerated speed and first angular velocity of the ball at first movement state and first movement result is obtained by the processor. The speed, rotation speed, rotation axis and trace of the ball at second movement state are calculated based on speed and rotation axis of the ball at first movement state, second accelerated speed and environment parameter of the ball at second movement state and second movement result is obtained by the processor. The ball is forced by gravity, applied force and air resistance at first movement state, and the ball is forced by gravity, air resistance and centripetal force at second movement state.
US10262550B2 Dynamic feedback and scoring of transcription of a dictation
An automated system and method for transcription of a dictation presents a transcription exercise to a student that allows continuous student keyboarding of text while providing real time feedback of correct, incorrect, and misplaced characters as well as visually pointing out the location of missing letters and missing words. The real time designation is shown using differences in typeface style or color and using a scoring system that factors in substantially all keystrokes. Not only is final correctness assessed, but also the difficulty in getting to the final state of correctness is assessed.
US10262548B2 Methods and systems for virtual problem based learning
A computer-implemented method includes selecting, by a virtual problem-based learning (PBL) system, information indicative of a medical profile of a patient; accessing, by the virtual PBL system, information indicative of a team of students using the virtual PBL system; generating, by the virtual PBL system and based on the medical profile, an medical PBL schema comprising a medical problem to be solved by the team of students; generating a plurality of sections in the medical PBL schema, with each section promoting solving of the medical problem, and with each section associated with (i) a private work environment for a student to privately analyze the medical problem, and (ii) a shared, anonymous work environment for the students to view analysis performed by other students in solving the medical problem; and transmitting, to one or more client systems used by the students participating in the virtual problem-based learning system, the medical PBL schema.
US10262541B2 Convoy travel control apparatus
This convoy travel control apparatus includes: a communication portion; a travel control portion; and a joining control portion, wherein when an own vehicle is travelling in convoy, if the communication portion has received, from an independent vehicle not incorporated in group of convoy vehicles travelling in convoy, request information to incorporate the independent vehicle into the group of convoy vehicles, then the joining control portion determines a positional relationship between a position of the group of convoy vehicles and a position of the independent vehicle, and wherein according to the determined positional relationship, then the joining control portion exercises control, which is for incorporating the independent vehicle into the group of convoy vehicles, on the group of convoy vehicles via the communication portion.
US10262539B2 Inter-vehicle warnings
A host vehicle includes: motor(s), sensors, processor(s) configured to: (a) iterate a series of future properties, comprising future positions, of nearby first and second vehicles based on determined current properties thereof; (b) associate a blindspot with an iterated future position of the second vehicle; (c) determine whether a future position of the first vehicle occupies the blindspot; (d) if so, transmit a message to the second vehicle including a message activation time.
US10262537B1 Autonomous optimization of parallel parking space utilization
In an example embodiment, a computer-implemented method is disclosed that broadcasts a request for a parking space, receives response(s) from responsive vehicle(s), and extracts set(s) of response data from the received response(s). Each set corresponds to a responsive vehicle and includes a vehicle attribute and a situational context for that corresponding responsive vehicle. The method further generates a dynamic parking model based on the vehicle attribute and the situational context included in each set of response data. The dynamic parking model maps estimated position(s) of the responsive vehicle(s) and further identifies, for each responsive vehicle, estimated unutilized distance(s) between the responsive vehicle and surrounding object(s) corresponding to the responsive vehicle. The method further determines, from the responsive vehicle(s), a group of one or more relocatable vehicles based on the dynamic parking model, and instructs the group to relocate to create the requested parking space.
US10262536B2 Method and apparatus for charging station monitoring
A system includes a processor configured to receive indication that a chargeable vehicle is within proximity to a known charging point. The processor is also configured to determine if the charging point is available for immediate use. The processor is further configured to notify a vehicle driver if the charging point is available for immediate use and offer an option to receive notification when a charging point is available for use if the charging point is not available for immediate use.
US10262534B2 System for avoiding collision with multiple moving bodies
When turning right (left) at an intersection and crossing an oncoming vehicle lane, this system makes it possible to avoid blocking travel of or colliding with a moving body moving in the oncoming vehicle lane due to stopping in the oncoming vehicle lane, and to avoid colliding with a moving body after crossing the oncoming vehicle lane. Given two or more moving bodies present in the advancement direction on the path of the local vehicle, the external environment is detected before the local vehicle intersects with the path of a first moving body, which will first intersect the local vehicle path; if at least two moving bodies are detected, i.e., the first moving body and a second moving body which has a path in which the position of intersection with the path of the local vehicle is further than the position of intersection between the path of the local vehicle and the path of the first moving body, then a first intersection time, at which the first position of intersection between the planned path of the local vehicle and the predicted path of the first moving body is reached, and a second intersection time, at which a second position of intersection between the planned path of the local vehicle and the predicted path of the second moving body is reached, are calculated, and on the basis of the difference between the first intersection time and the second intersection time, the deceleration relative to the first moving body and the second moving body is changed.
US10262532B2 System and method for providing forward traffic light information during stop
A method of providing forward traffic light information during a stop includes capturing a front image in a vehicle, detecting traffic light information from the front image, and outputting a notification corresponding to the traffic light information to a mobile terminal or the vehicle depending on at least one of a communication state with the mobile terminal and a monitor state of the mobile terminal. A system for providing forward traffic light information during a stop includes a mobile terminal, and a vehicle that captures a front image and to detect traffic light information from the front image, where a notification corresponding to the traffic light information is output to the mobile terminal or the vehicle depending on at least one of a communication state with the mobile terminal and a monitor state of the mobile terminal.
US10262531B2 Method for controlling traffic flow and structure therefor
In accordance with an embodiment, a method for controlling a traffic signal includes providing a malfunction management unit configured to generate a control signal and generating the control signal in response to a first signal from a first light source. The control signal is used to disable the first light source. In accordance with another embodiment, a traffic control system includes a malfunction management unit coupled to a first signal head. The traffic control system further includes a means to inhibit a signal that causes a first light source associated with the first signal head to flash.
US10262529B2 Management of moving objects
A system comprising a plurality of mobile object servers respectively assigned to a plurality of regions in a geographic space, the plurality of mobile object servers including at least one mobile object server including a mobile object agent assigned to a moving object in the assigned region; and a plurality of event servers operable to manage events occurring in the geographic space; wherein each mobile object server is operable to transfer the mobile object agent to one of the plurality of mobile object servers assigned to a neighboring region in response to the moving object moving to the neighboring region, and execute the mobile object agent to collect information of events from at least one event server, and provide the moving object with information that assists the moving object with traveling in the geographic space.
US10262528B2 Autonomous vehicle mode alert system for bystanders
An alert may be triggered to notify a pedestrian of the current operational mode of a nearby vehicle. For instance, a vehicle may operate in an autonomous or manual mode, and may occasionally switch from one mode to the other. A pedestrian who may be unaware of the current operational mode of a nearby vehicle may notice the alert and proceed accordingly. In one embodiment, an indication of the current operational mode of the nearby vehicle may be transmitted to an electronic device associated with the pedestrian. The device may generate a notification to the pedestrian based on the current operational mode. In an additional or alternative embodiment, the alert may be transmitted by the vehicle externally to be visible or audible to the pedestrian. In some embodiments, the alert may be triggered only for particular operational modes (e.g., only for autonomous or only for manual).
US10262525B2 Networked audible and visual alarm apparatus for synchronized alerting with a base station and electronic coding for each alarm
A networked visual and audible alarm apparatus with base station provides audible and visual alerts upon detection of smoke, carbon monoxide, and gas. The apparatus adapts to a light bulb socket to provide normal lighting when no event is detected. Multiple apparatuses are systematically disposed through different sections of a structure. Each apparatus independently emits an audible signal, dependent on the type of event detected in the respective section for the apparatus. Each alarm apparatus provides a colored high strobe light that illuminates at a color and intensity that varies, dependent on type of event detected. A microphone initiates the audible signal and the high strobe light upon detecting an audible signal from an adjacent alarm apparatus. Voice commands power off the alarming apparatus. A base station controls and monitors a network of apparatuses, and is programmable based on a code that is assigned to each alarm apparatus.
US10262524B2 Personal security whistle apparatus
A personal security apparatus includes an electronic device that includes a housing having a front wall, a rear wall, and a side wall extending between peripheral edges of the front wall and the rear wall, respectively, the housing defining an interior area. A whistle assembly operably situated on the housing that includes a slit defined by the front wall of the housing, the slit being displaced from and proximate to the side wall of the housing. The personal security apparatus includes a battery positioned in the interior area of the housing and an audible alarm electrically connected to the battery. An input member, such as a panic button, is positioned on one of the front wall or the rear wall of the housing and electrically connected to the audible alarm for energizing the audio alarm when actuated.
US10262514B2 Emergency detection and response system using LED-lighting module, and method thereof
Disclosed is an emergency detection and response system using LED-lighting modules. The emergency detection and response system using LED-lighting modules, according to the present invention, comprises: a plurality of LED-lighting modules having an emergency sensor for sensing an emergency and a communication sensor; a communication network for, if an emergency is detected by the emergency sensor, receiving emergency detection signals transmitted via the communication sensor and providing the emergency detection signals to an operation unit; a control unit for controlling the LED-lighting modules according to control signals received from the operation unit or a specific emergency detection signal among the emergency detection signals; and a cloud platform for building, as a database, the emergency detection signals received from the communication network or the control signals corresponding to the emergency detection signals and transmitting an early warning signal on the basis of the received signals.
US10262512B2 Arrangement and method for fitting rooms
An arrangement and method for fitting rooms and/or fitting areas. The arrangement includes detecting arrival, departure and/or presence of a person to/from a fitting room and/or fitting area and for detecting presence and/or number of remotely readable identification tags, electronic article surveillance tags and/or electronic price labels. The method includes detecting entrance or presence of a person to a fitting room and/or fitting area, detecting presence and/or number of remotely readable identification tags, electronic article surveillance tags and/or electronic price labels in the fitting room and/or fitting area after the entrance of a person to the fitting room and/or fitting area detecting departure of a person from a fitting room and/or fitting area and detecting presence and/or number of remotely readable identification tags, electronic article surveillance tags and/or electronic price labels in the fitting room and/or fitting area after departure of the person.
US10262510B2 Display system and gate device
A display system is provided with a display device; the display device including: a light source configured to emit light; and a light guide element configured to guide incident light from the light source; the light guide element including: an emission surface configured to output incident light; and a plurality of light focusing portions configured to change the path of the incident light toward the emission surface, causing the light output to converge toward a convergence point or convergence line outside the light guide element or to radiate from a convergence point or convergence line outside the light guide element and thereby form an image outside the light guide element. The display device presents information as an image, e.g., as a stereoscopic image.
US10262506B2 Method and system for pairing a sensor device to a user
A method, system, and a computer-readable medium for pairing a wireless sensor device which is associated with a user to a wireless relay device are disclosed. The method, system, and computer-readable medium comprise providing an identification code that includes a network address within the wireless sensor device. The method, system, and computer-readable medium include utilizing an application within a wireless relay device. The application selects the wireless sensor device by using the corresponding identification code, scans for network addresses, and compares the network address to the scanned network addresses. When the network address matches one of the scanned network addresses, the wireless sensor device is paired to the wireless relay device by the application.
US10262504B2 Card reading device and so-equipped self-service terminal and method for monitoring the same
According to the card reading device (20) for a self-service terminal comprising a intake compartment (13) for a card (11) containing data to be read, wherein the self-service terminal comprises at least one sensor (6A, 6B) and an evaluator device connected hereto and the card reading device (20) is protected against manipulation attempts by arranging at least one sensor in the card reading device (20) and at least one linearly extending sensor arrangement (6A,6B) that is attached in the intake compartment (13), wherein the evaluator device (4) checks at least one spatial dimension (1,b) of the card via the sensor arrangement (6A, 6B). Preferably the sensor system is a sensor arrangement comprising a plurality of linearly extending sensor elements that extend in a first direction (X) or a second direction (Y) in relation to the card (11) retracted into the intake compartment (13). Thereby it can be effectively determined whether a retracted card is a genuine card of if a manipulation is present that targets the inside of the card reading device.
US10262500B2 Gaming machine with symbol propagation
An embodiment may involve selecting a set of symbols associated with an outcome event of a reel-based game. The reel-based game may be executed on behalf of a client machine, and selecting the set of symbols may involve spinning a plurality of reels to determine the outcome event. The embodiment may further involve determining that the set of symbols includes a predetermined symbol on a designated reel and does not include any winning combination. The embodiment may also involve, possibly in response to determining that the set of symbols includes the predetermined symbol on the designated reel and does not include any winning combination, replacing one or more symbols in the set of symbols with predetermined symbols such that the symbol set after replacement includes a winning combination.
US10262499B2 Systems and methods for integrating graphic animation technologies in fantasy sports contest applications
Systems and methods for integrating graphic animation technologies with fantasy sports contest applications are provided. This invention enables a fantasy sports contest application to depict plays in various sporting events using graphic animation. The fantasy sports contest application may combine graphical representation of real-life elements such as, for example, player facial features, with default elements such as, for example, a generic player body, to create realistic graphic video. The fantasy sports contest application may provide links to animated videos for depicting plays on contest screens in which information associated with the plays may be displayed. The fantasy sports contest application may play the animated video for a user in response to the user selecting such a link. In some embodiment of the present invention, the fantasy sports contest application may also customize animated video based on user-supplied setup information. For example, the fantasy sports contest application may provide play information and other related data to allow a user to generate animated videos using the user's own graphics processing equipment and graphics animation program.
US10262489B2 Anti-counterfeiting features and methods of fabrication and detection
Aspects of the present disclosure include an anti-counterfeiting pattern that is identifiable by sheet resistance mapping metrology, a method of fabricating such an anti-counterfeiting device, and a method of detecting such an anti-counterfeiting device by imaging the pattern with sheet resistance mapping metrology. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
US10262484B2 Location tracking for locking device
Disclosed are methods, systems, and computer-readable media for wireless key management for authentication. Authentication includes transmitting a request to a locking device, transmitting a security challenge to the mobile device, and transmitting a response to the challenge and an encrypted user profile for the locking device. The response includes data generated with an access key that is stored by both the mobile device and the locking device, and the user profile is encrypted by a server using a secret key that is stored by the server and the locking device. Authentication further includes verifying the response to the challenge, where the response is verified using the access key, and validating additional data from the mobile device. An action of the locking device may be initiated as specified by the request.
US10262483B2 Lock/seal mechanism controllable using environmental measurements
Disclosed are devices, systems, apparatus, methods, products, and other implementations, including a method that includes obtaining, by a lock system, environmental data representative of characteristics of an environment at which a lock device, configured to control access to a structure, is located, with the lock device including a lock controller in electrical communication with a lock mechanism. The method further includes controlling the lock mechanism of the lock device based on a comparison of at least one of the characteristics of the environment to corresponding pre-determined data associated with the lock device.
US10262482B1 High security document storage and retrieval system
A document storage and retrieval system for securely storing documents. A mass storage device contains document identification data and document location information but not the document data. A host computer extracts the document identification data and document location information from the mass storage device and sends this information to a storage cabinet containing the document. Each document is removably stored in a file folder contained in a cabinet drawer. Each file folder has a memory unit which stores an electronic version of each physical document contained in the file folder. The host computer directs the initial storage of a document in folder memory. Thereafter, the host computer is denied access to the electronic versions stored in file folder memory. Access to the electronic versions is only possible using a special reader device.
US10262481B2 System and method to streamline identity verification at airports and beyond
A system and method of performing identity verification based on the use of mobile phones or mobile computing devices in conjunction with a secure identity authority; said method to be used as an alternative to conventional identity verification using paper-based documents such as driver's licenses and passports. The new method improves speed, accuracy, cost, and reliability of identity verification for entities that need to verify identity, as well as convenience for end-users.
US10262477B1 Determination of road conditions using sensors associated with a vehicle
A system for determining road conditions includes an input interface and a processor. The input interface is configured to receive sensor data from one or more sensors. The processor is configured to determine vehicle maneuver data based at least in part on the sensor data; determine a road slipperiness value based at least in part on the vehicle maneuver data; and update an event detection threshold based at least in part on the road slipperiness value.
US10262465B2 Interactive control station
A mixed reality system for creating a terminal control station enabling communication with and/or control of remote functions and applications, the system comprising a headset (100) for placing over a user's eyes, in use, said headset including a screen (102), the system further comprising a processor (104) configured to receive data from multiple sources and display said data on said screen within a three-dimensional virtual environment, and an input for receiving control information data from an external data source within the real world environment, said processor (104) being further configured to receive image data representative of said external data source and blend said image data into said three-dimensional virtual environment to create a mixed reality environment, including a representation of said external data source and said control information data, to be displayed on said screen (102), the system being configured to allow a user, in use, to manipulate data displayed within said mixed reality environment.
US10262464B2 Dynamic, local augmented reality landmarks
In some embodiments, the disclosed subject matter involves a system and method relating to dynamically sending local visual landmark information from multiple end user devices to a central server that is controlling an augmented reality (AR) experience. The local landmarks enable better alignment of the AR representations across devices. Multiple players may dynamically synchronize on shared landmarks that “anchor” the AR experience. The landmarks may be dynamic, transitory, and do not require pre-modelling of a location. Other embodiments are described and claimed.
US10262462B2 Systems and methods for augmented and virtual reality
An augmented reality display system comprises a passable world model data comprises a set of map points corresponding to one or more objects of the real world. The augmented reality system also comprises a processor to communicate with one or more individual augmented reality display systems to pass a portion of the passable world model data to the one or more individual augmented reality display systems, wherein the piece of the passable world model data is passed based at least in part on respective locations corresponding to the one or more individual augmented reality display systems.
US10262459B1 Multiple simultaneous bin sizes
Conflicts between the database-building and traversal phases are resolved by allowing the database bin size to be different from the display bin size. The database bin size is some multiple of the bin display bin size, and when there are multiple display bins in a database bin, each database bin is traversed multiple times for display, and the rasterizer discards primitives outside of the current display bin. This allows a trade off between memory bandwidth consumed for database building and bandwidth consumed for display, particularly when the display traversal is done multiple of times.
US10262458B2 Three-dimensional object modeling
Techniques associated with three-dimensional object modeling are described in various implementations. In one example implementation, a method may include receiving a plurality of two-dimensional images depicting views of an object to be modeled in three dimensions. The method may also include, processing the plurality of two-dimensional images to generate a three-dimensional representation of the object, and analyzing the three-dimensional representation of the object to determine whether sufficient visual information exists in the plurality of two-dimensional images to generate a three-dimensional model of the object. The method may also include, in response to determining that sufficient visual information does not exist for a portion of the object, identifying the portion of the object to a user.
US10262455B2 Merging fragments for coarse pixel shading using a weighted average of the attributes of triangles
Two primitives may be merged by interpolating vertex attributes at coarse pixel centers. Input attributes are computed as a coverage weighted average of the interpolated vertex attributes. Then coarse pixel shading is performed using the merged primitives.
US10262454B2 Image processing apparatus and method
An image processing apparatus includes a first shader configured to perform a light shading operation associated with at least one light source on a three-dimensional (3D) model at a first resolution to obtain a light shading result of the first resolution; a second shader configured to perform a surface shading operation on the 3D model at a second resolution different from the first resolution to obtain a surface shading result of the second resolution; and a processor configured to generate a rendering result by combining the light shading result of the first resolution with the surface shading result of the second resolution.
US10262453B2 Virtual shadows for enhanced depth perception
In order to improve depth perception for an image displayed during a laparoscopic surgery, a representation of a shadow of a tool included in the image and used in the laparoscopic surgery is identified and introduced into the image. A processor augments a three-dimensional (3D) model including a 3D representation of a surface of an object included in the image, and a representation of the tool by introducing a virtual light source into the 3D model to generate a virtual shadow within the 3D model. The processor subtracts the representation of the shadow out of the augmented 3D model and superimposes the representation of the shadow on the image to be displayed during the laparoscopic surgery.
US10262450B2 Display interposing a physical object within a three-dimensional volumetric space
A visual display unit creating a three-dimensional volumetric space. The display includes a first screen in a first focal plane, wherein the first screen displays a first image. The display includes a second screen in a second focal plane distinct from the first focal plane, wherein the second screen displays a second image, and wherein the second screen at least partially overlaps the first screen. The display includes a physical object located between the first screen and said second screen, wherein at least one of the first and second images is displayed in response to a placement of the physical object.
US10262449B2 Information processing apparatus, system, and method for displaying bio-information or kinetic information
An information processing apparatus includes a bio-information obtaining unit configured to obtain bio-information of a subject; a kinetic-information obtaining unit configured to obtain kinetic information of the subject; and a control unit configured to determine an expression or movement of an avatar on the basis of the bio-information obtained by the bio-information obtaining unit and the kinetic information obtained by the kinetic-information obtaining unit and to perform a control operation so that the avatar with the determined expression or movement is displayed.
US10262447B2 Systems and methods for virtual entity animation
Systems and methods of virtual entity animation are presented herein. A virtual entity may have virtual skin defined by a model having a set of vertices. A skeletal-based skin deformation method of animation may be used wherein individual vertices in the model may have individually and independently determined centers of rotation.
US10262446B2 Systems and methods to alter presentation of virtual rendition based on real world object
In one aspect, a device includes at least one processor and storage accessible to the at least one processor. The storage bears instructions executable by the at least one processor to present virtual objects of a virtual rendition on a display accessible to the processor and alter presentation of the virtual rendition based on the existence of a real-world object identified by the device.
US10262442B2 Enhanced precision background shading for digitally published text
Various techniques more precisely and reliably (a) position top and bottom boundaries of a region of background shading, (b) position left and right boundaries of a region of background shading, (c) define a region of background shading that is applied to Chinese, Japanese, or Korean characters, and (d) apply a clipping path to achieve an arbitrarily-shaped region of background shading. These techniques allow background shading to be applied to textual content precisely and reliably, and also reduce the likelihood that unwanted visual artifacts are introduced into a digital publication.
US10262426B2 System and method for infinite smoothing of image sequences
Various embodiments of the present invention relate generally to systems and processes for interpolating images of an object. According to particular embodiments, a sequence of images is obtained using a camera which captures the sequence of images along a camera translation. Each image contains at least a portion of overlapping subject matter. A plurality of keypoints is identified on a first image of the sequence of images. Each keypoint from the first image are kept track of to a second image. Using a predetermined algorithm, a plurality of transformations are computed using two randomly sampled keypoint correspondences, each of which includes a keypoint on the first image and a corresponding keypoint on the second image. An optimal subset of transformations is determined from the plurality of transformations based on predetermined criteria, and transformation parameters corresponding to the optimal subset of transformations is calculated and stored for on-the-fly interpolation.
US10262425B2 System and method for longitudinal data processing
A method for synchronization of a longitudinal data set from a subject includes receiving a first ensemble registration estimate having a first reference image corresponding to a first image ensemble and receiving a second image ensemble different from the first image ensemble. The method includes determining a second reference image based on the second image ensemble and the first reference image. Further, the method includes determining a second ensemble registration estimate based on the first ensemble registration estimate, the second reference image, the first image ensemble and the second image ensemble using an optimization technique. The method further includes generating a synchronized image ensemble corresponding to the first image ensemble and the second image ensemble based on the second ensemble registration estimate. The method also includes determining a medical condition of the subject by a medical practitioner based on the synchronized image ensemble.
US10262418B2 Matching patient images and images of an anatomical atlas
A matching transformation is determined for matching a patient image set of images of an anatomical body structure of a patient with an atlas image set of images of a general anatomical structure including anatomical atlas elements. Atlas spatial information containing spatial information on the general anatomical structure, and element representation information are obtained. The element representation information describes representation data sets which contain information on representations of the plurality of atlas elements in the atlas images to be determined are obtained, and also describes a determination rule for determining respective representation data sets for respective atlas elements in accordance with different respective parameter sets. Patient data is acquired by acquiring the patient image set and the parameter sets which are respectively associated with the images of the patient image set. The matching transformation is determined by matching images associated with the same parameter set to each other.
US10262417B2 Tooth axis estimation program, tooth axis estimation device and method of the same, tooth profile data creation program, tooth profile data creation device and method of the same
The tooth axis estimation program includes, extracting a plurality of points from inputted three-dimensional profile data, the plurality of points indicating a surface of three-dimensional profile data; calculating an arrangement relationship between a point group and a first profile corresponding to a first three-dimensional profile data of a tooth in accordance with moving and/or rotating at least one of the first profile and the point group, the arrangement relationship corresponding to minimum difference between the point group and the first profile, the point group being included in a region of the extracted plurality of points; and specifying a direction of a tooth included in the region in accordance with the calculated arrangement relationship.
US10262416B2 Pathway planning system and method
A system and method for planning a pathway through an anatomical luminal network of a patient including memory storing a computer program that is configured to analyze and manipulate CT images, a processor configured to execute the computer program and a display device configured to display a user interface of the computer program. The user interface includes an airway finder window displaying a CT image including a target. The CT image is rotatable about a pre-defined axis of rotation to assist a user in identifying an airway of the anatomical luminal network.
US10262411B2 Site scanning using a work machine with a camera
A method of detecting a defect in a surface of an infrastructure includes providing a work machine having a controller, a plurality of sensors including an inertial measurement unit (IMU) and a global positioning sensor (GPS), and a camera oriented in a direction substantially perpendicular to the surface. The camera takes a first image of the surface at a first location, and information is collected with the IMU and the GPS at the first location. The method includes linking the first image with the information collected at the first location, and storing the first image and the information collected at the first location in a database.
US10262410B2 Methods and systems for inspecting goods
The present disclosure provides a method and a system for inspecting goods. The method includes the steps of: obtaining a transmission image and a HSCODE of inspected goods; processing the transmission image to obtain a region of interest; retrieving from a model library a model created based on the HSCODE, in accordance with the HSCODE of the inspected goods; and determining whether there are any goods not registered in a customs declaration that are contained in the region of interest based on the model. With the above solution, it is possible to inspect goods in a container efficiently, so as to find out whether there are goods not indicated in the customs declaration that are concealed in the container.
US10262408B2 System, method and computer program product for systematic and stochastic characterization of pattern defects identified from a semiconductor wafer
A system, method, and computer program product are provided for systematic and stochastic characterization of pattern defects identified from a fabricated component. In use, a plurality of pattern defects detected from a fabricated component are identified. Additionally, attributes of each of the pattern defects are analyzed, based on predefined criteria. Further, a first set of pattern defects of the plurality of pattern defects are determined, from the analysis, to be systematic pattern defects, and a second set of pattern defects of the plurality of pattern defects are determined, from the analysis, to be stochastic pattern defects. Moreover, a first action is performed for the determined systematic pattern defects and a second action is performed for the determined stochastic pattern defects.
US10262404B2 Method and system for articulation of a visual inspection device
Methods, systems, and computer-readable media for articulating visual inspection devices are provided. For example, a method can include receiving an inspection template by a control system associated with the visual inspection device. The inspection template can include data associated with at least one point of interest in a scene viewable to the visual inspection device. The method can further include generating, by the control system, an articulation path based on the data. The method can also include actuating an electro-mechanical system of the visual inspection device according to the articulation path.
US10262402B2 Curved line correction apparatus, method, and medium
A curved line correction apparatus includes a correction target receiving unit that receives selection of a correction target point when an instruction mark is placed on an arbitrary point on a curved line composed of a plurality of arranged points, a correction target range setting unit that sets a certain range of the curved line, including the correction target point, as a correction target range, and a correction unit that corrects a portion of the curved line within the correction target range by moving the correction target point and a point within the correction target range when movement of the instruction mark is received, in which the correction target range setting unit changes the size of the correction target range when an instruction input to change the range is received with the instruction mark being placed on the correction target point.
US10262401B2 Noise reduction using sequential use of multiple noise models
Embodiments of the present disclosure relate to performing noise reduction on an input image by first filtering the input image based on coarse noise models of pixels and then subsequently filtering the filtered input image based on finer noise models. The finer noise models use the same or more number of neighboring pixels than the coarse noise filters. The first filtering and subsequent filtering of a pixel in the input image use Mahalanobis distances between the pixel and its neighboring pixels. By performing iterations of filtering using more refined noise models, the noise reduction in the input image can be performed more efficiently and effectively.
US10262399B2 Image denoising with color-edge contrast preserving
A color-edge contrast preserver includes a demosaicing module, a color-correcting module, a converter module and a chromatic-denoising module. The demosaicing module may demosaic a red-white-blue (RWB) pixel image of the image. The color-correcting module may color correct the demosaiced RWB pixel image and may produce a red-green-blue (RGB) pixel image from the color-corrected demosaiced RWB pixel image. The converter module to convert the RGB pixel image to a hue-saturation-value (HSV) pixel image and to generate a similarity kernel ΔY. The chromatic-denoising module may denoise a red pixel image and a blue pixel image of the RWB pixel image using the similarity kernel ΔY.
US10262397B2 Image de-noising using an equalized gradient space
Image de-noising is described using an equalized gradient space. In one example, a method of de-noising an image includes determining an intensity gradient magnitude for an image, determining blurring radii for a plurality of pixels of the image using the intensity gradient, and blurring the image at each of the plurality of pixels using the blurring radii.
US10262395B2 Image processing method and apparatus, and electronic device
An image processing method and apparatus, and an electronic device are provided. The image sensor is controlled to output the compositing image. The merged image and the color-block image can be output respectively under different scenes requiring different imaging effect. Then the preset target region is identified in the merged image. Finally, the processed merged image (i.e. the merged true-color image) corresponding to the preset target region is composited with the processed color-block image (i.e. the simulation true-color image). Therefore, the signal-to-noise ratio, the resolution and distinguishability are improved. The placed location in the simulation true-color image can be manually adjusted, thereby enhancing user experience.
US10262394B2 Tracking objects in bowl-shaped imaging systems
Technologies for determining a distance of an object from a vehicle include a computing device to identify an object captured in a fisheye image generated by a fisheye camera of the vehicle. The computing device projects a contour of the identified object on a selected virtual plane that is located outside the vehicle and selected from a predefined set of virtual planes based on a location of the identified object relative to the vehicle. The computing device identifies a bottom of the projected contour on the selected virtual plane and determines an intersection point of an imaginary line with a ground plane coincident with a plane on which the vehicle is positioned. The imaginary line passes through each of the identified bottom of the projected contour and the fisheye camera. The computing device determines a location of the identified object relative to the vehicle based on the determined intersection point and the identified bottom of the projected contour.
US10262391B2 Graphics processing devices and graphics processing methods
A graphics processing unit (GPU) configured to perform a graphics pipeline may generate operation data based on base operation data representing a base state of a plurality of components and implement the plurality of components to perform the graphics pipeline according to the generated operation data. The GPU may determine a priority of a plurality of instances of state version data based on frequencies of use associated with the plurality of instances of state version data, maintain first state version data having a determined highest priority from among the plurality of instances of state version data, and control second state version data having a determined lower priority than the first state version data to be updated based on a graphics pipeline being performed. The state version data may include code associated with performing the graphics pipeline in each of a plurality of states of the plurality of components.
US10262387B2 Early sub-pixel rendering
A display system includes a display device and a graphics processing unit (GPU) coupled via at least one physical layer. The display device includes a pixel array having a non-red-green-blue (non-RGB) pixel format. The GPU is configured to render an image in the non-RGB pixel format and provide the rendered image for transmission to the pixel array via the at least one physical layer.
US10262379B2 Displaying social networking information based on identified entity
A system and computing instructions may include a user device, a social network database, and a processor. The user device may include a user interface configured to display a web browser. The social network database may be configured to store social network information related to an entity. The processor may be configured to identify the entity based on content of a webpage displayed on the web browser of the user device, obtain social network information related to the entity from the social network database based on a social network relationship between the user and the entity, and display the social network information on the web browser of the user device.
US10262378B2 Transaction identification and recognition
A method of matching transaction data with a transaction receipt using one of a plurality of transaction-specific elements is described. Transaction-specific elements are determined (210) from a transaction between a payment token of a user and a terminal. Transaction identifiers are then formed (220), each from a separate transaction-specific element. At least one of the transaction identifiers is then received or generated (230) in a transaction processing system. The transaction processing system provides transaction data associated with this transaction identifier. Each of the transaction identifiers used by the transaction processing system is combined (240) to form a composite transaction identifier comprising a plurality of transaction identifier elements. Each transaction identifier is matched (250) against each transaction identifier element to identify the transaction and to associate the transaction data with a transaction receipt. This approach is particularly effective for use in providing receipts for contactless card transactions. A terminal, a mobile computing device, a receipt service and a transaction processing system are also described.
US10262376B1 Systems and methods for automatically updating data representative of insurance related information
The present disclosure generally relates to systems and methods for automatically updating data representative of insurance related information. In particular, the present disclosure relates to systems and methods for automatically updating data representative of insurance related information based on data, representative of desired updates, entered by a customer and data representative of update rules. The data representative of desired updates may be compared to the data representative of the update rules to generate updates to data representative of insurance related information.
US10262375B1 Gamification of renter's/homeowner's insurance products
Techniques for providing information related to insurance services solicit interaction from a user (e.g., during video game play). The solicited interaction identifies a real property. A virtual environment gaming landscape is generated. The gaming landscape includes a virtual representation of the identified real property. Additional interaction from the user with the virtual environment gaming landscape is solicited. A risk assessment related to the identified real property is performed based on user's interaction with the virtual environment gaming landscape. A recommendation regarding one or more services is provided based on the performed risk assessment.
US10262371B2 Automated compliance scoring system that analyzes network accessible data sources
An automated system that analyzes network accessible data sources to determine a score that measures compliance of an investment with a compliance policy. The compliance policy may specify for example ESG (Environment, Social, or Governance) requirements, or prohibitions against selling of certain products and services considered undesirable or unethical by certain investors. Compliance analysis may determine the amount of revenue or income received from prohibited sources, or it may search information for key words and phrases related to these sources. The system may “purify” noncompliant investments by bundling them with charitable contributions that offset the income from prohibited sources. Fund managers may publish and share compliance policy definitions, and may import these shared definitions and customize them for their specific fund requirements.
US10262369B2 Systems and methods to implement an exchange messaging policy
Systems for and methods of evaluating messaging, comprising, receiving, via at least one server device, one or more messages, and said at least one server device processing at least one of the one or more messages by grading content included in said at least one message, applying a weighting factor to said at least one message according to said grading, thereby determining a weighted message count for said at least one message, aggregating the weighted message count for said at least one message, and initiating an action if the aggregated weighted message count meets or exceeds a predetermined count threshold.
US10262361B2 Electronic money server, electronic money processing method, electronic money processing program product, and storage medium on which electronic money processing program product is stored
The purpose of the present invention is to provide an electronic money server that supports regular periodic payments using electronic money. On the electronic money server, a payment debt is created in association with an electronic money function section ID. A “transaction ID” is also determined at that time. An electronic money application on a portable terminal sends the electronic money server a payment debt request to ascertain whether or not a payment debt exists. If a payment debt exists and the due date thereof has been reached, the electronic money server sends the portable terminal a payment connection request and requests authorization from the user. If the user sends an “approval” notification to the electronic money server, the electronic money server sends a payment request by sending a subtraction command to a IC chip in the portable terminal.
US10262359B2 Financial status display
Systems and methods are provided for displaying account information. The systems and methods may include a status display device connected to a network in a home or office environment. The status display may be configured to provide a constant status indicator, to provide a user with a quick and simple account status, without the need for multi-step login and verification processes. The status display may receive account status information from a server, the account status information excluding sensitive information identifying the user or the account. The status display may provide colored indicators to inform the user of their financial situation while reducing security risks and reducing processing capability requirements, thereby allowing for a simple status display device that can be placed throughout a household or integrated into common household items.
US10262357B2 Systems, methods and processes for conducting and/or completing one or more computer-implemented auctions in real-time
Systems and methods conduct one or more real-time auctions during a live event at a venue, wherein the one or more real-time auctions comprise at least one auction item and/or service. The system and methods comprises digital mobile application software downloaded to a first digital mobile device, at least one positioning system configured to determine when the first digital mobile device is located within or near the venue and a computer server in digital communication with the at least one positioned system and the first digital mobile device. The computer server transmits information indicative of a real-time auction to the first digital mobile device when the first digital mobile device is located within or near the venue during the live event, wherein the computer server receives data indicative of at least one first auction bid for the at least one auction item and/or service from the first digital mobile device via the digital mobile application software executed by the first digital mobile device.
US10262356B2 Methods and arrangements including data migration among computing platforms, e.g. through use of steganographic screen encoding
An illustrative implementation of the technology includes three primary components: a desktop application, a mobile phone application, and connections to retailer inventory and pricing APIs (e.g., for Walmart and/or Best Buy). The experience begins with the consumer going to an online retailer's website (e.g., Amazon) to search for a product. The desktop application automatically searches for the same product using the APIs of Walmart and/or Best Buy. If matches and near-matches of the product are found, the product name, model, price, and local availability at affiliate locations is shown. With a mobile phone camera-scan of the product page, relevant information is transferred to the consumer's phone. From there, the consumer can interact with the options on the mobile phone to be directed to the nearby brick and mortar store of choice carrying that product at the price they want. Along the way, the retailer can present offers and additional product information directly to the consumer. A great variety of other technologies and arrangements are also detailed.
US10262352B2 Directing one or more users to one or more automated customized food generation machines
Computationally implemented methods and systems include acquiring user preference information of a user that indicates one or more customized food preferences of the user including at least one or more preferences related to integrity of one or more ingredients for use in generating one or more customized food items; identifying one or more capable automated customized food generation machines that have one or more ingredients in one or more sufficient quantities to be able to currently generate at least one customized food item in accordance with the one or more customized food preferences of the user; and presenting, in response at least in part to the identification, one or more indicators that direct the user to at least one automated customized food generation machine. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
US10262346B2 System and method for a merchant onsite personalization gifting platform
An online personalized gifting system and method includes an application executed on a computing device to communicate with a merchant server owned and managed by a merchant for generating customized gift structures that may be sent to a recipient. The application transmits the gift structure templates to a merchant server in communication with a user computing device, communicates with the merchant server to receive a selected one gift structure template that has been obtained by the merchant server from the user computing device, and communicate with the merchant server to receive at least one of user-supplied textual, audio, or video content that has been obtained by the merchant server from the user computing device. The application communicates with a production facility located at a site of the merchant to generate a gift structure in accordance with the selected gift structure template and the user-supplied content using a production facility.
US10262343B1 Ad-blocking system using rule-based filtering of internet traffic
Ad-blocking method, system, and computer program (the system) of the present invention uses rule-based filtering of Internet traffic through a set of interacting modules functioning at the system and user level to allow to exclude graphic, video, audio or text advertising content from the user-requested web content by filtering Internet traffic at the request stage and a response using the rules data base. The system provides the end user with the requested web content in the form of Internet pages in browsers or other representations in other applications (including instant messengers, platforms for streaming, etc.) excluding graphic, video, audio or text advertising content by filtering Internet traffic using the rules data base.
US10262333B2 Linear programming approach for querying a trie data structure
The present invention provides a method and system for querying a trie data structure. The method and system include constructing a pool of linear programming problems for a trie data structure, storing the pool of linear programming problems in a memory, receiving a request, setting variables in one linear programming problem to unity, sending the one linear programming problem to a solver, wherein the solver sets a p variable corresponding to each path to 0 or 1, iterating through p variables corresponding to one or more paths, considering at most n paths, selecting one path from the n paths, assigning same values as that of one or more variables of the unknown value type nodes that are present in the selected one path, and reselling variables in the one linear programming problem to zero that was previously set to unity.
US10262330B2 Location-based analytic platform and methods
Provided is a process of learning an audience member function, the process including: obtaining a training set of geographic data describing geolocation histories of a plurality of mobile devices, wherein members of the training set are classified according to whether the respective member of the training set is a member of an audience; retrieving attributes of geolocations in the geolocation histories from a geographic information system; learning feature functions of an audience member function based on the training set, wherein at least some of the feature functions are a function of the retrieved attributes of geolocation, wherein the feature functions are learned, at least in part, by calculating a plurality of impurity measures for candidate feature functions and selecting one of the candidate feature functions based on the relative values of the impurity measures; and storing the feature functions of the audience member function in an audience repository.
US10262329B2 Triggering and conducting an automated survey
Systems and methods for initiating and conducting an automated survey are disclosed herein. According to some implementations, a processing device of a computer may receive a notification of an occurrence of a trigger event after the occurrence of the trigger event, initiate an automated survey to be offered to the customer, conduct the automated survey with the customer, and receive survey result information from the customer in response to the automated survey.
US10262328B2 System and method for video-based detection of drive-offs and walk-offs in vehicular and pedestrian queues
A system and method for detecting customer drive-off/walk-off from a customer queue. An embodiment includes acquiring images of a retail establishment, said images including at least a portion of a customer queue region, determining a queue configuration within the images, analyzing the images to detect entry of a customer into the customer queue, tracking a customer detected in the customer queue as the customer progresses within the queue, analyzing the images to detect if the customer leaves the customer queue, and generating a drive-off notification if a customer leaves the queue.
US10262316B2 Automatic notification of transaction by bank card to customer device
A bank customer's electronic debit or credit card (“e-card”) automatically reports to the customer's CE device the receipt of transaction interrogations the e-card receives from a point of sale (POS) apparatus. The e-card may simply report to the CE device and respond to the interrogation, or it may await a signal from the CE device prior to responding to the interrogation.
US10262315B2 Dual mode payment application for processing of encoded transfer transaction information
A system and method for coordinating processing of a funds transfer transaction between a transaction requestor and a transaction responder over a communications network. The transaction system comprises receiving a funds amount, requestor identification information, and responder identification information, such that at least one of the funds amount, the requestor identification information, or the responder identification information is encoded in symbology information embodied in a barcode. The system also decodes the symbology information into unencoded information using a coding scheme of the barcode and generates a funds transfer request for the funds transfer transaction, such that the funds transfer request has content including the unencoded information decoded from the symbology information. The system also sends the funds transfer request to a transaction processing system for subsequent settlement, as well as receives transaction confirmation messages.
US10262314B2 System and method for enabling a mobile communication device to operate as a financial presentation device
A provisioning system for enabling a mobile communication device to operate as a financial presentation device (FPD) presentable to providers of goods or service is provided. The provisioning system relies on a transaction processing system that normally routes authorization requests from merchants to issuers of FPDs for purposes of authorizing FPD transactions. The transaction processing system stores security keys of all issuers in order to validate transaction data sent from the merchants. The provisioning system monitors authorization requests routed through the transaction processing system and retrieves an authorization request of a financial transaction initiated with a particular FPD. The provisioning system then transmits the FPD data contained in the retrieved authorization request and the security key stored in the transaction processing system to a secure memory element of the mobile communication device to enable the mobile communication device to operate as a FPD.
US10262313B2 Multi-account card
A system for conducting a transaction is disclosed. The system may include one or more memory devices storing instructions and one or more processors configured to execute the instructions to receive information associated with a transaction initiated using a multi-account card. The one or more processors may be further configured to select and employ one of a plurality of transaction accounts to complete the transaction.
US10262309B1 Augmenting a BIOS with new programs
Approaches for augmenting a BIOS with a new program. A BIOS provides an interface through which a user may select one or more programs from a plurality of offered programs. When the BIOS receives input from the user that selects a particular program, the BIOS retrieves, over a network, the particular program. Received applications may be stored in the BIOS or in a hidden file that the BIOS can also access without booting the operating system. An online application store can offer applications that are signed by the BIOS issuer as being approved for plug-in applications for use in a pre-boot or post-boot environment.
US10262303B2 Methods and systems for applying a rewards program promotion to payment transactions
A method for applying promotion codes to a payment transaction using an input device in communication with a database is provided. The payment transaction includes a purchase made by a cardholder using a payment card over a payment card network. The method includes storing promotion data within the database including at least one promotional program having a qualifying number of rewards points for a rewards program, and storing rewards data within the database including a current number of rewards points accumulated by the cardholder. The method further includes providing access to the promotion data through the at least one input device including each promotional program having a qualifying number of rewards points that is less than the current number of rewards points for the cardholder, receiving a selected promotional program from the cardholder, and automatically applying the promotion codes associated with the selected promotional program to the payment transaction.
US10262301B2 Methods and systems for calendaring, social networking and planning for users, including, vendors, consumers and enterprises
A computerized system is provided for generating a visual presentation for visually organizing one or more activities of a user, including vendors. The methods and systems are directed to calendaring, social networking, and planning for users, including vendors, consumers and enterprises.
US10262296B2 Inventory management system and method
A method, system, and computer program product are provided to manage inventory. The method includes: obtaining, by a processor, a signal of decodable indicia; decoding, by the processor, the signal of decodable indicia to access decoded data, where the decoded data includes information identifying an object, where the object includes a plurality of items. Based on the information identifying the object, the processor obtains, from a memory, a visual representation of a portion of the object. The visual representation is divided into a plurality of regions and each region represents an item of the plurality of items. The processor displays the visual representation on a client and obtains a designation of at least one of the plurality of regions. Based on obtaining the designation the processor generates an order request for an item represented by the at least one of the plurality of regions.
US10262291B2 System for delivering shipping items
A system for delivering shipping items in vehicles includes a first communication module establishing a communication link to a communication terminal of a delivery person, the communication terminal receiving authorization data via a communication network; a first identification routine unambiguously identifying a delivery person; a second communication module establishing, via a wireless communication network, a communication link to a communication device of a control unit of the access arrangement on a vehicle; a second identification routine for unambiguously identifying the system by the access arrangement; a third communication module for receiving update request data from the driver; and an update routine for updating authorization data in a memory of the system. Upon updating authorization data, information is wirelessly transmitted relating to the successful delivery and the content of the delivery to the access arrangement. The driver assistance system displays an alert message about the delivery.
US10262290B1 Utilizing machine learning to generate augmented reality delivery instructions for delivering an item to a location
A device receives delivery information indicating instructions for delivery of an item at a location, wherein the delivery information include an image of the location with a designated point for delivering the item. The device receives information indicating that a user device, associated with a delivery person, is at the location, and processes the delivery information and the information indicating that the user device, associated with the delivery person, is at the location, with a machine learning model, to generate delivery instructions for the item, wherein the delivery instructions include augmented reality information indicating the designated point for delivering the item at the location. The device provides the delivery instructions to the user device, wherein the delivery instructions enable the user device to utilize the augmented reality information to display the designated point for delivering the item within a live image of the location.
US10262287B2 Data comparison and analysis based on data analysis reporting
A method for comparing and analyzing data based on data analysis reports is provided. The method may include receiving a first dataset. The method may also include identifying a first portion of the first dataset and a second portion of the first dataset. Additionally, the method may include comparing and analyzing the first portion of the first dataset with the second portion of the first dataset. The method may also include receiving a second dataset from a location different from the first dataset. The method may further include comparing and analyzing the first portion and second portion of the first dataset with the second dataset. The method may also include receiving a plurality of first analysis results and a plurality of second analysis results based on the comparisons and the analyzes. The method may also include presenting the plurality of first analysis results and the plurality of second analysis results.
US10262283B2 Methods and systems for generating supply chain representations
A computer implemented method for mining supply chain information to produce supply chain graphs includes receiving by a computer a set of data; identifying a supplier, a commodity, and a customer from the set of data; generating a query comprising the identified data; determining the absence of any of the supplier, the commodity, or the customer from the set of data; if any items are determined to be absent from the set of data, substituting a placeholder for the missing item from the data set; sending the query; receiving a set of supply chain graph information; generating a supply chain graph signal based upon the set of supply chain graph information; and transmitting the supply chain graph signal. A computing device or system includes a processor an electronic memory; and a program for mining supply chain information to produce supply chain graphs stored in the electronic memory.
US10262279B2 Modeling career path based on successful individuals in an organization
A system and method for providing career-related information. An example method includes acquiring user information, wherein the user information includes an indication of a target career position or opportunity; obtaining aggregated information pertaining to workers who have attained the target career position; and employing the user information and the aggregated information to provide career-related information pertaining to one or more career paths. In the example method, a user questionnaire is employed to facilitate acquiring the user information. The step of obtaining aggregated information includes collecting anonymous information from profiles of the workers. The profile information may be retrieved from a Human Capital Management (HCM), performance management system, social network system, or other Enterprise Resource Planning (ERP) system component of an organization.
US10262273B2 Method for interfacing with a cognitive inference and learning system
A method for interfacing with a cognitive inference and learning system comprising: processing data from a plurality of data sources to provide cognitively processed insights via a cognitive inference and learning system, the cognitive inference and learning system further comprising performing a learning operation to iteratively improve the cognitively processed insights over time; receiving the data from the plurality of data sources to the cognitive interface and learning system via a first interface, and, providing the cognitively processed insights to a destination via a second interface.
US10262268B2 Predictive analytic systems and methods
The methods, apparatus, and systems described herein facilitate decision-making by providing predictions of outcomes and behaviors. The methods include receiving a communication between an agent and a prospect, analyzing density of keywords in a text version of the communication to determine the type of communication and amount of value time, determining if the communication is a first meaningful contact based on the type of communication and amount of value time, and predicting a likelihood of a prospect's action based on the determination.
US10262266B2 Identifying and analyzing impact of an event on relationships
The present invention provides a computer implemented method, a system, and a computer program product of identifying and analyzing the impact of an event associated with an entity on relationships of the entity. In an exemplary embodiment, the present invention includes storing data that identifies relationships with entities associated with the entity, based on data about the entity and data about the entities from at least one online website, storing data that identifies entity relationships, among the entity relationships identified in an entity relationship data structure, that are determined by the computer system to be affected by events associated with event categories, receiving data about events related to the entity, and outputting data related to a recommendation for a second entity among the entities associated with the entity, wherein the second entity corresponds to a most affected relationship, based on data associated with the second entity.
US10262258B2 Card printing mechanism with card return path
Card processing mechanisms and methods whereby after a card has been processed on one surface thereof at a card processing station such as, but not limited to, a card printing mechanism, the card can be recirculated back upstream of the card processing station along a return card travel path that is separate from the primary card travel path through the card processing station where the card can then be reintroduced back into the primary card travel path and transported through the card processing station a second time. As the card is being returned along the return card travel path, the card can be flipped over so that when the card is transported back through the card processing station, the opposite surface of the card can be processed.
US10262257B2 Recording system and recording method
A recording system includes a reading part that reads information recorded on a first recording medium that is provided in a recording tape cartridge, of which recorded information is readable in a non-contact manner; and a recording part that records the information read by the reading part on a second recording medium of which recorded information is visually recognizable from the outside.
US10262255B2 Multifunction adhesive product for ubiquitous realtime tracking
A low-cost, multi-function tracking system with a form factor that unobtrusively integrates the components needed to implement a combination of different localization techniques and also is able to perform a useful ancillary function that otherwise would have to be performed with the attendant need for additional materials, labor, and expense. An example tracking system is implemented as an adhesive product that integrates tracking components within a flexible adhesive structure in a way that not only provides a cost-effective platform for interconnecting, optimizing, and protecting the components of the tracking system but also maintains the flexibility needed to function as an adhesive product that can be deployed seamlessly and unobtrusively into various tracking applications and workflows, including person and object tracking applications, and asset management workflows such as manufacturing, storage, shipping, delivery, and other logistics associated with moving products and other physical objects.
US10262254B2 Information processing apparatus, information processing method, and program
Provided is an information processing apparatus including an access control unit configured to control access from an application to a common file system accessible from a plurality of applications. The access control unit in a case where contact communication is performed with respect to an external processor, controls access by using first identification information for specifying an application, the first identification information being associated with each of the plurality of applications, and in a case where contactless communication is performed via a contactless communication device capable of performing contactless communication with an external device, controls access by using second identification information for specifying an application related to contactless communication, the second identification information being associated with at least one application among the plurality of applications.
US10262253B2 RFID switch tag
Various embodiments of RFID switch devices are disclosed herein. Such RFID switch devices advantageously enable manual activation/deactivation of the RF module. The RFID switch device may include a RF module with an integrated circuit adapted to ohmically connect to a substantially coplanar conductive trace pattern, as well as booster antenna for extending the operational range of the RFID device. The operational range of the RFID switch device may be extended when a region of the booster antenna overlaps a region of the conductive trace pattern on the RF module via inductive or capacitive coupling. The RFID switch device may further include a visual indicator displaying a first color if the RFID switch device is in an active state and/or a second color if the RFID switch device is in an inactive state.
US10262247B2 Image forming apparatus for converting print data into intermediate data, method for controlling image forming apparatus, and storage medium
There is provided an image forming apparatus configured to process print data of a plurality of pages includes a plurality of interpreters configured to generate intermediate data of the plurality of pages by interpreting the print data, a control unit configured to specify different pages for different interpreters, and, for each specified page, cause a corresponding interpreter to generate the intermediate data of the specified page or specified pages, and a generation unit configured to generate a raster image of the page based on the generated intermediate data, wherein, based on interpretation of the print data of an invalid page, any one interpreter of the plurality of interpreters generates the intermediate data of a page subsequent to the invalid page without requiring the page to be specified by the control unit.
US10262239B2 Video content contextual classification
A computer implemented method of semantically categorizing a video stream through multimodal content classification, comprising dividing a designated video stream to a plurality of scenes by analyzing a visual content of a plurality of frames of the video stream to identify scene changes between consecutive scenes, applying a plurality of classification functions to each of a plurality of modalities extracted from each of the scenes to calculate a class probability for each of a plurality of known concepts detected in each scene, applying a plurality of multimodal classification functions on the class probability of the known concepts to calculate a scene category probability for each scene indicating a probability of the scene to be categorized in one or more semantic categories and categorizing the video stream to a stream category of the semantic categories by aggregating the category probability of the scenes.
US10262237B2 Technologies for improved object detection accuracy with multi-scale representation and training
Technologies for multi-scale object detection include a computing device including a multi-layer convolution network and a multi-scale region proposal network (RPN). The multi-layer convolution network generates a convolution map based on an input image. The multi-scale RPN includes multiple RPN layers, each with a different receptive field size. Each RPN layer generates region proposals based on the convolution map. The computing device may include a multi-scale object classifier that includes multiple region of interest (ROI) pooling layers and multiple associated fully connected (FC) layers. Each ROI pooling layer has a different output size, and each FC layer may be trained for an object scale based on the output size of the associated ROI pooling layer. Each ROI pooling layer may generate pooled ROIs based on the region proposals and each FC layer may generate object classification vectors based on the pooled ROIs. Other embodiments are described and claimed.
US10262236B2 Neural network training image generation system
A system that generates training images for neural networks includes one or more processors configured to receive input representing one or more selected areas in an image mask. The one or more processors are configured to form a labeled masked image by combining the image mask with an unlabeled image of equipment. The one or more processors also are configured to train an artificial neural network using the labeled masked image to one or more of automatically identify equipment damage appearing in one or more actual images of equipment and/or generate one or more training images for training another artificial neural network to automatically identify the equipment damage appearing in the one or more actual images of equipment.
US10262233B2 Image processing apparatus, image processing method, program, and storage medium for using learning data
The presence of possibility of occurrence of an excessive adaptation due to use of only learned training data is detected during a learning stage. The user is urged to add data and other information, thereby avoiding the excessive adaptation. For this purpose, the invention has: an inputting unit for inputting a learning image; a generating unit for generating a discrimination model used to decide whether or not a target is normal on the basis of the learning image; a deciding unit for deciding whether or not the number of input learning images is insufficient when the discrimination model is generated; and a notifying unit for notifying a message for urging the user to add the learning image when it is decided that the number of input learning images is insufficient.
US10262232B2 Methods and systems for generating a fingerprint for verification of a reference object
Disclosed herein are methods and systems for generating a fingerprint for verification of a reference object, such as a layer or ply during a composite laminate layup procedure. An exemplary method includes generating a plurality of images of the reference object from a plurality of angles, removing at least one lighting effect from at least one reference image to generate at least one processed image, generating a reference fingerprint for the reference object based on the at least one processed image, generating at least one candidate image of a candidate object, generating a candidate fingerprint for the candidate object based on the at least one candidate image, comparing the candidate fingerprint and the reference fingerprint to determine whether a correlation exists between the candidate fingerprint and the reference fingerprint, and generating an alert based on the comparison of the candidate fingerprint and the reference fingerprint.
US10262231B2 Apparatus and method for spatially referencing images
Provided is a method of spatially referencing a plurality of images captured from a plurality of different locations within an indoor space by determining the location from which the plurality of images was captured. The method may include obtaining a plurality of distance-referenced panoramas of an indoor space. The distance-referenced panoramas may each include a plurality of distance-referenced images each captured from one position in the indoor space and at a different azimuth from the other distance-referenced images, a plurality of distance measurements, and orientation indicators each indicative of the azimuth of the corresponding one of the distance-referenced images. The method may further include determining the location of each of the distance-referenced panoramas based on the plurality of distance measurements and the orientation indicators and associating in memory the determined locations with the plurality of distance-referenced images captured from the determined location.
US10262230B1 Object detection and identification
A two-dimensional (2D) image and a three-dimensional (3D) of an environment may be captured. Upon identifying a location and/or contour of an object from the 3D image, the object from the 3D image may be mapped onto the 2D image. The object, including its location and contour, may be identified from the 2D image. Based at least partly on a comparison between the object from the 3D image and the object from the 2D image, a disparity may be calculated. The location and contour of the object may be determined when it is determined that the disparity is less than or equal to a predetermined threshold. Otherwise, the object from the 3D image may be remapped onto the 2D image.
US10262229B1 Wide-area salient object detection architecture for low power hardware platforms
Described is a system for detecting multiple salient objects in an image using low power hardware. From consecutive pair of image frames of a set of input image frames, image channels are generated. The image channels are resized into multiple image scales that specify a relative size of a salient object in the image frames. A patch-based spectral transform is applied to overlapping image patches in the resized image channel, generating salient patches. Saliency patches are combined into a saliency map for each resized image channel, resulting in multiple saliency maps. The saliency maps are combined into an aggregate saliency map. An adaptive threshold is applied to the aggregate saliency map to determine which pixels in the aggregate saliency map correspond to a detected salient object region including a salient object. An object bounding box is generated for each salient object and output to a display.
US10262228B2 Automated realization of hand-drawn topologies
Techniques disclosed herein provide an approach for automated realization of hand-drawn topologies. In one embodiment, a topologizer application is configured to parse an image depicting a hand-drawn topology and identify shapes and relationships between the shapes in the image. The topologizer may convert the hand-drawn topology to polygons and then identify the polygons as being, e.g., particular shapes and arrows representing relationships between the shapes. The identified shapes and relationships are then output in a machine-readable format for consumption, in which the shapes are mapped to corresponding components of a computing system and deployed based on the mapping and the relationships indicated in the topologizer output.
US10262225B2 Image information processing device, image information processing system, image information processing method, and recording medium storing image information processing program
In an image representing an observed ground surface area, the device calculates an optical-path-radiance with a high degree of accuracy. An image information processing device 3 includes: a storage unit 31 that associates and stores observation images representing the results of observing electromagnetic waves of a plurality of different wavelength bands reflected from a ground surface, information representing the wavelength bands, and information representing the observation environment; a first intermediate-optical-path-radiance calculation unit that, for each of the wavelength band, makes the radiance of a dark pixel meeting a radiance standard from among pixels composing an associated observation image an intermediate-optical-path-radiance; an irradiance calculation unit that calculates the irradiance from sunlight for each of the wavelength band on the basis of the information representing the observation environment; and a final-optical-path-radiance calculation unit that calculates a final-optical-path-radiance for each of the wavelength band on the basis of the irradiance and intermediate-optical-path-radiance.
US10262223B2 Method of speeding up image detection
A method of speeding up image detection, adapted to increase a speed of detecting a target image and enhance efficiency of image detection, comprises the steps of capturing an image; retrieving a plurality of characteristic points of the image; creating a region of interest (ROI) centered at the characteristic points each; creating a plurality of search point scan windows corresponding to the ROIs, respectively; calculating target hit scores of the characteristic points and the search point scan windows; comparing the target hit scores of the characteristic points and the search point scan windows to obtain an ROI most likely to have a target image; calculating centroid coordinates of the ROI by a centroid shift weight equation; and narrowing a scope of ROI search according to a location of the centroid coordinates and reducing a displacement between the search points.
US10262221B2 Event searching apparatus and system
The present invention relates to an event searching apparatus comprising: a communication interface configured to receive, from a camera, a plurality of image frames obtained by photographing a surveillance region and metadata comprising time information of occurrence of an event and location information regarding a location of the occurrence of the event; a search map generator configured to generate a search map corresponding to the image frames and comprising a plurality of blocks; a time stamp setter configured to set at least one time stamp comprising the time information in at least one block, corresponding to the location information; a user interface configured to receive a search location as a search condition for an event search in the surveillance region; and an event searcher configured to search for and find a time stamp included in a block near the search location among the blocks, and perform event search using metadata regarding an image frame indicated by the found time stamp.