Document Document Title
US10178446B2 Prioritized call sessions
A local network call handling device is configured to establish multiple concurrent call sessions between local network end devices and an external network. When a prioritized end device attempts to establish a call session, the call handling device may initially determine if a first call session identifier is available. If so, the call session can be established using that first identifier. If the first identifier is in use for a call session of another end device, the call handling device may either use a different call session identifier for the prioritized end device session or may drop a pre-existing call session to free an identifier for use in connection with the prioritized end device.
US10178445B2 Methods, devices, and systems for load balancing between a plurality of waveguides
Aspects of the subject disclosure may include, for example, identifying an overload event according to monitoring signals received from a group of source devices over a network. Other aspects can include receiving load information from each of a plurality of waveguides resulting in a plurality of load information. Further aspects can include analyzing the plurality of load information resulting in a load analysis of the plurality of waveguides. Additional aspect can include identifying a recipient waveguide from the plurality of waveguides based on the load analysis. Also, aspects can include identifying a first source device, and notifying the first source device to provide communications to the recipient waveguide and not to the waveguide device to mitigate the overload event. Other embodiments are disclosed.
US10178443B2 Enhanced metadata and content delivery using watermarks
Methods, systems and devices enable enhanced delivery of metadata, as well as auxiliary programs and services associated with a primary content. In one method, a primary content with pre-existing watermarks is received at a content distributor device. The pre-existing watermark include specific fields that allow retrieval of a first metadata. The values and boundary locations of the symbols of the pre-existing watermark messages are determined, and symbols of a new watermark message are embedded in the primary content to render the pre-existing watermarks undetectable. The new watermark message includes symbol values that different from those in the pre-existing watermark messages and enable retrieval of a second metadata. Upon transmission of the primary content to a client device, detection of the new watermark message, and initiation of a request by the client device, access to the first or the metadata, as well as associated programs or services, are enabled.
US10178436B2 Method to auto-select media channel programs
A computer-implemented method of selecting a media program includes continuously monitoring a plurality of media programs on available channels and analyzing, by a processor, a content of the programs. The content is compared to a set of user preferences and the programs are ranked based on the user preferences. An optimal program is selected based on the rankings and is switched to. A media system includes a media output device and a user interface. A controller is operably connected to the media output device and to the user interface. The controller includes a control system configured to monitor media programs on available channels and analyze a content of the media programs. The content is compared to a set of user preferences and the programs are ranked based on the user preferences. An optimal media program is selected based on the rankings and is switched to by the control system.
US10178434B2 Integrated user interface for internet-enabled TV
A user interface (UI) for an Internet enabled TV lists content genre such as photos, music, and video, and for each genre a sub-list of content is provided regardless of the source of the content, i.e., regardless of whether the content in the particular genre is stored locally or is sourced from the Internet.
US10178431B2 Hybrid stream delivery
Hybrid stream delivery techniques are described. In one or more implementations, a multicast stream of primary content is received at a computing device for output by the computing device. Timing information in the multicast stream is identified indicating when a break in the primary content is to occur. Responsive to the identification and before output of the primary content attains to the break, supplemental content is requested by the computing device that is available via a single dedicated stream. The supplemental content received via the single dedicated stream is cached during output of the primary content and the cached supplemental content is output upon completion of the output of the primary content up to the break.
US10178430B2 Intelligent processing method and system for video data
The present application discloses an intelligent processing method and system for video data, wherein, in the method an intelligent camera set a warning rule, the method comprises: the intelligent camera collecting video data and analyzing the collected video data in real time, generating intelligent data if the warning rule is met, which intelligent data contain an encoder identifier and motion trajectory information; the intelligent camera packaging the video data and the intelligent data into a program stream and sending it to a frame analyzing component in a cloud storage system; the frame analyzing component unpacking the received program stream to obtain the video data and the intelligent data, and storing the video data and the intelligent data in storage components respectively; the storage components sending storage address information of the video data and the intelligent data to an index server for recording respectively. The solutions of the present application can perform intelligent processing for the collected video data in real time.
US10178429B2 Aggregated control and presentation of media content from multiple sources
Systems and methods are described for aggregating media content from multiple sources for viewing on a local display or for placeshifting to a remote display. The aggregation system responds to instructions received from a remote device via the digital network to provide the video output incorporating the media content received from any of the media sources to the locally-connected display. The media aggregation system also simultaneously provides a placeshifted video stream to the remote device via the digital network that incorporates media content received from any of the plurality of media sources selected in response to the instructions received from the remote device.
US10178428B2 Video bitstream processing for enabling tune-in
Chunks (12, 14) of encoded video data of a streamed video bitstream (1) are stored and encoded video data is decoded to form decoded video data to be output for display. A selected portion (12) of the stored chunks (12, 14) or selected sub-chunks (25, 27) of the stored chunks (20, 22) for a previous, already played out part (3) of the streamed video bitstream (1) is or are discarded while keeping selected stored chunks (14) or selected sub-chunks (21, 23) stored as navigation tune-in points. The usage of selected stored chunks (14) or sub-chunks (21, 23) that are not discarded from the already played out part (3) of the streamed video bitstream (1) enables a low delay solution during video navigation when a user wants to jump to a previously played out position (5) within the streamed video bitstream (1).
US10178422B1 Systems and methods for generating aggregated media assets based on related keywords
Methods and systems for a media guidance application (e.g., implemented on a user device) that generates aggregated media assets based on keywords from different sources.
US10178415B2 Chapter detection in multimedia streams via alignment of multiple airings
There is described a multimedia processing method comprising: identifying a start and end time ranges in an input multimedia stream; comparing said ranges to an alternate multimedia stream of the same program for regions of similarity; and defining time ranges as representing chapter regions responsive to the content of both streams within the time ranges having high similarities.
US10178407B2 Moving image prediction encoding/decoding system
A moving image encoding/decoding system may include a video predictive encoding device, which may include: an encoding device which encodes each of a plurality of input pictures to generate compressed picture data including a random access picture, and encodes data about display order information of each picture; a restoration device which decodes the compressed picture data to restore a reproduced picture; a picture storage device which stores the reproduced picture as a reference picture; and a memory management device which controls the picture storage device. Following completion of an encoding process of generating the random access picture, the memory management device refreshes the picture storage device by setting every reference picture in the picture storage device, except for the random access picture, as unnecessary immediately before or immediately after encoding a picture with display order information larger than the display order information of the random access picture.
US10178406B2 Control of video encoding based on one or more video capture parameters
This disclosure describes techniques for improving functionalities of a video encoder, using parameters detected and estimated by a front-end video capture device. The techniques may involve estimating a blurriness level associated with frames captured during a refocusing process. Based on the estimated blurriness level, the quantization parameter (QP) used to encode blurry frames is adjusted either in the video capture device or in the video encoder. The video encoder uses the adjusted QP to encode the blurry frames. The video encoder also uses the blurriness level estimate to adjust encoding algorithms by simplifying motion estimation and compensation in the blurry frames.
US10178394B2 Transcoding techniques for alternate displays
Video coding techniques are disclosed for resource-limited destination display devices. Input video data may be coded by converting a first representation of the input video to a resolution of a destination display and base layer coding the converted representation. Additionally, a region of interest may be predicted from within the input video. The predicted ROI may be converted to a resolution of the destination display, and the converted ROI may be enhancement layer coded. The base layer coded data and the enhancement layer data may be transmitted to the destination display where the coded base layer data is decoded and displayed until a zoom event occurs. When a zoom event occurs, both the coded base layer data and the coded enhancement layer data may be decoded and displayed. Thus, the switchover from a first field of view to an ROI view may be performed quickly.
US10178393B2 Image encoder and decoder using unidirectional prediction
The present invention relates to an image encoding and decoding technique, and more particularly, to an image encoder and decoder using unidirectional prediction. The image encoder includes a dividing unit to divide a macro block into a plurality of sub-blocks, a unidirectional application determining unit to determine whether an identical prediction mode is applied to each of the plurality of sub-blocks, and a prediction mode determining unit to determine a prediction mode with respect to each of the plurality of sub-blocks based on a determined result of the unidirectional application determining unit.
US10178392B2 Method and apparatus for encoding/decoding multilayer video signal
A method for decoding a multilayer video signal, according to the present invention, is characterized by: inducing the number of active references of a current picture, in consideration of whether the maximum number of active reference pictures of the current picture in a current layer is limited; obtaining a reference layer identifier based on the number of active references, determining an active reference picture of the current picture using a reference layer identifier, generating a reference picture list including the active reference pictures, and performing interlayer prediction of the current picture using the reference picture list.
US10178389B2 Rate control algorithm for scalable video encoding with disposable P-frames
Systems and methods of performing rate control in scalable video encoders for use in videoconferencing, announcements, and live video streaming to multiple participant devices having diverse bandwidths, resolutions, and/or other device characteristics. The systems and methods can accommodate different target bit rates of the multiple participant devices by operating on scalable video bitstreams in a multi-layer video format, including a base layer having one or more reference video frames, and an enhancement layer having one or more disposable non-reference, predictive video frames. By adjusting the number of disposable non-reference, predictive video frames in the enhancement layer, as well as quantization parameters for the respective base and enhancement layers, the systems and methods can accommodate the different target bit rates for the respective participant devices, while enhancing the spatial and/or temporal qualities of the base and enhancement layers in the respective video bitstreams.
US10178386B2 Adaptive filtering based upon boundary strength
An image decoding apparatus that includes a motion compensation prediction circuit configured to conduct motion compensation prediction for each of blocks to be decoded by using the reconstructed image, an inverse transformation circuit configured to conduct inverse orthogonal transformation for the data of the blocks to be decoded, and a determination circuit configured to determine a filtering strength and whether or not to conduct filtering, with respect to each of the boundaries. In addition, the determining circuit is configured to determine filtering is conducted when at least one of the two adjacent blocks is intra-coded, and filtering is not conducted when both of the two adjacent blocks are not intra-coded, a non-zero transformation coefficient is not coded in both of the two adjacent blocks, the two adjacent blocks are predicted by the same reference frame, and an absolute value of a difference between motion vectors of the two adjacent blocks is smaller than a specified threshold value.
US10178385B2 Method and system for video picture intra-prediction estimation
Several systems and methods for intra-prediction estimation of video pictures are disclosed. In an embodiment, the method includes accessing four ‘N×N’ pixel blocks comprising luma-related pixels. The four ‘N×N’ pixel blocks collectively configure a ‘2N×2N’ pixel block. A first pre-determined number of candidate luma intra-prediction modes is accessed for each of the four ‘N×N’ pixel blocks. A presence of one or more luma intra-prediction modes that are common among the candidate luma intra-prediction modes of at least two of the four ‘N×N’ pixel blocks is identified. The method further includes performing, based on the identification, one of (1) selecting a principal luma intra-prediction mode for the ‘2N×2N’ pixel block and (2) limiting a partitioning size to a ‘N×N’ pixel block size for a portion of the video picture corresponding to the ‘2N×2N’ pixel block.
US10178384B2 Image decoding device, image coding device, and residual prediction device
Residual prediction poses a problem that deriving a residual involves a large amount of processing for generating two motion-compensated images and deriving a difference. Provided is a residual prediction device including a reference image interpolation unit that derives two residual prediction motion-compensated images, and a residual synthesis unit that derives a residual from a difference between the two residual prediction motion-compensated images and derives a predicted image by adding the residual to a motion-compensated image, in which the residual synthesis unit derives a predicted image by adding the residual to the motion-compensated image in a case where a target block size is greater than a predetermined size and derives the motion-compensated image as the predicted image in a case where the target block size is less than or equal to a predetermined size.
US10178383B2 Bi-prediction coding method and apparatus, bi-prediction decoding method and apparatus, and recording medium
An image decoding method and an image decoding apparatus is provided. The method comprises recovering a first motion vector corresponding to a first decoding reference picture based on the entropy decoded bit stream, calculating a second motion vector corresponding to a second decoding reference picture by scaling the first motion vector based on a first temporal distance between the current picture and the first decoding reference picture and a second temporal distance between the current picture and the second decoding reference picture, generating a prediction block relating to a current block in the current picture, based on the calculated second motion vector, generating a residual block relating to the current block through a residual data decoding process based on the entropy decoded bit stream, and recovering the current block based on the prediction block and the residual block.
US10178382B2 Method for performing diagnosis of a camera system of a motor vehicle, camera system and motor vehicle
The invention relates to a method for performing a diagnosis of a camera system (2) of a motor vehicle (1) by: providing at least one image (BD) by means of a camera (3); detecting an object (6) in the image (BD) by means of an image processing device; providing sensor data (SD) by means of at least one sensor (7) of the motor vehicle (1), wherein the sensor data (SD) characterizes environmental conditions of the motor vehicle (1); first classifying the object (6) and herein associating the object (6) with a class (K1, K2, K3, K4) among several predetermined classes (K1, K2, K3, K4) depending on the environmental conditions, wherein the classes (K1, K2, K3, K4) differ from each other with respect to the environmental conditions; second classifying the at least one object (6) and herein associating the object (6) with one of the classes (K1, K2, K3, K4) based on the image (BD) and independently of the sensor data (SD) by a classification device (12) using a predetermined classification model (11); and comparing classification results of the first and the second classification and performing a diagnosis depending on the comparison.
US10178381B2 Depth-spatial frequency-response assessment
A method to test the fidelity of a depth-imaging camera to depth-change abruptness of an imaged subject includes digitally generating, with the depth-imaging camera, a machine-readable calibration depth image of a calibration subject arranged in a field of view of the depth-imaging camera. The method includes machine processing the calibration depth image in a spatial domain to obtain a machine-readable measure of the fidelity in the spatial domain, and machine processing the measure of the fidelity in the spatial domain to obtain a measure of the fidelity in a frequency domain.
US10178374B2 Depth imaging of a surrounding environment
Examples are disclosed herein that are related to depth imaging of a 360-degree field of view. One example provides a depth imaging system comprising an image sensor, a reflector subsystem comprising one or more reflectors arranged to reflect a radial field of view of a surrounding environment toward the image sensor, a projector configured to project light onto the reflector subsystem for reflection into the surrounding environment, and a computing device comprising a logic subsystem and a storage subsystem comprising instructions executable by the logic subsystem to receive image data from the image sensor, and output a depth image based upon the image data.
US10178372B2 Long focal length monocular 3D imager
An optical assembly for three-dimensional image capture includes first and second optical channels that are fixed with respect to one another. Each channel is configured to direct light onto at least a portion of an image sensor. The first and second optical channels each include an aperture for receiving the light, an objective lens for focusing the light into an intermediate image on an intermediate image plane, and an eyepiece lens for collimating the intermediate image.
US10178371B2 Light field capture
This disclosure pertains to operations, systems, and computer readable media to capture images of a scene using a camera array and process the captured images based on a viewer's point of view (POV) for immersive augmented reality, live display wall, head mounted display, video conferencing, and similar applications. In one implementation, the disclosed subject matter provides a complete view to a viewer by combining images captured by a camera array. In another implementation, the disclosed subject matter tracks the viewer's POV as he moves from one location to another and displays images in accordance with his varying POV. The change of the viewer's POV is inclusive of movements in the X, Y, and Z dimensions.
US10178368B2 Stereo imaging system with automatic disparity adjustment for displaying close range objects
A stereo imaging system comprises a stereoscopic camera having left and right image capturing elements for capturing stereo images; a stereo viewer; and a processor configured to modify the stereo images prior to being displayed on the stereo viewer so that a disparity between corresponding points of the stereo images is adjusted as a function of a depth value within a region of interest in the stereo images after the depth value reaches a target depth value.
US10178367B2 Method and apparatus to realize virtual reality
The current invention relates to the method and apparatus to determine the focus point of a viewer from a single eye of the viewer in a viewing space. The claimed method detects the focus depth and the line of eye sight from said single eye. It further relates to the method to use the determined focus point to achieve virtual reality and augmented reality.
US10178364B1 Digital image dynamic range processing apparatus and method
An apparatus and related methods for enhancing low dynamic range and high dynamic range digital images. The process converts single digital images into a form that can be shown on traditional electronic and computer displays and paper prints through luminance mapping and tone mapping functions. These functions require the calculation of values for each pixel within the digital image. The values calculated include, but are not limited to, color, grey-level, and luminance. The present apparatus and method builds upon the tone mapping process by combining log-average luminance values of various sized neighborhood tiles with the global log-average luminance of the entire image.
US10178363B2 HD color imaging using monochromatic CMOS image sensors integrated in 3D package
HD color video using monochromatic CMOS image sensors integrated in a 3D package is provided. An example 3DIC package for color video includes a beam splitter to partition received light of an image stream into multiple light outputs. Multiple monochromatic CMOS image sensors are each coupled to one of the multiple light outputs to sense a monochromatic image stream at a respective component wavelength of the received light. Each monochromatic CMOS image sensor is specially constructed, doped, controlled, and tuned to its respective wavelength of light. A parallel processing integrator or interposer chip heterogeneously combines the respective monochromatic image streams into a full-spectrum color video stream, including parallel processing of an infrared or ultraviolet stream. The parallel processing of the monochromatic image streams provides reconstruction to HD or 4K HD color video at low light levels. Parallel processing to one interposer chip also enhances speed, spatial resolution, sensitivity, low light performance, and color reconstruction.
US10178361B2 Image pickup element, imaging apparatus, and image recognition system using non-polarized light
To achieve an image pickup element that can utilize polarized light as well as non-polarized light to image or capture an object, an image pickup element is provided to an imaging apparatus that forms an image of an object to be imaged onto a light-receiving surface of an image sensor, acquires a polarized filter image together with a regular luminance image, and executes image processing on the acquired images. The image pickup element includes, on a light-receiving surface LRS of the image sensor IMS, a polarizing filter PFL including at least two kinds of pixels having different transmission and polarization properties from each other.
US10178357B2 Video camera device and method to monitor a child in a vehicle
The present invention is directed to a system and methods of monitoring a child seated in the rear seat of a vehicle in a child's car seat employing a video camera which transmits a video signal to a video display receiver placed in the driver's frame of vision. The video camera as envisioned herein is placed within a child's stuffed toy, the camera signal being transmitted remotely to a separate video display monitor screen device, viewable to the parent driving the vehicle. The camera is adjustable in the number of positions in which it is placed in the vehicle compartment as well as the direction in which the camera is directed. To adjust the direction in which the camera is pointed, the invention includes a bendable, flexible and sturdy neck that interconnects the camera to a transmission unit, which provides the driver with a view of the child.
US10178349B2 Transmission terminal, transmission method, and computer-readable recording medium storing transmission program
A transmission terminal transmits video data and display data of a screen shared with another transmission terminal to the other transmission terminal via a predetermined relay apparatus. The transmission terminal includes a storage unit that stores relay apparatus information of the relay apparatus to which the transmission terminal transmits the video data; a receive unit that receives the display data from an external input apparatus connected to the transmission terminal; and a transmitting unit that transmits the display data received by the receive unit to the relay apparatus indicated by the relay apparatus information stored in the storage unit.
US10178348B2 Information processing apparatus, image display method, and communication system
An information processing apparatus includes a receiver configured to receive images from other information processing apparatuses via a network; a band information acquirer configured to acquire reception band information of the receiver; a first display number determiner configured to determine a first number of the images to be displayed on a display device according to the reception band information; a second display number determiner configured to determine the first number as a second number of the images to be displayed on the display device, when the reception band information is stable, and determine a present number of the images presently displayed on the display device, as the second number, when the reception band information is unstable; and a display processor configured to display the second number of the one or more images on the display device.
US10178347B2 Remote communication system, method for controlling remote communication system, and program
The present invention provides a scheme that allows a person to communicate with another person at a remote site while giving the realistic sensation as if the persons faced each other in close proximity by capturing the images of the person using a plurality of image capturing units.A remote communication system includes a projector configured to project, on to a screen, an image transmitted from a remote site. The screen has a plurality of the front cameras disposed thereon. A CPU performs an extraction process to extract a person part from each of images captured by the front cameras and a combining process to combine the images captured by the front cameras. The remote communication system further includes a projector that projects the image subjected to the extraction process and the combining process onto a screen set in the remote site.
US10178346B2 Highlighting unread messages
Various embodiments enable a video messaging experience which permits the exchange of short video messages in an asynchronous manner. The video messaging experience preserves the video intimacy and experience of synchronous-type video communications, while at the same time provides the convenience of SMS-type message exchange.
US10178340B2 Broadcasting signal receiving apparatus and control method thereof
A broadcasting signal receiving apparatus includes an input receiver configured to receive a user's input selecting a channel among a plurality of channels; a first tuner configured to tune to the channel selected by the user's input and receive a broadcast signal of the tuned channel; and a controller configured to control the first tuner to tune to a first channel and receive a broadcast signal of the first channel when a user makes the first input, and to control the first tuner to tune to a second channel and receive a broadcast signal of the second channel when a user makes a second input within a predetermined period of time after receiving the first input, wherein the first channel corresponds to the first input, and the second channel corresponds to a combination of the first input and the second input.
US10178337B1 Oncoming left turn vehicle video transmit
Methods and systems are provided for providing vehicles with video feed for making a turn. In one example, a vehicle includes sensors, a transceiver, a processor, and a display device. The sensors are configured to generate sensor data pertaining to operation of the vehicle. The processor is configured to determine when the vehicle is about to make a turn at an intersection, based at least in part on the sensor data. The transceiver is configured to receive a video feed from one or more cameras of a second vehicle, the second vehicle disposed proximate the intersection, when the vehicle is about to make a turn, for use in assistance with making the turn of the vehicle at the intersection. The display device is configured to display the video feed in accordance with instructions provided by the processor.
US10178334B2 System for and method of configurable diagonal and multi-mission line scan array imaging
Disclosed are image data acquisition methods and systems that utilizes selective temporal co-adding of detector integration samples to construct improved high-resolution output imagery for arrays with selectable line rates. Configurable TDI arrays are used to construct output imagery of various resolutions dependent upon array commanding, the acquisition geometry, and temporal sampling. The image acquisition techniques may be applied to any optical sensor system and to optical systems with multiple sensors at various relative rotations which enable simultaneous image acquisitions of two or more sensors. Acquired image data may be up-sampled onto a multitude of image grids of various resolution.
US10178333B2 Image sensor and imaging device
An image sensor comprising a plurality of imaging pixels, a plurality of focus detecting pixels in which opening positions of light receiving sections are shifted from those of the imaging pixels, and a plurality of color filters arranged corresponding to the imaging pixels and the focus detecting pixels, wherein first focus detecting pixels in which opening positions are shifted in a first direction are arranged at positions corresponding to first color filters of the imaging pixels, and second focus detecting pixels in which opening positions are shifted in the first direction and which have opening ratios different from those of the first focus detecting pixels are arranged at positions corresponding to the first color filters.
US10178331B2 Method for image noise reduction and image device
A method for noise reduction in an imaging device comprises a 4T pixel in operation, whereby the 4T pixel comprises a pinned photodiode and a floating diffusion node. The method includes the steps of: detecting a signal impinging on the 4T pixel of the imaging device and integrating the charge of the detected signal simultaneously in the photodiode potential well and the potential well of the floating diffusion node; deriving a linear signal proportional to the detected signal from the charge in the photodiode potential well; deriving a compressed signal from the charge in the potential well of the floating diffusion node, while keeping the compressed signal separate from the linear signal, and the compressed signal being a non-linear function of the detected signal; and summing the linear signal and a linearized version of the compressed signal and performing a non-linear conversion on the summation signal to fit the imaging device's output range.
US10178329B2 Oversampled high dynamic-range image sensor
In an integrated-circuit image sensor having a pixel array, a first subframe readout policy is selected from among a plurality of subframe readout policies, each of the subframe readout policies specifying a first number of subframes of image data to be readout from the pixel array for each output image frame and respective exposure durations for each of the first number of subframes of image data, wherein a shortest one of the exposure durations is uniform for each of the subframe readout policies. Each of the first number of subframes of image data is read out from the pixel array following the respective exposure durations thereof while applying a respective analog readout gain. The analog readout gain applied during readout of at least a first subframe of the first number of subframes is scaled according to a ratio of the shortest one of the exposure durations to the exposure duration of the first subframe.
US10178328B2 Electronically controlled graduated density filters in stacked image sensors
A method for performing color density filtering of images captured in a digital camera having a mechanical shutter and an imaging array including a plurality of pixels each including different color sensors aligned with each other, including opening the mechanical shutter, resetting all of the color sensors in each pixel by asserting a row reset signal, separately asserting color-select signals for each color after the mechanical shutter is opened, independently starting exposure for each different color sensor at a color sensor exposure start time by de-asserting its color select signal, the exposure start time for each different color sensor being a function of a color density filter function, closing the mechanical shutter, and reading color exposure values from the color sensors by separately asserting color-select signals after the mechanical shutter has closed, the reading being unrelated to the start times for the color sensors.
US10178327B2 Imaging device, method for controlling imaging device, and control program
An imaging unit causes each exposure corresponding to one frame period of respective second image signals in a first mode, and causes each exposure in divided sections of one frame period of the respective second image signals under different imaging conditions in a second mode. An image processing unit generates frames of respective first image signals based on each imaging signal read out in such a manner as to correspond to each exposure corresponding to one frame period in the first mode, and generates frames of the respective first image signals based on each imaging signal read out in such a manner as to correspond to each exposure of the divided sections in the second mode. An image output unit sequentially outputs frames of the second image signals set to a signal format common to the first mode and the second mode.
US10178325B2 Method and system for managing video of camera setup having multiple cameras
Disclosed are a system and a method for managing a set of videos originating from a camera setup having a plurality of cameras. The system and method provides a mesh of graphical elements superposed with an active video at a display of a user device. The graphical elements are arranged on a virtual surface representing positions of the cameras in a co-ordinate system. The active video originates from the at least one camera, which at least one camera is associated with the graphical element located in the middle portion of the display. In addition, the present disclosure enables correlating relative position, recording direction and order of the multiple cameras for providing multiple viewing positions, for example, on a user interface.
US10178320B2 Image display terminal, image display method, and non-transitory computer readable recording medium storing program
An image display terminal includes a memory configured to store a plurality of sample images and display time of the sample images; a display interface configured to display live images continuously output from an imaging module and the sample images; and a display control unit, wherein the display control unit performs a control to cause the live images to be displayed on the display interface, and cause a first image of the plurality of sample images to be displayed on the display interface for the display time, and when the display time has elapsed, the display control unit performs a control to cause the first image to be non-displayed, and cause a second image of the plurality of sample images, different from the first image and non-displayed, to be displayed on the displayer interface for the display time.
US10178319B2 Imaging apparatus, camera system and signal output method
An imaging apparatus capable of outputting pixel signals to one or more output destinations includes an imager having a plurality of pixels that are arrayed two-dimensionally and respectively can generate pixel signals; an identifier adding unit configured to add an identifier associated with at least one output destination to each of pixel signals of at least a part of pixels among the plurality of pixels and an image processing unit configured to output each of the pixel signals to an output destination that corresponds to an identifier included in each of the pixel signals.
US10178316B2 Stabilization and display of remote images
Apparatus for remote imaging of a terrestrial area, the apparatus comprising: a camera array having a focal length f and a photosensor comprising photosensor pixels characterized by a photosensor pixel pitch P on which light from the terrestrial area is imaged from an operating distance A from the terrestrial area to acquire an image of the terrestrial area; an orthographic image of the terrestrial area having image pixels that image features in the terrestrial area; a terrain map that provides elevation for features in the terrestrial area imaged on the image pixels of the orthographic image; a controller that registers the image of the terrestrial area to the orthographic image responsive to the terrain data; wherein elevation provided by the terrain map has an uncertainty Δβ that satisfies a constraint P≥Δe·f·sin α/A, where a is a maximum oblique angle at which the camera array images the terrestrial area so that registration of the image of the terrestrial area to the orthographic image has an accuracy better than or about equal to the pixel pitch.
US10178314B2 Moving object periphery image correction apparatus
A reference line detection unit 12 extracts an edge from a distorted image taken by a fisheye camera to thereby determine a curved reference line. A distortion parameter calculation unit 13 calculates a distortion parameter such that the reference line is made linear. A distortion correction unit 14 corrects distortion of the distorted image by a distortion correction equation by using the distortion parameter.
US10178312B2 Image processing apparatus and image processing method to position images to position images
An image processing apparatus for synthesizing continuously captured images includes a positioning unit configured to position images to be synthesized by using a motion vector indicating a positional deviation of the images between the images, and a synthesis unit configured to synthesize the images positioned by the positioning unit. The image processing apparatus further includes a group classification unit configured to classify the images into groups based on an order of imaging, and a setting unit configured to set a reference image in each group. The positioning unit includes a first positioning unit configured to position the images within the groups with respect to the respective reference images, and a second positioning unit configured to position the reference images between the groups.
US10178304B1 Ensuring that video or images are captured at a determined orientation
A method for capturing video or still images at a determined orientation, via a mobile device, including accessing at least some information regarding a desired orientation preference; accessing at least some information regarding an orientation of the mobile device; comparing the information regarding the orientation of the mobile device to the information regarding the desired orientation preference; determining whether the information regarding the orientation of the mobile device matches the information regarding the desired orientation preference, within a degree of variance; disabling, if the information regarding the orientation of the mobile device does not match the desired orientation preference, within the degree of variance, a video or still image capture function of the mobile device; and enabling, if the information regarding the orientation of the mobile device matches the desired orientation preference, within the degree of variance, a video or still image capture function of the mobile device.
US10178299B2 Control device and control method
An information processing apparatus includes circuitry that outputs a first image for display with a first indicator that identifies an initial focus position within a scene of the first image and a second indicator that identifies at least one focus position that is in front of or behind the initial focus position within the scene. The first indicator display is updated in response to an adjustment of the initial focus position to an updated focus position. Another information processing apparatus includes circuitry that generates a virtual image of at least one object included in a first image of a scene from a different point of view. The generated virtual image is output for display with an indicator corresponding to an initial focus position within the scene of the first image. The indicator display is updated in response to an adjustment of the initial focus position to an updated focus position.
US10178297B2 Accessory apparatus, image-capturing apparatus, control method and storage medium storing control program
The accessory apparatus includes an accessory communicator providing, with an image-capturing apparatus, three channels that are a notification channel, a first data communication channel and a second data communication channel. The image-capturing apparatus and the accessory apparatus are each configured to have a function of switching the second data communication channel between a first setting in which the data transmission from the image-capturing apparatus to the accessory apparatus is allowed and a second setting in which data transmission from the accessory apparatus to the image-capturing apparatus is allowed, The accessory controller is configured to, in response to receiving from the image-capturing apparatus through the notification channel a first notice indicating completion of switching from the first setting to the second setting in the image-capturing apparatus, switch from the first setting to the second setting in the accessory apparatus.
US10178296B2 Imaging apparatus, control method of imaging apparatus, imaging system, and portable display device
According to the present invention, an imaging apparatus includes: an imaging unit which images a subject to acquire a subject image; a communication unit configured to wirelessly communicate with devices; an output unit configured to output the subject image to the device previously set as an output destination among the devices; a recognition unit which recognizes that one of the devices has been operated by a user; and an output control unit which changes the output destination of the subject image by the output unit when the recognition unit recognizes that one of the devices has been operated by the user.
US10178292B2 Wearable apparatus with wide viewing angle image sensor
A wearable apparatus and method are provided for capturing image data. In one implementation, a wearable apparatus for capturing image data is provided. The wearable apparatus includes at least one image sensor for capturing image data of an environment of a user, wherein a field of view of the image sensor includes a chin of the user. The wearable apparatus includes two or more microphones, and an attachment mechanism configured to enable the image sensor and microphones to be worn by the user. The wearable apparatus includes a processing device programmed to capture at least one image, identify the chin of the user to obtain a location of the chin, select a microphone from the two or more microphones based on the location, process input from the selected microphone using a first processing scheme, and process input from a microphone that is not selected using a second processing scheme.
US10178284B2 Device for acquiring a characteristic image of a body
A device for acquiring a characteristic image of a body, including: an image sensor including a plurality of photosensitive cells; and a layer of a material having its color varying according to a physical parameter characteristic of said body, coating a surface of the sensor.
US10178283B2 Dome camera device
Provided is a dome camera including a housing part configured to accommodate a camera and rotate in multiple directions; a connection cover part configured to cover at least part of the housing part; a first rotation restricting part configured to limit a rotation range of the housing part in a first rotation direction; and a second rotation restricting part configured to limit a rotation range of the housing part in a second rotation direction.
US10178282B2 Trail camera with interchangeable hardware modules
A multipurpose trail camera having expandable and replaceable hardware modules automatically detects and captures one or more images of wildlife in outdoor or other natural environments. The multipurpose trail camera is compatible with various hardware modules that may be attached to its imaging device to provide various functionality. Each hardware module may include various hardware features including image storage, power supply, communication, and image processing capabilities. This allows a user to select one or more hardware modules he or she desires to suit particular needs, a particular environment of use, or the like.
US10178279B2 Image forming device, non-transitory computer readable medium, and image forming method for color correction
An image forming device includes an image forming unit that forms an image on a recording medium in response to an input of image data representing the image, a reading unit that reads a first image formed by the image forming device, and a second image formed by another image forming device to respectively generate a first read image and a second read image, the first image and the second image being formed based on identical image data, a discrimination unit that discriminates the first read image and the second read image from each other, and a color correction unit that performs, on the image formed by the image forming unit, a color correction that cancels out a difference in color between the first read image and the second read image.
US10178276B2 Printing apparatus including NFC tag, method related thereto, and storage medium
A printing apparatus includes a card reader that reads a card for user authentication, a near field communication (NFC) tag, a memory that stores instructions, and a processor that executes the instructions to determine whether the card reader reads the NFC tag and determine, based on a result of the determination, an operation method of the NFC tag.
US10178271B2 Facsimile apparatus and control method of facsimile apparatus
A facsimile apparatus includes a storage unit, a first detection unit, and a second detection unit. The storage unit stores a parameter based on a connection standard of a telephone-line connected to the facsimile apparatus, and an apparatus direct-current resistance of the facsimile apparatus. The first detection unit detects a first voltage that is a voltage at a line-open time of a telephone line connected to the facsimile apparatus. The second detection unit detects a second voltage that is a voltage at a line-capture time of the telephone line. By using the first voltage, the second voltage, the parameter, and the apparatus direct-current resistance, a voltage to be a threshold for determination of line capture is determined. By using a voltage detected from the telephone line and the voltage to be the threshold determined by the first determination unit, whether the telephone line is captured is determined.
US10178265B2 Image formation apparatus, method of controlling flash memory, and non-transitory computer-readable storage medium
An image formation apparatus includes a flash memory as an image data buffer, and a control section, where data writing to each memory block of the flash memory is controlled by using wear leveling. The control section predicts whether writing of a certain amount of image data such that the amount of image data to be written into the flash memory in a predetermined period exceeds a predetermined value, will occur, and on predicting that the writing of the certain amount of image data will occur, restricting an input of image data and/or a speed of buffering the image data, to reduce the amount of image data to be written into the flash memory in the predetermined period.
US10178264B2 Cable support mechanism which supports ribbon-shaped flexible cable and automatic document feeder including same, and image forming apparatus
A cable support mechanism has a cable support portion, and supports two flexible cables which are ribbon-shaped and in each of which a plurality of conductors are arranged in parallel to each other in a coating material. The cable support portion includes a first support surface, a second support surface, and a plurality of guide ribs. The first support surface supports one of the two flexible cables. The second support surface is formed on a side reverse to a side where the first support surface is formed, and supports the other one of the two flexible cables. The guide ribs projects from two edges of each of the first support surface and the second support surface, the two edges opposing each other in a flexible-cable width direction, so as to overlap, and be spaced by a predetermined distance from, the first support surface and the second support surface.
US10178262B2 Printing system, and set and computer-readable medium therefor
A printing system includes a printer and an information processing device that includes a processor and a memory storing processor-executable instructions, the instructions being configured to, when executed by the processor, cause the processor to, when condition information does not include trigger information, determine to instruct the printer to start a pre-printing operation, when the condition information includes the trigger information, determine not to instruct the printer to start a pre-printing operation, in response to determining to instruct the printer to start the pre-printing operation, transmit the preparation instruction information to the printer, in response to determining to instruct the printer to start the pre-printing operation and performing the preparation instruction process, generate print data based on specified contents data, and transmit the print instruction information to the printer.
US10178261B2 System and image forming apparatus that stops or controls the transmission of control information between at least one controlled device and an external device
A system includes at least one controlled device that is controlled based on control information output from an external device, and an image forming apparatus that forms an image on a recording material and communicate with the external device and the controlled device, wherein the image forming apparatus includes a transceiver that receives the control information from the external device and transmits the control information to the controlled device, and a transmission controller that stops the transmission of the control information by the transceiver or changes contents of the control information to be transmitted by the transceiver.
US10178257B2 Monitoring device, monitoring method, and non-transient computer-readable recording medium that records monitoring program
A monitoring device that acquires device information to be collected from a device includes an operation finish notification acquiring section that acquires an operation finish notification indicating that a predetermined operation performed by the device has been finished, and a device information acquiring section that acquires the device information from the device with a trigger of the acquisition of the operation finish notification. A monitoring method for acquiring device information to be collected from a device includes acquiring an operation finish notification indicating that a predetermined operation performed by the device has been finished, and acquiring the device information from the device with a trigger of the acquisition of the operation finish notification.
US10178254B2 Image recording apparatus including cover unit mounted in openable and closable manner above image recording unit
An image reading and recording apparatus includes an image recording unit and an image reading unit supported to be pivotally movable above the image recording unit and configured to be opened and closed by being pivotally moved relative to the image recording unit. The apparatus includes a stay including an opening portion formed thereon, a rotor inserted in the opening portion of the stay, a first cam surface provided on an inner peripheral portion of the opening portion, and a second cam surface provided on an outer peripheral portion of the rotor. The rotor rotates due to abutment of the first cam surface and the second cam surface with each other. The image reading unit is held in a first opened state with a first open angle, due to meshed engagement of the first cam surface and the second cam surface with each other.
US10178253B2 Image reading apparatus
An image reading apparatus includes a reading unit, a cover, and a hinge mechanism connecting the cover to the reading unit pivotably about a pivot axis which extends in a first direction. A center of gravity of the cover is closer to a first end of the cover in a first direction than to a second end of the cover. A first hinge is spaced from the center of gravity toward the second end of the cover in the first direction. A second hinge is disposed closer to the center of gravity in the first direction than the first hinge. The first hinge includes a base member disposed movably in the reading unit, a pivot member coupled to the cover, and an urging member exerting an urging force between the base member and the pivot member so as to maintain the cover at a pivoted position.
US10178240B2 Multi-card resource management method, device and multi-card terminal
A multiple subscriber identity module cards (multi-SIM) resource management method, device and multi-SIM terminal. The method comprises: acquiring a subscriber identity module card list in a terminal, the subscriber identity module card list comprising all subscriber identity module cards in the terminal; and if a remaining quantity of a service resource on a subscriber identity module card currently used in the terminal is less than or equal to a preset remaining quantity threshold, then automatically switching to a subscriber identity module card having a sufficient service resource and in the subscriber identity module card list.
US10178235B2 Transmission detection, interruption, and notification system
Systems and methods for transmission detection, interruption, and notification are described.
US10178234B2 User interface for phone call routing among devices
A first electronic device receives a phone call that was routed to the first electronic device by a call-routing service. While receiving the call, the first electronic device receives a request to route the phone call to a second electronic device. In response to receiving the request to route the phone call to the second electronic device, in accordance with a determination that a first routing criteria have been met, the first electronic device sends a request to the call-routing service to route the phone call to the second electronic device instead of routing the phone call to the first electronic device. In accordance with a determination that a second routing criteria have been met, the first electronic device causes call data associated with the call to be routed through the first electronic device to the second electronic device.
US10178233B1 Multimedia network transposition
Methods and systems for routing multimedia traffic are described. A method may include receiving a communication originating from a user, transposing an alias transport network over one or more existing networks to route the communication, and routing the communication based on mapping rules.
US10178231B2 Multiple party call acknowledgement
Disclosed embodiments provide improved communication between a caller and multiple parties. A caller performs a call spray operation on a group of contacts using an electronic communication device such as a mobile telephone. The call spray operation attempts to contact an electronic device associated with each contact in the group of contacts. If one of the contacts answers and is deemed to be a live user, then the remaining contacts that did not answer each receive a message on their associated electronic device indicating which of the contacts answered the caller with a live user. In this way, a group of people can be conveniently contacted and kept up to date with the status of the communication with the caller.
US10178230B1 Methods and systems for communicating supplemental data to a callee via data association with a software-as-a-service application
Disclosed are methods and systems for communicating supplemental telephonic entity data to a callee via data association with a Software-as-a-Service application. An example method comprises providing a networked application server, the application server to access a data storage, providing a SaaS application, subscribing a subscriber organization to the SaaS application, receiving at the user interface of the SaaS application data corresponding to an entity, storing within the data storage a data record for the entity, providing a telephonic switching framework, receiving an incoming call with caller ID information, identifying the entity by caller ID information from the data storage, identifying supplemental data in the data storage associated with the entity, placing an outbound call, and communicating to a callee who is a member of the subscriber organization the supplemental data. Some examples of systems generally comprise a server, a SaaS application configured to receive user input and insert user input into a collection of entities within a data storage, a telephonic apparatus configured to receive incoming calls with caller ID, associate the caller ID information with supplemental data, place outgoing calls, effect text-to-speech synthesis, and audibly transmit to a callee data information from the data storage.
US10178226B2 System and a method for selecting a ring back tone to be provided to a caller
The present subject matter relates to a method and a system for selecting a ring back tone to be provided to a caller. The method comprising selecting, by a subscriber, an editable audio file with a predetermined duration; encrypting the selected editable audio file on a storage device; communicating, by a communication interface, a start time of the selected editable audio file to the server, the server transcodes and smoothens the selected portion of the editable audio file; transferring, by the server, the transcoded audio file to the mobile operator network as a ring back tone.
US10178225B1 Contraband wireless communications device identification in controlled-environment facilities
Systems and methods for identification of a controlled-environment facility resident in possession of a contraband communications device capture or otherwise accept managed access data and/or contraband communications device assessment data for contraband communications devices operating in the controlled-environment facility. Controlled-environment facility resident call data for each resident of the controlled-environment facility is gathered from the controlled-environment facility resident communications system. Correlations in the managed access data and/or assessment data with the controlled-environment facility resident communications system call data are analyzed to identify each resident of the controlled-environment facility in possession of a contraband communications device.
US10178221B2 Time synchronization method and apparatus
The present disclosure discloses a time synchronization method and apparatus, which belong to the field of the Internet. The method includes: counting down, when a data processing right of a network application is allocated to a first user, a processing time of the first user, the first user being a user in a user group; stopping, when the first user is disconnected and logs in to the network application again in a process of countdown, if a processing operation sent by a first user terminal is received, the process of countdown, to obtain a remaining processing time of the first user, the processing operation including an operation of abandoning the data processing right or a network data processing operation; and sending the remaining processing time to the first user terminal and a second user terminal separately, so that the first user terminal and the second user terminal separately display the remaining processing time, a second user being a user other than the first user in the user group. The present disclosure prevents an error from occurring in time displayed in the first user terminal and the second user terminal.
US10178217B2 Telecare-enabled mobile terminal, and a method of operating a telecare-enabled mobile terminal
A telecare-enabled mobile terminal has a controller, a first subscriber identity and a second subscriber identity. At least one mobile network interface provides telecommunication connectivity for the mobile terminal as identified by the first subscriber identity and the second subscriber identity, respectively. The controller is configured to use the first subscriber identity for outbound telecommunication traffic relating to a telecare service provided by a remote telecare provider. The controller is configured to use the second subscriber identity for outbound telecommunication traffic not relating to the telecare service.
US10178215B2 Communication systems and methods
Systems and methods for establishing communication between a terminal and a device are disclosed. According to certain embodiments, a method used in the device includes receiving a plurality of multicast packets from the terminal. The method also includes determining, according to the multicast packets, wireless connection information of a wireless network. The method further includes connecting to the wireless network according to the wireless connection information. The method further includes generating a notification indicating a password associated with the device.
US10178211B2 Lighting for audio devices
An apparatus may include an inner module, an outer module that substantially surrounds a perimeter of the inner module, a plurality of light emitters, and a light distribution medium. The plurality of light emitters may be positioned under the inner module and project light radially outward. The light distribution medium may transport the light projected from the plurality of light emitters to an edge of the light distribution medium. The edge may include a diffusive surface and traverse a substantial portion of a boundary between the inner module and the outer module.
US10178209B1 Accessory mount for smartphones, tablets, iPads, and cameras
A mounting device to support and secure a mobile device incorporating a high pixel count camera, comprised of a first rod secured to a support plate, with the first rod connected to a ball and socket joint for rotating the mounting device into at least a 90° configuration, the ball and socket joint connected to a second rod interposed between the ball and socket joint and a pivot mechanism comprising a pivot dial facilitating pivoting around a vertical axis, and terminating in a vice clamp opposed to the support plate, with a third rod interposed between the pivot mechanism and the vice clamp. A removable mount receives a mobile device having an integrated high pixel count camera and camera lens, the removable mount securing the mobile device so as to leave the camera lens unobstructed.
US10178207B1 Optimized defragmentation of data packets in a passive optical network
Methods, systems, and apparatus, for receiving, by an optical line terminal, an upstream communication frame from an optical network terminal, the upstream communication frame including a data packet and a last fragment bit; determining, by the optical line terminal, a fragmentation of the data packet of the upstream communication frame; and processing, by the optical line terminal, the data packet of the upstream communication packet based on the fragmentation of the data packet, including: when the data packet is fragmented, examining a last fragment bit of the upstream communication frame, and storing, in a memory device, the data packet when a state of the last fragment bit indicates that the data packet is not a completion; and when the data packet is not fragmented, transmitting the data packet upstream without storing the data packet in the memory device.
US10178206B2 Multi-protocol gateway for connecting sensor devices to cloud
Methods, systems, apparatuses, and computer program products are provided for connecting sensor devices to cloud servers by a gateway device. The gateway device includes a plurality of sensor adaptors, a sensor data processor, and a network communication interface. The sensor adaptors are configured to receive sensor data in communication signals from sensor devices. Each sensor adaptor is configured to extract sensor data encapsulated according to a respective sensor communication protocol. The sensor data processor is configured to process the extracted sensor data for transmission to a cloud service, such as by extracting unneeded messages data, or inserting additional data such as a time stamp. The network communication interface is configured to transmit the processed sensor data to the cloud service over a network according to a network communication protocol. Sensor data of different types may be transmitted according to corresponding types of network communication protocols.
US10178201B2 System and method for using virtual machine fabric profiles to reduce virtual machine downtime during migration in a high-performance computing environment
Systems and methods for using a virtual machine fabric profiles to reduce virtual machine downtime during migration. An exemplary embodiment can provide a subnet manager (SM) and a virtual machine fabric profile that is accessible by the subnet manager, and where the virtual machine fabric profile includes a virtual host channel adapter (vHCA) configuration. The SM can receive a request to preregister the vHCA with a first physical host channel adapter (HCA) while the vHCA is already actively registered with a second physical HCA. The subnet manager can send the vHCA configuration to the first physical HCA for preregistration. After preregistration, the virtual link between the vHCA and a vSwitch of the first physical HCA can be left unestablished, until the SM determines that a virtual link between the vHCA and a vSwitch on the second physical HCA has been disconnected.
US10178197B2 Metadata prediction of objects in a social networking system using crowd sourcing
A social networking system leverages user's social information to evaluate content submitted for inclusion in objects. If the evaluated submission is accepted, the submission is added to the content of an object. Accepted submissions are also used to predict associations between metadata and objects. Metadata is used to predict which objects will match user searches for information. The social networking system also provides a user interface configured to prompt users to submit information to objects. When a user completes a submission to an object, the user is provided with other options for groups of objects to contribute to. The objects offered are chosen to increase the likelihood that the user will choose to provide submissions to one of the provided objects.
US10178192B2 Behavior-based browser bookmarks
Methods and apparatus for obtaining web content are disclosed. The method may include storing a history of webpages requested via a browser of the communication device and generating a bookmark for a webpage in response to the at least one webpage being requested more than a threshold number of times at a particular time. The bookmark is then stored in association with the particular time, and when the particular time occurs, the webpage is requested and rendered on the communication device so the webpage is rendered in advance of a user launching the browser.
US10178188B2 System for a monitored and reconstructible personal rendezvous session
Disclosed is a system that adapts a personally portable “smart” communications device to enhance a user's personal security by continuously monitoring an alert function of the device from a remote location during a user initiated “session.” The user device is in communications with a remote server, which monitors the alert function and provides: accurate preservation of session data; monitoring of user device ambient conditions; dispatch of emergency services; and notification of third parties. Server software (host application) on the remote server manages communications with user devices. The server collects, processes and stores data; dispenses data according to a rule set, and manages multiple user sessions. User software manages the initiation and conduct of a session and communications with the server. The user and server software in combination provide for establishing, maintaining operations of the system, and databases accessible by the remote server for storage/archiving of system data.
US10178186B2 Connection reestablishment protocol for peer communication in distributed systems
Communication resumption information can be retained nodes of a cluster of nodes that form a distributed computing system. The communication resumption information can be exchanged between a node of the cluster and a peer node of the cluster after resumption of communication following a loss of communication between the node and the peer node. A determination of whether communication between the node and the peer node can be reestablished without losing messages can include comparing the communication resumption information received by the node from the peer node with the communication resumption information retained at the node. Communication between the node and the peer node can be resumed based when the determining indicates that communication between the node and the peer node can be reestablished without losing messages.
US10178183B2 Techniques for prevent information disclosure via dynamic secure cloud resources
Techniques for preventing information disclosure via dynamic secure cloud resources are provided. Data (information) remotely housed on a particular cloud resource of a particular cloud is periodically, randomly, and dynamically changed to a different cloud resource within the same cloud or to a different cloud resource within an entirely different cloud. A requesting principal for the data is dynamically authenticated and a current location for the data is dynamically resolved and the principal is securely and dynamically connected to the current cloud resource and current cloud hosting the data for access.
US10178169B2 Point to point based backend communication layer for storage processing
A storage system is provided. The storage system includes a plurality of storage nodes, each of the plurality of storage nodes having a plurality of storage units with storage memory. The system includes a first network coupling the plurality of storage nodes and a second network coupled to at least a subset of the plurality of storage units of each of the plurality of storage nodes such that one of the plurality of storage units of a first one of the plurality of storage nodes can initiate or relay a command to one of the plurality of storage units of a second one of the plurality of storage nodes via the second network without the command passing through the first network.
US10178162B2 Message transfer system, method of transferring messages and software product
A message transfer system, method of transferring message and a software product. A message transfer system (10) comprising: an interface to a send agent (70), arranged to facilitate an input of an at least one message to the message transfer system, an interface to a delivery agent (80), arranged to facilitate an output of the at least one message from the message transfer system, a message queue, arranged to facilitate a processing of the at least one message through the message transfer system (10) between the interface to a send agent (70) and the interface to a delivery agent (80), wherein, the message transfer system (10) further comprises a message transfer node (20 22 23 24 25 26 27), arranged to comprise the message queue (90) such that the message queue (90) is arranged as distributed.
US10178161B2 Digital signal processing over data streams
The techniques and systems described herein are directed to providing deep integration of digital signal processing (DSP) operations with a general-purpose query processor. The techniques and systems provide a unified query language for processing tempo-relational and signal data, provide mechanisms for defining DSP operators, and support incremental computation in both offline and online analysis. The techniques and systems include receiving streaming data, aggregating and performing uniformity processing to generate a uniform signal, and storing the uniform signal in a batched columnar representation. Data can be copied from the batched columnar representation to a circular buffer, where DSP operations are applied to the data. Incremental processing can avoid redundant processing. Improvements to the functioning of a computer are provided by reducing an amount of data that to be passed back and forth between separate query databases and DSP processors, and by reducing a latency of processing and/or memory usage.
US10178157B2 Method and system for simulating surgical procedures
A system and method for converting static/still medical images of a particular patient into dynamic and interactive images interacting with medical tools including medical devices by coupling a model of tissue dynamics and tool characteristics to the patient specific imagery for simulating a medical procedure in an accurate and dynamic manner.
US10178156B2 Extraction and capture of information from customizable header
A database system captures custom information of a header section associated with a logged interaction of a user. The database system may receive a hypertext transfer protocol (http) message including the header section and determine whether the header section includes a predetermined data pattern associated with the custom information added by a second application that is different than a first application which initiated the http message. The database system may extract the custom information from the header section in response to determining that the header section includes the predetermined data pattern. The custom information and event data extracted from the logged interaction of the user may be stored on the database system as a storage element.
US10178152B2 Central repository for storing configuration files of a distributed computer system
In a computer-implemented method for configuring a distributed computer system comprising a plurality of nodes of a plurality of node classes, configuration files for a plurality of nodes of each of the plurality of node classes are stored in a central repository. The configuration files include information representing a desired system state of the distributed computer system, and the distributed computer system operates to keep an actual system state of the distributed computer system consistent with the desired system state. The plurality of node classes includes forwarder nodes for receiving data from an input source, indexer nodes for indexing the data, and search head nodes for searching the data. Responsive to receiving changes to the configuration files, the changes are propagated to nodes of the plurality of nodes impacted by the changes based on a node class of the nodes impacted by the changes.
US10178151B2 Sharing asserted media
Concepts and technologies are disclosed herein for sharing asserted media. An assertion application can be executed by a device to generate asserted media. The assertion application can receive a request or other input for specifying information to be included in the asserted media. The assertion application also can be executed to obtain media captured with a media capture device and to obtain the information to be included in the asserted media. The assertion application also can associate the information with the media content to generate the asserted media and share the asserted media with one or more recipients. An assertion service remote from the user device can be configured to generate the asserted media and/or to share the asserted media with the recipients.
US10178149B2 Analysis for framework assessment
Design analysis for framework assessment is described. A file including a designed image may be obtained from a storage device, and a guide structure may be extracted from the file. The guide structure may include multiple guide lines, and the guide lines may be analyzed to determine column-related data, such as at least relative widths or positional orders, a total number of columns, groups of column widths, a combination thereof, and so forth. From multiple frameworks, a framework may be ascertained that substantially matches the guide structure based at least partially on a comparison of column-related data to each framework of the multiple frameworks. Ascertainment of a framework may be indicated to an end-user. The ascertained framework may be applied to facilitate development of a coded functional version of at least a visual design of the image.
US10178148B2 Content supply device, content supply method, program, and content supply system
The present disclosure relates to a content supply device, a content supply method, a program, and a content supply system, wherein an adaptive streaming technique based on DASH is extended to enable the use of broadcast distribution and multicast distribution.A content supply device according to a first aspect of the present disclosure is a content supply device that supplies streaming data of content in accordance with an adaptive streaming technique, the device including: an HTTP distribution unit that makes the streaming data into a file for each segment and distributes by HTTP the obtained segment file through a bidirectional communication network; a multicast distribution unit that distributes the segment file by multicast; and a meta file generation unit that generates a meta file in which information for receiving the segment file to be subjected to the HTTP distribution or the multicast distribution is described. The present disclosure is applicable to the system for streaming the content.
US10178147B1 Client-side location address translation
Switching a content location address is disclosed. A mapping data is received from a server indicating one or more translated location addresses that correspond to one or more content requests. At a client device, a request is generated that specifies an initial content location address. The initial content location address is translated to a different content location address using the received mapping data.
US10178146B2 Web services
A method, system, and/or computer program product invokes a web service in a software application. A software application comprises a machine readable description of a functionality to be supported by a web service to be invoked, and a machine readable description of an execution instruction for the web service to be invoked. One or more processors determine/identify a web service that supports the functionality to be supported and the execution instruction for the web service to be invoked.
US10178143B2 Selecting bitrate to stream encoded media based on tagging of important media segments
A method, system and computer program product for selecting a bitrate to stream encoded media. A manifest file is fetched, where the manifest file contains metadata for encoded media segments which includes tags signifying the associated encoded media segments being important to the viewer. A playback occupancy level is then increased before reaching these tagged media segment(s). A high bitrate (high quality) is selected to stream the tagged media segment(s) which are then fetched and played at the selected high bitrate in response to the new playback buffer occupancy level being above a threshold level. In this manner, those media segments that are of higher importance to the viewer will be viewed in a higher quality since content information is used to select the bitrate to receive the encoded media segments. As a result, the user's quality of experience in viewing media is improved.
US10178140B2 Quality-driven streaming
Quality-based optimizations of a delivery process of streaming content may be enabled. The optimization may take the form of quality-based switching. To enable quality-based switching in a streaming client, the client may have access to information about the quality of an encoded segment and/or sub-segment. Quality-related information may include any number of added quality metrics relating to an encoded segment and/or sub-segment of an encoded video stream. The addition of quality-related information may be accomplished by including the quality-related information in a manifest file, including the quality-related information in segment indices stored in a segment index file, and/or providing additional files with quality-related segment information and providing a link to the information from an MPD file. Upon receiving the quality-related information, the client may request and receive a stream that has a lower bitrate, thereby saving bandwidth while retaining quality of the streaming content.
US10178139B2 Providing event data to a group of contacts
Data related to an event is provided to a group of contacts while the event is occurring via an event user interface that enables the group of contacts to coordinate with one another during the event. In this regard, an event coordination service is provides the event data to each contact of the group for review via an event user interface that is persistently displayed on a telecommunication or other computing device associated with the contact for the contact's easy and immediate reference during the event. When the event ultimately concludes, display of the event user interface ceases as the group of contacts likely no longer needs immediate or ready reference to the event.
US10178135B2 Modularized software system for managing a plurality of disparate networks
Converged network management application and system is provided that delivers a management platform as a service that can view and/or manage all managed networks in the aggregate, or any one of them individually (including individual devices within the managed networks), in a secure and efficient manner, providing continuously available intelligence in real time on the managed networks and systems, and overcoming integration issues including conflicting address schemas, the need to avoid unnecessary infrastructure, and the need acquire all necessary information in real time within applicable memory and bandwidth constraints.
US10178126B2 Activity-based risk selection of open Wi-Fi networks
For activity-based risk assessment of open Wi-Fi networks, an activity occurring at a consumer application is analyzed to determine that a connection with a first open Wi-Fi network is to be used in conjunction with the activity. From an entry representing the activity in a risk profile, a risk level of the activity is selected. Whether an overall risk value of the first network exceeds the risk level of the activity is determined. When the overall risk value of the first network exceeds the risk level of the activity, the connection with the first network is terminated. A second open Wi-Fi network with a second overall risk value that does not exceed the risk level of the activity is selected. A second connection with the second network is established. The activity is allowed to proceed using the second connection with the second network.
US10178123B2 Avoidance of hostile attacks in a network
For improving the protection of a network against denial of service attacks and other hostile attacks, while keeping the operation of the network simple and efficient and considering restricted capacities of single network nodes, a control unit, a system and a method for operating a network with a plurality of nodes are provided, wherein at least one operation parameter of at least one node is adjusted based on a current network phase and a data packet received by the node (10) is processed based on the operation parameter.
US10178118B2 Data surveillance system
Data surveillance techniques are presented for the detection of security issues, especially of the kind where privileged data may be stolen by steganographic, data manipulation or any form of exfiltration attempts. Such attempts may be made by rogue users or admins from the inside of a network, or from outside hackers who are able to intrude into the network and impersonate themselves as legitimate users. The system and methods use a triangulation process whereby analytical results pertaining to data protocol, user-behavior and packet content are combined to establish a baseline for the data. Subsequent incoming data is then scored and compared against the baseline to detect any security anomalies. A set of metadata layers related to the analysis are also maintained. The techniques are also applicable for detecting performance issues indicative of a system malfunction or deterioration.
US10178116B2 Automated computer behavioral analysis system and methods
Events related to an end-point connected with one or more devices are recorded and collected to observe end-point behavior and determine the risk of unfavorable conduct occurring on a network/system. The analysis may include a behavioral analysis that matches events to behaviors, and scores behaviors along factors or parameters of fraud including opportunity (O), pressure (P), and rationalization (R). Malicious behavior may be anticipated or identified prior to commission, allowing preventative measures to be taken or behavior intercepted within the early stages.
US10178115B2 Systems and methods for categorizing network traffic content
A method for categorizing network traffic content includes determining a first characterization of the network traffic content determining a first probability of accuracy associated with the first characterization, and categorizing the network traffic content based at least in part on the first characterization and the first probability of accuracy. A method for use in a process to categorize network traffic content includes obtaining a plurality of data, each of the plurality of data representing a probability of accuracy of a characterization of network traffic content, and associating each of the plurality of data with a technique for characterizing network traffic content. A method for categorizing network traffic content includes determining a characterization of the network traffic content, determining a weight value associated with the characterization, and categorizing network traffic content based at least in part on the characterization of the network traffic content and the weight value.
US10178114B2 Analyzing client application behavior to detect anomalies and prevent access
A client device accesses content and performs actions at a remote application server via a user-agent application. The application server directs the user-agent application to a security verification system to retrieve and perform security tests. The security verification system receives information from the user-agent application describing characteristics of the user-agent application, and the security verification system selects a set of security tests to be performed by a security module executing in the user-agent application to verify that the user-agent application is accessing the application server consistent with the described user-agent application. The security verification system compares a set of test results with other user-agent applications and provides a token to the user-agent application to access the application server. The security module may also monitor and actions on the user-agent application to permit the security verification system to revise or revoke the token.
US10178113B2 Systems, methods, and media for generating sanitized data, sanitizing anomaly detection models, and/or generating sanitized anomaly detection models
Systems, methods, and media for generating sanitized data, sanitizing anomaly detection models, and generating anomaly detection models are provided. In some embodiments, methods for sanitizing anomaly detection models are provided. The methods including: receiving at least one abnormal anomaly detection model from at least one remote location; comparing at least one of the at least one abnormal anomaly detection model to a local normal detection model to produce a common set of features common to both the at least one abnormal anomaly detection model and the local normal detection model; and generating a sanitized normal anomaly detection model by removing the common set of features from the local normal detection model.
US10178108B1 System, method, and computer program for automatically classifying user accounts in a computer network based on account behavior
The present disclosure describes a system, method, and computer program for identifying and classifying service accounts in a network based on account behavior. For each evaluated account in the network, a plurality of behavior indicators are calculated. The behavior indicators correspond to service account behaviors and, for each account, are calculated based on network events associated with the account. Each behavior indicator is compared to a threshold specific to the corresponding behavior. If one or more behavior indicators for an account satisfies the applicable threshold, the account is deemed to display service account behavior. Consistency in which an account displays service account behavior is factored into classifying accounts as service accounts.
US10178100B2 Operating-system-level isolation of multi-tenant applications
Implementations of PDB Sandboxing in layers and mapping to different operating systems are described. In exemplary implementations, one or more pluggable databases (PDBs) are encapsulated on common container databases to form one or more PDB sandboxes. Encapsulating PDBs forms an isolation boundary layer configured to dynamically regulate security and isolation of the PDB sandboxes. Access by processes and resources to and from the PDBs inside respective PDB sandboxes through the isolation boundary layer, and access within PDB sandboxes, is regulated using dynamic access processes that dynamically vary access to resources and process disposed within and external to the PDB sandboxes.
US10178095B2 Relayed network access control systems and methods
A computer system for authenticating and managing network traffic may comprise a network link providing a connection to a network, an authentication, authorization, and accounting (AAA) server configured to provide AAA management for the network link, an access controller configured to communicate with the AAA server and to control access to the network link, and a subnetwork of client devices connected to an intermediate relay node. The client devices may be configured to communicate with the access controller and the network link through the intermediate relay node. Also methods and processes by which an intermediate relay node and an access controller may operate in the network for authentication of client devices and routing of network traffic.
US10178092B2 Methods and apparatus for private service identifiers in neighborhood aware networks
Methods and apparatus in accordance with various embodiments provide for private service IDs for utilization in wireless devices in neighbor aware networks. One aspect of the subject matter described in the disclosure provides a method of transmitting service information in a wireless neighborhood aware network. The method includes generating a first message having a first service identifier. The first service identifier includes a first hash value based on a service name and timing information. The first hash value is generated by applying a first hash function. The method further includes transmitting the first message.
US10178089B2 Mobile terminal apparatus and control method
Disclosed is a mobile terminal apparatus including one or more processors configured to execute a process. The process includes storing content data acquired in a specific mode in a storage, acquiring an address corresponding to authentication information at authentication when the content data are acquired in the specific mode, generating a first mail to which the content data are attached and setting the address in the first mail as a transmission destination, transmitting the generated first mail to the address, and controlling deleting the stored content data and a transmission history of the transmitted first mail.
US10178086B2 Method and arrangements for intermediary node discovery during handshake
A method executed by an Intermediary Node arranged between a Client and a Server for participating in the setting up of a connection between the Client and a Server is described. In response to intercepting a first message, the method transmits from the Client and destined for the Server, and requests for a connection to be set-up between the Client and the Server. The method recognizes, based on content of the received first message, that it is desirable for the Intermediary Node to perform at least one function on the requested connection, the Intermediary Node is transmitting a second message to the Client, comprising an identity of the Intermediary Node. This enables the Client to accept or reject the Intermediary Node as a node participating in the requested connection set-up.
US10178084B2 Generalized certificate use in policy-based secure messaging environments
Within a secure messaging environment, a determination is made that a request to send a message has been generated by a message sender. A message protection policy configured to process the message within the secure messaging environment is identified. The message protection policy specifies that, within the secure messaging environment, a secured digital certificate, other than a digital certificate of the message sender, is configured with an associated private key to digitally sign the message on behalf of the message sender. Based upon the message protection policy, a determination is made to digitally sign the message using the private key of the secured digital certificate. The message is signed on behalf of the message sender using the private key of the secured digital certificate.
US10178081B2 Authentication system, method and storage medium
An authentication system according to an embodiment is provided with a service providing apparatus, an IDaaS corporation apparatus, and an authentication providing apparatus. Based on the user ID and SSO request transmitted from the user terminal, the authentication providing apparatus executes authentication processing for the user. If the result of the authentication processing indicates success, the IDaaS corporation apparatus having SSO account information including the SSO account identifier identical to the user ID, permits SSO authentication to be executed for the service identified by the service account identifier included in the service account information associated with the SSO account information. The service providing apparatus transmits information related to the service to the user terminal.
US10178077B2 Preventing persistent storage of cryptographic information using signaling
Organizations maintain and generate large amounts of sensitive information using computer hardware resources and services of a service provider. Furthermore, there is a need to be able to delete large amounts of data securely and quickly by encrypting the data with a key and destroying the key. To ensure that information stored remotely is secured and capable of secure deletion, cryptographic keys used by the organization should be prevented from being persistently stored during serialization operations.
US10178076B2 Cryptographic security functions based on anticipated changes in dynamic minutiae
Dynamic key cryptography validates mobile device users to cloud services by uniquely identifying the user's electronic device using a very wide range of hardware, firmware, and software minutiae, user secrets, and user biometric values found in or collected by the device. Processes for uniquely identifying and validating the device include: selecting a subset of minutia from a plurality of minutia types; computing a challenge from which the user device can form a response based on the selected combination of minutia; computing a set of pre-processed responses that covers a range of all actual responses possible to be received from the device if the combination of the particular device with the device's collected actual values of minutia is valid; receiving an actual response to the challenge from the device; determining whether the actual response matches any of the pre-processed responses; and providing validation, enabling authentication, data protection, and digital signatures.
US10178071B2 Techniques to use operating system redirection for network stream transformation operations
Techniques to use operating system redirection for network stream transformation operations are described. In one embodiment, an apparatus may comprise a network stream component operative to receive a network stream, the network stream associated with an application on a device; modify the network stream to generate a modified network stream; and send the modified network stream through an operating system for the device; and a local virtual private network component operative on the processor circuit to: receive the modified network stream from the operating system as a plurality of modified network stream packets; determine a network connection policy based on the application; and send the plurality of modified network stream packets to a destination network address via the network interface controller when the network connection policy indicates sending. Other embodiments are described and claimed.
US10178067B1 Data center portal applications monitoring
Techniques are described for monitoring resource consumption, detecting faults, and predicting future faults with internal or customer-facing portal applications that engage data center operations for supporting co-location and, in some cases, interconnection by customers of a co-location provider. For example, an operational intelligence engine for portal applications deployed by a co-location provider stitches together transactions records and logs based on a unique identifier inserted into transactions performed by multiple system applications that execute the portal transactions through a lifecycle of requests and events for the portal and system applications.
US10178066B1 User-configurable dynamic DNS mapping for virtual services
Various example implementations are directed to circuits, apparatuses, and methods for providing virtual computing services. According to an example embodiment, an apparatus includes a computing server configured to provide a respective group of virtual servers for each of a plurality of accounts. Each of the accounts has a respective set of domain names and a respective settings file. The apparatus also includes a domain name server (DNS). The DNS is configured and arranged to dynamically map a respective set of domain names for each account to network addresses of the respective group of virtual servers, provided for the account. The DNS performs the mapping according to a mapping function indicated in the respective settings file of the account. The respective settings file of a first account accounts includes a mapping function that is different from a mapping function included in the respective settings file of a second account.
US10178064B2 Per-session invocation of priority services based upon network available information
Concepts and technologies disclosed herein are directed to per-session invocation of priority services based upon network available information. A service architecture can include a service architecture core and a service execution runtime framework in which a priority service application is executable to perform operations to provide a priority service for a communications session. The priority service application can determine whether a priority service should be invoked for the communications session based upon priority criteria. If a determination is made that the priority service is to be invoked for the communications session based upon the priority criteria, the priority service application can invoke the priority service for the communications session. If a determination is made that the priority service is not to be invoked for the communications session based upon the priority criteria, the priority service application can cause the communications session to be coordinated without the priority service.
US10178061B2 Digest filtering system and method
A method, computer program product, and computer system for sending, from a first computing device, an email digest in an email message to a second computing device at a first point in time, wherein the email digest includes one or more content items for display at the second computing device when the email digest in the email message is accessed. An action is determined to be performed on a content item of the one or more content items at a second point in time that is after the first point in time. The content item of the one or more content items in the email digest is filtered from the email message based upon, at least in part, determining that the action is performed on the content item of the one or more content items at the second point in time.
US10178060B2 Mitigating email SPAM attacks
The present disclosure relates to mitigating email spam attacks. A gateway is configured to receive mail from one or more mail systems. If mail is intended for delivery to an invalid address, the gateway can generate status messages for delivery to the mail systems or determine if a threshold for delivery attempts to the invalid address has been met. If the threshold has been met, the gateway can request creation of a honeypot email address, and future mail intended for delivery to the invalid address are delivered to a mailbox associated with the honeypot email address. Various actions can be taken with respect to the mail delivered to the honeypot email address including analysis, blacklisting of senders, and/or other actions.
US10178056B2 Predicting and updating availability status of a user
Predicting and notifying availability status of a user may include determining, using a processor, an availability status of a user according to historical data for the user and automatically updating the availability status of the user using the processor.
US10178052B2 Parallel information processing apparatus method of determining communication protocol, and medium
A parallel information processing apparatus includes a group of switches configured to have a topology of a Latin square, and nodes connected with a switch among the group of switches. The parallel information processing apparatus also include a memory and a processor configured to designate (n×k) units of blocks in the group of switches included in a lattice structure in the topology of the Latin square; to generate information about communication protocol that includes communication directions having different slopes for m (m≤k) units of the nodes, and the number of hops set for the respective communication directions having the different slopes; and to execute communication for the m units of the nodes of the units of the block, based on the information about communication protocol, so as to execute part-to-part communication between the m units of the nodes of the respective units of the blocks.
US10178048B2 Exchange switch protocol version in a distributed switch environment
Techniques are provided for two components in a distributed Fiber Channel Forwarder (FCF) to establish a link between them at a level of operation that is mutually compatible with respect to the various capabilities offered by the two components. A controlling switch in the distributed FCF may simultaneously operate at different levels with different Fiber Channel Data-Plane Forwarders (FDFs), on a per-pair basis. The level of operation is established at the granularity of an individual capability offered by a switching element. When switching elements are upgraded, the switching elements can dynamically switch to higher or lower levels of operation for any or all of the capabilities defined per pair of switching element.
US10178044B2 Providing a guest with access to content of a social network
Providing a guest with access to content of a social network includes identifying a guest associated with content posted by a user on a social network, sending, via electronic mail (email), a notification to the guest's email address to notify the guest of the content on the social network, receiving, via an identity provider, an identity assertion associated with the guest's email address, and providing, based on the identity assertion, access to the content posted by the user on the social network to allow the guest to view the content, in which the identity provider is identified by a domain of the guest's email address.
US10178043B1 Dynamic bitrate range selection in the cloud for optimized video streaming
Selecting an optimal bitrate range is disclosed. A request for content from a first client is received. An optimal subset of bitrates for the first client is determined. The optimal subset of bitrates for the first client is determined based at least in part on one or more real-time quality measures. A different optimal subset of bitrates is determined for a second client. An indication of the optimal subset of bitrates determined for the first client is provided to the first client. The first client is configured to obtain content according to the indication of the optimal subset of bitrates.
US10178041B2 Technologies for aggregation-based message synchronization
Technologies for aggregation-based message processing include multiple computing nodes in communication over a network. A computing node receives a message from a remote computing node, increments an event counter in response to receiving the message, determines whether an event trigger is satisfied in response to incrementing the counter, and writes a completion event to an event queue if the event trigger is satisfied. An application of the computing node monitors the event queue for the completion event. The application may be executed by a processor core of the computing node, and the other operations may be performed by a host fabric interface of the computing node. The computing node may be a target node and count one-sided messages received from an initiator node, or the computing node may be an initiator node and count acknowledgement messages received from a target node. Other embodiments are described and claimed.
US10178039B2 Communication systems and methods having reduced frame duration
A transmitter arrangement using randomization is disclosed. The arrangement includes one or more randomizers, a measure component and a frame select component. The one or more randomizers are configured to generate one or more randomized frames from an original frame. The measure component is configured to measure a criterion for the original frame and the one or more randomized frames. The frame select component is configured to select a frame for transmission from the one or more randomized frames and the original frame. The selection is performed according to the measured criteria, such as frame duration.
US10178038B1 System and computer-implemented method for dynamically changing network port speed of fiber channel initiator
A system and method for improving the functioning of a data storage array by allowing for dynamically changing a speed of a communications port receiving data from a server via a fiber channel network managed by a network switch. The switch is queried to determine which server is sending data to each port, and to determine the speed and flow rate of the data through each port. The port experiencing the highest speed of data is identified, and if the cache write pending is above a threshold or if the array is otherwise unable to save the data at the speed at which it is being received, then the switch is set to limit the speed through that port, thereby avoiding a backup of data which could cause the port to be taken offline. A record of the change and an alert that the change was made are then generated.
US10178032B1 Wide area network distribution, load balancing and failover for multiple internet protocol addresses
Embodiments for a method of providing dynamic load balancing and fail-over in a WAN network. The interface group architecture for WAN is applied to both sides of the source-destination connection to redirect the data movement of read/write operations away from a public network to a private network. The process identifies interface group selection criteria to be invoked on both source and destination servers to select a tenant-specific private network interface for multi-tenant servers. The method provides high availability communication to select the interface for reads/writes as well as load balancing across the interfaces of each interface group, and a failover interface for recovery from interfaces of the interface group.
US10178031B2 Tracing with a workload distributor
A load balanced system may incorporate instrumented systems within a group of managed devices and distribute workload among the devices to meet both load balancing and data collection. A workload distributor may communicate with and configure several managed devices, some of which may have instrumentation that may collect trace data for workload run on those devices. Authentication may be performed between the managed devices and the workload distributor to verify that the managed devices are able to receive the workloads and to verify the workloads prior to execution. The workload distributor may increase or decrease the amount of instrumentation in relation to the workload experienced at any given time.
US10178022B2 Segment routing using a remote forwarding adjacency identifier
Disclosed is an apparatus and method for segment routing using a remote forwarding adjacency identifier. In one embodiment, a first node in a network receives a packet, wherein the packet is received with a first segment-ID and another segment ID attached thereto. The first node detaches the first and the other segment IDs from the packet. Then the first node attaches a first label to the packet. Eventually, the first node forwards the packet with the attached first label directly to a second node in the network. In one embodiment, the other segment ID corresponds to a forwarding adjacency or tunnel label switched path between the first node and another node.
US10178020B2 Systems and methods for performing layer one link aggregation over wireless links
A first layer one link aggregation master comprises a first port coupled to receive customer traffic; a first channel; a second channel; an aggregation engine coupled to the first and second channels; a first switch circuit coupled to the first port and to the first channel, and configured to communicate the customer traffic from the first port over the first channel to the aggregation engine, the aggregation engine including a splitter circuit configured to use layer one information to segment at least a portion of the customer traffic into a first virtual container and a second virtual container, the aggregation engine further including an encapsulation circuit configured to encapsulate the second virtual container using Ethernet standards for transport over the second channel; a radio access card configured to generate an air frame based on the first virtual container for wireless transmission over a first wireless link of a link aggregation group to the receiver; and a second switch circuit coupled to the second channel, and configured to communicate the Ethernet-encapsulated second virtual container over an Ethernet cable to a slave for wireless transmission over a second wireless link of the link aggregation group to the receiver.
US10178019B2 Low-overhead anchorless managing of producer mobility in information-centric networking
In one embodiment, a device in an anchorless network receives an update message from a first neighbor of the device. The update message indicates a movement of a node in the network to a new position in the network. The device updates a forwarding table of the device to reverse a link direction associated with the node, in response to receiving the update message. The device sends the update message to a second neighbor of the device towards a prior position of the node in the network.
US10178018B2 Transmission and reception devices
A method and devices for reducing the delay in end-to-end delivery of network packets may be achieved by having the transmission (TX) side of the device, tag each cell with a unique packet identifier and with a byte offset parameter where the tagging allows the reception (RX) side of the destination device to perform on-the-fly assembly of cells into packets by directly placing them at corresponding host buffer, and the method may be done for multiple packets concurrently, and hence store and forward buffering is not needed in either the source or the destination devices and the lowest possible end-to-end cut-through latency is achieved.
US10178017B2 Method and control node for handling data packets
A method and a control node (300) for establishing network functions for processing data packets of a data flow from a delivering node (306) to a receiving node (308) over a communication network (302). The control node identifies (3:2) flow characteristics relating to the data flow and determines (3:3) a succession of network functions (304) in the network for processing the data packets, based on the identified flow characteristics. The network functions (304) are then instructed (3:4a-c) to forward the data packets in the data flow according to the determined succession. The sequence of network functions specifies a service chain. The controller uses OpenFlow. Network functions are dynamically relocated based on network conditions.
US10178015B2 Methods, systems, and computer readable media for testing network equipment devices using connectionless protocols
The subject matter described herein relates to methods, systems, and computer readable media for testing network equipment devices using connectionless protocols. In some examples, a method for testing a network equipment device under test (DUT) includes transmitting a first message using a connectionless protocol for a network flow to the network equipment DUT according to a test script. The method includes storing a record for the network flow including a first flow identifier for the flow based on a first payload of the first message. The method includes receiving a second message from the network equipment DUT and determining that the second message belongs to the network flow by determining a second flow identifier based on a second payload of the second message and matching the second flow identifier to the first flow identifier.
US10178011B2 Network traffic management via network switch QoS parameters analysis
Some examples disclosed herein relate to traffic management via network switch QoS parameters analysis. In one example, a set of actual QoS parameters maybe analyzed using a set of configured QoS parameters of each network switch. A set of modified QoS parameters for each network switch maybe determined based on the analysis of the set of actual QoS parameters. The set of modified QoS parameters maybe recommended to configure each network switch for improved traffic management.
US10178010B2 Automated control of descriptor type for packet transmission
A method for data communication includes submitting from a host processor to a network interface controller (NIC) during a first time period first work items instructing the NIC to transmit over a network packets containing respective data. The first work items include pointer-based work items, which contain a pointer to the respective data in a memory of the host processor, and inline work items, which contain the respective data. The performance of the NIC is measured in transmitting the packets during the first time period. During a second time period, subsequent to the first time period, the host processor submits second work items to the NIC while deciding automatically, under control of software running on the host processor and based on the measured performance during the first time period, how many of the second work items are to be pointer-based and how many are to be inline work items.
US10178009B2 Method, a computer program product, and a carrier for indicating one-way latency in a data network
Disclosed herein is a method, a computer program product, and a carrier for indicating one-way latency in a data network (N) between a first node (A) and a second node (B), wherein the data network (N) lacks continuous clock synchronization, comprising: a pre-synchronisation step, a measuring step, a post-synchronisation step, an interpolation step, and generating a latency profile. The present invention also relates to a computer program product incorporating the method, a carrier comprising the computer program product, and a method for indicating server functionality based on the first aspect.
US10178007B2 Determining liveness of protocols and interfaces
The liveness of routing protocols can be determined using a mechanism to aggregate liveness information for the protocols. The ability of an interface to send and receive packets and the forwarding capability of an interface can also be determined using this mechanism. Since liveness information for multiple protocols, the liveness of interfaces, the forwarding capability of interfaces, or both, may be aggregated in a message, the message can be sent more often than could individual messages for each of the multiple protocols. This allows fast detection of failures, and sending connectivity messages for the individual protocols, such as neighbor “hellos,” to be sent less often.
US10178006B2 LSP ping and traceroute for bypass tunnels
A method performed by a network device may include assembling a multiprotocol label switching (MPLS) echo request, the echo request including an instruction for a transit node to forward the echo request via a bypass path associated with the transit node, and an instruction for an egress node to send an echo reply indicating that the echo request was received on the bypass path. The method may also include sending the MPLS echo request over a functioning label switched path (LSP).
US10178005B2 Networking cable tracer system
A method and apparatus for providing a tracer function for networked cable systems used for data or power transmission. A self contained and self powered indicator circuit is described that enables tracing the location of both ends of a networked cable.
US10178002B2 System and method for capturing and displaying packets and other messages in local control network (LCN)
A method includes detecting, by a Local Control Network (LCN) Monitor, a transmission of a data packet from a first device to at least one second device over the LCN. The LCN Monitor is not a source or destination of the data packet. The method also includes obtaining, by the LCN Monitor, a copy of the transmitted data packet. The method further includes decoding, by the LCN Monitor, the obtained data packet. In addition, the method includes storing, by the LCN Monitor, the decoded data packet in a storage device.
US10178001B2 Data dispatch to virtual data channel for presentation through a dashboard
In some examples, a method includes receiving a data packet through a datapath configured by a data source. The datapath may specify a data dimension of data communicated through the data packet. The method may also include identifying, from the data packet, a particular dimension value for the data dimension specified in the datapath and dispatching the data of the data packet to a virtual data channel specific to the particular dimension value to support presentation of the data through a dashboard.
US10177996B2 System and method for validating documentation of representational state transfer (REST) services
A validation tool is provided for a representational state transfer (REST) service. In one embodiment, a method for validating documentation of a REST service includes including detecting one or more messages for a REST service by a validator, wherein the one or more messages are intercepted for the REST service, translating documentation of the REST service, by the validator, into a representation of an automaton, and validating the one or more messages by the validator based on the automaton, wherein validation of the messages determines conformance of the REST service to the documentation of the REST service.
US10177995B2 Scalable service level agreement (SLA) verification and action using a data plane
An ingress node inserts into a header of a packet service level agreement information and forwards the packet. At an egress node of the network, the packet is received and the service level agreement information is obtained from the header of the packet. The egress node verifies whether there is conformance to a service level agreement based on at least one parameter associated with reception of one or more packets at the egress node and the service level agreement information.
US10177994B2 Fault tolerant federation of computing clusters
Embodiments are directed to organizing computing nodes in a cluster federation and to reassigning roles in a cluster federation. In one scenario, a computer system identifies computing nodes that are to be part of a cluster federation which includes a master cluster and worker clusters. The computer system assigns a director role to a master node in the master cluster which governs decisions that affect consistency within the federation, and further assigns a leader role to at least one master node which monitors and controls other master nodes in the master cluster. The computer system assigns a worker agent role to a worker node which receives workload assignments from the master cluster, and further assigns a worker role to a worker node which processes the assigned workload. The organized cluster federation provides fault tolerance by allowing roles to be dynamically reassigned to computing nodes in different master and worker clusters.
US10177993B2 Event-based data transfer scheduling using elastic network optimization criteria
Event-based data transfer scheduling using elastic network optimization criteria is provided. Bandwidth optimization criteria corresponding to different types of data transfer event scenarios are maintained, and based on recognizing a data transfer event scenario, a bandwidth optimization criteria is selected based on a type of the data transfer event scenario. A schedule for transferring data from a source to a target across the elastic network is determined according to the selected bandwidth optimization criteria, and the elastic network is used in transferring the data to the target storage location, where the using includes dynamically configuring elastic network bandwidth allocation from an elastic network service provider and initiating transfer of the data to the target storage location according to the schedule.
US10177990B2 Managing subset of user contacts
Systems, methods, and computer-readable mediums for managing a subset of user contacts on a telecommunications device are provided. In one embodiment, a software application executed by a processor of a telecommunications device identifies a subset of contacts selected at least in part by a user of the telecommunications device. The subset of contacts includes a portion of the user's contacts accessible by the telecommunications device. The software application executed by the processor of the telecommunications device then causes display of a graphical identifier associated with each contact of the subset of contacts in an arrangement on a display of the telecommunications device about an axis positioned external to the display of the telecommunications device. Aspects of systems, methods, and computer-readable mediums for further arranging the graphical identifiers are also provided. Even further, aspects of systems, methods, and computer-readable mediums for providing functionality associated with the graphical identifiers are provided.
US10177989B1 Computer efficiency by predicting event occurrences
In an embodiment, a data processing method providing an improvement in computer efficiency in transmitting data poll messages to another computer, the method comprising: using a first computer, transmitting a first plurality of data poll messages to a second computer, receiving event data from the second computer, and storing the event data in event history storage; based upon the event data in the event history storage, calculating a first estimate of a probability of a particular event occurring in a first specified time period; in response to determining that the first estimate is greater than 0, calculating a total number of times to check for the same particular event in the same specified time period; based upon the event data in the event history storage, calculating a second estimate of a probability distribution of the same particular event during the same specified time period; creating and storing a schedule of a plurality of times at which to transmit a second plurality of data poll messages to the second computer, based upon dividing the specified time period by the second estimate; transmitting the second plurality of data poll messages to the second computer at the plurality of times specified in the schedule, receiving responsive event data from the second computer, and updating the event history storage using the responsive event data; wherein the method is performed using one or more computing devices.
US10177987B2 Cloud migration and maintenance controls
Improved interfaces for cloud migration are provided. In one implementation, the interface may include a plurality of quadrants reflecting risk associated with cloud deployment of a plurality of software technology assets along a first axis and cost associated with cloud deployment of the plurality of software technology assets along a second axis as well as a plot point for each of the plurality of software technology assets, each plot point being mapped to one of the plurality of quadrants corresponding to an associated risk and cost of the corresponding software technology asset.
US10177985B2 Systems and methods for routing and topology management of computer networks with steerable beam antennas
This disclosure provides systems and methods for routing and topology management of computer networks with steerable beam antennas. A network controller can generate an input graph for a first time period. The input graph can have a plurality of vertices each representing a respective moving node and a plurality of edges each representing a possible link between a pair of moving nodes. The input graph also can include corresponding location information for each of the moving nodes during the first time period. A solver module can receive information corresponding to the input graph, a maximum degree for each vertex in the input graph, and a set of provisioned network flows. The solver module can determine a subgraph representing a network topology based on the input graph, the maximum degree for each vertex in the input graph, and the set of provisioned network flows, such that a number of edges associated with each vertex in the subgraph does not exceed the maximum degree for each vertex.
US10177984B2 Isolation of problems in a virtual environment
Problem isolation in a virtual environment is described. In one example, a method (300) is provided for isolating problems in a virtual environment. The method includes maintaining (310) a topology of network devices in the virtual environment. The virtual environment can be monitored (320) using a performance module for network device operation irregularities exceeding a threshold. A network device operation irregularity can be identified (330) as well as a portion of the topology associated with the network device operation irregularity. Topology portions associated with network device operation irregularities can be grouped (340) together using a snapshot module to form a snapshot of a problem topology.
US10177980B2 Dynamic middlebox redirection based on client characteristics
A middlebox includes a network monitor module configured to determine a quality-affective factor in a connection between a client and a server in a network. A processor is configured to compare the quality-affective factor to a threshold to determine whether the connection would benefit from a network processing function. A network control module is configured to configure a router to exclude the middlebox from the connection if the connection would not benefit from the network processing function and if the middlebox is already present in the connection to cease operation of the middlebox on the connection. Router configuration is delayed until the connection is idle.
US10177971B2 Operation management device and method
An operation management device includes a processor that executes a procedure including: for plural nodes that includes plural nodes operating as virtual computers on one or more computers and that plural nodes that have a dependency relationship, deriving group information indicating the plural nodes having the dependency relationship on a basis of communication information from when the inter-node communication; and based on location information of the respective plural nodes included in the derived group information, determining operation information indicating that plural nodes included in the group information operate on a single computer, or operation information indicating that the plural nodes included in the group information respectively operate on plural computers, for the plural nodes included in the group information.
US10177970B2 Method and apparatus for controlling database connection
The present application discloses a method and apparatus for controlling a database connection. A specific embodiment of the method comprises: receiving an access request for a database sent by a terminal; determining whether a database connection pool comprises an idle database connection for the database; reusing the idle database connection to connect the terminal with the database if the database connection pool comprises the idle database connection for the database; and establishing a new database connection, in order to connect the terminal with the database by utilizing the new database connection if the database connection pool comprises no idle database connections. This embodiment effectively utilizes fewer database connections to support database access requests.
US10177969B2 System and method of troubleshooting in a telecommunications network
Aspects of the present disclosure involve systems and methods for troubleshooting interruptions of service from a telecommunications network and providing potential remedies to restore the interrupted service to the customer. The system may utilize a service path mapping system to determine the network elements, components, connections, and/or ports included in providing a particular service to a customer and obtain data from several databases of the telecommunications network related to the service path. Once collected, the data may be correlated utilized to diagnose or identify a source of the service interruption in the service path to begin to restore the interrupted service. In one embodiment, an analysis of the provided information provides an output a probability of potential sources of the service interruption. This information may then be utilized to restore the service to the customer with minimal or no involvement with network engineers or field technicians.
US10177968B2 Multipath driver cognitive analysis
An aspect includes detecting a recurring intermittent error in a path of a network in a system that includes at least one data transmission port configured for connection to at least one shared data storage device via a plurality of paths of the network. It is determined whether a cause of the recurring intermittent error is a previous path recovery action. In response to determining that the cause of the recurring intermittent error is not a previous path recovery action, the data transmission port is prevented from accessing the path for a specified time period by moving the path into a degraded sub-state, and subsequent to the specified time period the data transmission port is provided access to the path. In response to determining that the cause of the recurring intermittent error is a previous path recovery action, the data transmission port is provided access to the path.
US10177964B2 System and method for accurate reporting of fault for failed internet protocol-based calls
A system and method to identify a call end associated with a problem that caused failure of an internet protocol-based call. The method includes accessing a first call detail record (CDR) set including at least one CDR associated with a first call end of the failed call, determining from the first CDR set indicators of failure attribution of the failed call, determining whether fault for failure of the failed call is attributed to the first call end based on the indicators of failure attribution; outputting an indication that the fault is attributed to the first call end if it was determined that the fault is attributed to the first call end, and outputting the indication to indicate the first call end is acquitted of the fault if it was determined the fault is not attributed to the first call end.
US10177963B2 Network visibility appliances for cloud computing architectures
With exponential growth in virtualized traffic within physical data centers, many end users (e.g., individuals and enterprises) have begun moving work processes and data to cloud computing platforms. However, accessing virtualized traffic traversing the cloud computing platforms for application, network, and security analysis is a challenge. Introduced here, therefore, are visibility platforms for monitoring virtualized traffic traversing a cloud computing platform, such as Amazon Web Services, VMware, and OpenStack. A visibility platform can be integrated into a cloud computing platform to provide a coherent view of virtualized traffic in motion across the cloud computing platform for a given end user. Said another way, a visibility platform can intelligently select, filter, and forward virtualized traffic belonging to an end user to a monitoring infrastructure, thereby eliminating traffic blind sports.
US10177962B2 Network management systems and methods
Example network management systems and methods are described. In one implementation, a method identifies at least one network resource to be managed and identifies at least one domain to be managed. The method further identifies at least one service provider to be managed. A fusion object is created that defines the network resource, the domain, and the service provider to be managed.
US10177960B2 System and method for multi-tier synchronization
The present invention provides a system and method for multi-tiered data synchronization. Data is synchronized between a master synchronization server, one or more proxy synchronization servers, and client devices. Client devices establish synchronization sessions with either a proxy synchronization server or a master synchronization server, depending on which server provides the “best” available connection to that client device. Each proxy synchronization server synchronizes data with client devices that have established a synchronization session with such proxy synchronization server. The master synchronization server synchronizes data with client devices that have established a synchronization session with the master synchronization server. Each proxy synchronization server synchronizes data with the master synchronization server. Metadata associated with synchronized files is synchronized throughout the system in real-time. Files may be synchronized in real-time or at a delayed time.
US10177956B2 Method for signaling information by modifying modulation constellations
A wireless device may include processing circuitry that is configured to process a preamble of a packet, the preamble comprising a legacy portion comprising a legacy signal field (L-SIG) and a subsequent portion comprising a non-legacy signal field. The processing circuitry may be further configured to determine whether a symbol of the non-legacy signal field is modulated using binary phase shift keying (BPSK) or modulated using quadrature binary phase shift keying (OBPSK). The processing circuitry may be further configured to process the subsequent portion of the packet in accordance with a first packet format if the symbol of the non-legacy signal field is modulated using OBPSK, and to process the subsequent portion of the packet in accordance with a different packet format if the symbol of the non-legacy signal field is modulated using BPSK.
US10177955B2 In and relating to communication network resourcing
A base station is configured to communicate with at least a first user equipment (UE) and a second UE, wherein the base station is configured to communicate with the first UE using a first modulation scheme, and with the second UE using a second, different, modulation scheme, wherein communications with the first and second UEs are arranged to be substantially orthogonal to each other. A method of allocating resources in a communication network comprising a base station operable to communicate with a first user equipment (UE) and a second UE, the method comprising using a first modulation scheme for communication with the first UE, and using a second, different, modulation scheme for communication with the second UE, wherein communications with the first and second UEs are configured to be substantially orthogonal to each other.
US10177954B2 Coding and modulation apparatus using non-uniform constellation
A coding and modulation apparatus and method are presented, particularly for use in a system according to IEEE 802.11. The apparatus comprises an encoder configured to encode input data into cell words according to a binary convolutional code, BCC, or a low density parity check code, LDPC, and a modulator configured to modulate said cell words into constellation values of a non-uniform constellation and to assign bit combinations to constellation values of the used non-uniform constellation, wherein said modulator is configured to use, based on the code used by the encoder, the total number M of constellation points of the constellation and the code rate.
US10177948B2 Transmission method
Provided is a transmission method that contributes to an increase in data reception quality when iterative detection is performed at a receive apparatus side. A transmit apparatus alternates between two types of modulation scheme that each shift amplitude and phase, performs mapping to constellation points according to a selected modulation scheme, and transmits a modulated signal obtained by mapping.
US10177947B2 Interference-excising diversity receiver adaptation using frame synchronous signal features and attributes
An apparatus and digital signal processing means are disclosed for excision of co-channel interference from signals received in crowded or hostile environments using spatial/polarization diverse arrays, which reliably and rapidly identifies signals with transmitted features that are almost-periodic over known framing intervals, and exploits those features to develop diversity combining weights that substantively extract those signals from that environment, based on differing diversity signature, timing offset, and carrier offset of those signals. In one embodiment, the signal identification and extraction is performed in an appliqué that can be implemented without coordination with an actual radio transceiver.
US10177943B2 Channel quality indicator for wireline channel degradation detection
Systems and techniques relating to channel degradation detection for communication systems are described. A described system includes a processor and an interface to transmit signals and receive signals via a channel that includes a cable. The processor can be configured to perform echo cancellation based on echo tap values to remove portions of the transmitted signals that appear as echoes within the received signals, signal equalization based on equalizer tap values, or both. The processor can be configured to determine a channel quality indicator of the channel based on one or more of the echo tap values, one or more of the equalizer tap values, or both. The processor can be configured to generate a warning indication based on the channel quality indicator indicating a degradation of the cable or the channel.
US10177941B2 Method and apparatus for estimating and correcting phase error in wireless communication system
Provided are a method and apparatus for estimating and correcting the phase error in 5G or pre-5G communication systems providing much higher data rates compared to existing 4G communication systems including LTE systems. The existing phase error estimation scheme using a cyclic prefix in the time domain may fail to prevent performance degradation due to inter-carrier interference. In the present invention, it is possible to enhance reception performance of the receiver by estimating and correcting the phase error multiple times within a symbol using a time domain signal and by reducing the influence of inter-carrier interference.
US10177938B2 Device and method for adaptive channel estimation
A method to be performed at a station configured to connect to a Long Term Evolution radio access network (LTE-RAN) to utilize enhanced Multimedia Broadcast Multicast Services using a Multicast-Broadcast Single-Frequency Network (MBSFN). The method including receiving a MBSFN subframe having a MBSFN subframe structure including a plurality of Orthogonal Frequency-Division Multiplexing (OFDM) symbols, a first one of the OFDM symbols having a first reference symbol inserted therein, a second one of the OFDM symbols having a second reference symbol inserted therein, determining a rate of change of channel conditions being experienced by the station and performing a non-destaggered channel estimation when the rate of change of channel conditions is greater than a predetermined threshold, the non-destaggered channel estimation using a first Channel Impulse Response (CIR) at the first OFDM symbol and a second CIR at the second OFDM symbol.
US10177932B2 Method for connecting a domestic appliance to a wireless home network, computer program product, portable communications terminal and domestic appliance
A method connects a domestic appliance to a wireless home network. The method includes receiving access data for the home network by a portable communications terminal, setting up a wireless communication link between the domestic appliance and the portable communications terminal according to a predetermined close-range communications standard, which communication link is separate from the home network, and transmitting control commands from the portable communications terminal to the domestic appliance via the communication link. The control commands control the domestic appliance to connect to the wireless home network using the access data.
US10177931B2 Method for data communication with a domestic appliance by a mobile computer device, mobile computer device and domestic appliance
A method for data communication with a domestic appliance by a mobile computer device. The domestic appliance and the mobile computer device are interconnected or interconnectable via a wireless data connection. The wireless data connection is adapted for transferring signals between the domestic appliance and the mobile computer device. Further, the present invention relates to application software for the mobile computer device. Moreover, the present invention relates to a domestic appliance. Additionally, the present invention relates to a mobile computer device including a display or touch screen.
US10177927B2 Portable terminal and method for controlling external apparatus thereof
A portable terminal and a method for controlling an external apparatus thereof are provided. The method for controlling an external apparatus of a portable terminal according to an embodiment of the present disclosure includes display, when an application to perform chatting with a user of another portable terminal is executed, a chatting screen including at least one icon corresponding to an external apparatus, obtaining, when one of the at least one icon is selected, information regarding an external apparatus corresponding to the selected one icon, and transmitting the information regarding the external apparatus to the other portable terminal.
US10177924B1 Physically unclonable function unit with one single anti-fuse transistor
A physically unclonable function unit includes and anti-fuse transistor and a control circuit. The anti-fuse transistor has a first terminal, a second terminal, and a gate terminal. The control circuit is coupled to the anti-fuse transistor. During an enroll operation, the control circuit applies an enroll voltage to the gate terminal of the anti-fuse transistor and applies a reference voltage to the first terminal and the second terminal of the anti-fuse transistor. The enroll voltage is higher than the reference voltage, and is high enough to create a rupture path on the gate terminal to the first terminal or to the second terminal.
US10177920B2 Server apparatus and communication system comprising server apparatus
A server apparatus receives unique information, encrypted information and user information from an information processing apparatus via a network interface, the unique information being information which is uniquely assigned to an image processing apparatus, the encrypted information being information into which the unique information is encrypted using a first key, and the user information being information related to a user of the image processing apparatus; decrypts the received encrypted information using a second key corresponding to the first key so as to obtain decrypted information; determines whether the decrypted information and the received unique information represent same information; and stores, in the memory, the received user information and the received unique information in association in a case where it is determined that the decrypted information and the received unique information represent the same information.
US10177919B2 Fuzzy hashes for code signing
Various systems and methods for providing a mechanism for using fuzzy hashes for code signing are described herein. A build system for using fuzzy hashes for code signing including a file system to access a binary file; a signing engine to: generate a one-way hash of the binary; calculate a fuzzy hash of the binary; obtain a fuzzy hash of a second binary; and conditionally sign the one-way hash of the binary when the fuzzy hash of the binary differs less than a threshold amount from the fuzzy hash of the second binary.
US10177918B2 User permission check system
A user permission check system with less CPU throughput while ensuring non-repudiation is provided. In order to solve the above-described problem, in the present invention firstly, a MAC function that does not require a CPU to have high processing power is utilized. Additionally, a message is encrypted with a plurality of secret keys and the plurality of keys are distributed to a plurality of servers to make them have the keys in order to ensure validity of the message as a proof of non-repudiation. Subsequently, each server proves the validity of the message within its own range and the validity of the message is ensured by aggregating these individual results, thereby implementing the non-repudiation.
US10177915B2 Systems, methods and apparatuses for device attestation based on speed of computation
The systems, methods and apparatuses described herein provide a computing device that is configured to attest itself to a communication partner. In one aspect, the computing device may comprise a communication port configured to receive an attestation request from the communication partner, and an application-specific integrated circuit (ASIC). The ASIC may be configured to receive the attestation request from the communication port. The attestation request may include a nonce generated at the communication partner. The ASIC may be further generate a verification value and send the verification value to the communication port to be transmitted back to the communication partner. The verification value may be a computation result of a predefined function taking the nonce as an initial value. In another aspect, the communication partner is configured to attest the computing device using speed of computation attestation.
US10177913B2 Semiconductor devices and methods of protecting data of channels in the same
A semiconductor device may include: a bus; first and second function modules configured to communicate via the bus; a first encryption module configured to encrypt first data output from the first function module using a first encryption key to generate first encrypted data; and/or a second encryption module configured to decrypt the first encrypted data using the first encryption key, to output the decrypted first data to the second function module, and to encrypt second data output from the second function module using a second encryption key to generate second encrypted data. A semiconductor device may include: a bus; first and second modules configured to communicate via the bus; and/or an encryption module configured to use different encryption policies for first data, which is output from the first module and stored in a memory, and second data, which is output from the second module and stored in the memory.
US10177911B2 Secure PKI communications for “machine-to-machine” modules, including key derivation by modules and authenticating public keys
Methods and systems are provided for efficient and secure “Machine-to-Machine” (M2M) between modules and servers. A module can communicate with a server by accessing the Internet, and the module can include a sensor and/or actuator. The module and server can utilize public key infrastructure (PKI) such as public keys to encrypt messages. The module and server can use private keys to generate digital signatures for datagrams sent and decrypt messages received. The module can internally derive pairs of private/public keys using cryptographic algorithms and a set of parameters. A server can use a shared secret key to authenticate the submission of derived public keys with an associated module identity. For the very first submission of a public key derived the module, the shared secret key can comprise a pre-shared secret key which can be loaded into the module using a pre-shared secret key code.
US10177907B2 Distributed object routing
Storing a file to prevent unauthorized reconstruction of the file, including: generating an index of the file; partitioning the file into a plurality of chunks, wherein the index of the file includes an assigned routing path for each of the plurality of chunks; and routing each chunk into an assigned storage provider through the assigned routing path. Key words include partitioning and index.
US10177906B2 Method and apparatus for encrypting data
The method for performing encryption including generating a secret key or a parameter for encrypting plaintext; converting the plaintext into ciphertext by using the secret key or the parameter; and transmitting the ciphertext to a database.
US10177903B1 Semiconductor integrated circuit and receiver
A semiconductor integrated circuit includes a clock recovery circuit that receive a multi-level pulse-amplitude modulated signal and to recover a clock signal. The clock recovery circuit includes a generation circuit and an oscillator. The generation circuit includes a plurality of comparators and pulse generators and a pulse summing circuit. The plurality of comparators and pulse generators compare the multi-level pulse-amplitude modulated signal with a plurality of threshold values to generate a plurality of pulses according to a plurality of comparison results. The pulse summing circuit generates a synthetic pulse based on the generated plurality of pulses. The oscillator oscillates in synchronization with the synthetic pulse to generate the clock signal.
US10177901B2 Serializer, and semiconductor apparatus and system including the same
A serializer may be provided. The serializer may include a first data output circuit and a second data output circuit. The first data output circuit may provide first data to an output node in synchronization with a first phase clock and a second phase clock. The second data output circuit may provide second data to the output node in synchronization with the second phase clock and a third phase clock. The first data output circuit may perform a precharge operation or an emphasis operation for the second data output circuit, in synchronization with a third phase clock.
US10177897B2 Method and system for synchronizing and interleaving separate sampler groups
Serial data transfer uses ever increasing transmission rates. The data transfer rate of a clock-and-data recovery (CDR) deserializer can be increased by using multiple independent sampler blocks that process serial input data in parallel. For this purpose, the clock output signals from the various independent blocks are first mutually aligned in proper order using a lower speed clock, and subsequently offset from one another such that sampling instances of the various sampler blocks are interleaved. Digitized data words corresponding to common input data and outputted by the various sampler blocks are compared after alignment of the clock output signals to correct additional timing misalignment between the multiple sampler blocks. The digitized data words need only be aligned once or at most infrequently after the clock output signals are aligned, since the additional timing misalignment is caused mainly path delays that are substantially invariant over time.
US10177889B2 Sequence generation method, and terminal and base station for terminal for sequence generation terminal and a base station for sequence generation
The present invention discloses a sequence generation method and a base station. The method includes: determining, by a terminal, at least one first sequence according to at least one candidate sequence, where a length of the candidate sequence is less than a sequence length corresponding to a maximum available system bandwidth; and connecting, by the terminal, the at least one first sequence to generate a second sequence or directly using the at least one first sequence as a second sequence, and receiving a signal according to the second sequence, where the second sequence is at least one of a reference signal sequence or a scrambling code sequence.
US10177888B2 Wireless apparatus for high-efficiency (HE) communication with additional subcarriers
Embodiments of an access point and method for high-efficiency WLAN (HEW) communication are generally described herein. In some embodiments, the access point may be configured to operate as a master station and may configure an HEW frame to include a legacy signal field (L-SIG), an HEW signal field (HEW SIG-A) following the L-SIG, and one or more HEW fields following the HEW SIG-A. The L-SIG may be configured for transmission using a legacy number of data subcarriers, a legacy number of pilot subcarriers and a number of additional reference subcarriers modulated with a known reference sequence. At least one symbol of the HEW SIG-A and the one or more HEW fields following the HEW SIG-A of the HEW frame may be configured for transmission using additional data subcarriers. The additional data subcarriers may correspond to the additional reference subcarriers of the L-SIG.
US10177887B2 Radio base station, user terminal and radio communication method
A radio base station that communicates with a user terminal, and has a control section that executes control so that signals are time-division-multiplexed over a first radio resource region where symbols are multiplexed at a rate equal to or below a Nyquist rate and a second radio resource region where symbols are multiplexed at a faster rate than the Nyquist rate. The radio base station also includes a transmission section that transmits the signals that are time-division-multiplexed in the first radio resource region and the second radio resource region, to the user terminal to reduce the interference against predetermined signals in a radio communication system in which Faster-Than-Nyquist (FTN) is used.
US10177881B2 Communications device, infrastructure equipment, communications system and methods
An infrastructure equipment of a wireless communications network is configured to transmit signals to one or more communications devices via a wireless access interface, and to receive signals from one or more of the communications devices via the wireless access interface. The wireless access interface provides communications resources arranged in time divided units of a carrier frequency bandwidth providing a plurality of blocks of communications resources, each of the time divided units comprising on a downlink of the wireless access interface a control channel for transmitting control channel messages and a shared channel, the control channel message allocating communications resources of the shared channel to the communications devices to receive the signals from the one or more infrastructure equipment. The infrastructure equipment is configured to transmit data, as a plurality of data units, to the one or more communications devices, each data unit being encoded for transmission in accordance with a repeat request-type process, the encoding providing an indication of whether the data has been received correctly by a communications device. Each of the data units is transmitted in one of a repeating number of consecutive time divided units according to a separately controlled repeat request-type process. The transmitter is configured to transmit a control message allocating resources of the shared channel for receiving a data unit of a repeat request-type process which is one or more time divided units after a time divided unit in which the control message is transmitted, and the number of repeat request-type processes in the repeating pattern of time divided units is increased from a first number in the first mode to a second number in the second mode.
US10177877B2 Receiver and method for processing a signal thereof
A receiver is provided. The receiver includes: a first decoder configured to decode a superposition-coded signal by using a parity check matrix to generate Low Density Parity Check (LDPC) information word bits and first parity bits corresponding to a first layer signal; an encoder configured to encode the LDPC information word bits and the first parity bits to generate second parity bits, or encode the LDPC information word bits to generate the first parity bits and the second parity bits, by using the parity check matrix; and a second decoder configured to decode a signal which is generated by removing the first layer signal, corresponding to the LDPC information word bits, the first parity bits, and the second parity bits, from the superposition-coded signal, to reconstruct bits transmitted through the second layer signal.
US10177876B2 Sequence detector
A sequence detector is provided for detecting symbol values corresponding to a sequence of input samples obtained from a transmission channel. The sequence detector comprises a branch metric unit (BMU), a path metric unit (PMU) and a survivor memory unit. The branch metric unit calculates branch metrics for respective possible transitions between states of a trellis. The path metric unit accumulates branch metrics provided by the branch metric unit in order to establish path metrics. The survivor memory unit selects a survivor path based on the path metrics and outputs a survivor sequence of the detected symbols corresponding to the survivor path. The sequence detector is configured such that the synchronization length is different than the survivor path memory length.
US10177871B2 High data rate extension with bonding
A method of fragmented packet transmission in a multiple-channel passive optical network (PON), comprising fragmenting, by a Gigabit-PON encapsulation method (GEM)/next generation-PON encapsulation method (XGEM) engine of a network element, data into a plurality of packet fragments; encapsulating, by the GEM/XGEM engine, the plurality of packet fragments into frames; scheduling, by a bonding block of the network element, transmission of the frames on a plurality of channels, wherein an order for transmitting the frames is based in part on channel availability; and transmitting, by a transmitter of the network element, the frames to a receiver on the plurality of channels according to the scheduling.
US10177868B2 Systems and methods to synchronize wireless devices in the presence of a FMCW radio altimeter
Systems and methods to synchronize wireless device nodes in the presence of a FMCW radio altimeter are provided. In one embodiment, a wireless device network comprises: a plurality of device nodes that share a radio frequency spectrum using time-division multiple accesses; a network synchronizing device in wireless communication with the plurality of device nodes, the network synchronizing device coupled to a timeslot allocation function, wherein the timeslot allocation function allocates to the network synchronizing device a timeslot on a first designated synchronization channel within the radio frequency spectrum; wherein the network synchronizing device broadcasts an arbitrary timeslot synchronization beacon to the plurality of device nodes on the first designated synchronization channel in the timeslot; wherein the arbitrary timeslot synchronization beacon comprises a Sync Timeslot identifier that identifies the timeslot, and a Sync Time indicator that includes a time that the arbitrary timeslot synchronization beacon was transmitted.
US10177866B2 Apparatus for transmitting broadcast signal and method for transmitting broadcast signal using layered division multiplexing
A broadcast signal transmission apparatus and method using layered division multiplexing are disclosed. A broadcast signal transmission apparatus according to an embodiment of the present invention includes a combiner configured to generate a multiplexed signal by combining a core layer signal and an enhanced layer signal at different power levels; a power normalizer configured to reduce the power of the multiplexed signal to a power level corresponding to the core layer signal; a time interleaver configured to generate a time-interleaved signal by performing interleaving that is applied to both the core layer signal and the enhanced layer signal; a frame builder configured to generate a broadcast signal frame using the time-interleaved signal; and an orthogonal frequency division multiplexing (OFDM) transmitter configured to generate a pilot signal that is shared by a core layer corresponding to the core layer signal and an enhanced layer corresponding to the enhanced layer signal.
US10177865B2 Radio network node and method performed therein
A method performed by radio network node for enabling channel handling of a channel between a wireless device and the radio network node in a wireless communication network. The channel is defined in continuous time and a sampling rate of the channel is non-uniform. The radio network node predicts a channel gain using a first sampling descriptor indicating a first momentary sampling frequency and a second sampling descriptor indicating a second momentary sampling frequency, wherein the first sampling descriptor operates on a different segment of continuous time than the second sampling descriptor. The predicted channel gain enables channel handling such as channel estimation and link adaptation.
US10177864B2 Information processing apparatus, screen displaying method, and transmission system
An information processing apparatus is provided for communicating with another information processing apparatus in a different site by using at least one of a plurality of communication platforms. The information processing apparatus includes: a receiving unit configured to receive a transmission image that has been transmitted from the another information processing apparatus in the different site; a displaying unit configured to display on a display device the transmission image that has been received by the receiving unit; and a reading unit configured to read an image to be displayed from an image storing unit configured to store the image to be displayed. For at least a certain period while the one of the communication platform is being switched to another one, the displaying unit displays, in place of the transmission image, the image to be displayed that has been read by the reading unit.
US10177863B1 Test system and method for over the air (OTA) measurements with a dynamic adjustable grid
A test system for over the air (OTA) measurements of a device under test (DUT) with a dynamic adjustable grid is provided. The system comprises a device under test (DUT), at least one positioner, at least one measurement antenna, and at least one measuring/control device. The measurement antenna is configured to measure several defined measurement points with regard to the device under test, wherein the measurement points are arranged in a grid around the device under test. The configuration of the grid depends on an input value received by the measuring/control device.
US10177862B2 System and method for performing over-the-air tests for massive multi-input/multi-output wireless system
A test system for testing a device under test includes: a signal processor configured to generate a plurality of independent signals and to apply first fading channel characteristics to each of the independent signals to generate a plurality of first faded test signals; a test system interface configured to provide the plurality of first faded test signals to one or more signal input interfaces of the device under test (DUT); a second signal processor configured to apply second fading channel characteristics to a plurality of output signals of the DUT to generate a plurality of second faded test signals, wherein the second fading channel characteristics are derived from the first fading channel characteristics; and one or more test instruments configured to measure at least one performance characteristic of the DUT from the plurality of second faded test signals.
US10177859B2 System and associated methodology for proximity detection and device association using ultrasound
In one embodiment, a method includes receiving ultrasound frequency sweeps in a sound receiving device. Each of the plurality of ultrasound frequency sweeps is centered on one of at least two predetermined frequencies. The method also includes converting the ultrasound frequency sweeps into an ultrasound message based on a central frequency of each of the ultrasound frequency sweeps received, and placing the ultrasound message into a receive buffer. Then at least a network address is extracted from the ultrasound message, and the network address is used to establish a communication session over a data network with a telecommunications device.
US10177858B2 Minimum tone separation constrained MFSK scheme for ultrasonic communications
A method of encoding a plurality of data signals is disclosed. The method includes selecting a set of M ultrasonic frequencies, wherein each of the M ultrasonic frequencies differs from an adjacent frequency by at least a first frequency spacing, and wherein M is a positive integer. An encoder receives the plurality of data signals. Each of the plurality of data signals is encoded by a respective set of Q of the M ultrasonic frequencies, wherein Q is a positive integer less than M. A minimum frequency separation between any pair of the Q ultrasonic frequencies of any respective set is greater than the first frequency spacing.
US10177854B2 Modulated optical source and methods of its operation
A control circuit coupled to a light source and an optical modulator receives an electrical modulating signal with alternating active and idle temporal segments; the active temporal segments encode corresponding information. A portion of a source optical signal produced by the light source is transmitted by the modulator as the output optical signal. During idle temporal segments, the light source produces a non-zero source idle power level, and the modulator transmits at a constant idle transmission level. During active temporal segments, the light source produces a source average active power level, the modulator transmits at an average active transmission level that is higher than the idle transmission level, and the output optical signal is modulated in accordance with the electrical modulating signal, so that each active temporal segment of the output optical signal encodes the information of the corresponding active temporal segment of the electrical modulating signal.
US10177851B2 Coherent transceiver architecture
A coherent receiver comprises an ingress signal path having an ingress line-side interface, and an ingress host-side interface. The ingress signal path is configured to receive an analog signal vector at the ingress line-side interface, to demodulate the analog signal vector, and to output a digital data signal Fat the ingress host-side interface. The coherent receiver also comprises clock and timing circuitry configured to receive a single reference clock signal and to provide a plurality of modified ingress path clock signals to different components of the ingress signal path, the plurality of modified ingress path clock signals derived from the single reference clock signal and the plurality of modified ingress path clock signals having different clock rates. The receiver, transmitter, or transceiver can operate in a plurality of programmable operating modes to accommodate different modulation/de-modulation schemes, error correction code schemes, framing/mapping protocols, or other programmable features.
US10177848B1 Visual light communication using starburst or haze of the light source
A system, method and portable device are provided in which rolling shutter images containing visible light communication (VLC) transmissions from one or more light sources carrying information data in dark or low surrounding lighting in an indoor or outdoor setting are captured. The captured rolling shutter images are analyzed to determine whether the modulated visible light output from the light devices is a predetermined size within the captured rolling shutter image. When the modulated visible light output is not the predetermined size, adjustments are made to settings of the image sensor to scatter, defocus or overexpose the image to cause the modulated visible light output in a new captured rolling shutter image to be at least the predetermined size. The modulated visible light output of the predetermined size or larger is decoded to provide information data for a communication application.
US10177846B2 Transceiver device, access control devices, a transmitter device and a receiver device
A transceiver device includes a time of flight circuit configured to emit a modulated light transmit signal and to receive a modulated light receive signal. The transceiver device includes a control module configured to control a transmission of a modulated light transmit signal by the time of flight circuit to an access control device. The modulated light transmit signal includes information related to a transmission access request. The control module is further configured to control an establishment of a wireless transmission channel based on a modulated light receive signal received by the time of flight circuit from the access control device. The modulated light receive signal includes information for establishing the wireless transmission channel.
US10177842B2 Enhanced transmission and reception of remote digital diagnostic information of optical tranceivers
Methods and apparatuses for optical communications are provided. By way of example, an optical transceiver includes a processing device coupled to a memory, an optical subassembly, and a programmable device. The optical subassembly is configured to receive and modulate a first signal carrying high speed user data for transmission to a remote device over an optical link. The programmable device is coupled to the processing device and configured to receive data relating to digital diagnostic monitoring information (DDMI) of the optical transceiver from the processing device, perform forward error correction encoding on the DDMI data to produce a remote digital diagnostic monitoring (RDDM) signal, and send the RDDM signal to the optical subassembly as a second signal to modulate for transmission. The optical subassembly is configured to current modulate the second signal on the first signal to produce a double modulated optical signal for transmission to the remote device.
US10177839B2 Network with common transmission channels
A wireless network with at least one base station and a plurality of associated terminals for the exchange of payload data and control data and at least one common transmission channel which is available for access to several terminals is described. The base station is configured to control access to the common transmission channel and the terminals are configured to send at least an access signal to the base station for the purpose of obtaining access to the common transmission channel. Different start moments and different preambles can be assigned to the terminals for transmitting their respective access signals.
US10177837B2 Approaches for high speed global packet data services for LEO/MEO satellite systems
A satellite system comprises LEO satellites and MEO satellites, and a control plane protocol architecture. The PHY, MAC, MAC/RLC and RRC layers are optimized for satellite environment. When the satellites are not processing satellites, eNB functions are implemented in a satellite gateway, and, when the satellites are processing satellites, protocol architecture in the control plane differ from LTE, as follows: PHY layer is moved to the communicating LEO/MEO satellite on the user link, MAC/RLC, RRC and PDCP are be located in satellite or gateway depending on satellite complexity, and the need to have mesh connectivity between UTs. When the RRC is implemented in the satellite, the RRC is divided into RRC-Lower and RRC-Upper layers. The RRC-L is satellite-based, and handles UT handover. The RRC-U is eNB-based, and handles resource management functions. The RRC-U communicates with the PDCP layer in the eNB to configure security, header and data compression.
US10177836B2 Radio frequency self-interference-cancelled full-duplex relays
A relay including a first transmitter that converts a first digital transmit signal to a first analog transmit signal, a first receiver that converts a first analog receive signal to a first digital receive signal, a second transmitter that converts a second digital transmit signal to a second analog transmit signal, a second receiver that converts a second analog receive signal to a second digital receive signal, and a self-interference canceller that generates a first self-interference cancellation signal based on at least one of the first digital transmit signal and the first analog transmit signal, and combines the first self-interference cancellation signal with at least one of the first digital receive signal and the first analog receive signal.
US10177828B2 Amplitude and phase calibration at a transmitter chip in an antenna array
A calibration system, in a transmitter chip, selects a first transmit path for a first transmit signal and a second transmit path for a second transmit signal. The plurality of transmit paths are associated with a plurality of antenna elements. A first signal parameter of the second transmit signal is adjusted relative to the first signal parameter of the first transmit signal to maximize a first signal strength value of an added signal or minimize a second signal strength value of a subtracted signal. An offset of the first signal parameter is calibrated based on the adjusted first signal parameter in the second transmit path. A value of a second signal parameter is calibrated based on a matching of the second signal parameter in the second transmit path relative to the second signal parameter in the first transmit path.
US10177817B2 Electric power transmitting device, non-contact power supply system, and control method
A non-contact power supply system is provided employing an electric power transmitting device which can improve the transmission efficiency of electric power, suppressing the circuit scale. The electric power transmitting device is configured with a resonance circuit including a resonance capacity and a resonance coil acting as a transmitting antenna, and a first coil arranged magnetically coupled with the resonance coil. The electric power transmitting device transmits electric power in a non-contact manner using resonant coupling of the resonance circuit. When transmitting the electric power, the electric power transmitting device controls the first coil to connect or disconnect both ends thereof so as to bring a resonance frequency of the resonance circuit close to a frequency of an electric power transmission signal outputted as the electric power to be transmitted.
US10177816B2 Devices and methods for identification, authentication and signing purposes
It is presented a method, performed in a one time password, OTP, generating device. The OTP device comprises an NFC/RFID, Near Field Communication/Radio Frequency Identification, interface. The method comprises the steps of: upon the OTP generating device being inserted into the RF field, generating a new OTP code; formatting the OTP code into a static message; responding to interrogation requests from an RFID/NFC reader; and responding to read requests from the RFID/NFC reader with the OTP code being part of a message as if it were a static message, using standardized methods. A corresponding device OTP generating device is also presented.
US10177810B2 Systems and methods for echo or interference cancellation power-saving management in a communication system
Embodiments described herein provide echo cancellation power saving management at a cable transceiver. An echo response signal having a first number of signal components is obtained, via an echo cancellation filter. At a first iteration for calculating a first accumulative echo power, a respective echo tap that corresponds to the first iteration is identified. The first accumulative echo power is calculated for the respective iteration by summing powers of outputs from a last echo tap to the respective echo tap. It is then determined whether the first accumulative echo power, exceeds a pre-determined echo power threshold. If the first accumulative echo power exceeds the pre-determined echo power threshold, a first turn-off indication is sent to the echo cancellation filter to turn off all echo taps including and between the last echo tap to the first echo tap.
US10177807B2 Communication module
A communication module includes a power amplifier that amplifies a transmission signal having a first communication system or a second communication system and outputs an amplified signal to a signal path, a switch circuit that switches between a signal path for the first communication system and a signal path for the second communication system and outputs the amplified signal to one of the signal paths for the first communication system and the second communication system in accordance with a control signal supplied in accordance with the communication system of the transmission signal, and an impedance-matching network disposed between the power amplifier and the switch circuit, the impedance-matching network including a first variable capacitance element. The first variable capacitance element has a capacitance value that is controlled in accordance with the communication system of the transmission signal.
US10177800B2 Mobile power bank and combined terminal device
The present invention relates to a mobile terminal, and in particular to a mobile power bank and a combined terminal device formed by splicing the mobile power bank and the mobile terminal. The mobile power bank comprises a display screen, a storage battery located below the display screen, and a casing for holding the display screen and the storage battery. The mobile power bank is generally flat-plate shaped with a front surface and a back surface. Both an area of a display region of the display screen and an area of an occupied region of the storage battery are not less than 70% of the front surface area. A volume of the storage battery can be increased without changing the thickness of the storage battery, providing an extended charging service for mobile phones. In addition, the mobile power bank of the present invention has a large display screen, when the mobile power bank is connected to a mobile terminal, such as a mobile phone, the display screen and a display screen of the mobile terminal may perform display at the same time.
US10177798B2 Electronic apparatus and antenna setting method for electronic apparatus
The present invention discloses an electronic apparatus and an antenna setting method for electronic apparatus, wherein the electronic apparatus comprises a metal appearance surface; the metal appearance surface consists of a plurality of mutually separated metal pieces; an insulating piece is provided between the two adjacent metal pieces; each metal piece is provided thereon with one or more antennas, each antenna is connected with a communication module on a master chip of the electronic apparatus. The technical proposal provided by the present invention provides a solution for a multi-frequency antenna for an electronic apparatus having a metal appearance surface, the metal appearance surface of the electronic apparatus is divided into a plurality of metal pieces, these metal pieces are used directly to achieve multi-antennas, effectively utilizing the physical size of the metal pieces, solving the contradiction between an antenna body and the metal pieces in the antenna design in the prior art, reducing the design restriction of the metal pieces, achieving the visual effect that the metal appearance surface of the electronic apparatus maintains the unity, and realizing the design of the multi-frequency antenna without affecting the appearance surface integrity of the electronic apparatus.
US10177794B1 Method and apparatus for error detection and correction
An integrated circuit (IC) includes an encoder configured to receive input data including a plurality of data bits. The encoder includes a parity computation matrix circuit configured to arrange the data bits according to a matrix format to generate a parity computation matrix. A parity computation circuit is configured to compute a plurality of parity computation row terms corresponding to rows of the parity computation matrix respectively, compute a plurality of parity computation column terms corresponding to columns of the parity computation matrix respectively, and compute parity bits using the parity computation row terms and parity computation column terms. Write data including the data bits and the parity bits are provided to a write circuit. The write circuit writes the write data to a memory cell array in a memory.
US10177792B2 DC-free nyquist-free error correcting line coding
A method of encoding a bitstream includes obtaining at least one current input word of the bitstream to encode, determining at least one nominal codeword associated with the at least one input word according to an error-control code, selecting one of the at least one nominal codeword or a substitute codeword in order to keep a current running digital sum and/or a running alternate sum bounded, and outputting an encoded word comprising the selected codeword. Embodiments make it possible to generate an encoded bitstream which is “DC free” and “Nyquist free” while providing error correction with a fixed coding rate.
US10177790B2 Bit interleaver for low-density parity check codeword having length of 64800 and code rate of 5/15 and 64-symbol mapping, and bit interleaving method using same
A bit interleaver includes a first memory, a processor, and a second memory. The first memory stores a low-density parity check (LDPC) codeword having a length of 64800 and a code rate of 5/15. The processor generates an interleaved codeword by interleaving the LDPC codeword on a bit group basis. The size of the bit group corresponds to a parallel factor of the LDPC codeword. The second memory provides the interleaved codeword to a modulator for 64-symbol mapping.
US10177789B2 Receiver receiving a signal including physical layer frames, and including a convolutional deinterleaver and a deinterleaver selector
A receiver receives a signal including an interleaved symbol stream. The receiver includes a convolutional deinterleaver including a plurality of delay portions each of which is arranged to delay symbols from the symbol stream from an input to an output by a different amount, the delay portions being arranged in a sequence. An input selector inputs the symbols from the symbol stream to the delay portions so that successive symbols are input in accordance with the sequence of the delay portions. An output selector configured to read the symbols from the delay portions by successively selecting the symbols from the outputs of the delay portions in accordance with the sequence of the delay portions to form a deinterleaved symbol stream.
US10177787B1 Mitigation of error correction failure due to trapping sets
An apparatus having an interface and a control circuit is disclosed. The interface may be configured to process a plurality of read/write operations to/from a memory. The control circuit may be configured to (i) access information that characterizes a plurality of trapping sets of a low-density parity check code in response to receiving data, (ii) encode the data using the low-density parity check code to generate a codeword and (iii) write the codeword in the memory. The generation of the codeword may include at least one of a shortening and a puncturing of a plurality of bits in the codeword. The plurality of bits may be selected based on the information that characterizes the plurality of trapping sets. The bits selected generally reduce a probability that an error correction of the codeword after the codeword is read from the memory fails due to the plurality of trapping sets.
US10177782B2 Hardware apparatuses and methods for data decompression
Methods and apparatuses relating to data decompression are described. In one embodiment, a hardware processor includes a core to execute a thread and offload a decompression thread for an encoded, compressed data stream comprising a literal code, a length code, and a distance code, and a hardware decompression accelerator to execute the decompression thread to selectively provide the encoded, compressed data stream to a first circuit to serially decode the literal code to a literal symbol, serially decode the length code to a length symbol, and serially decode the distance code to a distance symbol, and selectively provide the encoded, compressed data stream to a second circuit to look up the literal symbol for the literal code from a table, look up the length symbol for the length code from the table, and look up the distance symbol for the distance code from the table.
US10177780B2 Signal generating device
In the conventional technique, only an output having a bandwidth identical to the bandwidth of individual DACs has been obtained even by using a plurality of DACs. Also, even when the output of a bandwidth broader than the individual DAC is obtained, there has been a problem associated with asymmetricity of a circuit configuration. In a signal generating device of the present invention, a plurality of normal DACs are combined to realize an analog output of a broader bandwidth beyond the output bandwidth of the individual DACs, and the problem of the asymmetricity of the circuit configuration is also resolved. A desired signal is separated into a low-frequency signal and a high-frequency signal in a frequency domain, and a series of operation of constant (r)-folding the amplitude of the high-frequency signal and shifting it on the frequency axis to superimpose it on the low-frequency signal are made in a digital domain. The output of each DAC is switched by an analog multiplexer.
US10177777B2 Dual-sensor signal collecting circuit
A dual-sensor signal collecting circuit comprises circuit (11), a second sensor signal collecting circuits, an AD sampling circuit, an AND gate determination circuit and a collected signal averaging circuit. Output ends of the sensor signal collecting circuits are connected to respective input ends of the AND gate determination circuit, respective input ends of the collected signal averaging circuit and a first AD sampling port of the AD sampling circuit; an output end of the AND gate determination circuit is connected to a power supply end of the collected signal averaging circuit; an output end of the collected signal averaging circuit is connected to the first AD sampling port of the AD sampling circuit. When the sensors operate normally, the collected signal averaging circuit outputs an average sampling value to the first AD sampling port, when one is damaged, a sampling value of the one operating normally is output to the first AD sampling port.
US10177776B1 Noise mitigating quantizer for reducing nonlinear distortion in digital signal transmission
A distortion mitigation quantizer circuit includes a pre-quantizer to generate a first quantized signal having L output signal levels from an input signal and a digital pulse-width-modulation (PWM) circuit to modulate the first quantized signal using M modulating carriers with PWM carrier frequency fp and according to an over sampling ratio (OSR) N in order to generate a second quantized signal. In this case, a number of the modulating carriers M is substantially equal to twice L/N.
US10177769B2 Magnetoelectric computational devices
Embodiments of the present invention relate generally to logic devices, and more particularly, to magnetoelectric magnetic tunneling junction computational devices. Aspects of the disclosed technology include a stand-alone voltage-controlled magnetoelectric device that satisfies essential requirements for general logic applications, including nonlinearity, gain, concatenability, feedback prevention, and a complete set of Boolean operations based on the majority gate and inverter. Aspects of the present disclosed technology can eliminate the need for any auxiliary FETs to preset or complicated clocking schemes and prevents the racing condition.
US10177766B1 Omnibus logic element
Logic elements (LE) that can provide a number of features. For example, the LE can provide efficient and flexible use of look up tables (LUTs) and input sharing. The LE may also provide for flexible use of one or more dedicated adders and include register functionality to provide various modes of operation that enable the various features of the LE.
US10177761B2 Digital output circuit, printed-wiring board, and industrial apparatus
A digital output circuit to be driven by an insulated power-supply circuit includes a transistor to turn on/off an external power supply in accordance with a signal output by a light receiving element in an insulating circuit in response to a signal processed by a controller. The external supply is connected to an output device. The output circuit includes a switching unit having first and second mechanisms to switch each of wires between a connected state and a non-connected state at two places between the light receiving element and the source or emitter of the transistor, and a logic adjusting unit to adjust inversion of a logic output of the light receiving element in correspondence to the type of the transistor, such that the output circuit is switched between a sink-current type and a source-current type.
US10177759B2 Switching circuitry, related method and integrated circuit
Switching circuitry includes first and second transistors in series between two terminals and including a common control node with a capacitance between the common control node and an intermediate point. A control circuit includes first and second circuits configured to charge and discharge the capacitance as a function of first and second control signals. The control circuit includes a third circuit having a plurality of diodes and a switch that operates when the voltage at the capacitance is greater than a threshold two diodes in cascade between the intermediate point and the common control node to enable current flow from the intermediate point to the common control node. When the voltage at the capacitance is smaller than the given threshold two diodes are connected in series between the common control node and the intermediate point to enable current flow from the common control node to the intermediate point.
US10177755B2 Overvoltage protection circuit
Universal Serial Bus (USB) protection circuits are provided. A circuit includes a plurality of first transistors connected in series between a pad and ground. The circuit also includes a plurality of second transistors connected in series between the pad and a supply voltage. The circuit further includes a control circuit that applies respective bias voltages to each one of the plurality of first transistors and to each one of the plurality of second transistors. The bias voltages are configured to: turn off the plurality of first transistors and turn off the plurality of second transistors when a pad voltage of the pad is within a nominal voltage range; sequentially turn on the plurality of first transistors when the pad voltage increases above the nominal voltage range; and sequentially turn on the plurality of second transistors when the pad voltage decreases below the nominal voltage range.
US10177754B2 Method and apparatus for generating PWM signal
Disclosed herein are a method and an apparatus for generating a random PWM voltage reference signal for driving an inverter, which can more simply generate random position PWM (RPPWM) in which a position of an active vector is changed to achieve the same effect as when a switching frequency is changed.
US10177752B2 Frequency comparator and early-late detector
In a receiver facility in an ultra-wideband communication system, a dual-mode circuit adapted to operate in a selected one of three operating modes without changes in circuit topology: a calibration mode adapted to render the circuit substantially independent of circuit component mismatches; a frequency comparator mode adapted to indicate whether the frequency of a first periodic signal is larger or smaller than the frequency of a second periodic signal; and an early-late detector mode adapted to indicate whether the 1st rising edge of the first periodic signal arrived sooner or later than the 1st rising edge of the second periodic signal applied.
US10177751B2 Delay line with short recovery time
A delay circuit includes a plurality of cascaded delay elements responsive to control signals. Each delay element is configurable to receive an input signal on a forward path and return the input signal on two return paths. A control unit is connected to the plurality of cascaded delay elements and configured to generate a first set of control signals for defining a first configuration of the plurality of cascaded delay elements, a second set of control signals for causing a delay element of the plurality of cascaded delay elements to change from a powered off status to a powered on status while configured in an initialization mode, and a third set of control signals for defining a second configuration of the plurality of cascaded delay elements.
US10177749B2 Differential cryogenic transmitter
In an integrated-circuit component having a signal transmitter receives a transmitter power supply that cycles periodically between power-off and power-on voltage levels to define a sequence of enable intervals during which the signal transmitter is to output voltage levels corresponding to respective transmit data bits onto an external signaling link. The signal transmitter generates, at the start of each output-enable interval, an initial nonzero voltage having a first polarity across conductors of the external signaling link, and then conditionally transitions the initial nonzero voltage to a second nonzero voltage according to whether the transmit data bit corresponding to the output-enable interval has a predetermined one of two binary states, the second nonzero voltage having a polarity opposite the first polarity.
US10177748B2 Electronic latch, a method for an electronic latch, a frequency division by two and a 4-phase generator
The present invention relates to an electronic latch circuit, a method, and a 4-phase generator. The electronic latch circuit comprises an output circuit comprising an output X, and an output Y. The electronic latch circuit further comprises an input circuit, comprising an input A, an input B, and a clock signal input. The input circuit is connected to the output circuit, and configured to select a state of the output circuit from the group of a first state, a second state, and a third state. The input circuit is further configured to select the first state upon detecting a high state on the input B, a transition on the clock signal input from a low state to a high state, and a low state on the input A, and that the electronic latch circuit is in the second state. The input circuit is further configured to select the second state upon detecting a high state on the input A, a low state on the input B, a low state on the clock signal input, and that the electronic latch circuit is in the first state; The input circuit is further configured to select the third state upon detecting a high state on the input A, a transition on the clock signal input from a low state to a high state, and a low state on the input B, and that the electronic latch circuit is in the second state. The input circuit is further configured to select the second state upon detecting a high state on the input A, a low state on the input B, a low state on the clock signal input, and that the electronic latch circuit is in the first state.
US10177746B1 Overdrive Voltage Generator
An overdrive voltage generator includes a first switching circuit, a boosting circuit, a second switching circuit, and a comparison circuit. The first switching circuit is coupled between a first power supply and an output terminal and configured to be controlled by a switching signal to provide an overdrive voltage to the output terminal. The boosting circuit is coupled between a second power supply and a node and configured to boost a voltage of the second power supply to provide a pump voltage to the node. The second switching circuit is coupled between the node and the output terminal and configured to be controlled by the switching signal to provide the overdrive voltage to the output terminal. The comparison circuit is coupled to the first and second switching circuits as well as the output terminal and configured to compare the overdrive voltage with a first reference voltage to generate the switching signal.
US10177745B2 Semiconductor circuit and method of operating the circuit
Provided is a semiconductor circuit which includes a first circuit configured to determine a voltage level of a feedback node based on a voltage level of input data, a voltage level of a latch input node, and a voltage level of a clock signal, a second circuit configured to pre-charge the latch input node based on the voltage level of the clock signal, a third circuit configured to pull down the latch input node based on the voltage level of the feedback node and the voltage level of the clock signal, a latch configured to output output data based on the voltage level of the clock signal and the voltage level of the latch input node, and a control circuit included in at least one of the first to third circuits and the latch and configured to receive the control signal.
US10177731B2 Adaptive matching network
A system that incorporates teachings of the present disclosure can include, for example, an apparatus having a matching network adapted to reduce a magnitude of a signal reflection at a port of the matching network. The matching network can have one or more controllable variable reactive elements. A controller can be adapted to determine reflection coefficient information from incident and reflected waves sampled at the port of the matching network, and follow at least one cycle of a coarse tune process for generating one or more control signals to tune one or more reactances of the one or more controllable variable reactive elements. Additional embodiments are disclosed.
US10177727B2 Methods, systems, and media for controlling audio of an HDMI audio system
Mechanisms for controlling an audio level of an HDMI audio system are provided, the mechanisms comprising: causing audio data to be presented by an HDMI audio system at a current system volume level; receiving a requested volume level from a second screen device; and controlling a system volume level by: (a) determining the current system volume level; (b) determining a change in volume based on a difference between the requested volume level and the current system volume level; (c) determining a direction in which to cause the system volume level to change; (d) sending a volume control message to the system using a consumer electronic control bus connected to the system indicating whether to increase or decrease the system volume level based on the determined direction of system volume change; and (e) repeating (a)-(d) until the current system volume level reaches a predetermined value.
US10177725B2 Differential amplifiers
A differential amplifier comprises: a long tailed pair transistor configuration comprising a differential pair of transistors and a tail transistor; and a replica circuit configured to vary a feedback current in the replica circuit to match a replica voltage to a reference voltage, wherein varying the feedback current in the replica circuit provides a bias voltage to the tail transistor in the long tailed pair which controls a tail current through the tail transistor to determine a common mode voltage in the long tailed pair.
US10177724B2 Power amplifier circuit
A power amplifier circuit includes first and second transistors and a first voltage output circuit. A radio frequency signal is input into a base of the first transistor. The first voltage output circuit outputs a first voltage in accordance with a power supply voltage. The first voltage is supplied to a base or a gate of the second transistor. An emitter or a source of the second transistor is connected to a collector of the first transistor. A first amplified signal generated by amplifying the radio frequency signal is output from a collector or a drain of the second transistor.
US10177716B2 Solder bump placement for emitter-ballasting in flip chip amplifiers
Metal pillars are placed adjacent to NPN transistor arrays that are used in the power amplifier for RF power generation. By placing the metal pillars in intimate contact with the silicon substrate, the heat generated by the NPN transistor arrays flows down into the silicon substrate and out the metal pillar. The metal pillar also forms an electrical ground connection in close proximity to the NPN transistors to function as a grounding point for emitter ballast resistors, which form an optimum electrothermal configuration for a linear SiGe power amplifier.
US10177711B2 Multi-band power amplification system having enhanced efficiency through elimination of band selection switch
Multi-band power amplification system having enhanced efficiency through elimination of band selection switch. In some embodiments, a power amplification system can include a plurality of power amplifiers (PAs), with each PA being configured to receive and amplify a radio-frequency (RF) signal in a frequency band. The power amplification system can further include an output filter coupled to each of the PAs by a separate output path such that the power amplification system is substantially free of a band selection switch between the plurality of PAs and their corresponding output filters. Each PA can be further configured to drive approximately a characteristic load impedance of the corresponding output filter by, for example, the PA being operated with a high-voltage (HV) supply.
US10177709B2 Hybrid solar collector and operating procedure
The invention relates to a hybrid solar collector that generates thermal and electrical energy while maintaining a comfortable indoor climate. The hybrid solar collector comprises a thermal energy collector for time-delayed transfer of thermal energy resulting from incident solar energy into building walls having a rear-vented cover arranged so that an air gap is formed between the solid collector portion and the cover, said cover comprising photovoltaic (PV) elements and being at least partially transparent and/or partially translucent so as to allow solar radiation to impinge on the solid thermal collector, wherein the air in the gap between the cover and the collector is sucked by a heat pump preferably for use in heating water or thermal storage The hybrid solar collector of the invention stores thermal energy in and releases thermal energy from the thermal collector portion, while also generating electricity using the PV elements and utilizing thermal energy from the heated air in the air gap. Operating procedures include targeted air flow and heat recuperation. The system may be used to retrofit existing thermal solar cells with incident-angle-selective structure.
US10177706B2 Method and device for regulating the supply of a photovoltaic converter
A device for regulating the supply to a photovoltaic converter, the device comprising: a laser source (2); a photovoltaic converter (6) that feeds a DC-DC converter (8); circuit (100) for regulating the input impedance of said DC-DC converter (8) as a function of the operating voltage (Us) of the photovoltaic converter (6) and of its no-load voltage (Us0); and circuit (42) for measuring an output voltage of the DC-DC converter (8) and for producing a regulation signal (SR) for regulating the laser source.
US10177696B1 Adjusting a distance between an electrode and a liquid
An embodiment of an apparatus for adjusting a distance between an electrode and a liquid includes a control circuit and a sense circuit. The control circuit is configured to couple an applied calibration signal to the electrode, and to cause a motor to position the electrode a distance from the liquid in response to a sense signal. And the sense circuit is configured to generate the sense signal in response to the applied calibration signal. For example, such an apparatus can be configured for use as part of a system for producing a stable solution of suspended silver. As silver-containing electrodes shorten over time, and as the level of solution changes over time, the apparatus can move the electrodes toward or away from the solution to maintain the respective distance between each electrode and the solution within a range that has been shown to produce a solution of suitable quality.
US10177695B2 Motor control apparatus and control method for motor control apparatus
A position estimation unit of a motor control apparatus includes a counter electromotive voltage estimation unit configured to estimate a counter electromotive voltage generated in a motor based on generated voltage and current of the motor, and an arc tangent calculation unit configured to perform an arc tangent calculation using coordinate data on a two-dimensional plane based on the estimated counter electromotive voltage to calculate an angle of deviation. The arc tangent calculation unit includes a rotation calculation unit configured to repeatedly perform a rotation calculation of coordinate data on a fundamental wave and a harmonic; a rotation direction judgment unit configured to judge a rotation direction of a subsequent rotation calculation based on a result of the rotation calculation of the rotation calculation unit; and a deviation angle calculation unit configured to calculate a total of rotation angles obtained as a result of the rotation calculation.
US10177693B2 Motor drive device
A motor drive device determines whether or not a combination of logic levels of sensor signals S1 to S3 is normal, whenever the logic levels of the sensor signals S1 to S3 are changed. Each of the sensor signals S1 to S3 indicates a rotation position of a rotor. When the combination is not normal, the number of the level changes in each of the sensor signals S1 to S3 is counted. When the count value of any one of the sensor signals reaches a threshold value Cth, supply of power to a motor is stopped.
US10177689B2 Power generating element
The power generation efficiency is to be enhanced by converting vibration energy including various direction components into electric energy without waste. A cantilever structure is adopted, in which a first plate-like bridge portion (120) and a second plate-like bridge portion (130) extend in a shape of a letter U from a fixing-portion (110) fixed to the device housing (200) and a weight body (150) is connected to the end. On the upper surface of the cantilever structure, a common lower layer electrode (E00), a layered piezoelectric element (300) and discrete upper layer electrodes (Ex1 to Ez4) are formed. The upper layer electrodes (Ez1 to Ez4) disposed on a center line (Lx, Ly) of each plate-like bridge portion take out charge generated in the piezoelectric element (300) due to deflection caused by the Z-axis direction vibration of the weight body (150). The upper layer electrodes (Ex1 to Ex4, Ey1 to Ey4) disposed on both sides of the center line (Lx, Ly) of the plate-like bridge portion take out charge generated in the piezoelectric element (300) due to deflection caused by the X-axis or Y-axis direction vibration of the weight body (150).
US10177688B2 Floating off-shore power generation apparatus using ionic polymeric metal composite
The present invention relates to a floating offshore power generation apparatus using an ionic polymer-metal composite, including: a floating body floating on water; an ionic polymer-metal composite that is attached to the floating body and generates electricity by bending in a vertical or horizontal direction according to the flowing state of sea water; a rectification unit that converts, into a direct electric current, the electricity generated in the form of an alternating electric current in the ion polymeric metal composite; and a load unit that is connected to the rectification unit and supplies or stores the produced electricity. According to the present invention, ionic polymer-metal composites having hydrophilicity are attached to one floating body instead of complicated mechanical parts vulnerable to the offshore environment, thereby facilitating maintenance and increasing power generation efficiency per unit area.
US10177685B2 Switching converter with improved power density
Disclosed examples include switching power converters, control methods and ripple filter circuits in which first and second switches are connected in series across first and second DC bus nodes, with an inductor connected to a switching node joining the first and second switches and a storage capacitor between the inductor and the second DC bus node. A control circuit operates the switches to alternately transfer ripple energy from a DC bus capacitor of the DC bus circuit through the inductor to the storage capacitor, and then to transfer ripple energy from the storage capacitor through the inductor to the DC bus capacitor to regulate the ripple voltage of the DC bus circuit, and the control circuit provides hysteretic control of the absolute value of the inductor current between a first value and a higher second value during transfer of ripple energy between the DC bus capacitor and the storage capacitor.
US10177680B2 Electrical service interface system
An electrical service interface system include a configurable device and inverter mounted to an equipment tower, wherein each of the configurable device and inverter include alignment devices configured to rollably mount the configurable device and inverter to corresponding guides mounted to a support pad, and to align the configurable device to the inverter, and the inverter to the equipment tower. In an installed configuration, the configurable device electrically and mechanically couples to the inverter via a DC connector and one or more mounting systems, and the inverter mechanically and electrically couples to the equipment tower via an AC connector and one or more mounting systems.
US10177679B2 Multilevel inverter
An inverter circuit, coupled to a two-level DC voltage supply and being able to form a five-level output voltage is described, together with a method for operating the inverter circuit. The inverter circuit comprises a series connection of six unidirectional power semiconductor switches, each coupled to an antiparallel diode, between the positive and negative nodes of the supplying DC voltage. The inverter circuit further comprises a series connection of two internal capacitors between the cathodes of the first and the fifth switches of the series connection, the connection point of the capacitors being coupled to the internal node of the inverter circuit. In use, the unidirectional power semiconductor switches are controlled in order to set the voltage of the output of the inverter circuit.
US10177677B2 Inverter structure for vehicle
An inverter structure for a vehicle is provided. The inverter includes a capacitor for receiving direct current supplied from a battery, a power module assembly including a plurality of power modules and a plurality of coolers, and an output bus-bar connected to the plurality of power modules to output three-phase alternating current to a motor. In particular, inside of the power module, power modules of a plurality of power modules are connected to the capacitor to convert the direct current into the three-phase alternating current, and coolers of a plurality of coolers are alternately stacked one above another such that each cooler comes into contact at its upper and lower surfaces with adjacent power modules to enable heat transfer.
US10177676B2 Power converter
An object of the present invention is to reduce wire inductance without damaging manufacturability of a power converter. A power converter according to the present invention includes a power semiconductor module, a capacitor, and DC bus bars and. The capacitor smooths a DC power. The DC bus bars and transmit the DC power. The DC bus bars and include a first terminal and a second terminal. The first terminal connects to the power semiconductor module. The second terminal connects to the capacitor. The DC bus bars and form a module opening portion to insert the power semiconductor module. The DC bus bars and form a closed circuit such that a DC current flowing between the first terminal and the second terminal flows to an outer periphery of the module opening portion.
US10177675B2 Electric power conversion device
An object of the present invention is to achieve reduction in height of an electric power conversion device while maintaining high performance of the electric power conversion device. An electric power conversion device according to the present invention includes: a first power semiconductor module, a second power semiconductor module, a third power semiconductor module, and an AC circuit body that transmits and detects U-phase, V-phase, and W-phase AC currents, and when a direction along an arrangement direction of the first power semiconductor module and the second power semiconductor module is defined as a first column, the third power semiconductor module and the AC circuit body are disposed along a second column being in a direction parallel to the first column, and the AC circuit body is disposed in a space that is in a direction orthogonal to the first column and faces the second power semiconductor module, and is in a direction parallel to the second column and faces the third power semiconductor module.
US10177670B1 Flyback power converter circuit with active clamping and conversion control circuit and control method thereof
A flyback power converter circuit includes: a transformer including a primary winding coupled to an input power and a secondary winding coupled to an output node, a primary side switch controlling the primary side winding to convert the input power to an output power on the output node through the secondary side winding, a clamping circuit including an auxiliary switch and an auxiliary capacitor connected in series to form an auxiliary branch which is connected with the primary side winding in parallel, and a conversion control circuit for adjusting an auxiliary ON time of the auxiliary switch during an OFF time of the primary side switch according to an estimated parasitic diode conduction time of a parasitic diode of the auxiliary switch; the auxiliary ON time is controlled to be substantially equal to and coincides with the estimated parasitic diode conduction time.
US10177668B2 Converter and control method thereof
A converter includes a transformer, a main switch, an active clamp circuit, and a control circuit. The transformer includes a primary winding and a secondary winding, and is configured to receive an input voltage and output an output voltage to a load. The main switch is coupled between the primary winding and a primary ground terminal. The active clamp circuit includes an auxiliary switch and a clamp capacitor. The auxiliary switch is coupled to the clamp capacitor in series, and the active clamp circuit is coupled in parallel to the two terminals of the primary winding or the main switch, and is configured to clamp the voltage across the main switch when it is OFF. The control circuit outputs an auxiliary switch control signal to turn on the auxiliary switch when the voltage across the main switch is at its first peak of the resonant voltage.
US10177662B2 Boost converter apparatus
A first control device sends a common required carrier frequency, and a synchronizing signal that is synchronous with a first triangular wave, to a second control device. On satisfaction of a first condition that a carrier frequency of the first triangular wave is different from the required carrier frequency, the first control device changes the carrier frequency of the first triangular wave to value of the required carrier frequency. The second control device calculates a recognizing carrier frequency of the first triangular wave, based on the synchronizing signal. On satisfaction of second conditions that a carrier frequency of a second triangular wave is different from the recognizing carrier frequency and that the recognizing carrier frequency is equal to the required carrier frequency from the first control device, the second control device changes the carrier frequency of the second triangular wave to value of the required carrier frequency.
US10177661B2 Control method for buck-boost power converters
A method comprises generating a first ramp signal and a second ramp signal for controlling a buck converter portion and a boost converter portion of a buck-boost converter respectively, comparing the first ramp signal and the second ramp signal to a control signal, controlling the buck converter portion using the comparing the first ramp signal to the control signal and the boost converter portion using the comparing the second ramp signal to the control signal, comparing a current flowing through the inductor to a current threshold and terminating a switching cycle based upon the comparing the current flowing through the inductor to the current threshold.
US10177659B2 Nulling reverse recovery charge in DC/DC power converters
A switching mode power converter circuit and a method are presented. The circuit comprises a first transistor switch and a second transistor switch coupled in series between an input voltage level and ground. There is a control circuit for controlling switching operation of the first transistor switch and the second transistor switch. There is a detection circuit for sensing a voltage at an intermediate node arranged between the first transistor switch and the second transistor switch, for deriving an indication of a slope of the sensed voltage, and for generating a switching control signal for the control circuit on the basis of the derived indication of the slope of the sensed voltage. The control circuit sets a first timing for activating the first transistor switch and/or a second timing for activating the second transistor switch on the basis of the switching control signal.
US10177653B2 Impedance circuit for a charge pump arrangement and charge pump arrangement
An impedance circuit for a charge pump arrangement and a charge pump arrangement are disclosed. In an embodiment, the impedance circuit includes a first current mirror circuit with a first bias serving as a current input terminal, a first output serving as a current output terminal and a first input for coupling with a pre-selected potential. The impedance circuit further includes a first charge pump for biasing the first current mirror circuit with a first reference current, wherein the first charge pump includes a first biasing output coupled with the first bias of the first current mirror circuit.
US10177644B1 Input current extraction from inductor current in a voltage converter
A voltage converter includes a high side power transistor coupled to an input voltage node and a low side power transistor coupled to the high side power transistor at a switch node. The switch node is configured to be coupled to an inductor. A slope detector circuit is configured to receive a signal indicative of a current through the inductor. The inductor current is a triangular waveform comprising a ramp-up phase and a ramp-down phase. The slope detector circuit also is configured to generate an output signal encoding when the inductor current is ramping up and when the inductor current is ramping down.
US10177636B2 Method of manufacturing laminated core
A method of manufacturing a laminated core includes inserting permanent magnets 14 into magnet insertion holes 12, 12a of a core body 13; injecting a resin 18 into the holes 12, 12a from resin reservoir pots 17 in the die 15 (16) to fix the magnets 14; placing a dummy plate 19 between the die 15 having the pots 17 and the body 13, the plate 19 having gate holes 35, 35a guiding the resin 18 from the pots 17 into the holes 12, 12a, the hole 35 (35a) overlapping with both of a part of the hole 12 (12a) and a surface of the body 13; poring the resin 18 via the holes 35, 35a and curing the resin 18 in the holes 12, 12a; and separating the plate 19 from the body 13 to remove the resin 18 overflowed from the holes 12, 12a.
US10177634B2 Structure for slip ring and brush of wound rotor synchronous motor
Provided is a structure for a slip ring and a brush of a WRSM capable of reducing an axial length of a motor by increasing a contact area between the slip ring and the brush and improving reliability for smoothly implementing performance of the motor by stably supporting a shaft of the motor, the structure including: an inner slip ring combined with a rotation shaft of a motor; a brush disposed at a circumference of the inner slip ring and having a plurality of wrinkles contacting an outer circumferential surface of the inner slip ring formed therein; an outer slip ring disposed at a circumference of the brush and making in contact with the plurality of wrinkles of the brush; and a holder that supports the outer slip ring.
US10177633B2 Multiphase fractional slot concentrated winding machine with end mounted detachable or integrated multiphase series converter circuit
The subject matter described herein includes a multiphase fractional slot concentrated winding machine. One such machine includes a machine module including a rotor and a stator. The stator includes a plurality of radially extending teeth. Each tooth is individually wound with a coil. The machine further includes a multiphase series converter circuit physically connected to an end of the machine module to energize the coils for multiphase operation.
US10177632B2 Brushless motor
A brushless motor includes: a columnar rotor including magnets; a stator including at its center a space for placing the rotor; a housing member that houses the rotor and the stator; and a detector that detects a signal dependent on a rotational position of the rotor based on variation in a magnetic field associated with a rotation of the rotor.The housing member includes a front bell that supports a portion of the rotating shaft of the rotor and a housing body that supports another portion of the rotating shaft of the rotor. The front bell includes a mount fitted with the detector. The mount projects from the base toward an end face of the rotor.
US10177630B2 Induction motors
An induction motor may include a housing, a stator, a rotor, and/or cooling fins on an outside surface of the housing. The rotor may include inner air ducts configured to allow passage of airflow therethrough. The motor may include outer air ducts in fluid communication with the inner air ducts to form an air-circulation circuit. The outer air ducts may be arranged radially outside the cooling fins.
US10177628B2 Electrical power tool
An electrical power tool has an electronically commutated drive motor, preferably a direct current motor. The motor includes a stator core equipped with an insulating body, on which core a motor winding is embodied. Also included in the motor is at least one electrically conductive connector element for electrical connection of the motor winding, the connector element being disposed on the insulating body. The connector element has a fastening segment, and a receptacle for reception of the fastening segment is provided on the insulating body. The fastening segment and the receptacle have complementary geometrical shapes that prevent self-actuated detachment of the fastening segment disposed in the receptacle.
US10177626B2 Brushless motor
A cover member has a cylinder in the center of a cover part. A second sliding bearing is fastened to the cylinder. A rotary shaft protrudes upward from the cylinder without contact with the second sliding bearing. A first sliding bearing is a main bearing, which can radially support the rotary shaft, and the second sliding bearing is an auxiliary bearing which, when the rotary shaft is subjected to a load from the radial direction, bears that load in the radial direction together with the first sliding bearing. When the angle of inclination of the rotary shaft in the first sliding bearing is not maximal, the rotary shaft is supported only by the first sliding bearing, without the rotary shaft contacting the inside of the second sliding bearing. The amount of deformation of the rotary shaft when a load is applied to the rotary shaft from the radial direction and the rotary shaft first makes contact with the second sliding bearing is in a range from 0 to the maximum elastic deformation.
US10177623B2 DC motor
A first brush holder is assembled to a core-side connection plate by inserting a slit insertion portion into a slit from an outer circumferential side of the core-side connection plate, and a radial outside position of the first brush holder to the core-side connection plate is regulated by both sides in a circumferential direction of a first slit being inserted into a pair of guiding grooves. A radial outside position of the brush holder is regulated by being fixed to a counter-core-side connection plate by press-fitting a convex portion provided on a counter-core-side of the first brush holder into a second slit of a counter-core-side connection plate. A second brush holder is assembled to the counter-core-side connection plate from an outer circumferential side of the counter-core-side connection plate, and a radial outside position is regulated by the core-side connection plate.
US10177622B2 Steering motor
Disclosed is a steering motor, comprising a casing (10) and a stator (15), an outer wall of the stator (15) and an inner wall of the casing (10) forming a chamber (16). The steering motor further comprises an upper cover buffering assembly (1) and an oil distributor (2), which are fitted with each other to form an axial cavity (4). A cylinder assembly (5) is provided below the oil distributor (2), and comprises a cylinder (51) and an elastic oil bag (52). Furthermore, the cylinder (51) is provided internally with a piston (53) which is connected to a lower end of the elastic oil bag (52) and slides axially along the cylinder. An oil flow passage (23), an oil inlet (22) and a hollow column (21) are provided in the oil distributor (2), the oil flow passage (23) being in communication with the axial cavity (4), and an inner wall of the hollow column (21) being provided with an oil flow port in communication with the oil flow passage (23). A directional control valve (3) having a valve core is provided in the hollow column (21), and a radial cavity is formed by the inner wall of the hollow column (21) and an outer wall of the directional control valve (3) and is partitioned into two independent radial cavities by inserting a pin (7). In the steering motor, by means of fitting the valve core with a valve cavity of the directional control valve, the oil passage is divided into two independent branch oil passages so as to simplify the structure; and the elastic oil bag is used to reduce frictional wear so as to prolong the service life of motor and reduce the costs.
US10177612B2 Motor with stator fixing structure
A material of the stator core is different from a material of the housings, in a state where one end portion in the axis direction of the stator core is contacted to the first housing, and the other end portion in the axis direction of the stator core is contacted to the second housing; and a neighboring portion of a contact portion, at which the first housing is contacted to the stator core, and another neighboring portion of a contact portion, at which the second housing is contacted to the stator core, are connected by a connecting component in the axis direction, of which material is the same as a material of the stator core, whereby the first housing and the second housing are connected each other; and the first housing and the second housing face each other in a state where a gap intervenes between both housings.
US10177611B2 Stator core, stator, and rotating electrical machine
A stator core for a rotating electrical machine includes an annular yoke portion; a tooth group fitted to an inner side of the yoke portion and formed such that both ends in a circumferential direction on an inner circumferential side of adjacent teeth are integrally connected with each other by a thin connection portion; and a slot for accommodating a stator winding. The yoke portion has grooves at regular intervals in an inner circumferential surface thereof and extending in an axial direction of the stator, the grooves each having a V shape such that a cross section thereof perpendicular to the axial direction opens toward an inner side of the stator core. Each tooth has, at an outer-circumferential-side end thereof, a fitting portion whose cross section perpendicular to the axial direction is formed in a wedge shape so as to allow the tooth to be fitted along the corresponding groove.
US10177610B2 Stator
A stator includes a stator core, an insulating body, a coil, and a resin-molded product. The stator core includes a circumferentially side surface and an axially upper surface. The insulating body includes a side wall and an upper wall. The side wall covers the circumferentially side surface of the stator core. The upper wall covers the axially upper surface of the stator core. A radially inner side end surface of the upper wall is positioned farther toward a radially outer side than a radially inner side end surface of the side wall. The resin-molded product covers the coil.
US10177607B2 Techniques for delivering retrodirective wireless power
Techniques are described herein for delivering retrodirective wireless radio frequency (RF) power to a client device in a wireless power delivery environment. More specifically, embodiments of the present disclosure describe techniques for delivering directed wireless RF power to a client device in a wireless power delivery environment via multiple wireless power signals over multiple wireless power delivery paths. The client device includes one or more RF client transceivers that collectively have a radiation and reception pattern in a three-dimensional space proximate to the client device. The techniques identify the wireless power delivery paths over which wireless power signals can be delivered and deliver the wireless power in a manner that matches the client radiation and reception pattern in the three-dimensional space proximate to the client device.
US10177605B2 Power receiver and power transmitting system
A power receiver includes: a first secondary-side resonant coil that receives electric power from a primary-side resonant coil through magnetic field resonance; a capacitor; a smoothing circuit; a pair of output terminals; a switch coupled in parallel to the capacitor or in series between a rectifier circuit and either a first terminal or a second terminal; and a drive controller that drives the switch through a first PWM drive pattern determined by a first duty cycle and by a first frequency that is less than or equal to a frequency of the magnetic field resonance. The first duty cycle is set based on a first efficiency of power reception of the first secondary-side resonant coil, a first rated output of a first load, a second efficiency of power reception of a second secondary-side resonant coil of another power receiver, and a second rated output of a second load.
US10177600B2 Transmission coil module for wireless power transmitter
A transmitting coil module for wirelessly transmitting power, the transmitting coil module including at least one transmission coil having a hollow portion in a center area thereof; a shield disposed below the at least one transmission coil; and a metal sheet disposed below the shield. Further, the shield includes at least one functional hole in a region corresponding to the hollow portion of the at least one transmission coil.
US10177596B2 Backup power manager
Examples disclosed herein involve backup power management. In an example, an amount of backup power to power a load bank is estimated, a set of power sources are selected from a plurality of power sources based on respective states of charge of the plurality of power sources and the estimated amount of backup power, and the selected set of power sources are placed in circuit to provide backup power to the load bank via the selected set of power sources.
US10177595B2 Wireless sensor
A portable wireless sensor includes a power source, a sensor, a wireless communication circuit and a sensor control circuit obtaining data from the sensor and transmitting the data to outside through the wireless communication circuit, in which the power source includes a secondary battery, a power reception circuit receiving electric power supply in a non-contact manner, and a power source control circuit controlling charging of the secondary battery with the electric power received by the power reception circuit. The wireless sensor includes a standard mode to transmit the data obtained from the sensor to outside through the wireless communication circuit, and a diagnosis mode to diagnose at least one of the secondary battery and the sensor portion in a case where the power reception circuit receives electric power supply in a non-contact manner.
US10177587B2 Charging method and system
The present disclosure provides a charging method and a charging system. The charging system includes a charging adapter and a mobile terminal, the charging adapter includes a second controller and an adjusting circuit, and the mobile terminal includes a cell detection circuit and a cell. The cell detection circuit acquires a voltage value of the cell, and sends the voltage value of the cell to the second controller, the second controller searches a threshold range table for a current adjusting instruction matched with a threshold range containing the voltage value of the cell, and sends the current adjusting instruction to the adjusting circuit, and the adjusting circuit performs a current adjustment according to the current adjusting instruction and outputs a power signal after the current adjustment, in which the threshold range table records threshold ranges and current adjusting instructions having a one-to-one mapping relation with threshold ranges.
US10177585B2 Mechanism for charging an electronic device with a retractable cord reel
A mechanism for charging an electronic device with a retractable cord reel. The device maintains a substantially continuous converted power source connection during operation, including operations adjusting the length of the retractable cord.
US10177584B2 Electrical charging devices and assemblies
Electrical charging devices and assemblies are provided herein. An example apparatus includes an electronics tray including a forwardly disposed locking platform, an electronics assembly in sliding relationship with the electronics tray, the electronics assembly having locking members that mate with the forwardly disposed locking platform when the electronics assembly is translated forwardly, and a stabilizer that pivots downwardly when the electronics assembly is translated forwardly.
US10177583B2 University switch and dock with flip-out docking prong
An apparatus is disclosed that includes a battery-powered wireless switch and a switch dock. The switch includes a microcontroller, a short range wireless transmitter, and one or more tactile control buttons. Additionally, the switch includes one or more docking prongs. Each docking prong is contained within a groove in a switch back, with pivot pins through one end of each docking prong perpendicular to a prong longitudinal axis and parallel to the switch back. The switch also includes flexible strips coupled to the same end of each docking prong as the pivot pins, and a prong extender button coupled to the flexible strips. The dock includes one or more docking prong slots, where the number of slots matches the number of prongs. The prongs fit in the slots to mount the switch to the dock.
US10177574B2 Dynamic frequency control scheme for microgrids using energy storage
Aspects of the present disclosure describe methods and systems for improved control strategies for Dynamic Frequency Control (DFC) of Energy Storage (ES) devices which may be used to determine an amount of intertial support required from ES to provide frequency regulation based on type of disturbance and frequency control system of a microgrid. A case study showing the control strategy for DFC scheme is presented.
US10177573B2 Method and apparatus for voltage control in electric power systems
A method and apparatus of coordinated voltage control for electric power systems with at least two substations and at least one load, a method of controlling distribution of reactive power between substations within a power system of similar parameters, and a method of reduction of interaction between voltage control modules in the said power system are disclosed. The purpose of coordinated control is to maintain acceptable voltage with minimal deviation from the set point across all elements of the power system. Disclosed coordinated control is accomplished via each substation's transformers equipped with on load tap changers (OLTC) and electrical generators Automatic Voltage Regulators (AVR) using proportional-integral-derivative control embedded in coordinated master controllers. The purpose of controlling the distribution of reactive power is to minimize power losses, maintain each busbar voltage in accordance to selected set point, maintain active and reactive power reserves, and minimizing the reactive power drawn from the transmission system by manipulating transformer's OLTC, generator's AVR, and energizing capacitors and inductors. Control of reactive power flow through the network is accomplished by the following steps: Sensing and measuring active and reactive power flow rates, and all controlled busbars voltages. Computing each voltage/reactive power controller set point and controlled variable. Using PID algorithm to compute each controller output to maintain network voltages and reactive power flows in accordance to defined set points. Implementing control actions based on computed output values. Finally, reducing the interaction between various voltage control mechanisms. It is important to ensure smooth system operation. This is accomplished by counteracting potentially destabilizing interactions between high and low level substations and corresponding control modules using specialized set point correction coefficients.
US10177567B2 Power supply apparatus and electronic apparatus having the same
A power supply apparatus and an electronic apparatus are provided. The power supply apparatus includes: a plurality of power supplies arranged as a single array; a switch disposed between the plurality of power supplies configured to control connection states of the plurality of power supplies; and a controller configured to control the switch to connect the plurality of power supplies in parallel when a first event requiring a voltage less than a predetermined reference voltage occurs, and configured control the switch to connect the plurality of power supplies in series when a second event requiring a voltage exceeding the predetermined reference voltage occurs.
US10177565B2 Contact signal converter
The purpose of the present invention is to enable use of a solenoid-type electromagnetic valve (120) in a valve driving device (10) that performs wireless communication. A contact signal converter (110) that converts an on-off contact signal to a control signal for operating a solenoid-type electromagnetic valve (120) comprises an explosion protection barrier (115) which restricts the current of the control signal to be no more than a maximum current established for safety regarding solenoid-type electromagnetic valves (120), and a group of batteries (111), the number of which can ensure a voltage at which the voltage supplied via the explosion protection barrier (115) surpasses the operating voltage of the solenoid-type electromagnetic valve (120).
US10177562B2 Base element and surge protection system
A base element and a surge protection system incorporating the base element are provided. The base element includes a housing having a front portion and a rear portion. Apertures in the rear portion provide access to contacts secured within the housing, and a receiving portion extending from the front portion includes at least one receiving section for receiving a surge protection cartridge. Plug receptacles in the receiving portion are in electrical communication with the contacts to incorporate the surge protection device in a circuit when the surge protection cartridge is inserted. The base element is configured to mount orthogonally to a case such that conductors secured to the contacts extend through the apertures and into an enclosure defined by the case in a substantially linear direction. The system includes a case configured to be attached to a rack mount system and a plurality of base elements secured to the case.
US10177556B2 Power supply clamp
A power supply clamp connectable between power rails of an electronic circuit comprises a switching component which is switchable to provide a connection path between the power rails of the electronic circuit; a first detector configured to detect an electrostatic discharge event having a first characteristic time period and to generate a detector output signal in response to the detection; a series of one or more successive intermediate amplification stages between the first detector and the switching component, the series of amplification stages providing a control signal path for a control signal to control switching of the switching component in response to the detector output signal; and a second detector configured to detect an electrostatic discharge event having a second characteristic time period, shorter than the first characteristic time period, the second detector being provided at a node in the control signal path subsequent to the first detector (for example, at a second or subsequent one of the series of intermediate amplification stages) so that a detection by the second detector causes the control signal to control switching of the switching component.
US10177550B2 Side-loading quadrant deadend clamp assembly
A clamp assembly includes a body member and a keeper. A cable groove is formed in the body member to receive a cable. The keeper has a lower surface to engage the cable received in the cable groove. A threaded fastener connects the keeper to the body member. A recess is formed in the body member to receive a washer on the fastener. The recess is defined by first and second walls in which the first wall has a larger height than the second wall. A biasing member is disposed on the threaded fastener between the keeper and the body member.
US10177542B2 Contactor health monitoring systems and methods
A contactor arrangement includes a post, a fastener and a temperature sensor. The post defines a post axis. The fastener is fixed to the post along the post axis. The temperature sensor is in thermal communication with the contactor conductor and post through the fastener and is electrically insulated from the post for monitoring resistive heat generation in a contactor fixed to the post by the fastener.
US10177540B2 Method for manufacturing spark plug
A method for manufacturing a spark plug including a center electrode that extends in an axial direction, a metal shell that is provided around an outer periphery of the center electrode, and a rod-shaped ground electrode whose base end is joined to the metal shell and whose distal end is bent towards an axial-line side. The method comprises a bending step of bending an unbent ground electrode, which is the ground electrode that is not yet bent, by pressing against it a predetermined curved surface of a bend spacer, wherein the bend spacer is formed so as to be divisible into two or more members including a first member and a second member. The first member includes a mounting portion for mounting the bend spacer on a fixing tool and the second member includes the predetermined curved surface that comes into contact with the unbent ground electrode.
US10177533B2 Edge-emitting semiconductor laser and method for operating a semiconductor laser
An edge-emitting semiconductor laser and a method for operating a semiconductor laser are disclosed. In an embodiment, the edge-emitting semiconductor laser includes an active zone within a semiconductor layer sequence and a stress layer. The active zone is configured for being energized only in a longitudinal strip perpendicular to a growth direction of the semiconductor layer sequence. The semiconductor layer sequence has a constant thickness throughout in the region of the longitudinal strip so that the semiconductor laser is gain-guided. The stress layer may locally stress the semiconductor layer sequence in a direction perpendicular to the longitudinal strip and in a direction perpendicular to the growth direction. A refractive index of the semiconductor layer sequence, in regions which, seen in plan view, are located next to the longitudinal strip, for the laser radiation generated during operation is reduced by at least 2×10−4 and by at most 5×10−3.
US10177532B2 Light emitting element array and optical transmission device
A light emitting element array includes plural light emitting elements connected in parallel to each other by a wiring connected to a terminal configured to supply a current. The number of light emitting elements which have the shortest path length among path lengths on the wiring from the terminal to the respective light emitting elements along a path of the current is one.
US10177530B2 Optical sensor, optical examination device, and optical property detection method
An optical sensor, an optical examination device, and a method of detecting optical properties. The optical sensor includes an irradiation system including light irradiator to irradiate a test object with light, and a detection system to detect the light that is emitted from the irradiation system to the test object and has propagated through the test object. The light irradiator includes a multilayered structure having an active layer, and the multilayered structure includes a surface-emitting laser element and a photo-sensing element optically connected to the surface-emitting laser element. The optical examination device includes the optical sensor, and a controller to calculate optical properties of the test object based on a detection result of the optical sensor. The method includes performing optical simulation to obtain a detection light quantity distribution for an optical model and performing inverse problem estimation.
US10177529B2 Optical transmitter providing coplanar line on carrier
An optical module with a semiconductor element, which integrates a semiconductor laser diode with an electro-absorption modulator, mounted on a carrier; and an optical transmitter apparatus implementing the optical modules are disclosed. The carrier of the optical module has a back metal connected to the ground on the top thereof through a metal provided in a side surface of the carrier but electrically isolated from the chassis ground of the optical transmitter apparatus. The optical transmitter apparatus installs a plurality of the optical modules on a thermos-electric cooler (TEC) in a top plate thereof. The top plate is electrically isolated from the chassis ground.
US10177525B2 Passive mode-locked laser system and method for generation of long pulses
A passive mode-locked laser method and system, the system comprising a nonlinear optical loop comprising a resonant nonlinear element, coupled to an amplification section by a beam splitter, the beam splitter splitting a light beam from the amplification section into light beams propagating in opposite directions around the nonlinear optical loop, the resonant nonlinear element acting as both a nonlinear element and a narrow bandwidth filter for the laser system, allowing mode-locking operation of the system on a single resonance of the resonant nonlinear element.
US10177524B2 Intra-cavity frequency-converted optically-pumped semiconductor laser
An intra-cavity frequency-tripled OPS laser has a laser-resonator including two optically nonlinear crystals arranged for type-I frequency conversion. One of the crystals generates horizontally polarized second-harmonic radiation from vertically plane-polarized fundamental-wavelength radiation circulating in the laser-resonator. A birefringent filter is located between the optically nonlinear crystals. The birefringent filter selects the fundamental-wavelength, establishes the vertical polarization-orientation, and selectively rotates the polarization-orientation of the second-harmonic radiation from horizontal to vertical. The vertically polarized fundamental and second-harmonic radiations are type-I sum-frequency mixed by the other optically nonlinear crystal.
US10177522B2 Pump power modulation in a feed-forward control for suppressing power transients
Disclosed is a method of Controlling a gain of an optical amplifier comprising a gain medium and at least one pumping device. The method comprises the following steps: determining or predicting a change of input signal power to the amplifier, changing the pump power from an initial pump power level to a new pump power level at a first time instant, the initial pump power level being the pump power level applied to the amplifier prior to the change in input signal power, setting the pump power to a second pump power level at a second time instant, wherein the pump power level is varied in an oscillatory manner for at least one period of time starting at a third time instant and ending at a fourth time instant, wherein said third time instant is identical with or later than said first time instant and said fourth time instant is identical with or earlier than said second time instant.
US10177518B2 Method of manufacturing a universal series bus connector
A universal series bus (USB) connector including a base, a first terminal set, and a second terminal set and a method of manufacturing the universal series bus connector are provided. The first terminal set includes a pair of first differential signal terminals and a pair of second differential signal terminals, and terminals of the pair of first differential signal terminals are adjacent to each other and terminals of the pair of second differential signal terminals are adjacent to each other. Two of terminals of the second terminal set are located at two opposite sides of the pair of first differential signal terminals, and another two of the terminals of the second terminal set are located at two opposite sides of the pair of second differential signal terminals.
US10177513B1 Bus bar assembly with a system to form and secure connections to the terminals on a bus bar
A bus bar includes a conductive portion with a first face and an opposed second face. The first face and second face extend between a first edge and a second edge. The bus bar includes an insulation surrounding the conductive portion. The insulation includes a cut out where a portion of the insulation is removed to expose a terminal on the bus bar. The terminal includes part of the first face of the bus bar and part of the second face of the bus bar. The terminal is located between the first edge and the second edge of the bus bar.
US10177510B2 Single-fastener mounting plate for electrical outlets
A mounting plate for an electrical outlet includes a central region having a front surface, a rear surface, and an opening for accessing an outlet. A first mounting tab and a second mounting tab extend from the central region at an angle. The mounting plate may be used to attach an outlet to an outlet housing having a wiring compartment and a panel at least partially enclosing the wiring compartment. The panel has a front wall and an opening for receiving an outlet.
US10177508B2 Integrated wire management device for audio headphones
A wire management device for storing an earphone wire having a signal terminal and a pair of speakers includes an elongated frame having first and second ends, the frame having a first channel to hold a first wrapped part of the wire, first and second beaks respectively arranged at the first and second ends of the frame to stay the terminal of the wire, and first and second wings respectively branching from neighboring positions of the first and second ends the frame, the first and second wings are, respectively, bent toward the first and second ends of the frame for wrapping the wire, wherein at least one of the wings includes a clamping portion to clamp a last wrapped part of the wire.
US10177503B2 Connector assembly having an insulator molded over front and rear shielding shells
A connector assembly includes: an insulating body; multiple terminals disposed in the insulating body; a front shielding shell shielding the insulating body; a rear shielding shell covering a rear end of the front shielding shell, where an accommodating space is formed between the rear shielding shell and an outer surface of the front shielding shell; and an external insulator, molded outside the front shielding shell and the rear shielding shell and filled into the accommodating space. Compared with the related art, the accommodating space limits tension generated when the external insulator is molded, and after molten plastic is cooled, a part of the external insulator will be fastened within the accommodating space, such that the external insulator can be efficiently retained on the front shielding shell and the rear shielding shell, thereby preventing degumming and cracking phenomenons between the front shielding shell and the external insulator.
US10177501B2 Telecommunications device
The present disclosure relates to a telecommunications jack including a housing having a port for receiving a plug. The jack also includes a plurality of contact springs adapted to make electrical contact with the plug when the plug is inserted into the port of the housing, and a plurality of wire termination contacts for terminating wires to the jack. The jack further includes a circuit board that electrically connects the contact springs to the wire termination contacts. The circuit board includes a multi-zone crosstalk compensation arrangement for reducing crosstalk at the jack.
US10177496B2 Plug connection for coupling high-voltage terminals and a system with such a plug connection
A plug connection for coupling a first and a second electrical connection of a first high-voltage component to a first and a second electric connection of a second high-voltage component, wherein the plug connection is provided with a housing in which is arranged as a first pair of high-volt terminals for coupling to the first and the second electric connection of the high-voltage component as well as a second pair of high-voltage terminals for coupling to the first and to the second electric connection of the second high-voltage component, wherein at least the first and the second high-voltage terminal are mounted so that they are movable relative to the second pair of connections of the plug connection in the housing.
US10177494B1 Pluggable transceiver module
A pluggable transceiver module is provided. The pluggable transceiver module is adapted to be inserted to a cage. The pluggable transceiver module includes a housing, a cover, a latch, an elastic element, and a bail bar. The latch is sandwiched between the cover and the housing. The latch includes a fastening portion. The elastic element is disposed on the housing and abuts the latch. The bail bar abuts the latch. The bail bar is rotated between a first bar position and a second bar position. When the bail bar is in the first bar position, the fastening portion is affixed to the cage. When the bail bar is rotated from the first bar position to the second bar position, the latch is moved in an oblique direction, and the fastening portion is separated from the cage.
US10177493B2 Connector assembly with integrated lever locking system
An electrical connector assembly includes a connector housing, a cap, and a lever pivotably attached to the cap. The lever moves from a transport position, a preliminary mating position, and a fully mated position. The connector assembly has a first holding means holding the lever in the transport position and a second holding means holding the lever in the preliminary mating position. The first holding means has a locking arm on the lever and a latching projection on the cap. The connector housing has a wall extending towards the cap configured to release the locking arm from the latching projection and move the lever towards the preliminary mating position. The second holding means comprises a locking protrusion and a locking reception receiving the locking protrusion when the lever is in the preliminary mating position. A mating connector displaces the locking protrusion to release the lever when the assembly is mated.
US10177492B2 Method, system and devices for interconnecting a plurality of devices
An electrical connector is disclosed that includes an insulative housing having a mating face at one end, a rear face at another end, a mating slot at the mating face for receiving a complementary connector, a first set of contacts mounted in a first set of channels incorporated at a top of the insulative housing and a second set of contacts mounted in a second set of channels incorporated at a bottom of the insulative housing, and a shielding device located between the first set of contacts and the second set of contacts.
US10177490B2 Magnetic connecting apparatus
A preferred embodiment of a magnetic connecting apparatus for connecting two units has at least one first connecting element associated with a first one of the two units and at least one second connecting element associated with a second one of the two units, the connecting elements forming a connecting pair. The connecting elements of a connecting pair each have a plurality of contacts. The connecting elements of a connecting pair make magnetic contact with one another and are rotatable relative to one another in a contacted state.
US10177489B1 Connector device
A connector device includes: a first connector having a first terminal provided in a connector fitting chamber; and a second connector having a second terminal that is accommodated in a connector fitting portion to be fitted to the connector fitting chamber and has a terminal receiving portion to which the first terminal is inserted when fitting the connector fitting portion to the connector fitting chamber. The terminal receiving portion is accommodated in the connector fitting portion with a gap. The connector fitting portion is provided with slits on an upper surface and a lower surface positioned with the terminal receiving portion interposed therebetween.
US10177485B2 Electrical connector and method for manufacturing same
An electrical connector includes: a cylindrical metal shell having a mating portion extended from the front end to the rear end; and an inner sealing member that is brought into contact with a housing and the metal shell and hermetically seals between the housing and the metal shell. The mating portion is sealed by an outer peripheral joint and an inner peripheral joint so as to prevent the flow of a liquid from the front end side to the rear end side. Here, the outer peripheral joint is formed to some midpoint from the outer peripheral surface of the metal shell toward the inner peripheral surface of the metal shell, and the inner peripheral joint is formed from the inner peripheral surface to the outer peripheral joint on the contact portion with the inner sealing member.
US10177480B2 High-voltage connector and high-voltage power supply connecting device having the same
The present invention relates to a connector which is a component of a high-voltage power supply connecting device, and which is capable of being prevented from being easily separated inadvertently or by an inexpert operator to prevent the occurrence of an electric shock accident, is capable of preventing the occurrence of an electric arc or the like during separation of the connector to improve safety, is capable of being easily and stably fixed and mounted on a desired location in an installation path inside an electric equipment chamber of an electric car, has a simple structure, and is capable of improving workability of an operator; and the high-voltage power supply connecting device including the same.
US10177472B2 Spring contact having separate resilient arm and supporting portion
A spring contact includes: a main part (11); plural legs (12, 13) extending downward from two opposite sides of the main part; a resilient arm (14) extending upward from a rear end of the main part, the resilient arm having a contact portion; and a pair of supporting portions (15) extending from the two opposite sides of the main part and located in front of the resilient arm; wherein the supporting portions are separate from the resilient arm.
US10177471B2 Composite and nanowire conduit
An electrical wiring system comprises a plurality of electrical conduits, each of which comprises a plurality of electrically conductive wires, a carrier encapsulating and electrically insulating the wires from each other, the carrier being composed of a rigid material, and at least connector carried by the carrier in electrical communication with the wires. The electrical wiring system further comprises a junction box comprising a plurality of interconnecting wires and a plurality of connectors electrically coupled together by the interconnecting wires. The plurality of connectors of the junction box are coupled to the plurality connectors of the electrical conduits.
US10177467B1 Cable connector assembly with backshell
A cable connector assembly includes an electrical connector and a backshell. The electrical connector includes a housing and electrical conductors held in the housing. The electrical conductors are terminated to a cable that extends from a cable end of the electrical connector. The backshell has an overmolded body and a latch assembly for removably coupling the cable connector assembly to one or more of a panel or a mating connector. The overmolded body is a unitary, one-piece body that surrounds the electrical connector around a full perimeter of the electrical connector. The latch assembly includes a latch frame and a latch member. The latch frame is embedded in the overmolded body. The latch member is held by the latch frame. The latch member includes a deflectable spring beam configured to engage the panel or the mating connector.
US10177463B2 Antenna system and electronic apparatus
The present disclosure discloses an antenna system that includes a first antenna for transmitting and receiving data and having an electrical length that is equal to its resonant electrical length; a second antenna for receiving data and having an electrical length that is less than its resonant electrical length. The present disclosure also discloses a corresponding electronic apparatus.
US10177459B2 Dual-band modular active antenna
A dual-band antenna panel comprises a plurality of dual-band radiating cells operating independently for a first frequency in a first frequency band and a second frequency in a second frequency band, the first frequency band being higher than the second frequency band, each of the radiating cells exhibiting a distinct feed to the first and to the second frequency. The antenna panel comprises radiating cells disposed according to a mesh dimensioned with respect to the first frequency band, and wherein the feeds to the second frequency of the radiating cells are clustered in packets within combiners having a single feed.
US10177456B2 Log-periodic antenna with wide frequency band
A log-periodic antenna including one set of three radiating elements with log-periodic patterns, each radiating element including a succession of radiating dipoles distributed on either side of a rectilinear electrically conducting line, perpendicular to the line, a first radiating element having a rectilinear electrically conducting line substantially perpendicular to the first face of the substrate, the first ends of the electrically conducting lines of the various radiating elements being substantially aligned along a direction parallel to the first face, the rectilinear electrically conducting lines of the second and third radiating elements being situated in a same plane as the rectilinear electrically conducting line of the first radiating element and inclined with respect to the electrically conducing line of the first radiating element, the radiating dipoles of the three radiating elements being substantially perpendicular to the plane which contains the rectilinear electrically conducting lines of the three radiating elements.
US10177453B2 Software controlled antenna
An antenna array having radiating elements and delay lines provided over a sandwich of layers that includes variable dielectric-constant material. The value of the variable dielectric-constant material at various points over the antenna is controlled via software, hence changing the operational characteristics of the antenna using software. The sandwich of layers may be a standard flat panel display, wherein images depicted on the flat panel display are software controlled with a program designed to change the dielectric constant, thus providing scanning and tuning ability to the array. That is, different images are programmed according to specifically desired change in the dielectric property of different pixels under different patches or feed-lines of the array, thereby controlling the frequency and/or directivity of the array.
US10177451B1 Wideband adaptive beamforming methods and systems
Wide band adaptive beam forming methods and systems are provided. The beam forming methods can include receiving signals at multiple antenna elements and digitizing samples of the received signals for some period of time. The samples are divided into sub-channels according to frequency, and interferers are identified as signals appearing across at least some minimum number of the sub-channels. After removing signals not identified as interferers from the collected signal information, that information is used to calculate weights for forming a beam having a null at the identified location of the interferer. The beam forming systems include multiple element antennas having arms in the form of a spiral, and processing hardware for performing adaptive beam forming.
US10177449B2 Antenna frame structure
A radome assembly includes a radome member, a heat sink member, a seal member disposed between the radome member and the heat sink member, and a frame assembly configured to compress the seal member between the radome member and the heat sink member. The frame assembly includes a fixation member configured to be fixedly engaged with the heat sink member and an arm member, the arm member configured to engage the radome member to compress the seal member between the radome member and the heat sink member when the fixation member is engaged with the heat sink member, and wherein engagement of the fixation member with the heat sink member in a compressed state of the seal member forms a gap between the radome member and the heat sink member.
US10177443B2 Communication antenna, method for controlling the same and terminal
A communication antenna, a method for controlling a communication antenna and a terminal are provided. The communication antenna includes a first passive unit, a stimulation receiving unit, and a second passive unit. The first passive unit and the second passive unit are respectively coupled to ground. The stimulation receiving unit is electrically coupled to a radio frequency module so as to receive an electrical signal transmitted by the radio frequency module. The first passive unit includes a regulating circuit that includes a switch, a controller, and a regulating assembly. The regulating assembly includes a plurality of electronic components. The controller is configured to control the switch to connect one or more electronic components of the regulating assembly to the circuit. The connected electronic components make the communication antenna resonate in one of a plurality of frequency ranges.
US10177439B2 Antenna structure and wireless communication device using same
An antenna structure includes a metallic member, a first matching circuit, and a second matching circuit. The metallic member includes a front frame, a backboard, and a side frame. The side frame defines a slot. The front frame defines a first gap and a second gap communicating with the slot and extending across the front frame. A portion of the front frame between the first gap and the second gap forms a first radiating section. One end of the first feed portion connects to the first radiating section, the other end connects to a first feed source and a second feed source through an extractor of the first matching circuit; an end of the first radiating section adjacent to the second gap connects to a ground through an third inductor and an third capacitor of the second matching circuit. A wireless communication device using the antenna structure is provided.
US10177437B2 Cover for antenna
One embodiment provides a device, including: an antenna; a main memory storing code; a processor operatively coupled to the antenna and which executes the code stored in the main memory, wherein the code stored in the main memory includes code which is executed to communicate via the antenna; and a device cover that includes a material having a pattern of conductive fibers and non-conductive fibers; the material including an antenna area; wherein the pattern in the antenna area includes more non-conductive fibers than conductive fibers. Other aspects are described and claimed.
US10177435B2 Luminaire and illumination system
A luminaire includes: a light-emitting module; a base having a front surface on which the light-emitting module is disposed; a cover which is translucent and covers the light-emitting module; a controller which is disposed on a back surface of the base and controls the light-emitting module; a first antenna which transmits and receives a first polarized wave; and a control wire which connects the controller and the first antenna. The control wire includes an exposed portion which is a portion of the control wire in a longitudinal direction of the control wire and which is disposed between the base and the cover to transmit and receive a second polarized wave that differs from the first polarized wave in a polarization direction.
US10177434B1 Parabolic reflector combined with phased array feed for long range communication
Aspects of the disclosure provide for an antenna system. The antenna system includes a main reflector, a phased array feed, and a mechanical steering system. The phased array feed is configured to receive and/or transmit signals reflected off the main reflector and to electronically steer a transmitted signal on a first axis. The main reflector and the phased array feed are both attached to the mechanical steering system, and the mechanical steering system is configured to move the transmitted signal along a second axis.
US10177431B2 Dielectric loaded metallic resonator
An apparatus, e.g. a cavity resonator, includes a floor and a cover. A conductive post is located between the floor and the cover and has a void oriented along a longitudinal axis of the post. A dielectric spacer is located between the cover and the post and a dielectric rod is located within the void. A resilient dielectric is located within the void between the dielectric spacer and the floor.
US10177429B1 Hybrid harmonic impedance tuner
A hybrid harmonic slide screw tuner uses the forward injection technique, also called Gamma Boosting Unit (GBU) cascaded with two independent tuning probes in the same slabline and housing. The wave-probes used in the GBU sample a portion of the forward travelling signal, adjusts its phase, amplifies it, adjusts its amplitude (attenuation) and couples it back, in reverse direction into the main signal path. In the present active tuner technique as is herein implemented, the passive tuners and the signal couplers are mounted on the same double carriages which move each carriage horizontally and the wave- and tuning probes vertically, independently. Appropriate calibration and tuning algorithms ensure independent hybrid (active and passive) harmonic tuning.
US10177421B2 Battery cell structure with limited cell penetrations
Light is transmitted from a light source through or from a separator of a battery cell and received by one or more light detectors. The light that is normally transmitted through the separator is scattered, absorbed, wavelength-shifted or otherwise distorted by an impending fault in the vicinity of or within the separator. The change in light due to the impending fault is measured by a detector and a signal from the detector is processed to identify the impending fault so that a warning can be generated indicative of the impending fault. In particular, one or both of the light source and detector are enclosed within a battery cell housing and receive power from the electrodes of the battery cell.
US10177416B2 Drying method and drying apparatus
A drying method includes a step of heating an object to be dried provided in a drying chamber to a predetermined temperature, a step of maintaining the predetermined temperature, a step of increasing an air pressure inside the drying chamber to a predetermined air pressure that is higher than an atmospheric pressure, and a step of decreasing the air pressure inside the drying chamber to be lower than the predetermined air pressure.
US10177415B2 Adhesive composition for electrochemical device, adhesive layer for electrochemical device, and electrochemical device
Provided is an adhesive composition for an electrochemical device capable of forming an adhesive layer that has excellent adhesiveness in electrolysis solution and can improve electrical characteristics of an electrochemical device. The adhesive composition can be used for adhering an electrode assembly and a casing to one another. The adhesive composition contains organic particles having a core-shell structure including a core portion and a shell portion that partially covers an outer surface of the core portion. A polymer of the core portion has a degree of swelling in electrolysis solution of at least a factor of 5 and no greater than a factor of 30, whereas a polymer of the shell portion has a degree of swelling in electrolysis solution of greater than a factor of 1 and no greater than a factor of 4.
US10177412B2 Electrolyte composition, and sodium secondary battery employing the same
An electrolyte composition and a sodium secondary battery are provided. The electrolyte composition includes an alcohol compound and a metallic salt, wherein the metallic salt consists of a sodium salt formed. The sodium secondary battery includes the electrolyte composition, a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode.
US10177409B2 Additive of electrolytic solution for lithium secondary battery, electrolytic solution for lithium secondary battery using the same and lithium secondary battery
In the present invention, a compound represented by Formula (1) is used as an additive of electrolytic solution for a lithium secondary battery, (where, in Formula (1), R1 to R3 respectively denote any of hydrogen, an alkyl group and a functional group containing halogen; R4 to R8 respectively denote any of hydrogen, a hydrocarbon group, a functional group containing halogen and BF3X; X denotes alkali metal or alkali earth metal; and at least any of R4 to R8 is BF3X).
US10177405B2 Low-temperature liquid metal batteries for grid-scaled storage
An electrochemical cell and its method of operation includes an electrolyte having a binary salt system of an alkali hydroxide and a second alkali salt. The anode, cathode, and electrolyte may be in the molten phase. The cell is operational for both storing electrical energy and as a source of electrical energy as part of an uninterruptible power system. The cell is particularly suited to store electrical energy produced by a renewable energy source.
US10177401B2 Method of establishing physical and electrical connections between a battery and a circuit
A method of establishing a physical and electrical connection between a battery and a circuit board are described. The methods include applying a texture formed from conductive material to a portion of a battery exterior surface. The texture is a region populated by a plurality of protrusions. Protrusions may be configured to partially perforate and lodge within a contact surface secured to a circuit board. The battery with a texture surface may be pressed against the circuit board resulting in perforation of the contact surface by the region of protrusions. The methods may result in a battery and circuit board in electrical communication, and suitable for use within a variety of medical devices.
US10177399B2 Secondary battery
A secondary battery includes an electrode assembly including a first electrode plate, a second electrode plate, and a separator between the first electrode plate and the second electrode plate, a case in which the electrode assembly and an electrolyte are received, and a finishing member attached to an outer surface of the electrode assembly. The finishing member includes a first layer, a second layer, and a third layer. The first layer has one surface attached to the electrode assembly. The second layer and the third layer are different from each other and are sequentially provided on another surface of the first layer. The second layer and the third layer react to the electrolyte.
US10177392B2 Regulation of a fuel cell assembly
A fuel cell assembly according to an exemplary aspect of the present disclosure includes, among other things, a first fuel cell stack in series with a variable resistor and a second fuel cell stack in parallel with the first fuel cell stack and in series with a contactor. A resistance level of the variable resistor is adjusted in response to deactivating the contactor.
US10177390B2 Fuel cell system and method for controlling the same
In a method for controlling a fuel cell system, a shutoff valve is opened to supply a fuel gas from a storage container to a fuel cell after a fuel cell system shutdown instruction is sent to the fuel cell system so that the fuel cell generates and discharges electricity. The storage container is supplied to the fuel gas supplied from a fuel supply source provided outside the fuel cell system in response to a filling instruction to supply the fuel gas to the storage container. A data signal indicating a state of the storage container is transmitted to the fuel supply source. The shutoff valve is closed and the storage container is supplied to the fuel gas supplied from the fuel supply source if the filling instruction is output while opening the shutoff valve after the fuel cell system shutdown instruction is sent.
US10177389B2 Electrochemical device and method for controlling corrosion
An electrochemical device includes a plurality of electrode assemblies that define a plurality of electrochemically active areas. A non-electrically-conductive manifold includes a common manifold passage and a plurality of branch passages that extend, respectively, between the electrochemically active areas and the common manifold passage. Each of the branch passages includes a first region and a second region that differ in surface area.
US10177381B2 Cathode material for a lithium/sulfur cell
A cathode material for an alkali metal/sulfur cell, which encompasses at least one sulfur-containing cathode active material and at least one transition metal sulfide and/or at least one metal sulfide of at least one metal of the third, fourth, and/or fifth main group. Also described is a cell and a battery equipped therewith.
US10177379B2 Positive electrode material for secondary battery and method for manufacturing the same
A positive electrode material for a secondary battery and a method for manufacturing the same are provided, in which manganese fluorophosphate containing lithium or sodium can be used as an electrode material. That is, a positive electrode material for a lithium/sodium battery is provided, in which intercalation/deintercalation of sodium/lithium ions is possible due to a short lithium diffusion distance caused by nanosizing of particles. Furthermore, a positive electrode material for a lithium/sodium battery is provided, which has electrochemical activity due to an increase in electrical conductivity by effective carbon coating.
US10177378B2 Electrodes incorporating composites of graphene and selenium-sulfur compounds for improved rechargeable lithium batteries
Embodiments of the present invention relate to battery electrodes incorporating composites of graphene and selenium-sulfur compounds for improved rechargeable batteries. In one embodiment, a conductive composition comprises a conductive composition having a Se—S compound, a conductive additive. The Se—S compound is present as SexS8-x, wherein 0
US10177372B2 Metal oxide composite and method of preparing the same
A metal oxide composite including a first metal oxide composite layer, and a second metal oxide layer, wherein the first metal oxide composite layer and the second metal oxide layer are alternately stacked in a thickness direction; and a third metal oxide layer that is disposed on a side surface of the stacked structure, wherein the third metal oxide layer includes a metal oxide that is a same metal oxide as a metal oxide included in the stacked structure.
US10177370B2 Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
A positive electrode for a lithium ion secondary battery. The positive electrode includes a positive electrode combination material having a positive electrode active material that produces a potential of 4.5 V or higher on the basis of metal lithium, a first conduction aid of carbon black, a second conduction aid of non-graphitizable carbon, and a binder. A ratio (SC1/SC2) of a surface area SC1 of the first conduction aid to a surface area SC2 of the second conduction aid is 6.5 to 70, and a sum SE of a surface area SA of the positive electrode active material in the positive electrode combination material and a surface area SC of the first conduction aid and the second conduction aid is 90 cm2/cm2 to 400 cm2/cm2 or less per unit coated area of the positive electrode combination material.
US10177368B2 Anode compartment with a collector made of amorphous-alloy
An anode compartment for rechargeable lithium or sodium batteries, including: a solid electrolyte; a collector deposited on the solid electrolyte; and an active material made of lithium metal or sodium metal which has been grown between the solid electrolyte and the collector in order to form an electrode made of lithium metal or sodium metal with the collector, in which the collector is made of an amorphous alloy. A method for manufacturing such an anode compartment and a battery including said anode compartment is also presented.
US10177367B2 Method for producing surface discharge electrodes and semifinished product for carrying out the method
Method for producing metallic surface discharge electrodes on nonmetallic substrates comprising the following steps: a) producing a metallic seed layer on a substrate; b) electrically contacting the seed layer with a metal wire network and an electrolyte containing metal ions; c) electrodepositing a metal film from the electrolyte at least on the seed layer, with the metal wire network being embedded into the metal film, wherein d) metal wire filaments that are movable relative to one another are arranged to form an electrically percolating metal wire network, e) the arrangement of the metal wire filaments is cast into a gel and the gel is dried thereafter to the gel matrix, and f) the dried gel matrix with the metal wire network embedded therein is applied to the substrate and is wetted with a solvent of the gel matrix. Furthermore, the invention relates to a semifinished product for carrying out the method.
US10177365B2 Metal fluoride passivation coatings prepared by atomic layer deposition for Li-ion batteries
The fabrication of robust interfaces between transition metal oxides and non-aqueous electrolytes is one of the great challenges of lithium ion batteries. Atomic layer deposition (ALD) of aluminum tungsten fluoride (AlWxFy) improves the electrochemical stability of LiCoO2. AlWxFy thin films were deposited by combining trimethylaluminum and tungsten hexafluoride. in-situ quartz crystal microbalance and transmission electron microscopy studies show that the films grow in a layer-by-layer fashion and are amorphous nature. Ultrathin AlWxFy coatings (<10 Å) on LiCoO2 significantly enhance stability relative to bare LiCoO2 when cycled to 4.4 V. The coated LiCoO2 exhibited superior rate capability (up to 400 mA/g) and discharge capacities at a current of 400 mA/g were 51% and 92% of the first cycle capacities for the bare and AlWxFy coated materials. These results open new possibilities for designing ultrathin and electrochemically robust coatings of metal fluorides via ALD to enhance the stability of Li-ion electrodes.
US10177364B2 System and method of overmolded terminal posts of a battery module
A battery module includes a terminal block assembly having an electrical assembly and a plastic base. The electrical assembly includes a terminal post and a bus bar coupled with the terminal post. A portion of the electrical assembly is overmolded by the plastic base, and the portion includes at least part of a terminal post base that extends outward from a central axis of a post portion of the terminal post. The battery module also includes a plastic housing having a receptacle configured to receive the plastic base of the terminal block assembly.
US10177363B2 Prismatic secondary battery
A prismatic secondary battery that includes a wound electrode body including a wound positive electrode core body exposed portion in one edge portion and a wound negative electrode core body exposed portion in the other edge portion. A width of the wound electrode body is 110 to 160 mm, a height thereof is 50 to 70 mm, and a thickness is 10 to 30 mm. A distance from an undersurface of a base portion of a positive electrode collector to a weld between a positive electrode connection portion and the positive electrode core body exposed portion is 10 to 25 mm, and a distance from an undersurface of a negative electrode base portion of a negative electrode collector to a weld between a negative electrode connection portion and the negative electrode core body exposed portion is 10 to 25 mm.
US10177361B2 Coating fluid, laminated porous film, and non-aqueous electrolyte secondary battery
A coating liquid according to the present invention comprises polyvinyl alcohol (PVA), boric acid and/or an organometallic compound having the ability of cross-linking PVA, an inorganic filler, a water-soluble compound having a carboxyl group and/or a sulfonic group, and water. According to the present invention, a coating liquid can be obtained which is useful in the preparation of a laminated porous film having suppressed powder fall-off and excellent heat shape stability.
US10177357B2 Method for producing porous polyimide film
Provided is a method for producing a porous polyimide film with which it is possible to suppress the occurrence of curling in the polyimide-fine particle composite film obtained by firing the unfired composite film. The method for producing a porous polyimide film of the present invention includes, in the following order: forming an unfired composite film using a varnish that contains a resin including polyamide acid and/or polyimide, fine particles, and a solvent; immersing the unfired composite film in a solvent including water; firing the unfired composite film to obtain a polyimide-fine particle composite film; and removing the fine particles from the polyimide-fine particle composite film.
US10177355B2 Battery pack
A battery pack includes a first frame, a second frame, and assembled batteries. The first frame includes a top edge and a bottom edge. The top edge includes an inner projecting piece, an outer projecting piece distanced from the inner projecting piece, an outer depressed part, and an inner depressed part. The bottom edge includes a center projecting piece that is disposed in a position corresponding to a gap between the inner projecting piece and the outer projecting piece when the bottom edge is engaged with the top edge of another first frame and that has a thickness fitting this gap, and an outer engagement projection and an inner engagement projection provided in positions corresponding to the outer depressed part and the inner depressed part.
US10177353B2 Rechargeable battery module
A rechargeable battery module is disclosed. In one aspect, the battery module includes a plurality of unit cells including first and second outermost unit cells disposed at first and second opposing ends of the unit cells arranged in a first direction, wherein the unit cells have top and bottom surfaces opposing each other. The battery module also includes a bus bar holder covering the top surface of the unit cells, a bus bar disposed at the bus bar holder to electrically connect the unit cells and a pair of end plates respectively supporting the first and second outermost unit cells. The battery module further includes a pair of side plates disposed at third and fourth opposing ends of the unit cells arranged in a second direction crossing the first direction, wherein the side plates are connected to the end plates and the bus bar holder.
US10177349B2 Secondary battery
Provided is a secondary battery, including a bare cell including a terrace-shaped part on a side thereof; an insulation film attached to the terrace-shaped part; and a thermal protection device on the insulation film. The thermal protection device includes a transfer part; and a first lead terminal and a second lead terminal on both sides of the transfer part. The insulation film includes an opening overlapping the transfer part. The transfer part directly contacts the terrace-shaped part through the opening.
US10177343B2 Light extraction substrate for organic light emitting device, and organic light emitting device comprising same
The present invention provides a light extraction substrate for an organic light emitting device, comprising: a base substrate; a scattering layer formed on the base substrate and made of TiO2; a plurality of first light scatterers formed inside the scattering layer and having a porous form; and a flat layer formed on the scattering layer, wherein the scattering layer is internally permeated by a part of the materials constituting the flat layer.
US10177337B2 Lighting apparatus using organic light emitting diode
A lighting apparatus using an organic light emitting diode according to the present disclosure is configured such that a substrate is planarized by forming an anti-scratch layer on a cathode electrode to fully cover the cathode electrode.The present disclosure having such configuration can uniformly maintain pressing pressure by virtue of the anti-scratch layer even while winding or unwinding the substrate for pulse aging, thereby preventing damages due to scratches or particles.
US10177334B2 Organic light emitting device and display device having the same
An organic light emitting device includes a first electrode, a hole transport region provided on the first electrode, an emission layer provided on the hole transport region, an electron transport region provided on the emission layer, and a second electrode provided on the electron transport region. The electron transport region includes an electron transport layer provided on the emission layer, a first mixed electron transport layer provided on the electron transport layer, and a second mixed electron transport layer provided on the first mixed electron transport layer. The first mixed electron transport layer includes a first electron transport compound and a second electron transport compound different from the first electron transport compound mixed at a first ratio. The second mixed electron transport layer includes the first electron transport compound and the second electron transport compound mixed at a second ratio different from the first ratio.
US10177332B2 Organic light-emitting display panel and device
Disclosed are an organic light-emitting display panel and an organic light-emitting display device. The organic light-emitting display panel comprises: a substrate, a second electrode, a light-emitting layer, a first hole transport layer and a first electrode that are successively laminated, wherein, the materials of both the first electrode and the second electrode are silver or silver-containing metallic materials, the material of the first hole transport layer is a conductive material doped with a P-type semiconductor material and a P-type semiconductor material layer is set between the first hole transport layer and the first electrode.
US10177331B2 Method for producing an organic light-emitting diode, and organic light-emitting diode
The invention relates to a method for producing an organic light-emitting diode (1) comprising the following steps: providing a carrier (3) for the organic light-emitting diode (1), applying a solution (S) comprising a plurality of different emitter materials (E) to the carrier (1), wherein said emitter materials (E) are each formed by a certain type of organic molecule and have electrical charges that differ from each other, applying an electrical field (F), so that the solution is located in the electrical field (F), and drying the solution (S) into a plurality of emitter layers (20) in an organic layer stack (2), while the electrical field is applied, so that the emitter materials (E) are accommodated separately from each other, each in a certain emitter layer (20) of the organic stack (2).
US10177330B2 Organic light emitting display device with two emission portions
An organic light emitting display device comprises two emission portions between first and second electrodes, wherein at least one among the two emission portions includes two emitting layers, whereby efficiency and a color reproduction ratio may be improved.
US10177329B2 Organic light-emitting diode containing co-hosts forming exciplex, and lighting device and display apparatus including same
Provided are an organic light-emitting diode (“OLED”) including a bottom electrode, a top electrode disposed opposite to the bottom electrode, and an organic layer that is interposed between the bottom electrode and the top electrode and includes a hole-transporting host and an electron-transporting host forming an exciplex and a phosphorescent dopant having a triplet energy which is lower than the triplet energy of the hole-transporting host, the triplet energy of the electron-transporting host, and the triplet energy of the exciplex, and a lighting device and a display apparatus including the OLED. Instead of a phosphorescent dopant, the fluorescent dopant having a singlet energy which is lower than the singlet energy of the exciplex may be also used.
US10177323B2 Tetradentate platinum (II) and palladium (II) complexes and octahedral iridium complexes employing azepine functional groups and their analogues
Platinum (II) and palladium (II) complexes of Formulas A and B and iridium (III) complexes of Formula C having azepine functional groups and their analogs as emitters for full color displays and lighting applications.
US10177322B2 Iridium complex, method for producing iridium complex, organic electroluminescent element, display device, and lighting device
Disclosed herein are an iridium complex having improved luminous efficiency and emission lifetime, a method for producing the same, an organic electroluminescent element using the iridium complex, and a display device and a lighting device that include the organic electroluminescent element. The iridium complex is contained in at least one organic layer sandwiched between an anode and a cathode of an organic electroluminescent element, and has a coefficient of external influence of 0.73 Å2/MW or less as defined by the following definition equation: Coefficient of external influence (Svdw)=Van der Waals surface area [Å2]/molecular weight (MW).
US10177318B2 Organic electroluminescent materials and devices
Bis-Indole compounds are disclosed and used as hosts to improve the organic electroluminescent devices (OLEDs) performance.
US10177315B2 Arylsulfonic acid compound, use thereof, and method for producing arylsulfonic acid compound
Provided is an arylsulfonic acid compound characterized by being represented by formula (1). [In the formula, Ar1 represents a group represented by formula (2) (in formula (2), R1 to R5 each independently represent a hydrogen atom, halogen atom, cyano group, nitro group, methyl group, or trifluoromethyl group; however, at least one of R1 to R5 represents a halogen atom) and Ar2 represents a group represented by formula (3) or (4).]
US10177312B2 Compounds for electronic devices
The present application relates to a compound of a formula (I), to the use of this compound in an electronic device, and to an electronic device comprising one or more compounds of the formula (I). The invention furthermore relates to the preparation of the compound of the formula (I) and to a formulation comprising one or more compounds of the formula (I).
US10177305B2 Templating layers for perpendicularly magnetized heusler films
Devices are described that include a multi-layered structure that is non-magnetic at room temperature, and which comprises alternating layers of Co and at least one other element E (such as Ga, Ge, and Sn). The composition of this structure is represented by Co1-xEx, with x being in the range from 0.45 to 0.55. The structure is in contact with a first magnetic layer that includes a Heusler compound. An MRAM element may be formed by overlying, in turn, the first magnetic layer with a tunnel barrier, and the tunnel barrier with a second magnetic layer (whose magnetic moment is switchable). Improved performance of the MRAM element may be obtained by placing a pinning layer between the first magnetic layer and the tunnel barrier.
US10177297B2 Semiconductor josephson junction and a transmon qubit related thereto
The present disclosure relates to semiconductor based Josephson junctions and their applications within the field of quantum computing, in particular a tuneable Josephson junction device has been used to construct a gateable transmon qubit. One embodiment relates to a Josephson junction comprising an elongated hybrid nanostructure comprising superconductor and semiconductor materials and a weak link, wherein the weak link is formed by a semiconductor segment of the elongated hybrid nanostructure wherein the superconductor material has been removed to provide a semiconductor weak link.
US10177295B2 P-type high-performance thermoelectric material with reversible phase change, and preparation method therefor
The present invention relates to a P-type high-performance thermoelectric material featuring reversible phase change, and a preparation method therefor. The thermoelectric material has a chemical composition of Cu2Se1-xIx, wherein 0
US10177294B2 Illumination apparatus
Embodiments provide an illumination apparatus including a light emitting module including a board, at least one light emitting device disposed in a first region of the board and drive devices disposed in a second region of the board, a heat dissipation member, and dummy pads disposed around the at least one light emitting device, the heat dissipation member including a base, a core, and heat dissipation fins connected to the side surface of the core and the lower surface of the base. The first region is one region of the upper surface of the board, located within a designated range from the center of the board, and the second region is another region of the upper surface of the board, spaced apart from the first region by a first distance and spaced apart from the edge of the upper surface of the board by a second distance.
US10177293B2 Optoelectronic component and method of producing an optoelectronic component
An optoelectronic component includes a first lead frame section and a second lead frame section spaced apart from one another, and having an optoelectronic semiconductor chip arranged on the first lead frame section and the second lead frame section, wherein the first lead frame section and the second lead frame section respectively have an upper side, a lower side and a first side flank extending between the upper side and the lower side, a first lateral solder contact surface of the optoelectronic component is formed on the first side flank of the first lead frame section, and the first lateral solder contact surface is formed by a recess arranged on the first side flank of the first lead frame section and extends from the upper side to the lower side of the first lead frame section.
US10177287B1 Gamut broadened displays with narrow band green phosphors
Phosphors emitting green light over a narrow wavelength range may be used to broaden the gamut of display devices. In one aspect, a light emitting device comprises a light emitting solid state device emitting blue or violet light, a first phosphor that absorbs blue or violet light emitted by the light emitting solid state device and in response emits green light in a spectral band having a peak at wavelength λG and a height of one half its peak on a long wavelength edge of the band at wavelength λGhalf; and a second phosphor that absorbs blue or violet light emitted by the light emitting solid state device and in response emits red light in a spectral band having a peak at wavelength λR and a height of one half its peak on a short wavelength edge of the band at wavelength λRhalf. The ratio (λRhalf−λGhalf)/(λR−λG) is greater than 0.70.
US10177281B2 Light-emitting diode
A light emitting diode includes a substrate, a lower semiconductor layer disposed on the substrate, a light emitting unit comprising a first upper semiconductor layer disposed in one region of the lower semiconductor layer and an active layer interposed between the lower semiconductor layer and the first upper semiconductor layer, a second current spreading portion comprising a third upper semiconductor layer disposed in another region of the lower semiconductor layer and an active layer interposed between the lower semiconductor layer and the third upper semiconductor layer, a first electrode disposed on the light emitting cell and electrically connected to the first upper semiconductor layer, and a second electrode separated from the light emitting cell and electrically connected to the lower semiconductor layer.
US10177279B2 Light-emitting diode with multiple N contact structure
Provided are a horizontal light emitting diode (LED) device and a method for fabricating the same. The horizontal LED device includes a sapphire substrate; an n-type GaN layer disposed on the sapphire substrate; an activation layer disposed on the n-type GaN layer; a p-type GaN layer disposed on the activation layer; a current spreading layer disposed on the p-type GaN layer; a p-electrode disposed on the current spreading layer; a plurality of holes exposing the n-type GaN layer through the current spreading layer, the p-type GaN layer, and activation layer; and an n-electrode disposed on the exposed n-type GaN layer and being in ohmic contact with the exposed n-type GaN layer at a plurality of positions on bottom surfaces of the plurality of holes.
US10177275B2 Epitaxial structure and method for making the same
An epitaxial structure and a method for making the same are provided. The epitaxial structure includes a substrate, an epitaxial layer and a carbon nanotube layer. The epitaxial layer is located on the substrate. The carbon nanotube layer is located in the epitaxial layer. The method includes following steps. A substrate having an epitaxial growth surface is provided. A carbon nanotube layer is suspended above the epitaxial growth surface. An epitaxial layer is epitaxially grown from the epitaxial growth surface to enclose the carbon nanotube layer therein.
US10177269B2 Controllable indium doping for high efficiency CZTS thin-film solar cells
A photovoltaic device includes a first contact layer formed on a substrate. An absorber layer includes Cu—Zn—Sn—S(Se) (CZTSSe) on the first contact layer. A buffer layer is formed in contact with the absorber layer. Metal dopants are dispersed in a junction region between the absorber layer and the buffer layer. The metal dopants have a valence between the absorber layer and the buffer layer to increase junction potential. A transparent conductive contact layer is formed over the buffer layer.
US10177267B2 Photodetector
An UV photodetector includes: a substrate, a template layer formed on the substrate, an intrinsic AlGaN layer formed on the template layer, a first n-type AlGaN layer and a second n-type AlGaN layer formed on the intrinsic AlGaN layer side-by-side and separated by a gap, wherein the gap exposes the intrinsic AlGaN layer. Another UV photodetector includes: an UV transparent substrate, an UV transparent template layer formed on the substrate, a first UV transparent n-type AlGaN layer formed on the UV transparent template layer, an intrinsic AlGaN layer formed on the first UV transparent n-type AlGaN layer, a second n-type AlGaN layer formed on the intrinsic AlGaN layer, and a p-type layer formed on the second n-type AlGaN layer.
US10177265B2 Bonding using conductive particles in conducting adhesives
An anisotropic conducting adhesive is improved in conductivity without increasing the density of admixed conductive particles by inducing metallic fusion between the surfaces of the conducting particles and the surfaces being bonded. The metallic fusion may be promoted by physical/chemical interaction characteristic of certain materials at a compressed interface; by compression sufficient to deform the conductive particles in a manner that increases the mechanical contact area; by heating (with or without melting of a material), which may also serve to cure the adhesive matrix; or by acoustic vibration, e.g., ultrasonic vibration. The resulting metallic-fusion joint is stronger, as well as more conductive, than a joint in which the particles and surfaces are held in unfused mechanical contact.
US10177262B2 Cu2XSnY4 Nanoparticles
Materials and methods for preparing Cu2XSnY4 nanoparticles, wherein X is Zn, Cd, Hg, Ni, Co, Mn or Fe and Y is S or Se, (CXTY) are disclosed herein. The nanoparticles can be used to make layers for use in thin film photovoltaic (PV) cells. The CXTY materials are prepared by a colloidal synthesis in the presence of labile organo-chalcogens. The organo-chalcogens serves as both a chalcogen source for the nanoparticles and as a capping ligand for the nanoparticles.
US10177257B2 Thin film transistor, method for fabricating the same, display substrate and display device
A thin film transistor, a method for fabricating the same, a display substrate, and a display device are disclosed. The method comprises: forming in sequence a light shielding layer, an insulating layer, and a semiconductor layer; and forming a pattern of the light shielding layer, the insulating layer, and the semiconductor layer in one patterning process. A polycrystalline silicon layer can be formed into an active layer and an amorphous silicon layer into the light shielding layer, by using only one mask. The number of masking processes is reduced by one, which simplifies a fabricating process of the thin film transistor.
US10177255B2 Semiconductor device with fin and related methods
A semiconductor device may include a substrate, a fin above the substrate and having a channel region therein, and source and drain regions adjacent the channel region to generate shear and normal strain on the channel region. A semiconductor device may include a substrate, a fin above the substrate and having a channel region therein, source and drain regions adjacent the channel region, and a gate over the channel region. The fin may be canted with respect to the source and drain regions to generate shear and normal strain on the channel region.
US10177251B2 Semiconductor device, inverter circuit, drive device, vehicle, and elevator
A semiconductor device according to an embodiment includes a silicon carbide layer having a first plane and a second plane; a source electrode; a drain electrode; first and second gate electrodes located; an n-type drift region and a p-type body region; n-type first and second source regions; a p-type first silicon carbide region and p-type second silicon carbide region having a p-type impurity concentration higher than the body region; first and second gate insulating layers; a p-type third silicon carbide region contacting the first silicon carbide region, a first n-type portion being located between the first gate insulating layer and the third silicon carbide region; and a p-type fourth silicon carbide region contacting the second silicon carbide region, a second n-type portion being located between the second gate insulating layer and the fourth silicon carbide region.
US10177248B2 Semiconductor device
A semiconductor device includes a semiconductor body including a base region and two semiconductor mesas separated from each other by an insulated trench gate structure extending from a first side into the base region, and including a dielectric layer separating a gate electrode from the semiconductor body. Each semiconductor mesa includes, in a cross-section perpendicular to the first side, a body region forming a pn-junction with the base region, a latch-up-safety region of the same conductivity type as the body region arranged between the body region and the first side, and having a higher doping concentration than the body region, and an emitter region between the dielectric layer and the latch-up-safety region and forming a pn-junction with the body region. At least one semiconductor mesa includes an emitter contact arranged between the emitter region and the latch-up-safety region and forming with the latch-up-safety and emitter regions an Ohmic contact.
US10177243B1 Extended drain NMOS transistor with buried P type region
Described herein is an N type extended drain transistor formed from a semiconductor on insulator (SOI) wafer. The transistor has a buried P type region formed by the selective implantation of P type dopants in a semiconductor layer of the wafer at a location directly below a drift region of the transistor. The transistor also includes a source located in a P well region and a drain. The buried P type region is in electrical contact with the P well region. The N type drift region, the source, and the drain are also located in a portion of the semiconductor layer surrounded by dielectric isolation. A buried dielectric layer located below the portion of the semiconductor layer electrically isolates the portion of the semiconductor layer from a semiconductor substrate located below the buried dielectric layer.
US10177241B2 Methods of forming a gate contact for a transistor above the active region and an air gap adjacent the gate of the transistor
One illustrative method disclosed includes, among other things, removing a portion of an initial gate cap layer and a portion of an initial sidewall spacer so as to thereby define a gate contact cavity that exposes a portion of a gate structure, completely forming a conductive gate contact structure (CB) in a gate contact cavity, wherein the entire conductive gate contact structure (CB) is positioned vertically above the active region. The method also comprises removing the remaining portion of the initial gate cap layer and to recess a vertical height of exposed portions of the initial sidewall spacer to thereby define a recessed sidewall spacer and a gate cap cavity and forming a replacement gate cap layer in the gate cap cavity so as to define an air space between an upper surface of the recessed sidewall spacer and a lower surface of the replacement gate cap layer.
US10177240B2 FinFET device formed by a replacement metal-gate method including a gate cut-last step
A technique relates to forming a semiconductor device. A starting semiconductor device having a fin structure patterned in a substrate, and a gate formed over the fin structure, the gate having a mid-region and an end-region is first provided. A trench is then patterned over the mid-region of the gate and a trench is patterned over the end-region of the gate. The patterned trenches are then etched over the mid-region of the gate and the end-region of the gate to form the trenches. A conformal low-k dielectric layer can then be deposited over the structure to fill the trenches and pinch off the trench formed in the mid-region and the trench formed in the end-region.
US10177237B2 Etch stop for airgap protection
A semiconductor device that includes a gate structure on a channel region of a semiconductor device. Source and drain regions may be present on opposing sides of the channel region. The semiconductor device may further include a composite gate sidewall spacer present on a sidewall of the gate structure. The composite gate sidewall spacer may include a first composition portion having an air gap encapsulated therein, and a second composition portion that is entirely solid and present atop the first composition portion.
US10177226B2 Preventing threshold voltage variability in stacked nanosheets
Embodiments are directed to a method of forming a stacked nanosheet and resulting structures having equal thickness work function metal layers. A nanosheet stack is formed on a substrate. The nanosheet stack includes a first sacrificial layer formed on a first nanosheet. A hard mask is formed on the first sacrificial layer and the first sacrificial layer is removed to form a cavity between the hard mask and the first nanosheet. A work function layer is formed to fill the cavity between the hard mask and the first nanosheet.
US10177223B2 FinFET with reduced parasitic capacitance
A semiconductor device including at least one fin extending upward from a substrate and a gate on the substrate, wherein the gate includes outer sidewalls, wherein the fin extend through a width of the gate. A spacer material can be adjacent to the outer sidewalls of the gate, wherein a top surface of the spacer material is below the top surface of the gate and above the top surface of the fin. The semiconductor device can also include an epitaxial semiconductor layer over the fins on each side of the spacer material. A low-k dielectric material can be deposited above each epitaxial semiconductor layer. The semiconductor device also includes a dielectric top layer forming a top surface of the transistor, wherein the dielectric top layer seals an air gap between the top surface of the fins and the dielectric top layer.
US10177218B2 Vertical semiconductor structure
A diode includes upper and lower electrodes and first and second N-type doped semiconductor substrate portions connected to the lower electrode. A first vertical transistor and a second transistor are formed in the first portion and series-connected between the electrodes. The gate of the first transistor is N-type doped and coupled to the upper electrode. The second transistor has a P channel and has a P-type doped gate. First and second doped areas of the second conductivity type are located in the second portion and are separated by a substrate portion topped with another N-type doped gate. The first doped area is coupled to the gate of the second transistor. The second doped area and the other gate are coupled to the upper electrode.
US10177214B2 Metal thin film resistor and process
An integrated circuit with a metal thin film resistor with an overlying etch stop layer. A process for forming a metal thin film resistor in an integrated circuit with the addition of one lithography step.
US10177203B2 Pixel structure and manufacturing method for the same
A pixel structure and manufacturing method thereof are provided. The pixel structure includes: a substrate; an anode electrode layer disposed on the substrate; a plurality of pixel units disposed on the anode electrode layer in rectangular array, where each of the pixel units includes four sub-pixel units arranged in rectangular array, and the emitting colors of the two opposite sub-pixel units at the opposite sides of any two adjacent pixel units are the same; and a cathode electrode layer disposed on the pixel units.
US10177202B2 Double-sided emissive organic display device and method for producing a double-sided emissive organic display device
A double-sided emissive organic display device includes a carrier, a control element layer structure above the carrier, a plurality of first organic light emitting components, which are formed above the carrier, which are electrically connected to the control element layer structure and which are driven by means of the control element layer structure during the operation of the double-sided emissive organic display device and emit first light substantially in a direction toward the carrier, and a plurality of second organic light emitting components, which are formed above the control element layer structure and which are electrically connected to the control element layer structure and which are driven by means of the control element layer structure during the operation of the double-sided emissive organic display device and emit second light substantially in a direction away from the carrier.
US10177199B2 Method for making three dimensional complementary metal oxide semiconductor carbon nanotube thin film transistor circuit
A method for making a metal oxide semiconductor carbon nanotube thin film transistor circuit. A p-type carbon nanotube thin film transistor and a n-type carbon nanotube thin film transistor are formed on an insulating substrate and stacked with each other. The p-type carbon nanotube thin film transistor includes a first semiconductor carbon nanotube layer, a first drain electrode, a first source electrode, a functional dielectric layer, and a first gate electrode. The n-type carbon nanotube thin film transistor includes a second semiconductor carbon nanotube layer, a second drain electrode, a second source electrode, a first insulating layer, and a second gate electrode. The first drain electrode and the second drain electrode are electrically connected with each other. The first gate electrode and the second gate electrode are electrically connected with each other.
US10177198B2 Phase change memory stack with treated sidewalls
Memory devices and methods for fabricating memory devices have been disclosed. One such memory device includes a first electrode material formed on a word line material. A selector device material is formed on the first electrode material. A second electrode material is formed on the selector device material. A phase change material is formed on the second electrode material. A third electrode material is formed on the phase change material. An adhesion species is plasma doped into sidewalls of the memory stack and a liner material is formed on the sidewalls of the memory stack. The adhesion species intermixes with an element of the memory stack and the sidewall liner to terminate unsatisfied atomic bonds of the element and the sidewall liner.
US10177197B2 Magnetic junctions having elongated free layers
A magnetic junction usable in a magnetic device is described. The magnetic junction has a free layer, a reference layer, and a nonmagnetic spacer layer between reference and free layers. The free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction. The free layer has a length in a first direction, a width in a second direction perpendicular to the first direction, an exchange stiffness and an aspect ratio equal to the length divided by the width. The aspect ratio is greater than one. The exchange stiffness is not less than 2×10−6 erg/cm.
US10177195B2 Micro-LED displays
A micro-light emitting diode (LED) display panel and a method of forming the display panel, the micro-LED display panel having a monolithically grown micro-structure including a first color micro-LED that is a first color nanowire LED, and a second color micro-LED that is a second color nanowire LED.
US10177185B2 High dielectric constant dielectric layer forming method, image sensor device, and manufacturing method thereof
A method for forming a high dielectric constant (high-κ) dielectric layer on a substrate including performing a pre-clean process on a surface of the substrate. A chloride precursor is introduced on the surface. An oxidant is introduced to the surface to form the high-κ dielectric layer on the substrate. A chlorine concentration of the high-κ dielectric layer is lower than about 8 atoms/cm3.
US10177183B2 Embedded orientation markers for imaging sensors
An imaging sensor includes an imaging array with a plurality of pixels. A sub-set of the pixels are marker pixels configured to each provide a constant respective output value to embed an orientation and alignment marker in images produced with the imaging array. The marker pixels can be sparsely distributed across the imaging array.
US10177178B1 Assembly of CMOS driver wafer and LED wafer for microdisplay
An integrated circuit (IC) microdisplay structure is disclosed. The structure can include: a first oxide layer positioned on a substrate; a first voltage source (VSS) pad within the first oxide layer; a metal pillar disposed within the first oxide layer and on the first VSS pad; a first gallium nitride layer disposed on the metal pillar and extending over the first oxide layer; and at least one subpixel formed from the first gallium nitride layer. Alternatively, the structure can include a first oxide layer positioned on a substrate; a first metal layer positioned on the first oxide layer; a first gallium nitride layer on the first metal layer; and at least one subpixel formed from the first gallium nitride layer. The structure may further include a subpixel driver electrically connected to the at least one subpixels where a portion of the subpixel driver is vertically aligned with a subpixel.
US10177174B2 Semiconductor device and method for manufacturing semiconductor device
According to one embodiment, a semiconductor device includes an insulating substrate, a first semiconductor layer located above the insulating substrate, a second semiconductor layer located above the insulating substrate, an insulating layer which covers the first semiconductor layer and the second semiconductor layer, and includes a first contact hole reaching the first semiconductor layer and a second contact hole reaching the second semiconductor layer, a barrier layer which covers one of the first semiconductor layer inside the first contact hole and the second semiconductor layer inside the second contact hole, and a first conductive layer which is in contact with the barrier layer.
US10177171B2 Display panels having a direct contact of the source or drain and pixel electrode
A display panels having a direct contact of the source or drain and pixel electrode. The display panels includes an array substrate. The array substrate includes a substrate and at least one TFT and at least one pixel electrode on the array substrate. The TFT includes a gate, a source, a drain, a gate insulation layer and a trench layer, the trench layer include an AS Island pattern and a doped layer, the source and the drain are arranged on the doped layer, and the AS Island pattern is arranged on the gate insulation layer. The source or the drain directly contacts with the pixel electrode without any material layers provided there between.
US10177167B2 Hybrid substrate engineering in CMOS finFET integration for mobility improvement
A method for forming a hybrid complementary metal oxide semiconductor (CMOS) device includes orienting a semiconductor layer of a semiconductor-on-insulator (SOI) substrate with a base substrate of the SOI, exposing the base substrate in an N-well region by etching through a mask layer, a dielectric layer, the semiconductor layer and a buried dielectric to form a trench and forming spacers on sidewalls of the trench. The base substrate is epitaxially grown from a bottom of the trench to form an extended region. A fin material is epitaxially grown from the extended region within the trench. The mask layer and the dielectric layer are restored over the trench. P-type field-effect transistor (PFET) fins are etched on the base substrate, and N-type field-effect transistor (NFET) fins are etched in the semiconductor layer.
US10177165B1 Method for fabricating merging semiconductor integrated circuit
A method for fabricating a semiconductor integrated circuit (IC) having a SONOS memory device and a logic/analog device requiring different gate oxide layers comprises steps as follows: A substrate having a high voltage region, a memory region and a logic/analog is firstly provided. Next, a first gate oxide layer is formed on the high voltage region, the memory region and the logic/analog. The first gate oxide layer is then patterned to expose the logic/analog region and to define a first channel area and a second channel area respectively on the memory region and the high voltage region. Subsequently, a silicon oxide-silicon nitride-silicon oxide (ONO) structure is formed on the first channel area. A second gate oxide layer is then formed on the logic/analog and patterned to define a third channel area.
US10177154B2 Structure and method to prevent EPI short between trenches in FinFET eDRAM
After forming a laterally contacting pair of a semiconductor fin and a conductive strap structure having a base portion vertically contacting a deep trench capacitor embedded in a substrate and a fin portion laterally contacting the semiconductor fin, conducting spikes that are formed on the sidewalls of the deep trench are removed or pushed deeper into the deep trench. Subsequently, a dielectric cap that inhibits epitaxial growth of a semiconductor material thereon is formed over at least a portion of the base portion of the conductive strap structure. The dielectric cap can be formed either over an entirety of the base portion having a stepped structure or on a distal portion of the base portion.
US10177153B2 DRAM cell for reducing layout area and fabricating method thereof
The fabricating method of a DRAM cell includes forming a facing bar that extends in a direction of the word line; forming a gate of the cell transistor on one side surface of the facing bar; forming a bit line plug that is electrically connected to one side of the transmission channel, which is formed on the one side surface of the facing bar; and forming the storage that is electrically connected to the other side of the transmission channel, which is formed on the horizontal surface of the semiconductor substrate. A pair of DRAM cells shares a facing bar and a bit line plug. In accordance with the present disclosure, a required layout area is significantly reduced.
US10177152B1 Integrated assemblies comprising stud-type capacitors
Some embodiments include an integrated capacitor assembly having a conductive pillar supported by a base, with the conductive pillar being included within a first electrode of a capacitor. The conductive pillar has a first upper surface. A dielectric liner is along an outer surface of the conductive pillar and has a second upper surface. A conductive liner is along the dielectric liner and is included within a second electrode of the capacitor. The conductive liner has a third upper surface. One of the first and third upper surfaces is above the other of the first and third upper surfaces. The second upper surface is at least as high above the base as said one of the first and third upper surfaces. Some embodiments include memory arrays having capacitors with pillar-type first electrodes.
US10177151B1 Single-diffusion break structure for fin-type field effect transistors
A method and structure for a semiconductor device that includes one or more fin-type field effect transistors (FINFETs) and single-diffusion break (SDB) type isolation regions, which are within a semiconductor fin and define the active device region(s) for the FINFET(s). Asymmetric trenches are formed in a substrate through asymmetric cuts in sacrificial fins formed on the substrate. The asymmetric cuts have relatively larger gaps between fin portions that are closest to the substrate, and deeper portions of the asymmetric trenches are relatively wider than shallower portions. Channel regions are formed in the substrate below two adjacent fins. Source/drain regions of complementary transistors are formed in the substrate on opposite sides of the channel regions. The asymmetric trenches are filled with an insulator to form a single-diffusion break between two source/drain regions of different ones of the complementary transistors. Also disclosed is a semiconductor structure formed according to the method.
US10177150B2 Semiconductor device and method of fabricating the same
A method of fabricating a semiconductor device includes preparing a substrate including a first region and a second region, sequentially forming a first semiconductor layer and a second semiconductor layer on the first and second regions, patterning the first and second semiconductor layers to form a lower semiconductor pattern and an upper semiconductor pattern on each of the first and second regions, selectively removing the lower semiconductor pattern on the second region to form a gap region, and forming gate electrodes at the first and second regions, respectively.
US10177149B2 Semiconductor devices with nanowires and with metal layers having different grain sizes
A semiconductor device may include a substrate, a first nanowire, a second nanowire, a first gate insulating layer, a second gate insulating layer, a first metal layer and a second metal layer. The first gate insulating layer may be along a periphery of the first nanowire. The second gate insulating layer may be along a periphery of the second nanowire. The first metal layer may be on a top surface of the first gate insulating layer along the periphery of the first nanowire. The first metal layer may have a first crystal grain size. The second metal layer may be on a top surface of the second gate insulating layer along the periphery of the second nanowire. The second metal layer may have a second crystal grain size different from the first crystal grain size.
US10177148B2 Integrated circuit devices and methods of fabricating such devices
An integrated circuit device includes: a plurality of channel regions spaced apart from each other in an active region; a plurality of source/drain regions; an insulating structure on the active region, the insulating structure defining a plurality of gate spaces; a first gate stack structure in a first of the gate spaces, the first gate stack structure including a first work function metal-containing layer; and an isolation stack structure in a second of the gate spaces that is adjacent the first of the gate spaces, the isolation stack structure having a different stack structure from the first gate stack structure and being configured to electrically isolate a portion of the active region.
US10177146B2 Semiconductor structure with improved punch-through and fabrication method thereof
A semiconductor structure and a fabrication method are provided. A fabrication method includes providing a plurality of fins on a substrate including an NMOS region and a PMOS region adjacent to the NMOS region; forming an N-type well in the PMOS region and a P-type well in the NMOS region of the substrate; forming a protective sidewall to cover an upper portion of a sidewall surface of each fin in each of the NMOS region and PMOS region and to expose a lower portion of the sidewall surface of each fin; removing a partial width of the lower portion of the fin using the protective sidewall as an etch mask; removing the protective sidewall; and forming an isolation structure at least by oxidizing the remaining lower portion of the fin and having a top surface lower than the neighboring upper portions of the fins.
US10177145B2 Semiconductor structures and fabrication methods thereof
A method for fabricating a semiconductor structure includes providing a substrate including a device region, an isolation region, and a transition region between the device region and the isolation region, forming a plurality of fin structures on the device region of the substrate, forming a plurality of dummy fin structures on the transition region of the substrate, and forming an isolation structure on the device region, the isolation region, and the transition region of the substrate. The isolation structure further covers a portion of sidewall surfaces of the fin structures and the dummy fin structures. Moreover, the method includes forming a plurality of semiconductor devices on the fin structures in the device region after forming the isolation structure.
US10177142B2 Circuit, logic circuit, processor, electronic component, and electronic device
A circuit suitable for data backup of a logic circuit is provided. The circuit includes first to fourth nodes, a capacitor, first to third transistors, and first and second circuits. Data can be loaded and stored between the circuit and the logic circuit. The first node is electrically connected to a data output terminal of the logic circuit. The second node is electrically connected to a data input terminal of the logic circuit. The capacitor is electrically connected to the third node. The first transistor controls electrical continuity between the first node and the third node. The second transistor controls electrical continuity between the second node and the third node. The third transistor controls electrical continuity between the second node and the fourth node. The first and second circuits have functions of raising gate voltage of the first transistor and raising gate voltage of the second transistor, respectively.
US10177137B1 Electrostatic discharge protection apparatus
An electrostatic discharge (ESD) protection apparatus is provided. A first power rail provides first reference voltage. A second power rail provides a second reference voltage. A detection circuit generates a detection result according to whether ESD stress occurs on the first power rail. A first N-type MOSFET has its gate serving as a control terminal. A second N-type MOSFET has its gate serving as a second control node. An intermediate power rail provides an intermediate voltage between the first and the second reference voltages. A first switching circuit couples the first control node to the intermediate power rail or to the first power rail according to the detection result. A second switching circuit couples the second control node to the second power rail or to the first control node according to the detection result.
US10177135B2 Integrated circuit and electrostatic discharge protection circuit thereof
An electrostatic discharge protection circuit is provided. The electrostatic discharge protection circuit includes a first metal-oxide-semiconductor (MOS) transistor, a second MOS transistor, and a third MOS transistor. The first MOS transistor is coupled between a power terminal and a ground terminal. The first MOS transistor has a control electrode terminal coupled to a first node to receive a first signal. The second MOS transistor has a control electrode terminal and a first electrode terminal both coupled to the first node and a second electrode terminal coupled to a bulk of the first MOS transistor. The third MOS transistor has a control electrode terminal coupled to a second node to receive a second node, a first electrode terminal coupled to the first node, and a second electrode terminal coupled to the bulk of the first MOS transistor. The first signal is inverse to the second signal.
US10177134B2 Semiconductor device
A semiconductor device according to the present invention includes: a substrate; a plurality of trenches formed in the substrate; and a plurality of functional element forming regions arrayed along each of the trenches, including a channel forming region as a current path, wherein the plurality of functional element forming regions includes a first functional element forming region in which the area of the channel forming region per unit area is relatively small and a second functional element forming region in which the area of the channel forming region per unit area is relatively large, and the first functional element forming region is provided at a region where heat generation should be suppressed.
US10177133B2 Semiconductor device including source/drain contact having height below gate stack
A method for forming a semiconductor structure includes following operations. Gate structures are arranged above a first active region, a second active region and a non-active region of a substrate of a semiconductor structure. The first and second active regions are spaced apart by the non-active region. Contacts are arranged above the first and second active regions. At least one gate via is arranged above the first active region or the second active region. The at least one gate via is electrically coupled with the gate structures. At least one local interconnect is selectively arranged over the non-active region, to couple at least one of the contacts above the first active region to at least one of the contacts above the second active region.
US10177132B2 Layout pattern for SRAM and manufacturing methods thereof
A layout pattern of a static random access memory, including a first inverter and a second inverter constituting a latch circuit. A first inner access transistor, a second inner access transistor, a first outer access transistor and a second outer access transistor are electrically connected to the latch circuit, wherein the first outer access transistor has a first gate length, the first inner access transistor has a second gate length, and the first gate length is different from the second gate length.
US10177127B2 Semiconductor apparatus and method of manufacturing the same
A semiconductor apparatus includes a driver circuit wafer including a plurality of driver circuits arranged in an array, a bonding metal layer formed over the driver circuit wafer, and a horizontally continuous functional device epi-structure layer formed over the bonding metal layer and covering the driver circuits.
US10177126B2 Tunable OLED lighting source
Described herein are devices and methods related to lighting systems that are color tunable and have a long lifetime. In certain embodiments, the device comprises two independently controlled phosphorescent OLED lighting panels coupled together in one package to emit light in one direction. In certain embodiment, aspects of the device are tunable, such as RGB color, color temperature, and luminance.
US10177120B1 Stacked semiconductor dies including inductors and associated methods
Several embodiments of the present technology are directed to semiconductor devices, systems including semiconductor devices, and methods of making and operating semiconductor devices. In some embodiments, a semiconductor device comprises a substrate, a first die mounted to the substrate and including first inductors, and a second die mounted to the first die in an offset position and including second inductors. The first inductors are at an active side of the first die, and the second inductors are at an active side of the second die. At least a portion of the first inductors are proximate and inductively coupled to the second inductors. The semiconductor device further comprises a first plurality of interconnects electrically coupling the substrate to the first die, and a second plurality of interconnects electrically coupling the second die to the substrate. The first plurality of interconnects extend from an upper surface of the substrate to the active side of the first die, and the second plurality of interconnects extend from the active side of the second die to the lower surface of the substrate.
US10177111B2 Reduction of defects in wafer level chip scale package (WLCSP) devices
Consistent with example embodiments, a wafer substrate undergoes processing in which a resilient material is applied to the front-side and back-side surfaces of the wafer substrate. By defining trenches in saw lanes between active device die, additional resilient material may be placed therein. In an example embodiment, after the active device die are separated into individual product devices, the resulting product device has coverage on the front-side surface, back-side surface, and the four vertical faces of the encapsulated active device die. The front-side surface has exposed contact areas so that the product device may be attached to an end user's system circuit board. Further, the resilient coating protects the encapsulated active device die from damage during assembly.
US10177110B2 Electronic device
An electronic device includes: a substrate having an upper surface (front surface) on which a semiconductor chip is mounted, and a lower surface (back surface) opposite to the upper surface; and a housing (case) fixed to the substrate through an adhesive material. The housing has through-holes each formed on one short side and the other short side in an X direction. The substrate is disposed between the through-holes. A part of the upper surface of the substrate is fixed so as to face a part of a stepped surface formed at a height different from that of a lower surface of the housing. Further, an interval (distance) between a part (stepped surface) extending along a short side of the housing in the stepped surface and the upper surface of the substrate is larger than an interval (distance) between a part (stepped surface) extending along a long side of the housing in the stepped surface and the upper surface of the substrate.
US10177109B2 Method of manufacturing semiconductor device
The present invention includes: preparing a semiconductor substrate having a first main surface and a second main surface that is located on an opposite side of the first main surface; forming a first electrode on the first main surface; forming a solder-bonding metal film (a first solder-bonding metal film) on the first electrode; forming a sacrificial film on the first solder-bonding metal film; grinding the second main surface after forming the sacrificial film; performing heat treatment after the grinding (forming an element structure on the third main surface side); removing the sacrificial film after the performing heat treatment; and solder-bonding the first solder-bonding metal film and a first external electrode.
US10177107B2 Heterogeneous ball pattern package
Methods and apparatus are described for strategically arranging conductive elements (e.g., solder balls) of an integrated circuit (IC) package (and the corresponding conductive pads of a circuit board for electrical connection with the IC package) using a plurality of different pitches. One example integrated circuit (IC) package generally includes an integrated circuit die and an arrangement of electrically conductive elements coupled to the integrated circuit die. In at least one region of the arrangement, the conductive elements are disposed with a first pitch in a first dimension of the arrangement and with a second pitch in a second dimension of the arrangement, and the second pitch is different from the first pitch. The pitch of a given region may be based on mechanical, PCB routing, and/or signal integrity considerations.
US10177098B2 Method for fabricating an electronic device and a stacked electronic device
A method for fabricating an electronic device includes fixing a rear face of an integrated-circuit chip to a front face of a support wafer. An infused adhesive is applied in the form of drops or segments that are separated from each other. A protective wafer is applied to the infused adhesive, and the infused adhesive is cured. The infused adhesive includes a curable adhesive and solid spacer elements infused in the curable adhesive. A closed intermediate peripheral ring is deposited on the integrated-circuit chip outside the cured infused adhesive, and an encapsulation block is formed such that it surrounds the chip, the protective wafer and the closed intermediate peripheral ring.
US10177092B2 Formation of advanced interconnects
A method for fabricating an advanced metal conductor structure is described. A pattern in a dielectric layer is provided. The pattern includes a set of features in the dielectric for a set of metal conductor structures. An adhesion promoting layer is created over the patterned dielectric. A ruthenium layer is deposited over the adhesion promoting layer. Using a physical vapor deposition process, a cobalt layer is deposited over the ruthenium layer. A thermal anneal is performed which reflows the cobalt layer to fill the set of features to form a set of metal conductor structures.
US10177087B2 Logic cell including single layer via contact and deep via contact
A semiconductor device includes a substrate; a plurality of conductive areas formed on the substrate at a first vertical level; a first wiring layer formed on the substrate at a second vertical level which is higher than the first vertical level, the first wiring layer including first lines that extend in a first direction, one first line of the first lines connected to a first conductive area selected from the plurality of conductive areas through a via contact; a second wiring layer formed on the substrate at a third vertical level which is higher than the second vertical level, the second wiring layer including second lines that extend in a second direction that crosses the first direction, one second line of the second lines connected to a second conductive area selected from the plurality of conductive areas; and a deep via contact spaced apart from lines of the first wiring layer in a horizontal direction and extending from the second conductive area to the one second line.
US10177084B2 Semiconductor module and method of manufacturing semiconductor module
An object of the invention is to manufacture a semiconductor module small. A metal wire (212) connecting a control electrode (101) and a control terminal (21) rises to form a first angle (θ1) from the control electrode (101) toward a first conductive portion (202), gradually goes in substantially parallel to the first conductive portion (202) as the metal wire approaches the first conductive portion (202), and is connected to the control terminal (21) to form a second angle (θ2) smaller than the first angle (θ1).
US10177080B2 Molded intelligent power module
An intelligent power module (IPM) has a first, second, third and fourth die paddles, a first, second, third, fourth, fifth and sixth metal-oxide-semiconductor field-effect transistors (MOSFETs), a tie bar, an IC, a plurality of leads and a molding encapsulation. The first MOSFET is attached to the first die paddle. The second MOSFET is attached to the second die paddle. The third MOSFET is attached to the third die paddle. The fourth, fifth and sixth MOSFETs are attached to the fourth die paddle. The IC is attached to the tie bar. The molding encapsulation encloses the first, second, third and fourth die paddles, the first, second, third, fourth, fifth and sixth MOSFETs, the tie bar and the IC. The IPM is a small-outline package. It reduces system design time and improves reliability. The IC includes boost diodes. It reduces a package size of the IPM.
US10177079B2 Conductive connecting member and manufacturing method of same
A conductive connecting member formed on a bonded face of an electrode terminal of a semiconductor or an electrode terminal of a circuit board, the conductive connecting member comprising a porous body formed in such manner that a conductive paste containing metal fine particles (P) having mean primary particle diameter from 10 to 500 nm and an organic solvent (S), or a conductive paste containing the metal fine particles (P) and an organic dispersion medium (D) comprising the organic solvent (S) and an organic binder (R) is heating-treated so as for the metal fine particles (P) to be bonded, the porous body being formed by bonded metal fine particles (P) having mean primary particle diameter from 10 to 500 nm, a porosity thereof being from 5 to 35 volume %, and mean pore diameter being from 1 to 200 nm.
US10177078B2 Method for forming chip package structure
Chip package structures and methods for forming the same are provided. The chip package structure includes a first protection layer and a first chip disposed over the first protection layer. The chip package structure further includes a first photosensitive layer surrounding the first chip and covering the first chip and a redistribution layer formed over the first photosensitive layer.
US10177071B2 Phase changing on-chip thermal heat sink
A method of forming an on-chip heat sink includes forming a device on a substrate. The method also includes forming a plurality of insulator layers over the device. The method further includes forming a heat sink in at least one of the plurality of insulator layers and proximate to the device. The heat sink includes a reservoir of phase change material having a melting point temperature that is less than an upper limit of a design operating temperature of the chip.
US10177066B2 Flexible integrated heat spreader
A thermal management solution may be provided for a microelectronic system including a flexible integrated heat spreader, wherein the flexible integrated heat spreader may comprise a plurality of thermally conductive structures having a flexible thermally conductive film attached to and extending between each of the plurality of thermally conductive structures. The flexible integrated heat spreader may be incorporated into multi-chip package by providing a microelectronic substrate having a plurality of microelectronic devices attached thereto and by thermally contacting each of the plurality of thermally conductive structures of the flexible integrated heat spreader to its respective microelectronic device on the microelectronic substrate.
US10177063B2 Element chip and method for manufacturing the same
A method for manufacturing an element chip includes a protection film stacking step of staking a protection film to the element region, and the dividing region, the part of the exposed second damaged region and a protection film etching step of removing a part of the protection film which is stacked on the dividing region and the protection film which is stacked on the element region by exposing the substrate to second plasma and remaining the protection film for covering the part of the second damaged region. Furthermore, the method for manufacturing an element chip includes a plasma dicing step of dividing the substrate to a plurality of element chips by exposing the substrate to third plasma in a state where the second main surface is supported by a supporting member.
US10177061B2 Semiconductor device
In an embodiment, a semiconductor device includes a substrate, a Group III nitride-based semiconductor layer formed on the substrate, a first current electrode and a second current electrode formed on the Group III nitride-based semiconductor layer and spaced from each other, and a control electrode formed on the Group III nitride-based semiconductor layer between the first current electrode and the second current electrode. The control electrode includes at least a middle portion, configured to switch off a channel below the middle portion when a first voltage is applied to the control electrode, and second portions adjoining the middle portion. The second portions are configured to switch off a channel below the second portions when a second voltage is applied to the control electrode, the second voltage being less than the first voltage and the second voltage being less than a threshold voltage of the second portions.
US10177060B2 Chip package structure and manufacturing method thereof
A chip package structure includes a substrate, a chip, an encapsulant, a plurality of solder balls and a patterned metal layer. The substrate includes a first surface and a second surface opposite to each other. The chip is disposed on the first surface and electrically connected to the substrate. The encapsulant encapsulates the chip and covering the first surface. The solder balls are disposed on the second surface and electrically connected to the substrate. The patterned metal layer s disposed on the encapsulant. The patterned metal layer includes at least one concave portion and at least one convex portion defined by the concave portion. The convex portion faces the encapsulant. The adhesion layer is disposed between the patterned metal layer and the encapsulant. The adhesion layer is filled in the concave portion.
US10177057B2 Power semiconductor modules with protective coating
A semiconductor package is described which meets a plurality of predetermined electrical, mechanical, chemical and/or environmental requirements. The semiconductor package includes a semiconductor die embedded in or covered by a molded plastic body, the molded plastic body satisfying only a subset of the plurality of predetermined electrical, mechanical, chemical and/or environmental requirements. The semiconductor package further includes a plurality of terminals protruding from the molded plastic body and electrically connected to the semiconductor die, and a coating applied to at least part of the molded plastic body and/or part of the plurality of terminals. The coating satisfies each predetermined electrical, mechanical, chemical and/or environmental requirement not satisfied by the molded plastic body.
US10177051B2 Transistor work function adjustment by laser stimulation
Methods and apparatuses for modifying a work function of transistors included in an integrated circuit are disclosed. A tester unit may be configured to test an integrated circuit that includes a plurality of circuit paths. The tester unit may be further configured to analyze the results from testing the integrated circuit and, based on the analysis, identify a circuit path that fails to meet a desired performance goal. A work function of a transistor included in the identified circuit path may be modified by the tester unit using an energy source external to the integrated circuit.
US10177047B2 Trench gate first CMOS
After forming an interlevel dielectric (ILD) layer over a semiconductor material portion located on a substrate, a gate trench is formed extending through the ILD layer to expose a channel region of the semiconductor material portion. A gate structure is then formed within the gate trench. Epitaxial semiconductor regions are subsequently formed within source/drain contact openings formed on opposite sides of the gate structure, followed by forming source/drain contact structures on the epitaxial semiconductor regions.
US10177045B2 Bulk CMOS RF switch with reduced parasitic capacitance
Bulk CMOS RF switches having reduced parasitic capacitance are achieved by reducing the size and/or doping concentration of the switch's N-doped tap (N-Tap) element, which is used to conduct a bias voltage to a Deep N-Well disposed under each switch's P-Type body implant (P-Well). Both the P-Well and the N-Tap extend between an upper epitaxial silicon surface and an upper boundary of the Deep N-well. A low-doping-concentration approach utilizes intrinsic (lightly doped) N-type epitaxial material to provide a body region of the N-Tap element, whereby an N+ surface contact diffusion is separated from an underlying section of the Deep N-well by a region of intrinsic epitaxial silicon. An alternative reduced-size approach utilizes an open-ring deep trench isolation structure that surrounds the active switch region (e.g., the Deep N-well and P-Well), and includes a relatively small-sized N-Tap region formed in an open corner region of the isolation structure.
US10177044B2 Bulk CMOS RF switch with reduced parasitic capacitance
Bulk CMOS RF switches having reduced parasitic capacitance are achieved by reducing the size and/or doping concentration of the switch's N-doped tap (N-Tap) element, which is used to conduct a bias voltage to a Deep N-Well disposed under each switch's P-Type body implant (P-Well). Both the P-Well and the N-Tap extend between an upper epitaxial silicon surface and an upper boundary of the Deep N-well. A low-doping-concentration approach utilizes intrinsic (lightly doped) N-type epitaxial material to provide a body region of the N-Tap element, whereby an N+ surface contact diffusion is separated from an underlying section of the Deep N-well by a region of intrinsic epitaxial silicon. An alternative reduced-size approach utilizes an open-ring deep trench isolation structure that surrounds the active switch region (e.g., the Deep N-well and P-Well), and includes a relatively small-sized N-Tap region formed in an open corner region of the isolation structure.
US10177041B2 Fin-type field effect transistors (FINFETS) with replacement metal gates and methods
Disclosed are method embodiments for forming an integrated circuit (IC) structure with at least one first-type FINFET and at least one second-type FINFET, wherein the first-type FINFET has a first replacement metal gate (RMG) adjacent to a first semiconductor fin, the second-type FINFET has a second RMG adjacent to a second semiconductor fin, and the first RMG is in end-to-end alignment with the second RMG and physically and electrically isolated from the second RMG by a dielectric column. The method embodiments minimize the risk of the occurrence defects within the RMGs by forming the dielectric column during formation of the first and second RMGs and, particularly, after deposition and anneal of a gate dielectric layer for the first and second RMGs, but before deposition of at least one of multiple work function metal layers. Also disclosed herein are IC structure embodiments formed according to the above-described method embodiments.
US10177040B2 Manufacturing of FET devices having lightly doped drain and source regions
Embodiments described herein generally relate to methods of manufacturing n-type lightly doped drains and p-type lightly doped drains. In one method, photoresist mask is used to etch a transistor, and the mask is left in place (i.e., reused) to protect other devices and poly while a high energy implantation is performed in alignment with the photoresist mask, such that the implantation is adjacent to the etched transistor. One example of a high energy implantation is forming lightly doped source and dram regions. This technique of reusing a photoresist mask can be employed for creating lightly doped source and drain regions of one conductivity followed by using the technique a second time to create lightly doped source and drain regions of the complementary conductivity type. This may prevent use of at least one hard mask during manufacturing.
US10177032B2 Devices, packaging devices, and methods of packaging semiconductor devices
Devices, packaging devices, and methods of packaging semiconductor devices are disclosed. In some embodiments, a packaged semiconductor device includes a molding material and a plurality of through-vias disposed within the molding material. A dummy through-via and an integrated circuit die are also disposed within the molding material. An interconnect structure is disposed over the molding material, the plurality of through-vias, the dummy through-via, and the integrated circuit die.
US10177031B2 Subtractive etch interconnects
A method of forming an integrated metal line and interconnect. The method may include forming a first trench in a first ILD exposing a lower metal line, the first ILD is above a substrate, and the lower metal line is in the substrate; forming a first barrier layer in the first trench; forming an integrated metal layer (including a first metal line and a first via) on the first barrier layer; forming a first hardmask on the integrated metal layer; forming an isolation trench in the first hardmask and in the first metal line; forming a second barrier layer in the isolation trench; removing a portion of the second barrier layer from a bottom of the isolation trench exposing the first ILD; and forming a second ILD on the second barrier and in the isolation trench, where a bottom of the second ILD is in the first ILD.
US10177029B1 Integration of air gaps with back-end-of-line structures
Interconnect structures and methods for forming an interconnect structure. A sacrificial layer is formed on a substrate and an interconnect opening is formed that extends vertically through the sacrificial layer into the substrate. The interconnect opening is filled with a conductor to form a conductive feature. After filling the interconnect opening with the conductor, a dielectric layer is formed on the sacrificial layer. After the dielectric layer is formed on the sacrificial layer, the sacrificial layer is removed to form an air gap layer arranged vertically between the dielectric layer and the substrate.
US10177018B2 Process kit erosion and service life prediction
Embodiments of the present disclosure provide a method, system, and computer program product for monitoring a service life of a chamber component. In one example, the method includes receiving one or more power measurements of a semiconductor processing chamber from one or more sensors positioned about the semiconductor processing chamber. The processor compares the one or more power measurements to one or more threshold values corresponding to the service life of the chamber component. The processor determines whether the one or more power measurements exceed the threshold values. If the processor determines that the one or more power measurements exceed the threshold values, the processor takes remedial measures for the service life of the chamber component.
US10177017B1 Method for conditioning a processing chamber for steady etching rate control
Embodiments of the present disclosure provide methods for conditioning a plasma processing chamber to maintain a reliable and predicable processing conditions while performing a oxide removal process on a substrate. In one embodiment, a method for conditioning a plasma processing chamber includes supplying a first gas mixture including an inert gas into a processing chamber a first period of time in absent of a substrate, supplying a second gas mixture including an inert gas, a hydrogen containing gas and a halogen containing gas for a second period of time in absent of the substrate, and supplying a third gas mixture including an inert gas and a hydrogen containing gas for a third period of time in absent of the substrate in the processing chamber.
US10177010B2 Semiconductor device and method of balancing surfaces of an embedded PCB unit with a dummy copper pattern
A semiconductor device has a substrate. A conductive via is formed through the substrate. A plurality of first contact pads is formed over a first surface of the substrate. A plurality of second contact pads is formed over a second surface of the substrate. A dummy pattern is formed over the second surface of the substrate. An indentation is formed in a sidewall of the substrate. An opening is formed through the substrate. An encapsulant is deposited in the opening. An insulating layer is formed over second surface of the substrate. A dummy opening is formed in the insulating layer. A semiconductor die is disposed adjacent to the substrate. An encapsulant is deposited over the semiconductor die and substrate. The first surface of the substrate includes a width that is greater than a width of the second surface of the substrate.
US10177008B2 Silicon wafer and method for manufacturing the same
This method for manufacturing a silicon wafer includes: a first heat treatment step of performing RTP treatment on the silicon wafer in an oxidizing atmosphere; a step of removing a region in the silicon wafer in which an oxygen concentration increases in the first heat treatment step; a second heat treatment step of performing, after performing this removing step, RTP treatment on the silicon wafer in a nitriding atmosphere or an Ar atmosphere; and a step of removing, after performing the second heat treatment step, a region in the silicon wafer in which an oxygen concentration decreases in the second heat treatment step. This method enables the manufacture of a silicon wafer in which latent defects such as OSF nuclei and oxygen precipitate nuclei existing in a PV region are destroyed or reduced, and that has a gettering site.
US10177007B1 Method for forming low-temperature polysilicon device and method for planarizing polysilicon layer
A method for planarizing a polysilicon layer of a low-temperature polysilicon device is provided. The method includes: Step S1: Crystallizing the low-temperature polysilicon device. Step S2: Forming a flat coating layer on an uneven surface of the polysilicon layer of the crystallized low-temperature polysilicon device through a coating process. Step S3: Curing the flat coating layer. Step S4: Removing the cured flat coating layer and the polysilicon protrusion through a removing process to form a flat surface of the polysilicon layer. By the foregoing method, the surface of the rough and uneven polysilicon layer can be well-planarized. As a result, the problems of a broken film, unclean etching, or tip discharge, which would be induced by a rough polysilicon layer, are mitigated. Therefore, the production yield of the low-temperature polysilicon device is improved.
US10177001B2 Surface modifying material for semiconductor device fabrication
Methods and materials for making a semiconductor device are described. The method includes forming a surface preparation layer over the semiconductor substrate. The surface preparation material layer includes an aziridine structure. A coating layer may then be deposited on the surface preparation material layer.
US10176988B2 Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
A method of manufacturing a semiconductor device includes forming a film on a substrate by performing a cycle a predetermined number of times. The cycle includes: supplying a precursor to the substrate in a process chamber and exhausting the precursor from a first exhaust system; and supplying a reactant to the substrate in the process chamber and exhausting the reactant from a second exhaust system. In the forming of the film, when the precursor does not flow through the first exhaust system, a deactivator that is a material different from the reactant is directly supplied from a supply port provided in the first exhaust system into the first exhaust system.
US10176986B2 Semiconductor device and method for manufacturing the same
A semiconductor device is disclosed in which proton implantation is performed a plurality of times to form a plurality of n-type buffer layers in an n-type drift layer at different depths from a rear surface of a substrate. The depth of the n-type buffer layer, which is provided at the deepest position from the rear surface of the substrate, from the rear surface of the substrate is more than 15 μm. The temperature of a heat treatment which is performed in order to change a proton into a donor and to recover a crystal defect after the proton implantation is equal to or higher than 400° C. In a carrier concentration distribution of the n-type buffer layer, a width from the peak position of carrier concentration to an anode is more than a width from the peak position to a cathode.
US10176985B2 Method of manufacturing light emitting device
The method includes the steps of: storing slurry containing optical matter particles into a slurry tank; stirring the slurry inside the slurry tank by causing a bubble producing unit arranged below a liquid surface of the slurry to produce bubbles; and spraying the slurry onto a coating target including a light emitting element from a nozzle arranged above the coating target.
US10176981B2 Semiconductor device and semiconductor device manufacturing method
If a SiO2 film is formed on a semiconductor substrate using TEOS (tetraethylorthosilicate: Si(OC2H5)4), carbon (C) may be mixed in the SiO2 film in some cases. In a SiO2 film, carbon may function as fixed charges. For example, if carbon (C) is mixed in a SiO2 film as a gate insulating film of a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), the gate threshold voltage (Vth) may fluctuate. A semiconductor device using a gallium nitride semiconductor layer is provided. The semiconductor device includes: a silicon dioxide film that is provided at least partially in direct contact with the gallium nitride semiconductor layer and has impurity atoms, wherein the silicon dioxide film contains as the impurity atoms: carbon at concentration higher than 0 cm−3 and lower than 2E+18 cm−3; and gallium at concentration equal to or lower than 1E+17 cm−3.
US10176979B2 Post-CMP removal using compositions and method of use
An amine-free composition and process for cleaning post-chemical mechanical polishing (CMP) residue and contaminants from a microelectronic device having said residue and contaminants thereon. The amine-free composition preferably includes at least one oxidizing agent, at least one complexing agent, at least one basic compound, and water and has a pH in the range from about 2.5 to about 11.5. The composition achieves highly efficacious cleaning of the post-CMP residue and contaminant material from the surface of the microelectronic device without compromising the low-k dielectric material or the copper interconnect material.
US10176978B2 Control of magnetic sector mass spectrometer magnet
A control system for controlling a magnet of a magnetic sector mass spectrometer comprises a magnetic field sensor for sensing the magnetic field of the magnet and generating an output representative thereof; a set point generator configured to generate an output representative of, or related to, a desired magnetic field of the magnet; and a digital controller configured to receive a variable digital input signal from the output of the magnetic field sensor and a set point digital input signal from the output of the set point generator, and to generate a digital output from which is derived a control signal for controlling a current to the magnet so as to control the magnetic field thereof. The control system is arranged to apply to the digital controller a selected one of a plurality of different controller settings, in accordance with the desired magnetic field of the magnet.
US10176975B2 Detector plate for radiation analysis and method for producing same
A detector plate includes a carrier plate, especially an injection-molded carrier plate, having a plurality of detector elements for detecting ionizing radiation. The detector elements function according to the principle of a Geiger-Müller counter. To simplify the production process and to save cost, the anode and/or the cathode should be in the form of a metallization on the carrier plate of the detector plate, the metallization(s) not being present in a single plane only. This configuration offers multiple options for designing the interior used as ionization chamber and for arranging the electrodes in this space. The options for contact with additional printed circuit boards also turn out to be highly advantageous. This further has an advantageous effect on the production process and on the qualities of the radiation measurement devices using detector plates of this kind.
US10176971B2 Plasma processing apparatus
In a plasma processing apparatus, an operation unit configured to calculate a parameter including any one of a load impedance, a load resistance and a load reactance of a high frequency power supply and a reflection wave coefficient of a high frequency power, and a controller configured to sequentially perform multiple cycles, each having plural stages which are performed in sequence. The controller is configured to control a setting of the high frequency power supplied to an electrode to be changed at a time point when the parameter exceeds a threshold value after a processing gas is changed. The changing of the setting of the high frequency power includes changing a power level of the high frequency power and/or changing the high frequency power from one of a continuous wave and a pulse-modulated high frequency power to the other thereof.
US10176970B2 Redundant Power Supply System for a plasma process
A power supply system for a plasma process includes two separate power supplies of essentially identical performance characteristics, including a first power supply and a second power supply, and a data transfer connection operably coupling the two power supplies for data communication between the two power supplies. The first power supply is configured to: receive, in a standby mode, data via the data transfer connection from the second power supply supplying power to a plasma process in a normal operating mode, and supply, in an active backup mode, power to the plasma process in place of the second power supply, as a function of the received data. The first power supply can supply in the active backup mode to the plasma process the power having one or more characteristics that are substantially the same as those of the power provided by the second power supply in the normal operating mode.
US10176963B2 Method and apparatus for alignment of optical and charged-particle beams in an electron microscope
Apparatus and methods for the alignment of a charged-particle beam with an optical beam within a charged-particle beam microscope, and to the focusing of the optical beam are disclosed. An embodiment includes a charged-particle beam microscope having one or more charged-particle beams, such as an electron beam, and one or more optical beams provided by an optical-beam accessory that is mounted in or on the charged-particle beam microscope. This accessory is integrated into a nanomanipulator system, allowing its focus location to be moved within the microscope. The apparatus includes a two-dimensional pixelated beam locator such as a CCD or CMOS imaging array sensor. The image formed by this sensor can then be used to manually, or automatically in an open or closed loop configuration, adjust the positioning of one or more charged-particle beams or optical beams to achieve coincidence of such beams or focus of one or more such beams.
US10176962B2 X-ray emitter
An X-ray emitter has an X-ray tube which contains a vacuum envelope in which an emitter and an anode are disposed. The emitter can be heated by an external flat emitter filament supply. Accordingly the emitter is configured as a filament emitter and an interface circuit is arranged between the filament emitter and the flat emitter filament supply. In this manner, a flat-emitter-based X-ray emitter can be replaced by a filament-emitter-based X-ray emitter in an X-ray emitter system without any configuration changes.
US10176958B2 Electrode material for thermal-fuse movable electrode
The present invention is an electrode material constituting a movable electrode of a thermal fuse, having a five-layer clad structure including a core material layer, an intermediate layer formed on the both sides of the core material layer, and a surface layer formed on the intermediate layer, wherein the core material layer includes Cu, the intermediate layer includes an Ag—Cu-based alloy, the surface layer includes an Ag—CuO-based oxide-dispersed strengthened alloy, and the ratio of the thickness of the intermediate layer to the thickness of the surface layer (intermediate layer/surface layer) is 0.2 or more and 1.0 or less. This electrode material can be manufactured by partially internally oxidizing a three-layer clad material in which plate materials made of an Ag—Cu-based alloy are clad-jointed to both sides of the plate material made of Cu.
US10176953B2 Weld resistant contactor
In an electromagnetically controlled actuator of an electrical contactor, switching is done by the actuator with a set of fixed contacts and a set of movable contacts. The movable contacts are carried on a movable contact carrier. The movable contact carrier is coupled to and driven by an armature surrounded by a coil. The armature carries a coupling shaft, and the coupling shaft carries at least part of a bistable coupling mechanism which joins the armature to the movable contact carrier and allows the movable contact carrier and armature to keep the fixed and movable contacts separated when a short circuit current creates a contact welding situation.
US10176947B2 High-voltage DC circuit breaker for blocking DC current
The present invention relates to a high-voltage direct current (DC) circuit breaker for cutting off a fault current from flowing through a line during a malfunction in a high-voltage DC line. A DC circuit breaker according to the present invention comprises: a mechanical switch disposed on a DC line; an L/C circuit connected in parallel with the mechanical switch (110), and comprising a capacitor and a reactor connected in series to each other to generate LC resonance; a first semiconductor switch, connected in parallel to the L/C circuit, for switching the unidirectional flow of the current; and a second semiconductor switch, connected in parallel to the first semiconductor switch, for switching the uni- and reverse-directional flow of current.
US10176941B1 Electronic device controller assembly
An electronic device controller assembly for ergonomic dual-handed control of the electronic device includes a housing. At least one circuit board is positioned in the housing. The at least one circuit board is configured to selectively and operationally couple to the electronic device. Each of a pair of sticks is pivotally coupled to and extends between the upper face of the housing and a bottom of a respective plate. Each plate is configured to position a respective hand of a user. A plurality of first buttons is coupled to the plates. The sticks and the first buttons are operationally coupled to the at least one circuit board. Each first button is configured to be depressed to selectively control a respective function of the electronic device. Each plate is positioned to compel an associated stick to pivot relative to the housing to signal a directional movement.
US10176938B2 Double dead band tab switch for transformer and control method
The present invention relates to a tap switch control method, which comprises the steps of: measuring data of a distribution system; calculating a second dead band and a reference voltage using the measured data; comparing the difference between the measured actual voltage and the reference voltage with a first dead band; comparing the difference between the actual voltage and the reference voltage with the second dead band, when the difference between the actual voltage and the reference voltage is outside the first dead band as a result of the comparison with the first dead band; and controlling the tap of the transformer, when the difference between the actual voltage and the reference voltage is outside the second dead band as a result of the comparison with the second dead band. Accordingly, it is possible to suppress a frequent operation of tap switching due to the fluctuations of the system and distributed power supply by applying the double dead band and to ensure the transformer's lifespan.
US10176933B2 Super-capacitor and arrangement for miniature implantable medical devices
An energy storage device includes first and second electrodes and a solid state electrolyte. The first electrode includes carbon nanotubes, a conductive polymer, and a metallization on said carbon nanotubes. The second electrode similarly includes carbon nanotubes, a conductive polymer, and a metallization on said carbon nanotubes. The solid state electrolyte is disposed at least in part between the first electrode and the second electrode. In at least some embodiments, the conductive polymer of the first electrode includes polyaniline, and the metallization of the first electrode is a gold metallization.
US10176932B2 Method of manufacturing graphene composite including ultrasonic-wave pulverization post-treatment process and method of manufacturing active material using the same
A method of manufacturing a graphene composite including an ultrasonic-wave pulverization post-treatment process. The method includes radiating a microwave on a mixture of graphite oxide and a conducting agent, dispersing a resultant material, obtained during the radiating the microwave, in a liquid and performing ultrasonic-wave pulverization, and freeze-drying particles subjected to the ultrasonic-wave pulverization. The post-treatment process is added to the method of manufacturing the graphene composite including the reduced graphene oxide using the graphite oxide, thereby manufacturing a graphene composite having improved bindability with spherical activated carbon used to manufacture an active material. Further, the post-treated graphene composite is used to manufacture the active material and the supercapacitor, and accordingly, the active material can be thinly and densely applied to provide a supercapacitor having improved performance.
US10176927B2 Composite electronic component
A coil portion providing a common mode choke coil and a protection element portion providing ESD protection elements are disposed so as to be aligned in a lamination direction of a component body. The ESD protection elements are composed of a ground electrode and discharge electrodes each located so as to be spaced apart from the ground electrode at a predetermined interval. Capacitor electrodes are provided so as to be opposed to the discharge electrodes thereby to form capacitors, and the capacitors and coil conductors of the common mode choke coil form an LC filter. Accordingly, noise removal characteristics are caused to have higher attenuation and a wider band than with a mere inductor.
US10176922B2 Multilayer ceramic capacitor
In an embodiment, a multilayer ceramic capacitor 10 is constituted in such a way that four capacitive components C1 to C4 that are connected in series are formed between a first internal electrode layer group 14 and a second internal electrode layer group 15 adjacent to it, wherein, among the four capacitive components C1 to C4, the facing area Sc1 that defines the capacitance value of the capacitive component C1 closest to the first external electrode 12 and the facing area Sc4 that defines the capacitance value of the capacitive component C4 closest to the second external electrode 13 are greater than the facing areas Sc2 and Sc3 that define the capacitance values of the two remaining capacitive components C2 and C3, respectively. The multilayer ceramic capacitor is capable of satisfying the needs for both size reduction and voltage resistance increase.
US10176914B2 Electric power control with a dither signal
A method for controlling a current flowing through a consumer comprises the following steps, which are periodically traversed: determining a dither current based on a dither signal and a definite point in time, wherein the dither signal is determined by a frequency, an amplitude and a signal form and actuating a flow control valve to produce the sum of a target current and the determined dither current by the consumer. Furthermore, the method comprises determining an indication to the current flowing through the consumer; compensating the indication by the factor of the dither current; and providing the indication, wherein the determination of the dither current and the determination of the indication are synchronized with each other in a predetermined way.
US10176913B2 Semiconductor device, in-vehicle valve system and solenoid driver
An output driving circuit outputs an output current to a solenoid incorporated in a vehicle through an output terminal. A detection resistor connected between the output terminal and the output driving circuit. An amplification unit configured to output an analog detection signal generated by amplifying a voltage between both ends of the detection resistor. A current generation circuit configured to output a reference current. A reference resistor connected between the current generation circuit and a ground and configured to output a reference voltage according to the reference current. An A/D converter configured to convert the analog detection signal into a digital detection signal using the reference voltage as a reference. A control circuit configured to control the output current output from the output driving circuit according to the digital detection signal.
US10176910B2 Non-oriented silicon steel and manufacturing process thereof
The present invention provides a non-oriented silicon steel with excellent magnetic properties and a manufacturing process therefor. During the manufacturing process of the present invention, the temperature T of the molten steel of steel tapped from a converter during steelmaking and the carbon content [C] and the free oxygen content [O] comply with the following formula: 7.27×103≤[O][C]e(−5000/T)≤2.99×104, and the final annealing step uses tension annealing at a low temperature for a short time. A non-oriented silicon steel with a low iron loss, and excellent anisotropy of iron loss can be obtained by means of the manufacturing process of the present invention.
US10176907B2 Cable
A cable (100) includes a power wire (1), a ground wire (3), data transmission wires (2) between the power wire and the ground wire, and an insulating outer layer (4) enclosing the outer side of the power wire, the ground wire, and the data transmission wires. The power wire includes a conductor (11), an insulating layer (12) outside the conductor, and a metal shielding layer (13) outside the insulating layer. The power wire and the data transmission wires are spaced from each other by plastic materials.
US10176906B2 Shielded conductive path
Provided is a shielded conductive path exhibiting a shielding function over a broad frequency band between a low frequency and a high frequency even when the shielding member has a small cross-sectional area. A shielded conductive path includes conductive path main bodies, insulating layers surrounding the conductive path main bodies, and shielding members facing the outer circumferential surfaces of the insulating layers, each have a configuration in which a conductive layer and a magnetic layer are layered together. Electromagnetic noise in a frequency band between a low frequency and an intermediate frequency is blocked with the conductive layer, and electromagnetic noise in a frequency band between an intermediate frequency and a high frequency is blocked with the magnetic layer. The different frequency regions are assigned to the conductive layer and the magnetic layer, and therefore, the cross-sectional areas of the conductive layer and the magnetic layer need not be increased.
US10176905B2 Electrically conductive and insulative composite
An electrically conductive and insulative composite (ECIC) is disclosed. In various embodiments, an ECIC as disclosed herein may include an electrically conductive structural element and one or more electrically insulative structural elements adhesively bonded to the conductive structural element to form a unitized structure having a design shape and one or more significant mechanical properties. The conductive structural element is substantially encapsulated by said one or more electrically insulative structural elements with the exception of one or more contact areas comprising portions of conductive material not encapsulated by said one or more electrically insulative structural elements.
US10176902B2 Scintillator panel
The present invention is a scintillator panel including: a substrate, a barrier rib formed on the substrate, and a scintillator layer containing a phosphor filling cells divided by the barrier rib, wherein the scintillator layer is formed of a plurality of layers having different phosphor concentrations. The present invention provides a scintillator panel in which formation of the barrier rib makes it possible to improve image clarity and obtain a sufficient amount of emitted light.
US10176901B2 Systems, methods, and filters for radioactive material capture
A system configured to passively filter radioactive materials from a flow may include one or more particulate removal devices; one or more water removal devices; and/or one or more radionuclide removal devices. At least one of the one or more particulate removal devices may mechanically remove particulates of the radioactive materials from the flow. At least one of the one or more water removal devices mechanically may remove water from the flow. At least one of the one or more radionuclide removal devices may remove radioactive aerosols, reactive radioactive gases, or radioactive aerosols and reactive radioactive gases from the flow using engineered filter media. A filter may include a body, including an inlet and an outlet. The body may be configured to store filter media, to contain pressure from gas explosions, and/or to allow the stored filter media to move toward the outlet when pressure at the inlet increases.
US10176900B2 Equipment protecting enclosures
Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful intermediates and products, such as energy, fuels, foods or materials. For example, systems and methods are described that can be used to treat feedstock materials, such as cellulosic and/or lignocellulosic materials, in a vault in which the equipment is protected from radiation and hazardous gases by equipment enclosures. The equipment enclosures may be purged with gas.
US10176894B2 Wearable electronic device and method for controlling the same
A method includes determining whether the electronic device is attached on a human body and controlling the electronic device based on information regarding at least one of a body condition of a user, the body condition measured when the electronic device is attached, the user wearing the electronic device a position where the electronic device is attached or detached, or when the electronic device is attached or detached. An electronic device includes a memory configured to store an instruction to enable the processor to determine whether the electronic device is attached on a human body and to control the electronic device based on information regarding at least one of a body condition as measured when the electronic device is attached, the user wearing the electronic device, a position where the electronic device is attached or detached, and a time when the electronic device is attached or detached.
US10176893B2 Methods and systems for managing patient treatment compliance
Provided are computer implemented method and systems for providing and monitoring patient compliance with a patient healthcare treatment plan. The method includes receiving, from a healthcare provider over a network, application features for generating a patient application including patient instructions for using a medical therapy, and generating an application for a patient. The application includes at least an input for the user to input data for use in evaluating patient compliance with a treatment plan. In addition, the method includes receiving, from the healthcare provider over the network, a prescription for the application for the patient, and activating the application after the patient receives training on use of the application. The method also may include receiving patient compliance data from the application over the network based on the input.
US10176892B2 Method and system for presenting summarized information of medical reports
A system and method for presenting summarized information of medical reports. The system and method receiving a plurality of medical reports, each medical report including a plurality of sections, each of the sections including text content, correlating corresponding sections of each of the medical reports into section types, extracting the text content of the sections of the medical reports for a selected section type and aggregating, into a single display, the text content of the sections of all the medical reports for the selected section type.
US10176891B1 System, RFID chip, server and method for capturing vehicle data
A system includes a plurality of tracking devices, such as RFID tags, affixed to items, such as vehicles, a data collection engine, client devices and backend devices. The backend devices include trained machine learning models, business logic, and attributes of a plurality of events. A plurality of data collection engines and systems send attributes of new events to the backend devices. The backend devices can track the items and predict particular outcomes of new events based upon the attributes of the new events utilizing the trained machine learning models.
US10176886B1 Multi-level data block error detection code
A data storage system can consist of a number of data storage devices each having a non-volatile memory, a memory buffer, and an error detection module. The memory buffer may store a first data block comprising a front-end first-level error detection code assigned by the error detection module. The non-volatile memory can consist of a second data block having a back-end first-level error detection code and a second-level error detection code each assigned by the error detection module.
US10176879B2 High voltage switch circuit and semiconductor memory device including the same
Disclosed are a high voltage switch circuit and a semiconductor memory device including the same. The high voltage switching circuit includes: a control signal generating circuit configured to supply a supply voltage to an internal node and generate a control signal in response to a first enable signal; a well bias generating circuit configured to apply a well bias to a well of a transistor included in the control signal generating circuit in response to a second enable signal; and a switching circuit configured to switch an input voltage to an output voltage in response to the control signal.
US10176876B2 Memory control method and apparatus for programming and erasing areas
A memory control method includes providing a memory including a first area and a second area, and reading data in the first area and the second area when receiving data to be stored. The method also includes selecting, from the first area and the second area, an area in which the data is in an erased state. In addition, the method includes performing a programming operation on each memory cell in the selected area to write the data to be stored into the selected area. Further, the method includes—performing an erase operation on a remaining area in the first area and the second area to perform a next data writing process, after writing the data to be stored into the selected area.
US10176875B2 Semiconductor memory device and operating method thereof
The semiconductor memory device includes: a memory unit having a plurality of memory blocks; a voltage supply circuit configured to generate a plurality of operating voltages and transmit the operating voltages to global word lines; and a pass unit coupled between respective local word lines of the plurality of memory blocks and the global word lines, and configured to couple the local word lines of a selected memory block to the global word lines in response to block select signals corresponding to the respective memory blocks, wherein the pass unit couples local word lines of an unselected memory block to the global word lines for a preset time and then isolates local word lines of the unselected memory block from the global word lines in response to the block select signals while coupling local word lines of the selected memory block to the global word lines.
US10176872B2 Semiconductor device having equalizing period, memory system having the same, and read method thereof
A method for operating a semiconductor device includes activating a first selection line coupled to a selected first memory string and deactivating a second selection line coupled to an unselected second memory string, applying a read voltage to a selected word line and a pass voltage to an unselected word line, and equalizing the selected word line and the unselected word line, wherein the second selection line is turned on during the equalizing of the selected and unselected word lines.