Document Document Title
US10218948B2 Image displaying system, controlling method of image displaying system, and storage medium
It aims to enable to uniform synthesized luminance in an image overlap region of a projection image by a simple process, by means of a mechanism of: performing display control to project a black image as the projection image to be projected from a first projection-type image displaying apparatus to a screen, and project, as the projection image to be projected from a second projection-type image displaying apparatus to the screen, an image in which dimming correction to the overlap region of the projection images respectively projected by the first and second projection-type image displaying apparatuses has been enabled; measuring a luminance characteristic of the second projection-type image displaying apparatus based on a photographed image obtained by photographing the overlap region; and setting a dimming correction characteristic for the overlap region by the first projection-type image displaying apparatus, based on the measured luminance characteristic.
US10218929B2 Imaging device
An imaging device including a pixel which includes a photoelectric converter having a first electrode, a second electrode, and a photoelectric conversion layer between the first electrode and the second electrode, the first photoelectric converter generating signal charge; a charge storage region coupled to the first electrode, the charge storage region accumulating the signal charge; and a transistor which outputs a signal according to the signal charge accumulated in the charge storage region. The imaging device further including first voltage supply circuitry for supplying a first voltage that is positive and a second voltage that is less than the first voltage, the first voltage supply circuitry supplies the first voltage to the second electrode in a first period when the charge storage region accumulates the signal charge, and the first voltage supply circuitry supplies the second voltage to the second electrode in a second period different from the first period.
US10218920B2 Image processing apparatus and control method for generating an image by viewpoint information
An image processing apparatus includes: an acquisition unit configured to acquire viewpoint information indicating a viewpoint; a generation unit configured to generate a determined-viewpoint image based on a plurality of captured images captured from a plurality of directions and the viewpoint information acquired by the acquisition unit, wherein the generation unit performs an inclination correction process for correcting an inclination, according to the viewpoint information, of the determined-viewpoint image; and an output unit configured to output the determined-viewpoint image generated by the generation unit.
US10218919B2 Image pickup system, image processing method, and recording medium
An image pickup system includes an image pickup section configured to pick up an optical image formed by an interchangeable lens and output picked-up image data having a predetermined sampling frequency, a super-resolution synthesizing section and a resizing section configured to generate image data having higher resolution from picked-up image data corresponding to a partial region in a screen, and a control section configured to determine, on the basis of an MTF characteristic value corresponding to the partial region among a plurality of MTF characteristic values and the predetermined sampling frequency, an upper limit of the resolution of the generated image data.
US10218917B2 Method and apparatus to create an EOTF function for a universal code mapping for an HDR image, method and process to use these images
To enable better encoding of the currently starting to appear high dynamic range images for use in full high dynamic range technical systems (containing an HDR display, and e.g. in an HDR grading application), we invented a method of constructing a code allocation function for allocating pixel colors having pixel luminances to codes encoding such pixel luminances, in which the step of determining the code allocation function to be applied to at least one color coordinate of the pixel to obtain a code value, comprises constructing that function out of at least two partial functions, and similar methods at a receiving side, and apparatuses, and signals for communicating between the two sites.
US10218914B2 Information communication apparatus, method and recording medium using switchable normal mode and visible light communication mode
An apparatus is provided that includes a display, a processor, and a recording medium having a program that causes the processor to execute operations, including obtaining a first image by image capture with a first exposure time by starting exposure for a plurality of exposure lines in an image sensor. The operations also include obtaining a second image, including a plurality of bright lines, by capturing a subject changing in luminance by the image sensor with a second exposure time by starting exposure for the plurality of exposure lines in the image sensor. The operations further include obtaining information by demodulating data specified by a pattern of the plurality of bright lines included in the obtained second image, and displaying a first image on the display during a period of obtaining of the second image using the image sensor.
US10218911B2 Mobile device, operating method of mobile device, and non-transitory computer readable storage medium
An operating method of a mobile device includes capturing a preview image; displaying the preview image; detecting a photograph in the preview image; in response to the photograph being detected in the preview image, searching a video file corresponding to the photograph in a database; and in response to a video file corresponding to the photograph being searched, playing a video of the searched video file over at least a part of the displayed preview image.
US10218910B2 Continuous image capturing based on detection of a specific state
An apparatus includes: an element that receives subject light from a subject to generate image data; a section that generates a recording image to be recorded on a recording medium from the image data when a first mode is set; a section that generates a second display image, which allows display of a live-view image, from the image data when a second mode is set, and that generates a first display image, which allows display of an image identical to the recording image, from the image data when the first mode is set; a section that sequentially displays the first display image or the second display image; a section that detects a specific state of the apparatus that obstructs recording of an imaging object onto the recording image; and a section that controls switching between the first mode and the second mode on the basis of the detection results.
US10218907B2 Image processing apparatus and control method detection and correction of angular movement due to shaking
An imaging device includes an angular velocity sensor for detecting an angular velocity of shake and a motion vector detection unit for detecting a motion vector of an object from a plurality of images successively imaged by an imaging element. A frame rate change unit changes a value of a frame rate related to an image used to detect the motion vector of the object according to the angular velocity of shake of the imaging device. The object angular velocity calculation unit calculates an angular velocity of an object with respect to the imaging device based on the angular velocity of shake of the imaging device and the motion vector of the object. A panning controller performs control to reduce a difference between the angular velocity of the object and the angular velocity of shake of the imaging device using drive control of a shift lens group.
US10218904B2 Wide field of view camera for integration with a mobile device
Disclosed herein are various embodiments of an imaging device having a wide field of view configured to connect to another device. According to one embodiment, the wide field of view camera can include an array of cameras for recording a wide view (e.g., 360° view) of the surrounding environment and generate a 360° image of the surrounding environment. The wide field of view camera can be configured to connect and/or attach to another device, including a mobile device. Embodiments include a wired or wireless connection mechanism to facilitate communication between the wide field of view camera and another device. The connection mechanism may enable transmission of data associated with the wide field of view camera to another device. Embodiments include an attachment mechanism to fasten the wide field of view camera to another device.
US10218902B2 Apparatus and method for setting camera
A method for setting a camera in an electronic device including at least one photographing module is provided. The method includes detecting environment information through a sensor or a microphone, and changing setting information of at least one photographing module according to the detected environment information.
US10218900B2 Document reorientation processing
Video frames of a document are captured. A current orientation mode of a device having a camera is determined based on the video frames. An optimal orientation mode for capturing a document image is determined. Guided instructions assist in placing the device in the optimal orientation mode and when the document is centered in a lens of the camera, the document image is taken by the camera.
US10218894B2 Image capturing apparatus, image capturing method, and storage medium
There is provided an image capturing apparatus. An image capturing unit acquires a signal in a first acquisition mode or a second acquisition mode for each pixel of an image sensor. In the first acquisition mode, an image signal obtained by adding focus detection signals of a plurality of photoelectric conversion units of the pixel is acquired. In the second acquisition mode, the focus detection signals are acquired in addition to the image signal. The image capturing alternately captures a recording image and a focus detection image having a smaller number of pixels than the recording image, applies all pixels to the first acquisition mode when capturing the recording image, and applies at least a part of the pixels to the second acquisition mode when capturing the focus detection image.
US10218889B2 Systems and methods for transmitting and receiving array camera image data
Systems and methods for transmitting and receiving image data captured by an imager array including a plurality of focal planes are described. One embodiment of the invention includes capturing image data using a plurality of active focal planes in a camera module, where an image is formed on each active focal plane by a separate lens stack, generating lines of image data by interleaving the image data captured by the plurality of active focal planes, and transmitting the lines of image data and the additional data.
US10218888B2 Apparatus and method for providing a wireless, portable, and/or handheld, device with safety features
An apparatus, including a case; cameras; microphones; a speaker; a processor; a display; a touchscreen keyboard; a global positioning system; and a collision avoidance sensor. The processor detects a texting, e-mail, game or gaming, or speakerphone, operational mode and activates the camera to display a view in front of, or an anticipated travel path of movement of the apparatus. The global positioning system determines a position or location of the apparatus. The processor determines whether or not the apparatus is located outside of a safe area of travel. If the apparatus is outside of the safe area of travel, the processor activates a camera to record a picture or video at the location of the apparatus, and generates a notification message containing the picture or video, or a link thereto. The apparatus transmits the notification message to a communication device associated with an authorized individual or law enforcement personnel.
US10218884B2 Infrared video display eyewear
A wearable display apparatus for viewing video images of scenes and/or objects illuminated with infrared light, the display apparatus including a transparent display that is positioned in a user's field of vision when the display apparatus is worn, a stereoscopic video camera device including at least two cameras that each capture reflected infrared light images of a surrounding environment and a projection system that receives the infrared light images from the stereoscopic camera device, and simultaneously projects (i) a first infrared-illuminated video image in real-time onto a left eye viewport portion of the transparent display that overlaps a user's left eye field of vision and (ii) a second infrared-illuminated video image in real-time onto a right eye viewport portion of the transparent display that overlaps a user's right eye field of vision.
US10218879B2 Print data generator, printer, method, and computer-readable medium for generating print data in the HSV color space reducing colorants used
A print data generator includes a storage storing processor-executable instructions causing a processor to perform a process to generate print data from original full-color data. The process includes when a hue value of a pixel is within a specific hue range for an emphasis color, setting a density value of a reference color of the pixel based on a value value of the pixel, and setting a density of the emphasis color of the pixel based on a saturation value of the pixel and a difference value between the hue value of the pixel and a hue value of the emphasis color, and when the hue value of the pixel is out of the specific hue range, setting the density value of the reference color based on a luminance value of the pixel derived from RGB data, and setting the density value of the emphasis color to zero.
US10218877B2 Image processing apparatus, and image processing method
An image processing apparatus includes an image acquiring portion, a pair generating portion, first through third determination portions, and an image combining portion. The image acquiring portion acquires an image for each page of a booklet. The pair generating portion arranges the images in order of the pages of the booklet, and generates pairs from the arranged images, each pair being a pair of adjacent pages in a spread state of the booklet. The first determination portion determines whether a drawn image is present in a band-like region including a boundary between two images in each of the pairs. The second determination portion determines whether there is drawing continuity between the two images. The third determination portion determines whether the two images have to be combined, on the basis of determination results of the first and second determination portions. If so, the image combining portion combines the two images.
US10218875B2 Communication device capable of performing wireless communication according to NFC standard
A communication device may receive a first specific signal from a terminal device via an NFC interface, determine whether the first specific signal includes install information, change an operation mode of the NFC interface from Reader mode to CE mode in a case where it is determined that the first specific signal does not include the install information, change the operation mode of the NFC interface from Reader mode to Writer mode in a case where it is determined that the first specific signal includes the install information, supply first identification information to the NFC interface in a case where the NFC interface operates in CE mode, and supply specific information different from the first identification information to the NFC interface in a case where the NFC interface operates in Writer mode.
US10218874B2 Information processing system, information processing apparatus, information processing method, and information processing program
An information processing system includes a first information processing device and a second information processing device that operates based on a request received from the first information processing device. The first information processing device includes a processor configured to implement a storage unit that stores a portion of information stored in the second information processing device, and a first communication control unit that transmits a job execution request to the second information processing device based on the stored information. When a communication connection between the first and second information processing devices is not established, the transmission of the job execution request is controlled to transmit the job execution request based on the portion of the information after the communication connection is established. The second information processing device executes a predetermined job based on the job execution request received from the first information processing device.
US10218872B2 Document reading device capable of document reading by both methods of fixed document reading and conveyed document reading which performs black reference correction and image forming apparatus provided with same
A document reading device (20) includes: a document conveyance section (6) and a document reading device (5). A conveyed document reading region (161b) has: a document discharge guide (51) arranged downstream of an image reading position (163a) in a document conveyance direction; and a transparent reading sheet (52) provided along a surface of the contact glass (161) and a surface of the document discharge guide (51), the document conveyance section (6) has a reading guide (62) forming a document conveyance path oppositely to the conveyed document reading region (161b), and the reading guide (62) has, on part of a surface opposing the conveyed document reading region (161b), a black reference member (620) optically read by an image reading section (163) for the purpose of correcting black reference data of an image of the document conveyed by the document conveyance section (6) and read by the document reading device (5).
US10218869B2 Non-transitory computer-readable medium and portable device
A non-transitory computer-readable medium having a computer program stored thereon and readable by a computer of a portable device, the computer program, when executed by the computer, causes the portable device to perform: receiving a user operation of designating one of a plurality of image processing apparatuses as a designated apparatus; obtaining designated apparatus information that includes a set of an operation ID and a program ID; displaying, on a display, a first screen that includes a first activation object corresponding to the target program; and in response to receiving a user operation of designating the first activation object, activating the target program.
US10218864B2 Image forming device and image forming system
Provided is an image forming device in which a wrapped body that is a paper bundle wrapped in wrapping paper is set into a paper housing, the wrapping paper is subsequently removed and the paper bundle is exposed, and paper is conveyed by one sheet in image forming, the image forming device including: a reader that reads an image on the wrapping paper; and a hardware processor that: compares the image on the wrapping paper, the image being read by the reader, and an image on each of various kinds of wrapping paper, the image being stored in a storage; reads, from the storage, paper setting associated to wrapping paper corresponding to the image on the wrapping paper, the image being read by the reader; and sets a conveyance condition and a process condition based on the paper setting.
US10218862B2 Information processing terminal, image forming apparatus, information processing method, and recording medium for setting a home screen
An information processing terminal functions as an operator of an image forming apparatus. The information processing terminal includes a display device for displaying a screen; a generator for generating a system home screen; a generator for generating an extended function screen; a display screen setter for setting the screen to be displayed on the operator according to an operation performed with respect to a predetermined icon included in the screen displayed on the display device, wherein the system home screen is set as an initial value; a switcher for switching the set screen; a determiner for determining the set screen according to the operation; and a display controller for displaying, on the display device, the extended function screen together with an icon for displaying the system home screen, upon determining that the extended function screen is set by the display screen setter.
US10218857B2 Metering and metering display on computer for wireless access point
A process of operating a wireless device and a wireless device operative for obtaining at least one of data usage or an amount of data usage available by a wireless access point with a processor. The process and device further connecting to the wireless access point and transferring data to and from the wireless access point with a transceiver and displaying on a display the at least one of data usage or an amount of data usage available by the wireless access point.
US10218853B2 Wireless conference call telephone
A wireless conference call telephone system uses body-worn wired or wireless audio endpoints comprising microphones and, optionally, speakers. These audio-endpoints, which include headsets, pendants, and clip-on microphones to name a few, are used to capture the user's voice and the resulting data may be used to remove echo and environmental acoustic noise. Each audio-endpoint transmits its audio to the telephony gateway, where noise and echo suppression can take place if not already performed on the audio-endpoint, and where each audio-endpoint's output can be labeled, integrated with the output of other audio-endpoints, and transmitted over one or more telephony channels of a telephone network. The noise and echo suppression can also be done on the audio-endpoint. The labeling of each user's output can be used by the outside caller's phone to spatially locate each user in space, increasing intelligibility.
US10218846B2 Call processing method and device
The present disclosure relates to a call processing method and device. The method includes: obtaining usage information of a terminal device when receiving a call request from a strange call; determining whether the usage information comprises usage information associated with the strange call; and not intercepting the strange call if the usage information comprises the usage information associated with the strange call.
US10218833B2 Mobile application for controlling outdoor grill
Embodiments are directed to controlling an electronically-controlled appliance using a software application and providing a user interface for controlling an electronically-controlled appliance. In one scenario, a computer system receives an indication from a remote computing system indicating that an electronically-controlled appliance is communicably connected to the remote computing system. The computer system provides a notification in the software application indicating that the electronically-controlled appliance is available to receive instructions, and receives a user input at the software application indicating that certain functions are to be performed by the electronically-controlled appliance. The computer system further generates instructions configured to control the electronically-controlled appliance based on the functions specified in the received user input, and sends the generated instructions to the electronically-controlled appliance to perform the specified functions. These functions are then interpreted and carried out on the electronically-controlled appliance via the hardware controller.
US10218829B2 Portable electronic device
A portable electronic device includes a casing, a flexible display panel, a cushion, an inflatable pad, a gas transportation device and a sensing unit. The flexible display panel is embedded in the casing and including a movable region. The cushion is attached on a bottom surface of the movable region. The inflatable pad is attached on a bottom surface of the flexible display panel and covers the cushion. The gas transportation device is in communication with the inflatable pad and electrically connected with the sensing unit. When the sensing unit is touched by a user, a first driving signal is transmitted from the sensing unit to the gas transportation device, in response to which the gas transportation device inflates the inflatable pad again to raise the cushion, so that the movable region corresponding to the cushion is raised.
US10218827B2 Housing features of an electronic device
An enclosure and a method for forming an enclosure are disclosed. The enclosure may be formed from metal, such as aluminum, and further include a non-metal portion allowing for transmission and receipt of electromagnetic waves. The non-metal portion may be interlocked to the enclosure and in particular, to a region within the enclosure including a first material having a relatively high strength and stiffness compared to the non-metal portion. Interlocking means may include forming dovetail cuts into the enclosure to receive the non-metal portion, a hole or cavity drilled into the enclosure which includes internal threads, and a rod inserted into the first material to provide a tension to the non-metal portion. Methods of assembling internal components using anodization are also disclosed.
US10218825B2 Orchestrating resources in a multilayer computing environment by sending an orchestration message between layers
Software that generates a message containing operations for multiple layers in a multi-layer environment, by performing the following operations: (i) receiving an operation to perform across a multilayer computing environment; (ii) generating a message for performing the operation across the multilayer computing environment, wherein the message includes a plurality of layer portions that include sub-operation(s) of the operation, wherein each layer portion corresponds to a respective layer in the multilayer computing environment; and (iii) orchestrating performance of the operation by sending the message between layers in the multilayer computing environment according to a sequence for performing sub-operation(s) indicated in the message, wherein when the message is located at a respective layer, the layer performs a respective set of sub-operation(s) according to the respectively corresponding layer portion for the layer in the message.
US10218814B2 Optimized image delivery over limited bandwidth communication channels
Large-scale images are retrieved over network communications channels for display on a client device by selecting an update image parcel relative to an operator controlled image viewpoint to display via the client device. A request is prepared for the update image parcel and associated with a request queue for subsequent issuance over a communications channel. The update image parcel is received from the communications channel and displayed as a discrete portion of the predetermined image. The update image parcel optimally has a fixed pixel array size, is received in a single and or plurality of network data packets, and were the fixed pixel array may be constrained to a resolution less than or equal to the resolution of the client device display.
US10218812B2 Manner of display in a mobile application
In various embodiments, the systems, methods and computer-readable mediums (collectively “system”) discussed herein may be configured to enable a single mobile application to receive dynamically customized content. The criteria and/or preferences that influence the dynamically customized content may be defined by a user and/or may be automatically detected by a user device. The criteria and/or preferences may be associated with the mobile application and/or a mobile device operating the mobile application. The criteria and/or preferences may be provided as part of a request for content to a content distribution system.
US10218810B2 Dynamic content caching system
A proxy server routes a request for online content from a user device to an origin server, which returns the requested online content to the proxy server. The proxy server passes the online content to the user device. In order to service subsequent user device requests with cached content, the proxy server, having received the initially requested online content from the origin server, parses out dynamic content specific to the user from static content common to many users within the web page content according to tags identifying the dynamic content. The proxy server stores the dynamic content within a personalized cache and also stores an association between the user/user device for the dynamic content stored. In this way, a subsequent request from the user device for the same online content may be serviced from cache, and include dynamic content specific to that user/user device by way of the personalized cache.
US10218805B2 Method and apparatus for causing delay in processing requests for internet resources received from client devices
A method and apparatus for delaying responses to requests in a server are described. Upon receipt, from a client device, of a first request for a resource at a first location, a response that includes a redirection instruction to a second location is transmitted, where the response includes a first number of redirects that the client device is to complete prior to the first request being fulfilled. Upon receipt of a following request including a number of redirects, determining whether the number of redirects has been performed. When the number of redirects has not been performed the transmission of the redirection instruction is repeated with a number of redirects smaller than the first number of redirects until the receipt of a request indicating that the number of redirects has been performed. When the number of redirects has been performed the request is fulfilled.
US10218803B2 Integration of cloud services for consumption in cloud applications
An integration service layer is provided for interaction between applications and platform services. The platform services may be cloud services deployed on one or more cloud platforms. The integration service layer provides a set of instantiated interfaces correspondingly defined for the cloud service. The integration service layer may provide one or more interfaces for a cloud service. An application is created to run on a cloud platform. The application is implemented to consume one or more platform services from the provided platform services. The application is connected with the ISL to consume resources provided by one or more platform services from the platform services that are associated with the ISL. Connections between objects from a user interface of the created application and corresponding interfaces defined at the ISL for the one or more platform services included in the application are defined.
US10218802B2 Tiered notification framework
A computer-implemented technique is described herein for presenting notifications on a user interface presentation of a recipient computing device. The technique is considered tiered because it distinguishes between first-type (people-centric) notifications and second-type notifications, and because it processes and presents first-type notifications in a privileged manner compared to the second-type notifications. For instance, the technique presents content associated with each first-type notification in an allocated window that appears in positional association with a person indicator, where that person indicator identifies the person who sent the first-type notification; the technique presents each second-type notification in a different manner. In some implementations, an application developer who designs a custom first-type notification is given authority to draw within the allocated window that is used to present the custom first-type notification in a manner specified by the application developer.
US10218801B2 Information device identification system, information device identification method, information device, non-transitory computer readable recording medium for use in a computer which can associate identical users with each other
An information device identification system includes: a remote host holding unit that holds a specific remote host name; a receiving unit that receives an inquiry about an internet protocol (IP) address corresponding to one remote host name; a determining unit that determines whether or not the one remote host name received by the receiving unit matches the specific remote host name held by the remote host holding unit; an IP address responding unit that responds by transmitting, to a device, an IP address of an information device instead of the IP address indicating one remote host when the determining unit determines that the one remote host name matches the specific remote host name; and a device ID responding unit that responds by transmitting, to the device, data including information for instructing the device to connect to a predetermined redirect destination and specific information for uniquely identifying the information device.
US10218799B2 Optimizing client distance to network nodes
Methods, computer program products and computer systems for optimizing client distances to nodes in a distributed computing environment are provided. A first registration request is received by a first node from a first client. The first node determines if a second client associated with the first node is suitable for an exchange to a second node. The first node sends a migration request to the second client responsive to determining the second client is suitable. The first node accepts the first registration request responsive to the second client connecting to the second node via a second registration request.
US10218792B2 Method, apparatus, computer program and computer program product for transmitting data for use in a vehicle
A method is provided for transmitting data for use in a vehicle. The method involves a user request for the transmission and reproduction of desired data from a first source by way of a mobile radio link being taken as a basis for ascertaining whether the desired data are also provided by a second source independently of the mobile radio link. The desired data are received in the vehicle from the second source for reproduction for a user if the desired data (DAT) are also provided by the second source independently of the mobile radio link.
US10218789B2 Erasure correcting coding using temporary erasure data
In an illustrative example, a data storage device includes a non-volatile memory and a controller coupled to the non-volatile memory. The controller includes an erasure correcting code engine configured to generate first erasure recovery data and temporary erasure recovery data in a volatile memory at least partially based on first data to be written to the non-volatile memory. The first erasure recovery data is configured to enable a first type of data recovery of the first data, and the temporary erasure recovery data is configured to enable a second type of data recovery of the first data. The controller is further configured to store the first erasure recovery data and the temporary erasure recovery data in the volatile memory and, after verifying that the first data is stored in the non-volatile memory, to discard or modify the temporary erasure recovery data.
US10218784B2 Identifying groups for a social networking system user based on group characteristics and likelihood of user interaction
A social networking system selects a set of groups for presentation to a user of the social networking system. To select groups, the social networking system determining scores for various groups representing a likelihood of the user interacting with the groups. When determining a score for a group, the social networking system accounts for a likelihood of the user providing content to the group as well as the user accessing or viewing content associated with the group. Based on the scores, one or more groups are selected and presented to the user. Additionally, the social networking system may apply one or more diversity rules so that the selected groups have a variety of characteristics.
US10218783B2 Media sharing techniques
Improved techniques for media item sharing are described. In one embodiment, for example, an apparatus may comprise a classification module to assign a media item to a content category, a correlation module to determine context information for the media item, and an estimation module to determine a set of relevance values for a set of contacts based at least in part on a sharing history and to generate a set of suggested recipients for the media item based at least in part on the set of relevance values and the set of contacts. Other embodiments are described and claimed.
US10218781B2 Controlling latency in multi-layer fog networks
In one embodiment, an intermediate node, of a multi-stage process path through a computer network, receives a workload message with an associated latency budget to complete the multi-stage process at a final stage device. In response, the intermediate node determines a current latency from an initial stage device for the workload message to the receiving of the workload message, and also determines a remaining portion of the latency budget based on the current latency. In response to the remaining portion of the latency budget being less than expected at the intermediate node, the intermediate node may perform one or more latency-reducing actions, and then transmits the workload message toward the final stage device.
US10218772B2 Efficient file routing system
A method or system for efficiently routing a file located on two or more sources to one or more file recipients connected by a plurality of paths in one or more networks. For each file recipient, one or more predetermined utility functions are evaluated to select the most efficient one of the plurality of paths to use for routing the file to the one or more file recipients, and the file is routed to the one or more file recipient using the selected path. The predetermined utility function may be the estimated operating expense associated with the routing of the file to the one or more file recipients, or the estimated return on investment for improving the routing of said file to the one or more recipients, or is related to an estimated file transfer time to the one or more file recipients.
US10218768B1 Passive outdial support for mobile devices via WAP push of an MVSS URL
A Mobile Voice Self Service (MVSS) system that may include an MVSS mobile device and a client system. The system may be used to provide passive outdial support for a mobile device via WAP Push of an MVSS URL. The MVSS mobile device may have various local applications such as a bootstrap application and an outdial application. The client system may include an application server to deliver an MVSS file to the MVSS mobile device.
US10218767B2 Method, system and browser for executing active object of browser
The present disclosure discloses a method, a system and a browser for executing a browser active object. In the present invention, a proxy object is run in a page process and an active object is run in an independent process, so that a true plug-in is separated from the page process. The present invention further discloses an inter-process script execution method, system and browser. The present invention further discloses a browser active object executing method and system, and a browser.
US10218765B1 Content-independent evaluation of streaming media based on packet transmission performance
In one embodiment, a device in a network assigns packets from a communication transmitted via the network to time windows over a period of time. The device determines a transmission performance metric for each of the packets in a particular time window and calculates, for each of the time windows, local disturbance scores, which are based on the transmission performance metrics for the packet in the time windows. A particular local disturbance score for a particular time window maps the transmission performance metrics for the packets in the time window to a perceived quality metric. The device determines a distortion score for the communication by aggregating the local disturbance scores for the time windows over the period of time.
US10218759B2 Method and apparatus for transceiving data packet for transmitting and receiving multimedia data
A method for transmitting complex multimedia data is provided. The method includes selecting one of a data headers composed of basic transmission units determined according to an amount of multimedia included in the complex multimedia data, generating a basic transmission unit of the complex multimedia data according to the selected data header, packetizing the complex multimedia data in the basic transmission unit; and transmitting the packetized complex multimedia data to a receiver.
US10218756B2 Streamlined delivery of video content
A content delivery server may provide content to a requesting client device using a streamlined HTTP enhancement proxy delivery technique. For example, an HTTP proxy server may receive a request for video content or a fragment of video content from a client device. The request may be associated with a timeout scheduled to occur if no content has been received after a specified amount of time. The server may then transmit a request for the content to a remote server, such as an upstream cache server in the proxy server's CDN. When the proxy server receives a portion of the requested content from the remote server, the proxy server begins transmitting the portion to the client device before the requested content has been completely received and buffered. The client device may then begin receiving data from the proxy server before timeout has occurred.
US10218754B2 Systems and methods for management of digitally emulated shadow resources
Various aspects and embodiments facilitate management of digitally emulated physical resources. Users can access a management system to create pairings between digitally emulated resources and physical resources. The paired resources can be consistently managed through the system, such that any user from any source can access and dynamically reserve physical and digital resources. In further embodiments, the system can create pairings between the digital emulation and physical resources based on merge operations performed on multiple digital emulations of resources, copy and pasting for other digital emulation of resources, and digital altering of existing resources. The system enables efficient management, control, and implements security for digital and physical resources using, for example, a “digital room.” Security rules and enforcement can be specified within the digital rooms based on access rights, content displays, and can be specific to each resource controlled by the digital room.
US10218752B2 Markup language for incorporating social networking system information by an external website
A social networking system contains information describing information about users of the social networking system and about various connections among the users. When a user of the social networking system accesses an external website, the external website may send the user a web page containing markup language with instructions to retrieve information associated with a user from a social networking system. The client device processes the annotations and sends a request for social information related to the user to a social networking system, subject perhaps to privacy settings in the social networking system. The user's browser uses the information obtained from the social networking system in response to the request to render the markup language document for display on the user's computer system. This process allows the external website to use information from the social networking system to enhance the user's experience on the external website.
US10218744B2 User device selection
A method may include receiving, at an application server, a session initiation protocol (SIP) message including a public user identifier (ID) associated a user. The public user ID corresponds to a plurality of user devices. The method also includes determining an applicable order of alerting at least one of the plurality of user devices. The method further includes identifying at least one available user device associated with the user, based on a terminal identifier (ID) associated with each at least one available user device. The method also includes selecting a user device from the at least one available user device based on the applicable order of alerting. A SIP invite message, including a terminal ID for the selected user device, is generated. The method includes sending the SIP invite message to the selected user device based on the applicable order of alerting, and receiving a response to the SIP invite message.
US10218741B2 Immunizing network devices using a malware marker
Provided are systems, methods, and computer program products for a cyber-vaccination technique. In various implementations, the cyber-vaccination technique includes using a network device that is infected by a malware program to determining a marker generated by the malware program. The marker may indicate to the malware program that the network device has been infected by the malware program. Determining the marker can include identifying a placement of the marker on the network device. The technique further includes identifying one or more other network devices that have not previously been infected by the malware program. The technique further includes automatically distributing copies of the marker. When a copy of the marker is received at one of the previously identified, uninfected network devices, the identified network device can place the marker on the identified network device according to the identified placement.
US10218738B2 Secure notification of networked devices
A system, device and method to securely notify a user of a compromise of a device are provided. The system, device and method may include a detection device adapted for determining a compromise of the device communicatively coupled to the first path, a user database including at least information regarding the device and other devices associated with the user, and the secure signal path to at least one of the other devices.
US10218736B2 Cyber vulnerability scan analyses with actionable feedback
Embodiments of the present technology relate to cyber attack vulnerability analyses. In one embodiment, a method includes determining an external infrastructure of an entity, the external infrastructure including one or more cyber assets utilized by the entity, collecting infrastructure information regarding the one or more cyber assets, performing passive cyber security vulnerability testing on the one or more cyber assets using the collected infrastructure information, and assessing cyber security vulnerabilities of the one or more cyber assets. The method may further include calculating an association score for the one or more cyber assets based on the assessed cyber security vulnerabilities, and automatically recommending, based on the association score, computer network changes to reduce the cyber security vulnerabilities.
US10218730B2 Systems and methods of stateless processing in a fault-tolerant microservice environment
A system, method, and non-transitory computer-readable relating to network security are disclosed. In particular, embodiments described generally relate to systems and methods of stateless processing in a fault-tolerant microservice environment. In one example, a method is disclosed, which includes transmitting, by a first microservice, packet data and a context associated therewith; receiving the packet data and the context by a second microservice, the second microservice to: use the context to determine what security processing to perform, perform the security processing over the packet data, and transmit resulting data and the context to a third microservice; and receiving the resulting data and the context by the third microservice, the third microservice to: use the context to determine what security processing to perform, and perform the security processing over the resulting data.
US10218729B2 Specializing unsupervised anomaly detection systems using genetic programming
In one embodiment, a device in a network receives sets of traffic flow features from an unsupervised machine learning-based anomaly detector. The sets of traffic flow features are associated with anomaly scores determined by the anomaly detector. The device ranks the sets of traffic flow features based in part on their anomaly scores. The device applies a genetic programming approach to the ranked sets of traffic flow features to generate new sets of traffic flow features. The genetic programming approach uses a fitness function that is based in part on the rankings of the sets of traffic flow features. The device specializes the anomaly detector to emphasize a particular type of anomaly using the new sets of traffic flow features.
US10218725B2 Device and method for detecting command and control channel
A device for detecting a command and control channel includes: a session log collector for collecting log information of sessions generated between at least one communication device of the first network and at least one communication device of the second network; an analyzer for generating test data for respective sessions based on the log information, and calculating a test data distribution based on test data of the sessions; and a determiner for extracting a test data value corresponding to an abnormal distribution from the test data distribution based on an abnormal distribution determination standard, and estimating sessions relating to the extracted test data value as a command and control channel.
US10218723B2 System and method for fast and scalable functional file correlation
A method, computer program product, and computer system for obtaining, by a computing device, a file, wherein the file includes a plurality of portions. A first hash of a first portion of the plurality of portions may be generated. The first portion may be combined with a second portion of the plurality of portions. A second hash of the first portion with the second portion of the plurality of portions may be generated, wherein the first hash may be indicative of a first level of functional similarity between a function of the file and a function of a second file, wherein the second hash may be indicative of a second level of functional similarity with the function of the file and the function of the second file.
US10218720B2 Dynamic configuration of settings in response to DDoS attack
A system can monitor the server for indications of an attack and adjusts server settings accordingly. In response, the system can increase server tolerance in a systematic way to deal with DDoS by adjusting server settings appropriately. Conversely, when the server is not under attack, the settings can be adjusted to those for standard operations (e.g., adjusted downward), as they are more optimal for normal, non-attack operations.
US10218718B2 Rapid, targeted network threat detection
Rapidly detecting network threats with targeted detectors includes, at a computing device having connectivity to a network, determining features of background network traffic. Features are also extracted from a particular type of network threat. A characteristic of the particular type of network threat that best differentiates the features of the particular type of network threat from the features of the background network traffic is determined. A targeted detector for the particular type of network threat is created based on the characteristic and an action is applied to particular incoming network traffic identified by the targeted detector as being associated with the particular type of network threat.
US10218717B1 System and method for detecting a malicious activity in a computing environment
System and method for detecting a likely threat from a malicious attack is disclosed. Communication between a user computer and a destination computer is monitored by a security appliance. Selective information from the communication is extracted. Selective information is associated to one or more attributes of a security entity. A knowledge graph is generated for a plurality of security entities based on the associated selective information.
US10218715B2 Secured network bridge
An apparatus and method are provided for implementing one or more security services to messages and data being communicated between a first network and a second network. In particular, a network bridge device is provided for applying communications security services to data passing by means of the device from a first network to a second network, the device having a first network interface for linking to the first network, a second network interface for linking to the second network, and a unidirectional link between the first and second network interfaces within the device incorporating a first hardware logic module, configured to apply one or more predetermined data security functions to message data received via the first network interface, and a second hardware logic module, arranged to apply a predetermined scheme for authentication of the source of messages passing through the device.
US10218712B2 Access control using information on devices and access locations
Access control within a network is established by combining multiple factors to prevent unauthorized access to a computer and/or network target system. The factors which may be combined are selected from a combination of three main factors confirmation that the accessing device which is attempting access is by an authorized user; the access request is made by a device that corresponds to an authorized degree of importance; and the accessing device is connected from a network that corresponds to the authorized degree of importance.
US10218711B2 Providing geographic protection to a system
In one embodiment, a method includes determining a location of a system responsive to location information received from at least one of a location sensor and a wireless device of the system, associating the location with a key present in the system to generate an authenticated location of the system, and determining whether the authenticated location is within a geofence boundary indicated in a location portion of a launch control policy (LCP) that provides a geographic-specific policy. Other embodiments are described and claimed.
US10218707B2 Controlling access to computer accounts managed by a computer account server to provide handoff to a nominee computer terminal
A computer account server receives a nominee identity from an account owner associated with owner access credentials. The nominee identity is stored in a data structure of a computer account that is selected based on the owner access credentials. Electronic access to information stored in the data structure is then restricted to access requests from computer terminals that provide the owner access credentials. In response to determining that an account handoff event has become satisfied for the computer account, the computer account server sends a nominee handoff message using the nominee identity retrieved from the data structure. A nominee access request message is received from a nominee computer terminal. In response to validating content of the nominee access request message, the computer account server modifies the restriction of electronic access to grant the nominee computer terminal electronic access to the information stored in the data structure of the computer account.
US10218706B2 System and method of supervisory control
A method of supervisory control is provided according to aspects of the technology. The method includes setting, at a remote device, at least a first usage control parameter for at least a first account associated with access to content on a class of entertainment devices. The method also includes monitoring, at an entertainment device of that class, which account or accounts are active on the entertainment device and obtaining, at the entertainment device, the at least first usage control parameter set for the at least first account. The method further includes restricting usage of content on the entertainment device responsive to the at least first usage control parameter.
US10218703B2 Determining a permission of a first tenant with respect to a second tenant
A first representation is provided of privileges among a plurality of tenants of a system. The tenants have relationships according to a hierarchy that includes multiple hierarchical levels of the tenants, where at least one of the privileges specifies a permission of a first tenant to perform a task with respect to a second tenant. The first representation is independent of a representation of the relationships among the plurality of tenants. In response to a request from the first tenant to perform a task with respect to the second tenant, a system determines, based on the first representation, whether the first tenant is permitted to perform the task with respect to the second tenant.
US10218700B2 Authorizations for computing devices to access a protected resource
Authorization technology queries a user of an authorizing computing device for permission to allow another user of a requesting computing device to have access to a protected resource of the user. A requesting computing device may access a protected resource of the user by requesting authorization information for accessing the protected resource from an authorization manager server. Requesting and authorizing computing devices have respective agents for communicating with an authorization manager server as well as users and applications. An authorization manager server may provide the authorization information (or limited authorization) to the requesting computing device after the authorization manager server queries the user of the authorizing computing device for permission and receives permission from the authorizing computing device (via user input). The authorization information may limit access to the protected resource, such as limiting an amount of time to access and/or limiting an amount to charge an account.
US10218698B2 Using a mobile device number (MDN) service in multifactor authentication
Attributes of a session, between a source device and a verification device, for sending first verification data, such as a password and an account identifier, are determined. The verification device generates user device data based on an identifier, such as a mobile device number (MDN), for a user device associated with the account identifier. An identifier, such as an MDN, associated with the source device and an encryption key associated with the verification device are determined based on session attributes. Second verification data is generated based on the identifier associated with the source device. The second verification data is encrypted using the encryption key and forwarded to the verification device. The verification device decrypts the second verification data and compares the identifier for the user device to the identifier for the source device to determine whether the first verification data was sent from the user device.
US10218694B2 Securely orchestrating events initiated at remote servers using a certificate server
Aspects of the disclosure relate to securely orchestrating events initiated at remote servers using a certificate server. A computing platform may receive, from a first server computer system, a first event request comprising first entity information and first event details information, and the computing platform may identify a first entity associated with the first event request. The, the computing platform may generate and send a first entity verification request to a certificate server, and the computing platform may receive, from the certificate server, first certificate information associated with the first entity. Based on validating the first certificate information associated with the first entity, the computing platform may generate and send, to a second server computer system, one or more event orchestration commands directing the second server computer system to execute one or more actions associated with the first event request.
US10218692B2 Management of digital certificates
Various embodiments are directed to a computer-implemented method for displaying a map of certificate relationships. A method can include retrieving certificate information for two or more servers and storing the retrieved certificate information in a memory. In addition, the method can include receiving a command to generate a map of certificate relationships. The command includes a command scope that identifies at least a first server of the two or more servers. Further, the method can include generating the map from the retrieved certificate information and rendering the map on a display device. The map includes the first server and a device having a certificate relationship with the first server.
US10218689B2 Extending shrouding capability of hosting system
Technical solutions are described for extending shrouding capability of a virtual server hosting system. An example method includes receiving a request to deploy a shrouded virtual server using a predetermined set of hardware components, and using a shrouded mode. The method also includes adding a guest server to the hosting system, the guest server including the predetermined set of hardware components. The method also includes deploying a preconfigured hypervisor on the guest server, where the preconfigured hypervisor is deployed in an immutable mode that disables changes to security settings of the preconfigured hypervisor. The method also includes deploying, by the preconfigured hypervisor, a preconfigured boot image as an instance of the virtual server on the preconfigured hypervisor. The method also includes sending an identifier of the virtual server for receipt by the client device.
US10218684B2 Secure data transmission
A first device transmits data as encrypted portions that are communicated to one or more second devices as one or more of: a graphical animation rendered to a screen on a display of the first device and audio played out a speaker of the first device.
US10218682B1 Secure network protocol cryptographic processing
The present document describes systems and methods that utilize a cryptographic service for establishing a cryptographically protected communication session, such as a TLS connection, between a client computer system and a TLS termination point. The cryptographic service retains cryptographic material associated with a server that is represented by the TLS termination point. The TLS termination point uses the cryptographic service to perform cryptographic operations associated with establishing and maintaining the cryptographically protected communication session. The cryptographic service may be provided by the server itself, a cryptographic server, or a cryptographic accelerator such as an HSM. In some embodiments, the cryptographic service tokenizes unencrypted data to be provided to the TLS termination point. If a cryptographic accelerator is used, the cryptographic accelerator may include facilities to accelerate asymmetric cryptographic operations as well as symmetric cryptographic operations.
US10218681B2 Home network controlling apparatus and method to obtain encrypted control information
A network control apparatus and method is provided. The method includes operations of informing a server of capability information including an encryption/decryption method, wherein the server provides the network control apparatus with control information used to control a network device using a general-purpose control web application, transmitting to the server a control information requesting message that requests the control information, receiving from the server the control information which has been encrypted using the encryption/decryption method, decrypting the encrypted control information according to the encryption/decryption method, and transmitting a control command for controlling the network device according to the decrypted control information.
US10218680B2 Mechanism for efficient private bulk messaging
Secure bulk messaging mechanism in which, roughly described, a sender first encrypts a message once. The message can be decrypted with a message decryption key. These can be symmetric or asymmetric keys. For each recipient, the sender then encrypts the message decryption key with the recipient's public key. The sender then sends the encrypted message and the encrypted message decryption keys to a store-and-forward server. Subsequently, one or more recipients connect to the server and retrieve the encrypted message and the message encryption key that has been encrypted with the recipient's public key. Alternatively, the server can forward these items to each individual recipient. The recipient then decrypts the encrypted message decryption key with the recipient's private key, resulting in an un-encrypted message decryption key. The recipient then decrypts the message using the un-encrypted message decryption key.
US10218679B1 Secure single sign on and conditional access for client applications
Methods and systems for implementing single sign on (SSO) and/or conditional access for client applications are described herein. The system may comprise an identity provider gateway, and the system may authenticate a user of the client application using the identity provider gateway. In some aspects, a secure communication tunnel may be established between the client application and the identity provider gateway, and the secure communication tunnel may use, for example, a client certificate. The identity provider gateway may grant or deny the client application access to one or more resources based on information associated with the client certificate.
US10218678B2 Method and apparatus for accessing third-party resources
A method, system, and apparatus for providing a client access to third-party resources by utilizing third-party access tokens via a network gateway. The method can prevent the third-party access tokens from being exposed directly to the client environment. The client receives a gateway security credential, which encapsulates the third-party access token in an encrypted form. The client provides the gateway access token to the network gateway where the third-party access token is decrypted and then used to access the third-party resource. Client requests to the network gateway are executed using a custom API. The gateway relays the client requests to the appropriate third-party resources using the third-party-specific API with the decrypted third-party access token. Gateway access tokens are short-lived and can be renewed according to the client-environment life cycle.
US10218675B2 Legacy device securitization using bump-in-the-wire security devices within a microgrid system
Devices, methods, systems, and computer-readable media for legacy device securitization within a microgrid system are described herein. One or more embodiments include a system having a microgrid network with at least one remote network connection to a non-local network device and the network having at least one local legacy device in communication with the non-local network device and a bump-in-the-wire (BITW) security device between the local legacy device and the at least one remote connection.
US10218671B2 Dynamic media access control address allocation and leasing for wireless network
Presented herein are systems and methods of dynamically allocating and leasing MAC addresses in a wireless network that ensures a unique MAC address is assigned to a computing device. The exemplified systems and methods ensure that the dynamically assigned MAC address is unique for a given network and that the MAC address is assigned to a give client wireless device prior to the client being granted access to the network and prior to a communication session being established.
US10218667B2 Social network communities
Disclosed are methods, apparatus, systems, and computer-readable storage media for providing access to communities of users in an online social network. In some implementations, a server is configured to identify a user identity (ID), received from a computing device, as one of a plurality of first user identities (IDs) of first users belonging to a first community maintained on behalf of a first organization by a social networking system. The computing device can then be provided access to the first community. When a request to access a second community maintained on behalf of a second organization is received from the computing device, the user ID can be identified as one of a plurality of second user IDs of second users belonging to the second community. The computing device can then be provided access to the second community.
US10218666B1 Integrating offsite activities with online data records
A method of collecting and indexing data by appending a tracking identifier (generated directly or indirectly by a tracking company) into a data file, wherein the data file is acquired from a computer system operated by a user. The data file could be data collected by a form made available through a website hosted by a web server. Additional data collected from other sources (stored as a record), such as a computer system operated by an agent, would be associated with the collected data file by an inquiry management company. The collected data and associated records are forwarded to a computer system that tracks online users and visitors. The process can marry computer collected data (other than the data file) about website activity with other activities that are independent of the website.
US10218662B2 Method and a system for email address validation
A device identifies an email address of a recipient listed in an email. The device determines whether the email address is erroneous and based on determining that the email address is erroneous, the device displays a recommended email address to a user.
US10218659B1 Persistent connections for email web applications
A token for a webclient in communication with an HTTP server to access an email system is stored at a database by the HTTP server. If the HTTP server is unexpectedly unavailable, a backup HTTP server that next interacts with the webclient can locate the token for the webclient using identifying information for the webclient to locate a record in the database containing the token. The backup HTTP server can then provide seamless access to the email system for the webclient despite the loss of connectivity to the initial HTTP server.
US10218656B2 Smart message delivery based on transaction processing status
A method for message delivery to a transaction processor is presented. The method may include receiving a message having transaction information. The method may also include determining if the received message is prohibited from delivery based on comparing the transaction information with a blacklist, wherein the blacklist is used to block messages. In response to determining that received message is prohibited from delivery, the method may then include refusing message delivery or delaying message delivery. In response to determining that the received message is not prohibited from delivery, the method may further include enqueuing the message in a request queue. The method may also include receiving a reply message with a transaction status update from the transaction processor. The method may then include updating the blacklist based on the received reply message with the transaction status update.
US10218651B2 Virtual assistance for chat agents
Embodiments of the present invention employ a virtual assistant for use by a live agent during a session while traditional virtual assistant applications interact directly with the customer contact. According to one embodiment, the virtual assistant content can be displayed to the live agent alongside the chat window, for example in a side-by-side layout. Buttons and/or shortcut keys can also be provided which would allow the agent to “promote” the virtual assistant response to the chat session. In such cases, the virtual assistant answer or response can be moved to the chat panel and be sent to the customer. This approach can leverage the virtual assistant to make live agents more efficient by providing answers to questions that keep the live agent from having to look them up or even type the answer at all. This approach can also provide a more consistent service experience between customers and between sessions.
US10218650B2 Information processing system
An information processing system includes information terminals; an information processing apparatus; and an information storage apparatus connected to a network different from a network to which the information processing apparatus is connected. Further, the information processing apparatus includes a receiving unit receiving information from one of the information terminals, and a transmission unit transmitting the information to other information terminals and the information storage apparatus. Each of the information terminals includes a transmission unit transmitting the information to the information processing apparatus, and a receiving unit receiving information from the information processing apparatus. The information storage apparatus includes a storage unit storing the information from the information processing apparatus.
US10218649B2 Method and system for providing multi-user messenger service
A messenger service method is provided that includes determining whether a user has created information for activating a search in a communication session. The communication session may be between the user and at least one other participant. The method includes transmitting the created information and a message input by the user. The method includes receiving a search result. The received search result may be generated based on the message and the information.
US10218647B2 Mechanism to support multiple-writer/multiple-reader concurrency for software flow/packet classification on general purpose multi-core systems
Methods and apparatus to support multiple-writer/multiple-reader concurrency for software flow/packet classification on general purpose multi-core systems. A flow table with rows mapped to respective hash buckets with multiple entry slots is implemented in memory of a host platform with multiple cores, with each bucket being associated with a version counter. Multiple writer and reader threads are run on the cores, with writers providing updates to the flow table data. In connection with inserting new key data, a determination is made to which buckets will be changed, and access rights to those buckets are acquired prior to making any changes. For example, under a flow table employing cuckoo hashing, access rights are acquired to buckets along a full cuckoo path. Once the access rights are obtained, a writer is enabled to update data in the applicable buckets to effect entry of the new key data, while other writer threads are prevented from changing any of these buckets, but may concurrently insert or modify key data in other buckets.
US10218643B2 Apparatus and method for scalable and flexible access control list lookup in a network switch
A network switch to support scalable and flexible access control list (ACL) lookup comprises a packet processing pipeline including a plurality of packet processing units each configured to generate a master key for an ACL lookup request to a memory pool and process a received packet based on ACL search results. The network switch further includes said memory pool including a plurality of memory groups each configured to maintain a plurality of ACL tables to be searched in one or more SRAM memory tiles of the memory group, accept and format the master key generated by the packet processing unit into a compact key based on a bitmap per user configuration, hash the formatted compact key and search the ACL tables stored in the one or more SRAM memory tiles using the formatted compact key, process and provide the ACL search results to the requesting packet processing unit.
US10218642B2 Switch arbitration based on distinct-flow counts
A network switch includes circuitry and multiple ports, including multiple input ports and at least one output port, configured to connect to a communication network. The circuitry includes multiple distinct-flow counters, which are each associated with a respective input port and with the output port, and which are configured to estimate respective distinct-flow counts of distinct data flows received via the respective input ports and destined to the output port. The circuitry is configured to store packets that are destined to the output port and were received via the multiple input ports in multiple queues, to determine a transmission schedule for the packets stored in the queues, based on the estimated distinct-flow counts, and to transmit the packets via the output port in accordance with the determined transmission schedule.
US10218640B2 Method and apparatus for controlling data transmission
A method includes determining at least one first station; and sending first indication information to the first station, where the first indication information is used for indicating at least one first backoff duration, so that the first station performs a data transmission operation by using the first backoff duration, and the first backoff duration used by the first station to perform a data transmission operation is less than a second backoff duration used by a second station to perform a data transmission operation, or the first backoff duration used by the first station to perform a data transmission operation is greater than the second backoff duration used by the second station to perform a data transmission operation. Shortening backoff durations of some stations can ensure that these stations send data first, and extending backoff durations of some stations can ensure that the other stations send data first.
US10218639B2 Computing long-term schedules for data transfers over a wide area network
Various technologies pertaining to scheduling network traffic in a network are described. A request to transfer data from a first computing device to a second computing device includes data that identifies a volume of the data to be transferred and a deadline, where the data is to be transferred prior to the deadline. A long-term schedule is computed based upon the request, wherein the long-term schedule defines flow of traffic through the network over a relatively long time horizon. A short-term schedule is computed based upon the long-term schedule, where devices in the network are configured based upon the short-term schedule.
US10218638B2 Adaptive mechanism for efficient user credentials identification in a dynamic hardware environment
In various embodiments of the present invention, a method, computer system, and computer program product is implemented to identify a target device that is obtained based on state information of a plurality of ports in the target device, a type of the target device is identified based on the obtained identifier, and the target device is accessed based on the type of the target device.
US10218625B2 Methods and apparatus for alleviating congestion at a switch, such as a shallow buffered switch
Collisions and/or congestion at output ports of switches can be relieved by: (a) receiving a packet; (b) extracting destination information from the packet; (c) looking up, using the extracted destination information, an output port; (d) determining whether to redirect the packet based on a congestion level of a buffer of the output port; (f) when determining to redirect the packet, (1) dispatching the packet to a dedicated reservoir port of the switch, wherein the reservoir port enforces a queue discipline, (2) receiving, by a reservoir, the redirected packet, (3) temporarily buffering, in an internal queue of the reservoir, the redirected packet, and (4) sending the temporarily buffered packet back to the switch. Otherwise, the packet is dispatched to the output port of the switch. Packets sent back to the switch are paced to relieve collisions and congestion at the switch output port.
US10218622B2 Placing a network device into a maintenance mode in a virtualized computing environment
Techniques for placing a first network device into maintenance mode are described. In one embodiment, a first host computing system coupled to the first network device is identified. The first host computing system executes a workload that transmits and receives network traffic via the first network device. If the first host computing system is not coupled to any other network device, the network traffic to the first network device is quiesced by initiating migration of the workload to a second host computing system coupled to any other network device. If the first host computing system is coupled to a second network device, the network traffic to the first network device is quiesced by instructing a virtual switch of the first host computing system to route the network traffic between the workload and the second network device, and cease routing the network traffic between the workload and the first network device.
US10218621B2 Methods and apparatus for multiple user uplink
Methods and apparatus for multiple user uplink are provided. In one aspect, a method for wireless communication is provided. The method includes receiving a trigger frame from an access point, the trigger frame being transmitted to two or more stations and indicating an uplink transmission opportunity. The trigger frame further includes a request for the two or more stations to concurrently transmit uplink data at a specific time. The method includes transmitting uplink data at the specific time to the access point concurrently with another of the two or more stations transmitting uplink data to the access point.
US10218619B2 Proactive broadcast capacity adjustment for fast network joins
In one embodiment, a device in a network identifies an upcoming network formation event. The device instructs one or more nodes in the network to use a network formation broadcast schedule during the event. The device determines that a degree of functionality in the network during the event exceeds a threshold amount. The device instructs the one or more nodes to use a normal broadcast schedule, in response to determining that the degree of functionality in the network during the event exceeds the threshold amount. Channels of the network formation broadcast schedule are active more frequently than channels of the normal broadcast schedule when in use.
US10218618B2 Method and apparatus for processing operation request in storage system
According to embodiments of the present invention, in a storage system, a switch receives an operation request, where the operation request carries request identification; the switch queries, according to the request identification, a flow table of the switch to obtain a flow table entry matching the operation request; and the switch forwards the operation request to a target storage device among storage devices according to a forwarding rule of the matching flow table entry. By using a characteristic of a SDN, the operation request is processed according to the forwarding rule of the flow table entry of the switch, thereby implementing load balancing of the storage devices and reducing information interaction between the storage devices.
US10218613B2 Authorizing communications between computing nodes
Techniques are described for managing communications between multiple computing nodes, such as computing nodes that are separated by one or more physical networks. In some situations, the techniques may be used to provide a virtual network between multiple computing nodes that are separated by one or more intermediate physical networks, such as from the edge of the one or more intermediate physical networks by modifying communications that enter and/or leave the intermediate physical networks. In some situations, the computing nodes may include virtual machine nodes hosted on one or more physical computing machines or systems, such as by or on behalf of one or more users (e.g., users of a program execution service). The managing of the communications may include determining whether communications sent to managed computing nodes are authorized, and providing the communications to the computing nodes only if they are determined to be authorized.
US10218612B2 Method and a device for defining implementation of a look-up table for a network element of a software-defined network
A method and a device for defining implementation of a look-up table for a network element of a software-defined network “SDN” is presented. The network element includes hardware for implementing the look-up table in two or more mutually alternative ways. The method includes selecting (301) an optimal, or at least a suitable, one of the mutually alternative ways to implement the look-up table on the basis of a) the hardware available for implementing the look-up table, b) information about one or more look-up keys, and c) at least one of the following: the maximum number of entries of the look-up table, an average time between successive look-ups, an average time between successive modifications of the look-up table. The method enables the network element to be configured in a way that the hardware resources of the network element are utilized in an optimal or at least a suitable way.
US10218609B2 Method and device for synchronizing interface parameter
Provided are a method and device for synchronizing an interface parameter. According to the method, related information, sent by a remote Terminating Provider Edge (TPE) of a first Pseudo-Wire (PW) in a first segment of PW of a Switching Provider Edge (SPE), of the first PW is received or recorded, wherein the related information of the first PW carries an interface parameter of the remote TPE of the first PW, and the interface parameter is used for establishing a Label Switch Path (LSP); and the related information of the first PW is sent to a remote TPE of a second segment of PW of the SPE. By the solution, a problem caused by incapability of opposite equipment in timely perceiving updating of an interface parameter of local equipment is solved, and the opposite equipment can use a correct interface parameter value for negotiation and PW establishment.
US10218605B2 On-demand control plane redundancy
Disclosed is a router (and method) for virtualizing a control plane of the router without redundancy. The router can include a processor, a data plane, a control plane, and a computer-readable storage medium having stored therein instructions which, when executed by the processor, cause the processor to request, a cloud service to instantiate a virtual instance of the control plane, receive a confirmation of instantiation of the virtual instance, transfer to the virtual instance of the control plane, an active state of the control plane, perform offline services (e.g., configuration change, operating system update, or firmware upgrade, etc.) and in response to completion of the offline services, receive the active state.
US10218603B2 Multicast message translation in a network device
Disclosed are various embodiments for translating multicast messages in a network device. The network device obtains a configuration for translating a destination address of a specified type of multicast message to a different destination address. A multicast message is received that matches the specified type. A broadcast message is generated based upon the multicast message and the configuration, where the broadcast address used as a destination for the broadcast message corresponds to the broadcast address for a group of network nodes specified by the configuration. The broadcast message is transmitted from one or more network interfaces specified by the configuration. The broadcast message includes the instruction for the group of network nodes.
US10218600B2 Path computation element hierarchical software defined network control
A parent PCE controller comprising a memory comprising instructions executable by a processor and a processor coupled to the memory and configured to execute the instructions. Executing the instructions causes the processor to establish a parent-child relationship with at least a first child PCE controller controlling a first domain and a second child PCE controller controlling a second domain, receive a request to create an E2E tunnel from a source to a destination crossing the first domain and the second domain, compute a shortest path from the source to the destination through the first domain and the second domain, transmit a request message to the first child PCE controller for creating a first tunnel segment of the E2E tunnel through the first domain, and transmit a request message to the second child PCE controller for creating a second tunnel segment of the E2E tunnel through the second domain.
US10218597B1 Provider network address range-based models
Methods and apparatus for providing rating and usage models for IP traffic to and from clients' resource instances in a provider network environment. A service provider may implement rating and usage models that may be used to associate provider network addresses with address ranges of external networks. The models may be provided to or selected by clients and applied to traffic between the clients' provider network addresses and the addresses of user devices that are in the address ranges of external networks associated with the models. Rating models may be applied to provider network clients' usage on the provider network resulting from the clients' customers' accesses of the clients' applications on resource instances in the provider network. Usage models may be applied to the clients' customers' usage on intermediate networks when accessing the clients' applications on resource instances in the provider network.
US10218596B2 Passive monitoring and measurement of network round trip time delay
A method is described and in one embodiment includes receiving at a first network element of a communications network a first packet corresponding to a first traffic flow from a first end user device to a second end user device at a time T1; receiving at the first network element a second packet corresponding to a second traffic flow from the second end user device to the first end user device at a time T2; calculating by the first network element a difference α1 between the time T1 and the time T2; creating at the first network element a first record including the calculated difference Δ1; and providing the first record to a network collector device, wherein the network collector device compares the first record with a second record received from a second network element to determine a Round Trip Time (“RTT”) delay for the communications network.
US10218595B1 Measuring network transit time
Disclosed are various embodiments to determine network transit time for a packet. A request packet for determining a network transit time is received. A reply packet is transmitted to the requester in response to the request packet. A reply packet is transmitted to the requester. The reply packet includes information about a packet processing time. This packet processing time includes a time between the receiving of the request packet and the transmitting of the reply packet.
US10218592B2 Method, device and system for performing bidirectional forwarding detection on aggregated link
A method for performing bidirectional forwarding detection (BFD) on an aggregated link between a first network device and a second network device, where the first network device sends, to the second network device, information used to establish at least two BFD sessions. The first network device receives information that is used to establish at least two BFD sessions and sent by the second network device. The first network device respectively establishes BFD sessions between at least two pairs of ports according to the stored information and the information sent by the second network device. The first network device determines whether at least one BFD session in the established BFD sessions is up. If at least one BFD session in the established BFD sessions is up, the first network device determines that the aggregated link between the first network device and the second network device is available.
US10218591B2 Embedded performance monitoring of a DBMS
Embedded Performance Monitoring is an “out-of-box” approach for performance monitoring of a DBMS. Performance monitoring of a DBMS is achieved through use of a browser to access the DBMS once a DBMS is installed and configured. The approach exploits a DBMS configured with the native capability to provide performance monitoring data and software via a browser. To retrieve and use the performance monitoring data from the DBMS, a browser executes software downloaded to the browser from the DBMS using web-based technologies.
US10218590B2 Subscriber-aware TWAMP data monitoring in computer networks
Techniques are described for performing subscriber aware two-way active measurement protocol (TWAMP) data session provisioning between two endpoints in a computer network. For example, the disclosed techniques include extending TWAMP control messaging to include a communication mode for negotiating subscriber-aware TWAMP data monitoring. If the communication mode is supported by both endpoints, a subscriber identifier is specified when a TWAMP data session is provisioned (negotiated) over the control session. The disclosed techniques further include extending TWAMP data messaging to include the subscriber identifier in each test packet for the data session. In this way, each of the endpoints may identify a subscriber corresponding to one or more received TWAMP test packets based on the subscriber identifier included in the received TWAMP test packets.
US10218582B2 Notifications with input-based completion
Techniques are disclosed for presenting notifications that can receive input data. The techniques include presenting a notification in response to occurrence of an event, wherein the notification is associated with a specified data type and a data source from which data is to be received, receiving input data of the specified data type from the data source, wherein the notification is presented until the input data is received, and storing the input data. The notification can block access to a user interface of at least one application until the input data is received. The data source can be a data entry component of a user interface that receives user input, or can be an application that provides data of the specified data type, and receiving input data can include requesting data of the specified data type from the application, and receiving the input data from the application via inter-process communication.
US10218579B1 Tensor-based framework for analyzing high velocity large-scale network activities to infer latent mesostructures and important nodes
Described is a system for analyzing network activities. Each pair of node interactions between nodes in the network is represented with a tensor. For each pair of node interactions, a mesostructure is inferred using tensor decomposition of the tensor, resulting in inferred mesostructures. A temporal network structure representing each pair of node interactions is determined using a set of parameters generated from the tensor decomposition, resulting in temporal network structures. A future data cascade in the network is predicted using the temporal network structures.
US10218577B2 Systems and methods for mapping and visualizing a wireless mesh network
According to at least one embodiment, a system for mapping a mesh network is provided. The system includes a memory and at least one processor coupled to the memory. The at least one processor is configured to receive at least one network data packet from at least one network device in the mesh network; build a map of the mesh network including a representation of the at least one network device using information contained in the at least one network data packet; and display the map on a user interface. In some embodiments, the at least one network includes a plurality of network devices.
US10218574B1 Detecting software misconfiguration at a remote machine
Aspects of the present disclosure relate to detecting software misconfiguration at a remote machine. A control server stores, in a data repository, a plurality of antipatterns, each antipattern relating to a misconfiguration of a remote computer system. The control server accesses data of the remote computer system. The control server runs the plurality of antipatterns on the data of the remote computer system to determine one or more misconfigurations of the remote computer system. The control server provides, as a digital transmission, an output representing the determined one or more misconfigurations of the remote computer system.
US10218569B2 Distributed storage quota enforcement
Embodiments are directed to client-side enforcement of storage quotas in a cloud service or distributed computing environment. A storage driver is configured to monitor access to an external storage system by a cloud process and to enforce storage limits for the external storage system. The storage driver intercepts reads and writes from the process to the external storage system and updates a local state to track the process's usage of the external storage system. A storage quota database is periodically checked for an updated storage usage and, if the updated storage usage is not present, then the external storage is scanned to obtain the updated storage usage. The updated storage usage is provided to the storage driver, which overwriting the local state. The storage driver continues to update the local state based upon the intercepted reads and writes.
US10218567B2 Generating an identifier for a device using application information
A computer-implemented method for generating an identifier for a device includes identifying one or more applications from a plurality of applications installed on a device; generating an identifier for the device based on the one or more identified applications; and providing the generated identifier as identification for the device. Another computer-implemented method for identifying a device includes: receiving information that indicates one or more applications of a plurality of applications installed on a device; and identifying the device using the received information.
US10218565B2 Unconditional and immediate service capabilities for rule based services
Methods and apparatus for controlling the presentation of user changeable IP Multimedia Subsystem, IMS, service rules at a user equipment. The service rules, conditions, and/or actions are defined within an XML document maintained within the IMS network. The XML document includes one or more informational elements identifying the service rules that the user can change, which include at least one of an unconditional or immediate based service rule. Upon receipt of the XML document, the user equipment or a web portal, interprets the informational element(s) and presents an indication in relation to whether the service rules are changeable. In response, user defined service rule information may be received and used in changing service rules associated with the user. The user defined service rule information is transmitted to the IMS network for validation and allowable portions of the user defined service rule information are used in updating the service rules.
US10218562B2 Parsing and optimizing runtime infrastructure alerts
Aspects of the disclosure relate to monitoring and managing computer networks by parsing and optimizing runtime infrastructure alerts. A computing platform may receive, from a server controller device associated with server infrastructure, alert information identifying a set of alerts associated with the server infrastructure. The computing platform may apply a pre-analyzer filter to the alert information to obtain a filtered set of alerts. Subsequently, the computing platform may identify alert trends and alert drifts associated with a set of applications hosted by the server infrastructure. The computing platform may generate a set of new alert rules based on the alert trends and the alert drifts, and may store updated configuration settings incorporating the set of new alert rules. Then, the computing platform may send, to an administrative computing device, a set of verified alerts based on the updated configuration settings incorporating the set of new alert rules.
US10218557B2 Phase ambiguity processing method and device for quadrature amplitude modulation signal
A phase ambiguity processing method and device are provided. The phase ambiguity processing method includes: deciding symbols on a Y polarization state and an X polarization state of a received signal, and mapping to obtain first bit information, where the received signal includes a plurality of first signals; checking and analyzing the first bit information to generate a first check result; judging the first check result to obtain a judgment result as to whether the received signal has phase ambiguity; acquiring at least one of the plurality of first signals in the received signal when the judgment result indicates that the received signal has phase ambiguity; performing phase rotation on the first signal to obtain a second signal; and checking and analyzing the second signal, storing the second signal so that the first signal is replaced with the second signal for decoding processing if a check result is normal.
US10218550B1 Beamforming transmission with analog hardware resource sharing
A transmitter or receiver including at least one radio-frequency (RF) chain. The RF chain including an array of transmitting elements, each transmitting element includes a band-pass filter and an antenna connected in series for transmitting an analog signal using a beamforming with an angle of departure (AOD) defined by phase shifts of analog signals received by different transmitting elements within the array. A phase shifter to shift a phase of an input signal. A variable gain amplifier (VGA) to change an amplitude of the input signal. A switcher to connect the phase shifter and the VGA to each transmitting element in the array. Wherein at most one transmitting element is connected to the phase shifter and the VGA at a given point of time, such that the switcher is a single-pole-M-throw (SPMT) analog switch. A controller to control the phase shifter, the VGA and the switcher.
US10218548B1 Wireless radio receiver that performs adaptive phase tracking
A pre-equalization phase tracking unit, for each signal block of received series: computes autocorrelation between portion of identical-as-transmitted initial and terminal sequences and computes phase of autocorrelation; estimates start phase of block processing window using autocorrelation phase and start phase of previous signal block in series; estimates phase drift within window by interpolating using estimated start phases of at least the signal block and next signal block in series; and computes phase compensation signal using estimated phase drift. A post-equalization phase tracking unit subdivides the block into time sequence of groups of equalized symbols. For each group: compute de-rotated version of each symbol using previous group's accumulated phase to blindly estimate residual group phase; assign group's accumulated phase with sum of group's residual phase and previous group's accumulated phase; estimate phase drift within group by using at least group's accumulated phase to compute phase compensation signal.
US10218547B2 Filtered orthogonal binary phase shift keying modulation with low peak-to-average-power ratio
Methods, systems, and devices for wireless communications are described. A transmitting device may modulate a first binary sequence using binary phase shift keying on a first axis of a complex plane. The device may modulate a second binary sequence using binary phase shift keying on a second plane of a complex axis. The first axis and the second axis may be orthogonal. The device may transmit the first binary sequence and the second binary sequence according to the modulation of the first binary sequence and the second binary sequence.
US10218539B2 Forwarding data between an array of baseband units and an array of radio heads in distributed wireless system using TDM switches
The present disclosure discloses a distributed system. The distributed system includes a plurality of radio heads and a plurality of controllers disposed in one or more chassis external to the plurality of radio heads. Each of the plurality of controllers includes a baseband unit (BBU), an uplink time-division multiplexing (TDM) switch and a downlink TDM switch. The uplink TDM switch and the downlink TDM switch forward data bits between a radio head and a BBU by using TDM cells which may reduce latency relative to using Ethernet frames.
US10218538B1 Hybrid Clos-multidimensional topology for data center networks
The expansion of a network by converting the network from a 2-stage folded Clos network to a 3-stage folded Clos network can be cost prohibitive. The system and methods described herein relate to a hybrid network topology. More particularly, the disclosure describes a hybrid topology having internal switches configured in a multidimensional topology configuration. Each of the internal switches are connected to the network hosts with a folded Clos topology.
US10218532B2 Determination of a state of operation of a domestic appliance
Determination of a state of operation of a domestic appliance In one embodiment it is provided a method for determining a state of operation of a domestic appliance (2) in a plurality of domestic appliances (2), having: receiving (S10), from the domestic appliance (2), a time series (51, 52, 53, 54) of data (5) relating to the operation of the domestic appliance (2) over a cycle (4, 7) of operation; and determining (S20) the state of operation of the domestic appliance (2) based on comparing the received time series (51, 52, 53, 54) with a model of time series (151, 152, 153, 154; 251, 252, 253, 254, 255; 351, 352, 353, 354, 355) of data (50) corresponding to the operation of the plurality of domestic appliances (2) over a cycle (4, 7) of operation.
US10218528B2 Frequency scanning to form a communication network
A node forms a network by scanning for an existing network. If an existing network is not found, the node operates as a network controller node of the first network and admits at least one client node to the first network. As a network controller node, the node designates one of the client nodes as a scout node. The scout node removes itself from the first network and scans for a second network. If the scout node does not return to the first network after a predetermined time, it is assumed that the scout node has found a second network. The network controller node of the first network then designates the remaining client nodes as scout nodes, and then joins the second network as a client node. Therefore, multiple networks are avoided.
US10218525B2 System and method to control latency of serially-replicated multi-destination flows
Exemplified systems and methods facilitate multicasting latency optimization operations for router, switches, and other network devices, for routed Layer-3 multicast packets to provide even distribution latency and/or selective prioritized distribution of latency among multicast destinations. A list of network destinations for serially-replicated packets is traversed in different sequences from one packet to the next, to provide delay fairness among the listed destinations. The list of network destinations are mapped to physical network ports, virtual ports, or logical ports of the router, switches, or other network devices and, thus, the different sequences are also traversed from these physical network ports, virtual ports, or logical ports. The exemplified systems and methods facilitates the management of traffic that is particularly beneficial in in a data center.
US10218521B2 Conferencing system
A conferencing system includes at least one first information terminal, a second information terminal, and an information processing apparatus. The information processing apparatus includes a receiving unit configured to receive a first display position corresponding to a current display position of content data displayed by the first information terminal. The second information terminal includes a display unit configured to display the content data and the first display position.
US10218515B2 Evolving a signature during trust verification of an object
The techniques described herein dynamically determine a new signature that is valid and that can be used to verify trust of an object (e.g., a certificate, an executable file, user credentials, etc.). The dynamic determination of the new signature is implemented by an entity performing a trust verification process. The entity can execute a single unified service to establish trust in the object. The dynamic determination, or the ability for an invalid signature to evolve into a newer version that can be trusted, is implemented in response to an invalidity event indicating that the initial signature is no longer valid for trust verification purposes. Example invalidity events can comprise the expiration of a time sensitive signature attribute (e.g., an expired private key), a recently discovered weakness associated with an individual signature attribute (e.g., a key of insufficient length), or a determination that a certificate authority can no longer be trusted.
US10218514B2 Remote verification of attributes in a communication network
It is provided an apparatus, comprising property checking means configured to check whether a claimant property information received from a claimant device corresponds to a predefined claimant attribute; obtaining means configured to obtain a result, which is positive only if the claimant property information corresponds to the predefined claimant attribute as checked by the property checking means; key generation means configured to generate a first claimant intermediate key from a predefined claimant permanent key stored in the apparatus; supplying means configured to supply, to the claimant device, the first claimant intermediate key using a secured protocol, wherein at least one of the key generation means and the supplying means is configured to generate and to supply, respectively, the first claimant intermediate key only if the result is positive.
US10218513B2 Method and terminal for message verification
Embodiments of the present invention provide a method and a terminal for message verification, which can enhance timeliness of event message verification. The method includes: receiving an event message sent by a cell broadcast entity; obtaining a public key of a CA according to pre-configured information for determining the public key of the CA and information for determining the public key of the CA and obtained from a network side, or according to information of the CA obtained from the network side; then, obtaining a public key of the cell broadcast entity according to the obtained public key of the CA and an implicit certificate of the cell broadcast entity; verifying a signature of the cell broadcast entity over the event message according to the public key of the cell broadcast entity; and finally, determining legitimacy of the event message according to the verification result.
US10218511B2 Signature delegation
A signature authority generates a master seed value that is used as the root of a seed tree of subordinate nodes. Each subordinate node of the seed tree is generated from the value of its parent node using a cryptographic hash or one-way function. The signature authority selects subordinate seed values which are distributed to one or more key generators, each of which generates a set of one-time-use cryptographic keys. Each key generator generates a hash tree from its set of one-time-use cryptographic keys, and the root of its hash tree is returned to the signature authority. The signature authority integrates the hashes provided by the key generators into a comprehensive hash tree. The root of the comprehensive hash tree acts as a public key for the signature authority.
US10218508B2 Methods and apparatus to provide isolated execution environments
Methods and apparatus to provide isolated execution environments are disclosed. An example apparatus includes a machine status register to determine whether excess micro operations are available during an instruction cycle to execute a pico-application in response to a request for computing provided by a host application. The pico-application is a fragment of microcode. The microcode comprises a plurality of micro operations. The machine status register is also to determine whether space is available in a memory to load the pico-application. The example apparatus also includes a loader to load a virtual machine and the pico-application into the memory in response to the excess micro operations and the space in the memory being available. The virtual machine validates the pico-application and loads the pico-application into the memory. The example apparatus also includes a processor to execute the pico-application via the excess micro operations.
US10218507B2 Access control and security for synchronous input/output links
Aspects include providing automatic access control and security for a synchronous input/output (I/O) link. Providing automatic access control and security includes initializing devices of a storage environment over a first link to verify that the devices are available within the storage environment; building a table of identifiers, where each of the identifiers is assigned one of the devices that have been initialized; and verifying a first device attempting to perform synchronous I/O commands across the synchronization I/O link by confirming that an identifier assigned to the first device is within the table of identifiers.
US10218506B1 Cross-device authentication
Provided is a process, including: receiving a request to authenticate a user to access resources from a first computing device; in response to receiving the request, sending, with one or more processors, instructions that cause the first computing device to display a machine readable image, wherein: the machine readable image is configured to, upon being sensed with a camera of a second computing device, cause the second computing device to present, with a display of the second computing device, a user interface with a user-credential input configured based on the machine readable image displayed by the first computing device; receiving from the second computing device, a value demonstrating possession of a user credential and an identifier of the second computing device, the user credential being entered into the second computing device via the user interface configured based on the machine readable image displayed by the first computing device.
US10218503B2 Encryption key storage and modification in a data storage device
Methods, systems, and devices are described for encryption key storage and modification in a data storage device. A portion of an encryption key may be stored in a first storage medium, and one or more bits of the encryption key may be stored in a one-time writable storage location. Data received at the data storage device may be encrypted using the encryption key, and may be stored in a storage medium. In the event that it is no longer desired to allow users to access the encrypted data stored in the storage medium, the one or more bits of the encryption key stored in a one-time writable storage location may be modified. Such modification thereby prevents decryption of the encrypted data and effectively precludes access to the encrypted data.
US10218493B2 Radio with dynamically controlled correlation threshold
In a radio using a plurality of channels defined in a radio frequency (RF) spectrum, a rate of false packet detections may be calculated for each of the plurality of channels using a plurality of respective correlation thresholds. The rate of false packet detections for each channel may be compared to a range of acceptable rates of false packet detections. The same or different ranges of acceptable rates of false packet detections may be used for each channel or each channel plan. Different correlation thresholds may be adjusted based at least in part on the comparisons. For example, if a rate of false packet detections exceeds a range of acceptable rates of false packet detections, the correlation threshold may be raised, or the reverse. A packet may be detected on different channels based on different adjusted correlation thresholds.
US10218491B2 Receiving circuit, integrated circuit, and receiving method
A receiving circuit includes a deserializer circuit configured to convert serial data to parallel data in accordance with an operating clock, a phase difference detection circuit configured to detect a phase difference between the operating clock and the serial data on the basis of the parallel data, a control circuit configured to determine a phase adjustment amount for shifting a phase of the operating clock by 1 bit of the serial data in accordance with a result of integration of the phase difference when a separation of the parallel data output from the deserializer circuit is not logically correct, and a phase interpolator circuit configured to cause the phase of the operating clock to shift by the 1 bit of the serial data by using the phase adjustment amount in accordance with the result of the integration of the phase difference.
US10218490B1 Wideband simultaneous transmit and receive (STAR) subsystem
A wideband simultaneous transmit and receive (STAR) subsystem for a radar or other two-way system. The STAR subsystem includes a canceller circuit which digitally prepares a cancellation signal to cancel out leaked or reflected portions of the transmit signal and correlated noise in the receiver signal. The STAR subsystem also performs a final cancellation of temperature-dependent or “thermal” transmit-signal noise in the receiver signal. Together, the combined cancellation techniques prevent receiver saturation and preserve receiver sensitivity. The digital cancellation can be adapted in a closed-loop mode to adjust time delays and amplitudes of cancellation signal components. The cancellation system is run open loop in real time to minimize bandwidth limitations and achieve wideband performance. The STAR subsystem can be implemented with discrete components, as a system-on-chip, or as any combination thereof.
US10218489B2 Wireless backhaul configuration
The disclosure presents a method embodiment, performed in a network node, of coordinating transmission on a backhaul link with transmission on an end-user access link in a wireless network. Transmission is performed in time division duplex, TDD, radio frames transmitted on respective frequency bands on the backhaul link and the end-user access link. The method comprises determining a backhaul TDD configuration of the backhaul link and an end-user access TDD configuration of the end-user access link. A backhaul sub-frame and an end-user access sub-frame are selected. An offset is determined between the backhaul sub-frame and the end-user access sub-frame. Transmission on the backhaul link or on the end-user access link is adjusted with a time-shift relative to transmission on the backhaul link, wherein the time-shift is based on the determined offset.
US10218488B2 Interface circuit and information processing system
A signal is transmitted at a high speed in a direction opposite to a transmitting direction of a main large-capacity channel. A first transmitting unit transmits a first signal including a clock component to an external device through a transmission path as a differential signal. A second transmitting unit superimposes a second signal including a clock component on the transmission path as an in-phase signal to transmit to the external device. A state notifying unit communicates with the external device through a pair of differential transmission paths included in the transmission path and notifies the external device of a connection state of its own device by a DC bias potential of at least one of the pair of differential transmission paths.
US10218483B2 Systems and methods for signaling and generating variable length block acknowledgment fields in a wireless network
Systems, methods, and apparatuses for signaling and generating variable length block acknowledgement fields in a wireless network are provided. One aspect of this disclosure provides a method of wireless communication. The method includes generating, by an apparatus, a block acknowledgment (BA) frame comprising a BA bitmap field. The method further includes determining a size of the BA bitmap field. The method further includes inserting an indication of the determined size of the BA bitmap field.
US10218480B2 Uplink sounding signal triggering method and system, and apparatus
An uplink sounding signal triggering method, system, and apparatus are provided. The method includes: sending, by a base station, a downlink control information (DCI) using a physical downlink control channel (PDCCH), with the DCI including a sounding reference signal SRS control information intended for each UE of Y number of UEs, with Y comprising a positive integer greater than 1.
US10218473B2 Control channel detection method, user equipment, and base station
Embodiments of the present invention provide a control channel detection method, a user equipment, and a base station, where the method includes: acquiring parameter configuration information corresponding to different control channel resource sets, and detecting a control channel in the corresponding different control channel resource sets according to the parameter configuration information, which therefore implements selection of a dynamic node.
US10218471B1 Selection of positioning reference signal occasions
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may support selection of positioning reference signal (PRS) occasions. For example, a UE may identify a first pair of PRS occasions for monitoring a PRS at a first frequency and a second pair of PRS occasions for monitoring a PRS at a second frequency and occurring after the first pair of PRS occasions. The UE may measure a first PRS of the first pair of PRS occasions at the first frequency, and then measure a first PRS of the second pair of PRS occasions at the second frequency. The UE may then measure a second PRS of the first pair of PRS occasions at the first frequency after measuring the first PRS of the second pair of PRS occasions at the second frequency.
US10218468B2 USB device, data transfer system and data transfer method
To prevent an increase in a circuit configuration that is used for a case in which when a header is incorrect under a specific condition, a correctly-received payload is kept and only the header is resent. A USB device according to the present disclosure includes a first processing unit configured to, when a predetermined error is included in a first header of a first packet received from a host apparatus, discard the first header and transmit a first payload of the first packet to a subsequent stage, and a second processing unit configured to discard the first payload received from the first processing unit and transmit a first packet resending request to the host apparatus.
US10218467B2 Methods and systems for managing error correction mode
The present invention discloses methods and systems for managing an error correction mode at a first communications router. The first communication router transmits data packets to a second communications router and stores the first data packet in a local storage medium, When a delay inquiry message is received from the second communications router, the first communications router activates the error correction mode. When the error correction mode is activated, the first data packet is retransmitted to the second communications router and an error correction packet corresponding to the first data packet is also transmitted. When a back-to-normal message is received from the second communications router, the first communications router deactivates the error correction mode. The back-to-normal message indicates that the first communications router no longer needs to be in error correction mode.
US10218465B2 Method and system for maximizing channel bandwidth while employing error control coding
A system and method includes employing a cyclical redundancy check (CRC) code to information being transmitted on the channel, the CRC code including appending a single CRC code bit to the information, the single CRC code bit having a value of 0. The method further includes adding an error correcting code with a value of 0 to the information and to a plurality of error correcting code parity bits provided by the error correcting code. The method further includes transmitting, by the communication device, the information on the channel without the single CRC code bit, the additional information bit, and the error correcting code parity bits for being decoded and set by a receiver.
US10218464B2 Method and an apparatus for generating a second data packet from a first data packet
Embodiments relate to a method for generating a second data packet for a second network layer from a first data packet including a first header portion with information related to a first network layer higher than the second network layer. The method comprises generating, based on the first header portion, a second header portion including information related to the second network layer and generating a payload portion including the first data packet. The method further comprises generating the second data packet for the second network layer by linking the second header portion and the payload portion.
US10218463B2 Method and system for wireless local area network (WLAN) long symbol duration migration
A STA may perform packet detection to detect a packet and decode a legacy preamble of the detected packet including a legacy short training field (L-STF), a legacy long training field (L-LTF), and a legacy signal (L-SIG) field. The STA may decode a high efficiency signal A (HE-SIG-A) field to obtain a first partial association identifier (PAID) comprising group information. If the decoded group information matches group information stored in a memory of the STA, the STA may decode a high efficiency (HE) preamble and a high efficiency signal B (HE-SIG-B) field of the detected packet. The HE-SIG-B field may include a station identifier within the group. When the group information is combined with the station identifier, the STA may determine an accurate address.
US10218456B2 Modulation processing method and device
A modulation processing method, a UE and a base station are disclosed; herein, the base station transmits a high-layer configuration signaling to the UE, herein the high-layer configuration signaling is used to indicate whether to support a high-order Quadrature Amplitude Modulation (QAM) modulation scheme, the high-order QAM modulation scheme is a modulation scheme of M QAM, and M is a number greater than 64.
US10218454B2 Open, modular, and scalable optical line system
A reconfigurable optical add/drop multiplexer (ROADM) includes a plurality of interconnected ROADM blocks. Each ROADM block includes an ingress switchable-gain amplifier, an output power detector coupled to an output of the ingress switchable gain amplifier, and a wavelength-selective switch coupled to the output of the ingress switchable gain amplifier. Each ROADM block includes a plurality of add/drop blocks coupled to the wavelength-selective switches of the plurality of ROADM blocks. The ROADM includes a controller configured to receive an indication of an output signal power from the output power detector and adjust gain and equalization parameters of the ingress switchable-gain amplifier based on the received indication of the output signal power.
US10218453B2 Methods and apparatus for logical associations between routers and optical nodes within a wavelength division multiplexing (WDM) system
An apparatus includes a memory and a processor operatively coupled to the memory. The processor is configured to partition a set of ports of an optical multiplexer into a set of port groups including a first port group having a first set of ports and a second port group having a second set of ports mutually exclusive from the first set of ports. The processor is configured to associate the first port group with a first router and associate the second port group with a second router. When the optical multiplexer is operatively coupled to the first router and the second router, the first router is operatively coupled to the optical multiplexer via the first set of ports and not the second set of ports, and the second router is operatively coupled to the optical multiplexer via the second set of ports and not the first set of ports.
US10218452B2 High speed embedded protocol for distributed control system
A control network communication arrangement includes a second protocol embedded into a first protocol in a way that modules supporting the second protocol may be aware of and utilize the first protocol whereas modules supporting only the first protocol may not be aware of the second protocol. Operation of modules using the second protocol does not disturb operation of the modules not configured to use or understand the second protocol. By one approach, the messages sent using the second protocol will be seen as messages sent using the first protocol but not having a message necessary to understand or as needing a particular response. In another approach, modules using the second protocol can be configured to send message during transmission of first protocol messages by other modules, the second protocol messages being triggered off of expected aspects of the message sent under the first protocol.
US10218450B1 Interference mitigation in short-range wireless communication
Systems and techniques are described for mitigating interference in wireless communication devices. In various examples, a device may determine a first energy level of a first received wireless signal and may determine that the first energy level is above a first threshold. The device may attenuate the first received wireless signal by a first amount. The device may filter the first received wireless signal with a band pass filter with a first passband frequency range. The device may be effective to program the band pass filter with the first passband frequency range based on the detected first energy level exceeding the first threshold.
US10218448B2 System and method for determining vehicle position based upon light-based communication and time-of-flight measurements
A system and method for determining vehicle position uses light based communication (LBC) signals and a time-of-flight (TOF) pulse. Each vehicle includes a LBC system having light emitting diodes (LEDs) and receiver photodiodes capable of sending and receiving pulsed light binary messages. The LBC system may also include a TOF transceiver for sending and receiving TOF pulses, or the transmitter and receiver diodes may be used to send and receive TOF pulses. Each LBC system has a controller coupled to the transmitter diodes and receiver diodes (and the TOF transceiver when present). The controller includes a processor configured to determine the distance between vehicles. Optical characteristics are used to discern relative angle, a header is used to determine relative orientation, and the time-of-flight is used to determine distance, which together may be used by the processor to determine the relative location between transmitting vehicle and the receiving vehicle.
US10218444B2 PAM4 transceivers for high-speed communication
The present invention is directed to data communication. More specifically, embodiments of the present invention provide a transceiver that processes an incoming data stream and generates a recovered clock signal based on the incoming data stream. The transceiver includes a voltage gain amplifier that also performs equalization and provides a driving signal to track and hold circuits that hold the incoming data stream, which is stored by shift and holder buffer circuits. Analog to digital conversion is then performed on the buffer data by a plurality of ADC circuits. Various DSP functions are then performed over the converted data. The converted data are then encoded and transmitted in a PAM format. There are other embodiments as well.
US10218438B2 Distributed array for direction and frequency finding
An optical imaging system and method that reconstructs RF sources in k-space by utilizing interference amongst modulated optical beams. The system and method involves recording with photodetectors the interference pattern produced by RF-modulated optical beams conveyed by optical fibers having unequal lengths. The photodetectors record the interference, and computational analysis using known tomography reconstruction methods is performed to reconstruct the RF sources in k-space.
US10218429B2 Information processing device and information processing method for relaying signal
An information processing device that includes circuitry that: receives a signal from a first device; measures a signal strength of the signal received from the first device; determines whether the signal strength is less than a threshold; and in a case that the signal strength is determined to be less than the predetermined threshold, transmits to an second device an instruction signal such that, in response to the instruction signal, the second device moves to a position to relay the signal from the first device to the information processing device.
US10218409B2 Systems and methods for small cell placement using PNM metrics
A communication device is provided for a communication network having a cable plant within an operational vicinity of a macro base station wirelessly transmitting an LTE signal. The communication device includes a processor configured to obtain at least one PNM metric for a cable signal communicated over the cable plant, detect a signature of the LTE signal based on the obtained PNM metric, estimate, based on the detected LTE signature, an existing LTE signal power at a point of leakage in the cable plant, determine a CNR of the cable plant at the point of leakage based on a power of the cable signal and the estimated LTE signal power, and calculate a minimum safe distance from the point of leakage in which a small cell base station may operate without the substantial interference from the LTE signal of the macro base station.
US10218407B2 Radio frequency system and method for wearable device
A radio frequency (RF) system includes an RF integrated circuit (IC) die. The RF IC die includes a first transmit circuit, a second transmit circuit, a first receive circuit, a second receive circuit, and a control circuit coupled to the first transmit circuit, the second transmit circuit, the first receive circuit, and the second receive circuit. The RF system further includes a first antenna coupled to the first transmit circuit and the first receive circuit using a first coupling structure. The control circuit is configured to activate the first transmit circuit and deactivate the first receive circuit during a first operation mode. The RF system further includes a second antenna coupled to the second transmit circuit and the second receive circuit using a second coupling structure. The control circuit is configured to activate the second transmit circuit and deactivate the second receive circuit during a second operation mode.
US10218406B2 Narrowband communication for different device capabilities in unlicensed spectrum
Methods, systems, and devices for wireless communication are described. Resources for narrowband communication in an unlicensed radio frequency spectrum band may be configured and allocated based on resource availability, regulatory constraints, and device capability or category. A narrowband wireless device, such as a machine type communication device or other relatively low complexity device, may communicate using one or more narrowband carriers, which may occupy between one tone and multiple resource blocks in an unlicensed spectrum band (e.g., any number of resources between one (1) tone and multiple resource blocks (RBs)). Different device types may thus be configured differently as they move between geographic regions. The base station may then communicate with the narrowband mobile device based on the resource allocation and the carrier configuration.
US10218405B2 I/Q modulator and demodulator with wide instantaneous bandwidth and high local-oscillator-port-to-radio-frequency-port isolation
An improved quadrature modulator/demodulator (IQMD) may use two-phase quadrature local oscillator (LO) signal generation for generating 0° and 90° LO signals, and an anti-phase combiner/divider (at 0° and 180°) on the RF (radio frequency) port. The IQMD may include mixers (which may be double-balanced passive mixers) that function as downconverters when a signal is incident at their radio frequency (RF) ports, and function as upconverters when signals are incident on their intermediate frequency (IF) ports. Accordingly, the IQMD may function as an I/Q modulator by connecting digital-to-analog converters (DAC) to the differential I and Q ports, and/or it may also function as an I/Q demodulator by connecting analog-to-digital converters (ADC) to the differential I and Q ports.
US10218404B2 Interconnect element circuitry for RF electronics
In one embodiment, interconnect element (IE) circuitry electrically interconnects electronic components (e.g., a transceiver and a filter or a filter and an antenna). The IE circuitry has an inductive signal path and a grounded, inductive return path, where at least one actively controlled impedance-compensation element, electrically interconnecting the signal and ground paths, is controllable to selectively provide different impedance levels, such that overall impedance of the IE circuitry is controllable to achieve low pass-band insertion loss and high stop-band attenuation between the electronic components without requiring expensive RF connectors to connect the IE circuitry to the electronic components and an RF filter to provide stop-band attenuation. In a T-filter configuration, the IE circuitry has only one impedance-compensation element; in a Pi-filter configuration, the IE circuitry has two impedance-compensation elements. Each impedance-compensation element has at least one controllable device such as a varactor diode, a switched-capacitor array, or a tunable capacitor.
US10218403B2 System and method for a modular dynamic wireless power control system in a convertible information handling system
A system and method operating a convertible information handling system comprising a processor executing code instructions for a modular dynamic wireless power control system for detecting an active wireless link operating via an antenna system and a first orientation mode, wherein the transmission power of the antenna system is limited to a regulatory safety maximum depending on orientation, the processor determining the permitted regulatory safety maximum transmission power for the first orientation mode for the information handling system and the processor determining relative transmission activity levels for the information handling system relative to the first active wireless link and the second active wireless link, including a first wireless link data rate transmission level for the first antenna system and a second wireless link data rate transmission level for the second antenna system. The modular dynamic wireless power control system instructing the wireless interface adapter controller to increase transmission power to the first antenna and decrease transmission power to the second antenna relative to the regulatory safety maximum power level when the first wireless link data rate transmission level is greater than the second wireless link data rate transmission level.
US10218402B2 Multi-subscriber identity module (SIM) call setup
Apparatus and methods for method for a wireless communication device having a first Subscriber Identity Module (SIM) enabling a first subscription and a second SIM enabling a second subscription to manage communications over the first subscription and the second subscription, including but not limited to determining an error rate associated with the first subscription or a network congestion parameter associated with the first subscription and determining to skip at least one page decode on the second subscription based on the error rate associated with the first subscription or the network congestion parameter associated with the first subscription.
US10218399B2 Systems and methods for activity determination based on human frame
Systems and related methods providing for determining activities of individuals are discussed herein. Circuitry may be configured to wirelessly receive tag signals from a plurality of RF location tags. Two or more of the RF location tags may be positioned on an individual, such as at positions that may at least partially define a human frame. The circuitry may be configured to correlate the two or more RF location tags with the individual. Location data for each of the two or more RF location tags may be determined based on the received tag signals. An activity of the individual may be determined based on the location data. In some embodiments, one or more activities involving multiple individuals may be determined based on RF location tags and sensors positioned on each of the multiple individuals. Furthermore, sensor data from the sensors may be communicated over the UWB channel.
US10218395B2 Amplification system for public safety
Provided is an amplification system for a public safety service. The amplification system may be installed to cover a radio-shadow zone, and stably maintain the service despite a distortion in a wireless environment and an excessive input of a spurious interference signal.
US10218390B2 Circuits and methods related to radio-frequency receivers having carrier aggregation
Circuits and methods related to radio-frequency (RF) receivers having carrier aggregation. In some embodiments, a carrier aggregation (CA) circuit can include a first filter configured to allow operation in a first frequency band, and a second filter configured to allow operation in a second frequency band. The CA circuit can further include a first path implemented between the first filter and a common node, with the first path being configured to provide a substantially matched impedance for the first frequency band and a substantially open-circuit impedance for the second frequency band. The CA circuit can further include a second path implemented between the second filter and the common node, with the second path being configured to provide a substantially matched impedance for the second frequency band and a substantially open-circuit impedance for the first frequency band.
US10218387B2 ECC memory controller supporting secure and non-secure regions
A system and method of utilizing ECC memory to detect software errors and malicious activities is disclosed. In one embodiment, after a pool of memory is freed, every data word in that pool is modified to ensure that an ECC error will occur if any data word in that pool is read again. In another embodiment, the ECC memory controller is used to detect and prevent non-secure applications from accessing secure portions of memory.
US10218382B2 Decompression using cascaded history windows
The following description is directed to decompression using cascaded history buffers. In one example, an apparatus can include a decompression pipeline configured to decompress compressed data comprising code words that reference a history of decompressed data generated from the compressed data. The apparatus can include a first-level history buffer configured to store a more recent history of the decompressed data received from the decompression pipeline. The apparatus can include a second-level history buffer configured to store a less recent history of the decompressed data received from the first-level history buffer.
US10218380B1 High speed data weighted averaging architecture
Data weighted averaging of a thermometric coded input signal is accomplished by controlling the operation of a crossbar switch matrix to generate a current cycle of a data weighted averaging output signal using a control signal generated in response to feedback of a previous cycle of the data weighted averaging output signal. The control signal specifies a bit location for a beginning logic transition of the data weighted averaging output signal in the current cycle based on detection of an ending logic transition of the data weighted averaging output signal in the previous cycle.
US10218379B2 Scalable interleaved digital-to-time converter circuit for clock generation
Some embodiments include apparatus and methods using a first digital-to-time converter (DTC) circuit to receive an input clock signal and generate a first clock signal based on the input clock signal, a second DTC circuit to receive the input clock signal and generate a second clock signal based on the input clock signal, and an output circuit to receive the first and second clock signals to generate an output clock signal based on the first and second clock signals.
US10218377B2 Gain calibration for ADC with external reference
Representative implementations of devices and techniques provide gain calibration for analog to digital conversion of time-discrete analog inputs. An adjustable capacitance arrangement is used to reduce or eliminate gain error caused by capacitor mismatch within the ADC. For example, the capacitance arrangement may include an array of multiple switched capacitances arranged to track gain error during search algorithm operation.
US10218375B2 Circuit device, oscillator, electronic apparatus, and vehicle
A circuit device includes an A/D conversion unit that performs A/D conversion of a temperature detection voltage applied from a temperature sensor unit and outputs temperature detection data, a processing unit that performs a temperature compensation process of an oscillation frequency on the basis of the temperature detection data, and an oscillation signal generation circuit that includes a D/A conversion unit and an oscillation circuit and generates an oscillation signal using frequency control data received from the processing unit and a vibrator. The D/A conversion unit includes modulation circuit that receives the frequency control data of (n+m) bits and modulates n-bit data on the basis of m-bit data of the frequency control data, a D/A converter that performs D/A conversion of the modulated n-bit data, and a filter circuit that smoothes the output voltage of the D/A converter.
US10218369B2 Systems and methods for delay-based continuous time processing
Disclosed herein are some continuous time systems and methods. Some of the disclosed systems and methods use a continuous-time analog-to-digital converter (ADC) configured to receive an analog input and to generate an ADC output, a continuous-time digital signal processor configured to receive the ADC output and generate one or more digital outputs, one or more digital-to-analog converters configured to receive the one or more digital outputs, each digital-to-analog converter configured to receive a corresponding digital output and generate an analog output, and an adder configured to receive the analog outputs of the one or more digital-to-analog converters and to generate a summed analog output.
US10218368B2 System and method for in-situ optimization of microwave field homogeneity in an atomic clock
A method of operating a cold atom clock to maintain a highly homogeneous microwave field is provided. The method includes: driving a subset of microwave feed lines to excite a microwave field in a resonator, while a power and a phase of at least one microwave feed line in the subset is held constant, and while the power or the phase of at least one other microwave feed line in the subset is changed; measuring a strength of the atomic transition excited by the microwave field; extracting a relative power and a relative phase between or among the subset of microwave feed lines by processing the strength of the atomic transitions excited by the microwave field measured in at least one auxiliary-measurement sequence; and determining if an adjustment to one or more of the microwave feed lines is needed to improve the homogeneity of the microwave field phase and amplitude.
US10218366B1 Phase locked loop calibration for synchronizing non-constant frequency switching regulators
A calibration circuit for synchronizing a switching regulator includes a phase locked loop circuit to generate one or more control signals based on an output of the switching regulator. A digital calibration circuit provides a digital output signal based on the control signals from the phase locked loop circuit. A timer can provide switching pulses to the switching regulator based on the digital output signal and the control signals. The phase locked loop circuit can adjust the control signals based on a reference clock signal to synchronize a feedback signal of the switching regulator with the reference clock signal.
US10218364B2 Time to digital converter, phase difference pulse generator, radio communication device, and radio communication method
A time to digital converter has a counter to measure the number of cycles of a first signal, a first phase difference detector to generate a phase difference signal having a pulse width corresponding to a phase difference, a first capacitor to be charged with an electric charge, a second capacitor including capacitance N times the capacitance of the first capacitor, the N being a real number larger than 1, a comparator to compare a charge voltage of the first capacitor and a charge voltage of the second capacitor, a first charge controller to continue to charge the second capacitor until the comparator detects that the charge voltage of the second capacitor has reached the charge voltage of the first capacitor or more, and a first phase difference arithmetic unit to operate the phase difference between the first signal and the second signal.
US10218361B2 Low-noise oscillator amplitude regulator
A frequency generation solution controls an oscillator amplitude using two feedback paths to generate high frequency signals with lower power consumption and lower noise. A first feedback path provides continuous control of the oscillator amplitude responsive to an amplitude detected at the oscillator output. A second feedback path provides discrete control of the amplitude regulating parameter(s) of the oscillator responsive to the detected oscillator amplitude. Because the second feedback path enables the adjustment of the amplitude regulating parameter(s), the second feedback path enables an amplifier in the first feedback path to operate at a reduced gain, and thus also at a reduced power and a reduced noise, without jeopardizing the performance of the oscillator.
US10218355B2 Power supply circuit and control method thereof
A power supply circuit according to an embodiment of the invention includes: voltage sources; voltage control circuits that boost an input voltage; and a voltage source connection switch that connects at least one of the voltage sources to one of the voltage control circuits. For example, the voltage source connection switch connects, to the voltage control circuit, a voltage source having a voltage lower than a predetermined reference voltage among the voltage sources, and connects, to the voltage control circuit, a voltage source having a voltage equal to or higher than the determined reference voltage among the voltage sources.
US10218352B2 Semiconductor integrated circuit
A semiconductor integrated circuit includes an output circuit driven by a power voltage across a first and a second node. A control circuit is driven by the power voltage to control output a digital signal at a pad terminal, a logic value of the signal being set by a core circuit connected to the output circuit. The digital signal causes a voltage at the first node to be high and a voltage at the second node to low when a predetermined power voltage higher than a withstanding voltage of the output circuit is applied across the first and second nodes. The control circuit controls voltages across terminals of switching elements in the output circuit to be less than their withstanding voltages and to prevent current flowing from the pad terminal to the output circuit when the first power node is in a high impedance state.
US10218351B2 Parallel driving circuit of voltage-driven type semiconductor element
A PCH driving section of a gate driving circuit applies a high level driving voltage that can be changed by a high side pre-driver to a gate of a P-channel MOSFET connected between a high potential side terminal and a high side driving terminal. An NCH driving section applies a low level driving voltage to a gate of an N-channel MOSFET connected between a low side driving terminal and a low potential side terminal using a low side pre-driver. The low potential side terminal is provided separately from a ground terminal.
US10218350B2 Circuit with transistors having coupled gates
A circuit can include a first transistor including a source and a gate; a second transistor including a drain and a gate, wherein the source of the first transistor is coupled to the drain of the second transistor; and a switchable element. In one embodiment, a first current-carrying terminal of the switchable element is coupled to the gate of the first transistor, and a second current-carrying terminal of the switchable element is coupled to the gate of the second transistor. In another embodiment, the switchable element is coupled to the gate of the first transistor and includes a first selectable terminal of the switchable element coupled to a source of the second transistor, and a second selectable terminal of the switchable element coupled to the gate of the second transistor. In a particular embodiment, the circuit can be a cascode circuit.
US10218347B2 High frequency switch
A high frequency switch includes a first signal transferring unit configured to transfer a high frequency signal from a first port to a common port, and a second signal transferring unit configured to transfer the high frequency signal from the common port to a second port. The high frequency switch also includes an electrostatic discharge (ESD) protecting unit including a protective transistor positioned between the common port and a ground and a diode element positioned between a control terminal of the protective transistor and the first port.
US10218345B2 High-side gate drive circuit, semiconductor module, and three-phase inverter system
A high-side gate drive circuit includes pulse generating circuits that generate a first pulse synchronized with an input signal, and level shift circuits that shift a level of a reference voltage for the first pulse to a power supply voltage of a high-side switching element. The level shift circuits include MOSFETs to be driven by the first pulse. The high-side gate drive circuit includes a mask signal generating circuit that generates a mask signal that becomes a high level in a period in which source potential of the MOSFETs becomes a high level, and reshot circuits that input, when the first pulse is input into the level shift circuits during a mask period that is a period in which the mask signal is a high level, a second pulse into the level shift circuits after the mask period.
US10218342B2 System and method for duty cycle correction
Apparatuses and methods for correcting a duty cycle of a clock signal are described. An example apparatus includes: a duty cycle corrector (DCC) that receives an input clock signal and a control signal and produces an output clock signal responsive, at least in part, to the input clock signal and the control signal; a circuit that divides a frequency of the input clock signal by a positive even integer and generates an intermediate clock signal; and a phase detector that generates the control signal responsive, at least in part, to a difference in phase between the output clock signal and the intermediate clock signal.
US10218334B2 Acoustic wave device
An acoustic wave device includes: a substrate; an acoustic wave resonator that is formed on the substrate; a first wiring line that is formed on the substrate and is electrically coupled to the acoustic wave resonator; and a second wiring line that is electrically coupled to the first wiring line, at least a part of the second wiring line being formed immediately above the acoustic wave resonator across an air gap.
US10218333B2 Microelectromechanical resonator
A moveable micromachined member of a microelectromechanical system (MEMS) device includes an insulating layer disposed between first and second electrically conductive layers. First and second mechanical structures secure the moveable micromachined member to a substrate of the MEMS device and include respective first and second electrical interconnect layers coupled in series, with the first electrically conductive layer of the moveable micromachined member and each other, between first and second electrical terminals to enable conduction of a first joule-heating current from the first electrical terminal to the second electrical terminal through the first electrically conductive layer of the moveable micromachined member.
US10218331B2 Quadrature hybrid with multi-layer structure
The disclosure provides a quadrature hybrid. The quadrature hybrid has a first, second, third and fourth ports. The quadrature hybrid comprises: a substrate having a plurality of dielectric layers; a first, second and third capacitors, each capacitor having a first predetermined number of layers each being arranged on one of the plurality of dielectric layers; and a first, second, third and fourth inductors, each inductor having a second predetermined number of layers each being arranged on one of the plurality of dielectric layers.
US10218323B2 Differential amplifier, receiver, and circuit
A differential amplifier which does not have an effect of noise resistance deterioration, waveform distortion, and a lower bandwidth while having a wide input range is realized. The differential amplifier does not cause deterioration in a signal quality due to an increase in an input load, and it is not necessary to additionally provide a configuration for generating a reference voltage. The differential amplifier includes a differential amplification circuit and an output circuit for amplifying and outputting a differential output from the differential amplification circuit. The differential amplification circuit includes a first conductive type first differential pair which supplies output currents according to a positive phase input signal and a reverse phase input signal to the output circuit, a second conductive type second differential pair which supplies output currents according to a positive phase input signal and a reverse phase input signal to the output circuit, a detector which detects an operation state of a differential pair, and an alternative current supplying circuit which supplies an alternative current for the output current of the differential pair which has been turned off to the output circuit.
US10218320B1 Vacuum tube audio amplifier
The present invention provides a vacuum tube audio amplifier which includes an audio pre-amplifying portion and an audio output transforming portion. The audio pre-amplifying portion includes an equalizer for enhanced sound quality and amplifies an audio signal, which is subsequently transmitted to the audio output transforming portion. Furthermore, the audio output transforming portion includes an audio output transformer which includes a plurality of stacked E-shaped silicon steel sheets and a plurality of stacked I-shaped silicon steel sheets, wherein the stacked E-shaped silicon steel sheets and the stacked I-shaped silicon steel sheets have a same height which is smaller than or equal to 48 mm.
US10218319B2 Radio frequency (RF) amplifiers with voltage limiting using non-linear feedback
Radio Frequency (RF) amplifiers with voltage limiting using non-linear feedback are presented herein. According to one aspect, an RF amplifier comprises an amplifier circuit having an input terminal and an output terminal and a non-linear feedback circuit having an input terminal and an output terminal. The input terminal of the non-linear feedback circuit is connected to the output terminal of the amplifier circuit and the output terminal of the non-linear feedback circuit is connected to the amplifier circuit to reduce the gain of the amplifier circuit when an RF voltage swing present at the input terminal of the non-linear feedback circuit exceeds a predefined threshold. In one embodiment, the output terminal of the non-linear feedback circuit is connected to the input terminal of the amplifier circuit. In another embodiment, the output terminal of the non-linear feedback circuit is connected to a bias circuit of the amplifier circuit.
US10218317B2 High-frequency amplifier module
A high-frequency amplifier module includes a semiconductor substrate and an insulating substrate. The semiconductor substrate includes multiple emitter electrodes, each of which is coupled to the emitter of a corresponding one of high-frequency amplifying transistors. The insulating substrate includes a common ground electrode, ground terminal electrodes, and thickness-direction coupling electrodes. The common ground electrode is formed on or near the front surface of the insulating substrate, and is joined to the emitter electrodes. The ground terminal electrodes are formed on the back surface of the insulating substrate. The thickness-direction coupling electrodes couple the common ground electrode to the ground terminal electrodes.
US10218311B2 Multi-mode power amplifiers with phase matching
Apparatus and methods for multi-mode power amplifiers are provided herein. In certain configurations, a wireless device includes a multi-mode power amplifier including a plurality of amplification paths electrically connected in parallel with one another. The plurality of amplification paths includes a first amplification path including an input stage of a first stage type and an output stage of a second stage type, and a second amplification path including an output stage of the second stage type. The first stage type provides non-inverting gain and the second stage type provides inverting gain. The wireless device further includes a transceiver that provides a radio frequency signal to the multi-mode power amplifier, and that operates the multi-mode power amplifier in a selected power mode chosen from a plurality of power modes based on selectively activating one or more of the plurality of amplification paths.
US10218307B2 Solar panel junction boxes having integrated function modules
A connection box for solar panels to enable the use of multiple types of passive and active covers for different functionalities in the junction box built into the panel to which the connection box is fixedly attached.
US10218306B2 Apparatus for securing a solar panel rail guide to a support bracket
In various representative aspects, an assembly for securing a support bracket to rail guide used for mounting and installing solar panels is provided. More specifically, the assembly provides a novel and improved nut with a serrated surface in combination with a t-bolt with a serrated surface that is capable of penetrating the respective oxidation surface layers of the bracket and the rail guide when installed. When installed, provides a mechanism for using the bracket to connect the rail guide to a flashing that is typically installed on a roof. An alternate embodiment of the nut also includes rotational and vertical stabilizing features that prevent the nut from moving along the bracket once it is secured. By employing the apparatus at various locations along the roof in a linear fashion, the rail support structure can be properly installed so that an array of solar panel modules to be installed.
US10218304B2 Roof mounting system
A roof mount assembly mounts a structure to a roof having a rafter and a substrate supported by the rafter. The roof mount assembly includes a piece of flashing positioned on the substrate. The flashing includes a first surface, a second surface opposite the first surface and an aperture extending through the flashing. A fastener extends through the flashing aperture. A bracket is connected to the flashing via the fastener, and the bracket is sized to support at least one roof-mounted structure on the roof. A seal is positioned between the flashing aperture and the fastener. The seal is sized to form a water-tight seal with the aperture to inhibit flow of fluid through the aperture. The seal includes a first portion and a second portion, in which the first portion is positioned to abut the flashing first surface and the second portion is positioned to extend through the aperture.
US10218302B2 Controller and control method for electric motor
To provide a controller and a control method for an electric motor including plural energization systems each composed of an inverter and coils corresponding to plural phases. The controller performs first diagnosis processing for detecting an abnormality in each system under energization control, and second diagnosis processing for detecting an abnormality in each system not under energization control. When the first diagnosis processing detects an abnormality in one system and the second diagnosis processing detects no abnormality in the one system or when the first diagnosis processing detects an abnormality in one system to thereby stop energization control over the one system and in such a state, an abnormality is detected in another system, the energization control over the one system is restarted to drive the electric motor. It is therefore possible to avoid stopping output from a normal system when some of the systems have an abnormality.
US10218301B1 System and method for speed sensorless motor drives
A motor drive of an induction motor includes a motion controller to provide a reference signal and a memory to store a transformed model relating dynamics of a transformed state of the motor with measurements through parameters of transformed model including unknown parameters. The transformed state is a function of an electromagnetic state of the motor and parameters of transformed model. The dynamics of the transformed state is defined by a sum of components, each component is a linear function of the transformed state and at least one of the unknown parameters of the transformed model. The motor drive also include a motor controller to produce an estimate of speed and flux of the motor based on measurements and the transformed model, and to produce a reference voltage to track the reference signal based on the estimate of the speed and the flux of the motor.
US10218300B2 Transformer phase permutation causing more uniform transformer phase aging and general switching network suitable for same
A method includes determining whether transformer phases should be permuted. The method includes, responsive to a determination that the transformer phases should be permuted, permuting the transformer phases, based on historical aging information of transformer input phases, to cause transformer input phases with higher ages to be connected to transformer output phases with lower output loads and transformer input phases with lower ages to be connected to transformer output phases with higher output loads. Multiple apparatus and program products are also disclosed.
US10218299B2 Phase voltage detection circuit and power generation control device
An object of this invention is to obtain a phase voltage detection circuit that can detect a phase voltage signal reliably even when a leak current flows therein and a DC bias voltage of the phase voltage signal varies. A phase voltage detection circuit that detects a phase voltage signal generated by an armature coil of an AC power generator includes a peak hold circuit that determines an envelope of the phase voltage signal using an operational amplifier, a voltage offsetting circuit that shifts an output voltage from the peak hold circuit by a preset offset amount, and a comparator that compares the phase voltage signal with an output voltage from the voltage offsetting circuit, and outputs a phase voltage detection signal.
US10218298B2 Spillover of reactive current to line side converter
Systems and methods for controlling reactive current output of a line converter in a power system are provided. In one example embodiment, a method includes receiving a margin signal determined based at least in part on a stator current margin or a rotor current margin. The method includes determining a spillover margin based at least in part on the margin signal. The method includes determining an adjusted spillover margin using a spillover gain. The method includes determining a reactive current command for a line converter based at least in part on the adjusted spillover margin. The method includes controlling the output of the reactive current by the line converter based at least in part on the reactive current command. The spillover gain is variable based at least in part on a maximum line converter current.
US10218295B2 Motor drive controller and method for controlling motor
A motor drive controller includes: a motor drive unit; and a lock energization control circuit configured to control the motor drive unit to cause a lock current for holding the rotor at a predetermined lock position to flow from the motor drive unit to the drive coils for lock energization duration before rotation of the motor is started. The lock energization control circuit includes: a first lock energization unit that controls the motor drive unit such that a magnitude of the lock current becomes a first predetermined value when first predetermined duration has elapsed after the lock energization duration is started; and a second lock energization unit that controls the motor drive unit such that the magnitude of the lock current becomes a second predetermined value smaller than the first predetermined value when the lock energization duration is terminated after the first predetermined duration has elapsed.
US10218290B2 Inverter having at least one inverter bridge between two busbars
An inverter has an inverter bridge connected between two DC busbars on the input side and connected to an AC output on the output side. The two DC busbars run, in a manner overlapping one another, in planes which are parallel to one another. The inverter bridge has a subcircuit having a plurality of semiconductor switches between the AC output and each DC busbar. Semiconductor modules which form the two subcircuits are connected, in a manner arranged beside one another, to the two DC busbars and to the AC output via connections. A connection element which leads to the AC output begins on that side of the DC busbar which faces the semiconductor modules in a region overlapped by the DC busbars and connects the semiconductor modules of the two subcircuits to one another there.
US10218287B2 Power conversion device
A power conversion device includes a single phase full-bridge rectification circuit, a reactor being connected to a power source in series between one of input terminals of the single phase full-bridge rectification circuit and the power source, capacitors being connected to each other in series via a connection point between output terminals of the single phase full-bridge rectification circuit, a first switch connected between the input terminal and the connection point, and a second switch connected between the input terminals.
US10218286B2 Multiple stage gate drive for cascode current sensing
A power converter includes an energy transfer element, a cascode circuit including a low voltage switch and a normally-on switch coupled to the energy transfer element, and a controller coupled to control switching of the cascode circuit. The controller includes a current sense circuit to generate a current limit signal and an overcurrent signal in response to a source signal and first and second sense finger signals from the cascode circuit, a control circuit to generate a control signal in response to the current limit signal and the overcurrent limit signal, and a drive circuit to generate a drive signal in response to the control signal to control the switching of the low voltage switch. The drive signal provided by a first stage is coupled not to fully enhance the low voltage switch, and provided by a second stage is coupled to fully enhance the low voltage switch.
US10218284B1 DC-DC power converters including a valley skipping mode and methods of operating DC-DC power converters
A DC-DC power converter includes an input, an output, a transformer, and a primary FET coupled to selectively conduct current though a primary winding of the transformer. The primary FET includes a drain that experiences multiple resonant voltage valleys during each dead-time period of the converter. The converter further includes a synchronous rectifier coupled to selectively conduct current through a secondary winding of the transformer, and a control circuit. The control circuit is configured to operate the primary FET in a valley skipping mode by turning on the primary FET during a second or subsequent one of the multiple resonant voltage valleys, and to allow a negative current in the secondary winding of the transformer before turning off the synchronous rectifier during one or more of the multiple resonant voltage valleys. Methods of operating DC-DC power converters are also disclosed.
US10218281B2 Switch mode power supplies, control arrangements therefor and methods of operating thereof
A control arrangement is disclosed for a switch mode power supply (SMPS) operable in a burst mode and comprising an opto-coupler configured to transfer, from a secondary side to a primary side of the switch mode power supply by means of an LED current, a control signal indicative of a time-varying error between a reference signal and a signal indicative of an actual value of an output parameter, the control arrangement comprising: an error amplifier configured to operate as a proportional-integrating error amplifier to determine the LED current from the time-varying; and a feedback loop configured to adjust the magnitude of the LED current between bursts by modifying the time-dependant error. A SMPS comprising such a control arrangement, and a corresponding method is also disclosed.
US10218279B2 Methods and circuitry for operating switching power supplies based on switching frequency comparison
Controllers and methods for controlling power supplies are disclosed herein. An example of a controller includes comparison circuitry operable to compare a switching frequency of the controller to a predetermined switching frequency. Voltage measuring circuitry is operable to measure the output voltage of the power supply. Circuitry is operable to disable at least one component in the power supply in response to the switching frequency being less than the predetermined switching frequency and the output voltage being greater than a predetermined output voltage.
US10218272B2 Control circuit and control method for switch power supply, and switch power supply
For controlling a switch power supply, an adjustment module produces a first control voltage by comparing a period of a switch signal with a reference period. A current source module generates a first charging current according to the first control voltage. A pulse signal generating module converts the first charging current into an on time signal or off time signal of a switch transistor. A driving module produces the switch signal according to the on time or off time signal of the switching transistor, so as to control the turn on and turn off signal of a switching transistor. A time measurement module obtains a time parameter according to the switch signal, and generates a periodic adjustment signal according to the time parameter. The adjustment module adjusts the reference period according to the periodic adjustment signal to adjust the period of the switch signal.
US10218271B2 Electric power system
An electric power system includes a direct voltage rail (101), battery elements (102-104) connected with supply-converters (105-107) to the direct voltage rail, and load-converters (111-113) for converting direct voltage of the direct voltage rail into voltages suitable for loads of the electric power system, where the supply-converters and the load-converters are connected with over-current protectors (108-110, 114-116) to the direct voltage rail. The electric power system further includes a capacitor system (117) connected to the direct voltage rail and capable of supplying fault current for switching an over-current protector into a non-conductive state in response to a fault causing a voltage drop at an electrical node connected to the direct voltage rail via the over-current protector. The capacitor system may include one or more high-capacitance electric double layer capacitors. The fault current available from the capacitor system enables a selective protection.
US10218262B1 Hybrid direct current link system for a regenerative drive
A system includes a converter operatively connected to an alternating current (AC) power source and a direct current (DC) bus, an inverter operatively connected to a motor and the DC bus, and a hybrid DC link system operatively connected between a high side and a low side of the DC bus. The converter includes a first plurality of switching devices in selective communication with each phase of the AC power source and the DC bus. The inverter includes a second plurality of switching devices in selective communication with each phase of the motor and the DC bus. The hybrid DC link system includes a ripple current control branch in parallel with an energy buffering branch.
US10218259B2 Power conversion device
In a power converter having a semiconductor switch, common-mode noise is effectively reduced by setting the common-mode inductance value of reactors which are inserted into both lines such that the resonance frequency of the combined capacity of a line-to-ground bypass capacitor and the reactors which are inserted into both lines becomes a predetermined value or more.
US10218242B2 Motor
A motor includes a rotating portion, a stationary portion, and a bearing arranged to support the rotating portion such that the rotating portion is rotatable with respect to the stationary portion. The rotating portion includes a shaft arranged to extend along a central axis, a magnet, a rotor hub arranged to extend in an annular shape around the shaft, and a flywheel fixed to the rotor hub. At least a portion of an outward surface of the rotor hub is a metal surface. The metal surface is arranged radially inward of an outer circumferential surface of the flywheel. A reflectance of the outer circumferential surface of the flywheel is lower than a reflectance of the metal surface.
US10218234B2 Electric motor with asymmetric design for improved operation
An electric motor in which at least one of the rotor and the stator has an asymmetric design is disclosed. The electric motor is divided into a number of segments, where each segment has an equal number of windings and an equal number of poles. The physical construction of each pole within a segment is identical and the number of turns of each winding within a segment is identical. The asymmetry is formed by varying the physical construction of the either the rotor or the stator within one segment from the corresponding construction of the rotor or stator in the other segments. The asymmetries are designed to improve one or more operating characteristics such as sensorless performance, torque ripple, or cogging torque in the motor.
US10218233B2 Multi-component rotor for an electric motor of an appliance
A motor for a laundry appliance includes a drive shaft coupled to a drum at a first end. The rotor frame is coupled proximate the second end of the drive shaft, where the rotor frame includes at least one polymeric material. A central hub includes a core and a perimetrical ring that extends circumferentially around the core. A plurality of recesses are defined within a planar surface of the perimetrical ring, wherein a portion of the polymeric material is received within the plurality of recesses to secure the rotor frame to the central hub.
US10218232B2 High speed electric machine
An electric machine is provided which includes a rotor disk extending along a radial direction and having a rotor flange attached to or formed integrally with the rotor disk and extending substantially along the axial direction. A plurality of rotor magnets are mounted on the rotor disk and positioned against the rotor flange. The electric machine includes a stator assembly including a tracking tooth in magnetic flux communication with the rotor magnets across an air gap. The stator assembly further includes an actuator operable with the tracking tooth to move the tracking tooth along the radial direction to adjust a height of the air gap.
US10218225B2 Wireless power transfer gate-drive power reduction
A device and circuits are provided for wireless power transfer (WPT) gate-drive power reduction. A WPT receiver circuit includes a receive coil to couple to a transmit coil of a WPT transmitter circuit. A rectification circuit is coupled to the receive coil to generate a rectified voltage. The rectification circuit is a bridge rectifier circuit including a first set of field-effect transistors (FETs). One or more gate-drive control circuits improve power dissipation of the rectification circuit by controlling drive voltages of gate terminals of the first set of FET switches after start-up of the WPT receiver circuit.
US10218224B2 Tunable wireless energy transfer systems
This application includes systems and techniques relating to wireless power transfer, such as a system including: sensing and measurement circuitry configured to process signals associated with a resonator and an impedance matching network coupled with the resonator; a PWM (pulse width modulation) generator configured to control a driving signal to drive the resonator through the impedance matching network; and a controller coupled with the sensing and measurement circuitry, the controller configured to adjust operation of the PWM generator and operation of the impedance matching network based on measured signals from the sensing and measurement circuitry.
US10218221B2 Wireless power transfer using one or more rotating magnets in a receiver
The present disclosure is directed towards wireless power transfer using one or more rotating magnets in a receiver. An exemplary embodiment provides for a system comprising a transmitter that generates a dynamic magnetic field and a receiver comprising a magnet and a coil. In operation, the magnet rotates in response to the dynamic magnetic field and induces a voltage across the coil.
US10218220B2 Wireless power transmitter and method of controlling the same
A wireless power transmitter includes a resonator configured to transmit a detection signal; a period detector configured to detect a period of oscillation of an oscillation signal caused by remnants of the detection signal; and a controller configured to determine whether an external charging object is approaching in response to a change in the period of the oscillation signal.
US10218217B2 UPS for mixed AC and DC loads
According to one aspect, embodiments of the invention provide a UPS comprising an input to receive input AC power, a bus configured to receive backup DC power, a first output configured to provide an output AC voltage derived from at least one of the input AC power and the backup DC power, a second output configured to provide an output DC voltage derived from at least one of the input AC power and the backup DC power, a first inverter coupled between the bus and a first transformer, the first transformer coupled to the input, a second inverter coupled between the bus and a second transformer, the second transformer coupled to the first output, and a controller configured to operate the second inverter to maintain the output AC voltage above a first threshold value and to operate the first inverter to maintain the output DC voltage above a second threshold.
US10218215B2 System and method for supplying uninterruptible power to a PoE device with active power negotiation and extended range
A system (10) and method for supplying uninterruptible power has active power negotiation and an extended range. The system includes a housing (12), a power supply input (14), a power source equipment input (16), a powered device output (18), an alternative power supply (20), and a control module (22). The control module (22) includes a comparator (36), a switch (38), a converter (40) and an injector (34). The injector includes a regulator (45) and power autonegotiation module (47). The injector actively manages the power to the powered device, even when the PoE available from older power source equipment differs from the PoE requirements of an updated powered device. There can also be an Ethernet switch (49) as a power source equipment extension between the powered device and the system. The Ethernet switch extends the range of the powered device from the system.
US10218208B2 Wireless power transfer system having wireless power transfer system-charger
One embodiment of the present invention can provide: a wireless power transfer system which can reduce the error of the output voltage of a DC-DC transformer, and at the same time, change the magnitude of the output voltage according to the power transfer method and efficiency; and a wireless power transfer system which can variably control an output control port in a control part, and thus actively control the output of the DC-DC transformer regardless of the characteristics of the DC-DC transformer.
US10218194B2 Lithium-based battery pack for a hand held power tool
A method for conducting an operation including a power tool battery pack. The battery pack can include a housing, a first cell supported by the housing and having a voltage, and a second cell supported by the housing and having a voltage. The battery pack also can be connectable to a power tool and be operable to supply power to operate the power tool. The method can include discharging one of the first cell and the second cell until the voltage of the one of the first cell and the second cell is substantially equal to the voltage of the other of the first cell and the second cell.
US10218190B2 Battery apparatus and cell balancing circuits
Disclosed examples include battery apparatus and balancing circuits for transferring charge between one or more of a plurality of battery cells and a second battery, in which a battery is coupled with a first winding of a transformer, and the second battery is coupled with a second transformer winding. A first transistor is turned on to allow current flow in the first winding to discharge the first battery, and then the first transistor is turned off. The resulting induced voltage in the second winding turns on a second transistor to provide flyback active charge balancing to charge the second battery. A signal from the third winding allows detection of low or zero current flow in the second winding for a controller to begin subsequent charge transfer cycles for full isolation between the first and second batteries.
US10218185B2 Device for switching a semiconductor-based switch and sensor for detecting a current change velocity at a semiconductor-based switch
A device for switching a semiconductor-based switch includes a terminal that is configured to be connected to a control terminal of the semiconductor-based switch. A controllable deactivation voltage source connected to the terminal is configured to provide, at least temporarily, a switching potential at a potential node. A control device is configured to control the controllable deactivation voltage source in a time-varying manner, such that the controllable deactivation voltage source provides the switching potential at the potential node during a switching interval. The switching potential is galvanically coupled to a supply node to which a supply potential of the control device is applied and has a lower potential value than a threshold voltage of the semiconductor-based switch. The control device is configured to control the controllable deactivation voltage source.
US10218184B2 Method for inhibiting multiple inverter stations from entering passive control mode in island state
The present invention provides a method for inhibiting multiple inverter stations from entering a passive control mode in an island state. The method includes dividing inverter stations into groups in advance; a principle for group division is dividing inverter stations whose alternating-current sides are connected to each other through an alternating-current line in a normal running condition into a group; priorities of the inverter stations are preset in each group to tune relevant fixed values of the inverter stations for island detection; a tuning principle is that an inverter station with a higher priority has a more sensitive relevant fixed value, and an island state is more easily detected for the corresponding inverter station; an inverter station for which an island state is detected can enter a passive control mode only when all the other inverter stations with priorities higher than the priority of the inverter station in the group send enabling signals.
US10218183B2 Household photovoltaic system and smart micro-grid system
The present disclosure provides a household photovoltaic system and a smart micro-grid system. The household photovoltaic system includes a photovoltaic assembly module, a household photovoltaic inverter and an AC grid. The household photovoltaic system further includes a monitoring assembly and a wireless communication assembly. The monitoring assembly includes DC-side monitoring assemblies each configured to monitor an operating parameter of an output end of the photovoltaic assembly module, and AC-side monitoring assemblies each configured to monitor an operating parameter of an output end of the household photovoltaic inverter. The wireless communication assembly includes a DC-side wireless communication assembly and an AC-side wireless communication assembly which are configured to transmit the operating parameters monitored by each DC-side monitoring assembly and each AC-side monitoring assembly to a predetermined monitoring terminal.
US10218182B2 Photovoltaic systems with voltage limiting devices
A photovoltaic system includes voltage limiting devices that are connected in series. A voltage limiting device clips a corresponding photovoltaic string to limit a voltage of the photovoltaic string. Unclipping of clipped photovoltaic strings is coordinated by a central controller or in a distributed fashion by the voltage limiting devices based on monitored string conditions.
US10218181B2 Grid frequency response
Methods, and apparatus for determining inertia within a synchronous area of an electric power grid are described. A frequency characteristic relating to a frequency of electricity flowing in the electric power grid is measured, a magnitude relating to a power flow modulation is determined based on data relating to power characteristics of one or more power units arranged to consume electric power from and/or provide real and/or reactive electric power to the electric power grid, and a frequency response characteristic associated with at least one area of the electric power grid is determined on the basis of the measured frequency characteristic and the determined magnitude characteristic. This enables frequency response characteristics within a synchronous area of the electric power grid to be easily determined.
US10218180B2 Start-up of HVDC networks
Methods and apparatus for controlling a voltage source converter to energize a DC link. A voltage order generating module generates a voltage order for controlling the voltage source converter to generate a DC voltage on the DC link. the voltage order is based on a time varying voltage reference signal. A voltage reference module, which may include a ramp generator generates the time varying voltage reference signal such that the rate of change of the voltage reference signal changes over time. The rate of change of the voltage reference signal may decrease over time, to become more gradual as the nominal operating voltage is reached to avoid over-voltages.
US10218176B2 Method and device for controlling local voltage
A method and a device for controlling a local voltage are provided. The method includes: obtaining a first voltage value of a high-voltage side bus in a local transformer substation; determining a control strategy according to a starting threshold value for a voltage enhancement control, a starting threshold value for an under-voltage load shedding and the first voltage value of the high-voltage side bus; and performing the control strategy to control a charging power of an electric vehicle charging station corresponding to the local transformer substation, so as to control the local voltage of the local transformer substation.
US10218168B2 Load side ground fault circuit interruption protection for fluid pump motor
A method is disclosed providing ground fault circuit interruption protection for a pump motor which includes determining a current difference between at least two leads located on a load side of an electromechanical device, wherein the electromechanical device is configured to mechanically drive a road, and wherein the method further comprises interrupting a flow of current in response to the current difference exceeding a threshold current difference.
US10218164B2 Method of forming wire overmold device
A wire overmold device including a carrier body having a distal end and a proximal end, a wire cap configured to engage the distal end of the carrier body, at least one of a jacketed cable and one or more wires at least partially enclosed between the wire cap and the carrier body, and an overmold formed over the proximal end of the carrier body and at least portions of the wire cap and the distal end of the carrier body, wherein the wire cap and the distal end of the carrier body protrude from the overmold.
US10218163B2 Sump junction box
A system including a sump having an inner volume and a junction box coupled to the sump. The junction box has a body defining an inner volume, and also has a first inlet and a second inlet, wherein each inlet is in fluid communication with the inner volume of the body. The junction box further has a first outlet and a second outlet, wherein each outlet is in fluid communication with the inner volume of the body such that a first wire is positionable in the first inlet and the first outlet and a second wire is positioned in the second inlet and the second outlet.
US10218159B2 Electrical distribution system including neutral connection device and methods of assembling same
An electrical distribution system is provided. The system includes a bus bar assembly including a neutral bus bar and a plurality of power bus bars. The system further includes a circuit breaker including a first end and a second end opposite the first end, the first end including a plurality of first conductive terminals electrically coupled to respective power bus bars, the second end including a plurality of second conductive terminals located a first distance from the plurality of power bus bars. The system further includes a neutral connection device including a first conductive terminal electrically coupled to the neutral bus bar, a second conductive terminal, and a conductive component, the neutral connection device second conductive terminal located a second distance from the neutral bus bar, the second distance one of greater than the first distance and equal to the first distance.
US10218158B1 Electrical power distribution assemblies including pivotable compartment component, rotatable compartment assemblies, and operational servicing methods
An electrical distribution cabinet switchgear component is disclosed. The electrical distribution cabinet switchgear component includes a compartment housing forming an internal compartment configured to contain secondary electrical components and configured to be coupled to a switchgear cabinet, a hinge assembly coupled to the compartment housing, and a wire guard coupled to the hinge assembly. Electrical distribution cabinet compartment assemblies, including the electrical distribution cabinet switchgear component and a frame connector configured to attach to a frame of a switchgear cabinet, electrical distribution cabinet assemblies, and methods of servicing electrical components located within an internal chamber of an switchgear cabinet are provided, as are other aspects.
US10218153B2 Spark plug
A spark plug includes an insulator; a center electrode; a metal shell; and a ground electrode whose base end is fixed to the metal shell. A distal end of the ground electrode includes a first surface facing the center electrode, a second surface facing a side opposite to the first surface, and an inclined surface that is inclined with respect to the second surface. A noble metal tip is partially buried in the inclined surface. A width of the inclined surface is larger than that of the noble metal tip. In this spark plug, A B is satisfied, where A is a distance from a distal end of the ground electrode to a proximal-end-side end portion of the inclined surface and B is a distance from the distal end of the ground electrode to a proximal-end-side end portion of the noble metal tip.
US10218152B1 Semiconductor laser diode with low threshold current
A group III nitride based laser light emitting device includes an n-side group III nitride based semiconductor region, a p-side group III nitride based semiconductor region, and a group III nitride based active region between the p-side group III nitride based semiconductor region and n-side group III nitride based semiconductor region. The group III nitride based active region includes first and second quantum well layers and a barrier layer between the first and second quantum well layers, the respective compositions of the first and second quantum well layers comprising different respective amounts of indium. The first quantum well is closer to the n-side group III nitride based semiconductor region than the second quantum well, the second quantum well is closer to the p-side group III nitride based semiconductor region than the first quantum well, and the first quantum well has a larger band gap than the second quantum well.
US10218151B1 Laser module package with dual colors and multi-dies
A laser module package with dual colors and multi-dies mainly includes a first PCB arranged in long shape and electrically connected to a plurality of first dies, a second PCB arranged in long shape and electrically connected to a plurality of second dies, a plurality of first collimators correspondingly disposed in a plurality of first openings, and a plurality of second collimators correspondingly disposed in a plurality of second openings. A plurality of first reflectors correspondingly reflects laser beams emitted from the first dies to the first collimators and a plurality of second reflectors correspondingly reflects laser beams emitted from the second dies to the second collimators; or having a plurality of first metal pieces fixing corresponding first dies for the laser beams emitted therefrom to go through the corresponding first collimators and a plurality of second metal pieces fixing corresponding second dies for the laser beams emitted therefrom to go through the corresponding second collimators.
US10218146B2 Laser crystal
The present disclosure provides a method of optimising an optical system of a mode-locked laser oscillator or a regenerative, multi-pass or single pass amplifier. The method may include the steps of identifying crystallographic axes of an active laser gain medium crystal, cutting the crystal, and orienting the crystal in the optical system in a predetermined orientation relative to a propagation vector of a laser pulse depending on the required output of the optical system.
US10218145B1 Vortex laser generation device in degenerate cavity with spiral phase element and vortex laser generation method
A vortex laser generation device in a degenerate cavity with a spiral phase element and a vortex laser generation method are provided. The vortex laser generation device has a degenerate cavity, and the degenerate cavity has a resonator mirror, a gain medium, an optical element, and an output coupler. The off-axis beams are formed in multiple pass transverse modes to resonate by disposing an optical element in the degenerate cavity, so that a vortex laser with orbital angular momentum can be generated.
US10218140B2 Laser security interlocking device and corresponding method
The disclosed technology provides a laser security interlocking device and a corresponding method. In one aspect, an example laser security interlocking device includes a housing, a laser capable of emitting laser light in the housing and a laser light-emitting interlocking circuit, with the housing including a door capable of being opened or closed. When the door is closed, the housing can define an enclosed space within which the laser is positioned. The laser light-emitting interlocking circuit is configured to control the laser security interlocking device to automatically stop the laser emitting laser light before or while the door is opened.
US10218139B2 Twist-on wire connector and application tool therefor
A twist-on wire connector is releasably engageable with a tool. The connector and the tool are provided with complimentary driving features which allow the tool to be moved independent of and relative to the connector when the tool is moved in one rotational direction and which place the tool and connector into driving engagement when the tool is moved in the opposite rotational direction such that the connector is moved with the tool to apply the connector onto a plurality of electrical conductors. The complimentary driving features are provided to the tool and the connector by providing to each of the tool and the connector one or more engagement surfaces positioned adjacent to a slipping surface.
US10218137B2 USB car charger with integrated vehicle alarm
A USB charger includes a connector for plugging into a cigarette lighter socket of a motor vehicle. The USB charged provides one or more USB sockets and includes an integrated alarm unit for protection against intruders in the motor vehicle. The alarm unit includes a motion sensor and an acoustic alarm signal generator.
US10218135B2 Modular electrical system including back-to-back receptacle configurations and capable of providing four wire circuitry
An electrical system comprises a four-wire integral receptacle junction block assembly (530) having a first male end connector set (536) and a second male end connector set (538). The assembly (530) also includes a first duplex receptacle set (540) and a second duplex receptacle set (541). The connector sets (534, 536) are connected to a series of buss bars (570) comprising two hot buss bars (586, 616), a neutral buss bar (620), and a ground buss bar (598). The buss bars (570) can be configured so as to selectively apply incoming power to the duplex receptacle sets (540, 541) from either of two circuits.
US10218134B2 Electrical receptacle connector
An electrical receptacle connector includes a metallic shell, an insulated housing, first receptacle terminals, second receptacle terminals, a shielding plate, and a terminal organizer. The insulated housing is in the receptacle cavity of the metallic shell. The first receptacle terminals are assembled with the insulated housing. The second receptacle terminals are assembled with the terminal organizer. The insulated housing and the terminal organizer are assembled with each other. The shielding plate is between the first receptacle terminals and the second receptacle terminals. The terminal organizer extends the fixation portion attaching to the front portions of the second receptacle terminals, so that the front portions of the second receptacle terminals are securely held on the tongue portion. Therefore, when the terminal organizer is deformed due to heating, the front portions of the second receptacle terminals can be still fixed on the tongue portion without being deflected upwardly.
US10218133B2 Distal connector assemblies for medical lead extensions
Distal connector assemblies that are on the distal end of medical lead extensions provide increased rigidity by including a rigid holder that contains the electrical connectors. The electrical connectors are separated within the rigid holder by insulative spacers that may be individual items or may be formed from a compliant carrier that the electrical connectors may reside within where the carrier is positioned within the rigid holder. The rigid holder may also contain a set screw block defining set screw bore or the rigid holder may include an integral portion that defines a set screw bore. The integral portion may include a slot to allow a molding pin loaded with the electrical connectors and other components to be dropped into a cavity of the rigid holder. An overmold may be present to surround the rigid body containing the electrical connectors and insulative spacers.
US10218129B1 Overvoltage protection for universal serial bus type-C (USB-C) connector systems
An electronic device includes a first switch configured to connect a first configuration channel (CC) terminal of a Universal Serial Bus Type-C (USB-C) controller to a VCONN supply of the USB-C controller. The first CC terminal of the USB-C controller being is to directly connect to the first CC terminal of a USB-C receptacle. The electronic device includes a second switch configured to connect a second CC terminal of the USB-C controller to a control channel physical layer logic (PHY) of the USB-C controller. The second CC terminal is to directly connect to the second CC terminal of the USB-C receptacle. The electronic device includes an overvoltage detection and protection circuit configured to deactivate the first switch or the second switch when a voltage exceeding a predetermined threshold is detected. The first switch and the second switch are each coupled to the overvoltage detection and protection circuit.
US10218125B2 Electrical connector having interlocked shell and housing portions and stacked grounding terminals
An electrical connector includes: a contact module comprising an insulative housing having a base portion and a tongue portion, and a number of conductive terminals affixed to the insulative housing and each comprising a contacting portion exposed to a surface of the tongue portion, a soldering portion and a connecting portion connecting the contacting portion and the soldering portion; and a metal shell comprising a pair of locking grooves depressed forwardly from a rear surface thereof; wherein the insulative housing comprises a pair of mounting portions located at two lateral sides of a rear end thereof, the mounting portions are stuck in the locking grooves when the contact module is assembled to the metal shell along a rear-to-front direction, and a lower portion of each mounting portion is resisted against the rear surface of the metal shell.
US10218124B1 Electrical connector with terminal position assurance
An electrical connector includes a first housing with a plurality of first terminal slots. Each first terminal slot includes a first terminal lock. Each first terminal slot also includes a first end stop. The first end stops are part of the first housing. Each first terminal slot is configured to retain a first electrical terminal between the first terminal lock and the first end stop. The electrical connector also includes a first terminal position assurance. The first terminal position assurance includes a first terminal position assurance body. A plurality of first lock retainers extend from the first terminal position assurance body. The first lock retainers prevent the first terminal locks from moving to a release position. The first terminal position assurance body is located in the same plane as the first end stops.
US10218123B1 Coaxial pin connector seizure assembly
A container may be provided. The container may comprise a seizure assembly, a housing, a circuit board, and a pin connector. The seizure assembly may comprise a retainer, a pressure applicator, and a charger. The retainer may comprise a casing and a nose with a nose opening. The charger may apply a force to the pressure applicator forcing the pressure applicator into the casing. The housing may comprise a housing cavity in which the seizure assembly is disposed, a housing wall comprising a housing opening that may be congruent with the nose opening, and a housing bottom comprising a charger recess in which the charger is disposed. The circuit board may be disposed in the housing cavity and may have an extender comprising a body and a head. The pin connector may be disposed in the housing wall and have a pin disposed between the pressure applicator and the head.
US10218118B2 Connector and connector assembly having elastically deformed springs
A connector assembly that includes a first connector and a second connector. The first connector has a spring member press-fitted into a housing thereof. The second connector has a groove in a housing thereof. At the time of mating, the spring member is inserted in the groove in a mating direction to be deformed elastically in a direction intersecting the mating direction. Then, with the spring member of the first connector elastically deformed in the groove of the second connector, looseness between the housing of the first connector and the housing of the second connector is prevented.
US10218117B1 Electrical connector with assist lever
An electrical connector includes a first housing. A second housing is movable relative to the first housing. A lever is mounted on the first housing for relative rotational movement. The lever can move between a pre-stage position and a final position. The lever engages the second housing to move the second housing linearly between a pre-stage position and a seated position relative to the first housing. A lock on the first housing retains the lever in the final position relative to the first housing.
US10218113B2 Low voltage bus system
A charging module usable with a conductive bus having a center rail disposed intermediate a first conductive rail and a second conductive rail. The charging module has a base on which is disposed a centered electrical contact and a first plurality of electrical contacts. The centered electrical contact is arranged on the base such that the centered electrical contact will engage with the center rail when the housing is placed into a use position on the conductive bus. The first plurality of electrical contacts are arranged on the base along a perimeter of a first circle that is generally centered on the centered electrical contact such that at least one of the first plurality of electrical contacts will engage with the first conductive rail and at least one different one of the first plurality of electrical contacts will engage with the second conductive rail when the housing is placed into the use position on the conductive bus in any rotational orientation of the housing relative to the conductive bus over a full 360 degrees.
US10218111B2 Implantable plug connector
An implantable plug connector is provided, an inner portion of which has a number of contact surfaces which are embedded in a surface of a first substrate. An outer portion of the implantable plug connector has a number of contact surfaces embedded in at least one surface of a second substrate. The outer portion defines a space, in which the inner portion can be received in a mounting state, where, in a pre-mounting state, the contact surfaces are set back with respect to the surface of the respective substrate, and where, in a mounting state, the inner portion is pressed against the outer portion such that mutually corresponding contact surfaces come into contact with each other.
US10218109B2 Water resistant pop-up outlet
A pop-up outlet includes a lower housing configured to receive one or more conductors. A middle housing is connected to the lower housing. An upper housing is moveably connected to the middle housing. An outlet is positioned in the upper housing having an outlet body and at least one receptacle opening. A raise/lower mechanism is configured to move the upper housing with respect to the middle housing from a first position where the outlet body is positioned in the middle housing to a second position where the outlet body is exposed to a user.
US10218104B2 Connector with a spring terminal ensuring reliable connection to a mating terminal
A connector (10) includes a body portion (14), a conductive member (20) including a held portion (20A) having conductivity and held in the body portion (14), a flexible portion (20B) extending from the held portion (20A) toward a mating terminal (40) and having flexibility and a connecting portion (20C) provided on a leading end part of the flexible portion (20B) and to be connected to the mating terminal (40) by being pressed into contact with the mating terminal (40), and a spring member (60) having a spring property, held in the body portion (14) and extending from the body portion (14) toward the connecting portion (20C). The spring member (60) includes a contact portion (60C) configured to give a spring property to the connecting portion (20C) by being held in contact with the connecting portion (20C).
US10218102B2 Terminal fitting and connector
A terminal fitting that can reduce the terminal insertion force and can suppress surface oxidation of a plating film, even if the terminal fitting is exposed to a hot and humid environment, and a connector that uses the terminal fitting. The terminal fitting includes a metal base material, and the plating film. The plating film includes a Ni foundation layer, an outermost layer exposed at the outermost surface, and a Ni3Sn4 layer formed between the Ni foundation layer and the outermost layer. The outermost layer includes a Sn parent phase, and intermetallic compound that is dispersed in the Sn parent phase, and is made of (Ni0.4Pd0.6)Sn4. The intermetallic compound protrudes from the lower side of the outermost layer to the Ni3Sn4 layer side, and is partially buried in the Ni3Sn4 layer. A connector includes the terminal fitting, and a housing that holds the terminal fitting.
US10218100B2 Connector for zero-force contacting on a printed circuit board
A connector for installation on a printed circuit board a contacting part has which includes at least two contact elements, each of which can be connected, on the connection side, to an individual conductor and, on the plug-in side, to a conductive track of the printed circuit board, wherein the connector a connection part which encloses the individual conductors and, in the region of each individual conductor, has a recess, into each of which a contact element engages for the electrical connection between individual conductor and contact element. The contacting part is formed in an injection molding process, wherein at least two contact elements having an insulation-displacement connector are inserted or engaged in the contacting part or are directly encapsulated, and the connection part is formed in an injection molding process, wherein at least two individual conductors, each having a cable sheath, are thus placed in an injection molding tool and are encapsulated.
US10218097B2 Card edge connector assembly
A card edge connector assembly includes a card edge connector having a housing defining a card slot receiving a circuit card and a card guide module coupled to the housing. The card guide module has a base and a support beam extending from the base having a support surface supporting the circuit card. The card guide module has a locking arm pivotably coupled to the support beam. The locking arm has a latch at a distal end thereof latchably secured to the circuit card in a latched position to secure the circuit card in the card slot. The locking arm has an ejector engaging the circuit card and moving the circuit card in an unmating direction when the locking arm is moved to an unlatched position.
US10218095B2 Press-fit pin converters
In one example, a system for a press-fit pin converter includes a first housing coupled to a second housing to enclose a portion of a press-fit contact pin between the first housing and the second housing, where a side of the first housing provides a ball grid array (BGA) connection and a side of the second housing provides a press-fit pin connection.
US10218094B2 Connectors having a cable gripping portion
A cable connector includes an outer conductor engager, a body, a coupler, a compression sleeve, and a grounding member. The outer conductor engager is configured to receive an end of a coaxial cable. The body includes an annular ring portion coaxially aligned with the outer conductor engager along an axis, and the annular ring is configured to circumscribe the coaxial cable. The coupler is rotatably mounted relative to the outer conductor engager and the body, and the compression sleeve is disposed at an opposite axial side of the body relative to the coupler. The grounding member is configured to establish an electrical grounding path between the outer conductor engager and the coupler. The body includes a plurality of flexible fingers spaced about a periphery of the body. The flexible fingers include outer surfaces that extend radially outward from an outer surface of the connector body. As the compression sleeve is moved axially relative to the body in a direction toward the coupler, the compression sleeve urges the flexible fingers radially inward to engage an outer jacket of a coaxial cable.
US10218093B2 Thread to compress connector
A cable connector connects a coaxial cable to an interface port by an outer conductor engager, a body and a coupler. The coupler draws the body over a plurality of resilient fingers of the outer conductor engager to urge the fingers into electrical contact with a peripheral outer surface of a stripped/prepared end of a coaxial cable.
US10218088B2 Cable connector assembly
A cable connector assembly includes an insulating body, a first terminal group and a second terminal group received in the insulating body and arranged into an upper row and a lower row, a shielding sheet fixed in the insulating body and located between the first terminal group and the second terminal group, and a cable having a ground core wire. The first terminal group includes a first ground terminal, and the first ground terminal has a first soldering portion. The second terminal group includes a second ground terminal, and the second ground terminal has a second soldering portion. The ground core wire is located between the first soldering portion and the second soldering portion and is in electrical contact with the first soldering portion, the second soldering portion and the shielding sheet.
US10218087B2 Dual band MIMO antenna and wireless access point
Antenna arrays and access points are disclosed. An antenna array includes first second, third, and fourth antennas formed in a 2×2 grid on a first surface of a planar substrate. Each of the four antennas is linearly polarized in a first direction and provides a roughly cardiod radiation pattern in a plane normal to the first direction. Nulls of the cardiod radiation patterns of the first and second antennas face the third and fourth antennas, respectively, and nulls of the cardiod radiation patterns of the third and fourth antenna face the first and second antennas, respectively.
US10218085B2 Antenna system
An antenna system includes a ground element, a switch element, a first antenna, and a second antenna. The switch element is selectively closed or opened according to a control signal. The first antenna has a first feeding terminal. The first feeding terminal of the first antenna is coupled to a first signal source. The second antenna has a second feeding terminal and a grounding terminal. The second feeding terminal of the second antenna is coupled through the switch element to a second signal source. The grounding terminal of the second antenna is coupled to the ground element.
US10218084B2 Per-element power control for array based communications
An array based communications system may comprise a plurality of element processors. Each element processor may comprise a combining circuit, a crest factor circuit, and a phase shifter circuit. The combining circuit may produce a weighted sum of a plurality of digital datastreams. The crest factor circuit may be operable to determine whether the weighted sum has a power above or below a power threshold. If the power is above the power threshold, the crest factor circuit is operable to reduce the power. If the power is below the power threshold, the crest factor circuit is operable to increase the power. The phase shifter circuit may introduce a phase shift to out-of-band components of the weighted sum according to the power increase or the power decrease by the crest factor circuit.
US10218076B1 Hexagonal waveguide based circularly polarized horn antennas
A circularly polarized horn antenna can comprise a rectangular waveguide, a hexagonal waveguide connected to the rectangular waveguide, a first transition part connected to the hexagonal waveguide, and a horn connected to the first transition part. The horn can include a first corrugated inner surface, and the first transition part can include a second corrugated inner surface.
US10218073B2 Antenna with frequency-selective elements
Antenna systems have a substrate and antenna on the substrate, where the antenna has a plurality of leg elements. The plurality of leg elements comprises a conductive ink and forms a continuous path. At least one of the plurality of leg elements is individually selectable or de-selectable to change a resonant frequency of the antenna, and leg elements that are selected create an antenna path length corresponding to the resonant frequency. In some embodiments, the antennas are energy harvesters.
US10218071B2 Antenna and electronic device
An antenna includes a dielectric multilayer substrate that includes a first conductor layer and a second conductor layer different from the first conductor layer, the first conductor layer including a first conductor, the first conductor including a first split ring part, the first split ring part surrounding a first opening part and being divided by a first split part, and a power feed line that is provided on the second conductor layer, the power feed line including a first end and a second end, the first end being connected to the first split ring part, the second end spanning the first opening part and extending to a region opposing the first conductor.
US10218070B2 Method and apparatus for tuning a communication device
A system that incorporates teachings of the present disclosure may include, for example, a tuning system for a communication device having an antenna, where the tuning system includes at least one first tunable element connected with at least one radiating element of the antenna for tuning the antenna where the adjusting of the at least one first tunable element is based on at least one of a use case associated with the communication device and location information associated with the communication device, and a matching network having at least one second tunable element coupled at a feed point of the antenna, wherein the matching network receives control signals for adjusting the at least one second tunable element to tune the matching network. Additional embodiments are disclosed.
US10218063B2 Radio signal pickup from an electrically conductive substrate utilizing passive slits
Embodiments of the present application relate generally to electronic hardware, computer software, wireless communications, network communications, wearable, hand held, and portable computing devices for facilitating communication of information and presentation of media. An electrically conductive substrate, such as a sheet of metal or metal alloy, for example, includes an active antenna formed by a slot or opening formed in the substrate, and also includes at least one separate passive slot or opening (e.g., a passive slit) formed in the substrate. The active antenna may be intentionally detuned from one or more target frequencies (e.g., 802.11, 2.4 GHz, 5 GHz) such that the active antenna is not optimized (e.g., is not tuned) for the one or more target frequencies. One portion of the active antenna may be electrically coupled with a ground potential. Another portion of the active antenna may be electrically coupled with a RF receiver, transmitter, or transceiver.
US10218062B2 Wireless train communication system
A method and system for wireless communication between a moving vehicle and a remote server through at least one external mobile network are disclosed. The communication system comprises a plurality of antennas arranged on the train, and at least one router in the train for receiving and transmitting wireless data communication to and from a stationary communication server outside the train through at least one exterior mobile network via the plurality of antennas. The antennas are here window antennas, arranged integrated in or connected to windowpanes of the train. This provides very efficient communication performance, and at the same time requires almost no additional space.
US10218061B2 Wireless communications antenna and wireless communications device using the same
A wireless communications antenna includes a first coil including first conductive patterns disposed on a first layer along a first axis and a second coil including second conductive patterns disposed on a second layer along a second axis having a direction different from a direction of the first axis.
US10218059B2 Beam-steering antenna deflector
Radio transceivers comprising phased-array antennas and adjacent radio-reflective deflectors permit a scanning angle reachable by the phased-array antenna to be increased or multiplied to improve directed communications with peer transceivers located over a wider range (i.e., outside the scanning angle reachable by the phased-array alone). Embodiments may be used in wireless local area network (“WLAN”) access points (“APs”).
US10218056B2 Wireless communication device and wireless communication system
There is provided an excellent wireless communication device that can suitably perform short range communication by using a millimeter wave.Described are a method of generating a whirl of waves and its characteristic of attenuation proportional to a fourth power of a distance when the waves are in a state L=0 or L=±2. Accordingly, instead of an electric field induction antenna that cannot be used in the millimeter wave band, an initiator and a responder are both equipped with an array antenna generating the whirl of waves to perform communication by using the whirl of waves in the state characteristically attenuating in proportion to the fourth power of the distance, so that the party at the other end approaching can easily be detected while at the same time properly restricting a communication area and preventing improper connection.
US10218054B2 Antenna for device
An antenna for an electronic device is disclosed that can reduce or prevent problems such as a shock hazard and/or an Electrostatic Discharge (ESD) issue, particularly in the case when device are subjected to impact such as being dropped. The antenna includes a radiator; an antenna clip connected with a metallic housing of the electronic device; a capacitor includes a part of the antenna clip; and a feeding part and a ground for operating the antenna.
US10218049B2 Electronic device incorporated into a sheet
Among other things, a sheet has a thickness and extends in two dimensions normal to the thickness of the sheet. Within the sheet there is an electronic device having an integrated circuit and conductive elements connected to the integrated circuit. The electronic device extends in the two dimensions, the extent of the device in each of the two dimensions being greater than 3 mm.
US10218046B2 Integrated cell site sector
A cell site sector includes: a mounting frame; an RF antenna mounted to one side of the mounting frame; and at least one (RRU mounted to a second, opposed side of the mounting frame and operationally connected with the antenna. The RRU and the RF antenna have horizontal width and depth dimensions, the width dimension being greater than the depth dimension, wherein the width dimension of the RRU is generally parallel with the width dimension of the RF antenna.
US10218045B2 Serially connected transmission line sections each having a conductive shield member overlying a portion of a strip conductor
A microwave transmission line structure having a pair of ground strip conductors on a surface of a dielectric substrate structure. A signal strip conductor is disposed on the surface of the dielectric substrate structure between the pair of ground strip conductors. A solid dielectric layer is disposed over: the signal strip conductor; the upper surface of the dielectric substrate structure between sides of each one of the ground strip conductors; and the signal strip conductor. An electrically conductive shield member is disposed on the solid dielectric layer and on, and in direct contact with, upper surfaces of the pair of ground strip conductors. The structure is used on each one of a plurality of proximate microwave transmission lines formed on the substrate structure to electrically isolate the transmission line.
US10218044B2 Johnson lithium oxygen electrochemical engine
A rechargeable lithium air battery is provided. The battery contains a ceramic separator forming an anode chamber, a molten lithium anode contained in the anode chamber, an air cathode, and a non-aqueous electrolyte. The cathode has a temperature gradient comprising a low temperature region and a high temperature region, and the temperature gradient provides a flow system for reaction product produced by the battery.
US10218043B2 Dual phase battery cooling system
A cooling system for a battery cell. In one embodiment, the cooling system includes a wicking material and a first cooling liquid; a battery cell support to hold the battery cell in communication with the wicking material; a first cooling channel having a wall, the wall having an interior and an exterior surface, the interior surface of the wall defining a lumen, the exterior surface of the wall of the first cooling channel in communication with the wicking material; whereby a first cooling fluid is passed through the lumen of the first cooling channel, whereby the first cooling liquid in the wicking material vaporizes in response to heat radiating from the battery cell, and whereby the vaporized first cooling liquid condenses upon contact with the wall of the first cooling channel and is wicked by the wicking material.
US10218042B2 Heat dissipating device for an electrochemical storage device
A system having an electrochemical storage device is provided including an anode chamber filled with anode material and cathode chamber filled with cathode material. The anode chamber is separated from the cathode chamber by ion-conducting solid body electrolytes. The anode chamber is defined on one side by the solid body electrolytes, and on the other side by a wall surrounding the solid body electrolytes. The device has a head part to receive and/or supply electric energy, base part arranged opposite the head part and at least one lateral part having at least one wall between the head and base part. At least one heat dissipating device receives heat from the electrochemical storage device via a first surface and/or to supply heat thereto and to supply and/or receive heat via a second surface. A receiving section is in thermal contact with the heat dissipating device.
US10218038B2 Battery sensor positioner, battery sensor assembly equipped with same, and battery sensor
A battery sensor assembly (10) is provided with a positioner (11) and a battery sensor (1). The positioner (11) is provided with a sensor-fixing part (29) for fixing the battery sensor (1) and a rotation-blocking part (31) capable of coming in contact with a side surface (2b) of a battery (2). The sensor-fixing part (29) is provided with a fitting section (30). The fitting section (30) allows a casing (8) of the battery sensor (1) to be inserted from a prescribed insertion direction and fits to the inserted battery sensor (1). Additionally, the rotation-blocking part (31) is provided with a reinforcement rib.
US10218037B2 Method and device for regenerating nickel metal hydride battery
A method for regenerating a nickel metal hydride battery is provided. The nickel metal hydride battery includes a hydrogen absorbing alloy that serves as a negative electrode material and a safety valve that opens when an internal pressure of a battery case is greater than or equal to a predetermined pressure. The method includes connecting a plurality of nickel metal hydride batteries in parallel. Each nickel metal hydride battery is formed by integrating one or more battery cells. The method further includes overcharging the nickel metal hydride batteries by supplying current from a charge unit that is connected in parallel to the nickel metal hydride batteries. The method further includes, when each nickel metal hydride battery is overcharged, restoring a discharge reserve of a negative electrode by releasing at least some of an oxygen gas generated at a positive electrode out of the battery case through the safety valve.
US10218028B2 Elevated temperature Li/metal battery system
In accordance with one embodiment an electrochemical cell system includes a housing, at least one electrochemical cell within the housing and including an anode including a form of lithium, and an ionic liquid electrolyte within a cathode, the cathode separated from the anode by a solid separator impervious to the ionic liquid electrolyte, a temperature sensor within the housing, and an environmental controller at least partially positioned within the housing and configured to maintain a temperature within the housing at least 50° C. above ambient based upon input from the temperature sensor.
US10218023B2 Process for producing fluorinated ion exchange resin fluid
To provide a process for forming a polymer electrolyte membrane having good durability and few wrinkles, a polymer electrolyte membrane capable of forming a catalyst layer, or a catalyst layer; a process for producing a fluorinated ion exchange resin fluid, or a paste for forming a catalyst layer, which can be used for such a forming process; and a process for producing a membrane/electrode assembly for a polymer electrolyte fuel cell having good durability and power generation properties. A fluorinated ion exchange resin fluid obtained by subjecting a powder or pellets of a fluorinated ion exchange resin having cation exchange groups to hydrogen peroxide treatment, followed by mixing with a solvent, is used.
US10218009B2 Coolant purification
A fuel cell system comprising a fuel cell stack is disclosed. An ozone generator is configured to introduce ozone into a coolant in the fuel cell system. A deionization apparatus is coupled to the fuel cell stack. A bypass conduit is arranged in parallel with the deionization apparatus. A controller is configured to control flow of the coolant to the fuel cell stack through either the deionization apparatus or the bypass conduit based on the operating state of the ozone generator.
US10218005B2 Secondary battery, battery pack, and vehicle
According to one embodiment, a secondary battery is provided. The secondary battery includes a positive electrode, a negative electrode, and an electrolyte including a water-containing solvent and a lithium ion. The negative electrode includes an aluminum-containing negative electrode current collector and a boehmite-containing cover layer, and the boehmite-containing cover layer is provided on at least a part of a surface of the negative electrode current collector, and has a thickness of 10 nm to 1000 nm.
US10218004B2 Electrolytic copper foil for lithium secondary battery and lithium secondary battery comprising the same
An electrolytic copper foil for a lithium secondary battery has yield strength of 30 kgf/mm2 to 60 kgf/mm2, a surface area ratio of 1 to 3, and a weight deviation of 3% or below.
US10218003B2 Anode and secondary battery including the same
An anode and a secondary battery including the anode, which can improve charge and discharge efficiency and can reduce or suppress precipitation of metal ions, are provided. The anode includes a negative electrode active material layer on a current collector, the negative electrode active material layer including a negative electrode active material, a binder, and a conductive material. The negative electrode active material includes at least one pore on a surface thereof, and the conductive material is located at the pore of the negative electrode active material.
US10218001B2 Olivine oxide-containing positive active material for rechargeable lithium battery with improved electro-conductivity, rate characteristics and capacity characteristics, method for manufacturing the same, and rechargeable lithium battery including the same
A rechargeable lithium battery with improved electro-conductivity and improved rate characteristics and capacity characteristics is disclosed. The battery includes a positive active material that includes an olivine-type composite oxide; and a metal or an alloy thereof adhered to a surface of the olivine-type composite oxide, wherein the metal or the alloy is selected from the group consisting of germanium (Ge), zinc (Zn), gallium (Ga), and a combination thereof.
US10218000B2 Positive electrode active material for nonaqueous electrolyte secondary battery
A positive electrode active material for nonaqueous electrolyte secondary batteries is provided with which increased DCR after cycling can be controlled. A positive electrode active material according to an aspect of the present invention is secondary particles of a lithium transition metal oxide formed through the aggregation of primary particles of the oxide, the lithium transition metal oxide containing at least Ni. Secondary particles of a rare earth compound formed through the aggregation of particles of the rare earth compound are adhering to depressions each created between adjacent two of the primary particles on the surfaces of the secondary particles. The secondary particles of the rare earth compound are adhering to both of the two adjacent primary particles at the depressions.
US10217995B2 Active material for battery, nonaqueous electrolyte battery, and battery pack
An active material containing a monoclinic β-type titanium oxide or a monoclinic β-type titanium complex oxide. A carbonate ion is disposed on at least a part of a surface of the active material. The active material has a peak belonging to a carbonate ion in at least a. region of 1430±30 cm−1, 1500±30 cm−1 and 2350±30 cm −1 in an infrared diffuse reflection spectrum obtained using a Fourier transform infrared spectrophotometer.
US10217981B2 Battery module
A battery module includes a plurality of battery cells aligned in a first direction and a housing portion fixing the plurality of battery cells, wherein central parts of the plurality of battery cell are concave, and wherein first adhesive members are between adjacent battery cells.
US10217977B2 Battery pack with cells of different capacities electrically coupled in parallel
The disclosed embodiments provide a battery pack for use with a portable electronic device. The battery pack includes a first set of cells with different capacities electrically coupled in a parallel configuration. Cells within the first set of cells may also have different thicknesses and/or dimensions. The first set of cells is arranged within the battery pack to facilitate efficient use of space within a portable electronic device. For example, the first set of cells may be arranged to accommodate components in the portable electronic device.
US10217974B2 Sealant film for packaging material of power storage device, packaging material for power storage device, and power storage device
A sealant film has a structure made of a laminated body of two or more layers. The laminated body includes a first resin layer 7 containing 50 mass % or more of a random copolymer containing propylene and a copolymer component other than propylene as copolymer components, and a second resin layer 8 formed by a mixed resin containing a first elastomer-modified olefin based resin having a melting point of 155° C. or higher and a crystal melting energy of 50 J/g or more, and a second elastomer-modified olefin based resin having a melting point is 135° C. or higher and a crystal melting energy of 30 J/g or less. With this structure, when the inner pressure of a power storage device is excessively increased, breakage (separation) occurs inside the sealant layer, causing gas-releasing, which in turn can prevent bursting of the packaging material due to the inner pressure increase.
US10217968B2 Electro-optical panel including stretch film
An electro-optical panel includes: an electro-optical element emitting a light or adjusting a transmittance of a light; and a stretch film including a polymeric material, wherein a main stretching axis direction of the stretch film is disposed within a range of ±30° with respect to a side of the electro-optical panel.
US10217965B2 Organic light emitting diode device and display apparatus
An organic light emitting diode includes a glass substrate, a first electrode, an organic light emitting layer, a second electrode, and a light extracting enhanced layer below the glass substrate or on the second electrode. Material of the light extracting enhanced layer has a first material with a first index of refraction and a second material with a second index of refraction.
US10217963B2 Display device and manufacturing method thereof
A display device includes a flexible substrate, a display element unit disposed on a first surface of the flexible substrate and including a thin-film transistor (TFT) and an organic light-emitting element coupled to the TFT, and a protective layer comprising an organic material and disposed directly on a second surface of the flexible substrate, the second surface being opposite to the first surface. Impact resistance of the display device can be strengthened by lowering of the neutral plane through the use of the protective layer.
US10217960B2 OLED encapsulation method
The present invention provides an OLED encapsulation method, which comprises frit coated on a cover plate to correspond to an outer circumference of an OLED device and a water-contact-to-release-heat layer formed on a backing plate to correspond to the frit. The cover plate and the backing plate are laminated together to make the frit contacting the water-contact-to-release-heat layer. Afterwards, a water-contained gas is introduced to cause reaction of the water-contact-to-release-heat layer to release heat so as to heat and melt the frit for bonding the cover plate and the backing plate, and compared to the prior art, there is no need of a laser based operation so that the cost of laser facility can be saved, the manufacturing cost can be reduced, and also, the heat generated by the water-contact-to-release-heat layer is controllable and uniform, so that the effect of encapsulation is good and product yield is high.
US10217957B2 Organic EL display device and method of manufacturing organic EL display device
An organic EL display device includes: a first support member having flexibility; an organic EL layer layered in a matrix form on the first support member; and a second support member disposed opposite the first support member with the organic EL layer interposed between the first support member and the second support member. Grooves on the first support member and grooves on the second support member overlap with one another. As a result, flexibility of the organic EL display device can be enhanced.
US10217954B2 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
A compound of the invention is represented by a formula (1) below. In the formula (1), Cz is represented by a formula (1a) below and Az is represented by a formula (11) below.
US10217952B2 Nano-scale transistor
The present disclosure relates to a nano-scale transistor. The nano-scale transistor includes a source electrode, a drain electrode, a gate electrode and a nano-heterostructure. The nano-heterostructure is electrically coupled with the source electrode and the drain electrode. The gate electrode is insulated from the nano-heterostructure, the source electrode and the drain electrode via an insulating layer. The nano-heterostructure includes a first carbon nanotube, a second carbon nanotube and a semiconductor layer. The semiconductor layer includes a first surface and a second surface opposite to the first surface. The first carbon nanotube is located on the first surface, the second carbon nanotube is located on the second surface.
US10217941B2 Method for producing an organic light-emitting diode and organic light-emitting diode
A method for producing an organic light-emitting diode and an organic light-emitting diode are disclosed. In an embodiment, the method includes providing a substrate with a continuous application surface, generating multiple adhesion regions on the application surface, the adhesion regions being completely surrounded by the application surface, applying metal nanowires over the entire surface of the application surface, removing the metal nanowires outside of the adhesion regions by a washing process using a solvent such that the remaining metal nanowires completely or partly form a light-permeable electrode of the organic light-emitting diode, and applying an organic layer sequence onto the light-permeable electrode.
US10217939B1 Substrate and evaporation device used for manufacturing organic light emitting display panel
The present disclosure provides a substrate and an evaporation device used for manufacturing an organic light emitting display panel. The substrate includes a base plate; a plurality of layer formation areas on the base plate, wherein the layer formation areas are where an organic light emitting layer is formed; a plurality of first spacers disposed on the base plate at a clearance region between the layer formation areas; and a plurality of second spacers disposed on the base plate at outer peripheries of the layer formation areas, wherein each of the second spacers includes a photoresist material and a plurality of magnetic polymer microspheres.
US10217934B2 Method for manufacturing magnetic memory cells
The present invention is directed to a method for manufacturing a memory cell that includes a magnetic memory element electrically connected to a two-terminal selector. The method includes the steps of depositing a selector film stack on a substrate; depositing a magnetic memory element film stack on top of the selector film stack; etching the magnetic memory element film stack with an etch mask formed thereon to remove at least an insulating tunnel junction layer in the magnetic memory element film stack not covered by the etch mask, thereby forming a magnetic memory element pillar; depositing a first conforming dielectric layer over the magnetic memory element pillar, including a sidewall thereof, and surrounding surface; etching a portion of the first conforming dielectric layer covering the surrounding surface to form a first protective sleeve around at least the insulating tunnel junction layer of the magnetic memory element pillar; and etching the selector film stack using the etch mask and the first protective sleeve as a composite mask to form a memory cell pillar.
US10217931B2 Magnetic element, skyrmion memory, solid-state electronic device, data-storage device, data processing and communication device
Provided is a magnetic element which can generate a skyrmion by a stacked film including a magnetic layer and a non-magnetic layer, and a skyrmion memory to which the magnetic element is applied and the like. Provided is a magnetic element for generating a skyrmion, the magnetic element comprising a two-dimensional stacked film, wherein the two-dimensional stacked film is at least one or more multiple layered films including a magnetic film and a non-magnetic film stacked on the magnetic film. Also, provided is a skyrmion memory including a plurality of the magnetic elements stacked in a thickness direction.
US10217925B2 Method for producing an electronic structural element as a stack
A method of forming an electronic structural element having a stack including first and second electrode layers arranged alternatively with material layers is disclosed. A stack is formed with the first electrode layers projecting beyond a first lateral side of the stack and the second electrode layers spaced radially inward from the first lateral side. A first contacting structure that contacts each first electrode layer is applied directly to the first side of the stack, which contacting structure embeds such the projecting first electrode layers in an electrically conductive manner. A second contacting structure is formed by exposing the first and second electrode layers at a second side of the stack, forming, by an additive method, a solvent-free insulating structure that electrically insulates the first electrode layers, and applying an electrically conductive material over the solvent-free insulating structure to form the second contacting structure that contacts each second electrode layer.
US10217921B2 Display apparatus
A display apparatus is provided. The display apparatus includes a display panel, a chassis configured to support the display panel, a backlight unit configured to be installed on the chassis, and an electricity generator configured to use the backlight unit as a heat source to generate electricity. The electricity generator includes a heat transfer unit which contacts the backlight unit, at least one heat storage unit which contacts the heat transfer unit, and at least one thermoelectric device comprising a heat generator and a heat absorber contacting the heat transfer unit. The at least one thermoelectric device absorbs heat, which is generated from the backlight unit, through the heat transfer unit in response to the backlight unit being driven and absorbs heat from the at least one heat storage unit through the heat transfer unit in response to the backlight unit not being driven.
US10217915B2 Optoelectronic semiconductor component
An optoelectronic semiconductor device includes a carrier having a carrier top side, at least one optoelectronic semiconductor chip arranged at the carrier top side and having a radiation main side remote from the carrier top side, at least one bonding wire, at least one covering body on the radiation main side, and at least one reflective potting compound surrounding the semiconductor chip in a lateral direction and extending from the carrier top side at least as far as the radiation main side, wherein the bonding wire is completely covered by the reflective potting compound or completely covered by the reflective potting compound and the covering body, the bonding wire is fixed to the semiconductor chip in an electrical connection region on the radiation main side, and the electrical connection region is free of the covering body and covered partly or completely by the reflective potting compound.
US10217912B2 Light emitting diode module for surface mount technology and method of manufacturing the same
An LED is provided to include: a first conductive type semiconductor layer; an active layer positioned over the first conductive type semiconductor layer; a second conductive type semiconductor layer positioned over the active layer; and a defect blocking layer comprising a masking region to cover at least a part of the top surface of the second conductive semiconductor layer and an opening region to partially expose the top surface of the second conductive type semiconductor layer, wherein the active layer and the second conductive type semiconductor layer are disposed to expose a part of the first conductive type semiconductor layer, and wherein the defect blocking layer comprises a first region and a second region surrounding the first region, and a ratio of the area of the opening region to the area of the masking region in the first region is different from a ratio of the area of the opening region to the area of the masking region in the second region.
US10217909B2 Optoelectronic semiconductor component
An optoelectronic semiconductor component is disclosed. In an embodiment, the semiconductor component includes at least one optoelectronic semiconductor chip for generating primary radiation in a near-ultraviolet or in a visible spectral range, at least one phosphor for partial or complete conversion of the primary radiation into a longer-waved secondary radiation which is in the visible spectral range and at least one filter substance for partial absorption of the secondary radiation, wherein the phosphor and the filter substance are closely connected to the semiconductor chip.
US10217906B2 Light-emitting device
A light-emitting device includes a semiconductor structure including a first semiconductor layer, a second semiconductor layer, and an active layer formed between the first semiconductor layer and the second semiconductor layer; a surrounding part surrounding the semiconductor structure and exposing a surface of the first semiconductor layer; a first insulating structure formed on the semiconductor structure, including a plurality of protrusions covering the surface of the first semiconductor layer and a plurality of recesses exposing the surface of the first semiconductor layer; a first contact portion formed on the surrounding part and contacting the surface of the first semiconductor layer by the plurality of recesses; a first pad formed on the semiconductor structure; and a second pad formed on the semiconductor structure.
US10217904B2 Light-emitting device with metallized mounting support structure
This disclosure discloses a light-emitting device. The light-emitting device has a first outermost sidewall and includes a light-emitting diode and an electrode. The light-emitting diode has a pad and a side surface. The electrode has a segment formed on the pad to extend beyond the side surface, and a first protrusion extending from the segment to the first outermost sidewall.
US10217902B2 Light emitting device and lighting apparatus including the same
A light-emitting device includes a substrate, first and second electrode pads, first to M-th light-emitting cells arranged in a line in a first direction between the first and second electrode pads, and first to N-th connection wires for electrically connecting the first to M-th light-emitting cells, wherein each of the first to M-th light-emitting cells comprises a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer, wherein the first electrode pad is connected to the second conductive semiconductor layer of the first light-emitting cell while the second electrode pad is connected to the first conductive semiconductor layer of the M-th light-emitting cell, and an n-th connection wire electrically connects the first conductive semiconductor layer of an n-th light-emitting cell to the second conductive semiconductor layer of an (n+1)-th light-emitting cell, which are adjacent to each other.
US10217898B2 Semiconductor device having an internal-field-guarded active region
A semiconductor device comprises a layer sequence formed by a plurality of polar single crystalline semiconductor material layers that each have a crystal axis pointing in a direction of crystalline polarity and a stacking direction of the layer sequence. A core layer sequence is formed by an active region made of an active layer stack or a plurality of repetitions of the active layer stack. The active layer stack has an active layer having a first material composition associated with a first band gap energy, and carrier-confinement layers embedding the active layer on at least two opposite sides thereof, having a second material composition associated with a second band gap energy larger than the first band gap energy. A pair of polarization guard layers is arranged adjacent to the active region and embedding the active region on opposite sides thereof. Both polarization guard layers have the first material composition.
US10217897B1 Aluminum nitride-aluminum oxide layers for enhancing the efficiency of group III-nitride light-emitting devices
Light-emitting devices having a multiple quantum well (MQW) diode structure and methods of making and using the devices are provided. The devices include aluminum nitride/aluminum oxide bilayers on their hole injection layers. The bilayers improve the energy efficiency of the devices, with respect to devices that lack the bilayers or that include only a layer of aluminum oxide on their hole injection layers.
US10217893B2 Methods, apparatus, and systems for passivation of solar cells and other semiconductor devices
A method of passivating semiconductor devices using existing tools of junction isolation and phosphosilicate glass (PSG)/borosilicate glass (BSG) etch via room temperature wet chemical growth (RTWCG) processes is provided. Back side processing of the semiconductor device achieves passivation and junction isolation in a single step, while front side processing achieves passivation, PSG/BSG etch, anti-reflection coating and potential induced degradation (PID) mitigation simultaneously. A modified solar cell fabrication method is then provided by integrating the passivation formation method into conventional solar cell manufacturing systems. The resulting solar cells comprise a semiconductor substrate having a front surface and a back surface. The front surface is coated with a SiOx layer less than 50 nm thick, over which a SiNx layer is deposited. On the back surface, another SiOx layer is coated. Experimental data shows high efficiency and mitigated PID of the solar cells.
US10217891B2 Method for producing biomimetic-inspired infrared sensors from zinc phosphide microwires
The present invention includes a method for biomimetic-inspired infrared sensors utilizing a bottom up approach. This method includes providing a sinusoidal alternating electrical field between a preformed electrode gap comprising two gold micro-electrodes. Providing single needles of zinc phosphide crystals optimized for growth conditions using a physical vapour transport. Immobilizing at least one individual zinc phosphide nanowire in the preformed electrode gap using dielectrophoretic manipulation. And, placing and contacting the at least one individual zinc phosphide nanowire in the preformed electrode gap. Two nanowires are combined to form a lambda shape for improved sensing.
US10217886B2 Photoelectric conversion device
According to example embodiments, a photoelectric conversion device includes a first electrode including a light-receiving surface, a second electrode spaced apart from the first electrode and facing the first electrode, and an auxiliary layer between the second electrode and an exciton producing layer. The first electrode may be on the second electrode. The exciton producing layer may be between the first electrode and the second electrode. The exciton producing layer may be spaced apart from the second electrode by a distance corresponding to one of a crest and a trough of a standing wave of light to be converted into electricity.
US10217885B2 Interconnector and solar panel
An interconnector includes a first electrode configured to be connected to a first photovoltaic cell, a second electrode configured to be connected to a second photovoltaic cell, and a connection body that connects the first electrode and the second electrode. The connection body includes a first detour, a second detour, and a joint. The first detour includes a first curved part that is curved toward a first side in a first direction and connected to the first electrode.
US10217884B2 Process for producing a solar cell having an aromatic polyimide film substrate for high photoelectric conversion efficiency
A CIS solar cell having flexibility and high conversion efficiency may be produced, using, as a substrate, a polyimide film which is prepared from an aromatic tetracarboxylic acid component comprising 3,3′,4,4′-biphenyltetracarboxylic dianhydride as the main component and an aromatic diamine component comprising p-phenylenediamine as the main component, and has a maximum dimensional change in the temperature-increasing step of from 25° C. to 500° C. within a range of from +0.6% to +0.9%, excluding +0.6%, based on the dimension at 25° C. before heat treatment.
US10217883B2 Functional yarn equipped with semiconductor functional elements
Functional yarn equipped with semiconductor functional elements includes: a plurality of semiconductor functional elements whose electrically conductive directions defined by positive and negative electrodes are aligned and disposed between a pair of conducting wires in which each of the positive electrodes being connected to the conducting wire and each of the negative electrodes being connected to the conducting wire; an element mounting region consisting of conducting wire portions on which a plurality of the semiconductor functional elements are disposed; a conducting wire region consisting of only conducting wire portions and an insulating member that covers the surface of at least one of the pair of conducting wire portions of the conducting wire region.
US10217882B2 Quantum rod, synthesis method of the same and quantum rod display device
A quantum rod, a synthesis method of the quantum rod and a quantum rod display device are discussed. The quantum rod according to an embodiment includes a core, a first shell covering the core, and a second shell covering a side of the first shell. In the quantum rod, a first thickness of the first shell is greater than a second thickness of the second shell, and a first length of the first shell is smaller than a second length of the second shell.
US10217881B2 Metal-contact-free photodetector
A Ge-on-Si photodetector constructed without doping or contacting Germanium by metal is described. Despite the simplified fabrication process, the device has responsivity of 1.24 A/W, corresponding to 99.2% quantum efficiency. Dark current is 40 nA at −4 V reverse bias. 3-dB bandwidth is 30 GHz.
US10217877B2 Solar cell
Disclosed is a solar cell including a semiconductor substrate, a conductive area including first and second conductive areas disposed on one surface of the semiconductor substrate, and an electrode including a first electrode connected to the first conductive area and a second electrode connected to the second conductive area. The electrode includes an adhesive layer disposed on the semiconductor substrate or the conductive area, an electrode layer disposed on the adhesive layer and including a metal as a main component, and a barrier layer disposed on the electrode layer and including a metal that is different from the metal of the electrode layer as a main component. The electrode layer has a thickness greater than a thickness of each of the adhesive layer and the barrier layer, and the barrier layer has a higher melting point than a melting point of the electrode layer.
US10217874B2 Semiconductor device having a transparent window for passing radiation
Method of encapsulating a semiconductor structure comprising providing a semiconductor structure comprising an opto-electric element located in a cavity formed between a substrate and a cap layer, the cap layer being made of a material transparent to light, and having a flat upper surface; forming at least one protrusion on the cap layer; bringing the at least one protrusion of the cap layer in contact with a tool having a flat surface region, and applying a opaque material to the semiconductor structure where it is not in contact with the tool; and removing the tool thereby providing an encapsulated optical semiconductor device having a transparent window integrally formed with the cap layer.
US10217869B2 Semiconductor structure including low-K spacer material
A semiconductor structure includes a substrate, and a replacement metal gate (RMG) structure is attached to the substrate. The RMG structure includes a lower portion and an upper tapered portion. A source junction is disposed on the substrate and attached to a first low-k spacer portion. A drain junction is disposed on the substrate and attached to a second low-k spacer portion. A first oxide layer is disposed on the source junction, and attached to the first low-k spacer portion. A second oxide layer is disposed on the drain junction, and attached to the second low-k spacer portion. A cap layer is disposed on a top surface layer of the RMG structure and attached to the first oxide layer and the second oxide layer.
US10217863B2 Fabrication of a vertical fin field effect transistor with an asymmetric gate structure
A method of forming a vertical fin field effect transistor (vertical finFET) with two concentric gate structures, including forming one or more tubular vertical fins on a substrate, forming a first gate structure around an outer wall of at least one of the one or more tubular vertical fins, and forming a second gate structure within an inner wall of at least one of the one or more tubular vertical fins having the first gate structure around the outer wall.
US10217859B2 Semiconductor device
A semiconductor device is provided that includes a semiconductor substrate; an insulating film that is provided on the semiconductor substrate, has an opening through which the semiconductor substrate is exposed, and contains oxygen; a first barrier metal portion that is provided at least on a bottom portion of the opening and in which one or more kinds of films are laminated; and an upper electrode provided above the insulating film. The barrier metal is not provided between an upper surface of the insulating film and the upper electrode, or the semiconductor device further comprises a second barrier metal portion between the upper surface of the insulating film and the upper electrode, the second barrier metal portion having a configuration different from that of the first barrier metal portion.
US10217856B2 Semiconductor device having super junction metal oxide semiconductor structure and fabrication method for the same
A semiconductor device includes: a first base layer; a drain layer disposed on the back side surface of the first base layer; a second base layer formed on the surface of the first base layer; a source layer formed on the surface of the second base layer; a gate insulating film disposed on the surface of both the source layer and the second base layer; a gate electrode disposed on the gate insulating film; a column layer formed in the first base layer of the lower part of both the second base layer and the source layer by opposing the drain layer; a drain electrode disposed in the drain layer; and a source electrode disposed on both the source layer and the second base layer, wherein heavy particle irradiation is performed to the column layer to form a trap level locally.
US10217848B2 Thin film transistor structure and manufacturing method of the same
A thin film transistor (TFT) structure is provided herein, which comprises a substrate, a light-shielding resin, a polysilicon, a gate electrode insulator, a gate electrode, an interlayer dielectric layer, a source electrode, and a drain electrode. The light-shielding resin has functions of light-shielding and insulation. With doping through two through holes at two sides, the manufacturing process is simplified, the exposure process is simplified, the production time is shortened, the usage of masks is decreased, and the production cost is lowered.
US10217846B1 Vertical field effect transistor formation with critical dimension control
Disclosed are a method of forming vertical field effect transistor(s) and the resulting structure. In the method, five semiconductor layers are formed in a stack by epitaxial deposition. The first and fifth layers are one semiconductor material, the second and fourth layers are another and the third layer is yet another. The stack is patterned into fin(s). Vertical surfaces of the second and fourth layers of the fin(s) are etched to form upper and lower spacer cavities and these cavities are filled with upper and lower spacers. Vertical surfaces of the third layer of the fin(s) are etched to form a gate cavity and this cavity is filled with a gate. Since epitaxial deposition is used to form the semiconductor layers, the thicknesses of these layers and thereby the heights of the spacer cavities and gate cavity and the corresponding lengths of the spacers and gate can be precisely controlled.
US10217845B2 Vertical field effect transistors with bottom source/drain epitaxy
A vertical fin field-effect-transistor and a method for fabricating the same. The vertical fin field-effect-transistor includes a substrate, a first source/drain layer including a plurality of pillar structures, and a plurality of fins disposed on and in contact with the plurality of pillar structures. A doped layer epitaxially grown from the first source/drain layer is in contact with the plurality of fins and the plurality of pillar structures. A gate structure is disposed in contact with two or more fins in the plurality of fins. The gate structure includes a dielectric layer and a gate layer. A second source/drain layer is disposed on the gate structure. The method includes epitaxially growing a doped layer in contact with a plurality of fins and a plurality of pillar structures. A gate structure is formed in contact with two or more fins. A second source/drain layer is formed on the gate structure.
US10217843B2 Fabrication of vertical field effect transistor structure with strained channels
A method of forming a vertical fin field effect transistor (vertical finFET) with a strained channel, including forming one or more vertical fins on a substrate, forming a sacrificial stressor layer adjacent to the one or more vertical fins, wherein the sacrificial stressor layer imparts a strain in the adjacent vertical fins, forming a fin trench through one or more vertical fins and the sacrificial stressor layer to form a plurality of fin segments and a plurality of sacrificial stressor layer blocks, forming an anchor wall adjacent to and in contact with one or more fin segment endwalls, and removing at least one of the plurality of the sacrificial stressor layer blocks, wherein the anchor wall maintains the strain of the adjacent fin segments after removal of the sacrificial stressor layer blocks adjacent to the fin segment with the adjacent anchor wall.
US10217841B2 Forming an uniform L-shaped inner spacer for a vertical transport fin field effect transistor (VT FinFET)
A method of forming a vertical transport fin field effect transistor (VT FinFET), including, forming a plurality of vertical fins on a substrate, forming a sacrificial liner on at least two of the plurality of vertical fins, forming sidewall spacers on the vertical surfaces of the sacrificial liner, wherein the sidewall spacers are on opposite sides of the at least two of the plurality of vertical fins, and removing a portion of the sacrificial liner to form an l-shaped channel adjacent to each of the at least two of the plurality of vertical fins.
US10217839B2 Field effect transistor (FET) with a gate having a recessed work function metal layer and method of forming the FET
Disclosed is a field effect transistor (FET) with a replacement metal gate (RMG) and a method of forming the FET. The RMG includes a conformal gate dielectric layer and a stack of gate conductor layers on the gate dielectric layer. The stack includes a conformal work function metal (WFM) layer and a conductive fill material (CFM) layer on the WFM layer. Within the stack, the top surface of the CFM layer is above the level of the top of an adjacent vertical portion of the WFM layer. A dielectric gate cap has a center portion and an edge portion. The center portion is above the top surface of the CFM layer and the edge portion is above the top of the adjacent vertical portion of the WFM layer and is further positioned laterally immediately adjacent to an upper portion of an outer sidewall of the CFM layer.
US10217836B2 Method of manufacturing power semiconductor device
A method of manufacturing a power semiconductor device includes forming trenches in a substrate, wherein the substrate includes a first surface and a second surface opposite to the first surface, forming a gate insulating layer and a gate electrode in each of the trenches, forming a P-type base region between the trenches in the substrate, performing a first implantation process using P-type dopants implanted onto the P-type base region, forming an N+ source region in the substrate, forming an interlayer insulating layer on the N+ source region, performing a second implantation process using P-type dopants to form a P+ doped region on the P-type base region, forming an emitter electrode in contact with the N+ source region and the P+ doped region, forming a P-type collector region on the second surface of the substrate, and forming a drain electrode on the P-type collector region.
US10217834B2 Binary metal oxide based interlayer for high mobility channels
A method of forming a gate stack that includes treating a semiconductor substrate with a wet etch chemistry to clean a surface of the semiconductor substrate and form an oxide containing interfacial layer, and converting the oxide containing interfacial layer to a binary alloy oxide based interlayer using a plasma deposition sequence including alternating a metal gas precursor and a nitrogen and/or hydrogen containing plasma. The method of forming the gate stack may further include forming a high-k dielectric layer atop the binary alloy oxide based interlayer.
US10217832B2 Semiconductor device
A semiconductor device is provided that includes a semiconductor substrate; an insulating film that is provided on the semiconductor substrate, has an opening through which the semiconductor substrate is exposed, and contains oxygen; a first barrier metal portion that is provided at least on a bottom portion of the opening and in which one or more kinds of films are laminated; and an upper electrode provided above the insulating film. The barrier metal is not provided between an upper surface of the insulating film and the upper electrode, or the semiconductor device further comprises a second barrier metal portion between the upper surface of the insulating film and the upper electrode, the second barrier metal portion having a configuration different from that of the first barrier metal portion.
US10217825B2 Metal-insulator-semiconductor (MIS) contacts and method of forming
A semiconductor device containing a metal-insulator-semiconductor (MIS) contact and method of forming are described. The method includes providing a semiconductor substrate containing a contact region, depositing an insulator film on the contact region, the insulator film including a mixed oxide material containing TiO2 and at least one additional metal oxide. The method further includes depositing a metal-containing electrode layer abutting the insulator film to form a MIS structure, and heat-treating the MIS structure to scavenge oxygen from the TiO2 to the metal-containing electrode layer to form a MIS contact with oxygen vacancies in the TiO2. According to one embodiment the at least one additional metal oxide is selected from HfO2, ZrO2, Al2O3, and combinations thereof, and the metal-containing electrode layer is selected from the group consisting of Ti metal, Al metal, Hf metal, Zr metal, Ta metal, Nb metal, and a combination thereof.
US10217824B2 Controlled ion implantation into silicon carbide using channeling and devices fabricated using controlled ion implantation into silicon carbide using channeling
Methods of forming a semiconductor structure include the use of channeled implants into silicon carbide crystals. Some methods include providing a silicon carbide layer having a crystallographic axis, heating the silicon carbide layer to a temperature of about 300° C. or more, implanting dopant ions into the heated silicon carbide layer at an implant angle between a direction of implantation and the crystallographic axis of less than about 2°, and annealing the silicon carbide layer at a time-temperature product of less than about 30,000° C.-hours to activate the implanted ions.
US10217820B2 Semiconductor devices
Semiconductor devices may include a diffusion prevention insulation pattern, a plurality of conductive patterns, a barrier layer, and an insulating interlayer. The diffusion prevention insulation pattern may be formed on a substrate, and may include a plurality of protrusions protruding upwardly therefrom. Each of the conductive patterns may be formed on each of the protrusions of the diffusion prevention insulation pattern, and may have a sidewall inclined by an angle in a range of about 80 degrees to about 135 degrees to a top surface of the substrate. The barrier layer may cover a top surface and the sidewall of each if the conductive patterns. The insulating interlayer may be formed on the diffusion prevention insulation pattern and the barrier layer, and may have an air gap between neighboring ones of the conductive patterns.
US10217819B2 Semiconductor device including metal-2 dimensional material-semiconductor contact
A semiconductor device includes a semiconductor layer, a metal layer electrically contacting the semiconductor layer, and a two-dimensional material layer between the semiconductor layer and the metal layer and having a two-dimensional crystal structure.
US10217816B2 Semiconductor device
A semiconductor device includes a plurality of channels, source/drain layers, and a gate structure. The channels are sequentially stacked on a substrate and are spaced apart from each other in a first direction perpendicular to a top surface of the substrate. The source/drain layers are connected to the channels and are at opposite sides of the channels in a second direction parallel to the top surface of the substrate. The gate structure encloses the channels. The channels have different lengths in the second direction and different thicknesses in the first direction.
US10217815B1 Integrated circuit device with source/drain barrier
Various examples of an integrated circuit device and a method for forming the device are disclosed herein. In an example, a method includes receiving a workpiece that includes a substrate, and a device fin extending above the substrate. The device fin includes a channel region. A portion of the device fin adjacent the channel region is etched, and the etching creates a source/drain recess and forms a dielectric barrier within the source/drain recess. The workpiece is cleaned such that a bottommost portion of the dielectric barrier remains within a bottommost portion of the source/drain recess. A source/drain feature is formed within the source/drain recess such that the bottommost portion of the dielectric barrier is disposed between the source/drain feature and a remainder of the device fin.
US10217813B2 Method for manufacturing silicon carbide semiconductor device and silicon carbide semiconductor device
A method for manufacturing a silicon carbide semiconductor device includes the steps of preparing a silicon carbide substrate having a first main surface and a second main surface located on a side opposite to the first main surface, forming an epitaxial layer on the first main surface, the epitaxial layer having a first conductivity type and having a third main surface located on a side opposite to a side on which the silicon carbide substrate is located, forming a trench, which includes side walls intersecting with the third main surface and a bottom portion connected to the side walls, in the epitaxial layer, widening an opening of the trench, and forming an embedded region, which has a second conductivity type different from the first conductivity type, in the trench. The epitaxial layer adjacent to the embedded region and the embedded region constitute a superjunction structure.
US10217811B1 Semiconductor device, method for manufacturing semiconductor device, inverter circuit, driving device, vehicle, and elevator
A semiconductor device according to an embodiment includes a silicon carbide layer having a front surface inclined at 0° or more and 10° or less with respect to a (0001) face, a silicon oxide layer, and a region located between the front surface and the silicon oxide layer and having the number of carbon-carbon single bonds larger than the number of carbon-carbon double bonds.
US10217810B2 Capacitor formed on heavily doped substrate
The teachings of the present disclosure may be applied to the manufacture and design of capacitors. In some embodiments of these teachings, a capacitor may be formed on a heavily doped substrate. For example, a method for manufacturing a capacitor may include: depositing an oxide layer on a first side of a heavily doped substrate; depositing a first metal layer on the oxide layer; and depositing a second metal layer on a second side of the heavily doped substrate.
US10217807B2 Anisotropic conductive film and display device using the same
An anisotropic conductive film includes a conductive layer; a first resin insulating layer over a first surface of the conductive layer; and a second resin insulating layer over a second surface of the conductive layer, wherein the conductive layer comprises a plurality of conductive particles and a nano fiber connecting the plurality of conductive particles to each other, each of the plurality of conductive particles comprising a plurality of needle-shaped protrusions having a conical shape, and wherein the first resin insulating layer and the second resin insulating layer comprise a same material and have different thicknesses.
US10217805B2 Display apparatus
Disclosed herein is a display apparatus, including, a panel having a plurality of pixels disposed in a matrix and each including a self-luminous element for emitting light, the panel including first to third conductive layers laminated in order on a supporting substrate, a first contact portion between the first and second conductive layers and a second contact portion between the second and third conductive layers being disposed at the same position in a planar direction.
US10217803B2 Organic light-emitting display and an electronic apparatus including the same
An organic light-emitting diode display includes a substrate including an active area and a dead area surrounding the active area. The organic light-emitting diode display further includes a first organic light-emitting device disposed in the active area. The organic light-emitting diode display additionally includes a second organic light-emitting device disposed in the dead area, and a sensor configured to sense light emitted from the second organic light-emitting device. The first organic light-emitting device emits light in a first direction, and the second organic light-emitting device emits light in a second direction that is opposite to the first direction and is toward the sensor.
US10217795B1 Memory cell for non-volatile memory system
A non-volatile storage apparatus is proposed that includes a plurality of serially connected non-volatile reversible resistance-switching memory cells, a plurality of word lines such that each of the memory cells is connected to a different word line, a bit line connected to a first end of the serially connected memory cells and a switch connected to a second end of the serially connected memory cells. In one embodiment, the memory cells include a reversible resistance-switching structure comprising a first material, a second material and a reversible resistance-switching interface between the first material and the second material, a channel, and means for switching current between current flowing through the channel and current flowing through the reversible resistance-switching interface in order to program and read the reversible resistance-switching interface. A process for manufacturing the memory is also disclosed.
US10217794B2 Integrated circuits with vertical capacitors and methods for producing the same
Integrated circuits and methods of producing the same are provided. In an exemplary embodiment, an integrated circuit includes a capacitor, where the capacitor includes a first capacitor plate and a second capacitor plate. The first capacitor plate includes a first memory cell, and the second capacitor plate includes a second memory cell. The capacitor is utilized as a functional capacitor in the integrated circuit.
US10217791B2 Method of manufacturing bonded substrate, bonded substrate, method of manufacturing solid-state imaging apparatus, solid-state imaging apparatus, and camera
Disclosed herein is a method of manufacturing a bonded substrate, including the steps of: forming a first bonding layer on a surface on one side of a semiconductor substrate; forming a second bonding layer on a surface on one side of a support substrate; adhering the first bonding layer and the second bonding layer to each other; a heat treatment for bonding the first bonding layer and the second bonding layer to each other; and thinning the semiconductor substrate from a surface on the other side of the semiconductor substrate to form a semiconductor layer.
US10217790B2 Imaging detector module assembly
A module assembly device (402) is configured for assembling a module assembly (114) for a detector array (110) of an imaging system (100). The module assembly device includes a base (400) having a long axis (401). The module assembly device further includes a first surface (406) of the base and side walls (408) protruding perpendicular up from the first surface and extending in a direction of the long axis along at least two sides of the base. The first surface and side walls form a recess (404) configured to receive the module substrate on the surface and within the side walls. The module assembly device further includes protrusions (403) protruding from the side walls in a direction of the side walls. The protrusions and side walls interface forming a ledge which serves as a photo-detector array tile support (410) configured to receive the photo-detector array tile (118) over the ASIC and the module substrate.
US10217786B2 Solid-state image pickup device
A solid-state image pickup device capable of suppressing the generation of dark current and/or leakage current is provided. The solid-state image pickup device has a first substrate provided with a photoelectric converter on its primary face, a first wiring structure having a first bonding portion which contains a conductive material, a second substrate provided with a part of a peripheral circuit on its primary face, and a second wiring structure having a second bonding portion which contains a conductive material. In addition, the first bonding portion and the second bonding portion are bonded so that the first substrate, the first wiring structure, the second wiring structure, and the second substrate are disposed in this order. Furthermore, the conductive material of the first bonding portion and the conductive material of the second bonding portion are surrounded with diffusion preventing films.
US10217785B2 Solid-state imaging device, manufacturing method of solid-state imaging device, and electronic apparatus
There is provided a solid-state imaging device including a first substrate having a pixel circuit including a pixel array unit formed thereon, and a second substrate having a plurality of signal processing circuits formed thereon so as to be arranged through a scribe region. The first substrate and the second substrate are stacked.
US10217781B2 One transistor active pixel sensor with tunnel FET
A tunneling field effect transistor for light detection, including a p-type region connected to a source terminal, a n-type region connected to a drain terminal, an intrinsic region located between the p-type region and the n-type region to form a P-I junction or an N-I junction with the n-type region or the p-type region, respectively, a first insulating layer and a first gate electrode, the first gate electrode covering a portion of the intrinsic region on one side, and a second insulating layer and a second gate electrode, the second insulating layer and the second gate electrode covering an entire other side of the intrinsic region opposite to the one side, wherein an area of the intrinsic region that is not covered by the first gate electrode forms a non-gated intrinsic area configured for light absorption.
US10217778B2 Array substrate and manufacturing method thereof
The present invention provides an array substrate and a manufacturing method thereof. The method includes covering a reduction metal layer on an oxide semiconductor layer film and simultaneously forming a source pattern, a drain pattern, a pixel electrode pattern, and an oxide semiconductor layer through patterning the oxide semiconductor layer film and the reduction metal layer with one mask-based operation, followed by reducing the source pattern, the drain pattern, and the pixel electrode pattern to conductors through laser annealing to simultaneously form a source electrode, a drain electrode, and a pixel electrode. The entire manufacturing process needs, at most, only three rounds of mask-based operations so that, compared to the prior art, the number of mask-based operations required can be effectively reduced, the manufacturing operation can be simplified, and the performance of a TFT can be improved and an aperture ratio of the array substrate can be increased.
US10217777B2 Display device, semiconductor device, and method of manufacturing display device
A display device according to the present disclosure includes: a transistor section (100) that includes a gate insulating film (130), a semiconductor layer (140), and a gate electrode layer (120), the semiconductor layer being laminated on the gate insulating film, the gate electrode film being laminated on an opposite side to the semiconductor layer of the gate insulating film; a first capacitor section (200) that includes a first metal film (210) and a second metal film (220), the first metal film being disposed at a same level as wiring layers (161, 162) that are electrically connected to the semiconductor layer and is disposed over the transistor section, the second metal film being disposed over the first metal film with a first interlayer insulating film (152) in between; and a display element that is configured to be controlled by the transistor section.
US10217774B2 Thin film transistor and manufacturing method thereof, array substrate, and display device
The technical disclosure relates to a thin film transistor and a manufacturing method thereof, an array substrate and a display device. The thin film transistor comprises a base substrate, a gate electrode, an active layer, source/drain electrodes, a pixel electrode and one or more insulating layers, wherein at least one of the insulating layers comprises a bottom insulating sub-layer and a top insulating sub-layer, the top insulating sub-layer having a hydrogen content higher than that of the bottom insulating sub-layer.
US10217772B2 Display device
Provided is a display device with high resolution, high display quality, or high aperture ratio. A pixel includes three subpixels and is electrically connected to two gate lines. One of the gate lines is electrically connected to a gate of a transistor included in each of the two subpixels, and the other gate line is electrically connected to a gate of a transistor included in the other subpixel. Display elements of the three subpixels are arranged in the same direction. Three pixel electrodes of the three subpixels are arranged in the same direction.
US10217767B2 Thin film transistor array panel and manufacturing method thereof
A thin film transistor array panel includes a substrate and a thin film transistor disposed on a surface of the substrate. The thin film transistor includes a semiconductor, a source electrode, and a drain electrode that are disposed on a same layer as one another. The semiconductor is between the source electrode and the drain electrode. The thin film transistor array panel further includes a buffer layer disposed between the semiconductor and the substrate and including an inorganic insulating material. The first edge of the buffer layer is substantially parallel to an adjacent edge of the semiconductor, a second edge of the buffer layer is substantially parallel to an adjacent edge of the source electrode, and a third edge of the buffer layer is substantially parallel to an adjacent edge of the drain electrode.
US10217765B2 Semiconductor integrated circuit
A semiconductor integrated circuit includes a semiconductor layer of a first conductivity type which is stacked on a support substrate with an insulating layer interposed between the semiconductor layer and the support substrate, a first well region of a second conductivity type buried in an upper part of the semiconductor layer so as to be separated from the insulating layer, a second well region of the first conductivity type buried in an upper part of the first well region, and an isolation region of the first conductivity type buried in the upper part of the semiconductor layer such that the isolation region surrounds the first well region and is separated from the first well region and the insulating layer.
US10217761B1 Semiconductor structure and manufacturing method thereof
A semiconductor structure for three-dimensional memory device and a manufacturing method thereof are provided. The semiconductor structure is disposed on the substrate and has a plurality of openings penetrating through the semiconductor structure and extending into the substrate. The semiconductor structure includes a substrate, a stacked structure and an epitaxial layer. The stacked structure includes insulating layers and gate layers stacked alternatively. Each of the plurality of openings includes a first portion located above the surface of the substrate and a second portion located below the surface of the substrate. The aspect ratio of the second portion is more than 1. The epitaxial layer is disposed in each of the plurality of openings. The top surface of the epitaxial layer is between the top surface and the bottom surface of the i-th insulating layer as counted upward from the substrate, wherein i≥2.
US10217748B2 Dynamic random access memory and method of manufacturing the same
A dynamic random access memory (DRAM) includes a substrate, a bit line, a capacitor contact, a dielectric structure, a capacitor, and a landing pad. The bit line is located on the substrate. The capacitor contact is aside the bit line. The capacitor contact protrudes from a space between adjacent bit lines, such that upper sidewalls of the capacitor contact are exposed by the bit line. The dielectric structure is located on the upper surface of the bit line and extending to one portion of the upper sidewalls of the capacitor contacts. The capacitor is located above the capacitor contact. The landing pad is located between the capacitor contact and the capacitor. The landing pad at least covers one portion of the upper surface of the capacitor contact. A contact area between landing pad and the capacitor contact is greater than a contact area between the landing pad and the capacitor.
US10217745B2 High-K gate dielectric and metal gate conductor stack for fin-type field effect transistors formed on type III-V semiconductor material and silicon germanium semiconductor material
An electrical device that includes at least one n-type field effect transistor including a channel region in a type III-V semiconductor device, and at least one p-type field effect transistor including a channel region in a germanium containing semiconductor material. Each of the n-type and p-type semiconductor devices may include gate structures composed of material layers including work function adjusting materials selections, such as metal and doped dielectric layers. The field effect transistors may be composed of fin type field effect transistors. The field effect transistors may be formed using gate first processing or gate last processing.
US10217743B2 Detecting process variation of memory cells
Various implementations described herein are directed to an integrated circuit having a memory cell array disposed in a first area of the integrated circuit. The memory cell array may include memory cells with first transistors of multiple types. The integrated circuit may include a process sensor disposed in a second area of the integrated circuit that is different than the first area. The process sensor may include a process detector having second transistors of the multiple types that are separate from the first transistors. The second transistors of the process detector may be arranged for detecting process variation of the memory cells of the memory cell array.
US10217742B2 Semiconductor device having dummy active fin patterns
A semiconductor device includes circuit active fin lines and circuit gate lines intersecting each other in a circuit active region, dummy active fin lines and dummy gate lines intersecting each other in a dummy active region, the active fin lines and the dummy active fin lines having same width and pitch, and the circuit gate lines and the dummy gate lines having same width and pitch, wherein at least some of the dummy active fin lines are aligned with and collinear with respective circuit active fin lines, and at least some of the dummy gate lines are aligned with and collinear with respective circuit gate lines.
US10217740B2 Semiconductor device and radio frequency module formed on high resistivity substrate
A semiconductor device includes a high resistivity substrate, a first deep well region having a first conductive type and formed in the high resistivity substrate, a second deep well region having a second conductive type and formed on the first deep well region, a first well region having the first conductive type and formed on the second deep well region, and a transistor formed on the first well region.
US10217738B2 IGBT semiconductor device
A semiconductor device includes a semiconductor substrate, a base region formed in the semiconductor substrate on a front surface side thereof, a gate trench extending from a front surface side of the base region and penetrating thorough the base region, and a dummy trench extending from the front surface side of the base region and penetrating thorough the base region, where a portion of the dummy trench that extends beyond a back surface of the base region is longer than a portion of the gate trench that extends beyond the back surface of the base region.
US10217736B2 Semiconductor device including transistor and capacitor
A highly integrated semiconductor device including a transistor and a capacitor which occupies a small area for the required on-state current and required capacitance is provided. The semiconductor device includes a semiconductor, first and second conductive films each in contact with top and side surfaces of the semiconductor, a first insulating film in contact with the top and side surfaces of the semiconductor, a third conductive film facing the top and side surfaces of the semiconductor with the first insulating film therebetween, a second insulating film which is in contact with the first conductive film and comprises an opening, a fourth conductive film in contact with the opening, a third insulating film facing the opening with the fourth conductive film therebetween, and a fifth conductive film facing the fourth conductive film with the third insulating film therebetween.
US10217733B2 Fast SCR structure for ESD protection
An ultra-low capacitance ESD protection device with an ultra-fast response time and a low turn-on voltage, and a high holding current. The device may include: a heavily-doped p-type substrate; a lightly-doped n-type epitaxial layer with a heavily-doped n-type buried layer; and a semiconductor-controlled rectifier (SCR) structure within the epitaxial layer. The SCR structure includes, between a ground terminal and a pad terminal: a shallow P+ region within a moderately-doped n-type well to form an emitter-base junction of a trigger transistor; a shallow N+ region within a moderately-doped p-type well to form an emitter-base junction of a latching transistor, and a PN junction coupled to either of the shallow regions as a forward-biased series diode. To reduce capacitance, the n-type and p-type wells are separated by a lightly-doped portion of the epitaxial layer having a small lateral dimension for enhanced switching speed.
US10217732B2 Techniques for forming a compacted array of functional cells
Techniques are disclosed for forming a compacted array of functional cells using next-generation lithography (NGL) processes, such as electron-beam direct write (EBDW) and extreme ultraviolet lithography (EUVL), to form the boundaries of the cells in the array. The compacted array of cells may be used for field-programmable gate array (FPGA) structures configured with logic cells, static random-access memory (SRAM) structures configured with bit cells, or other memory or logic devices having cell-based structures. The techniques can be used to gain a reduction in area of 10 to 50 percent, for example, for the array of functional cells, because the NGL processes allow for higher precision and closer cuts for the cell boundaries, as compared to conventional 193 nm photolithography. In addition, the use of NGL processes to form the boundaries for the cells may also reduce lithography induced variations that would otherwise be present with conventional 193 nm photolithography.
US10217731B2 Method of producing optoelectronic modules and an assembly having a module
A method produces a plurality of optoelectronic modules, and includes: A) providing a metallic carrier assembly with a plurality of carrier units; B) applying a logic chip, each having at least one integrated circuit, to the carrier units; C) applying emitter regions that generate radiation, which can be individually electrically controlled; D) covering the emitter regions and the logic chips with a protective material; E) overmolding the emitter regions and the logic chips so that a cast body is formed, which joins the carrier units, the logic chips and the emitter regions to one another; F) removing the protective material and applying electrical conductor paths to the upper sides of the logic chips and to a cast body upper side; and G) dividing the carrier assembly into the modules.
US10217727B2 Semiconductor device and electronic apparatus including a first semiconductor chip including an insulated gate bipolar transistor and a second semiconductor chip including a diode
For example, a semiconductor device capable of achieving a high performance applicable to an SR motor is provided. The semiconductor device includes a chip mounting portion TAB1 on which a semiconductor chip CHP1 having an IGBT is mounted, and a chip mounting portion TAB2 on which a semiconductor chip CHP2 having a diode is formed. The semiconductor device also includes a lead LD1A electrically connected to an emitter electrode pad EP of the semiconductor chip CHP1 via a clip CLP1, and a lead LD1B electrically connected to an anode electrode pad ADP of the semiconductor chip CHP2 via a clip CLP2. At this time, the chip mounting portion TAB1 is separated electrically from the chip mounting portion TAB2, and the clip CLP1 is separated electrically from the clip CLP2.
US10217726B1 Stacked semiconductor dies including inductors and associated methods
Several embodiments of the present technology are directed to semiconductor devices, systems including semiconductor devices, and methods of making and operating semiconductor devices. In some embodiments, a semiconductor device comprises a substrate, a first die mounted to the substrate and including first inductors, and a second die mounted to the first die in an offset position and including second inductors. The first inductors are at an active side of the first die, and the second inductors are at an active side of the second die. At least a portion of the first inductors are proximate and inductively coupled to the second inductors. The semiconductor device further comprises a first plurality of interconnects electrically coupling the substrate to the first die, and a second plurality of interconnects electrically coupling the second die to the substrate. The first plurality of interconnects extend from an upper surface of the substrate to the active side of the first die, and the second plurality of interconnects extend from the active side of the second die to the lower surface of the substrate.
US10217725B2 Microstructure modulation for metal wafer-wafer bonding
A three-dimensional (3D) bonded semiconductor structure is provided in which a first bonding oxide layer of a first semiconductor structure is bonded to a second bonding oxide layer of a second semiconductor structure. Each of the first and second bonding oxide layers has a metallic bonding structure embedded therein, wherein each metallic bonding structure contains a columnar grain microstructure. Furthermore, at least one columnar grain extends across a bonding interface that is present between the metallic bonding structures. The presence of the columnar grain microstructure in the metallic bonding structures, together with at least one columnar grain microstructure extending across the bonding interface between the two bonded metallic bonding structures, can provide a 3D bonded structure having mechanical bonding strength and electrical performance enhancements.
US10217724B2 Semiconductor package assembly with embedded IPD
The invention provides a semiconductor package assembly. The semiconductor package assembly includes a first semiconductor package including a first semiconductor die. A first redistribution layer (RDL) structure is coupled to the first semiconductor die. The first redistribution layer (RDL) structure includes a first conductive trace disposed at a first layer-level. A second conductive trace is disposed at a second layer-level. A first inter-metal dielectric (IMD) layer and a second inter-metal dielectric (IMD) layer, which is beside the first inter-metal dielectric (IMD) layer, are disposed between the first conductive trace and the second conductive trace.
US10217717B2 Distribution of electronic circuit power supply potentials
An integrated circuit includes peripheral conductive pads interconnected by a peripheral conductive track within an integrated circuit chip. The integrated circuit chip further includes internal conductive pads interconnected by an internal conductive track within the integrated circuit chip. A conductive bonding wire external to the integrated circuit chip connects the one peripheral conductive pad to one internal conductive pad. A package encapsulates the integrated circuit chip and the conductive bonding wire.
US10217709B2 Fan-out semiconductor package
The present disclosure relates to a semiconductor package, and more particularly, to a fan-out semiconductor package in which connection terminals may extend outwardly of a region in which a semiconductor chip is disposed. In the fan-out semiconductor package, a circuit density of a redistribution layer may be increased even in a limited area.
US10217708B1 High bandwidth routing for die to die interposer and on-chip applications
Routing structures including signal routing between die areas is described. In an embodiment, routing structures include signal lines with a characteristic thickness that is greater than a width. The signal lines may be twisted, and run directly underneath pads.
US10217707B2 Trench contact resistance reduction
A method is presented for forming a semiconductor device. The method includes forming source/drain over a semiconductor substrate, forming a sacrificial layer over the source/drain, and forming an inter-level dielectric (ILD) layer over the sacrificial layer. The method further includes forming trenches that extend partially into the sacrificial layer, removing the sacrificial layer to expose an upper surface of the source/drain, and filling the trenches with at least one conducting material. The sacrificial layer is germanium (Ge) and the at least one conducting material includes three conducting materials.
US10217702B2 Semiconductor device and method of forming an embedded SoP fan-out package
A semiconductor device includes a BGA package including first bumps. A first semiconductor die is mounted to the BGA package between the first bumps. The BGA package and first semiconductor die are mounted to a carrier. A first encapsulant is deposited over the carrier and around the BGA package and first semiconductor die. The carrier is removed to expose the first bumps and first semiconductor die. An interconnect structure is electrically connected to the first bumps and first semiconductor die. The BGA package further includes a substrate and a second semiconductor die mounted, and electrically connected, to the substrate. A second encapsulant is deposited over the second semiconductor die and substrate. The first bumps are formed over the substrate opposite the second semiconductor die. A warpage balance layer is formed over the BGA package.
US10217699B2 Preformed lead frame
A preformed lead frame includes a plurality of lead frame units and intersecting cutting paths extending between two adjacent rows of said lead frame units, and a molding layer. Each of the lead frame units includes a die pad, and a plurality of spaced-apart leads. Each of the cutting paths has a plurality of metallic connecting portions and etched grooves. The molding layer embeds the lead frame units and the connecting portions. Each of the etched grooves is indented from the top surface of the molding layer. A top open end of each of the etched grooves includes two opposite curved edges respectively meeting an adjacent one of the leads of one of the lead frame units and an adjacent one of the leads of the other one of the lead frame units.
US10217697B2 Semiconductor device and lead frame with high density lead array
A semiconductor device includes a lead frame having leads arranged in an array that has columns extending in a first direction and rows extending in a second direction. Each lead includes a bond pad portion and a solder pad portion down-set from the bond pad portion. The solder pad portion horizontally extends from the bond pad portion in the first direction. A semiconductor die is mounted on a set of the plurality of leads and electrically connected to the bond pad portion of at least one of the plurality of leads. The semiconductor die, and the plurality of leads are encapsulated by a molding material, wherein the molding material defines a package body, and the solder pad portion of each lead is exposed at a back side of the package body.
US10217696B2 Non-bridging contact via structures in proximity
A first photoresist layer is patterned with a first pattern that includes an opening in a region between areas of two adjacent via holes to be formed. The opening in the first photoresist is transferred into a template layer to form a line trench therein. The lateral dimension of the trench is reduced by depositing a contiguous spacer layer that does not fill the trench completely. An etch-resistant material layer is conformally deposited and fills the trench, and is subsequently recessed to form an etch-resistant material portion filling the trench. A second photoresist layer is applied and patterned with a second pattern, which includes an opening that includes areas of two via holes and an area therebetween. A composite pattern of an intersection of the second pattern and the complement of the pattern of the etch-resistant material portion is transferred through the template layer.
US10217692B2 Heat transfer device for high heat flux applications and related methods thereof
A device and related method that provides a two-phase heat transfer device with a combination of enhanced evaporation and increase cooling capacity. A recess topology is used to increase suction of working fluid toward a heat source. A non-wetting coating or structure may be used to keep working fluid away from the spaces between elongated members of an evaporator and a wetting coating or structure may be used to form thin films of working fluid around the distal regions of elongated members. The devices and method described herein may be used to cool computer chips, the skin of a hypersonic flying object, a parabolic solar collector, a turbine engine blade, or other heat sources that require high heat flux.
US10217691B2 Heat spreader with optimized coefficient of thermal expansion and/or heat transfer
Methods, systems and an apparatus relating to a heat spreader to be coupled to a heat source having a heat source coefficient of thermal expansion (HS CTE), the heat spreader comprising an anisotropic material having a high expansion axis. The heat spreader also including a surface to be coupled to the heat source, wherein the high expansion axis of the anisotropic material is oblique to the surface of the heat spreader and wherein the high expansion axis of the anisotropic material is oriented at a first angle of rotation about a first axis of the heat spreader wherein the first angle of rotation is selected to optimize a match of a first CTE of the heat spreader with the HS CTE.
US10217688B2 Electronic component having a heat-sink thermally coupled to a heat-spreader
An electronic component includes one or more semiconductor dice embedded in a first dielectric layer, a heat-spreader embedded in a second dielectric layer and a heat-sink thermally coupled to the heat-spreader. The heat-spreader has a higher thermal conductivity in directions substantially parallel to the major surface of the one or more semiconductor dice than in directions substantially perpendicular to the major surface of the one or more semiconductor dice. The heat-sink has a thermal conductivity in directions substantially perpendicular to the major surface of the one or more semiconductor dice that is higher than the thermal conductivity of the heat-spreader in directions substantially perpendicular to the major surface of the one or more semiconductor dice. The heat-spreader and the heat-sink provide a heat dissipation path from the one or more semiconductor dice having a lateral thermal resistance which increases with increasing distance from the one or more semiconductor devices.
US10217686B2 Air-cavity package with enhanced package integration level and thermal performance
The present disclosure relates to an air-cavity package, which includes a bottom substrate, a top substrate, a perimeter wall, a bottom electronic component, a top electronic component, and an external electronic component. The perimeter wall extends from a periphery of a lower side of the top substrate to a periphery of an upper side of the bottom substrate to form a cavity. The bottom electronic component is mounted on the upper side of the bottom substrate and exposed to the cavity. The top electronic component is mounted on the lower side of the top substrate and exposed to the cavity. And the external electronic component is mounted on an upper side of the top substrate, which is opposite the lower side of the top substrate and not exposed to the cavity.
US10217683B2 Mounted semiconductor module with a mold resin portion
A semiconductor module is provided in which a semiconductor element is mounted and a plurality of outside connecting modules are drawn from a side of a mold resin portion. To ensure sufficient space for a holding tool used in mounting the semiconductor module to a device with a simple structure, holding side portions are provided for at least two opposing corner portions of corner portions between adjacent sides of the mold resin portion.
US10217678B2 Display device and method of manufacturing the display device
A display device includes a substrate, a first transistor, a second transistor and a conductive connection portion disposed on the substrate. The first transistor is electrically connected to the gate electrode of the second transistor through the conductive connection portion. An insulating layer is disposed on the conductive connection portion. A pixel electrode is disposed on the insulating layer and is electrically connected to the second transistor. The pixel electrode is at least partially overlapped with the conductive connection portion. A light-emitting element is disposed on the pixel electrode. The conductive connection portion and the pixel electrode form a capacitor. The capacitor has an equivalent permittivity and a thickness. The ratio of the equivalent permittivity to the thickness is in a range from 0.4*(1E+5)F/m^2 to 296.48*(1E+5)F/m^2.
US10217676B2 Method and apparatus for manufacturing a semiconductor device including a plurality of semiconductor chips connected with bumps
A method for manufacturing a semiconductor device including a plurality of semiconductor chips includes steps of placing, on a first semiconductor chip, a second semiconductor chip, such that a plurality of bumps is located between the first semiconductor chip and the second semiconductor chip, determining a distance between the first semiconductor chip and the second semiconductor chip, and determining whether or not the distance is within a predetermined range and stopping placement of additional chips if the distance is determined to be outside the predetermined range.
US10217666B2 Stacked structure having a protective layer between an insulation layer and wiring
A stacked structure, includes: a wiring; an insulating layer; a substrate; and a protective layer, wherein the wiring, the insulating layer, and the substrate are stacked from a bottom side, and an end portion of the wiring is projected from a side face of the stacked structure, and the protective layer is provided between the insulating layer and at least a part of the wiring and is configured of a material different from a material configuring the insulating layer.
US10217663B2 Apparatus for uniform metal deposition
A system includes a deposition chamber comprising first, second, and third stations, a delivery system providing a substrate to the deposition chamber, a processing system processing the substrate, a controller controlling the delivery system and the processing system, and an etch chamber. The delivery system provides the substrate to the first station, where the processing system performs a nucleation process on the substrate to form a metal nucleation layer, the substrate is then provided by the delivery system to the second station, where the processing system performs a first deposition process at a first temperature to form a first metal layer, the delivery system provides the substrate including the first metal layer metal to the etch chamber, where the first metal layer is etched back using a first gas. The substrate is provided back to the first station, wherein it undergoes a cleaning process using a second gas.
US10217661B2 Articles including ultra low dielectric layers
An article may include a structure including a patterned metal on a surface of a substrate, the patterned metal including metal features separated by gaps of an average dimension of less than about 1000 nm. A porous low dielectric constant material having a dielectric value of less than about 2.7 substantially occupies all gaps. An interface between the metal features and the porous low dielectric constant material may include less than about 0.1% by volume of voids.
US10217659B2 Dual isolation fin and method of making
A method of making a dual isolation fin comprises applying a mask to a substrate and etching the exposed areas of the substrate to form a mandrel; forming a dielectric layer on the surface of the substrate and adjacent to the mandrel; forming a first epitaxially formed material on the exposed portions of the mandrel; forming a second epitaxially formed material on the first epitaxially formed material; forming a first isolation layer on the dielectric layer and adjacent to the second epitaxially formed material; removing the mask and mandrel after forming the first isolation layer; removing the first epitaxially formed material after removing the mask and mandrel; and forming a second isolation layer.
US10217658B2 Method and structure for minimizing fin reveal variation in FinFET transistor
A semiconductor device includes a plurality of fins spaced apart from each other on a substrate; a liner layer on the substrate between each fin of the plurality of fins and on at least a portion of a sidewall of each fin; and a plurality of isolation regions adjacent and between the plurality of fins. The plurality of isolation regions are on a top surface of the liner layer on the substrate and includes a dielectric layer; and a doped region on the dielectric layer.
US10217654B1 Embedded features for interlocks using additive manufacturing
The present disclosure describes a method and apparatus for determining whether components in a semiconductor manufacturing system are authorized for use in that system. By embedding an identification feature in the component, it is possible for a controller to determine whether that component is qualified for use in the system. Upon detection of an unauthorized component, the system may alert the user or, in certain embodiments, stop operating of the system. This identification feature is embedded in a component by using an additive manufacturing process that allows the identification feature to be embedded in the component without subjecting the identification feature to extreme temperatures.
US10217653B2 Apparatus for treating substrate
A substrate-treating apparatus according to an example embodiment of the inventive concepts includes a support unit on which a substrate is loaded, an optical measurement unit providing light to the substrate to obtain image data and checking whether the substrate is abnormal or not, based on the image data, and a control unit controlling the support unit and the optical measurement unit. The control unit processes the image data transmitted from the optical measurement unit. The control unit includes an interlock control part performing an interlock operation interrupting a process performed on the substrate if an abnormal signal is detected from the image data.
US10217649B2 Semiconductor device package having an underfill barrier
A semiconductor device package includes a substrate, a semiconductor device, and an underfill. The substrate includes a top surface defining a mounting area, and a barrier section on the top surface and adjacent to the mounting area. The semiconductor device is mounted on the mounting area of the substrate. The underfill is disposed between the semiconductor device and the mounting area and the barrier section of the substrate. A contact angle between a surface of the underfill and the barrier section is greater than or equal to about 90 degrees.
US10217647B2 Method of manufacturing semiconductor device
A method of manufacturing a semiconductor device may include forming active patterns, forming a polygonal mask pattern having a first width and a second width on the active patterns, forming an active region by executing a first etching process using the mask pattern, forming a first cutting mask for removing a first corner rounding in which a width of the active region is the first width, removing the first corner rounding by executing a second etching process using the first cutting mask, forming a second cutting mask for removing a second corner rounding in which the width of the active region is changed from the first width to the second width, and executing a third etching process using the second cutting mask.
US10217642B2 Substrate processing apparatus, substrate processing method and substrate holding member
A substrate processing apparatus includes a process chamber, and a turntable provided in the process chamber and including a substrate holding region formed in a top surface along a circumferential direction of the turntable. A surface area increasing region is provided in the top surface of the turntable around the substrate holding region and is configured to increase a surface area of the top surface of the turntable to an area larger than a surface area of a flat surface by including a concavo-convex pattern in its top surface. A process gas supply unit is configured to supply a process gas to the top surface of the turntable.
US10217640B2 Methods of fabricating semiconductor devices
A method of fabricating a semiconductor device includes forming first and second gate dielectric layers on first and second regions of a semiconductor substrate, respectively, forming a first metal-containing layer on the first and second gate dielectric layers, performing a first annealing process with respect to the first metal-containing layer, removing the first metal-containing layer from the first region, forming a second metal-containing layer on an entire surface of the semiconductor substrate, performing a second annealing process with respect to the second metal-containing layer, forming a gate electrode layer on the second metal-containing layer, and partially removing the gate electrode layer, the second metal-containing layer, the first metal-containing layer, the first gate dielectric layer, and the second gate dielectric layer to form first and second gate patterns on the first and second regions, respectively.
US10217638B2 Method for removing crystal originated particles from a crystalline silicon body using an etch process
A method for removing crystal originated particles from a crystalline silicon body having opposite first and second surfaces includes: increasing a surface area of at least one of the first and second surfaces by an etch process; and oxidizing the increased surface area at a temperature of at least 1000° C. and for a duration of at least 20 minutes.
US10217636B2 Method of manufacturing a silicon carbide semiconductor device by removing amorphized portions
A trench is formed that extends from a main surface into a crystalline silicon carbide semiconductor layer. A mask is formed that includes a mask opening exposing the trench and a rim section of the main surface around the trench. By irradiation with a particle beam a first portion of the semiconductor layer exposed by the mask opening and a second portion outside of the vertical projection of the mask opening and directly adjoining to the first portion are amorphized. A vertical extension of the amorphized second portion gradually decreases with increasing distance to the first portion. The amorphized first and second portions are removed.
US10217635B2 Method of manufacturing semiconductor device
Provided is a method of manufacturing a semiconductor device. The method of manufacturing a semiconductor device includes forming a target etching layer on a substrate, patterning the target etching layer to form a pattern layer including a pattern portion having a first height and a first width and a recess portion having a second width, providing a first gas and a second gas on the pattern layer, and performing a reaction process including reacting the first and second gases with a surface of the pattern portion by irradiating a laser beam on the pattern layer. The performing the reaction process includes removing a portion of sidewalls of the pattern portion so that the pattern portion has a third width that is smaller than the first width.
US10217633B2 Substantially defect-free polysilicon gate arrays
A single critical mask process flow and associated structure eliminate the formation of narrow polysilicon defects at the ends of polysilicon gate arrays, and obviate the need to implement complicated ground rules and post-design fill methods to avoid generation of the defects.
US10217631B2 Fan-out semiconductor package
A fan-out semiconductor package includes: a first connection member having a through-hole; a semiconductor chip disposed in the through-hole of the first connection member and having an active surface having connection pads disposed thereon and an inactive surface opposing the active surface; an encapsulant encapsulating at least portions of the first connection member and the inactive surface of the semiconductor chip; and a second connection member disposed on the first connection member and the active surface of the semiconductor chip and including a redistribution layer electrically connected to the connection pads. The first connection member includes a first electromagnetic interference (EMI) blocking part surrounding side surfaces of the semiconductor chip, the second connection member includes a second EMI blocking part surrounding the redistribution layer, and the first EMI blocking part and the second EMI blocking part are connected to each other.
US10217624B2 High PAR maintenance rate type high pressure sodium lamp with auxiliary starting switch
A high PAR maintenance rate type high pressure sodium lamp with an auxiliary starting switch is provided with an external glass tube and a discharge tube which is arranged at the center in the external glass tube and coaxial with the external glass tube. The surface of the discharge tube is provided with a metal lead. The left and right ends of an external glass shell are provided with pressure sealing plates which are fused and sealed through high temperature. The pressure sealing plates are internally provided with conductive sheets. One end of the discharge tube is connected with the conductive sheet of the left end through a left internal conductive support, and the other end is connected with the conductive sheet of the right end through an auxiliary starting switch component. According to the high pressure sodium lamp, the high pressure sodium lamp can be quickly lit up through a temperature controlled switch so that the high pressure sodium lamp has the advantages of being great in starting performance, great in lighting effect, high in stability, long in the service life, great in high temperature resistance and high pressure resistance and safe and reliable and is not liable to crack.
US10217618B2 Current threshold response mode for arc management
This disclosure describes systems, methods, and apparatuses for extinguishing electrical arcs in a plasma processing chamber. Once an arc is detected, the steady state voltage provided to the plasma processing chamber can be reduced, and the current being provided to the chamber decays below a steady state value as the arc is extinguished. When the current falls to or below a current threshold, the voltage can be ramped back up bringing the voltage and current back to steady state values. This technique enables power to return to a steady state level faster than traditional arc mitigation techniques.
US10217617B2 Plasma processing apparatus and method therefor
A dry etching apparatus plasma processes a wafer held by a carrier having a frame and a holding sheet. An electrode unit of a stage includes an electrostatic chuck. An area of an upper surface of the electrostatic chuck onto which the wafer is placed via the holding sheet is a flat portion and is not subject to backside gas cooling. A first groove structure is formed in the area onto which the wafer is placed via the holding sheet as well as in an area onto which a holding sheet between the wafer and the frame is placed. To a minute space defined by the first groove structure and the carrier, a heat transfer gas is supplied from a first heat transfer gas supply section through a heat transfer gas supply hole (backside gas cooling).
US10217614B2 Ceramic gas distribution plate with embedded electrode
A gas distribution plate for a substrate processing system includes a ceramic lower portion of the gas distribution plate including a plurality of ceramic green sheets. A ceramic upper portion of the gas distribution plate includes a plurality of ceramic green sheets. An electrode is printed on at least one of an upper surface of the ceramic lower portion and a lower surface of the ceramic upper portion using metal screen printing. A first plurality of through holes is machined through the ceramic lower portion and the ceramic upper portion of the gas distribution plate prior to sintering.
US10217612B2 Plasma processing apparatus and plasma processing method with a carrier wave group generating unit
A plasma processing apparatus includes a processing vessel; a carrier wave group generating unit configured to generate a carrier wave group including multiple carrier waves having different frequencies belonging to a preset frequency band centered around a predetermined center frequency; and a plasma generating unit configured to generate plasma within the processing vessel by using the carrier wave group.
US10217610B2 Arrangements for manipulating plasma confinement within a plasma processing system and methods thereof
Methods for controlling bevel etch rate of a substrate during plasma processing within a processing chamber includes securing the substrate on a lower electrode within the processing chamber. A power source is provided. A gas mixture is flowed into the processing chamber. A first match arrangement coupled to an upper electrode is adjusted to control current flowing through the upper electrode to change the upper electrode from a grounded state to a floating state. A second match arrangement coupled to a top ring electrode is adjusted to control current flowing through the top ring electrode so as to control plasma formed above a top edge of the substrate. An extension of the upper electrode is lowered during plasma processing so as to minimize a gap between the extension of the upper electrode and the substrate received on the lower electrode, such that the gap is incapable of supporting plasma formed in the processing chamber.
US10217607B2 Ion implantation apparatus and ion implantation method
An ion implantation apparatus includes a beam scanner that provides a reciprocating beam scan in a beam scan direction in accordance with a scan waveform, a mechanical scanner that causes a wafer to reciprocate in a mechanical scan direction, and a control device that controls the beam scanner and the mechanical scanner to realize a target two-dimensional dose amount distribution on a surface of the wafer. The control device includes a scan frequency adjusting unit that determines a frequency of the scan waveform in accordance with the target two-dimensional dose amount distribution, and a beam scanner driving unit that drives the beam scanner by using the scan waveform having the frequency determined by the scan frequency adjusting unit.
US10217599B2 Electron gun, control method and control program thereof, and three-dimensional shaping apparatus
When an emission current is changed, a decrease in brightness of an electron beam is prevented. An electron gun includes a cathode that emits thermoelectrons, a Wehnelt electrode that focuses the thermoelectrons, a control electrode that extracts the thermoelectrons from a distal end of said cathode, an anode that accelerates the thermoelectrons and irradiates a powder with the thermoelectrons as an electron beam, and an optimum condition collection controller that changes at least one of a bias voltage to be applied to the Wehnelt electrode and a control electrode voltage to be applied to the control electrode, and decides a combination of the bias voltage and the control electrode voltage at which the brightness of the electron beam reaches a peak.
US10217592B2 Circuit breaker and method for operation thereof
A circuit breaker having, in a current path, a switching device having a thermal and/or magnetic tripping device for interruption of a current circuit having the current path comprehensive in an event of overcurrent or short-circuit, wherein a functional component of the switching device connected into the current path is bridged by means of a bypass which carries the load current detected by means of a current sensor when the current is below a current threshold, and is shut off when the current threshold is exceeded.
US10217589B2 High-speed circuit breaking array for breaking a current path in a switching device
A high-speed circuit breaking array, for breaking a current path in a switching device in the event of a short circuit or overload, has a drive for moving a drive armature from a standby position to a trigger position, wherein the movement of the drive armature is designed to act on at least one movable contact of the switching device in such a way that the current path is broken using a holding device. A switching device having a contact system has at least one fixed contact and at least one movable contact, wherein in order to make and break a current path the movable contact can be reversibly moved in relation to the fixed contact between a make position and a break position using a drive for the purpose of functional switching, and has a high-speed circuit breaking array of this type.
US10217588B2 Enclosed type electromagnetic switch having status indication function
The present invention relates to an enclosed type electromagnetic switch having a status indication function, and more particularly, to and enclosed-type electromagnetic switch having a status indication function that can show the electromagnetic switch's status on an enclosure.
US10217587B2 Pulse solenoid control circuit
Disclosed herein is a device comprising a pulse trigger switch module configured to generate a first control signal in response to a first input signal value and generate the second control signal in response to a second input signal value. An on pulse generator module provides a first pulse signal having a first predetermined pulse duration in response to the first control signal and an off pulse generator module provides a second pulse signal having a second predetermined pulse duration in response to the second control signal. An on pulse switch module connects a power signal to an output in response to the first pulse signal and an off pulse switch module connects the power signal to the output in response to the second pulse signal.
US10217585B2 Control circuit for composite switch with contact protection based on diode and relay control method
A composite switch with diode contact protection based on a diode is disclosed and includes a primary relay contact protection circuit, a primary relay contact and a relay control circuit, where the primary relay contact protection circuit is formed by an auxiliary relay contact and a diode connected in series and is connected with the primary relay contact in parallel, a current capacity of the auxiliary relay contact is 1/10 to 1/1000 of a current capacity of the primary relay contact.
US10217584B2 Magnetic reed switch
A magnetic reed switch, including: an insulating casing, magnetic reeds, and at least one flexible element. The insulating casing is a hollow structure. The magnetic reeds are disposed inside and at two ends of the insulating casing, respectively. Ends of the magnetic reeds overlap. The at least one flexible element is an electrically conductive material and is disposed on at least one magnetic reed. The at least one flexible element is connected in parallel to two ends of the magnetic reeds.
US10217577B2 Remote control with configurable buttons
Described herein are several examples of an apparatus that features receptacles configured to accept interchangeable buttons. Each of the interchangeable buttons has a receptacle interface on a first side, which allows them to electrically connect to and communicate with the aforementioned apparatus, and a unique user-perceivable label on a second side. Electronic elements embedded in each interchangeable button, or alternatively located on its first side, correspond to a unique user-perceivable label. Based on these electronic elements, the apparatus recognizes each button individually, and identifies their user-perceivable label. As a result, the interchangeable buttons may be re-positioned on the apparatus and maintain their intended functionality according to their user-perceivable label. In addition, new interchangeable buttons with different user-perceivable labels and new functionality, according to their labels, can be introduced to the apparatus.
US10217576B2 Balancing structure for long key of keyboard
A balancing structure for a long key of a keyboard includes a balancing rod and a pair of clamping hooks arranged on a bottom plate of the keyboard. The balancing rod includes a cross rod matched with a keycap of the key and two sliding rods extending from two end parts of the cross rod and matched with the pair of clamping hooks respectively. During the keycap pressing or spring-back process, each of the two sliding rods slides on a clamping port edge on at least one side of the corresponding clamping hook along with the rotation of the cross rod, and the moving trajectory of the contact point of each sliding rod and the corresponding port edge is an arc in the sliding process.
US10217575B2 Switch device
A switch device includes a base part which includes a switch element, an operating member, a force transmission member which transmits a force between the switch element and the operating member, a light source, and a reflective surface. The operating member includes an operating outer surface, an operating inner surface, and a transmitting member. The transmitting member has a transmitting inner surface. At least a portion of the force transmission member is disposed along a pressing direction between the transmitting inner surface and the switch element. The reflective surface is disposed at a position where it reflects at least a part of the light from the light source to at least a portion of the transmitting inner surface.
US10217574B2 Low-voltage switching device with a variable design
A low-voltage switching device includes a base module, with a connection region for electrical conductors. Auxiliary contacts and a coil connection are arranged in a separate auxiliary module that is attachable to and detachable from the base module to maximize flexibility in configuration, manufacture, functionality and utility of the switching device while reducing production costs.
US10217573B2 Universal contact input supporting programmable wetting current
A system and method according to various embodiments can include a universal contact input status detection circuit. A voltage source wets a contact with a wetting voltage. A current mirror circuit is connected across an input of the contact to provide a constant wetting current over a wide input voltage range. The input voltage can be varied over a range wide enough to include both AC voltages and DC voltages. The current mirror circuit maintains the constant wetting current during varying wetting voltage inputs across the input of the contact. A wetting voltage sensor senses the wetting voltage provided to the contact so that the status of the contact can be determined.
US10217572B2 Low frequency converters having electrochemical capacitors
In one embodiment of the invention, a low frequency converter is described that includes a first electrochemical capacitor to charge to an input voltage and a second electrochemical capacitor that is coupled to the first electrochemical capacitor. The second electrochemical capacitor is associated with an output voltage of the low frequency converter. Each electrochemical capacitor may have a capacitance of at least one millifarad (mF) and a switching frequency that is less than one kilohertz.
US10217570B2 Electric storage device
An electric storage device has an electrode body and a housing body. The electrode body has a plurality of positive plates and a plurality of negative plates. The positive plates and the negative plates are alternately stacked on each other via separators. The housing body houses the electrode body together with an ion conductor. The electric storage device is provided with a magnetic field generating unit that generates magnetic force lines in a certain direction.
US10217569B2 Devices comprising a capacitor and support material that laterally supports the capacitor
A device includes a capacitor that has first and second electrodes having a capacitor insulator there-between. The first electrode is elongated and extends elevationally. The first electrode has elevationally-extending first conductive material and has second conductive material that projects laterally outward from an elevationally-extending part of the first conductive material. The laterally-projecting second conductive material has a vertical thickness that is less than that of the elevationally-extending first conductive material. Support material laterally supports the capacitor and contacts a tip end of the laterally-projecting second conductive material.
US10217567B2 Multilayer capacitors
A multilayer capacitor may include a capacitor stack having pluralities of first and second plate electrodes connected to respective stack face terminals. Two face terminals on different stack sides are connected to the first plate electrodes. Two different face terminals also on different stack sides are connected to the second plate electrodes. Respective base conductors connect to the two sets of face terminals for connecting the capacitor to an external circuit. Three face terminals may be connected to the first or second plate electrodes. The base conductors may connect to the face terminals at the same relative position of the capacitor stack, at different relative positions of the capacitor stack. A capacitor stack may be positioned with a stack end facing a base substrate. Two multilayer capacitors may be mounted electrically in parallel with one or more lossy elements spanning a gap between the capacitors.
US10217558B2 Embedded magnetic component transformer device
A transformer device includes primary, secondary, and auxiliary windings, located in an insulating substrate by conductive vias joined together by conductive traces. Positions of the conductive vias are arranged so as to optimize the isolation properties of the transformer, and to improve the coupling of the transformer by increasing the leakage inductance and reducing the distributed capacitance. The transformer device is compact and is weakly coupled. The weak coupling between the windings reduces the likelihood of the transformer malfunctioning, particularly when used in a self-resonant converter circuit.
US10217557B2 Laminated inductor
One object is to provide a laminated inductor having a reduced thickness without reduction in the magnetic characteristic and the insulation quality. The laminated inductor includes a first magnetic layer, an internal conductor, second magnetic layers, third magnetic layers, and a pair of external electrodes. The first magnetic layer includes three or more magnetic alloy particles arranged in the thickness direction and an oxide film binding the magnetic alloy particles together and containing Cr. The three or more magnetic alloy particles have an average particle diameter of 4 μm or smaller. The internal conductor includes a plurality of conductive patterned portions electrically connected to each other via the first magnetic layer. The second magnetic layers are composed of magnetic alloy particles and disposed around the conductive patterned portions. The third magnetic layers are composed of magnetic alloy particles and disposed so as to be opposed to each other in thickness direction.
US10217556B2 Fault-tolerant power transformer design and method of fabrication
A transformer system for containing energy resulting from a sudden generation of gases which increases the pressure inside a transformer tank. The system comprises a) a transformer tank for housing a transformer coil and core assembly therein, and containing a dielectric fluid that is capable of electrically insulating components of the transformer coil and core assembly; and b) at least one heat exchanger connected to the transformer tank, wherein the at least one heat exchanger comprises at least one hollow panel or radiator. As the dielectric fluid increases in temperature and expands within the tank, the dielectric fluid is cooled by circulating the dielectric fluid through the at least one hollow panel or radiator in the at least one heat exchanger. The transformer tank and the at least one heat exchanger are capable of expanding in volume to contain energy resulting from the sudden generation of gases which increases the pressure inside the transformer tank.
US10217555B2 Compact inductor
For reducing volume requirements and magnetic flux leakage, a compact inductor includes a first planar core with a first core thickness along a first axis orthogonal to a plane of the first planar core. In addition, the inductor includes a second planar core disposed parallel to the first planar core with a second core thickness along the first axis. The inductor further includes a plurality of electrical windings disposed between and adjacent to an inside plane of the first planar core and an inside plane of the second planar core. The electrical windings may include insulated electrical wires. No magnetic teeth may be disposed between the first planar core and the second planar core. The first axis is parallel to a magnetic axis of each electrical winding.
US10217551B2 Magnetic sheet, method of making the same, and loud speaker including the same
A magnetic sheet having a magnetic material particle comprising a hexaferrite and a nanofiber matrix made of two or more nanofibers, wherein the magnetic material particle is dispersed in the nanofiber matrix. A manufacturing method thereof and a speaker including the magnetic sheet are also provided.
US10217548B2 Coaxial cable
A coaxial cable includes a conductor, an insulation layer provided around the conductor, a shield layer provided around the insulation layer, and a sheath provided around the shield layer. The insulation layer includes a first insulation layer, a second insulation layer and a third insulation layer that are arranged in this order from a conductor side. The first insulation layer includes a non-solid extruded layer. The second layer includes a foamed layer not adhering to the first insulation layer. The third insulation layer includes a non-foamed layer adhering to the second insulation layer.
US10217547B1 Power cable
A power cable to be provided inside a steel pipe that is electrically connected to a reference potential node, includes 3 transmission cables, 3 ground buses making contact with outer peripheral surfaces of adjacent transmission cables and arranged at 3-fold rotationally symmetrical positions with respect to a center of the transmission cables in a cross sectional view, a binder covering the ground buses and the transmission cables, and a jacket provided to overlap the binder. The transmission cables have outer diameters to inscribe a first circle having a radius corresponding to a radius of a second, envelope circle of the power cable having a maximum radius inside the steel pipe, but excluding thicknesses of the binder and the jacket. The ground buses have outer diameters to project outwardly of an envelope closed curve of the transmission cables, but less than or equal to a diameter of the first circle.
US10217545B2 Cable structure
A cable structure includes isolation layers, a first signal wire, a second signal wire, a first ground wire, a second ground wire, a first conductor, and a second conductor. These signal and ground wires are parallel along a first direction and between the isolation layers. These signal wires are adjacent, and the ground wires are respectively at outer sides of these signal wires. The first conductor is on at least one of the isolation layers along a second direction orthogonal to the first direction and is electrically connected to the first and second ground wires. The second conductor is on an outer surface of at least one of the second isolation layers along the first direction and is electrically connected to the first conductor. The second conductor is symmetrical based on a central line between the first and second signal wires.
US10217544B2 Energy cable having a cold-strippable semiconductive layer
Energy cable comprising, from the interior to the exterior, an electrical conductor, an inner semiconductive layer, an electrically insulating layer made from a thermoplastic material in admixture with a dielectric fluid, and an outer semiconductive layer, wherein the outer semiconductive layer comprises: (i) from 55 wt % to 90 wt % of a copolymer of ethylene with at least one ester comonomer having an ethylenic unsaturation; (ii) from 10 wt % to 45 wt % of a propylene copolymer with at least one olefin comonomer selected from ethylene and an α-olefin other than propylene, said copolymer having a melting point of from 145° C. to 170° C. and a melting enthalpy of from 40 J/g to 80 J/g; (iii) at least one conductive filler; (iv) at least one dielectric fluid; the amounts of (i) and (ii) being expressed with respect to the total weight of the polymeric components of the layer. The outer semiconductive layer is cold-strippable, having an adhesion with the underlying thermoplastic insulating layer which can be tuned so as to obtain a suitable balance between strippability at a temperature ranging from about 0° C. to about 40° C., without applying heat, and stable adhesion with the insulating layer during the cable lifespan.
US10217542B2 Conductive member
A conductive member disclosed herein is a conductive member that is routed from the front to the rear of a vehicle, and includes: a shape-retaining tubular pipe member made of a metal having excellent conductivity; a braided wire having flexibility and configured to be crimped to be connected to a crimped connection portion provided at front and rear ends of the pipe member; a round terminal configured to be crimped and connected to the braided wire; and a heat-shrinkable tube that covers from a crimped portion of the round terminal at the front end to a crimped portion of the round terminal at the rear end.
US10217541B2 Amorphous polycarbonate films for capacitors, methods of manufacture, and articles manufactured therefrom
A film comprising a copolycarbonate, wherein the film is a uniaxially-stretched, extruded film comprising at least one film region having: an average thickness of more than 0 and less than 14 micrometers with a standard deviation of 0.8 micrometer to 1.6 micrometers, a surface having a surface roughness average of less than 0.04 micrometer as measured by optical profilometry, a dielectric constant at 1 kHz and room temperature of at least 2.7, a dissipation factor at 1 kHz and room temperature of 1% or less, and a breakdown strength of at least 620 Volt/micrometer; and the copolycarbonate has a Tg of greater than 180° C. and comprises carbonate units derived from a bisphenol compound of the formula (3).
US10217540B2 Multifunctional nanoparticles
Multifunctional nanoparticles can include two or more different populations of nanocrystals that impart a combination of properties arising from the constituent populations in a single, multifunctional nanoparticle.
US10217538B2 Creation of isotopes using laser beams
A method for creating isotopes using laser beams, including the steps: 1) placing a target under plasma conditions, 2) bombarding the target under plasma conditions with particles generated using a bundle of laser beams, the bundle of laser beams being synchronized with the development of the plasma conditions, the fuel and the particles being selected in such a way that the interaction between the target under plasma conditions and the particles generates nuclear reactions, and 3) recovering the isotopes generated by the nuclear reactions.
US10217537B2 Container for radioactive waste
A container system for radioactive waste and method for using the same is provided. The system includes a canister configured for holding radioactive waste and a lid system. In one embodiment, the lid system comprises a two-part lid assembly including a confinement lid and a shielded lifting lid. The confinement lid is detachably mounted to the confinement lid. In use, the lifting lid supports the confinement lid for lifting and placement on the canister. The lifting lid further shields operators while the confinement lid is mounted to the canister. Thereafter, the lifting lid is removed and may be reused for confinement lid mountings on other canisters. In one embodiment, the confinement lid is bolted to the canister. The canister may be disposed in a protective overpack for transport and storage.
US10217533B2 Fuel rod cladding and methods for making and using same
In general, the present invention is directed to novel nuclear fuel rod claddings that have better performance characteristics compared to current claddings, particularly during a severe accident, such as a loss of coolant accident. The present invention provides a duplex cladding having two layers, an inner Mo or Mo-alloy layer and a protective layer disposed on the outside of the Mo or Mo-alloy layer. Optionally, the Mo or Mo-alloy layer may have a coating disposed on its inner surface to provide additional capability with the fuel pellets, thereby creating a triplex cladding.
US10217529B2 Patient bed inventory hardware and software system and method
A resource tracking system for monitoring the status of multiple resources, displaying the status of those resources to medical personnel, and mirroring the status information to multiple displays for remote users is disclosed. In the preferred embodiment, the tracking system is used to track the availability of beds in a hospital or treatment facility. The resource tracking system comprises a resource tracking board and a server. The board comprises a re-writable surface with a plurality of buttons and lights arrayed in one or more columns; and, a network interface operably coupled to the plurality of buttons and plurality of lights. The lights are configured to emit at least three colors including green when the associated resource is available, yellow when the resource is reserved, and red when the resource is in use. The server is configured to generate interactive displays enabling remote users to observe and reserve available resources. The interactive display features a representation of at least one of the plurality of buttons and lights on the physical board. The server causes any change in status of a resource on the physical board in the hospital or treatment facility to be reflected on the interactive displays. The server also causes any change in status of a resource on an interactive display to be reflected on the physical board in the hospital or treatment facility.
US10217527B2 Systems and methods for integrating, unifying and displaying patient data across healthcare continua
Implementations are directed to providing a user of a mobile device access to patient information and patient physiological data. Actions can include receiving user input, the user input indicating a user command to display a monitoring screen for a particular patient, processing patient-specific data and event data to provide one or more event summaries, each event summary including a graphical representation of an event based on the patient-specific data, and displaying the monitoring screen on the mobile device, the monitoring screen including the one or more event summaries, each event summary including at least a portion of patient-specific data displayed as a waveform associated with an event.
US10217521B2 Multi-time programmable non-volatile memory cell
A non-volatile programmable bitcell has a read enable device with a source coupled with a bitline, an anti-fuse device with a gate coupled with a first write line, a drain coupled with a supply voltage and a source coupled with a drain of the read enable device. The bitcell has a fuse device coupled between a second write line and the drain of the read enable device. A magnitude of current flowing in the bitline, when the read enable device is enabled for reading, is dependent both on (1) a voltage level applied to the first write line and anti-fuse device state and on (2) a voltage level applied to the second write line and fuse device state. Usages include in a memory array, such as for FPGA configuration memory. The bitcell can be used as a multi-time programmable element, or to store multiple bit values.
US10217518B1 Reducing hot electron injection type of read disturb in 3D memory device having connected source-end select gates
A memory device and associated techniques for reducing read disturb of memory cells during a sensing process. The drain-end select gate transistors of unselected sub-blocks are made temporarily conductive for a time period during the ramp up of the unselected word line voltages to reduce the amount of capacitive coupling up of the respective memory string channel. This reduces a channel gradient which can exist in the memory string channels, thereby also reducing the read disturb. Further, the time period is greater when the selected word line is in a source-end or midrange subset of the word lines than when the selected word line is in a drain-end subset of the word lines. Another option involves omitting the injection disturb countermeasure, or providing a less severe injection disturb countermeasure, when the unselected sub-blocks are unprogrammed.
US10217515B2 Programming memory devices
Technology for a memory device operable to program memory cells in the memory device is described. The memory device can include a plurality of memory cells and a memory controller. The memory controller can perform a first programming pass to program a memory cell in the plurality of memory cells. A defined number of blanket programming pulses can be applied to the memory cell during the first programming pass. The blanket programming pulses may not include verify operations. The memory controller can perform a second programming pass to program the memory cell. A defined number of program and verify (PV) pulses can be applied to the memory cell during the second programming pass.
US10217514B2 Semiconductor memory device
According to embodiments, a semiconductor memory device includes a first electrode, a second electrode, a memory cell, and a control circuit. The memory cell is provided between the first electrode and the second electrode and includes a metal film and a resistance change film. The control circuit applies a voltage between the first electrode and the second electrode to perform transition of a resistive state of the memory cell. The control circuit performs a first writing operation by applying a first pulse having a voltage of a first polarity to the memory cell and applying a second pulse having a voltage of the first polarity smaller than the voltage of the first pulse to the memory cell continuously after applying the first pulse.
US10217513B2 Phase change memory devices including two-dimensional material and methods of operating the same
A phase change memory device may include a phase change layer that includes a two-dimensional (2D) material. The phase change layer may include a layered structure that includes one or more layers of 2D material. The phase change layer may be provided between a first electrode and a second electrode, and the phase of at least a portion of one or more of the layers of 2D material may be changed based on an electrical signal applied to the phase change layer through the first electrode and the second electrode. The 2D material may include a chalcogenide-based material or phosphorene. The 2D material may be associated with a phase change temperature that is greater than or equal to about 200° C. and lower than or equal to about 500° C.
US10217503B2 Reading circuit of a long time constant circuit stage and corresponding reading method
A reading circuit for a charge-retention circuit stage is provided with a storage capacitor coupled between a first biasing terminal and a floating node, and a discharge element coupled between the floating node and a reference terminal. The reading circuit further has an operational amplifier having a first input terminal that is coupled to the floating node and receives a reading voltage, a second input terminal receives a reference voltage, and an output terminal on which it supplies an output voltage, the value of which is a function of the comparison between the reading voltage and the reference voltage and indicative of a residual charge in the storage capacitor. A shifting stage shifts the value of the reading voltage of the floating node, before the comparison is made between the reading voltage and the reference voltage for supplying the output voltage.
US10217499B2 Modified decode for corner turn
Examples of the present disclosure provide apparatuses and methods for performing a corner turn using a modified decode. An example apparatus can comprise an array of memory cell and decode circuitry coupled to the array and including logic configured to modify an address corresponding to at least one data element in association with performing a corner turn operation on the at least one data element. The logic can be configured to modify the address corresponding to the at least one data element on a per column select basis.
US10217498B2 Techniques for preventing tampering with PROM settings
Techniques for preventing tampering with programmable read-only memory of an integrated circuit are provided. A method according to these techniques includes performing a randomized read of data stored in the programmable read-only memory based on an input from an entropy source, writing the data to one or more registers of the integrated circuit, and initializing one or more components of the integrated circuit using the data stored in the one or more registers.
US10217497B2 Delay locked loop circuit and method of controlling same
A memory device includes a delay locked loop (DLL) circuit to receive an external clock, and delay the external clock by a DLL delay time to provide a DLL clock, an output driver to output the DLL clock as a data strobe signal, and a DLL offset control circuit configured to receive at least one of a plurality of functional statement commands, and adjust the DLL delay time based on the at least one of the functional statement commands. Each one of the DLL circuit and the output driver is selectively powered according to the at least one of the functional statement commands.
US10217493B2 DRAM data path sharing via a split local data bus
Provided is memory device and a memory bank, comprising a global data bus, and a local data bus split into two parts, wherein the local data bus is configurable to direct signals to the global data bus. Provided also is a method in which signals are received in a local data bus that is split into two parts, and the signals are directed from the local data bus to the global data bus. Provided also is a computational device comprised of a processor and the memory device.
US10217489B2 Systems and methods for media track management in a media editing tool
In a media editing device for reorganizing media content and editing the reorganized media content, a plurality of tracks is obtained, where each track comprises at least one component, each component comprising at least one segment, each segment comprising one of: image content, video content, audio content, and audio/video content. A first user input selecting a plurality of the tracks is received. A second user input selecting at least one reorganization technique to be applied to the selected tracks is also received. The selected reorganization technique is applied to the selected tracks, and the reorganized tracks are displayed. Editing operations are received for at least one of the reorganized tracks.
US10217478B2 Linear and rotational adjustment systems
Systems and methods may include a motor and an output shaft apparatus. The output shaft apparatus may be configured to position a manufacturing component using the motor. The output shaft apparatus may move linearly along a longitudinal axis and/or rotationally about the longitudinal axis. The system may also include an engagement apparatus coupling the motor to the output shaft apparatus. The engagement apparatus may be configured in a linear configuration for linearly moving the output shaft apparatus or a rotational configuration for rotationally moving the output shaft apparatus.
US10217477B2 Electronic device and speech recognition method thereof
An electronic device and a speech recognition method that is capable of adjusting an end-of-utterance detection period dynamically are disclosed. The electronic device includes a microphone, a display, an input device formed as a part of the display or connected to the electronic device as a separate device, a processor electrically connected to the microphone, the display, and the input device, and a memory electrically connected to the processor. The memory stores instructions, executable by the processor, for receiving an utterance input by a user through the microphone, converting the utterance to text comprised of a series of words or phrases with spaces, displaying the text on the display, the text comprising at least one space formed at an incorrect position, and receiving a user input for updating a predetermined time period through the input device.
US10217476B2 Companding system and method to reduce quantization noise using advanced spectral extension
Embodiments are directed to a companding method and system for reducing coding noise in an audio codec. A compression process reduces an original dynamic range of an initial audio signal through a compression process that divides the initial audio signal into a plurality of segments using a defined window shape, calculates a wideband gain in the frequency domain using a non-energy based average of frequency domain samples of the initial audio signal, and applies individual gain values to amplify segments of relatively low intensity and attenuate segments of relatively high intensity. The compressed audio signal is then expanded back to the substantially the original dynamic range that applies inverse gain values to amplify segments of relatively high intensity and attenuating segments of relatively low intensity. A QMF filterbank is used to analyze the initial audio signal to obtain a frequency domain representation.
US10217475B2 Headset and method for controlling same
A headset including a wireless communication unit configured to provide wireless communication; a first microphone mounted on the headset; and a second microphone to be placed within an ear of the user wearing the headset; a controller configured to receive a phone call via the wireless communication unit from an external device, select either one of the first microphone or the second microphone to receive a voice signal of the user responding to the received phone call, in response to the selection of the first microphone, receive the voice signal of the user through the first microphone, correct a sound quality of the voice signal received through the first microphone, and transmit the corrected voice signal to the external device, and in response to the selection of the second microphone, receive the voice signal of the user from the external auditory canal of the ear of the user having the second microphone placed therein, correct a sound quality of the voice signal received through the second microphone and transmit the corrected voice signal to the external device.
US10217474B2 System for maintaining reversible dynamic range control information associated with parametric audio coders
On the basis of a bitstream (P), an n-channel audio signal (X) is reconstructed by deriving an m-channel core signal (Y) and multichannel coding parameters (a) from the bitstream, where 1≤m
US10217466B2 Voice data compensation with machine learning
A method comprises: obtaining, at an apparatus, first voice data from a first user device associated with a first speaker participant in a communication session; detecting voice data loss or degradation in the first voice data; determining whether prediction probability of correctly compensating for the voice data loss or degradation is greater than a predetermined probability threshold; if the prediction probability is greater than the predetermined probability threshold, first compensating for the voice data loss or degradation using historical voice data received by the apparatus prior to receiving of the first voice data, the first compensating producing first compensated voice data; if the prediction probability is not greater than the predetermined probability threshold, second compensating for the voice data loss or degradation by inserting noise to the first voice data to produce second compensated voice data; and outputting the first compensated voice data or the second compensated voice data.
US10217465B2 Wearable device, system and method for name recollection
The invention concerns a wearable device 1 comprising a sensor 3 adapted for sensing a body part movement, a controller unit 4 adapted for sampling and processing data from the sensor 3 in order to detect a body part movement, and communication means 5 for communicating with at least one external device. The controller unit 4 is arranged to trigger at least voice capturing upon detection of a body part movement. The invention further concerns a name recalling system 100 comprising a wearable device 1, a mobile phone 20, a microphone 7, 28, 43, processing means 26, 31, a database 27, 32, and a name presentation unit 21, 52. The invention also concerns a method for name recollection.
US10217455B2 Linguistic model database for linguistic recognition, linguistic recognition device and linguistic recognition method, and linguistic recognition system
A method of building a database for a linguistic recognition device is provided The method includes storing common linguistic model data configured to infer a word or a sentence from a character acquired by recognizing a language input by a user in a storage section of a linguistic recognition device, collecting recognition-related information related to the user after storing the common linguistic data, and analyzing the collected recognition-related information to be stored as individual linguistic model data.
US10217454B2 Voice synthesizer, voice synthesis method, and computer program product
According to an embodiment, a voice synthesizer includes a content selection unit, a content generation unit, and a content registration unit. The content selection unit determines selected content among a plurality of pieces of content registered in a content storage unit. The content includes tagged text in which tag information for controlling voice synthesis is added to text serving as a target of the voice synthesis. The content generation unit applies the tag information in the tagged text included in the selected content to designated text to generate new content. The content registration unit registers the generated new content in the content storage unit.
US10217453B2 Virtual assistant configured by selection of wake-up phrase
A speech-enabled dialog system responds to a plurality of wake-up phrases. Based on which wake-up phrase is detected, the system's configuration is modified accordingly. Various configurable aspects of the system include selection and morphing of a text-to-speech voice; configuration of acoustic model, language model, vocabulary, and grammar; configuration of a graphic animation; configuration of virtual assistant personality parameters; invocation of a particular user profile; invocation of an authentication function; and configuration of an open sound. Configuration depends on a target market segment. Configuration also depends on the state of the dialog system, such as whether a previous utterance was an information query.
US10217452B2 Speech synthesis device and method
This invention is an improvement of technology for automatically generating response voice to voice uttered by a speaker (user), and is characterized by controlling a pitch of the response voice in accordance with a pitch of the speaker's utterance. A voice signal of the speaker's utterance (e.g., question) is received, and a pitch (e.g., highest pitch) of a representative portion of the utterance is detected. Voice data of a responsive to the utterance is acquired, and a pitch (e.g., average pitch) based on the acquired response voice data is acquired. A pitch shift amount for shifting the acquired pitch to a target pitch having a particular relationship to the pitch of the representative portion is determined. When response voice is to be synthesized on the basis of the response voice data, the pitch of the response voice to be synthesized is shifted in accordance with the pitch shift amount.
US10217448B2 System for creating, practicing and sharing of musical harmonies
Collaboratively creating musical harmonies includes receiving a user selection of a particular harmony. In response to this selection, there is displayed on a display screen of a computing device a plurality of musical note indicators or notes to specify a first harmony part of a musical piece to be performed. Real-time pitch detection is used to determine a pitch of each note which is voiced by a person, and a graphic indication of the actual pitch which is sung is displayed in conjunction with the musical note indicators.
US10217444B2 Method and system for fast cloning of virtual machines
A method for network cloud resource generation, including creating a template virtual machine. The method includes creating an instantiation of a virtual machine for an end user by cloning the template, and loading an application executed by the virtual machine. The method includes accessing first information associated with the end user, and loading the first information in an instantiation of the application.
US10217443B2 Method for displaying image and electronic device thereof
An electronic device and a method for displaying an image transmitted by a robot and remotely controlling a movement of the robot are provided. The electronic device includes a communicator, an inputter, a display, and a controller. The communicator receives, from the robot, an image photographed by the robot and time information. The inputter receives a command to control the robot. The display displays a screen corresponding to the image. The controller calculates a time delay between the electronic device and the robot based on the time information, control the display to display a graphical object to be overlaid on the screen, and control the communicator to transmit the command to the robot. The graphical object represents a field of view of the robot at a current time. The field of view of the robot at the current time may be estimated based on the time delay information.
US10217441B2 Method for displaying and electronic device thereof
One or more embodiments provide a method for processing and an electronic device. The display method of the electronic device can include the operations of, if a damage of a touchscreen sensing a gesture is sensed, confirming a region in which the damage of the touchscreen does not occur. The display method can also include changing the size of an output screen based on the region in which the damage of the touchscreen does not occur. The display method can also include outputting the size-changed output screen to the region in which the damage of the touchscreen does not occur. Other example embodiments are also possible.
US10217440B2 In-situ display monitoring and calibration system and methods
Disclosed are embodiments of in-situ display monitoring and calibration systems and methods. An image acquisition system captures images of the viewing plane of the display. Captured images may then be processed to characterize various visual performance characteristics of the display. When not in use capturing images of the display, the image acquisition system can be stored in a manner that protects it from environmental hazards such as dust, dirt, precipitation, direct sunlight, etc. A calibration image in which a plurality of light emitting elements is set to a particular color and intensity may be displayed, an image then captured, and then a difference between what was expected and what was captured may be developed for each light emitting element. Differences between captured images and expected images may be used to create a calibration data set which then may be used to adjust the display of further images upon the display.
US10217438B2 User interface and method for directly setting display white point
A method and user interface for direct setting of black and white points. Black point is set using a slider and matching of gray shades. White point setting is performed by having a setting object move within a defined region, such as a square or circle, with the area where the setting object moves being adjusted dynamically based on the location of the setting object with respect to the defined region. When the area is the desired white, the setting is complete. Preferably the defined region has a varying color border to allow a reference for the user in moving the setting object. A more detailed setting of gray levels can be accomplished by providing a gray scale with reference points. Each reference point has an associated white point setting area, so that settings are developed for each reference point. Settings at other locations are determined by interpolation or extrapolation.
US10217437B2 Method and apparatus of color conversion from red-green-blue color space to red-green-blue-white color space on input image
A method of color conversion from a red-green-blue (RGB) color space to a red-green-blue-white (RGBW) color space on an input image includes calculating RGB and white gains with respect to an image block of the input image, calculating RGB and white gain with respect to a pixel of the image block, wherein the white gain with respect to the pixel of the image block is adjusted based on the RGB gain with respect to the pixel of the image block, and performing the RGB to RGBW color conversion based on the RGB and white gain with respect to the pixel of the image block, which improves local color and detail performance of an output image corresponding to the input image.
US10217436B2 Display panel having a reduced number of data lines and a reduced number of channels for a driver
A display panel includes a plurality of pixels. Each pixel includes a plurality of different-color sub-pixels and a coupling sub-pixel that overlaps at least one color sub-pixel so as to be configured to be capacitively coupled to the at least one color sub-pixel to be thereby driven so as to display a color different from that of the different-color sub-pixels.
US10217430B1 GOA circuit and liquid crystal panel, display device
A GOA circuit is provided. The GOA circuit includes multiple cascaded GOA unit, each stage of the GOA unit is according to a N-staged GOA unit; the N-staged GOA unit comprises a pull-up control circuit, a pull-up circuit, a transmission circuit, a pull-down circuit, a pull-down holding circuit and a bootstrap capacitor; transmission the first reverse clock signal and the first clock signal of pull-down holding circuit have difference potential at each of the same clock, and the second reverse clock signal and the second clock signal of pull-down holding circuit have difference potential at each of the same clock. It could effective reverse correcting the problem of forward deflection of voltage threshold in the pull-down holding sub-circuit of single-stage GOA unit, such that enhances the reliability and stability of GOA circuit.
US10217429B1 GOA circuit
The invention provides a GOA circuit, the signal amplification circuit part of the N-th GOA unit of the GOA circuit comprising: first amplification circuit TFT (T1), having gate connected to DC high voltage (VGH), source and drain connected to first amplification circuit node (S(N)) and the DC high voltage (VGH); second amplification circuit TFT, having gate connected to N-th internal signal output end (G(N)_in), source and drain connected to first amplification circuit node (S(N)) and DC low voltage (VSS); third amplification circuit TFT (T3), having gate connected to DC high voltage (VGH), source and drain connected to N-th external signal output end (G(N)_out) and DC high voltage (VGH); fourth amplification circuit TFT (T4), having gate connected to first amplification circuit node (S(N)), source and drain connected to the N-th external signal output end (G(N)_out) and DC low voltage (VSS). The invention improves GOA gate output waveform and reduces power-consumption.
US10217428B2 Output control unit for shift register, shift register and driving method thereof, and gate driving device
An output control unit of a shift register, a shift register and a driving method thereof, and a gate driving device. The output control unit includes N pull-up units, N pull-down units, and N signal output terminals. The nth pull-up unit is connected with a pull-up node, a high voltage source, an nth clock signal input terminal and an nth pull-down unit, the nth pull-down unit is connected to a pull-down node and a low voltage power source, and a connection point of the nth pull-up unit and the nth pull-down unit is further connected to the nth signal output terminal. The output control unit is configured to: provide clock signals from N clock signal input terminals to the N signal output terminals respectively under the control of a voltage of the pull-up node, and pull down levels of output signals of the N signal output terminals.
US10217421B2 Display panel, display device and display control method
A display panel, a display device and a display control method are disclosed. The display panel comprises a backlight module and a display substrate, wherein the backlight module comprises a plurality of backlight sources having different colors, the display substrate comprises a plurality of pixels, and each of the pixels comprises a plurality of sub-pixels having different colors; sub-pixels of at least one color and backlight sources having the same color are configured to be turned-on during a same time period.
US10217420B2 Display apparatus and method of controlling luminance thereof
There is provided a display apparatus including a display panel including a plurality of pixels connected to a plurality of data lines and a plurality of gate lines, a driving circuit configured to control the display panel to display an image on the display panel, and to output a wake signal having a pulse period according to an operating mode, a backlight unit configured to supply light to the display panel, and a light source driving unit configured to supply a light source power voltage to the backlight unit, wherein the light source driving unit is configured to generate the light source power voltage based on the pulse period of the wake signal.
US10217418B2 Organic light emitting diode display device capable of maintaining high brightness and color temperature
An organic light emitting diode display device is disclosed which adjusts brightnesses and color temperatures of RGBW data signals and matches the brightnesses of organic light emitting diodes and the color temperature of a white organic light emitting diode with the target brightness value and the target color temperature of a white pixel. As such, an overcompensation and the reduction of a lifespan can be prevented. Also, relatively high brightness and color temperature can be maintained.
US10217415B2 Display device and driving method thereof
A display device includes a plurality of sub-pixels. The display device displays a specific image composed of display lines. A display line of the specific image is supplied to a portion of the sub-pixels through the data lines to form an arrangement of brightness and darkness with a period of Q×M, and a pixel is composed by Q sub-pixels. The plurality of sub-pixels corresponding to the display line have a polarity distribution with a second period of 2N, and 2N sub-pixels in one period are divided into a first region containing first to N-th sub-pixels and a second region containing (N+1)-th to 2N-th sub-pixels. The polarity distribution of the first to N-th sub-pixels is opposite to that of the (N+1)-th to 2N-th sub-pixels. The least common multiple of M and N is an odd multiple of N.
US10217414B2 Emission control driver and display device having the same
An emission control driver includes a plurality of stages configured to output a plurality of emission control signals, respectively. Each stage includes an input circuit for receiving a previous emission control signal from one of previous stages or a vertical start signal, and configured to control a voltage of a first node and a voltage of a second node in response to a first clock signal; a stabilizing circuit for stabilizing the voltage of the first node in response to the voltage of the second node and a second clock signal; a voltage adjusting circuit connected between the second node and a third node, configured for boosting the voltage of the second node, and controlling the boosted voltage of the second node; and an output circuit configured to control an emission control signal in response to the voltage of the first node and a voltage of the third node.
US10217412B2 OLED display device drive system and OLED display drive method
Provided are an OLED display device drive system and an OLED display device drive method. The OLED display device drive system introduces the common voltage signal (Vcm) in the threshold voltage detection circuit (2) into the sub pixel driving circuit (1), and in the writing stage, by applying the common voltage signal (Vcm) to the organic light emitting diode (D1), the organic light emitting diode is in the negative voltage and reverse biased, and then in the light emitting stage, the common voltage signal (Vcm) is removed from the organic light emitting diode (D1), and then the trans-voltage of the organic light emitting diode (D1) changes from the negative voltage to the positive voltage and the light is normally emitted. Thus, the organic light emitting diode (D1) has been through the positive and negative alternating current drive, and can delay the aging of the OLED and extend the OLED lifetime.
US10217411B2 Display driving circuit, driving method thereof and display apparatus
Disclosed are a display driving circuit and a driving method thereof, and a display apparatus. The display driving circuit comprises a control unit (13), a light emitting device (20) and a collection unit (21). The collection unit (21) is connected with one terminal of the light emitting device (20), the control unit (13) and a collection signal input terminal (Fn) respectively, and is configured to collect brightness of the light emitting device (20) according to a signal input from the collection signal input terminal (Fn) and feed a collection result to the control unit (13); the control unit (13) is connected with the one terminal of the light emitting device (20) and the collection unit (21) respectively, and is configured to adjust an actual light emitting brightness value (L) of the light emitting device (20) to a target brightness value (D) according to the collection result; and the other terminal of the light emitting device (20) is connected with a first voltage (VSS), and is configured to emit light under the control of the control unit (13). The display driving circuit can bring uniformity of brightness in light emitted from respective pixel units.
US10217410B2 Light emission controller for display device, method of driving the same, and organic light-emitting display device including the same
A light emission controller includes: a plurality of stages, including: a first node (n1) controller charging a driving pulse of a gate-on voltage level to a set node (Q) by a reference clock pulse during an active period, a second node controller charging a pull-down voltage having the gate-on voltage level to a reset node during an inactive period, and an output unit controlled by voltage states of the Q and the reset node and outputting an active or inactive state output pulse, the n1 controller including: a first switching transistor supplying the driving pulse of the gate-on voltage level to n1 by the reference clock pulse during the active period, a second switching transistor supplying the driving pulse from n1 to the Q by a turn-on voltage, a first capacitor between the output unit and Q, and a second capacitor between the output unit and n1.
US10217406B2 Flexible display device and method for fabricating the same
A flexible display device includes a flexible substrate includes first and second portions that overlap each other, and a bending portion connecting the first portion with the second portion. A first display having a first organic light emitting diode is on the first portion, the first display configured to display an image in a first direction, and a second display having a second organic light emitting diode is on the second portion, the second display configured to display an image in a second direction. A gate driver is on the bending portion, and is configured to drive gate lines in each of the first and second displays.