Document Document Title
US10171778B2 Liquid cooling apparatus
A liquid cooling apparatus has a chassis, a cover mounted on the chassis, and a dividing structure disposed in an inner chamber defined between the chassis and the cover. The dividing structure divides the inner chamber into a liquid inlet compartment and a liquid outlet compartment. The liquid inlet compartment communicates with the liquid outlet compartment via the recess. The liquid cooling apparatus can be installed on a first panel with the boss of the chassis mounted through a through hole of the first panel and thermally attached to a heat source on a second panel. A working fluid that flows into the liquid inlet compartment is forced to flow into the recess before flowing to the liquid outlet compartment by the dividing structure. Accordingly, heat generated by the heat source can be effectively dissipated.
US10171777B2 Streaming and storing video content captured by an audio/video recording and communication device
The present embodiments solve the problem of low-quality stored footage from video stream by storing copies of data packets at a local storage device of the A/V recording and communication device. The locally stored data is subsequently (e.g., after the live stream has terminated) uploaded to a remote storage device. If any data packets are lost during the upload process, those lost data packets can be re-sent from the local storage device to the remote storage device so that the complete recording can be stored at the remote storage device. The subsequent upload process may, in some embodiments, comprise a reliable data transfer protocol.
US10171772B2 System and methods for facilitating virtual presence
A virtual presence system includes a display having a structural matrix configured to arrange a plurality of spaced pixel elements. A plurality of spaced pixel elements collectively form an active visual area wherein an image is displayable. At least one image capture device is disposed within the active visual area for capturing an image.
US10171767B2 Image reader comprising CMOS based image sensor array
The invention features an image reader and a corresponding method for capturing a sharp distortion free image of a target, such as a one or two-dimensional bar code. In one embodiment, the image reader comprises a two-dimensional CMOS based image sensor array, a timing module, an illumination module, and a control module. The time during which the target is illuminated is referred to as the illumination period. The capture of the image by the image sensor array is driven by the timing module that, in one embodiment, is able to simultaneously expose substantially all of the pixels in the array. The time during which the pixels are collectively activated to photo-convert incident light into charge defines the exposure period for the sensor array. In one embodiment, at least a portion of the exposure period occurs during the illumination period.
US10171764B2 Apparatus, system and method for a manufactured imager system
An apparatus, system and method are disclosed for a manufactured imager system. The apparatus, system and method may include an imager comprising a plurality of photosites divisible into a plurality of subsections, and at least one wafer-level lens additively composed of a plurality of material layers successively deposited directly upon the imager to achieve a predetermined optical performance for each of the plurality of subsections. The material layers may comprise one or more of a photopolymer, a thermoplastic resin, a low temperature melting glass, and a glass sheet, and may be uniform or non-uniform.
US10171763B2 Method for fixed pattern noise reduction and use of such method
An apparatus is disclosed for structural fixed pattern noise reduction in a video stream. A method may include, for each target pixel in a first image frame, defining a first target pixel patch, and defining a first search area comprising the first target pixel patch; for each pixel in the first search area, comparing a first pixel patch around the pixel with the first target pixel patch, and using the pixel when calculating an average for the target pixel. The method may include, in a second image frame, localizing a second target pixel, and defining a second search area comprising the second target pixel; for each pixel in the second search area, comparing a second pixel patch around the pixel of the second search area with the first target pixel patch, and using the pixel in the second search area when calculating an average for the target pixel.
US10171758B2 Multi-spectrum imaging
Multi-spectrum imaging systems and methods are provided to imaging in multiple spectrums, e.g., thermal IR (infrared) at 4 μm and 10 μm wavelengths, near-IR, and visible light, all on a same optical centerline. For example, an imaging system includes a first imager and a second imager. The first imager includes an array of thermal IR detectors, wherein the first imager is configured to receive incident photonic radiation and generate a thermal IR image, wherein each thermal IR detector comprises a photon absorber member that is configured to absorb thermal IR photonic radiation from the incident photonic radiation, and reflect remaining photonic radiation in the incident photonic radiation along an optical path of the imaging system. The second imager is disposed in said optical path of the imaging system, wherein the second imager is configured to receive the remaining photonic radiation reflected from the first imager and generate a second image.
US10171748B2 Image pickup apparatus, non-transitory computer-readable medium storing computer program, and image pickup method
An image pickup apparatus includes a microcomputer that sets, when a proper exposure time is longer than a frame period, one or more long exposure times equal to or shorter than the frame period and a short exposure time such that a total time of the one or more long exposure times and the short exposure time is equal to the proper exposure time, an image pickup device that outputs a long exposure image and a short exposure image for every frame period, and a cumulative addition processing section that adds the short exposure image and the long exposure image or long exposure images of one or more frames to generate a synthetic image corresponding to the proper exposure time.
US10171747B2 Image capturing apparatus, external apparatus, image capturing system, method for controlling image capturing apparatus, computer program, and computer-readable storage medium
An image capturing apparatus to communicate with an external apparatus includes an image capturing unit, a receiving unit, a control unit, a determining unit, and a transmitting unit. The receiving unit receives, from the external apparatus, a synthesizing command for controlling an operation of synthesizing images that have been captured by the image capturing unit under different exposure conditions, and an exposure setting command for controlling an operation of obtaining an image that has been generated under a set exposure condition. The control unit controls an operation that is performed based on the synthesizing and exposure setting commands, where the receiving unit receives the synthesizing and exposure setting commands. The transmitting unit transmits, to the external apparatus, operation information indicating operations which are specifiable by the synthesizing command and the exposure setting command received by the receiving unit, in accordance with a determination result obtained from the determining unit.
US10171740B2 Method and apparatus to correct blur in all or part of a digital image by combining plurality of images
A method and apparatus for use in a digital imaging device for correcting image blur in digital images by combining plurality of images. The plurality of images that are combined include a main subject that can be selected by user input or automatically by the digital imaging device. Blur correction can be performed to make the main subject blur-free while the rest of the image is blurred. All of the image may be made blur-free or the main subject can be made blur-free at the expense of the rest of the image. Result is a blur corrected image that is recorded in a memory.
US10171739B2 Image pickup device
An image pickup device includes an optical system including a plurality of lenses, an imaging element that captures a subject image formed by the optical system, and a peripheral light quantity correction unit that corrects peripheral light quantity of an image captured by the imaging element. The image pickup device also includes a shake detector that detects shake of the image pickup device, and a drive controller that moves at least one of (i) the plurality of lenses and (ii) the imaging element on a plane perpendicular to an optical axis in response to an output signal of the shake detector to correct the shake. The peripheral light quantity correction unit extracts a predetermined frequency component of the shake and changes a correction amount of the peripheral light quantity in response to the predetermined frequency component of the shake.
US10171738B1 Stabilizing video to reduce camera and face movement
The subject matter described in this disclosure can be embodied in methods and systems for stabilizing video. A computing system determines a stabilized location of a facial feature in a frame of video accounting for its location in a previous frame. The computing system determines a physical camera pose in virtual space and maps the frame into virtual space. The computing system determines an optimized virtual camera pose using an optimization process that determines (1) a difference between the stabilized location of the facial feature and a location of the facial feature when viewed from a potential virtual camera pose, (2) a difference between the potential virtual camera pose and a previous virtual camera pose, and (3) a difference between the potential virtual camera pose and the physical camera pose. The computing system generates the stabilized view of the frame using the optimized virtual camera pose.
US10171737B2 Imaging device
An imaging device includes: a shake detection unit that holds a gyro sensor inside the shake detection unit; a first sheet metal and a second sheet metal that sandwich the shake detection unit in two facing directions; a first cushion member that abuts on the first sheet metal and faces the shake detection unit via the first sheet metal; and a second cushion member that abuts on the second sheet metal and faces the shake detection unit via the second sheet metal.
US10171736B2 Control an imaging mode of an imaging device based on posture information of the imaging device
A control unit 15 is provided at an imaging system 10. The control unit 15 controls a mode relating to imaging of an imaging apparatus according to posture determination information indicating at least posture of the imaging apparatus in a separation state between a fixation state in which the imaging apparatus and an information processing apparatus are fixed to each other and the separation state in which the imaging apparatus is separated from the information processing apparatus. For example, when a fixation/separation determining unit 91 of the imaging apparatus 20 determines that the imaging apparatus 20 and the information processing apparatus 60 are in the separation state, a control unit 45 controls the mode relating to imaging of the imaging apparatus 20 according to the posture determination information indicating the posture of the imaging apparatus 20. When the fixation/separation determining unit 91 of the information processing apparatus 60 determines that the imaging apparatus 20 and the information processing apparatus 60 are in the separation state, a control unit 85 controls the mode relating to imaging of the imaging apparatus 20 according to the posture determination information indicating the posture of the imaging apparatus 20. It is possible to easily set the mode relating to imaging.
US10171734B2 Rotatable imaging system
An imaging system that includes a rotating unit that includes an imaging camera, an alignment camera and at least a first monitor. The rotating unit is rotatable between a home position and a finish position about a rotation axis such that the imaging camera can capture a first scan. The alignment camera is directed generally downwardly and is configured to capture a first alignment image of a subject positioned generally co-axially with the rotation axis. The first alignment image is displayed on the first monitor.
US10171732B2 Image processing apparatus, image pickup apparatus, image processing method, and non-transitory computer-readable storage medium for generating an image based on plurality of parallax images
An image processing apparatus includes at least one processor operatively coupled to a memory. The at least one processor functions as a determiner configured to determine a weight coefficient that varies depending on a position in each of a plurality of parallax images, and an image generator configured to synthesize the plurality of parallax images based on the weight coefficient to generate an image. In addition, a sum of the weight coefficients of the plurality of parallax images is constant with respect to all positions in the plurality of parallax images.
US10171723B2 Frequency domain range determination for a periodic or quasi-periodic target
Examples disclosed herein relate to determining peak distances between an origin, point in the frequency domain and peak points of a discrete Fourier transform magnitude of an image of a periodic or quasi-periodic target. In some implementations, a range distance between the target and the imaging lens is determined based on the peak distances.
US10171722B2 Lens unit and rear-side focus adjustment system of infrared camera
A lens unit and a rear-side focus adjustment system for infrared cameras capable of performing rear-side focus adjustments even when the position of the detection surface of an infrared sensor is unknown in an infrared camera. The lens unit is detachably mounted on a camera body that detects infrared light with an infrared sensor and converts the infrared light to an image signal, the lens unit including a focus adjustment lens and controller. The controller calculates a rear-side focus adjustment amount for causing a rear-side focus position to correspond to the detection surface based on an error between an actually measured focused position of the focus adjustment lens relative to an object at a particular object distance and a theoretically focused position of the focus adjustment lens calculated based on the object distance and controls the position of the focus adjustment lens based on the rear-side focus adjustment amount.
US10171720B2 Camera control application
An apparatus comprising: at least one processor; and at least one memory including computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus to perform at least the following: receive a user input; and based on the user input, provide an open instance of a first camera control application on a first apparatus as a corresponding open instance of an at least related camera control application on a second apparatus.
US10171718B2 Capacitive rotation sensing apparatus and method
An electronic apparatus includes a first detection electrode group, a second detection electrode group, a third detection electrode group, a rotating member for moving among positions in which the rotating member faces the first to third detection electrode groups, a detection unit for detecting electrostatic capacitances of the first to third detection electrode groups, a determination unit for determining a rotation direction, a rotation amount, or a rotation angle of the rotating member in accordance with the electrostatic capacitances of the first to third detection electrode groups and threshold values for the first to third detection electrode groups, and an updating unit for updating a reference value of one of the first to third detection electrode groups corresponding to a selected smallest electrostatic capacitance using the selected smallest electrostatic capacitance.
US10171713B1 Method of aligning lens optical axis to image sensor plane without active alignment
A tracking code is applied to a lens housing that holds one more lenses. A back focus distance and a tilt of an optical axis with respect to a datum of the lens housing is electronically recorded. A position of an image sensor surface of an image sensor mounted on a substrate is measured. The lens housing is positioned such that the optical axis is perpendicular to the image sensor surface using the measured position of the image sensor surface and the electronically recorded optical data for the lens housing. The lens housing is positioned along the optical axis such that the lenses are separated from the image sensor surface using the measured position of the image sensor surface and the electronically recorded back focus distance for the tracking code of the lens housing. The lens housing is joined to the substrate with an adhesive.
US10171710B2 Device and method for digital data distribution, device and method for digital data reproduction, synchronized reproduction system, program, and recording medium
In order to eliminate timing offset between reproduction devices when a content transmitted from a distribution device is received and reproduced by a plurality of reproduction devices, data (SCR) indicating the elapsed time from the start of the content, generated by counting clock pulses, and data (FCR) indicating a frame number generated by counting the number of frames reproduced by a decoder (54) are transmitted by the distribution device, and a clock generation unit (103) in each reproduction device is controlled so that data (STC) indicating the elapsed time and data (FTC) indicating the frame number, which are generated in the same manner by each reproduction device, match the transmitted data (SCR, FCR). Synchronization between reproduction devices can thereby be established even when, in a state in which a content is being reproduced by one reproduction device, another reproduction device subsequently connects to the distribution device.
US10171708B2 Image reading apparatus
An original image is read as an aggregate of a plurality of pixels in which adjacent pixels have different colors (R, G, and B) in a main scanning direction and in a sub-scanning direction, and the read pixels of the respective colors are stored in a line memory in association with information on relative positions of the pixels with respect to another pixel. Then, the stored pixels are sorted so that pixels having the same color are adjacent to each other, and an abnormal pixel (dust) not present in the original image is detected based on the state of the sorted pixels. With this, the dust not present in the original image is detected without increasing the cost, and the dust is corrected without forming a conspicuous trace of correction.
US10171703B2 Mobile apparatus, image scan apparatus and method for performing a scanning operation and generating a scan image
A mobile apparatus includes a user interface configured to allow a user to select an image scan apparatus, a communication interface configured to transmit a scan command to the selected image scan apparatus and receive a plurality of image data from the selected image scan apparatus via a streaming method, and a controller configured to generate a scan image using the plurality of image data.
US10171701B2 Image scanning apparatus
An image scanning apparatus includes an image capturing unit, a pulse driving unit and a control unit. The image capturing unit captures an image of an object. The pulse driving unit drives the image capturing unit and the object along a scanning direction to move with respect to each other among multiple pulse nodes, so as to scan the object. The control unit is electrically connected to the pulse driving unit and the image capturing unit, and the control unit controls the image capturing unit to capture multiple images of the object between adjacent pulse nodes, so as to synthesize a scanned image corresponding to the object.
US10171699B2 Scanner for scanning micro-details of specimens
The present disclosure relates to a micro-scanning device that comprises a surface on which specimen to be scanned is positioned, and at least one micro lens configured to enable scanning of the specimen so as to obtain micro-details of the specimen. One or more micro lenses are installed below the flatbed surface in an array of movable configuration or in a stationary configuration. The device further incorporates a front panel to live-view micro-detail image of a specimen placed on the flatbed surface and incorporates means to focus, size, and zoom/scale the micro-detail image of the specimen. The device can be either a portable/handheld device or a stationary device and incorporates scan firmware to save and store or send copy of image incorporating micro-details on an associated/coupled computing device and/or in the internal memory of the scanner for performing any of stitching, printing, saving or sharing.
US10171696B2 Image processing apparatus and image processing method for recognizing characters in character string regions and table regions on a medium
An image processing apparatus includes an image reading unit, a character recognition unit, an operation unit, and a file generation unit. The image reading unit generates image information which includes at least one of a character string and a table. The character recognition unit recognizes characters and generates character information corresponding to each character included in one of the at least one of the character string and the table. The operation unit receives, from a user, a selected file format of an electronic file to be generated. The file generation unit generates an electronic file including the generated character information in accordance with the selected file format. The character recognition unit recognizes the characters and generates the character information in the generated image information in accordance with the one of the at least one of the character string and the table that corresponds to the selected file format.
US10171695B1 Out-of bounds detection of a document in a live camera feed
Aspects of the present disclosure provide methods and apparatuses for processing a digital image of a document, for example, to determine whether the document is a long document. An exemplary method generally includes obtaining a plurality of digital images of the document, segmenting at least a first digital image of the plurality of images into pixels associated with a foreground of the first digital image and pixels associated with a background of the first digital image, detecting a plurality of contours in the segmented first digital image, deciding, for each detected contour of the plurality of contours, whether that contour is an open contour or a closed contour, and determining that one or more sides of the document is out-of-bounds based, at least in part, on the decisions.
US10171691B2 Document generation system for generating a second document from elements extracted from a first document, and document server, document generation method, and computer program
A document generation system which generates, from a first document in which a plurality of text groups constituted by a plurality of lines arranged in a first direction is arranged in a second direction different from the first direction, a second document includes: a ranking unit configured to rank each of the plurality of text groups according to an order in which a person reads the first document; and a generating unit configured to generate, as the second document, a document in which each of the plurality of text groups is arranged one by one in the first direction in ascending order ranked by the ranking unit.
US10171683B2 Wireless communication terminal that sends a message of the intention of a user to continue a call
A radio communication control device accepts a call-up from a radio communication terminal and includes a unit configured to detect the degree of jamming in a cell, a unit configured to confirm the intention of a user of a terminal concerned as to whether the call-up is continued regardless of addition of an extra to the user's telephone call charge when the call-up has been made from a radio communication terminal in the cell concerned in a specific jammed state, a unit configured to block the call-up concerned in accordance with the confirmed intention of the user of the terminal concerned and a unit configured to change charge setting so as to add an extra to the user's telephone call charge when the call-up has not been blocked in the specific jammed state.
US10171679B2 Differential online charging for text messages based on network type
Systems and methods are disclosed for performing online charging for text messages. One embodiment comprises a system that handles a Mobile Originated (MO) text message. The system receives a send request for the MO text message, and generates an online credit request for the MO text message. The system determines a type of originating network for the MO text message, and inserts an indicator of the originating network type in the online credit request. The system may also determine a type of terminating network for the MO text message, and insert an indicator of the terminating network type in the online credit request. The system then transmits the online credit request to an online charging system to charge for the MO text message.
US10171678B2 Systems and methods of call-based data communication
A method of establishing a communications session for communication of data with respect to a telephony user device and at least one other user device in a data communications network. Communications are conducted with a server system. The communications comprise a client-server connection. Call party details of a telephone call are transmitted to the server system in the communications. The telephone call involves at least the telephony user device, as a first telephony user device involved in the call, and a second telephony user device involved in the call. The call party details including a first identity associated with the first telephony user device and a second identity associated with the second telephony user device.
US10171677B2 Systems and methods for monitoring sound during an in-building emergency
A system for monitoring a building having one or more microphones coupled to a telephone includes a detector configured to detect a triggering event within the building and transmit an activating signal when the triggering event is detected, and a control module configured to receive the activating signal from the detector. The control module is programmed to activate at least one of the one or more microphones to monitor sound when the activating signal is received.
US10171676B2 Method for completing internet telephony calls
A call between a calling party and a called party, one or both of whom may be subscribers to Internet Telephony (IT) services, commences upon the receipt of a call dialed by the calling party to the Plain Old Telephony Service (POTS) number associated with the calling party. A first hub receives the call and routes it to the called party if that party is not an IT services subscriber that is currently on line. If the called party is an IT services subscriber that is on-line, the call is received at an Internet Services Provider serving the called party. The ISP converts the call to an IT format if the call is not already in that format and thereafter delivers the call to the called party.
US10171670B1 Systems and methods for location based call routing
Disclosed herein are a system, method, and computer-readable medium with instructions for recommending a service provider based on a user's approximate current location. The service provider may be recommended for a service that is verified under a user's insurance policy and is also within proximity to the user's approximate current location. The user's approximate current location may be determined by location-based technology. The entity that receives and/or recommends the service provider may initiate a request for the service from the service provider. Further embodiments are related to routing a call to provide information to the user that is responsive to the user's location-relevant request. For example, systems, such as an automotive telematics system, may request information and be routed to the appropriate division of a user's insurance provider such that the automotive telematics system can provide services to the user that are user-specific (e.g., covered by the user's insurance policy).
US10171669B2 System and method for routing interactions for a contact center based on intelligent and dynamic routing considerations
A system and method for enhanced interaction processing in a contact center that includes routing interactions based on adaptable business objectives. A processor detects a pending interaction with a customer. The processor identifies first and second objectives of the contact center in response to detecting the pending interaction, where the first objective is identified as more important to the contact center than the second objective. The processor identifies a first agent for handling the first objective, and determines a likelihood of success of the first agent in achieving the first objective. The processor identifies a second agent for handling the second objective, and determines a likelihood of success of the second agent in achieving the second objective. In the event that the likelihood of success in achieving the second objective by the second agent is higher than the likelihood of success of achieving the first objective by the first agent, the processor transmits instructions to route the pending interaction to the second agent. The processor also prompts the second agent to pursue the second objective.
US10171667B2 Cluster based CRM
In a crowd sourcing approach, responses to customer service inquiries are provided by routing a subset of the inquiries to an independent group of experts. The customer service inquiries are optionally routed to specific experts based on matches between identified subject matter of the inquiries and expertise of the experts. Embodiments include an expert system configured to identify clusters of inquiries that can be responded to using predetermined response content. The expert system is optionally trained based on scored responses to prior customer service inquiries.
US10171666B2 Predictive routing
In a crowd sourcing approach, responses to customer service inquiries are provided by routing a subset of the inquiries town independent group of experts. The customer service inquiries are optionally routed to specific experts based on matches between identified subject matter of the inquiries and expertise of the experts. Embodiments include an AI based system configured to determine which of the inquiries should be routed to the independent group of experts. The expert system is optionally trained based on scored responses to prior customer service inquiries.
US10171665B2 Contact center session preservation
A system and method for handling a call made to a contact center after a prior call from the same caller was disconnected. In exemplary embodiments, a caller who was connected to an agent during the previous call may be placed in a routing path for the same agent, a caller who had provided information to the system during the previous call may not be required to provide the information again, and a caller who was in a routing path waiting for an agent may be placed ahead of other callers who have spent less time in the routing path.
US10171663B1 Establishing a target handle time for a communication in a contact center using analytics
Various embodiments of the invention provide methods, systems, and computer program products for establishing a target handle time (THT) for a communication routed to an agent in a contact center. Specifically, an analytics component is used to detect a keyword in the communication that identifies a reason for the communication. Accordingly, a THT is set for the communication based on the identified reason and a visual representation of the THT is displayed that includes a component decrementing with the passage of time. At some point, the communication is completed and a disposition code is entered for the communication. Accordingly, in particular embodiments, the disposition code is then confirmed to match the reason for the communication to ensure the correct reason was identified and the correct corresponding THT was set.
US10171661B2 System and method of distributed maintenance of contact center state
A system and/or a method of distributed maintenance of contact center state including the state of contact center objects which may include directory numbers and agents. Device controllers and call controllers are used to monitor device and call information. Data aggregation nodes are connected to the device controllers and call controllers. The data aggregation nodes share directory number state information and agent state information via a publish-subscribe bus, and aggregate state information to form full state information.
US10171660B2 System and method for indexing automated telephone systems
A telephone subnet crawler is used to access automated telephone response systems and index the information, contents and structure contained therein. A database of the information, contents and structure of a plurality of automated telephone response systems is created by the telephone subnet crawler. A user interface provides callers with direct access to the information, contents and structure of the automated telephone response systems contained in the database. Where an automated telephone response system requires user input, the user interface calls the automated telephone response system and navigates to the node requiring user input, provides the user input and displays the results to the user. Where an automated telephone response system connects to an operator, the user interface calls the automated telephone response system, navigates to the node for an operator, and when an operator is detected, calls the user at a user provided callback number.
US10171658B2 System and method for managing customer communications over communication channels
Systems and methods for managing customer communications over communication channels are disclosed. According to one embodiment, in an information processing apparatus, a method for managing customer communications over a plurality of communication channels may include (1) receiving, from a database, contact information for a customer; (2) determining that the contact information comprises a cellular phone number; (3) determining that the customer has not consented to being contacted on the cellular phone number; (4) receiving, from an electronic device associated with the customer, authorization to initiate contact with the customer using the contact information; and (5) automatically initiating contact with the customer on the cellular phone number, wherein the contact with the customer comprises a marketing solicitation.
US10171656B2 Systems and methods for providing real-time assistance to call center agents
A device may capture call data corresponding to call between an agent of a call center and a caller. The device may identify a guidance template based on the call data. The guidance template may include one or more rules and/or information for assisting the agent during the call. The device may generate an agent prompt based on the guidance template and/or provide the guidance prompt to an agent device of the agent. The agent device may receive the guidance prompt and display the guidance prompt to the agent. The agent device may capture additional call data from the call and update the guidance prompt based on the call inputs.
US10171654B2 Multi-dimensional auditory notification composition based on sender categorizations
A method for generating a multi-dimensional communication notification for notifying a user is provided. The method may include receiving a plurality of contact details for a contact entry within a contact list. The method may further include determining a plurality of categories associated with the contact entry based on the received plurality of contact details and the identified plurality of supplementary contact details. The method may also include configuring the multi-dimensional communication notification for the contact entry based on the determined plurality of categories.
US10171653B1 Instant support agent call setup and call connection application
Receiving and processing customer support calls initiated from a mobile/wireless device via a call function or via a mobile device application may include various operations. For instance, an example method of operation may provide receiving a service request from a mobile device, requesting a temporary telephone number to be assigned to a subsequent call to be placed from the mobile device, creating a database record with an identifier of the mobile device and the temporary telephone number, transmitting the temporary telephone number to the mobile device, receiving an automated call to the temporary telephone number from the mobile device, and connecting the mobile device with a remote call recipient.
US10171650B2 Anti-distracted driving systems and methods
An anti-distracted driving system comprises a plurality of transceivers at different locations within a vehicle. Each of the transceivers is operable to receive a signal from a mobile communication device and to output a detection signal indicative of the strength of the received signal. A controller in communication with the transceivers is operable to calculate a corresponding distance of the mobile communication device for each of the detection signals and to determine a location of the mobile communication device within the vehicle based on the distances. The controller can send a signal from a transceiver to a mobile communication device in response to determining that the mobile communication device is near a driver's seat, the signal causing at least one function of the mobile communication device to be inhibited.
US10171649B2 Network-based device locking management
Network-based device management is described. In an example, a server may receive, from a device, a request to change from a first, locked state to a second state. The server may access data associated with at least one of the device or an account associated with the device, and may compare the data with one or more predetermined rules. Satisfaction of the one or more predetermined rules may be necessary to effectuate a change from the first, locked state to the second state. The server may determine that the data satisfies the one or more predetermined rules and the server may send, to the device, an instruction to enable the device to change from the first, locked state to the second state. The instruction may direct an application on the device to effectuate a change to the subscriber identity module (SIM) card associated with the device.
US10171647B2 Apparatus for mobile application and frequency spectrum generator
A first aspect of the invention relates to an apparatus for mobile application, including a frequency spectrum generator for generating a frequency spectrum of radio waves at a current position of the apparatus and a classifier for classifying the frequency spectrum such that the frequency spectrum is assigned to one of at least two classes. A second aspect of the invention relates to a frequency spectrum generator with a tunable local oscillator, with a downmixer for downmixing a received antenna signal with the local oscillator signal for obtaining a downmixed signal, with a filter for filtering out a mirror-frequency portion in the downmixed signal, with a signal level detector for detecting a signal level of the downmixed signal at an intermediate frequency and with a control for sequentially controlling the local oscillator and the signal level detector to sample a frequency spectrum of the antenna signal.
US10171646B2 Systems and methods for providing geolocation services
The present invention provides a system for providing geolocation services in a mobile-based crowdsourcing platform. The system includes a plurality of remote mobile devices configured to communicate and exchange data with a geolocation service based on the crowdsourcing, or polling, of users of such mobile devices to determine location and movement of the users within a specific environment. For example, in an outdoor environment such as a parking lot, the system can track the location of a user's vehicle within the lot and provide the user with an exact position of their vehicle upon the user returning to the parking lot. In the instance of an indoor environment, such as an airport, the system provides a messaging/location alert service for persons within the airport, where any given person's location within the airport can be determined and correlated with an impending departure of a flight for which they are associated.
US10171644B2 Communication apparatus, method for controlling communication apparatus, and storage medium
A communication apparatus searches for a device using a first wireless communication, instructs, using the first wireless communication, a device selected from a list based the result of the search to operate in an access point mode, obtains, using the first wireless communication, connection information from the device operating in the access point mode, establishes a second wireless connection with the device based on the obtained connection information.
US10171640B2 Method, apparatus, and system for displaying message in mobile terminal
According to a method for displaying a message in a mobile terminal, message content that needs to be displayed may be obtained, then a visible area on a screen of a mobile terminal is determined, and a display length and a quantity of display lines of the message content are calculated according to the visible area, and the message content is displayed in the visible area in a scrolling manner according to the calculated display length of the message content if the quantity of the display lines exceeds a display range of the visible area. In this way, only a small area of a screen is occupied, and message content can be displayed automatically and completely without the need for a user to perform a further operation. An apparatus and a system for displaying a message in a mobile terminal are also provided.
US10171638B2 Force sensing based on structure-borne sound propagation
ForcePhone is a novel system for enabling phones to recognize the force applied to their touchscreen and/or body. ForcePhone uses built-in sensors to measure the applied force via a physical property called structure-borne sound propagation. The phone plays an inaudible sound through the phone's speaker. When the phone is free to vibrate, the sound from the speaker easily travels through its body to the phone's microphone. When a force is applied to the phone, vibration is restricted and the sound traveling through the pathway is degraded. ForcePhone estimate the amount of applied force by monitoring the change in sound degradation.
US10171637B2 Mobile apparatus
The present application discloses a mobile apparatus includes a light emitting unit, a touch sensor unit, a display panel and a control circuit; wherein the light emitting unit providing backlight to the display panel, the touch sensor unit is disposed on the light emitting unit and electrically connected to the control circuit. The present application is by disposing the touch sensor unit on the light-emitting unit and electrically connected to the control circuit, so that the mobile apparatus does not need to additional provide a FPC need to be adhesive to the cover plate to dispose the touch sensor unit, to save the cost and eliminate the adhesion process.
US10171632B2 Controlling client access to a server application
An approach is provided for controlling a rate at which requests from a client computer will be received by a server application executed on a server computer. Requests are received by the server computer at different times from the client computer and time intervals between different pairs of successive requests are measured. The server computer determines that each time interval is within a predefined range of time intervals. Based on each time interval being within the predefined range, the server computer determines and blocks a denial of service attack or an overload of requests from the client computer.
US10171628B2 Augmented reality for supporting intervention of a network apparatus by a human operator
A system for supporting an intervention to be carried out by a human operator on a network apparatus of a communication network is provided. The system includes a terminal device provided with a personal proxy, which is part of the equipment of the human operator. The personal proxy provides to the human operator instructions to carry out the various operations of the intervention, by displaying augmented reality elements overwritten to a live view of the network apparatus. Then, upon execution of each instruction, the personal proxy cooperates with the network management system for checking whether the instruction was properly executed, and reports the outcome to the operator by displaying further augmented reality elements overwritten to the live view of the network apparatus.
US10171627B2 Download of a package of code
A server receives a request from a client for download of a package of code, and determines a set of available modifications for the requested package of code. A user profile for a user of the client is accessed, a set of desired modifications for the package of code from the accessed user profile is determined, the package of code is modified according to the determined desired modifications that exist in the determined available modifications for the requested package of code, and the modified package of code is transmitted to the client.
US10171626B2 Automatically enforcing uniform resource locator workflow presentation
Presenting URLs on a user interface to guide users on a specific URL browsing path over an internet. A plurality of URLs for a user to view on a user interface running in a computing environment may be received. A URL workflow may be created, which comprise a sequence of the plurality of URLs the user is directed to view. The URL workflow may be created dynamically based on monitoring the current activities of the user in the computing environment. Each URL may be presented one after another on the user interface to automatically direct the user to a next specified URL in the workflow.
US10171621B2 Aggregating subscription information and requesting content objects based on aggregated subscription information
A device may receive first subscription information from a first user device. The device may receive second subscription information from a second user device. The device may aggregate the first subscription information and the second subscription information to form aggregated subscription information. The aggregated subscription information may be associated with receiving aggregated content from a content delivery server. The device may receive the aggregated content from the content delivery server based on the aggregated subscription information. The device may provide a first portion of the aggregated content to the first user device. The device may provide a second portion of the aggregated content to the second user device.
US10171616B2 Byte caching in wireless communication networks
Various embodiments provide byte caching in wireless communication networks. In one embodiment, a plurality of data packets are received through an internet protocol (IP) data flow established between a wireless communication device and at least one server. Each of the plurality of data packets are combined into a packet bundle. A determination is made as to whether a second byte caching system is available. The packet bundle is transformed using one or more byte caching operations based on a second byte caching system being available. The transformed packet bundle is sent to the second byte caching system using an IP communication mechanism.
US10171615B1 Smart cache warming
According to one general aspect, a method of preemptively caching data within a mobile device may include detecting that a triggering event has occurred. The method may also include, in response to the triggering event, automatically performing an action associated with the triggering event, wherein the action includes retrieving anticipated data from a remote device. The method may include caching at least part of the anticipated data within a memory of the mobile device. The method may include receiving a request, from a user, for requested data, wherein the requested data includes at least a portion of the anticipated data. The method may include fulfilling at least part of the request for the requested data by retrieving the anticipated data portion of the requested data from the memory of the mobile device.
US10171614B2 Cache memory balancing based on moving object prediction
A computer-implemented method for cache memory management in a distributed computing environment includes tracking, via a cache balancing engine, a plurality of vehicles operating in a first region. The method further includes executing, via the cache balancing engine, an analysis for a subset of the plurality of vehicles in the first region to determine a weighted mean velocity for each vehicle in the subset of the plurality of vehicles in the first region. The method further includes determining, via the cache balancing engine, based on the analysis, whether a second regional server tracking a second plurality of vehicles in a second region is likely to have an unbalanced cache memory, and rebalancing, via the cache balancing engine, cache memory data in the first regional server and cache memory data in the second regional server responsive to determining that the second regional server is likely to have an unbalanced cache memory.
US10171613B2 Client device, server, recording medium and information processing method
A client device includes cache in which a source of content is stored, a cache information transmitting unit configured to transmit information indicating the source stored in the cache to a server managing a group of client devices capable of communicating without using an external network, an external cache acquiring unit configured to acquire, from other client devices in the group, sources of content requested to be output based on information provided by the server, and a source acquiring unit configured to, when at least a part among the sources of the content requested to be output is not acquired from the other client devices, acquire the unacquired source from a content server through the external network.
US10171608B2 Method, apparatus and computer program for modifying messages in a communications network
There is described a system for modifying messages having an archive format in a communications network, the communications network comprising a first network device, a second network device and a third network device. The system comprises receiving, at the first network device, a message, the message sent from the second network device for receipt by the third network device; selectively modifying, at the first network device, content of the received message that is in an archive format, based on a determination that the content can be optimized, sending the received message with the optimized content to the third network device.
US10171606B2 System and method for providing data as a service (DaaS) in real-time
System and method embodiments are provided for implementing Data as a Service (DaaS). The system is implemented using a client side library, on a user device, and a server or proxy server to extract relevant data from relevant data sources, and process the data before returning results to the client. The client sends a user query to the proxy server, which then sends sub-queries and receive responses from multiple data sources in real-time or near real-time. The system also uses a data model that handles varying data reliability or accuracy levels in heterogeneous data sources and indicates the confidence levels in the data provided to a user or client application. The data model assigns different confidence levels for various data to distinguish between high quality data and low quality data. Thus, users are provided with more information from multiple sources without diluting high quality data with low quality data.
US10171605B2 Dual channel delivery
Embodiments described herein relate to systems and methods for transmitting service related messages, e.g., via a reverse push connection. In some embodiments, a UE may be configured to receive a random value from a server, the random value based at least in part on a capacity of the server and/or network. The UE may be configured to compare the random value to a generated value, and determine, based at least in part on the comparison, to transmit a service related message over a reverse push connection rather than via a hypertext transport protocol (HTTP) request. In some embodiments, the service related message may be any message that relates to a service available between devices, such as an identity (ID) query request, a service (de-) registration request, and/or a device listing request, among other types of messages.
US10171604B2 System and method for pushing network information
The present disclosure generally provides a system for pushing network information. The system includes a pushing server and a processing server. The pushing server is used for pushing predefined network information contents and corresponding interaction information to a first client, and for obtaining feedback information from the first client in response to the interaction information, and submitting the feedback information to a processing server, the feedback information includes a first user ID. The processing server is used for processing the feedback information, and generating an attention index corresponding to the first user ID. The system may accurately acquire the attention index of the users toward the network information. A method for pushing network information is provided as well.
US10171599B2 Customizing tracking changes to user content in an online social network
Updates to landing pages of users in an online social network are fed from external sources so that content maintained by any one user can be consolidated in a single location regardless of where the changes are made to the content. When an update event occurs, users of the online social network are notified according to various criteria that they have set. With this feature, users can browse through content of other users efficiently.
US10171596B2 Automatic server cluster discovery
Systems and methods provide automatic discovery of cluster membership based on transaction processing. An example method includes, at a source node of a first tier of nodes, generating a service identifier for a transaction that requests a service hosted by a second tier, the service identifier being based on a logical identifier for the second tier. The method also includes sending the transaction, including the service identifier, from the source node to the service hosted by the second tier. The method includes, at a destination node in the second tier, obtaining the service identifier from the transaction and reporting the service identifier with a destination node identifier to a visibility server as cluster information. The method also includes, at the visibility server, receiving cluster information from a plurality of destination nodes and assigning each of the plurality of destination nodes to a cluster based on the service identifiers.
US10171595B2 Method, apparatus, and software for identifying a set of options for the provision of a service
A method, apparatus and software is disclosed in which options for the provision of a service are each identified by an option identifier for use in determining the applicable options for a given service request.
US10171592B2 Techniques for multi-level service discovery
Examples are disclosed for multi-level service discovery. In some examples, a first level of information indicating a service type for a service provided by a first wireless device may be transmitted by the first wireless device to another wireless device. The first level may enable the other wireless device to determine whether the indicated service type at least partially matches a service interest. A second level may then be transmitted by the first wireless device that includes a service identification to enable the other wireless device to determine whether the service substantially matches a service interest for the other wireless device. A third level may then be transmitted from the first wireless device that includes service content information. The third level may be transmitted responsive to the other wireless device requesting the service content information. Other examples are described and claimed.
US10171588B2 Web operation playback
Network techniques are provided, including a method and system for the accurate and complete playback of web operations. According to an embodiment, there is provided a method for playing back a web operation including one or more of the following inputs: a document object model (DOM) node event, a web request, and a web response. The method comprises: in response to the execution of the web operation, identifying an act input from inputs of the web operation, the act input including a DOM node event or a web response; recording feature information associated with the identified act input, the feature information including a temporal sequence feature of the act inputs and a self constraint feature of the act input, and the feature information being used for playing back the web operation.
US10171582B2 Method and apparatus for client to content appliance (CA) synchronization
A new approach is proposed that contemplates systems and methods to support file synchronization between a local host and a cloud storage via one or more local content appliances (CAs), wherein each content appliance is a storage device/host configured to locally maintain documents and files previously downloaded from the cloud storage. First, a client agent at the local host discovers and connects to the CA that manage its files locally. To access a file/document that is not cached on its local host, the client agent requests and receives the file from the CA instead of downloading it directly from the cloud storage. When parts of the file are updated locally by the client, the client agent is configured to transmit the updated file to the CA, wherein the updated file is considered as having been fully committed from the client's perspective. The CA then synchronizes with and uploads the revised file to the cloud storage and/or other CAs in the background.
US10171581B2 Blended operational transformation for multi-user collaborative applications
Multi-user collaborative software applications may synchronize data between multiple users or multiple devices. There are multiple existing ways to synchronize data. Some of these synchronization methods, such as file locking, are easy to implement but have performance or functionality drawbacks. Operational transformation (OT) is a high performance synchronization method, but difficult and time-consuming to implement in many cases, and cannot be partially implemented throughout a system. Methods and systems provide for blending operational transformation with other synchronization methods in the same collaborative software application, allowing operational transformation to be used in situations where it cannot be implemented throughout a system.
US10171580B2 Granular instant import of replicated VTL cartridge into a backup catalog
Methods, systems, and computer program product embodiments for cataloging data in a backup storage environment, by a processor device, are provided. In a storage system using tape library data replication between an originating site and one or more backup sites, data catalog data is replicated between the originating site and the backup site such that replicated data moved from the originating site to the backup site is placed into a catalog duplicative of the originating site.
US10171575B2 Dynamic allocation of a quota of consumer nodes connecting to a resource node of a peer-to-peer network
A method for dynamically allocating upload bandwidth to consumer nodes by a resource node that are communicatively connected by a channel-swarm in a peer-to-peer network. The method comprises periodically computing a dynamic quota value to determine a number of acceptable connections between the resource node and one or more of the consumer nodes connected by the channel-swarm; and allocating an available upload bandwidth to the one or more of the consumer nodes in the channel-swarm based on the computed dynamic quota value.
US10171574B2 Computer system, processing method, and computer-readable recording medium having job processing program
A computer system includes: a reference point determining unit that sets node allocation reference points for the job in association with job attribute information of the job, to node coordinate spaces where the plurality of computation nodes are arranged; and a node set searching unit that searches for a computation node set that is a set of computation nodes satisfying a predetermined condition related to a remote degree that is an estimate index of a communication time from the node allocation reference point in the node coordinate space.
US10171569B2 Transmission of data to multiple computing devices according to a transmission schedule
A network system can manage a network service for a given region by receiving requests from user devices of users and matching the requesting users with available providers. In response to receiving a request from a user device, the network system can identify a set of candidate providers available to service the request. The set of candidate providers can be identified based, at least in part, on acceptance metrics indicative of the providers' historical record in responding to specified messages from the network system. The network system can transmit a set of messages relating to the request to computing devices of the set of candidate providers and subsequently select one of the providers to service the request. The network system can transmit the set of messages in accordance with a transmission schedule determined for the first set of messages.
US10171568B2 Selecting system, communication management system, communication system, computer program, and method of selection
A selecting system selects, among controllers controlling a session between communication terminals, a controller to be connected to a communication terminal. The selecting system includes a state management unit, a load management unit, an accepting unit, a calculating unit, and a selecting unit. The state management unit manages, for each controller, state information indicating a state of communication of a communication terminal connected to the controller. The load management unit manages, for each state of communication, load information indicating a degree of load. The accepting unit accepts a connection request to the controller from a communication terminal not connected to the controller. The calculating unit calculates, for each controller, the degree of load related to the control based on the state information and the load information. The selecting unit selects a controller to be connected to the communication terminal as a connection requester terminal based on the degree of load.
US10171567B2 Load balancing computer device, system, and method
A computer device, a system, and a load balancing method are provided. A load balancing virtual machine is created on the computer device. When load balancing processing needs to be performed on a service of a virtual machine of the computer device, a related service packet is sent to the load balancing virtual machine of the computer device, so as to perform load balancing processing, thereby avoiding a processing delay caused by congestion of centralized load balancing. In addition, when a computer device is faulty, a virtual machine of the computer device goes offline accordingly, and a load balancing requirement is not generated any more. Therefore, when a fault of a single computer device causes a fault of a load balancing virtual machine, there is no service interruption that is caused by active/standby switchover because of the fault of the load balancing virtual machine.
US10171566B2 Server-processor hybrid system for processing data
The present invention relates to a server-processor hybrid system that comprises (among other things) a set (one or more) of front-end servers (e.g., mainframes) and a set of back-end application optimized processors. Moreover, implementations of the invention provide a server and processor hybrid system and method for distributing and managing the execution of applications at a fine-grained level via an I/O-connected hybrid system. This method allows one system to be used to manage and control the system functions, and one or more other systems to co-processor.
US10171559B2 VxLAN security implemented using VxLAN membership information at VTEPs
A network device stores a Virtual Extensible Local Area Network (VxLAN) Tunnel Endpoint (VTEP) membership information that associates VxLANs each with a corresponding set of VTEPs authorized to originate VxLAN packets on that VxLAN. The network device receives from a communication network a VxLAN packet that identifies a VxLAN and an originating VTEP. The VTEP compares the originating VTEP to the set of VTEPs associated with the VxLAN in the VTEP membership information that matches the identified VxLAN. If the comparison indicates that the originating VTEP is not included in the set of VTEPs authorized to originate VxLAN packets, the VTEP discards the received VxLAN packet. Otherwise the VTEP further processes the VxLAN packet.
US10171558B2 Cross device application discovery and control
Systems and methods cross device application discovery and/or control. Cross device application discovery and/or control can provide for simple detection and activation of applications on remote devices. Cross device application discovery and/or control can provide for the control of remote applications in a master and slave configuration. Responsive to an activation message, an application can execute a task in an application, the task being displayed on a target device. Responsive to an activation message, an application can execute a task in an application on a target device, a task context data for the task being streamed to the source device for presentation on a display. Cross device application discovery and/or control can be enabled on a single operating system, or across a plurality of operating systems.
US10171555B2 Containerized software for virally copying from one endpoint to another
A method, system and computer readable medium include objects with media content. The method includes receiving, at one or more servers, a request for the media content to be displayed at an endpoint. The method includes identifying information about an environment associated with the endpoint. The method includes identifying a set of objects to include in a container for the media content based on the information identified about the environment. At least one of the objects includes program code for completing a transaction during display of the media content. Additionally, the method includes sending, by one or more servers, the set of objects to the endpoint.
US10171554B2 Distributing subscriber data in a mobile data network
A mobile data network supports making subscriber data addressable as devices in a mobile data network. Each data chunk is assigned a device address in the mobile data network. The data chunk can then be addressed as a device in the mobile data network. Data chunks corresponding to a subscriber are distributed across multiple devices in the mobile data network. The location of the subscriber's data chunks is tracked by the subscriber's mobile device and also by a tracking table in the mobile data network.
US10171553B2 Method for monitoring and controlling an access control system
A method of monitoring and controlling an access control system (12) comprising a server (18) and an access control device (22) connected to the server (16) for data communication. Data goggles (1) monitor and control the access control system. The data goggles are connected wirelessly to the server (16) and the access control device (22) for data communication and receive data in real time from the server (16) and/or the access control device (22), which enable monitoring of the access control system (12). The data is displayed to the user of the data goggles (1) by a display device (10). The access control system (12) is controlled by commands which are inputted by the data goggles (1) and transmitted to the server (16) and/or the access control device (22). The control commands are input either by voice control, by gesture control, by a touchpad or by eye tracking.
US10171550B1 Static tracker
The present invention relates to systems, apparatus, and methods of scanning a response to a first HTTP request for a web page in order to identify a web object for prefetching, and using a static tracker to identify and improve results. In one potential alternative embodiment, after a response is scanned a web object may be prefetched to a proxy server prior to a browser requesting the web object. The proxy server may observe one or more HTTP requests that are associated with the response to the first HTTP request for the web page and measure the success of the prefetching. After success is measured for the specific instance of the web object and the web page, a success rate for prefetching or not prefetching the web object as associated with the web page may be updated.
US10171549B2 Notification alerts based on increased access to a digital resource
A method for event notification. In one embodiment, the method includes a computer processor identifying a profile of a first user, wherein the profile of the first user includes one or more profile elements. The method further includes identifying a plurality of users having a corresponding profile that includes at least one profile element in common with the identified profile of the first user. The method further includes identifying a computer network accessible resource. The method further includes determining an increase in activity of the identified computer network accessible resource by the identified plurality of users. The method further includes communicating a notification to the first user, wherein the communicated notification provides an indication of the determined increase in activity of the identified computer network accessible resource by the identified plurality of users.
US10171548B2 Method and system for efficient enrichment of upper layer protocol content in transmission control program (TCP) based sessions
A gateway system employing a redirect mechanism at upper layer protocols over Transmission Control Protocol (TCP) in a packet network to circumvent problems related to alteration of TCP sequence number due to header enrichment. The gateway system increases the size of a redirect message by the size of the header enrichment and thereby brings TCP sequence number on both ends in sync despite adding the header enrichment information.
US10171544B2 Radio base station
When a packet in which a “Static part” is changed is detected in a session established in a bearer, it is possible to prevent the packet from being discarded. A radio base station (eNB) according to the present invention includes a communication control unit (13) configured to control communication via a session (an RTP session or an RTCP session) with a mobile station (UE). The communication control unit (13) is configured such that, when a change in a “Static part” in a header of a received packet is detected, even if adding a new session to transmit the packet makes the number of sessions established in a bearer (#1) exceed a capability of the radio base station (eNB) or the mobile station (UE), the communication control unit (13) transmits the packet via the new session.
US10171543B2 Media streaming method and electronic device thereof
A method of operating a first electronic device is provided. The method includes transmitting stream data to a second electronic device, receiving, from the second electronic device, stream information associated with the stream data received by the second electronic device, and determining at least some of the stream data to be transmitted to the second electronic device based on the received stream information.
US10171542B2 Method for providing cloud streaming service, device and system for same, and computer-readable recording medium having, recorded thereon, cloud streaming script code for same
The present invention relates to a method for providing a cloud streaming service, a device and a system for same, and a computer-readable recording medium having, recorded thereon, a cloud streaming script code for same. At the time of loading a webpage, the present invention loads the webpage with a predefined cloud streaming script code inserted therein and thus can perform processing such that the webpage can provide the could streaming service. Consequently, a pop-up window event or the like, which is incapable of providing the cloud streaming service, can easily be processed without any particular modification to an internal browser engine.
US10171537B2 Segregation of electronic personal health information
A dynamic secure mobile network is provided to enable the transfer and storage of private data. The dynamic secure mobile network can provide secured communication channels that segregates different types of data and allows for protected data streams to be sent via different secured channels than non-protected data. The enhanced wireless mobile network can support consistent compliancy/privacy and security policies across all networks.
US10171536B2 Rapid optimization of media stream bitrate
A data processing method comprises, using a media server during a first media session between a client device and the media server, determining a stable bitrate value for use as a rate of transmitting multimedia data from the client device to the media server; storing, in a database, the stable bitrate value for the client device in association with an identifier; receiving, from the client device, a request to establish a second media session; determining the identifier within the request; in response to the request, based on the identifier in the request, searching the database for the stable bitrate value that is associated with the identifier; in response to locating the stable bitrate value in the database, sending the stable bitrate value to the client device for use in estimating a bitrate for transmitting multimedia from the client device to the media server in the second media session; establishing, by the media server, the second media session, wherein the media server initially receives multimedia data from the client device at the stable bitrate.
US10171534B2 Placeshifting of adaptive media streams
Systems, devices and methods are provided to support placeshifting of adaptive media streams. A home device acts as an intermediary that passes requests for segments of an adaptive stream from a remote device to a content source. The content source responds with the requested segments, which are forwarded to the remote device. A connection service may be provided to facilitate placeshifting sessions between home and remote devices.
US10171532B2 Methods and systems for detection and classification of multimedia content in secured transactions
An apparatus is provided for detecting the presence of multimedia content in one or more transactions and for classifying the multimedia content in the one or more transactions. The apparatus can include a traffic processor configured to acquire one or more handshake messages associated with the transactions. The apparatus can also include a multimedia detector configured to determine a domain name requested by a specific terminal based on the one or more handshake messages, and to detect the presence of the multimedia content data in the transactions using the determined domain name. The detection of the presence of the multimedia content can be used for at least one of optimizing or reporting of the multimedia content before the multimedia content is provided to the specific terminal.
US10171529B2 Vehicle and occupant application integration
A vehicle communication system and method for allowing a user device to stream content to a vehicle display is provided. The communication system receives a request from the user device, approves or denies a user request to connect to the vehicle display, and facilitates streaming of an application running on the user device to the vehicle display.
US10171525B2 Autonomic meeting effectiveness and cadence forecasting
Meeting participation data of a meeting of a group of participants in-progress is collected. The meeting participation data is analyzed to identify a topic being discussed in the meeting. Using a trend of affective states of a participant, a future affective state of the participant is forecasted relative to the topic. The future affective state is evaluated to conclude that data contributed by the participant at a future time in the meeting is not likely to progress the topic to completion by at least a specified degree. A cognitive system (cog) trained in the subject-matter is selected. The cog is added to the meeting before the future time and while the meeting is in-progress.
US10171518B2 Performing an action on certain media streams in a multimedia communications network
The invention proposes controlling a media session involving a plurality of media streams within a communications network, wherein the communications network comprises a media resource node (106) and a media control node controlling (102) the media resource node, wherein the media control node performs a method of determining that selected media streams out of the plurality of media streams are associated to each other in a media session, transmitting to the media resource node (106) an instruction to group the selected media streams of the media session, and transmitting to the media resource node (106) an instruction to prepare for performing an action with respect to the selected media streams. The invention further proposes a corresponding method to be performed in a media resource node (106), corresponding nodes (102, 106) and corresponding computer programs.
US10171517B2 Notifying response sender of malformed session initiation protocol (SIP) response messages
A method, computer program product, and computer system for notifying a response sender of a malformed SIP response message. The method includes, producing a special ACK message after receiving a malformed response message from a SIP server. The special ACK message contains a correction of the determined malformation, and is sent to the SIP server for correction by the SIP server.
US10171513B2 Methods and apparatus for controlling call admission to a network based on network resources
A session controller coupled to a database and configured to receive an indication associated with an ingress call is disclosed. The disclosed session controller is further configured to compare at least one of a network capacity, a call-peer bandwidth, or a number of active call-legs associated with the ingress call session against a respective threshold, and to reject the ingress call when a respective threshold is exceeded.
US10171507B2 Microsegmentation in heterogeneous software defined networking environments
Microsegmentation in a heterogeneous software-defined network can be performed by classifying endpoints associated with a first virtualized environment into respective endpoint groups based on respective attributes, and classifying endpoints associated with a second virtualized environment into respective security groups based on respective attributes. Each respective endpoint group can correspond to a respective security group having the same attribute. Each respective endpoint group and corresponding security group can be associated with a respective policy model defining rules for processing associated traffic. Each of the respective security groups can be used to generate a respective network attribute endpoint group, which can include the network addresses of those endpoints in the respective security group. Each respective network attribute endpoint group can inherit the policy model of the respective endpoint group corresponding to the respective security group. Traffic between the endpoints can then be processed based on the various classifications and associated rules.
US10171505B2 Preventative enterprise change management
Embodiments for implementing change control management in computing center environments by a processor. A physical activity of a user performing an action in the computing center environment is monitored. If the monitored activity is determined to be contrary, or predicted to be contrary, to a preferred, predetermined action for the computing center environment, the user is alerted that the action is contrary, and an operation is performed on the computing center environment to secure data in the computing center environment from damage potentially caused by the contrary action.
US10171501B2 System and method for remote wipe
A remote wipe message or notification may be sent from a server computer to one or more target client devices associated with a user. A managed container running on a target client device associated with the user and having a managed cache storing content managed by or through the server computer may, in response to the remote wipe message or notification, deleting the managed content or a portion thereof from its managed cache. The managed container may send back an acknowledgement or message to the server computer that it had completed the remote wipe. The remote wipe functionality can avoid having to deal with individual applications running on the client device and therefore can eliminate the complexity of having to deal with individual applications. Furthermore, the remote wipe can be done independently of the local operating system and without affecting non-managed information/applications on the client device.
US10171500B2 Systems, apparatuses, and methods for enforcing security on a platform
Embodiments of a system, apparatus, and method of platform security are describe. In some embodiments, a system comprises a manageability engine to detect if a software agent of the platform is removed and a software agent enclave, wherein the software agent enclave and manageability engine each include a specific session key to be used for communications between the software agent enclave and the manageability engine.
US10171494B2 Scarecrow for data security
A method, computer program product and/or system receives information pertaining to network data traffic from and/or to a network accessible resource, analyzes the information to determine whether a user is engaged in potential hacking transaction(s) with respect to the resource. On condition that the user is determined to be engaged in potential hacking transaction(s), a “scarecrow” message designed for display to the user, is generated and sent to the user.
US10171490B2 System and method for strategic anti-malware monitoring
The system and method described herein may leverage active network scanning and passive network monitoring to provide strategic anti-malware monitoring in a network. In particular, the system and method described herein may remotely connect to managed hosts in a network to compute hashes or other signatures associated with processes running thereon and suspicious files hosted thereon, wherein the hashes may communicated to a cloud database that aggregates all known virus or malware signatures that various anti-virus vendors have cataloged to detect malware infections without requiring the hosts to have a local or resident anti-virus agent. Furthermore, running processes and file system activity may be monitored in the network to further detect malware infections. Additionally, the network scanning and network monitoring may be used to detect hosts that may potentially be participating in an active botnet or hosting botnet content and audit anti-virus strategies deployed in the network.
US10171488B2 User behavior profile
A method, system and computer-usable medium are disclosed for generating a cyber behavior profile comprising monitoring user interactions between a user and an information handling system; converting the user interactions into electronic information representing the user interactions, the electronic information representing the user interactions comprising multi-layered electronic information, each layer of the multi-layered electronic information corresponding to a respective layer of user interaction; and generating a unique multi-dimensional cyber behavior profile based upon the multi-layered electronic information representing the user interactions.
US10171487B2 Generating a virtual database to test data security of a real database
Determining a data security risk level of a virtual database is provided. An object catalog corresponding to a real database is imported into the virtual database. Objects in the object catalog are organized by levels. It is determined whether one or more data security policy definitions corresponding to a set of objects referenced by test query message traffic performed an action in response to determining that one or more test query messages in the test query message traffic run on the virtual database did not satisfy respective parameters of the one or more data security policy definitions. In response to determining that one or more of the data security policy definitions corresponding to the set of objects referenced by the test query message traffic did not perform the action, a test failure result is returned. A data security risk level for the virtual database is determined based on the result.
US10171484B2 Securing services in a networked computing environment
A system includes: a CPU, a computer readable memory and a computer readable storage medium associated with a computer device of a service provider; program instructions to receive, by the computer device, a breach notification from a user device, wherein the user device includes a client that corresponds to the service provider, and the breach notification indicates a potential security compromise of the user device; program instructions to identify, by the computer device, a plurality of user devices that have the client; and program instructions to transmit, by the computer device, a respective security profile to each of the identified plurality of user devices, wherein each of the respective security profiles defines a security challenge that must be completed to obtain access. The program instructions are stored on the computer readable storage medium for execution by the CPU via the computer memory.
US10171483B1 Utilizing endpoint asset awareness for network intrusion detection
An intrusion device identifies network data to be sent to a destination endpoint and determines a sensitivity level of the destination endpoint based on asset valuation. The intrusion device identifies a subset of signatures that corresponds to the sensitivity level of the destination endpoint and determines whether the network data includes an intrusion based on the subset of signatures.
US10171480B2 Cloud-based surveillance with intelligent tamper protection
In one embodiment, a security system includes a central communication unit and a first surveillance device. The central communication unit is communicatively connected over a network to cloud storage, by way of a first transmission channel and a second transmission channel. The second transmission channel is redundant with the first transmission channel. The first surveillance device configured to record first surveillance data, and is communicatively connected to the central communication unit by way of a third transmission channel and a fourth transmission channel. The fourth transmission channel is redundant with the third transmission channel. The first surveillance device is configured to transmit the first surveillance data to the central communication unit, and the central communication unit is configured to transmit the first surveillance data to the cloud storage.
US10171478B2 Efficient and secure method and apparatus for firmware update
This relates to a vehicle and, more particularly to, a vehicle configured to perform a secure firmware update. Some examples of the disclosure include receiving a firmware update package including updated firmware for one or more electronic control units (ECUs) of a vehicle. According to the disclosure, the firmware update package can be transmitted to and stored on an untrusted ECU and distributed to one or more target ECUs in a secure firmware update process monitored by a secure ECU.
US10171477B1 Authenticated data streaming
A data-collecting device acquires data associated with a real-time data stream and transmits the data to a data-consuming service hosted on a server computer system in the form of a multipart response. The multipart response includes one or more data content parts and at least one authentication content part. Each of the one or more data content parts contains data representing part of the real-time data stream. Each authentication content part includes authentication information usable to verify the integrity of the data transmitted in the data content parts transmitted prior to the authentication content part.
US10171476B2 System and method for protecting the privacy of identity and financial information of the consumer conducting online business
The migration of identity documents, such as driving licenses, from physical documents to electronic documents creates new problems for those seeking to verify the identity of an individual based upon the electronic document they provide. However, the inventors have established a means of binding electronic documents and electronic representations of physical documents to individuals at issuance of the document(s). Accordingly, the inventors address identity verification by providing to those seeking to verify the individual's identity data allowing them to verify the presented electronic ID document. For example, a police officer requesting a driving license can obtain on their own electronic device through the methods of the invention the issued driving license associated with identifier information on the license provided by the individual. As such tampering with the license to change a name, date of birth, photo etc. will result in a visible mismatch to the police officer in comparing them.
US10171474B2 Network access based on social-networking information
In one embodiment, a method includes receiving a request at a wireless access point from a client system to access a network through the wireless access point. The wireless access point sends an identifier associated with the client system to a social-networking system, the social-networking system including user profiles arranged in one or more social graphs. The social graphs store relationships between the user profiles. The method further includes receiving at the wireless access point from the social-networking system an authorization determination. The authorization determination is based upon a first user profile of the plurality of user profiles. The first user profile includes the identifier associated with the client system. The method further includes providing the client system with access to the network through the wireless access point in accordance with the authorization determination.
US10171472B2 Role-specific service customization
In many computing scenarios, an individual may choose to interact with a service in a variety of roles, and may therefore create a set of accounts respectively representing the service. However, the use of multiple accounts by the same individual may introduce considerable administrative complications (e.g., failing to update all accounts with new information results in stale and/or conflicting account information), and may reduce the efficiency and/or scalability of the service. Presented herein are techniques for enabling individuals to interact with services through various roles. Such techniques involve evaluating the individual's role determinants to identify and automatically select the individual's current role; selecting a current role profile, as a subset of the details of the individual profile that are associated with the current role, and excluding details that are not associated with the current role; and performing the service according to the current role profile of the individual.
US10171471B2 Evidence-based role based access control
Methods, computing systems and computer program products implement embodiments of the present invention that include assigning, to multiple users, respective sets of original roles for accessing data stored on a computer system, and performing, in response to requests from the users, multiple operations on the data. While performing the multiple operations on the data, a transaction log is generated that includes a plurality of entries, each of the entries storing attributes of a given operation. Based on the entries in the log file, a respective set of learned roles for respective users is identified, and the respective sets of the learned roles are assigned to the respective users.
US10171468B2 Selective processing of application permissions
An application permissions processing system and method for processing application permission requests is provided. The method includes the steps of detecting that an application has been downloaded to a computing system, receiving one or more permission requests from the application for resources located on the computing system, determining that at least one of the one or more permission requests is a required permission of the application, prompting the user to decide the one or more permission requests, receiving a denial of the required permission from the user, in response to the prompting, and responding to the application by providing spoofed resources to the application to satisfy the required permission of the application.
US10171463B1 Secure transport layer authentication of network traffic
Technologies are disclosed herein for transport layer network data authentication. A token packet is attached to network data sent from a client software application to an application server at the transport layer. The token packet can be generated based on a temporary token key obtained from a token service. The token packet can include a signature of the network packet payload. The network packet with the attached token packet can be received at an edge device in the network where the application server resides before reaching the application server. The edge device can verify the authenticity of the network packet by verifying the signature contained in the token packet. If the verification is successful, the edge device can forward the network packet to the application server. If the verification fails, the edge device can block further transmission of the network packet.
US10171461B2 System and method of secure encryption for electronic data transfer
A system for secure transfer of encrypted data involves a sender client, a recipient client, a main server, and a key server. The sender client receives instructions from a first user identifying transfer data and a recipient identifier, creates a key, encodes the transfer data using the key, and communicates the key and the recipient identifier to a server. The server creates a secure package identifier and communicates such to the sender client. The recipient client receives and identifies the secure package identifier and the encoded transfer data, receives from a second user a user identifier, and communicates the user identifier and the secure package identifier to the server. The server communicates the key to the recipient client only if the secure package identifier received from the recipient client matches the secure package identifier created by the server and if the user identifier matches the recipient identifier.
US10171460B2 Proximity-based system for automatic application or data access and item tracking
A system and method provide automatic access to applications or data. A portable physical device, referred to herein as a Personal Digital Key or “PDK”, stores one or more profiles in memory, including a biometric profile acquired in a secure trusted process and uniquely associated with a user that is authorized to use and associated with the PDK. The PDK wirelessly transmits identification information including a unique PDK identification number, the biometric profile and a profile over a secure wireless channel to a reader. A computing device is coupled to the reader. An auto login server is coupled to the reader and the computing device and launches one or more applications associated with a user name identified by the received profile.
US10171459B2 Method of processing a ciphertext, apparatus, and storage medium
A method of processing a ciphertext, the method includes: acquiring a part of a plurality of encrypted elements included in the ciphertext, each of the plurality of encrypted elements being an encrypted element in which values of a plurality of elements in a multidimensional determination target vector are respectively encrypted by homomorphic encryption; decrypting the acquired part of the plurality of encrypted elements; and determining validity of the determination target vector based on a relationship between at least one value obtained by the decrypting and both of 0 and 1.
US10171458B2 Wireless pairing and communication between devices using biometric data
In a first implementation, a host determines to pair with a device and transmits biometric data for a user to the device. The device receives the transmitted biometric data and compares such to device biometric data to determine whether or not to pair with the host and/or what data stored by the device to allow the host to access. The host then accesses data of the device to which the device has allowed access. In another implementation, a device determines to pair with a host and transmits biometric data for a user to the host. The host receives the transmitted biometric data and compares such to device biometric data to determine whether or not to pair with the device and/or what data stored by the host to allow the device to access. The device then accesses data of the host to which the host has allowed access.
US10171453B2 Generalized certificate use in policy-based secure messaging environments
Within a secure messaging environment, a determination is made that a request to send a message has been generated by a message sender. A message protection policy configured to process the message within the secure messaging environment is identified. The message protection policy specifies that, within the secure messaging environment, a secured digital certificate, other than a digital certificate of the message sender, is configured with an associated private key to digitally sign the message on behalf of the message sender. Based upon the message protection policy, a determination is made to digitally sign the message using the private key of the secured digital certificate. The message is signed on behalf of the message sender using the private key of the secured digital certificate.
US10171449B2 Account login method and device
Provided are an account login method and an apparatus. A first account is associated with a second account, and information of a login target corresponding to the second account is configured. A login request for using the first account to log in to the login target corresponding to the second account is received. Login configuration information of the second account is retrieved based on an association relation between the first account and the second account. Login configuration information of the second account is sent to the login target corresponding to the second account; and the login target corresponding to the second account is logged in to according to the login configuration information of the second account.
US10171448B2 Single sign-on for unmanaged mobile devices
Disclosed are various examples for providing a single sign-on experience for mobile devices that may or may not be managed. A service provider receives an access request from a first client application executed in a client device. The service provider causes the first client application, using a redirection response that redirects the access request to an identity provider, to request an authentication token from a second client application executed in the client device. The service provider receives the authentication token from the first client application. The service provider then authenticates the first client application in response to verifying the authentication token.
US10171447B2 Single sign-on for unmanaged mobile devices
Disclosed are various examples for providing a single sign-on experience for mobile applications that may or may not be managed. A first application executed in a client device sends an access request to a service provider. The first application receives a redirection response from the service provider that redirects the first application to an identity provider. The first application then receives a further redirection response from the identity provider that causes the first application to request an identity assertion from a second application executed in the client device. The first application receives the identity assertion from the second application. The first authentication then authenticates with the service provider using the identity assertion.
US10171443B2 Displaying the accessibility of hyperlinked files
The accessibility of a hyperlinked files is displayed. A hyperlink that references a resource is extracted from a target file. An attempt to acquire the resource is made by performing a first authentication operation. A first object is received in response to performing the authentication operation. A second object is acquired by performing a second authentication operation using pre-determined authentication information. The first object and the second object are compared to determine if the first object is the same as the second object. Information indicating the accessibility of the resource is presented via a display apparatus.
US10171442B2 Predicting a need for and creating temporary access to a computer component in infrastructure information technology
A computer server may be monitored, and a request that requires executing an action on the computer server is received. Server configuration associated with the computer server is determined. Based on the server configuration, a technology associated with executing the action is determined. The action may be broken down into sub-activities and dependencies. A user profile database is searched to identify candidate users having a skill set associated with the technology. Availability, location and a skill level of the candidate users are determined. Based on historical data, a duration the candidate users would take to execute an activity on the computer server is predicted. Based on at least the duration, the availability, the location and the skill level of the candidate users, at least one user from the candidate users is determined to execute the activity on the computer server. A temporary access credential is provided for allowing access to the computer server during a specified duration.
US10171440B2 Method and apparatus for managing encryption keys for cloud service
Key management methods and systems are provided, one of methods comprises, encrypting a service key used by an instance of a first user of a cloud service by using a master key, generating two or more key pieces for reconstructing the master key, distributing and storing the key pieces in two or more host servers included in a host group for providing the cloud service, receiving a request for the service key from the instance of the first user, receiving the key pieces from the two or more host servers and reconstructing the master key based on the received key pieces, and decrypting the encrypted service key by using the reconstructed master key.
US10171439B2 Owner based device authentication and authorization for network access
Methods and computerized units grant network access to any one of multiple devices of the same owner. Each of the multiple devices has been previously associated with an owner at an authentication server, whereby device keys for authenticating said multiple devices are stored on the authentication server. Also, said owner has previously been authorized to access the network, such that an owner ID for this owner is stored on the authentication server. In embodiments, present methods comprise, at the authentication server: receiving a network access request for a device to connect to a network, said device being one of the multiple devices; and upon authenticating said device based on a device key associated with this device at the authentication server, confirming that network access can be granted for the device if said owner ID is confirmed to be associated with said device at the authentication server.
US10171436B2 Distributed learning and aging for management of Internet protocol (IP) addresses
A device includes a security process unit (SPU) associated with a logical ring of SPUs. The SPU receives a packet with an address associated with a malicious source, and creates, based on the packet, an entry in a data structure associated with the SPU. The entry includes information associated with the packet. The SPU provides an install message to a next SPU in the logical ring. The install message instructs the next SPU to create the entry in another data structure, and forward the install message to another SPU. The SPU receives the install message from a last SPU, and sets a state of the entry to active in the data structure based on receiving the install message from the last SPU. The SPU performs a particular action on another packet, associated with the malicious source, based on the setting the state of the entry to active.
US10171434B2 Managed device scatternet administration
Managed device scatternet administration is described herein. In one example, to form a scatternet of managed devices, a network entry request including a unique device identifier and a public key is received from a client device. The public key is validated and the structure of the scatternet is examined to find an opening for the client device. After validation of the public key, network access data and a session key are encrypted by the public key and forwarded to the client device. The client device can use the network access data to find a network sublayer having the opening in the scatternet. At the same time, client admission data and the session key can also be sent to a sublayer propagator device of the network sublayer. After the client device enters the scatternet, management configuration data can be dispatched to it for device management.
US10171432B2 Systems to implement security in computer systems
Systems, methods, and non-transitory computer-readable medium are provided to secure data centers and cloud computing. A method receives network identifiers for functions, requests a network key for each function, allocates network interfaces, requests a virtual network interface controller allocation, requests a network key for each cloud function, receives storage identifiers for functions, requests a storage key for each cloud function, allocates virtual storage disks, requests a storage interface controller allocation, requests a storage key for each cloud function. Methods secure migration of a virtual machine from a source to a target server. A server includes multiple cores where each core is dedicated to a compute function and a unique key encrypts data of each compute function. A non-transitory computer-readable medium encodes programs that execute the above methods.
US10171431B2 Secure message handling of an application across deployment locations
A method and system for secure message handling of an application across deployment locations. The application is divided into multiple processing nodes which process messages and can be deployed in multiple different locations. The application is analyzed to identify processing nodes referencing given data aspects having deployment constraints. It is ascertained whether one or more data aspects of the given data aspects are accessed by an identified processing node. If so, a restriction is determined for the identified processing node based on the deployment constraints of the accessed one or more data aspects and the identified processing node of the application is deployed according to the determined restriction for the identified processing node. If not, the identified processing node or a preceding processing node is marked to indicate a required tokenization of the one or more data aspects, wherein the tokenization removes the deployment constraints for the identified processing node.
US10171430B2 Making a secure connection over insecure lines more secure
A secure or insecure communications channel for a secure communications system that carries sensitive user datagrams inside a proprietary or other undisclosed protocol so as to be able to encrypt the entire user datagram, including all header information so that if a malevolent entity were covertly or otherwise receiving said transmission they would be unable to determine the destination addresses of the user datagrams. Further the proprietary or undisclosed protocol is broken up into packets whose packet-to-packet boundaries are hidden so that malevolent entities will not be able to glean any information from the changes in traffic that occur during stimuli designed to provoke an expected response, thereby rendering said malevolent entities unable to determine what actual responses are occurring during real world events.
US10171428B2 Confidential data management method and device, and security authentication method and system
The present invention relates to a method for safely managing confidential data and a security authentication method and system for performing a security authentication by using the confidential data. The method for managing confidential data of a user by linking with a security server which stores a decryption key in a confidential data management device, according to the present invention, comprises the steps of: storing encrypted confidential data of a user; receiving a push notification message including a decryption key from the security server, if a use of the confidential data is required; and decrypting the encrypted confidential data by using the decryption key included in the push notification message.
US10171426B2 Home network controlling apparatus and method to obtain encrypted control information
A network control apparatus and method is provided. The method includes operations of informing a server of capability information including an encryption/decryption method, wherein the server provides the network control apparatus with control information used to control a network device using a general-purpose control web application, transmitting to the server a control information requesting message that requests the control information, receiving from the server the control information which has been encrypted using the encryption/decryption method, decrypting the encrypted control information according to the encryption/decryption method, and transmitting a control command for controlling the network device according to the decrypted control information.
US10171419B2 IP route caching with two search stages on prefix length
A data packet is received in a network element. The network element has a cache memory in which cache entries represent a portion of addresses stored in a main memory, The destination address and the cache entries each comprise a binary number. A first determination is made that a number M of the most significant bits of a cache entry and the destination address are identical. A second determination is made that an additional number M+L of the most significant bits of a cache entry and the destination address are identical. Routing information is then retrieved the cache memory, and the packet processed according to the routing information.
US10171418B2 Method and apparatus for accessing demilitarized zone host on local area network
A method for accessing a demilitarized zone (DMZ) host in a local access network (LAN) includes: configuring a mapping relationship between public IP addresses obtained from a wide area network (WAN) side and private IP addresses of demilitarized zone hosts at a LAN side; after receiving an access request sent by a client at the WAN side, modifying a destination IP address in the access request to the private IP address of a corresponding demilitarized zone host at the LAN side according to the configured mapping relationship, and sending the modified access request to the demilitarized zone host; receiving a reply message returned by the demilitarized zone host, modifying a source IP address contained in the reply message to a public IP address of a client at the WAN side, and sending the modified reply message to the WAN side. The present document also discloses a corresponding apparatus.
US10171417B2 Distributed IP allocation and de-allocation mechanism in a communications network having a distributed S/PGW architecture
A non-transitory computer readable medium has instructions stored therein to be executed by a packet processing unit (PPU) in a communications network to allow a plurality of PPUs in the communications network to independently allocate IP addresses from a shared pool of IP addresses. The plurality of PPUs collectively maintain a distributed hash table (DHT). The DHT stores a distributed block allocation table (DBAT) and a plurality of distributed address allocation tables (DAATs). The DBAT includes an entry for each of a plurality of blocks of IP addresses to indicate which of the plurality of blocks are allocated to which of the plurality of PPUs. Each of the plurality of DAATs corresponds to one of the blocks in the DBAT and includes an entry for each of the IP addresses in that block to indicate which of the IP addresses in that block are allocated to which user entities.
US10171416B2 Method for establishing data connection on mobile network, mobile network, and policy control entity
A method for establishing data connections on a mobile network, a mobile network, and a policy control entity are disclosed. The method includes: establishing a data channel between a user equipment (UE) and a gateway (GW), and allocating an Internet Protocol (IP) address to the UE according to an address allocation request or a data channel setup request sent from the UE; and triggering the policy control entity to establish or update a policy control session according to the IP address. By using the mobile network and the policy control entity under the present invention, after the data channel is established between the UE and the GW, the GW may trigger the policy control entity to establish or update a policy control session.
US10171414B2 Method for allocating internet protocol addresses to clients of a network and corresponding apparatus
An access device and an extender access device, forming a network for network client devices. A single IP address attribution server in the network attributes IP addresses to network devices based on their MAC address. The access device providing access in a first coverage zone. The extender access device providing access in a second coverage zone. The extender access device implements MAC address translation for representing network client devices in the second zone before the access device. When a network client device roams from the second zone to the first zone, the client device keeps its IP address that was attributed to it by the IP address attribution server via the extender access device even if the client device requests an IP address with its real, non-translated MAC address.
US10171413B2 Secure electronics mail system
An e-mail system is disclosed that overcomes many deficiencies of, but is backward compatible with, existing e-mail systems. Embodiments of the system may include various features, including but not limited to: (1) secure transfer of e-mail messages, without the need for users to replace existing e-mail clients or to change e-mail addresses; (2) tracking of all actions performed in connection with an e-mail transmission; (3) the ability for a recipient to view information about an e-mail message, optionally including information about how other addressees have responded to it, before deciding whether to retrieve the e-mail message; (4) the aggregation of entire e-mail conversations into a single threaded view; (5) the ability to include both private and public messages in a single e-mail communication; (6) sender control over downstream actions performed in connection with an e-mail message; (7) flexible control over cryptographic methods used to encrypt emails messages for storage.
US10171402B2 Apparatus and method for outputting message alerts
An apparatus for outputting a message alert is provided, comprising a processor configured to: receive a message; determine whether the message includes an attachment file; and responsive to determining that the message includes the attachment file, output sound contained in the attachment file as a message alert for the message.
US10171398B2 Method and apparatus for providing information by using messenger
A user device which can provide information related to text, which is input into a messenger, on a background screen of the messenger, and a method for providing information in the user device are provided. The method includes displaying a conversation exchanged through a messenger, detecting text related to a content in the conversation, displaying a content image matched to the content on a background of the conversation, and providing information related to the content in response to selection of the content image.
US10171391B2 Automatic and dynamic management of instant messenger do not disturb state via enterprise application
A method, computer program product, and system for peer to peer communication is provided. The embodiment may include receiving a message from a first user intended for a second. It may include determining whether the second user is in a do not disturb (DND) state. It may also include overriding the DND state of the second user. Overriding the DND state may include receiving static message information and user characteristics. Overriding the DND state may include determining if a critical situation (critsit) exists. Overriding the DND state may include determining a message critsit value for the users. Overriding the DND state may include adding the first user and the second to a critsit users list. The embodiment may include overriding the DND state of the second user if both users are on the same list. The embodiment may include transmitting messages from the first user to the second user.
US10171390B2 System and method for alerting a list of multiple recipients of a user's request for assistance
A request for assistance from a user employing a first user device is received. The request is converted into a plurality of formatted requests. Each formatted request is formatted for receipt by a respective recipient in the list of recipients. Each of the plurality of formatted requests is broadcasted to each respective recipient in the list of recipients. A location of the first user device is provided to each recipient in the list of recipients. An assistance response to the request is received. The assistance response is sent by a particular recipient in the list of recipients. A message is broadcasted to each recipient in the list of recipients, other than the particular recipient, indicating that the particular recipient provided the assistance response. Upon receiving an update message from the particular recipient, the update message is broadcasted to each recipient in the list of recipients other than the particular recipient.
US10171389B2 Generating poll information from a chat session
A mechanism is provided in a data processing system for generating poll information from a chat session. The mechanism monitors chat content in the multiple user chat session. The mechanism identifies a poll question in a message within the chat content. The mechanism identifies a plurality of answers to the poll question in subsequent messages within the chat content. The mechanism generates a poll user interface presenting the poll question and the plurality of answers as selectable options and presents the poll user interface to the multiple users of the chat session.
US10171388B2 Message retrieval in a distributed computing network
Applications retrieve physical messages from one of either a co-located, passive messaging engine within the same datacenter as the application, or a nearest passive messaging engine from a different datacenter instead of from the active messaging engine. In that way, the active messaging engine does not deliver the physical message directly from its local storage.
US10171383B2 Methods and systems for portably deploying applications on one or more cloud systems
Methods and systems for provisioning services or resources on a cloud service for successful execution of an application includes detecting a request for executing an application on a cloud service. In response to the request, a descriptor record for the application is retrieved from a descriptor file. The descriptor record is specific for the cloud service and provides details of environmental resources or services required for executing the application. Resource and service requirements are translated into actions to be taken in the cloud service environment for provisioning the resources or services required for the application. The actions to be taken are brokered to occur in pre-defined sequence based on details provided in the descriptor record for the application. Status of the actions taken is provided. The status is used to determine if the required resources or services have been provisioned for successful execution of the application in the cloud service.
US10171378B2 System and method for allocating and reserving supervisors in a real-time distributed processing platform
The present disclosure relates to system(s) and method(s) for allocating and reserving one or more supervisors, to be used by a data processing pipeline associated with a tenant, of a real-time distributed processing platform, is disclosed. The system is configured to identify a set of supervisors corresponding to a set of computing machines of a real-time distributed processing platform. One the set of supervisors is identified, the system enables a primary user to assign a subset of supervisors from the set of supervisors to a tenant. Further, the enables a secondary user, corresponding to the tenant, to design a set of data processing pipelines in a workspace. Further, the system further enables assigning one or more supervisors from the subset of supervisors to each data processing pipeline from the set of data processing pipelines based on the inputs received from the secondary user.
US10171373B2 Virtual machine deployment and management engine
A virtual machine deployment and management engine deploys virtual machines to physical host computers based on a deployment time matrix. The deployment time matrix specifies approximate amounts of time used to clone or deploy a virtual machine from every host computer to every other host computer. The virtual machine deployment and management engine selects a deployment path based on the deployment times and executes the clone or deploy operations.
US10171371B2 Scalable metering for cloud service management based on cost-awareness
Systems and methods are provided to support service management in cloud computing networks. For example, a method for managing a computing platform includes provisioning a plurality of virtual machines across a plurality of computing nodes of a computing platform, wherein the provisioned virtual machines are configured to execute service workloads to provide one or more services to customers, and utilizing one or more of the provisioned virtual machines which execute the service workloads to further perform service management operations for managing the computing platform. The service management operations for managing the computing platform include, e.g., mediation and rating operations for revenue management of the computing platform.
US10171363B2 Traffic control method and apparatus
A traffic control method and apparatus is presented, where the method includes determining, by a back-end network element according to a type of a received service message, a priority of the service message and a resource that needs to be consumed for processing the service message; obtaining, according to the priority of the service message and usage of the resource, a quantity or an adjustment quantity of service messages of a different type to be received in a current period; and sending the quantity or the adjustment quantity of the service messages of the different type to be received in the current period to a front-end network element.
US10171359B2 Cellular network with control plane decoupled from user plane
A cellular network is provided. The cellular network includes a plurality of control plane transceiver stations, each one configured to provide radio coverage over a corresponding first coverage area for allowing user equipment within said first coverage area to exchange signaling traffic with the control plane transceiver station. For each control plane transceiver station, the cellular network further comprises one or more hybrid transceiver stations located within the corresponding first coverage area. Each hybrid transceiver station is configured to be switched between: a) a user operation modality that allows user equipment within said user coverage area to exchange user traffic with the hybrid transceiver station, and b) a control operation modality that provides radio coverage over a corresponding control coverage area for allowing user equipment within said control coverage area to exchange at least signaling traffic with the hybrid transceiver station.
US10171357B2 Techniques for managing software defined networking controller in-band communications in a data center network
According to one or more embodiments of this disclosure, a network controller in a data center network establishes a translation table for in-band traffic in a data center network, the translation table resolves ambiguous network addresses based on one or more of a virtual network identifier (VNID), a routable tenant address, or a unique loopback address. The network controller device receives packets originating from applications and/or an endpoints operating in a network segment associated with a VNID. The network controller device translates, using the translation table, unique loopback addresses and/or routable tenant addresses associated with the packets into routable tenant addresses and/or unique loopback addresses, respectively.
US10171355B2 Data packet sending method and apparatus
A data packet sending method and apparatus. The method includes: sending a policy request message that carries header information of a data packet to one or more controllers when a forwarding table of a first switch does not have a forwarding entry that matches the header information of the data packet; receiving a policy response message sent by a controller, where the policy response message includes a controller-determined forwarding path; selecting a forwarding path from received controller-determined forwarding paths; informing the selected forwarding path to a second switch on the selected forwarding path to forward the data packet after receiving the data packet, where the second switch is a switch besides the first switch on the selected forwarding path; and forwarding the data packet according to the selected forwarding path.
US10171351B2 Method for updating flow table
Disclosed is a method for updating a flow table for a switch in software defined networking (SDN). The method for updating a flow table of at least one network device by a controller in a software defined network comprises the steps of: transmitting, to at least one network device, a flow table modification message including information on a scheduled time specifying a time at which updating of the flow table is performed; and receiving, from at least one network device, a result message showing an update result on the flow table performed by at least one network device according to the flow table modification message. Accordingly, it is possible to effectively control a load generated on the controller by controlling intervals of updating times between network devices, which is generated during transmission of the flow table modification message to multiple network devices.
US10171349B2 Packet forwarding for quality of service delivery
Embodiments of the present invention include methods, systems, and computer program products for packet forwarding. Aspects of the invention include receiving, from a source node, a first network queue in a set of network queues, wherein the first network queue includes one or more minimum network traffic performance requirements. A set of network paths is analyzed to determine a performance level for each network path and identify a first network path and a second network path with a performance level above the one or more minimum performance requirements of the first network queue. A determination is made that the first network path has a higher performance level than the second network path. Based at least in part on determining that the first network path has a higher performance level than the second network path, the first network queue is mapped to the first network path.
US10171348B2 Communication control device, communication control system, communication control method, and communication control program that selects a function to be used from failure recovery functions superposed by layer
A communications control device that, if a communications failure occurs at location in a first path for communications that extends across a plurality of communications layers, selects any second path from a candidate group including at least one second path for continuing communications without going via the location where the communications failure has occurred, on the basis of the time required for each second path to switch from the first path to the second path, and sends, to a communications device for performing the switching, an instruction for switching the first path to the selected second path and continuing communications.
US10171347B2 Data transfer control method, relay device, and data transfer control device
A transfer path between a sensor and a data processing server is partitioned into at least a first transfer path between the sensor and a first relay device, a second transfer path from the first relay device to a second relay device that transfers the data transmitted from the first sensor, and a third transfer path between the second relay device and the data processing server. A data transfer between each of the sensors and the data processing server is implemented by respectively controlling a pair of the first transfer path and the second transfer path, and a pair of the second transfer path and the third transfer path.
US10171344B1 Isolation of endpoints within an endpoint group
An ingress network device of a network fabric mark packets with source endpoint group information to enable intra-EPG isolation. The ingress network device receives an indication of endpoints associated with an isolated endpoint group that restricts network traffic among members of the isolated endpoint group. The ingress network device receives a packet from a source and detects that the source endpoint belongs to the isolated endpoint group. The ingress network device incorporates source endpoint group information into a header of the packet. The source endpoint group information indicates that the source endpoint belongs to the isolated endpoint group.
US10171343B2 Routing multiple data streams simultaneously in wireless networks
A method and apparatus for routing multiple data streams simultaneously through independent routes between multiple-input-multiple-output (MIMO) stations in a mesh network. The disclosed feature allows transmission of multiple data streams via multiple routes from a source station (STA) to a destination station (STA), which are both MIMO capable, even though the relay STAs in between can be a single-input-single-output (SISO) STA. An extended routing request (RREQ) and routing reply (RREP) frames are utilized which provide a primary and secondary flag indication, which is utilized in combination with advanced programming for setting path cost metrics to assure independence of primary and secondary routes.
US10171340B2 Interworking network element
The invention relates to a method and device for managing the interconnection between network domains. In one embodiment this is accomplished by classifying the received frame based on service level agreement, wherein the classifying includes checking the received frame Ethertype value is same as the port on which the frame is received, recognizing an Ethertype of the egress port of the received frame, wherein the recognizing includes checking the received frame Ethertype value is same or not and translating the frame into a compatible Ethertype and forwarding the same to the next available port.
US10171339B2 Populating forwarding database tables in a fabric environment
Each switch in a network maintains a forwarding database table in which each record identifies a media access control (MAC) address, a port identifier, and a source identifier. A frame is received from a first network device at a first port of a first switch, wherein the frame includes a MAC address of the first network device. The first switch prepares a synchronization packet including the MAC address, a port identifier identifying the first port, a source identifier identifying the first switch and an instruction, in response to determining that the MAC address is not associated with the first switch in the first forwarding database table. The synchronization packet is sent to each other switch, and the forwarding database tables of the other switches are modified to implement the instruction.
US10171335B2 Analysis of site speed performance anomalies caused by server-side issues
The disclosed embodiments provide a system for processing data. During operation, the system obtains a component of a time-series performance metric associated with a server-side root cause of an anomaly in the time-series performance metric. Next, the system obtains a call graph representation of the component, wherein the call graph representation includes a parent node having a parent value of the component and a set of child nodes of the parent node, each child node having a corresponding child value of the component. The system then analyzes the call graph representation to identify one or more of the child nodes as sources of the anomaly. Finally, the system outputs an alert that identifies the sources of the anomaly.
US10171328B2 Methods and devices for backward congestion notification
The present invention provides improved methods and devices for managing network congestion. Preferred implementations of the invention allow congestion to be pushed from congestion points in the core of a network to reaction points, which may be edge devices, host devices or components thereof. Preferably, rate limiters shape individual flows of the reaction points that are causing congestion. Parameters of these rate limiters are preferably tuned based on feedback from congestion points, e.g., in the form of backward congestion notification (“BCN”) messages. In some implementations, such BCN messages include congestion change information and at least one instantaneous measure of congestion. The instantaneous measure(s) of congestion may be relative to a threshold of a particular queue and/or relative to a threshold of a buffer that includes a plurality of queues.
US10171327B2 Handling of network characteristics
There is provided a network information system for handling network characteristics. The network information system comprises a first functional module, a second functional module, and a third functional module. The third functional module is arranged to invoke handling of network characteristics by triggering operation of the first functional module and the second functional module. An available bitrate for a media flow is estimated. Information about a permitted share of physical resources to be used during the transmission of the media flow is acquired. The estimated available bitrate for the media flow is updated. The updated estimated available bitrate is provided to a network entity associated with transmission of the media flow.
US10171324B2 Media stream monitor
A stream monitor can request a streaming media server to send stream records associated with streams currently being served. The stream monitor uses the stream records to test streams being served by the streaming media server. The stream monitor can concurrently test multiple streams for connection errors, silence errors, metadata errors, and other errors.
US10171323B2 Determining a state of a network device
The invention provides a processor and a method for determining the state of a first network device in a lighting network based upon information associated with the first network device and a second network device adapted to pass messages to the first network device. The first network device is associated with a first count value, and the second network device is associated with a second count value. When the first count value is within a predetermined range relative to the second count value, the first network device is determined to have been inactive. Each respective count value is based on the change or difference in an incremental property of the respective network device since a last reset of the count value.
US10171322B2 Dynamic and secure cloud to on-premise interaction and connection management
The described herein relates to a method executed by a passport service executed by at least one processor coupled to at least one memory. The method includes creating a passport on a cloud application that comprises connectivity details for a tunnel and activating an on-premise appliance of an on-premise system by delivering the passport to the on-premise appliance to build the tunnel. The method further includes generating a passport token via the passport, wherein the passport token comprises dynamically generated connectivity properties. The method also includes binding the cloud application and the on-premise appliance based on the dynamically generated connectivity properties of the passport token and the connectivity details of the passport.
US10171315B2 Orchestration process template for generation of orchestration process to tolerate errors
A method to generate an executable orchestration process includes: querying a user to enter first computer code for activating a service; querying the user to enter second computer code for undoing actions performed in the activating; loading pre-defined third computer code for determining whether the activated service is a success or has an error, based on the service; loading pre-defined fourth computer code for correcting the error; generating an executable orchestration function from the first through fourth computer code; and generating the orchestration process from the executable orchestration function.
US10171308B2 Dynamic cable-linkage management
Disclosed aspects relate to dynamic cable-linkage management for a shared pool of configurable computing resources having a set of cable-linkage topology data. A first connection between a first service processor and a plurality of compute nodes may be sensed by a first mapping engine which is coupled with a first service processor on a set of control nodes. A plurality of node identifiers may be established on the plurality of compute nodes by the first mapping engine. Based on the plurality of node identifiers and the set of cable-linkage topology data, a first device path map may be determined. A set of data traffic may be routed via the first connection between the first service processor and the plurality of compute nodes based on the first device path map.
US10171306B2 Automatic discovery and provisioning of multi-chassis etherchannel peers
Methods and system are disclosed which can simplify the configuration of a MCEC in a fabric environment such that is may become automatic. Furthermore, centralized identities (such as a host tracking database and/or a network controlled) may be employed to detect the presence of a MCEC. Requiring the creation of direct links between network devices participating in the MCEC may be avoided. Furthermore, logical L2 fabric connectivity (over a L3 fabric underlay) may be utilized to provide dual homing active-active services without additional configuration, as the tracking of peer network devices may be performed in a centralized manner. For example, a host tracking database or a network controller may be employed for peer tracking.
US10171301B2 Identifying hardcoded IP addresses
A method and associated systems for identifying hardcoded network addresses. A network-migration tool requests from a network certain types of data that may identify IP addresses used by the network and receives a subset of the requested data. The system infers from the manner in which received data characterizes IP addresses which of those addresses are likely to be hardcoded. If the system receives a list of server affinities, it infers that an IP address used for communication between servers in a same affinity group is hardcoded if that address is not listed by an associated DNS server. If a received ARP cache lists an IP address as having been resolved to a MAC address, the system infers that the IP address cannot be hardcoded. If a received TCP trace log lists an address without a corresponding hostname the system infers that the address is hardcoded.
US10171298B2 Management center for communication system customer premises equipment
Described are systems and methods for a Digital Subscriber Line (DSL) customer premises equipment (CPE) Management Center (CMC). In one embodiment, the CMC includes a communications interface to receive information from the CPE device regarding operation of the CPE device. The received information is analyzed and a command signal generation module generates a corresponding command signal for transmission to the at least one CPE device to modify the CPE device operation based on the analysis results in a manner which either enhances CPE device performance, for example increasing data rate, or improves line stability, for example reducing CPE error rate.
US10171294B2 Information processing device and system design support method
Consistency between a requirement for communication with respect to software in a system and a requirement for a network is maintained, without re-designing a network by the user. A requirement conversion unit (110) of a system design support device (100) generates a requirement for communication between computers based on a requirement for communication between software components included in a system, and based on identifiers of the computers in which the software components are deployed. The requirement conversion unit (110) generates a requirement for a network for connecting between the computers based on the requirement for communication between the computers. The setting generation unit (120) generates a setting relating to a network, a setting relating to communication between computers, and a setting relating to communication between software components based on the requirement for the network, the requirement for communication between the computers, and the requirement for communication between the software components.
US10171293B2 Initializing, provisioning, and managing devices
A method of initializing, provisioning, and managing a cable modem and a customer premise equipment device includes sending a customized configuration file to the cable modem. The configuration file contains service provisioning information and further includes information indicative of a network address type for the customer premise equipment device. A message is passed from the cable modem to the customer premise equipment device indicative of the network address type. The customer premise equipment device is provided with a network address in accordance with the network address type indicated in the message. In this way, the customer premise equipment device knows what kind of address to obtain, and excessive transactions are avoided.
US10171292B1 Deploying a cloud infrastructure in a remote site
A method for deploying a cloud infrastructure includes obtaining a specification of one or more network resources in a new region of a service provider. A virtual private cloud (VPC) within an existing region of the service provider may be configured based on the specification, with a plurality of core configuration services. A connection is established between the VPC and the new region. The one or more network resources in the new region are established as a network infrastructure, and are configured over the established connection to run compute services, using at least one of the core configuration services. The plurality of core configuration services are transferred to the one or more network resources in the new region, and the new region is disconnected from the VPC.
US10171291B2 Tenant-specific log for events related to a cloud-based service
A method, system, and/or computer program product establishes and utilizes a tenant-specific log for events related to a cloud-based service. A metamodel is created for a cloud-based service provided to a specific tenant of a cloud. The metamodel describes types of resources that are providing the cloud-based service that the specific tenant desires to monitor. In response to the cloud-based service being executed, the metamodel is used to identify a set of resources that are actually providing the cloud-based service for the specific tenant. A tenant-specific log is established to tracks events that occur on each actual resource from the set of resources, and records access to the specific unit of hardware by an authorized user of the specific unit of hardware. Operations related to the cloud-based service are transferred from the specific unit of hardware to a local device that is available only to the specific tenant.
US10171288B2 Diagnosing faults in stateless distributed computing platforms
Methods, systems, and computer program products for diagnosing faults in stateless distributed computing platforms are provided herein. A computer-implemented method includes processing a plurality of communication messages exchanged between two or more distributed components within a stateless distributed system; determining a message context for each of the plurality of communication messages based on one or more message identifiers extracted from each of the plurality of communication messages; grouping the plurality of communication messages into multiple clusters pertaining to message invocation, wherein said grouping is based on the determined message context for each of the plurality of communication messages; generating a control flow graph by creating one or more connections across the multiple clusters; and detecting a causal chain of events associated with a detected fault in the stateless distributed system by navigating the control flow graph.
US10171285B2 Proactive M2M framework using device-level vCard for inventory, identity, and network management
A network device may connect to a smart-enabled network. Once connected, the network device may receive a network address for a network management server (NMS). Having the network address for the NMS, the network device may generate a vCard comprising the attributes necessary for registering with the NMS. The network device may then communicate the vCard to the NMS. The NMS may then be configured to identify, register, and add the network device to a directory.
US10171284B2 Reachability-based coordination for cyclic dataflow
A computer-readable storage medium stores computer-executable instructions that, when executed by a processor, perform operations including scheduling first and second threads to operate independently on first and second partitions of data. The operations include beginning a first operation on the first and second partitions by the first and second threads, respectively. The operations include tracking progress of the first operation by the first and second threads using a replicated data structure. The operations include, for a record on which the first operation will be performed, adding an entry to the replicated data structure with a timestamp indicating an epoch and iteration. The operations include determining a number of yet-to-be-processed records for a selected entry of the replicated data structure. The selected entry has the most recent timestamp for the first thread. The operations include terminating the first thread when the number of yet-to-be-processed records for the selected entry is zero.
US10171281B2 4-level pulse amplitude modulation transmitter architectures utilizing quadrature clock phases
A four-level pulse amplitude modulation transmitter and corresponding method are provided. The transmitter includes a most significant bit processing section and a least significant bit processing section. The transmitter further includes at least one termination resistor connected to respective outputs of the processing sections to provide a transmitter output. Each of the processing sections include a set of retiming latches arranged in a parallel for aligning input parallel data and providing parallel aligned latched outputs responsive to one phase of a quarter-rate four-phase quadrature clock. Each of the processing sections further includes a serializer for serializing the parallel aligned latched outputs to provide a serialized output using quarter-rates of the quarter-rate four-phase quadrature clock. Each of the processing sections also include an output driver for driving the serialized output.
US10171279B2 Transmitter and receiver
A transmitter includes: a null symbol map unit to determine a null symbol arrangement pattern by combining different unit patterns determining positions of data symbols and null symbols; a subcarrier map unit to assign, in a two-dimensional space defined by a plurality of subcarriers for use in multicarrier transmission and a time series represented in units of time determined in accordance with a single symbol, transmission data to positions of data symbols of the respective subcarriers determined in accordance with the null symbol arrangement pattern; a modulator to generate the data symbols by modulating the assigned transmission data, assign null symbols having a power of 0 to positions of null symbols of the respective subcarriers determined in accordance with the null symbol arrangement pattern, and generate transmission symbols of the respective subcarriers; and a baseband section to output a baseband signal based on the transmission symbols.
US10171275B2 Wireless transmitter, wireless remote receiver and methods thereof
A wireless transmitter, comprises a frame generator configured to generate a frame by including an auxiliary preamble, an auxiliary syncword, a guard, a preamble, an address, a packet control, a payload and a CRC; a modulator communicatively coupled to the frame generator and configured to modulate the frame according to a variable transmission rate and include the transmission rate in the auxiliary syncword; and a RF front end communicatively coupled to the modulator and configured to transmit the modulated signal to a receiver.
US10171274B2 Data transmission apparatus, data reception apparatus, data transmission and reception system
A data transmission and reception system may include: a data transmission apparatus configured to generate N Tx signals having discrete levels using N binary data, and output the N Tx signals to N single-ended signal lines, respectively, where N is a natural number equal to or larger than 2; and a data reception apparatus configured to receive the N Tx signals transmitted in parallel through the single-ended signal lines, and restore the N binary data by comparing the received N Tx signals to each other.
US10171272B2 Computationally efficient algorithm for mitigating phase noise in OFDM receivers
An inter-carrier interference (ICI) mitigation circuit associated with an orthogonal frequency division multiplexing (OFDM) receiver is disclosed. The ICI mitigation circuit comprises an ICI cancellation circuit configured to receive an OFDM symbol associated with an OFDM signal and determine an ICI associated with one or more OFDM subcarriers within the OFDM symbol. The ICI cancellation circuit is further configured to cancel the ICI from the one or more OFDM subcarriers associated with the OFDM symbol, in order to generate a desired OFDM symbol. In some embodiments, the ICI is determined and cancelled at the ICI cancellation circuit, in accordance with a predetermined ICI mitigation algorithm.
US10171266B2 Switch-extender and a method for calibrating
A switch-extender is connected to a measurement system and to several DUTs. It splits a signal from the measurement system into several signals so that the several DUTs receive the same signal and can therefore be tested in parallel. The switch-extender further includes at least one amplifier and/or at least one attenuator for every output port so that every signal has the same signal level no matter what the individual attenuation factor of the signal connectors or of the internal printed circuit board is. Furthermore a method for calibrating the measurement system as well as for the switch-extender and the signal connectors describes how to obtain the needed calibration values both for the downlink path and for the uplink path without changing the signal connector.
US10171264B2 Data center networks
Measures for routing data packets in a data center network are provided. A packet forwarding function in a server in a data center network is configured to forward data packets to/from virtual systems hosted on that server. The packet forwarding function is configured to make forwarding decisions for received data packets based on the destination internet protocol (IP) address of the received data packet, and forward the data packet at least on the basis of the forwarding decision.
US10171262B2 Method for provisioning of room automation components of a building automation
A method for provisioning and configuring room automation components of a building automation system during an installation and configuration phase, wherein a configuration unit is used for the provisioning and configuring the room automation components, each room automation component is assigned a unique during the installation, a temporary address and a unique recognition code is defined for each room automation component and for an associated, temporary address, which is transferred to the respective room automation component, where a configuration mode is activated, during which the respective recognition code is issued by the respective room automation component. After successful identification and association with the respective associated, temporary address, each identified room automation component is indicated optically on the mobile unit and is selectable in a simple manner for further configuration, whereby the outlay in time is reduced and the flexibility during the installation is increased.
US10171259B2 Network system and relay device
A network system includes: a VXLAN region that is connected to a vEPC virtual network and in which encapsulation by VXLAN is performed; a PBB region in which encapsulation by PBB is performed; an edge router that belongs to the VXLAN region and is connected to an edge switch in the PBB region; and an edge switch that belongs to the PBB region and is connected to the edge router. The edge router performs conversion between a VNID of data encapsulated by the VXLAN and an intermediate CVID of decapsulated data exchanged with the edge switch, and the edge switch performs conversion between an ISID of data encapsulated by the PBB and the intermediate CVID.
US10171258B2 Data collection method and system
A method of collecting data into a server from multiple client computers is provided as a first aspect of the invention. The method includes the steps of: reconstructing a collection network in a tree structure having the server acting as a highest node and the multiple client computers acting as child nodes every time the data is collected; the server broadcasting a parent-child declaration to nodes placed at the lower level; and each of the nodes transferring data to a node placed at the higher level.
US10171254B2 Distributed live multimedia switching mechanism and network
A method includes discovering live video feeds. The discovered live feeds are presented on a website. The viewing of one or more live video feeds and interaction with entities that are generating the live video feeds is enabled.
US10171248B2 Method and system blockchain variant using digital signatures
A method for using digital signatures for signing blockchain transactions includes: generating a domain key pair comprising a domain private key and a domain public key, wherein the domain public key is signed after generation; receiving a plurality of member public keys, wherein each member public key is received from an associated member of a blockchain network and is a public key in a key pair comprising the member public key and a member private key corresponding to the associated member; signing each member public key using the domain private key; receiving a transaction block from a specific member of the blockchain network, wherein the transaction block includes a plurality of blockchain transaction values and a hash signed using the member private key corresponding to the specific member; signing the received transaction block using the domain private key; and transmitting the signed transaction block.
US10171246B2 Multi-user strong authentication token
Apparatus, methods and systems to secure remotely accessible applications using authentication devices are disclosed. More in particular apparatus, methods and systems are disclosed for thwarting overlay attacks against authentication applications for displaying transaction data and for generating signatures over these transaction data.
US10171243B2 Self-validating request message structure and operation
A method begins by a first device generating a self-validating message by creating a master key, using the master key to create a message encryption key, encrypting a message using the message encryption key to produce an encrypted message, encrypting the master key using a public key of a second device to produce an encrypted master key, and including a message authentication code of the first device in the self-validating message. The method continues by the second device receiving and decoding the self-validating message by verifying the message authentication code of the first device, and when the message authentication code of the first device is verified, decrypting the encrypted master key using a private key of the second device to recover the master key, using the master key to create the message encryption key, and decrypting the encrypted message using the message encryption key to recover the message.
US10171241B2 Step-up authentication for single sign-on
A method for authenticating a user seeking access to first and second resources that have different authentication levels. The method includes receiving a primary token that is associated with a first authentication event of the user and authenticates the user to access the first resource, and receiving a first request to access the second resource. The method further includes receiving first credentials of the user. The method further includes, responsive to validating the first credentials, generating a second authentication event, associating the second authentication event with the primary token, and issuing a first secondary token that authenticates the user to access the second resource.
US10171240B2 Accessing resources in private networks
Some embodiments provide a non-transitory machine-readable medium that stores a program. The program receives a queue message from a computing device. The queue message includes a request to perform a set of actions on a resource in a private network and a security signature generated from an authentication operation. The program also stores the queue message in a message queue for later retrieval when the queue message is determined to be valid based on the security signature. The program further sends the queue message to a queue monitor for the queue monitor to instruct the resource to perform the set of actions. Upon receiving a response associated with the queue message from the queue monitor, the program forwards the response associated with the queue message to the computing device.
US10171235B2 User-initiated migration of encryption keys
Embodiments utilizing secret keys for authentication and/or encrypted communication are described. In certain embodiments, authentication data is provided from a source network communication device to a target network communication device that allows a computing server to verify that the key migration is authorized by the source network communication device. The authentication data also enables the data provider and the target network communication device to independently determine a temporary key for establishing a secure communication channel between the service provider and the target network communication device and/or determine a new key for the target network communication device. In some implementations, the authentication data may be exchanged between the source and target network communication devices between offline without involvement of the computing server. When the target network communication device later connects to the computing server, the authentication data may be used to verify that the key migration is authorized and/or generate key(s).
US10171234B2 Wide encoding of intermediate values within a white-box implementation
A method for a method for mapping an input message to an output message by a keyed cryptographic operation in a cryptographic system, including a plurality of rounds wherein each round has a substitution layer, wherein wide encoding is used on the substitution layer in the rounds that require protection from attacks.
US10171232B2 Flexible architecture and instruction for advanced encryption standard (AES)
A flexible aes instruction set for a general purpose processor is provided. The instruction set includes instructions to perform a “one round” pass for aes encryption or decryption and also includes instructions to perform key generation. An immediate may be used to indicate round number and key size for key generation for 128/192/256 bit keys. The flexible aes instruction set enables full use of pipelining capabilities because it does not require tracking of implicit registers.
US10171228B2 Receiving circuit, electronic device, transmission/reception system, and receiving circuit control method
In a self-synchronous transmission scheme, received data is accurately acquired. A timing signal generating unit generates timing signals indicating different timings in synchronization with a timing at which a status of a reception signal transitions. A first data signal generating unit generates a first data signal from statuses of the reception signal before and after a timing at which a predetermined first timing signal becomes a specific value, and outputs the first data signal in synchronization with a second timing signal different from the first timing signal. A second data signal generating unit generates a second data signal from statuses of the reception signal before and after a timing at which the second timing signal becomes the specific value, and outputs the second data signal in synchronization with a timing signal different from the first timing signal.
US10171225B2 Communication apparatus and control signal mapping method
A communication apparatus includes control circuitry and a transmitter. In operation, the control circuitry selects a Demodulation Reference Signal (DMRS) mapping pattern from among a plurality of DMRS mapping patterns. The DMRS mapping patterns include a first DMRS mapping pattern with first DMRS resource elements to which first DMRSs in a first half of a subframe are mapped and second DMRS resource elements to which second DMRSs in a second half of the subframe are mapped. Also, in operation, the transmitter transmits downlink control information that includes a plurality of bits indicating the selected DMRS mapping pattern.
US10171219B2 Method and apparatus for encoding and processing acknowledgement information
A method for encoding acknowledgement information includes: receiving a component carrier, where the component carrier includes at least one downlink subframe; generating acknowledgement information bits corresponding to the component carrier according to the received component carrier; dividing the acknowledgement information bits into two groups so that each group includes at least one acknowledgement information bit, where the at least one acknowledgement information bit corresponds to physical downlink shared channel PDSCH transmission, and/or downlink control information DCI, where the DCI is used for indicating downlink semi-persistent scheduling SPS release; and encoding the two divided groups of acknowledgement information bits to obtain two groups of codeword bits, respectively, and generating, from the two groups of codeword bits obtained by the encoding, total codeword bits to be transmitted. In addition, a method for receiving acknowledgement information, an apparatus for encoding acknowledgement information, and an apparatus for processing acknowledgement information are also included.
US10171216B2 Downlink control for demodulation reference signal transmissions
The present disclosure provides a unique control region that is mapped to each data region for DL DMRS transmissions. In addition, the present disclosure provides an updated DCI format that may include DL DMRS transmissions. The apparatus may receive a first content during a first TTI. In an aspect, the content may include at least a control region which includes a DMRS. In addition, a location of the DMRS may be defined by either a closed-loop precoding structure or an open-loop precoding structure. Furthermore, the duration of the first TTI may be shorter than 1 ms. The apparatus may demodulate the control region based at least on the DMRS.
US10171212B2 Method and device for performing channel estimation
A method for reporting a channel state on a downlink channel transmitted through M antenna ports that are 2-dimensionally arranged according to an embodiment of the present invention may be performed by a terminal and include a step of receiving a channel state information-reference signal (CSI-RS) setting for N virtual antenna ports that are formed by applying beam-forming to a group of vertical antennas of the 2-dimensionally arranged M antenna ports, and a step of calculating channel state information on the downlink channel by using the received CSI-RS setting to report the channel state information to a serving cell, wherein the reported channel state information may include information on a rotational transformation related to a first code word of a codebook related to a combination of Q unit vectors that are orthogonal in an N dimension space.
US10171205B2 Space time labelling technique for wireless communication systems
A space time labelling technique for wireless communication systems is provided. A transmitter for implementing the technique includes a first bit mapper and a second bit mapper which is different to the first bit mapper and first and second transmitters. A processor is connected to the first and second mappers and the first and second transmitters and controls these to receive two bit streams and simultaneously feed these into the first mapper and the second mapper. The first mapper maps these into first and second mapped bit streams and the second mapper maps these into third and fourth mapped bit streams which are different from the first and second mapper bit streams. The first mapped bit stream is transmitted in a first time slot via the first transmitter and the second mapped bit stream is transmitted in the first time slot via the second transmitter. The third mapped bit stream is transmitted in a second time slot via the second transmitter and finally the fourth mapped bit stream is transmitted in a second time slot via the first transmitter.
US10171203B2 Apparatus and method for receiving signal in communication system supporting low density parity check code
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-generation (4G) communication system such as long term evolution (LTE). A method for receiving a signal in a signal receiving apparatus in a communication system supporting a low density parity check (LDPC) code is provided. The method includes receiving a signal from a signal transmitting apparatus; and performing an LDPC decoding operation which is based on a preset first parity check matrix on the received signal, wherein the first parity check matrix is generated based on a second parity check matrix including a plurality of sub-matrices.
US10171199B2 Tunable laser in an optical access network
A system includes a multiplexer having a pass-band and an optical network unit (ONU) optically coupled to the multiplexer. The ONU includes a tunable laser configured to continuously transmit an optical signal to the multiplexer in a burst-on state and a burst-off state. While in the burst-on state, the ONU is configured to tune the tunable laser to transmit the optical signal at a transmit wavelength within the wavelength pass-band of the multiplexer. The multiplexer configured to allow passage therethrough of the optical signal at the transmit wavelength. While in the burst-off state, the ONU is configured to tune the tunable laser to transmit the optical signal at a non-transmit wavelength outside of the wavelength pass-band of the multiplexer. The multiplexer configured to block passage therethrough of the optical signal at the non-transmit wavelength.
US10171191B2 Broadcast receiving apparatus and broadcast receiving method
A broadcast receiving apparatus includes a reception unit, sound controlling unit, and determination unit. The reception unit receives a signal of an analog broadcast and a signal of a digital broadcast having the same broadcast content. The sound controlling unit performs, when an output of the broadcast receiving apparatus switched into the analog broadcast from the digital broadcast, a switching control of switching the output into the analog broadcast from the digital broadcast so that an acoustic characteristic of the output digital broadcast gradually approaches an acoustic characteristic of the analog broadcast based on a reception intensity of the signal of the analog broadcast. The determination unit determines, after the sound controlling unit starts the switching control, whether or not the switching control performed by the sound controlling unit is to be continued, based on reception state of the signal of the digital broadcast.
US10171190B2 Device and method for testing MIMO scheme system
A window function arithmetic operation unit performs a convolution arithmetic operation of the frequency characteristics of a window function with the input of modulation signals which are output by a layer frequency domain signal generation unit. A beam forming equivalence arithmetic operation unit performs an arithmetic operation process equivalent to the beam forming process with the input of propagation channel characteristics of each path which are output by a fading setting unit, and a Fourier transform unit performs Fourier transform with the input of the arithmetic operation results. An arithmetic operation unit obtains spectrum information of signals to be received in receiving antennas, converts the obtained spectrum information into signals in the time domain through inverse Fourier transform processes performed by a time domain signal generation unit. A shift addition unit shifts and adds the converted signals, to generate received signals of the receiving antennas.
US10171189B2 Robust power detector for wideband signals among many single tone signals
Various technologies for isolating a signal of interest from signals received contemporaneously by an antenna are described herein. A time period for which a signal of interest is present in a second signal can be identified based upon ratios of values of the second signal to the mean value of the second signal. When the ratio of the value of the second signal at a particular time to the mean of the second signal exceeds a threshold value, the signal of interest is considered to be present in the second signal.
US10171188B2 Mobile computing device including a graphical indicator
An example mobile computing device includes a display, a housing coupled to the display, and a graphical indicator. The housing includes a chamber, an antenna to communicate with a wireless network, and an exterior antenna region. The graphical indicator identifies the exterior antenna region on the housing and a signal strength of a connection to the wireless network.
US10171182B2 Sending known data to support fast convergence
Methods and systems for fast recovery, such as a transceiver that assists a second transceiver to recover rapidly from quality degradation. In one embodiment, the transceiver includes a receiver and a transmitter. The receiver receives from the second transceiver an indication to transmit known data, wherein utilizing the known data enables the second transceiver to recover within less than 1 millisecond from the quality degradation. And the transmitter transmits the known data, wherein the known data comprises bitwise complement code words of an idle sequence, and each bitwise complement code word appears in the idle sequence.
US10171177B2 Digital signal processor, digital optical receiver using the same, and digital signal processing method
It is difficult to obtain a demodulated signal with high signal quality in a digital optical receiver because it is difficult to compensate for each of different types of waveform distortion by a high-performance equalization process; therefore, a digital signal processor according to an exemplary aspect of the present invention includes a fixed equalization means for performing a distortion compensation process based on a fixed equalization coefficient on an input digital signal; an adaptive equalization means for performing an adaptive distortion compensation process based on an adaptive equalization coefficient on an equalized digital signal output by the fixed equalization means; a low-speed signal generation means for generating a low-speed digital signal by intermittently extracting one of the input digital signal and the equalized digital signal; a low-speed equalization coefficient calculation means for calculating a low-speed equalization coefficient to be used for a distortion compensation process of the low-speed digital signal; and a fixed equalization coefficient calculation means for calculating the fixed equalization coefficient by using at least a predetermined coefficient out of the low-speed equalization coefficient and the predetermined coefficient.
US10171176B2 Phase demodulation method and circuit
An electrical circuit and method for de-modulation and carrier recovery of PSK modulated carrier signals in analog domain are described. A portion of the received PSK-modulated carrier signal is passed through a signal multiplication circuit to obtain a frequency-multiplied carrier that is absent of the PSK modulation, which is then passed through a frequency dividing circuit to obtain a reference carrier at the received carrier frequency. The reference signal is then mixed with the received PSK-modulated carrier signal to obtain a de-modulated baseband signal. The method may be used in heterodyne receivers of optical BPSK and QPSK signals.
US10171157B2 Repeater
A repeater efficiently transfers frames addressed to the same destination address when the frames are received at the same time by a plurality of ports, by performing a distribute-transfer process, when a difference between a size of each of the frames received by a normal port and an average size of those frames is within a preset range for all the frames, or an actual-measured communication speed of each of two ring ports is greater than a threshold. The distribute-transfer process distributes and transmits the frames to two communication paths from the two ring ports after receiving the frames at the two normal ports. The highest actual-measured communication speed of a ring port among other ring ports of the repeaters is considered as a communication efficiency parameter for selecting a broadest communication path for transmitting the frame. The frame(s) having the highest communication speed is/are distributed to the ring port connected to the broadest path.
US10171155B2 PUCCH transmit diversity with one-symbol STBC
Aspects of the disclosure relate to wireless communication systems configured to provide techniques for utilizing a one-symbol space-time block code (STBC) process to encode control information for transmission on an uplink control channel. The one-symbol STBC process produces two code blocks, each for transmission on a different antenna. Each code block may be time domain spread across multiple single-carrier frequency division multiple access (SC-FDMA) uplink control channel symbols using the same spreading code to enable recovery of the code blocks at the receiver.
US10171153B2 Method and apparatus for transmitting channel state information in wireless communication system
The present invention relates to a wireless communication system. A method for a terminal for transmitting channel state information (CSI) in a wireless communication system according to an embodiment of the present invention comprises the steps of: subsampling a first codebook associated with a first precoding matrix indicator (PMI) and a second codebook associated with a second PMI according to a reporting mode for a four-antenna port; and reporting the channel state information on the basis of the subsampled first codebook and second codebook, wherein a second codebook index for the second PMI may have any one index from a first index group if the first codebook index for the first PMI is an odd number, and if same is an even number, may have any one index from a second index group.
US10171149B2 Apparatus, system and method of wireless backhaul and access communication via a common antenna array
Some demonstrative embodiments include apparatuses, systems and/or methods of wireless backhaul and access communication via a common antenna array. For example, an apparatus may include a wireless communication unit to control an antenna array to form one or more first beams for communicating over one or more access links and to form one or more second beams for communicating over one or more backhaul links, the access links including wireless communication links between a wireless communication node and one or more mobile devices, and the backhaul links including wireless communication links between the wireless node and one or more other wireless communication nodes.
US10171147B2 Method for transmitting signal in multiple-antenna wireless communication system and apparatus for same
The present invention relates to a method and an apparatus for transmitting a signal of a first base station, for supporting a plurality of vertical directions in a wireless communication system which supports multiple antennas. Particularly, the method comprises the steps of: configuring a group so as to include at least one base station, among a plurality of base stations, for a first terminal having a position higher than those of the plurality of base stations; setting a specific sector for supporting coverage of the group; and determining whether to perform beamforming for the first terminal on the specific sector.
US10171144B2 Low complexity high performance single codeword MIMO for 5G wireless communication systems
A low complexity multiple input multiple output transmitter that transmits a single codeword per channel is disclosed herein. Instead of sending multiple codewords per channel for transmissions that support higher data layer transmissions, the transmitter can send single codewords over multiple channels in order to improve spectral efficiency over a range of signal to interference plus noise ratios. For instance, if a downlink transmission to a user equipment (UE) has a rank of 4, capable of supporting 4 data layers, instead of sending 2 or more codewords over a single downlink control channel, the transmitter can schedule multiple control channels and transmit a single codeword per channel. The transmitter can also include in the signaling to the UE that the multi-codewords are included in multiple downlink control channels.
US10171136B2 Reducing internal signaling burden in the distributed antenna system
The present document is for a wireless communication with reduced internal signaling burden in the distributed antenna system (DAS). In the proposed method, a user equipment (UE) receives a first information unit from the network by a first distributed unit (DU) among multiple DUs distributed within the UE. The first DU reports reception information of the first information unit to a central unit (CU) of the UE, wherein the CU controls the multiple DUs. The first DU receives, from the CU, a direction regarding a transfer of the first information unit to the CU, and transfers the first information unit to the CU when the direction indicates a specific value.
US10171135B2 Precoding method, apparatus, and system
The present disclosure relates to embodiments of a precoding method and systems for implementing those embodiments. The embodiments includes receiving, by a level 2 data center, level 1 channel information sent by at least two level 1 data centers, where the level 1 channel information includes a channel matrix between a terminal and the level 1 data center; performing, by the level 2 data center, calculation according to the channel matrix, to obtain a level 2 precoding matrix; and generating, by the level 2 data center, a level 2 signal according to a signal sent to the terminal and the level 2 precoding matrix, and sending the level 2 signal to the level 1 data center. The level 2 data center generates the level 2 signal according to the signal sent to the terminal and the level 2 precoding matrix.
US10171130B2 Receiver circuit
An analog receiver frontend includes a first amplification circuit coupled to receive an input signal. The first amplification stage is coupled to amplify a difference between the input signal and a threshold to generate the first signal. A second amplification circuit is coupled to receive the first signal from the first amplification circuit. The second amplification circuit is coupled to amplify the first signal to generate a second signal. An output circuit is coupled to receive the second signal from the second amplification circuit. The output circuit is coupled to output a recovered signal. The recovered signal is a pulse waveform of high and low sections. An input hysteresis circuit is coupled to the output circuit to receive the recovered signal and generate a hysteresis signal. One or both of the input signal and the threshold are level shifted by the hysteresis signal in response to the recovered signal.
US10171127B2 Method, system and computer program for synchronizing pseudorandom binary sequence modules
A system comprises a receiver comprising a first pseudorandom binary sequence module, and a transmitter comprising a second pseudorandom binary sequence module. The first pseudorandom binary sequence module is initialized with a first received bit sequence to start bit sequence generation with the aid of the second pseudorandom binary sequence module. Further, received remaining bits are compared to bit sequences generated with the aid of the first pseudorandom binary sequence module to determine whether a bit error rate is below a predefined threshold.
US10171119B2 Communication terminals and a method for exchanging information between communication terminals in a noisy environment
A method, system and computer readable medium for transmitting data and feedback over a noisy feedforward channel and a noisy feedback channel.
US10171118B2 Method for transmitting reference signal in cell that uses unlicensed frequency band and device
A system and method for transmitting a reference signal in a cell that uses an unlicensed frequency band. The method includes determining a candidate resource set that is used when a first reference signal is transmitted in the cell that uses the unlicensed frequency band, where the candidate resource set includes a preset resource and at least one flexible candidate resource, determining a first candidate resource that is used when the first reference signal is transmitted in the cell that uses the unlicensed frequency band, where a channel on the unlicensed frequency band corresponding to the first candidate resource is in an idle state, and the first candidate resource is the preset resource or a flexible candidate resource in the candidate resource set, and sending the first reference signal on the first candidate resource.
US10171117B1 Methods and apparatus to measure exposure to broadcast signals having embedded data
Example methods and apparatus to measure exposure to broadcast signals having embedded data are disclosed. An example broadcast signal exposure meter includes a first decoder to obtain an identifier of a broadcast station from an audio signal output by an end user broadcast receiver, a radio to tune to a broadcast signal from the broadcast station associated with the identifier of the broadcast station, a second decoder to obtain embedded data from the broadcast signal, the embedded data representing media contained in the broadcast signal, and an interface to provide the embedded data to a server, the server to determine audience measurement information for the media based on the provided embedded data.
US10171112B2 RF multiplexer with integrated directional couplers
An RF diplexer is provided that includes a first channel and a second channel. The first channel includes a first primary inductor. Similarly, the second channel includes a second primary inductor. A first directional coupler for the first channel includes a first transformer formed by the first primary inductor and also a first secondary inductor. A first terminal for the first secondary inductor is a coupled port for the first directional coupler. A second directional coupler for the second channel includes a second transformer formed by the second primary inductor and also a second secondary inductor. A first terminal for the second secondary inductor is a coupled port for the second directional coupler.
US10171111B2 Generating additional slices based on data access frequency
A method for execution by a computing device of a dispersed storage network. The method begins by determining whether frequency of access to a set of encoded data slices exceeds a frequently accessed threshold. The method continues, when the frequency of access exceeds the frequently accessed threshold, by determining an access amount indicative of a degree that the frequency of access exceeds the frequently accessed threshold. The method continues by generating a number of additional encoded data slices and storing the number of additional encoded data slices in a number of additional storage units, wherein the set of storage units and the number of additional storage units produce an expanded set of storage units. The method continues by sending a plurality of data access requests to subsets of the expanded set of storage units in a distributed manner to improve processing efficiency of the plurality of data access requests.
US10171109B2 Fast encoding method and device for Reed-Solomon codes with a small number of redundancies
Disclosed is a fast encoding method suitable for Reed-Solomon codes with a small number of redundancies including a step of setting parity-check matrices including presetting parity-check matrices H2 and H3 in which the number of redundant symbols s in the Reed-Solomon codes is 2 or 3. The method also includes a step of constructing the shortened Reed-Solomon codes including constructing (k, s) Reed-Solomon codes over a finite field GF(2m) that conform to the preset parity-check matrix; using k points {oi}i=1k in the R-points input {oi}i=0R−1 as message symbols, and setting the remaining points to zero; a step of encoding including recursively processing the R-points input to obatin s redundant symbols, achieving the encoding of Reed-Solomon codes with a small number of redundancies. Embodiments of the present invention further include an electronic device and a computer-readable storage medium.
US10171107B2 Groups of phase invariant codewords
Disclosed herein are a system, non-transitory computer-readable medium, and method for encoding and decoding information on a data bearing medium. A message comprising a bit string is read. A plurality of substrings in the message may be associated with a phase invariant codeword.
US10171098B2 Analog-to-digital converter (ADC) with improved power disturbance reduction
Disclosed herein is an analog-to-digital converter (ADC) for converting an input analog voltage to an output digital code, the ADC comprising a first node of the input analog voltage; nodes of a plurality of reference voltages; a plurality of comparators, inputs of each comparator being coupled to the first node and a node of a corresponding reference voltage of the plurality of reference voltages; a logic circuit block for receiving outputs of the plurality of comparators and generating the output digital code; and a voltage stabilizer, terminals of the voltage stabilizer being coupled with the first node and a node of a first reference voltage among the plurality of reference voltages.
US10171091B2 Phase interpolator for interpolating phase of delay clock signal and device including the same and for performing data sampling by using phase interpolated clock signal
A phase interpolator includes a control circuit configured to generate a selection control signal that corresponds to a selected coarse phase interval, and generate a weight setting signal for generating a phase interpolation clock signal with an interpolated phase within the coarse phase interval; a phase selector configured to receive a plurality of inversion delay clock signal pairs, select at least two inversion delay clock signal pairs from the plurality of inversion delay clock signal pairs based on the selection control signal, select and output a selection delay clock signal pair corresponding to the coarse phase interval from the selected at least two inversion delay clock signal pairs; and a phase mixer configured to receive the selection delay clock signal pair from the phase selector and generate the phase interpolation clock signal based on the weight setting signal.
US10171090B2 Oscillator, electronic apparatus, and moving object
An oscillator includes a vibrator element, a container in which the vibrator element is housed, at least one of a heating element and a cooling body configured to control the temperature on the inside of the container, an oscillation circuit electrically connected to the vibrator element, a D/A conversion circuit configured to control a frequency output by the oscillation circuit, and a reference-voltage generation circuit configured to supply a voltage to the D/A conversion circuit. The reference-voltage generation circuit is mounted on the inside of the container or on a substrate on which the container is mounted.
US10171089B2 PVT-free calibration function using a doubler circuit for TDC resolution in ADPLL applications
An ADPLL circuit includes a time-to-digital converter (TDC) configured to generate a signal indicative of a phase difference between a first signal and a reference signal and a doubler electrically coupled to the TDC. The doubler is configured to receive a first voltage signal and generate a second voltage signal. The second voltage signal is provided to a voltage input of the TDC. The TDC is configured to generate one or more control signals for the doubler to adjust the second voltage signal.
US10171086B2 Superconducting three-terminal device and logic gates
A three-terminal device that exhibits transistor-like functionality at cryogenic temperatures may be formed from a single layer of superconducting material. A main current-carrying channel of the device may be toggled between superconducting and normal conduction states by applying a control signal to a control terminal of the device. Critical-current suppression and device geometry are used to propagate a normal-conduction hotspot from a gate constriction across and along a portion of the main current-carrying channel. The three-terminal device may be used in various superconducting signal-processing circuitry.
US10171083B2 Memristor logic design using driver circuitry
A new lower-power gate design for memristor-based Boolean operations. Such a design offers a uniform cell that is configurable to perform all Boolean operations, including the XOR operation. For example, a circuit to perform the AND operation utilizes a first memristor and a second memristor connected in series. The circuit further includes a switch, where a node of the second memristor is connected to the switch. Furthermore, the circuit includes a third memristor connected to the switch in series, where the switch and the third memristor are connected in parallel to the first and second memristors. Additionally, the first voltage source is connected to the first memristor via a first resistor. In addition, a second voltage source is connected in series to the switch and the third memristor. In such a design, the delay is reduced to a single step and the area is reduced to at most 3 memristors.
US10171082B2 Driving circuit
A malfunction is prevented in a driving circuit. A driving circuit in which each of the set side level shift circuit and the reset side level shift circuit has an input transistor, a serial transistor unit which includes a first MOS transistor and a second MOS transistor which are connected in series, the first MOS transistors complementarily operate to each other, the driving circuit further has a set side buffer which compares a level of the set potential with a threshold value depending on the reference potential, and controls the reset side second MOS transistor, and a reset side buffer which compares a level of the reset potential with a threshold value depending on the reference potential, and controls the set side second MOS transistor.
US10171078B2 Nonvolatile memory devices with on die termination circuits and control methods thereof
Non-volatile memory devices including on-die termination circuits connected to an input/output circuit and an on-die termination control logic detecting a preamble of a strobe signal based on a command and a control signal and activating the on-die termination within the preamble period.
US10171075B2 High speed and high voltage driver
Systems, methods, and apparatus for biasing a high speed and high voltage driver using only low voltage transistors are described. The apparatus and method are adapted to control biasing voltages to the low voltage transistors such as not to exceed operating voltages of the low voltage transistors while allowing for DC to high speed operation of the driver at high voltage. A stackable and modular architecture of the driver and biasing stages is provided which can grow with a higher voltage requirement of the driver. Capacitive voltage division is used for high speed bias voltage regulation during transient phases of the driver, and resistive voltage division is used to provide bias voltage at steady state. A simpler open-drain configuration is also presented which can be used in pull-up or pull-down modes.
US10171074B2 Electronic system
An electronic system is disclosed. The electronic system is electrically connected to an alternative current (AC) power and includes a switch and a parallel power conversion device. The parallel power conversion device includes a first power conversion module, a second power conversion module, and a driver. The first power conversion module is electrically connected to the AC power source and the switch, the second power conversion module is electrically connected to the AC power source, and the driver is electrically connected to the second power conversion module. When a current outputted from the first power conversion module is smaller than a specific vale, the driver makes the second power conversion module operate in a sleep mode to stop outputting current and to reduce level of outputting voltage.
US10171072B2 Optimized CMOS analog switch
An improved analog switch for use in an ultrasound elastography probe is disclosed. The improved analog switch results in less heat dissipation compared to prior art analog switches.
US10171071B2 Device and method for producing a dynamic reference signal for a driver circuit for a semiconductor power switch
A device (442) for producing a dynamic reference signal (UREF) for a control circuit for a power semiconductor switch comprises a reference signal generator (442) for providing a dynamic reference signal (UREF), which has a stationary signal level after elapse of a predefined time following a switching process of the power semiconductor switch, a passive charging circuit (450) which is configured to increase a signal level of the dynamic reference signal in reaction to a switching of a control signal of the power semiconductor switch from an OFF state to ON state for at least one part of the predefined time above the stationary signal level, in order to produce the dynamic reference signal and an output (A) for tapping the dynamic reference signal (UREF).
US10171064B2 Elastic wave device and elastic wave module
An elastic wave device includes a first piezoelectric substrate including a first principal surface and a second principal surface, a second piezoelectric substrate including a first principal surface and a second principal surface and with a greater thickness than that of the first piezoelectric substrate, and ground terminals located on the second principal surface of the first piezoelectric substrate. The first principal surface of the first piezoelectric substrate and the first principal surface of the second piezoelectric substrate are joined to face each other. On the first principal surface of the first piezoelectric substrate, a first elastic wave filter is located. On the first principal surface of the second piezoelectric substrate, a second elastic wave filter is located. The out-of-band attenuation of the first elastic wave filter is greater than the out-of-band attenuation of the second elastic wave filter.
US10171063B2 Filter module
The present invention relates to a filter module including a substrate, a plurality of filters formed on the substrate, an amplifier formed on the substrate, a connection part for connecting the plurality of filters and the amplifier to the substrate, and a cover layer formed on the substrate to cover the plurality of filters and the amplifier.
US10171059B2 Composite component and front-end module
An object is to provide a technique that can reduce the degradation in the characteristics of a transmitting filter by improving heat dissipation characteristics of a composite component having a stack structure. Since a transmitting filter is disposed in or on a first substrate 14, the heat generated in the transmitting filter is efficiently dissipated, for example, to an external module substrate 2 electrically connected to the first substrate 14. It is thus possible to reduce changes in the characteristics of the transmitting filter caused by a temperature rise. Thus, by improving heat dissipation characteristics of a composite component 10 having a stack structure, the degradation in the characteristics of the transmitting filter can be reduced.
US10171058B1 Electronic device with in-pocket audio transducer adjustment and corresponding methods
An electronic device includes one or more microphones, one or more sensors, and one or more processors operable with the one or more microphones and the one or more sensors. The one or more processors, upon the one or more sensors detecting the electronic device is disposed within a repository container, such as a pocket, apply an audio signal adjustment function to signals received from the one or more microphones, thereby mitigating noise in the signals caused by the repository container.
US10171056B2 Apparatus and method for improving nonlinearity of power amplifier in wireless communication system
An apparatus and a method for improving nonlinearity of a power amplifier in a wireless communication system are provided. A transmission apparatus in a wireless communication system comprises: at least one processor; a transceiver; and an amplifier for amplifying a signal provided from the transceiver, wherein if a power of a signal inputted into the transceiver is smaller than a reference value, the transceiver attenuates the power of the signal based on a gain compensation value corresponding to the power of the signal.
US10171048B2 Power amplifier
A power amplifier according to examples includes an amplifying circuit configured to amplify an input signal, a feedback circuit configured to feedback the amplified signal to the amplifying unit, and a feedback controlling circuit configured to control a power of the fed-back signal based on a power of the input signal. The feedback controlling unit performs controlling so that the power of the fed-back signal is increased as the power of the input signal is increased.
US10171037B2 Multi-mode power management system supporting fifth-generation new radio
Embodiments of the disclosure relate to a multi-mode power management system supporting fifth-generation new radio (5G-NR). The multi-mode power management system includes first tracker circuitry and second tracker circuitry each capable of supplying an envelope tracking (ET) modulated or an average power tracking (APT) modulated voltage. In examples discussed herein, the first tracker circuitry and the second tracker circuitry have been configured to support third-generation (3G) and fourth-generation (4G) power amplifier circuits in various 3G/4G operation modes. The multi-mode power management system is adapted to further support a 5G-NR power amplifier circuit(s) in various 5G-NR operation modes based on the existing first tracker circuitry and/or the existing second tracker circuitry. In this regard, the 5G-NR power amplifier circuit(s) can be incorporated into the existing multi-mode power management system with minimum hardware changes, thus enabling 5G-NR support without significantly increasing component count, cost, and footprint of the multi-mode power management system.
US10171033B2 Crystal oscillator interconnect architecture with noise immunity
An apparatus is provided which comprises: a crystal having an input and an output; a first interconnect line having first and second ends, wherein the first end is coupled to the input; a second interconnect line having first and second ends, wherein the first end is coupled to the output; a first capacitor coupled to the input and ground; and a second capacitor coupled to the second end of the second interconnect line. An apparatus is provided which comprises: a high pass filter; a pair of AC coupling capacitors coupled to the high pass filter; a low pass filter coupled to the pair of AC coupling capacitors; and an analog to digital converter (ADC) coupled to the low pass filter.
US10171030B2 Method of amplifying power
The present invention relates to power supplies and in particular to an electronic power supply that is mounted to a printed circuit board and can be used to power electronic circuits and devices. Disclosed is a power supply which includes a photoluminescent light source. The photoluminescent light source generates light in response to receiving input power. One or more than one photovoltaic device is in optical communication with the photoluminescent light source, and generates output power in response to receiving light from the photoluminescent light source. The amount of output power generated by the one or more than one photovoltaic device is greater than the amount of input power received by the photoluminescent light source. In some embodiments the photoluminescent light source includes a light-emitting device and a photoluminescent material, each of which is embedded in an optical coupling material.
US10171022B2 Motor driving device, an air conditioner including same and a control method therefor
A motor driving device is disclosed. The motor driving device includes: a rectifier rectifying alternating current (AC) power into direct current (DC) power to output an input voltage; a first buck-boost converter including a plurality of switches for converting the input voltage and having a buck mode of stepping down the input voltage and a boost mode of stepping up the input voltage; an inverter converting a DC-link voltage transformed from the first buck-boost converter into an AC voltage and transferring the AC voltage to a motor; and a controller receiving motor information related to driving of the motor, comparing magnitudes of a desired DC-link voltage depending on the received motor information and the input voltage with each other, and performing a control to switch only any one of the plurality of switches so that the first buck-boost converter is operated in the buck mode or the boost mode.
US10171018B2 Method and electronic circuit for stall detection
A method for detecting stall of a multiphase motor operated in a sinusoidal micro-stepped mode. The method comprises: a) measuring at least one phase current and/or measuring the sum of all phase currents at regular time intervals synchronous with the micro-steps, b) calculating the difference between the measured phase current at a first moment and the measured phase current of the same phase at a previous moment and/or the difference between the measured sum of all phase currents at a first moment and the measured sum of all phase currents at a previous synchronous moment, c) analyzing the series of obtained current differences so as to generate a stall detection signal.
US10171014B1 System and method for electric motor field weakening with variable magnet skew
An electric machine assembly includes a rotor assembly that includes a plurality of rotor parts including a reference rotor part and a first control rotor part. Each rotor part is rotatable about a longitudinal axis and mechanically separated from another rotor part along the longitudinal axis. The first control rotor part is controllable to rotate while aligned with the reference rotor part with a zero or near zero skew angle relative to the reference rotor part. The first control rotor part is also controllable to rotate while unaligned with the reference rotor part with a non-zero skew angle relative to the reference rotor part. The electric machine assembly further includes a rotor controller that is configured to control the degree of skew angle between the control rotor part and the reference rotor part.
US10171012B2 Air conditioner and startup control method and system for outdoor fan of the air conditioner
An air conditioner and a startup control method and system for an outdoor fan of the air conditioner. While in a process of charging a bootstrap capacitor in an actuator of a motor of the outdoor fan, an initial rotation state of the motor is detected in real time, and, when charging of the bootstrap capacitor is completed, startup of the motor is correspondingly controlled on the basis of the detected initial rotation state. This allows real time initial startup work state to be acquired when charging of the bootstrap capacitor is completed, thus allowing the motor to be started smoothly, increasing the success rate in starting the motor, and solving the problem of low success rate in starting the motor of an outdoor fan.
US10171010B2 Method and apparatus for generating energy using piezo elements
An energy-generating apparatus includes at least one magnetic field-generating apparatus configured to at least intermittently generate a magnetic field that varies over time. The energy-generating apparatus also includes at least one magnetic field interaction means and at least one energy-generating apparatus designed as a piezo element device.
US10171007B2 Method of manufacturing a device with a cavity
A method includes providing a substrate having a first sacrificial oxide region, the substrate comprising a first interconnect layer, the first interconnect layer comprising the first sacrificial oxide region. The method further includes covering the first sacrificial oxide region with a first porous layer being permeable to a vapor hydrofluoric acid (HF) etchant and selectively etching the first sacrificial oxide region through the first porous layer using the vapor HF etchant.
US10171006B2 Power pole inverter
An arm assembly is provided. The arm assembly includes a plurality of electrical components and a number of electrical buses. Each electrical component is coupled to, and in electrical communication with, one electrical bus. A sealing compound is then applied to each electrical bus and to a limited number of the electrical components.
US10171004B2 DC-DC converter
A DC-DC converter includes a full-bridge circuit connected to a primary winding of a transformer and a full-bridge circuit connected to a secondary winding of the transformer. The full-bridge circuit includes a first series circuit including a first set of switching elements, a second series circuit including a second set of switching elements, a first charge-discharge capacitor connected to a node between a first pair of the first switching elements and a node between a second pair of first switching elements, and a second charge-discharge capacitor connected to a node between the a first pair of the second switching elements and a node between a second pair of the second switching elements. The full-bridge circuit can operate in one of a full-bridge operation mode and a half-bridge operation mode. The disclosed DC-DC converter can constantly operate with high efficiency even when the variation range of a load is wide.
US10171001B2 AC-to-DC power converter and related control circuits
An AC-to-DC power converter includes a rectifier for generating a rectified voltage based on an AC voltage; an input capacitor coupled between the rectifier and a fixed-voltage terminal; a first inductive element; a first auxiliary capacitor; a first switch coupled between the input capacitor and the first inductive element; a second switch coupled between the first inductive element and the fixed-voltage terminal; a circuitry node; an auxiliary switch for coupling between the circuitry node and the first auxiliary capacitor or between the first auxiliary capacitor and the fixed-voltage terminal; a first diode; a second diode; a control signal generating circuit for controlling the first switch and the second switch; and an auxiliary switch control circuit for controlling the auxiliary switch.
US10170999B2 Systems and methods for regulating output currents of power conversion systems
Systems and methods are provided for regulating a power conversion system. An example system controller includes: a signal generator configured to receive a converted signal and a first compensation signal and generate a second compensation signal based at least in part on the converted signal and the first compensation signal, the converted signal being associated with an input signal for a power conversion system; a modulation component configured to receive the second compensation signal and a ramping signal and generate a modulation signal based at least in part on the second compensation signal and the ramping signal; and a drive component configured to receive the modulation signal and output a drive signal based at least in part on the modulation signal to a switch to affect the first current, the drive signal being associated with an on-time period, the switch being closed during the on-time period.
US10170997B2 Switching power supply apparatus
A PWM signal generation circuit controls a current mode to set a PWM signal to an on-level in synchronization with a dock signal and set the PWM signal to an off-level in synchronization with a normal reset signal, which changes its level when a current detection signal reaches an error signal. A switching determination circuit checks whether an output voltage reached a switching determination voltage higher than a target output voltage. A reset signal generation circuit generates a reset signal, which is delayed by a predetermine time period from a time point of a change of the PWM signal to the on-level. When the switching determination circuit determines that the output voltage reached the switching determination voltage, the PWM signal generation circuit changes the PWM signal to the off-level in synchronization with the reset signal in place of the reset signal.
US10170996B2 Diode conduction sensor
Methods and apparatus for a body diode conduction sensor configured for coupling to a switching element. In embodiments, the sensor comprises first and second voltage divider networks coupled to a voltage source and a diode coupled to the switching element and to the first voltage divider network, wherein the diode is conductive at times corresponding to body diode conduction of the switching element decreasing the DC average voltage at the output node of the first voltage divider network. A differential output voltage can be coupled to the first and second voltage divider networks with an output signal corresponding to a time of the body diode conduction of the switching element.
US10170990B2 Methods and apparatus for a single inductor multiple output (SIMO) DC-DC converter circuit
In some embodiments, an apparatus includes a single-inductor multiple-output (SIMO) direct current (DC-DC) converter circuit, with the SIMO DC-DC converter circuit having a set of output nodes. The apparatus also includes a panoptic dynamic voltage scaling (PDVS) circuit operatively coupled to the SIMO DC-DC converter circuit, where the PDVS circuit has a set of operational blocks with each operational block from the set of operational blocks drawing power from one supply voltage rail from a set of supply voltage rails. Additionally, each output node from the set of output nodes is uniquely associated with a supply voltage rail from the set of supply voltage rails.
US10170987B2 Control circuit of power converter with internal signal generator and related method
A control circuit includes: a comparing circuit, having a first input terminal and second input terminal, configured to operably generate a comparison signal according signals received by the first and second input terminals, wherein the first input terminal is utilized for coupling with a reference signal and the second input terminal is utilized for coupling with a feedback signal; a periodic signal generating circuit configured to operably generate a periodic signal and apply the periodic signal to the first input terminal or the second input terminal of the comparing circuit; and a control signal generating circuit for controlling an on time of a power switch according to the comparison signal. The periodic signal generating circuit clamps a limit of the periodic signal to a predetermined value, but does not configure the slope of the periodic signal to be zero when there is no current passing through the inductor.
US10170977B2 Supplemental circuit for power supply with power management IC
The supplemental circuit is for a power supply equipped with a power management integrated circuit (PMIC). The supplemental circuit includes a detection circuit producing input signals, a switch, a signal generation circuit producing a control signal controlling the switch's open and close according to the input signals, and a RC circuit. When the switch is closed, the PMIC and the RC circuit are series-connected to ground. The supplemental circuit resolves the reduced performance of the PMIC due to the field effect transistors (FETs) inside the PMIC suffering greater switching loss when the PMIC is constantly series-connected to ground through RC circuit.
US10170967B2 Vibration motor
A vibration motor is disclosed. The vibration motor includes a housing; an elastic connecting piece accommodated in the housing; a fixed component; and a vibrating component suspended in the housing by the elastic connecting piece. One of the fixed component and the vibrating component includes a coil, and the other including a magnet. The vibration motor further includes a damping piece integrated with the elastic connecting piece.
US10170960B2 Energy harvesting system
An energy harvesting system for converting kinetic energy to electrical power includes an intake energy device, an impeller, and a motor. The intake energy device includes a housing and fins. The fins are positioned on an inner surface of the housing for receiving exhaust air. The received exhaust air moves the fins generating a vortex. The impeller is positioned at an inlet of a compressor and is in fluid communication with the intake energy device. The impeller is configured to receive the generated vortex, which rotates the impeller. The motor is rotatably connected to the impeller. The motor is electrically connected to a regulating circuit for converting kinetic energy of the exhaust air to electrical power.
US10170959B2 Electrical machines and methods of assembling the same
A motor having an axis of rotation is provided. The motor includes a housing, a first shaft coupled to the housing and a second shaft coupled to the first shaft. The motor further includes a stator coupled to the housing and comprising an outer circumferential surface and an inner circumferential surface, wherein the inner circumferential surface defines a stator bore around the axis of rotation. A gearbox is coupled to the first shaft and to the second shaft and positioned within the stator bore. The motor includes a rotor coupled to the first shaft and adjacent the stator.
US10170956B2 Brushless motor with water stopping walls creating labyrinth structure
There is provided a brushless motor including (1) a motor shaft, (2) an insulator that includes a ring-shaped insulating portion covering the ring-shaped unit, (3) a centerpiece that includes a main body section that supports the motor shaft, (4) a first water stopping wall that is formed in a ring shape along the circumferential direction of the motor shaft, and that extends along the axial direction of the motor shaft from the ring-shaped insulating portion toward the main body section, and (5) a second water stopping wall that is formed in a ring shape along the circumferential direction of the motor shaft, that extends out along the axial direction of the motor shaft from the main body section toward the ring-shaped insulating portion, and that, together with the first water stopping wall, configures a labyrinth structure.
US10170950B2 Rotary electric machine and method for manufacturing an armature that is used in the rotary electric machine
First and second winding bodies are each configured so as to have a helical shape by winding a conductor wire for m turns, where m is a natural number that is greater than or equal to two, an armature winding is configured by mounting two-lane winding bodies into respective pairs of slots, two-lane winding bodies being configured by assembling the first and second winding bodies, the coil ends include a top portion that displaces in a radial direction at a central portion, and the radial displacement at the top portion is a×d, where a is a natural number that is greater than or equal to 2 and less than or equal to 2×(m−1), and d is a radial thickness of the rectilinear portions, 4×m of the rectilinear portions being housed inside the slots so as to line up in single columns.
US10170949B2 Rotating electric machine
A rotating electric machine including: —a magnetic mass, in particular rotoric, including first housings, —a plurality of permanent magnets inserted into the first housings, each permanent magnet having two polar faces, and —nonmagnetic shims inserted into the first housings and/or into second housings formed in the magnetic mass, —the shims being configured to cause a deformation of the first housings reducing the parasitic air gap between at least a polar face of a permanent magnet and the corresponding wall of a first housing.
US10170936B2 Wireless power receiver and power supply apparatus using the same
A wireless power receiver included in a device, the wireless power receiver including a core part fixed to be adjacent to a surface of an internal part; a receiving coil wound around the core part; and a power circuit configured to provide power received from the receiving coil to the wearable device.
US10170934B2 Electromagnetic-coupling-module-attached article
An electromagnetic-coupling module including a radio IC chip and a feeder circuit board on which the radio IC chip is mounted and a feeder circuit including a resonant circuit having a predetermined resonant frequency is attached to an article. The article has a radiation element that radiates a transmission signal supplied from the feeder circuit of the electromagnetic-coupling module via electromagnetic coupling and that supplies a received reception signal to the feeder circuit via the electromagnetic coupling.
US10170932B2 Energy storage modeling and control
Systems and methods for optimal planning and real-time control of energy storage systems for multiple simultaneous applications are provided. Energy storage applications can be analyzed for relevant metrics such as profitability and impact on the functionality of the electric grid, subject to system-wide and energy storage hardware constraints. The optimal amount of storage capacity and the optimal operating strategy can then be derived for each application and be prioritized according to a dispatch stack, which can be statically or dynamically updated according to data forecasts. Embodiments can consist of both planning tools and real-time control algorithms.
US10170931B2 Electric power control system
An electric power control system of the present invention is connected to an electric power supplying means for supplying electric power and a load means for accepting supply of electric power and consuming the electric power. The electric power control system includes: a supplied energy acquiring means for acquiring a supplied energy, which is the amount of electric power supplied from the electric power supplying means; a consumed energy acquiring means for acquiring a consumed energy, which is the amount of electric power consumed by the load means; and an electric power supply and demand controlling means for, depending on a total supplied energy as the total of the acquired supplied energy and a total consumed energy as the total of the acquired consumed energy, transmitting and/or receiving electric power to and from another device to change the total supplied energy.
US10170929B2 Power node communication for device detection and control
Apparatus and techniques described herein can include a load circuit comprising a direct current (DC) input terminal, and a source circuit comprising a direct current (DC) output terminal coupled to the DC input terminal of the load circuit. The source circuit can include a source control circuit configured to provide a current-limited DC output voltage and monitor the current-limited DC output voltage to detect an authentication signal provided at the DC output terminal by the load circuit, the load circuit configured to modulate the voltage at the DC output terminal using a pull-down circuit. The load circuit can be configured to compare the supply voltage at the DC input terminal to a reference voltage and, in response, energize other portions of the load circuit when the input current provided the DC input terminal is sufficient as indicated at least in part by the comparison.
US10170927B2 Apparatus for managing the energy supplied to a low-voltage system of a motor vehicle that comprises an energy-recovery stage, and corresponding method
An apparatus and a method for managing the energy supplied to a low-voltage system of a vehicle. The low-voltage system includes a battery, which supplies the first voltage on a low-voltage bus. A system for charging the battery includes an alternator for supplying a charging voltage to the battery, and motor-vehicle loads supplied by the battery and/or by the alternator. A high-voltage system operates at a second voltage higher than said first voltage. The high-voltage system includes the vehicle energy-recovery stage. The second voltage is supplied through an intermediate energy-storage system and a DC-DC converter. A control module that carries out energy-management operations at least by the alternator. The second voltage of the DC-DC converter is regulated via a control procedure of a hysteretic type.
US10170926B2 Method for transmitting wireless power in wireless charging system including a wireless power transmitting unit and wireless power receiving unit
A method for transmitting wireless power in a wireless charging system is provided and includes receiving at least one of information on an available maximum temperature and maximum voltage value information of a back end of a rectification unit from at least one wireless power receiving unit (PRU) from among a plurality of PRUs, receiving at least one of information on a current temperature and current voltage value information of the back end of the rectification unit from each of the plurality of PRUs, and determining a dominant PRU among the plurality of PRUs based on the at least one of information.
US10170925B2 Intelligent uninterruptible power charging apparatus and method of operating the same
An intelligent uninterruptible power charging apparatus includes an uninterruptible power module, a charging module, and an output port. The uninterruptible power module provides a first charging power source. The charging module converts the first charging power source into a second charging power source and outputs the second charging power source through the output port. When an electronic apparatus is connected to the output port, the charging module receives an identification signal outputted from the electronic apparatus and adjusts a voltage level of the second charging power source according to the identification signal.
US10170922B1 GaN circuit drivers for GaN circuit loads
An electronic circuit is disclosed. The electronic circuit includes a GaN substrate, a first power supply node on the substrate, an output node, a signal node, and an output component on the substrate, where the output component is configured to generate a voltage at the output node based at least in part on a voltage at the signal node. The electronic circuit also includes a capacitor coupled to the signal node, where, the capacitor is configured to selectively cause the voltage at the signal node to be greater than the voltage of the first power supply node, such that the output component causes the voltage at the output node to be substantially equal to the voltage of the first power supply node.
US10170909B2 Converter and photovoltaic generation systems with converter
A converter for use in a distributed power system for stepping up or down a voltage of a power source connected thereto includes a step up/down circuit that receives the voltage, steps up or steps down the voltage from the power source, and then outputs the stepped up/down voltage; and a control circuit that detects the voltage from the power source and transmits a control signal for stepping up or stepping down the voltage to the step up/down circuit. The control circuit transmits an identification signal that identifies the converter and is configured to receive an identification signal from another converter when the other converter is connected to the converter.
US10170908B1 Portable device control and management
Apparatus, systems and methods for managing and distributing electronic device battery power charge to electronic devices having batteries in need of charging. The electronic devices are positioned in proximity to a charge distribution unit (CDU) and a controller, which receive battery signal data including battery power level data transmitted from the electronic devices. Using the battery power level data the controller analyzes the battery signal data to determine an allocated amount of battery power charge required for charging each device battery to a desired battery charge. The CDU receives these allocated amounts and initiates transfer thereof from a power source in communication with the invention. Allocated amount(s) of battery power charge are transferred from the power source by sharing power source charging power amongst the electronic device batteries to ensure each electronic device has available battery power at a time when needed.
US10170906B2 Semiconductor device for power supply control
A semiconductor device for power supply control includes an on/off control signal generation circuit which generates a control signal for turning on or off a switching element; a current detection terminal to which voltage in proportion to a current flowing in a primary-side winding wire of a transformer is input; a pull-up unit with high impedance provided between the current detection terminal and a terminal to which an internal power supply voltage is applied; and a terminal monitoring circuit which determines that the current detection terminal is abnormal when comparing the voltage of the current detection terminal with a predetermined voltage and detecting that the voltage of the current detection terminal is higher than the predetermined voltage. When the terminal monitoring circuit detects abnormality of the current detection terminal, a signal generation of the on/off control signal generation circuit is stopped by a signal output from the terminal monitoring circuit.
US10170904B2 Surge reduction filter
A surge reduction filter (SRF) includes a cartridge having a cartridge housing, a first active connection point for connection to an active line of an AC power supply, and a neutral connection point for connection to a neutral line of the AC power supply. The active and neutral connection points are located to be accessible from outside the cartridge. A first fuse and a first surge protection element are electrically connected in series between the active and neutral connection points. A status circuit is connected to monitor the surge protection element and an indicator is connected to the status circuit to indicate at least a normal status and a fault status of the surge protection element. The status circuit detects a change in voltage at a point between the fuse and the protection element and creates a fault indication if a voltage change is detected due to the fuse operating.
US10170901B2 Stacked bus assembly with stepped profile
A bus bar assembly for a power distribution unit or other piece of electrical equipment includes a stack of bus bars configured to be attached to a surface and insulated from one another. The bus bars have aligned longitudinal centerlines and respective widths that decrease along a direction perpendicular to the surface to provide a stepped profile in cross-section. In some embodiments, the bus bars may have substantially the same cross-sectional area.
US10170898B1 Signal leakage proof housing for signal distributors
A signal leakage proof housing for signal distributors includes a metal case and a metal cover plate. The metal case includes a plurality of signal connection terminals and a circumferential side wall having a top surface. The top surface includes a plurality of fixing protrusions arranged at intervals on and around the top surface and at least one rib on and around the top surface. The metal cover plate includes a bottom surface which includes a plurality of fixing holes on and around the bottom surface. When the metal case and the metal cover plate are assembled together, the plurality of fixing protrusions respectively pass through the corresponding plurality of fixing holes and fix with each other and each one of the at least one rib is in direct contact with the bottom surface of the metal cover plate to achieve the objective of preventing electromagnetic signal leakage.
US10170896B2 Enclosure, and window assembly and assembling method therefor
A window assembly is for an enclosure. The enclosure has a plurality of walls. The window assembly includes a cover member structured to be coupled to each of the plurality of walls in order to form an enclosed region; a window member coupled to the cover member; a frame member coupled to the cover member; and a number of stud members each secured to the frame member and extending through the cover member. The cover member is located between the frame member and the window member.
US10170895B2 Corona ignition with self-tuning power amplifier
A power amplifier circuit for a corona ignition system is provided. The circuit includes an inductor and capacitor connected to one end of a secondary winding of an RF transformer. The other end of the secondary winding is connected to a current sensor which is connected to ground. The transformer also has a primary winding with one end connected to a voltage supply and the other end attached to a pair of switches. The windings are wound around a core. Current flowing from the DC voltage supply to the switches causes a magnetic flux in the core. A voltage is generated on the secondary winding by the current that flows through the igniter. This voltage is fed back to the switches, controlling on and off timing. Voltage is provided to the corona igniter or pulled from the igniter when the current traveling into or from the igniter is at zero.
US10170892B2 Laser unit and laser device
The light-concentration density or laser power of a combined laser beam bundle, obtained by combining individual laser beams that are caused to oscillate by and are output from a plurality of single-emitter LDs, is increased efficiently, with high quality. On a bottom plate or a unit base 22 of the laser unit 10, there are disposed: a pair of stacked laser beam creation units 24L, 24R which are arranged with left-right symmetry with respect to a center line N; a single wavelength stabilizing element (VBG) 26 of which an incidence plane vertically intersects the center line N; a pair of primary anamorphic prisms 28L, 28R which are arranged separately on the right and left of the center line N; a mirror-type beam rotation element 30 disposed on the center line N; and a secondary anamorphic prism 32 disposed offset from the beam rotation element 30 in a direction (X-direction) perpendicular to the center line N.
US10170889B1 Controlling uniformity of lateral oxidation of wafer surface features using a vertical stack of horizontal wafers
In some implementations, a method may include introducing oxygen into a furnace that contains a vertical stack of horizontal wafers. The oxygen may enter the furnace at a location above the vertical stack. A patterned wafer, included in the vertical stack, may include one or more surface features, and a surface feature, of the one or more surface features, may include one or more layers capable of being oxidize. The method may include causing lateral oxidation of at least one layer, of the one or more layers, based on introducing the oxygen into the furnace.
US10170886B2 RGB laser source for luminaire projector system
An RGB light source for a luminaire projector system includes Red, Green and Blue lasers each outputting a randomly polarized (RP) single mode (SM) light with at least a 4 nm spectral linewidth. The Green laser has a MOPFA-structured pump which outputs a pulsed pump beam at a fundamental wavelength in a 1 μm wavelength range and further includes a SHG. The SHG includes an LBO nonlinear crystal receiving the pulsed pump beam and outputting a train of pulses of BB Green light. The Red laser is configured with a QCW fiber laser pump and a frequency converter with an LBO nonlinear crystal outputting a train of pulses of red light in a 6xx nm wavelength range.
US10170881B2 Method of manufacturing an insertion-type connector
A method of manufacturing an insertion-type connector having at least two mutually electrically insulated conductor contacts with the conductor contacts cut from a metal sheet in such a way that they are connected together via a connecting part of the metal sheet, the conductor contacts being partly embedded in an electrically insulating material to form an electrically insulating housing which fixes the conductor contacts relative to one another, and the connecting part then separated off.
US10170880B2 Mount having a mounting plate with mounting studs and electrical contacts
A modular equipment mount to enable quick relocation of the piece of equipment. The piece of equipment is secured to a mount. A track system is secured to multiple locations where the piece of equipment may be secured. Power and data connections are included with the track system to provide power and data to the piece of equipment through connectors on the mount.
US10170876B2 Electrical connectors having a plurality of pins and sockets
Plugs, receptacles, and assemblies including same. The plug can include an interface having a plurality of pins extending therefrom. The plug can have a plug density of at least 280 pins/in2. The plurality of pins can be positioned in at least three rows along a longitudinal axis of the interface. The receptacle can have an interface having a plurality of sockets disposed therein. The receptacle can have a receptacle density of at least 280 sockets/in2. The plurality of sockets can be positioned in at least three rows along a longitudinal axis of the interface.
US10170865B2 Shielded electric wire connection structure
The electric shielded wire connection structure includes: a lower side case that accommodates a rotary electric machine; an upper side case that is positioned immediately above, and facing, the lower side case and accommodates an inverter; a plurality of electric wires that is arranged in a state where one end thereof is connected to a lower side terminal block immediately under the upper side case, the other end thereof is connected to an upper side terminal block at a wall surface side end part of the upper side case, and the plurality of electric wires is bent from the position immediately under the upper side case so as to face the wall surface; and a braided shielding member that shields the plurality of electric wires and is arranged for the plurality of electric wires only at the side opposite to the surface facing the upper side case.
US10170864B1 Waterproof connector
A waterproof connector includes a dielectric body, a plurality of terminals integrally molded to the dielectric body, a shielding assembly, a metal shell surrounding outside the dielectric body, and a waterproof housing integrally molded outside the metal shell. The dielectric body has a tongue board. A periphery of a rear of the tongue board is recessed inward to form a limiting groove. A plurality of the blocking boards are protruded from the tongue board and located in front of the limiting groove. The shielding assembly is limited in the limiting groove. Outer surfaces of rear ends of contact portions of the plurality of the terminals adjacent to a front end of the shielding assembly are recessed inward to form a plurality of avoiding areas, each of the plurality of the avoiding areas is matched with one of the plurality of the blocking boards.
US10170862B2 Electrical device having a ground bus terminated to a cable drain wire
An electrical device includes a circuit board having upper signal contacts and at least one upper ground contact along an upper surface of the circuit board. The electrical device also includes a communication cable including a differential pair of signal conductors, a shield layer that surrounds the signal conductors, a drain wire electrically coupled with the shield layer, and a cable jacket that surrounds the shield layer and the drain wire. Each of the signal conductors has a wire-terminating end engaged to a corresponding signal contact of the circuit board. The wire-terminating ends project beyond a jacket edge of the cable jacket. An upper ground-terminating component electrically couples to the upper ground contact having a main panel with a connective terminal electrically coupled to the drain wire.
US10170861B2 Connector with capacitive crosstalk compensation to reduce alien crosstalk
The present disclosure relates to a telecommunications connector having cross-talk compensations, and a method of managing alien crosstalk in such a connector. In one example, the telecommunications connector includes electrical conductors arranged in differential pairs and a circuit board with conductive layers that provide a cross-talk compensation arrangement for applying capacitance between the electrical conductors. The circuit board includes conductive paths that provide capacitive coupling and a conductive plate that intensifies capacitive coupling of the electrical conductors. In another example, the telecommunications connector is used with a twisted pair system. Capacitances applied by the crosstalk compensation arrangement between electrical conductors associated with the pairs are provided such that, for each differential pair, a magnitude of an overall capacitance at a first electrical conductor of a differential pair is approximately equal to a magnitude of an overall capacitance at a second electrical conductor of the differential pair.
US10170860B2 Electrical connector for cables containing both power and control conductors
A connector for connecting control conductors provided in conduits also containing power conductors, the connector including a first guide for receiving a first at least one control conductor provided in a first conduit also containing at least one power conductor, a second guide for receiving a second at least one control conductor provided in a second conduit also containing at least one power conductor, at least one jumper for electrically connecting the first at least one control conductor and the second at least one control conductor and a housing for containing the first guide, second guide and the at least one jumper.
US10170853B2 Electrical connector allowing disassembly, electronic module, and assembly method
An electrical connector comprises a casing and a connector module. The casing has a retaining member. The connector module has an electrically insulating contact carrier and a plurality of electrically conductive contacts. The connector module is at least partially surrounded by the casing and is retained at the casing by the retaining member. The retaining member exerts a retaining force on the connector module in a direction along a mating direction of the electrical connector. The connector module is removable from the retaining member in a direction transverse to the mating direction.
US10170851B2 Connector with a wireless coupler
In example implementations, an apparatus includes a housing. The housing includes an electronic connector coupled to a back side of the housing. In addition, the housing includes a pin coupled to a front side of the housing and in communication with the electronic connector. At least one alignment magnet and at least one wireless transceiver chip is coupled to the housing. At least one waveguide is coupled to the at least one wireless transceiver chip.
US10170846B2 Electrode and cable connections in electrocardiography systems
In electrocardiography (ECG) system, a patient cable connecting one or more electrodes to a processing device for processing ECG signals may include one or more electrode connectors mechanically keyed to respective electrodes and/or a device connector mechanically and/or electronically keyed to a cable connector of the processing device. In some embodiments, keying between the cable and electrode is achieved, for example, with an electrode including a hollow-post portion that defines a bore in conjunction with a post protruding from an arm of the electrode connector that is sized to fit within the bore.
US10170836B2 Coil antenna device and antenna module
In a coil antenna device, a multilayer structure includes non-magnetic sheets and magnetic sheets stacked on each other. A coil conductor is provided in the multilayer structure such that a portion of the magnetic material defines a magnetic core and such that a coil axis extends along a principle surface of the multilayer structure. The coil conductor includes a plurality of line conductors each of which extends on one principle surface side of the magnetic material, a plurality of line conductors each of which extends on the other principle surface side of the magnetic material, and a plurality of via-hole conductors extending in a thickness direction of the multilayer structure so as to be surrounded with the magnetic material. The plurality of via-hole conductors defines a coiled structure together with the line conductors.
US10170835B2 Wireless communication device
A wireless communication device includes a lower metal housing as a planar conductor including an opening and a planar coil antenna arranged so as to oppose the opening and including a coil pattern and a coil opening. A linear strip pattern which includes a plurality of linear strip portions parallel or substantially parallel with one another and a portion of which is connected to the lower metal housing around the opening is provided in the opening to achieve sufficient communication characteristics and prevent an increase in an opening area of the opening.
US10170828B2 Adjustable-tilt housing with flattened dome shape, array antenna, and bracket mount
Radio devices for wireless transmission including an integrated adjustable mount allowing mounting to a pole or stand and adjustment of the angle of the device (e.g., the altitude). The device may include a compact array antenna having a high gain configured to operate in, for example, the 5.15 to 5.85 GHz band and/or the 2.40-2.48 GHz band. The antenna emitters may be arranged in a separate plane from a plane containing the antenna feed connecting the emitting elements and also from a ground plane. The antenna array may be contained within a protective weatherproof housing along with the radio control circuitry.
US10170826B2 TFT substrate, scanning antenna using same, and method for manufacturing TFT substrate
A TFT substrate (101) including a plurality of antenna element regions (U) arranged on a dielectric substrate (1), the TFT substrate including a transmitting/receiving region including a plurality of antenna element regions, and a non-transmitting/receiving region located outside of the transmitting/receiving region, each of the plurality of antenna element regions (U) including: a thin film transistor (10); a first insulating layer (11) covering the thin film transistor and having a first opening (CH1) which exposes a drain electrode (7D) of the thin film transistor (10); and a patch electrode (15) formed on the first insulating layer (11) and in the first opening (CH1), and electrically connected to the drain electrode (7D) of the thin film transistor, wherein the patch electrode (15) includes a metal layer, and a thickness of the metal layer is greater than a thickness of a source electrode (7S) and the drain electrode (7D) of the thin film transistor.
US10170825B2 Antenna device
The present invention includes: a film antenna (10); a cable (20) which is connected to a feed section (14) of the film antenna (10); and a support (30) around which at least part of the film antenna (20) is wound, the support (30) including a holding section for holding the cable (20).
US10170824B1 LTE MIMO antenna system for automotive carbon fiber rooftops
The present disclosure is related to an antenna system for a vehicle, such as a vehicle that has a non-metallic roof. The antenna system includes two metallic supports coupled to the roof. Additionally, the antenna system includes a first MIMO antenna pair. A first antenna of the first MIMO antenna pair is coupled to a first support of the two metallic supports, and a second antenna of the first MIMO antenna pair is coupled to a second support of the two metallic supports. The antenna system further includes a second MIMO antenna pair. A first antenna of the second MIMO antenna pair is coupled to the first support of the two metallic supports, and a second antenna of the second MIMO antenna pair is coupled to the second support of the two metallic supports. Yet further, the two metallic supports of the antenna system are physically separated from each other.
US10170822B2 Communication device and method for determining a load impedance
According to one embodiment, a communication device is described comprising an antenna, a signal path for supplying a signal to the antenna, two directional couplers arranged within the signal path, wherein each directional coupler is coupled to an adjustable impedance defining the characteristic impedance of the directional coupler, a controller configured to set, for each of a plurality of impedances, the adjustable impedances of the directional couplers to the impedance, a return loss measurement circuit configured to determine, for each of the plurality of impedances, a return loss of the signal path when the adjustable impedances of the directional couplers are set to the impedance and a load impedance determination circuit configured to determine a load impedance of the signal path based on the determined return losses.
US10170820B2 Wireless communication circuit and electronic device
A wireless communication circuit and an electronic device are provided. The wireless communication circuit used for an electronic device includes a wireless transceiver unit used to generate a transmitting signal, an impedance matching unit electronically coupled to the wireless transceiver unit, a coupling unit and a system grounding surface. The impedance matching unit includes at least one impedance, the impedance matching unit is used to convert the transmitting signal to a feeding signal according to the impedance value of at least one impedance. The coupling unit is electronically coupled to the impedance matching unit, to radiate the energy of the feeding signal. The system grounding surface is used to transmit a first electromagnetic wave signal via resonance on the plane of the system grounding surface after receiving the energy of the feeding signal.
US10170818B2 Platform assemblies for radio transmission towers
Platform structures and platform assemblies are provided for supporting a plurality of radio frequency (RF) antennas and the weight of one or more workers. One platform structure provided herein includes a steel radial beam extending from an RF tower and a plurality of steel arms welded to the radial beam. The platform structure also includes a first front plate having a front facing portion and an angled portion, where the front facing portion of the first front plate is welded to a first steel arm. Also included is a second front plate having a front facing portion and an angled portion, where the front facing portion of the second front plate is welded to a second steel arm. The platform structure further includes a first side plate having a side facing portion and an angled portion. The side facing portion of the first side plate is welded to a third steel arm. The platform structure also includes a second side plate having a side facing portion and an angled portion, where the side facing portion of the second side plate is welded to a fourth steel arm.
US10170816B2 High frequency filter having a coaxial structure
An improved high-frequency filter has an adjustment or sliding device for adjusting the coupler bandwidth. The adjustment or sliding device is attached to at least one coupling element. The coupling element is associated with a coupler opening relating to a resonator. The coupling element is related to an associated coupler opening arranged in the resonator such that a means of adjustment and thus the coupling element is adjustable between two extreme settings through adjustment of the adjustment or sliding device in which the coupling element is fully or partially slid into the coupler opening or fully or partially slid out of the coupler opening or is moved or positioned away from the coupler opening.
US10170812B2 Assembly module comprising electrochemical cells received by lugs and connecting clips
An electrochemical assembly module of a system for storing energy, including an assembly of a plurality of elementary gas-electrode electrochemical cells, the assembly including a plurality of lugs respectively associated with the plurality of elementary electrochemical cells, the lugs being connected together by a connecting holder and receiving terminals of the elementary electrochemical cells so that the terminals are all electrically connected to one another by the connecting holder, and a plurality of elements forming connecting clips each receiving at least two terminals of at least two elementary electrochemical cells so that the at least two terminals are electrically connected to each other by the element forming a connecting clip that is associated therewith.
US10170804B2 Monitoring device for secondary battery, battery pack, and vehicle
A monitoring device for a secondary battery includes: a detection part that detects a use state of the secondary battery; and a switching part, wherein the switching part switches a protection condition applied to the secondary battery in accordance with the user state of the secondary battery.
US10170798B2 Moderate temperature sodium battery
A rechargeable galvanic cell that has a negative electrode material made of a molten alkali metal (such as sodium or lithium). The galvanic cell also includes a positive electrode active material that may be sulfur or iodine. The positive electrode active material may be used in conjunction with a polar solvent. An ion-conductive separator is disposed between the polar solvent and the negative electrode material. The positive electrode active material has a specific gravity that is greater than the specific gravity of the polar solvent. Thus, the positive electrode active material is proximate the bottom of the positive electrode compartment while the polar solvent is above the positive electrode active material. The cell is designed to be operated at temperatures above the melting point of the alkali metal, but at temperatures that are lower than about 250° C.
US10170792B2 Polyalkoxysiloxane catholytes for high voltage lithium batteries
Synthesis and electrochemical properties of a new class of low-glass-transition-temperature electrochemical cell polymers based on polyalkoxysiloxanes is described. Unlike ethyleneoxide (EO)-based polymers, these materials are oxidatively stable above 4.2 V, the operating voltage of high energy cells that use cathode materials such as nickel cobalt aluminum oxide (NCA) and nickel cobalt manganese oxide (NCM). Use of these electrochemical cell polymers as catholyte alternatives to PEO in high voltage cells is described.
US10170791B2 High-voltage lithium secondary battery
Provided are a lithium secondary battery including a cathode, an anode, a separator, and a gel polymer electrolyte, wherein the gel polymer electrolyte includes an acrylate-based polymer and a charge voltage of the battery is in a range of 4.3 V to 5.0 V, and a method of preparing the lithium secondary battery. A high-voltage lithium secondary battery of the present invention has excellent capacity characteristics at a high voltage of 4.3 V or more.
US10170788B2 Variable layer thickness in curved battery cell
Examples are disclosed herein that relate to curved batteries. One example provides a battery comprising an anode arranged on an anode substrate, a cathode arranged on a cathode substrate, the anode substrate being curved at a first curvature and the cathode substrate being curved at a second curvature, and a separator between the anode and the cathode. A thickness of the anode substrate and a thickness of the cathode substrate are determined based on the curvature of the respective substrate, such that the one of the anode substrate and the cathode substrate with a larger curvature has a larger thickness.
US10170787B2 Separator
An example separator includes: a flat plate-shaped first plate member; a flat plate-shaped second plate member joined with the first plate member; an oxidation gas flow channel wall, which forms a flow channel of oxidation gas; a fuel gas flow channel wall, which forms a flow channel of fuel gas; a cooling medium flow channel wall, which forms a flow channel of a cooling medium; a first through hole, which penetrates the first plate member and the second plate member; a second through hole, which penetrates the first plate member and the second plate member; a first cooling medium passage part; a second cooling medium passage part; one projection, which is formed on at least one of the first cooling medium passage part and the second cooling medium passage part; and another projection, which is formed at a position corresponding to the one projection.
US10170785B2 Apparatus for assembling fuel cell stack
An apparatus for assembling a fuel cell stack is provided. The apparatus exerts a force on fuel cell components stacked on a stacking guide and couples a pressed stacked body formed of the pressed fuel cell components by a fastening member. The apparatus includes a lift plate that is disposed on an inner bottom of the stacking guide and a press body that is installed on a press frame to be movable in a vertical direction, and exerts a force onto the fuel cell components stacked on the lift plate. A plurality of fixing rods are disposed on the press body and are fastened to the lift plate, and coupled the press body integrally to the lift plate with the pressed stacked body disposed therebetween.
US10170782B2 High-efficiency fuel cell system with carbon dioxide capture assembly and method
A high efficiency fuel cell system includes a topping fuel cell assembly that includes a topping cathode portion and a topping anode portion, as well as a bottoming fuel cell assembly that includes a bottoming cathode portion and a bottoming anode portion. The assembly also includes a flue gas generating device configured to provide flue gas to the topping cathode portion and/or the bottoming cathode portion, and an oxidizer assembly configured to (i) oxidize anode exhaust output from the bottoming anode portion with air and/or oxygen to generate carbon dioxide-containing exhaust and (ii) generate waste heat for heating the flue gas before the flue gas is provided to the topping cathode portion and/or the bottoming cathode portion. A separation assembly is configured to receive the carbon dioxide-containing exhaust from the oxidizer assembly and to separate carbon dioxide from the carbon dioxide-containing exhaust.
US10170780B2 Furnace with an integrated flame assisted fuel cell for combined heating and power
The present invention relates to a flame-assisted fuel cell (FFC) and, more particularly, to the integration of a FFC in a fuel fired furnace or boiler to enable the generation of both electricity and heat from the fuel's chemical energy, transforming the furnace/boiler into a Combined Heating and Power (CHP) system.
US10170773B2 Modular planar interconnect device for a solid oxide fuel cell and the solid oxide fuel cell containing the same
A modular planar interconnect device for a solid oxide fuel cell includes a planar interconnect body, a pair of upper shielding plates, and a pair of lower shielding plates. The upper shielding plates are configured to be respectively fitted between front and rear boundary wall surfaces of a first inlet region of the planar interconnect body and between front and rear boundary wall surfaces of a first outlet region of the planar interconnect body. The lower shielding plates are configured to be respectively fitted between right and left boundary wall surfaces of a second inlet region of the planar interconnect body and between right and left boundary wall surfaces of a second outlet region of the planar interconnect body.
US10170771B2 Selective catalyst, particularly for electroreduction of oxygen, an electrochemical system containing thereof, an palladium-inert gas alloy and use thereof, and a cell, particularly a photovoltaic cell containing thereof
The present invention provides a catalyst comprising a layer of metallic palladium implant¬ed with an inert gas ions, an electrochemical system containing thereof, a palladium-inert gas alloy stable in the normal conditions, use thereof and a fuel cell containing thereof.
US10170769B2 Method of hydrophobic treatment of a carbon substrate
A method of treating a carbon substrate, includes the successive steps of impregnating the carbon substrate with an aqueous solution containing an amorphous fluorinated copolymer of tetrafluoroethylene and of perfluoromethoxy dioxole, drying the carbon substrate at a pressure lower than the atmospheric pressure, and obtaining a carbon substrate impregnated with a fluorinated copolymer. Such a carbon substrate may be used as a gas diffusion layer in a fuel cell.
US10170765B2 Electronically conductive polymer binder for lithium-ion battery electrode
A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.
US10170761B2 Active material, nonaqueous electrolyte battery, battery pack and battery module
In general, according to one embodiment, there is provided an active material. The active material contains active material primary particles of a monoclinic niobium-titanium composite oxide. The monoclinic niobium-titanium composite oxide contains at least one element selected from the group consisting of Mo, V, and W. A content of the at least one element in the monoclinic niobium-titanium composite oxide is within a range of 0.01 atm % or more and 2 atm % or less. Each of the active material primary particles has an aspect ratio within a range of 1 or more and less than 4 of a primary particle and a crystallite size within a range of 5 nm or more and 90 nm or less.
US10170757B2 Negative electrode material for lithium ion secondary battery, negative electrode, and lithium ion secondary battery
Provided is a negative electrode material that is suitable for use in a negative electrode of a lithium ion secondary battery having high capacity and excellent cycle characteristics. Also provided are a negative electrode and a lithium ion secondary battery using the same.The negative electrode material for lithium ion secondary battery comprises a particle that contains silicon and is capable of storing and releasing a lithium ion and that is characterized, in a volume-based distribution as measured with a laser diffraction particle size distribution meter, by (mode diameter—D50)/D50=0.13 or greater and (D90—mode diameter)/D90=0.28 or less, where the mode diameter is the most frequent value in the distribution, D50 is the diameter at 50% accumulation and D90 is the diameter at 90% accumulation.
US10170756B2 Li2S batteries having high capacity, high loading, and high coulombic efficiency
An electrochemical device includes a cathode containing graphene-wrapped Li2S nanoparticles. The graphene-wrapped Li2S nanoparticles are prepared by a method including heating lithium metal, and a carbon-sulfur source or a carbon source and a sulfur source in a sealed container at a temperature to produce lithium vapors, and vapors of the carbon-sulfur source or vapors of the carbon source and vapors of the sulfur source; and cooling the sealed container to produce the graphene-wrapped Li2S nanoparticles.
US10170752B2 Method for producing amorphous carbon particle, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
A method for producing an amorphous carbon particle includes the steps of: obtaining a first crosslinked product by admixing mesophase particles with an amorphous carbon precursor and thereafter subjecting the mixture to a crosslinking treatment, or obtaining a second crosslinked product by crosslinking the amorphous carbon precursor and thereafter admixing the mesophase particles with the crosslinked precursor; and subjecting the first or second crosslinked product to an infusibilization treatment and thereafter firing the product to produce amorphous carbon particles including the mesophase particles within the particles.
US10170748B2 Stabilized anode for lithium battery and method for its manufacture
Disclosed is an anode for a lithium battery comprising a body of carbon, such as graphitic carbon, having a layer of a Group IV element or Group IV element-containing substance disposed upon its electrolyte contacting surface. Further disclosed is an anode comprising a body of carbon having an SEI layer formed thereupon by interaction of a layer of Group IV element or Group IV element-containing substance with an electrolyte material during the initial charging of the battery.
US10170747B2 Treated current collector foil
In at least one embodiment, a battery is provided comprising an electron beam-treated current collector having an increased surface energy compared to an untreated current collector and an electrode disposed on a treated surface of the current collector. The electrode may include a water-soluble binder uniformly coating a surface of the current collector and the treated current collector may have a contact angle with the water-soluble binder of 70 degrees or less. The electron beam treatment may be applied to a moving current collector foil as part of a battery production process, prior to application of an electrode slurry.
US10170744B2 Electrochemical current collector screen designs utilizing ultrasonic welding
An electrochemical cell comprising an electrode assembly having a plurality of cathodes in which the plurality of cathodes is electrically connected together at a connection tab junction is disclosed. The junction preferably comprises a plurality of cathode connection tabs that are folded over each other to construct a junction that is mechanically and electrically robust. The junction is comprised of a plurality of connection tabs that each extend from a cathode. Each of the respective tabs is folded over each other to form a compact electrode junction having redundant connections. An elongated lead extends from the junction to provide an electrical connection to the plurality of cathodes. The junction is welded together such as by a laser, resistance or ultrasonic weld joint. The cathode junction is suitable for either primary or secondary cells, particularly those powering implantable biomedical devices.
US10170736B2 Battery case
A battery case is disclosed. In one aspect, the battery case includes a front case and an attaching/detaching mechanism. The front case includes a first surface corresponding to a front end portion of a battery module placed in parallel to a bottom surface thereof, and a first flange portion extending toward the battery module from the periphery of the first surface, the first flange portion having an opening formed in an upper surface thereof. The attaching/detaching mechanism includes an elastic member positioned between the front case and a front end portion of the battery module, cover members respectively surrounding both ends of the elastic member, an extending member extended upward from one area of each cover member, and a press member respectively formed toward both the ends of the elastic portion at end portions of the extending member.
US10170732B2 Flexible secondary battery
A flexible secondary battery including an electrode assembly that includes a first electrode layer, a second electrode layer, and a separator between the first and second electrode layers; a protection film on at least one of an upper surface or a lower surface of the electrode assembly; a fixing unit, the fixing unit fixing one end portion of each of the first electrode layer, the separator, the second electrode layer, and the protection film; and a sealing unit, the sealing unit sealing the electrode assembly and the protection film therein, wherein a melting point of the protection film is higher than a melting point of the separator.
US10170731B2 Mask and masking assembly
A mask for forming a pattern on a substrate is provided. The mask includes an anodic oxide film formed by anodizing metal, at least one transmission hole configured to vertically penetrate the anodic oxide film and formed in a corresponding relationship with the pattern, a plurality of pores formed in the anodic oxide film so as to have a smaller diameter than the transmission hole, and a magnetic material provided in each of the pores.
US10170730B2 Vacuum evaporation device and method thereof, and organic light-emitting display panel
A vacuum evaporation device, a vacuum evaporation method, and an organic light-emitting display panel are provided. The vacuum evaporation device comprises at least a first evaporation chamber. The first evaporation chamber includes at least one first organic material evaporation source and at least one first metal evaporation source. The at least one first organic material evaporation source is configured to evaporate a first organic material, and the at least one first metal evaporation source is configured to evaporate a first metal material. The at least one first organic material evaporation source and the at least one first metal evaporation source are controlled to perform evaporation simultaneously to generate blend doping of a first organic material and a first metal material on a substrate disposed within the first evaporation chamber.
US10170725B2 Laminated structure, display device and display unit employing same
An organic light-emitting device includes, in order an anode, an organic layer comprising a light-emitting layer, and a cathode. The anode is a laminated structure comprising in order: a first anode layer comprising a metal compound or a conductive oxide; a second anode layer that is a reflective layer; and a third anode layer comprising a metal compound or a conductive oxide. Light generated in the light-emitting layer is extracted through the cathode.
US10170723B2 Organic light emitting element and organic light emitting display device including the same
An organic light emitting element according to an exemplary embodiment of the present disclosure includes a first electrode, a second electrode, an emission layer between the first electrode and the second electrode, an electron injection layer between the second electrode and the emission layer, and a barrier layer between the electron injection layer and the second electrode, wherein a work function of the barrier layer is larger than a work function of the second electrode.
US10170722B2 Organic light-emitting device having low work function metal halide compound in hole injection layer
Provided is an organic light-emitting device including a first electrode; a second electrode facing the first electrode; and an organic layer between the first electrode and the second electrode and including an emission layer, the organic layer including a low work function metal compound.
US10170721B2 Organic light emitting display device having hole transport layers with different thickness
Disclosed is an organic light emitting display device. The organic light emitting display device includes a first emission part between a first electrode and a second electrode and a second emission part on the first emission part. The first emission part includes a first hole transport layer and a first emission layer, and the second emission part includes a second hole transport layer and a second emission layer. A thickness of the second hole transport layer is greater than a thickness of the first hole transport layer.
US10170719B2 Organic monolayer passivation and silicon heterojunction photovoltaic devices using the same
A method for inorganic surface passivation in a photovoltaic device includes etching a native oxide over an inorganic substrate, the inorganic substrate having a surface; and forming an organic monolayer on the surface of the inorganic substrate to form a heterojunction, the organic monolayer having the following formula: ˜X—Y, wherein X is an oxygen or a sulfur; Y is an alkyl chain, an alkenyl chain, or an alkynyl chain; and X covalently bonds to the surface of the inorganic substrate by a covalent bond.
US10170718B2 Electronic devices employing aligned organic polymers
The devices can be fabricated by a method that permits active polymer chains to be polymerized on the surface of an electrode such that the active polymer chains are aligned with one another. The active polymer chains can also be covalently linked to a second electrode so the active polymer chains are located in an active layer of the device. The polymerization method can be paused and resumed at any point in the polymerization so nanoparticles can be added into the active layer. Additionally, the polymerization method allows that active polymer chains to be polymerized so they include junctions such as p-n junctions and Schottky junctions.
US10170716B2 Method for preparing organic film and organic device including the same
Disclosed herein is a method of preparing organic films, including: (1) forming a first organic film including nanorods on a substrate using a first organic solution; (2) introducing a second organic solution at least into spaces between the nanorods of the first organic film; and (3) crystallizing the introduced second organic solution to form a second organic film. The method can provide an organic film having excellent properties in terms of crystallinity and topography.
US10170715B2 Method for producing a vertical organic field-effect transistor, and vertical organic field-effect transistor
The invention relates to a method for producing a vertical organic field-effect transistor, in which a vertical organic field-effect transistor with a layer arrangement is produced on a substrate, said layer arrangement including transistor electrodes, namely a first electrode (23; 24), a second electrode (23; 24) and a third electrode (32), electrically insulating layers (25; 34) and an organic semiconductor layer (28). In addition, a vertical organic field-effect transistor is provided, which includes a layer arrangement with transistor electrodes on a substrate (21).
US10170714B2 Display panel
A display panel includes a first substrate, an upper capacitor electrode, a capacitor dielectric layer, a second substrate opposite to the first substrate, a conductive bump, an electroluminescent layer, and a counter electrode. The upper capacitor electrode is disposed on an inner surface of the second substrate. The upper capacitor electrode is disposed on an inner surface of the second substrate. The capacitor dielectric layer covers the upper capacitor electrode of the second substrate. The first substrate has at least one pixel electrode and a first capacitor electrode separated from the pixel electrode. The conductive bump is protrusively disposed on the first capacitor electrode of the first substrate. The electroluminescent layer is sandwiched between the pixel electrode and the counter electrode.
US10170713B2 Display device and manufacturing method therefor
The display device includes a display circuit layer having a hollow at a middle area, a front film overlapping a first area, a resin layer, a first back film overlapping the first area and stuck to a back surface of a resin substrate so as to protrude from the hollow at a boundary between the first area and the middle area, and a second back film overlapping the second area and stuck to the back surface of the resin substrate so as to protrude from the hollow at a boundary between the second area and the middle area. The display circuit layer includes an inorganic insulating layer which has the hollow. The first back film and the second back film are separated by the middle area in the first direction.
US10170711B2 Display with vias to access driver circuitry
A thin-film transistor layer, an organic light-emitting diode layer, and other layers may be used in forming an array of pixels on a substrate in a display. Vias may be formed through one or more layers of the display such as the substrate layer to form vertical signal paths. The vertical signal paths may convey signals between display driver circuitry underneath the display and the pixels. The vias may pass through a polymer layer and may contact pads formed within openings in the substrate. Vias may pass through a glass support layer. Metal traces may be formed in the thin-film transistor layer to create signal paths such as data lines and gate lines. Portions of the metal traces may form vias through a polymer layer such as a substrate layer or a polymer layer that has been formed on top of the substrate layer.
US10170710B2 Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
Provided is an organometallic complex which emits light with a short wavelength and has high emission efficiency and high heat resistance. The organometallic complex includes a central metal; and a first ligand, a second ligand, a third ligand, and a fourth ligand which are coordinated to the central metal. The first ligand includes a triazole skeleton including nitrogen bonded to the central metal. The second ligand includes an indolo[3,2-b]carbazole skeleton whose 6-position is bonded to the central metal or a pyrido[2,3-b:6,5-b′]diindole skeleton whose 6-position is bonded to the central metal. The third ligand includes a benzene skeleton whose carbon is bonded to the central metal. The fourth ligand includes a pyridine skeleton whose nitrogen is bonded to the central metal or a benzene skeleton whose carbon is bonded to the central metal.
US10170708B2 Organic electroluminescent materials containing benzimidazole and organic electroluminescent device by using the same
An organic electroluminescent material is shown in formula (1), Wherein R9 and R13 are benzimidazole derivatives, benzimidazole derivative is shown in formula (3) Wherein the rest of functional groups are independently selected from one of hydrogen atom, fluorine atom, cyano group, alkyl group, cycloalkyl group, alkoxy group, thioalkyl group, silyl group and alkenyl group.
US10170706B2 Amine-based compound and organic light-emitting device including the same
According to one or more embodiments of the present invention, an amine-based compound is represented by Formula 1 below:
US10170705B2 Organic light-emitting device
An organic light-emitting device including a first electrode; a second electrode facing the first electrode; an emission layer between the first electrode and the second electrode; and an electron transport region between the emission layer and the second electrode; wherein the electron transport region includes a condensed cyclic compound represented by Formula 1 below:
US10170704B2 Organic electroluminescent device and display including the same
An organic electroluminescent device includes a first electrode, a hole transport region on the first electrode, an emission layer on the hole transport region, an electron transport region on the emission layer, and a second electrode on the electron transport region. The electron transport region includes a first electron transport layer on the emission layer; and a second electron transport layer on the first electron transport layer. An absolute value of difference between a highest occupied molecular orbital (HOMO) energy level of the emission layer and a HOMO energy level of the first electron transport layer is about 0.3 eV to about 1.5 eV.
US10170702B2 Intermetallic contact for carbon nanotube FETs
A field effect transistor includes a carbon nanotube layer formed adjacent to a gate structure. Two intermetallic contacts are formed on the carbon nanotube layer. The two intermetallic contacts include an oxidation resistant compound having a work function below about 4.4 electron-volts.
US10170700B2 Fabrication of correlated electron material devices method to control carbon
Subject matter disclosed herein may relate to fabrication of correlated electron materials used, for example, to perform a switching function. In embodiments, precursors, in a gaseous form, may be utilized in a chamber to build a film of correlated electron materials comprising various impedance characteristics.
US10170698B2 Spin torque MRAM fabrication using negative tone lithography and ion beam etching
A method of forming a pillar includes masking a photoresist material using a reticle and a developer having a polarity opposite that of the photoresist to provide an island of photoresist material. A layer under the island of photoresist material is etched to establish a pillar defined by the island of photoresist material.
US10170697B2 Cryogenic patterning of magnetic tunnel junctions
Methods for forming magnetic tunnel junctions and structures thereof include cryogenic etching the layers defining the magnetic tunnel junction without lateral diffusion of reactive species.
US10170688B2 Magnetic field sensor based on topological insulator and insulating coupler materials
Embodiments are directed to a sensor having a first electrode, a second electrode and a detector region electrically coupled between the first electrode region and the second electrode region. The detector region includes a first layer having a topological insulator. The topological insulator includes a conducting path along a surface of the topological insulator, and the detector region further includes a second layer having a first insulating magnetic coupler, wherein a magnetic field applied to the detector region changes a resistance of the conducting path.
US10170682B2 Dielectric elastomer actuator
A dielectric elastomer actuator includes an elastomeric film and an electrode material layer on opposing sides of the film. The elastomeric film includes a first section, a second section, and a transition section disposed between the first section and the second section. The electrode material layers are disposed on the transition section and the first and second sections. The first and second sections are restrained in a pre-stretched configuration in an axial and a lateral direction, while the transition section is not restrained in the axial direction. The transition section elongates in response to the application of a voltage to the electrode material layers, such that the first and second sections move apart, in the axial direction. Likewise, the transition section is configured to contract in an absence of a voltage applied to the electrode material layers, such that the first and second sections move apart, in the axial direction.
US10170680B2 Qubits by selective laser-modulated deposition
A method for adjusting a qubit includes measuring a qubit characteristic of a qubit device and computing a modification to correct the qubit characteristic. A geometry of a shunt capacitor is adjusted using a laser direct write process. The qubit characteristic is verified.
US10170678B2 Thermomechanical cycle for thermal and/or mechanical energy conversion using piezoelectric materials
A system for generating electrical energy includes a thermal source, an electric field source, a stress source, a piezoelectric component, and a cycle controller coupled to the thermal source, the electric field source, and the stress source. The cycle controller provides control signals to the thermal source, the electric field source, and the stress source to repeatedly cycle the piezoelectric component through the sequence: (a) application of: a first temperature, a first electric field, and a first stress; (b) application of: the first temperature, a second electric field greater than the first electric field, and the first stress; (c) application of: a second temperature, the second electric field, and a second stress greater than the first stress; and (d) application of: the second temperature, the first electric field, and the second stress.
US10170668B2 Solid state lighting devices with improved current spreading and light extraction and associated methods
Solid state lighting (“SSL”) devices with improved current spreading and light extraction and associated methods are disclosed herein. In one embodiment, an SSL device includes a solid state emitter (“SSE”) that has a first semiconductor material, a second semiconductor material spaced apart from the first semiconductor material, and an active region between the first and second semiconductor materials. The SSL device can further include a first contact on the first semiconductor material and a second contact on the second semiconductor material and opposite the first contact. The second contact can include one ore more interconnected fingers. Additionally, the SSL device can include an insulative feature extending from the first contact at least partially into the first semiconductor material. The insulative feature can be substantially aligned with the second contact.
US10170666B2 LED light source module and display device
An LED light source module includes a light emitting stacked body, and a first through electrode structure and a second through electrode structure passing through a portion of the light emitting stacked body. The light emitting stacked body includes a base insulating layer, light emitting layers sequentially stacked on the base insulating layer, each of the light emitting layers including a first conductivity-type semiconductor layer, a second conductivity-type semiconductor layer, and an active layer disposed between the first conductivity-type semiconductor layer and the second conductivity-type semiconductor layer, and an interlayer insulating layer disposed between the light emitting layers. The first through electrode structure is connected to the first conductivity-type semiconductor layer of each of the light emitting layers, and the second through electrode structure is connected to any one or any combination of the second conductivity-type semiconductor layer of each of the light emitting layers.
US10170665B2 Repairing method, manufacturing method, device and electronics apparatus of micro-LED
The present invention discloses a repairing method, manufacturing method, device and electronics apparatus of micro-LED. The method for repairing a micro-LED comprises: bringing a known-good micro-LED on a conductive pick-up head into contact with a first pad on an defective position of a receiving substrate, wherein the conductive pick-up head and the known-good micro-LED are bonded via a conductive adhesive; locally joule heating a first bonding layer through the conductive pick-up head, to melt the first bonding layer, wherein the first bonding layer is provided between the known-good micro-LED and the first pad; and lifting up the conductive pick-up head after the first bonding layer is cooled, leaving the known-good micro-LED on the receiving substrate.
US10170664B2 Surface mount emissive elements
A surface mount emissive element is provided with a top surface and a bottom surface. A first electrical contact is formed exclusively on the top surface, and a second electrical contact is formed exclusively on the top surface. A post extends from the bottom surface. An emissive display is also provided made from surface mount emissive elements and an emissions substrate. The emissions substrate has a top surface with a first plurality of wells formed in the emissions substrate top surface. Each well has a bottom surface, sidewalls, a first electrical interface formed on the bottom surface, and a second electrical interface formed on the bottom surface. The emissions substrate also includes a matrix of column and row conductive traces forming a first plurality of column/row intersections, where each column/row intersection is associated with a corresponding well. A first plurality of emissive elements populates the wells.
US10170663B2 Semiconductor light emitting device package and method for manufacturing the same
A method for manufacturing a semiconductor light emitting device package includes forming a light emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer sequentially stacked on a growth substrate, forming a reflective layer on a first surface of the light emitting structure corresponding to a surface of the second conductivity-type semiconductor layer, forming bumps on the first surface, the bumps being electrically connected to the first or second conductivity-type semiconductor layer and protruding from the reflective layer, bonding a support substrate to the bumps on the first surface, removing the growth substrate, bonding a light transmissive substrate coated with a wavelength conversion layer to a second surface of the light emitting structure from which the growth substrate is removed, and removing the support substrate. The reflective layer covers at least portions of side surfaces of the light emitting structure and the bumps.
US10170662B2 Method for manufacturing circuit board, method for manufacturing light-emitting device, and light-emitting device
A method for manufacturing a circuit board includes a first process, a second process, a third process, and a fourth process. The first process includes a step of providing a circuit and an electrode over a first surface of a first substrate. The second process includes a step of providing a reflective layer on the first surface side of the first substrate or a second surface side of a second substrate. The third process includes a step of attaching the first surface and the second surface to each other with a bonding layer therebetween to face each other so that the reflective layer overlaps with the electrode and the reflective layer surrounds part of the electrode. The fourth process includes a step of irradiating at least part of the reflective layer with laser light from a side opposite to the electrode.
US10170657B2 Solar cell having an emitter region with wide bandgap semiconductor material
Solar cells having emitter regions composed of wide bandgap semiconductor material are described. In an example, a method includes forming, in a process tool having a controlled atmosphere, a thin dielectric layer on a surface of a semiconductor substrate of the solar cell. The semiconductor substrate has a bandgap. Without removing the semiconductor substrate from the controlled atmosphere of the process tool, a semiconductor layer is formed on the thin dielectric layer. The semiconductor layer has a bandgap at least approximately 0.2 electron Volts (eV) above the bandgap of the semiconductor substrate.
US10170651B2 Metal-doped cu(In,Ga) (S,Se)2 nanoparticles
Various methods are used to provide a desired doping metal concentration in a CIGS-containing ink when the CIGS layer is deposited on a photovoltaic device. When the doping metal is sodium, it may be incorporated by: adding a sodium salt, for example sodium acetate, together with the copper-, indium- and/or gallium-containing reagents at the beginning of the synthesis reaction of Cu(In,Ga)(S,Se)2 nanoparticles; synthesizing Cu(In,Ga)(S,Se)2 nanoparticles and adding a sodium salt to the reaction solution followed by mild heating before isolating the nanoparticles to aid sodium diffusion; and/or, using a ligand that is capable of capping the Cu(In,Ga)(S,Se)2 nanoparticles with one end of its molecular chain and binding to sodium atoms with the other end of its chain.
US10170648B2 Semiconductor nanocrystal, and method of preparing the same
A nanocrystal including a core including a Group III element and a Group V element, and a monolayer shell on the surface of the core, the shell including a compound of the formula ZnSexS(1-x), wherein 0≤x≤1, and wherein an average mole ratio of Se:S in the monolayer shell ranges from about 2:1 to about 20:1.
US10170647B2 Solar cell and method for manufacturing the same
A solar cell and a method for manufacturing the same are discussed. The solar cell includes a semiconductor substrate, a plurality of first and second electrodes which are formed on a back surface of the semiconductor substrate to be separated from each other, and an insulating member including a first auxiliary electrode connected to the first electrodes and a second auxiliary electrode connected to the second electrodes. The first electrodes and the first auxiliary electrode are connected using a conductive adhesive including a resin layer and conductive metal particles, and the second electrodes and the second auxiliary electrode are connected using the conductive adhesive. The first and second electrodes are insulated from each other through an insulating layer, or the first and second auxiliary electrodes are insulated from each other through the insulating layer.
US10170636B2 Gate-to-bulk substrate isolation in gate-all-around devices
A method for fabricating a semiconductor device comprises forming a sacrificial layer of a first semiconductor material on a substrate, a layer of a second semiconductor material on the sacrificial layer, and a layer of a third semiconductor material on the layer of the second semiconductor material. Portions of the layer of the deposited material are removed to form a first nanowire arranged on the sacrificial fin and a second nanowire arranged on the first nanowire. An oxidizing process is performed that forms a first layer of oxide material on exposed portions of the second nanowire and a second layer of oxide material on exposed portions of the sacrificial fin, the first layer of oxide material having a first thickness and the second layer of oxide material having a second thickness, where the first thickness is less than the second thickness.
US10170630B2 Manufacturing method of semiconductor memory device
To provide a highly integrated semiconductor memory device. To provide a semiconductor memory device which can hold stored data even when power is not supplied. To provide a semiconductor memory device which has a large number of write cycles. The degree of integration of a memory cell array is increased by forming a memory cell including two transistors and one capacitor which are arranged three-dimensionally. The electric charge accumulated in the capacitor is prevented from being leaking by forming a transistor for controlling the amount of electric charge of the capacitor in the memory cell using a wide-gap semiconductor having a wider band gap than silicon. Accordingly, a semiconductor memory device which can hold stored data even when power is not supplied can be provided.
US10170628B2 Method for forming an extremely thin silicon-on-insulator (ETSOI) device having reduced parasitic capacitance and contact resistance due to wrap-around structure of source/drain regions
A method for forming a semiconductor device includes etching a semiconductor layer using a gate structure and spacers as a mask to protect portions of the semiconductor layer that extend beyond the gate structure. Undercuts are formed in a buried dielectric layer under the gate structure. Source and drain regions are epitaxially growing and wrapped around the semiconductor layer by forming the source and drain regions adjacent to the gate structure on a first side of the semiconductor layer and in the undercuts on a second side of the semiconductor layer opposite the first side.
US10170627B2 Nanowire transistor with source and drain induced by electrical contacts with negative schottky barrier height
A nanowire transistor includes undoped source and drain regions electrically coupled with a channel region. A source stack that is electrically isolated from a gate conductor includes an interfacial layer and a source conductor, and is coaxially wrapped completely around the source region, extending along at least a portion of the source region. A Schottky barrier between the source conductor and the source region is a negative Schottky barrier and a concentration of free charge carriers is induced in the semiconductor source region.
US10170625B2 Method for manufacturing a compact OTP/MTP technology
Methods of forming a compact FinFET OTP/MTP cell and a compact FDSOI OTP/MTP cell and resulting devices are provided. Embodiments include providing a substrate having a BOX layer; forming fins on the BOX layer with a gap in between; forming first and second gates, laterally separated, over and perpendicular to the fins; forming at least one third gate between the first and second gates and contacting the BOX layer through the gap, each third gate overlapping an end of a fin or both fins; forming a S/D region in each of the fins adjacent to the first and second gates, respectively, remote from the at least one third gate; utilizing each of the first and second gates as a WL; utilizing each third gate as a SL or connecting a SL to the S/D region; and connecting a BL to the S/D region or the at least one third gate.
US10170623B2 Method of fabricating semiconductor device
A semiconductor device and a method of fabricating the same, the semiconductor device includes a plurality of fin shaped structures, a trench, a spacing layer and a dummy gate structure. The fin shaped structures are disposed on a substrate. The trench is disposed between the fin shaped structures. The spacing layer is disposed on sidewalls of the trench, wherein the spacing layer has a top surface lower than a top surface of the fin shaped structures. The dummy gate structure is disposed on the fin shaped structures and across the trench.
US10170619B2 Vertical schottky contact FET
A semiconductor structure containing a vertical Schottky contact transistor is provided in which the contact resistance as well as the junction resistance is improved. The vertical Schottky contact transistor includes a bottom Schottky contact source/drain structure and a top Schottky contact source/drain structure located at opposing ends of a semiconductor channel region. The bottom Schottky contact source/drain structure includes a base portion and a vertically extending portion.
US10170617B2 Vertical transport field effect transistors
The present disclosure relates to semiconductor structures and, more particularly, to vertical transport field effect transistor devices and methods of manufacture. A structure includes: a vertical fin structure having a lower dopant region, an upper dopant region and a channel region between the lower dopant region and the upper dopant region; and a doped semiconductor material provided on sides of the vertical fin structure at a lower portion. The lower dopant region being composed of the doped semiconductor material which is merged into the vertical fin structure at the lower portion.
US10170615B2 Semiconductor device including a lateral transistor
A semiconductor device includes a source region and a drain region of a first conductivity type. The source region and the drain region are arranged in a first direction parallel to a first main surface of a semiconductor substrate. The semiconductor device further includes a layer stack having a drift layer of the first conductivity type and a compensation layer of a second conductivity type. The drain region is electrically connected with the drift layer. The semiconductor device also includes a connection region of the second conductivity type extending into the semiconductor substrate, the connection region being electrically connected with the compensation layer, wherein the buried semiconductor portion does not fully overlap with the drift layer.
US10170613B2 Semiconductor device
A semiconductor device includes a transistor, a semiconductor layer, an active region and a conductive layer. The active region is in the semiconductor layer. The conductive layer is configured to maintain a channel in the active region when the transistor is triggered to be conducted.
US10170612B2 Epitaxial buffer layers for group III-N transistors on silicon substrates
Embodiments include epitaxial semiconductor stacks for reduced defect densities in III-N device layers grown over non-III-N substrates, such as silicon substrates. In embodiments, a metamorphic buffer includes an AlxIn1-xN layer lattice matched to an overlying GaN device layers to reduce thermal mismatch induced defects. Such crystalline epitaxial semiconductor stacks may be device layers for HEMT or LED fabrication, for example. System on Chip (SoC) solutions integrating an RFIC with a PMIC using a transistor technology based on group III-nitrides (III-N) capable of achieving high Ft and also sufficiently high breakdown voltage (BV) to implement high voltage and/or high power circuits may be provided on the semiconductor stacks in a first area of the silicon substrate while silicon-based CMOS circuitry is provided in a second area of the substrate.
US10170608B2 Internal spacer formation from selective oxidation for fin-first wire-last replacement gate-all-around nanowire FET
A semiconductor device includes a first source/drain region a second source/drain region, and a gate region interposed between the first and second source/drain regions. At least one nanowire has a first end anchored to the first source/drain region and an opposing second end anchored to the second source/drain region such that the nanowire is suspended above the wafer in the gate region. At least one gate electrode is in the gate region. The gate electrode contacts an entire surface of the nanowire to define a gate-all-around configuration. At least one pair of oxidized spacers surrounds the at least one gate electrode to electrically isolate the at least one gate electrode from the first and second source/drain regions.
US10170605B2 MOS-bipolar device
A clustered Insulated Gate Bipolar Transistor (CIGBT) comprising a drift region (24), a P region (20) formed within the n-type drift region, an N well region (22) formed within the P well region (20), a P base region (32) formed within the N well region (22) and a cathode region (36). One or more trenches (40) are formed in the device and configured to longitudinally intersect the drift region (24) and, optionally, the P well region (20) as well as laterally intersecting the base region (32), the N well region (22) and the P well region (20). An insulating film is formed on the inner surface of the trenches (40) and gate oxide is formed on the insulating film so as to substantially fill the trenches and form a gate.
US10170603B2 Semiconductor device including a resonant tunneling diode structure with electron mean free path control layers
A semiconductor device including at least one double-barrier resonant tunneling diode (DBRTD) is provided. The at least one DBRTD may include a first doped semiconductor layer, and a first barrier layer on the first doped semiconductor layer and including a superlattice. The DBRTD may further include a first intrinsic semiconductor layer on the first barrier layer, a second barrier layer on the first intrinsic semiconductor layer and also including the superlattice, a second intrinsic semiconductor layer on the second barrier layer, a third barrier layer on the second intrinsic semiconductor layer and also including the superlattice. A third intrinsic semiconductor layer may be on the third barrier layer, a fourth barrier layer may be on the third intrinsic semiconductor layer and also including the superlattice, a second doped semiconductor layer on the fourth barrier layer.
US10170597B2 Method for forming flash memory unit
A method for forming flash memory units is provided. After a logic gate in a select gate PMOS transistor area is separated from a logic gate in a control gate PMOS transistor area, P-type impurities implanted into the logic gate in the select gate PMOS transistor area are diffused into an N-type floating gate polysilicon layer to convert the N-type floating gate into a P-type floating gate by a subsequent high temperature heating process, so that it is possible to successfully form a select gate PMOS transistor having a small surface channel threshold value in a 55 nm process flash memory unit, and achieve mass production. Further, a two-step growth process of the logic gate and a process for separating the logic gate can form a surface channel of the select gate PMOS transistor having a smaller threshold value without affecting the floating gate doping of the control gate PMOS transistor.
US10170587B2 Heterogeneous source drain region and extension region
A semiconductor structure includes a source drain region of a first material and an extension region of a second material. A semiconductor device fabrication process includes forming a sacrificial dielectric portion upon a semiconductor substrate, forming a sacrificial gate stack upon the sacrificial dielectric portion, forming a gate spacer upon the sacrificial dielectric portion against the sacrificial gate, forming a source drain region of a first doped material upon the semiconductor substrate against the gate spacer, forming a replacement gate trench by removing the sacrificial gate stack, forming an extension trench by removing the sacrificial dielectric portion, and forming an extension region of a second doped material within the extension trench.
US10170586B2 Unipolar spacer formation for finFETs
A method for forming a spacer for a semiconductor device includes patterning gate material in a transverse orientation relative to semiconductor fins formed on a substrate and conformally depositing a dummy spacer layer over surfaces of gate structures and the fins. A dielectric fill formed over the gate structures and the fins is planarized to remove a portion of the dummy spacer layer formed on tops of the gate structures and expose the dummy spacer layer at tops of the sidewalls of the gate structures. Channels are formed by removing the dummy spacer layer along the sidewalls of the gate structures. The fins are protected by the dielectric fill. A spacer is formed by filling the channels with a spacer material. The dielectric fill and the dummy spacer layer are removed to expose the fins. Source and drain regions are formed between the gate structures on the fins.
US10170583B2 Forming a gate contact in the active area
A method of making a semiconductor device includes patterning a fin in a substrate; forming a gate between source/drain regions over the substrate, the gate having a dielectric spacer along a sidewall; removing a portion of the dielectric spacer and filling with a metal oxide to form a spacer having a first spacer portion and a second spacer portion; forming a source/drain contact over at least one of the source/drain regions; recessing the source/drain contact and forming a via contact over the source/drain contact; and forming a gate contact over the gate, the gate contact having a first gate contact portion contacting the gate and a second gate contact portion positioned over the first gate contact portion; wherein the first spacer portion isolates the first gate contact portion from the source/drain contact, and the second spacer portion isolates the second gate contact portion from the source/drain contact.
US10170582B1 Uniform bottom spacer for vertical field effect transistor
A method of forming a semiconductor structure includes forming a protective liner comprising a metal oxide above and in direct contact with a semiconductor substrate, a fin extending upward from the semiconductor substrate and a NON hardmask positioned on top of the fin, removing the protective liner from top surfaces of the semiconductor substrate and NON hardmask, the protective liner remaining on sidewalls of the fin and the NON hardmask, depositing a first dielectric layer, simultaneously removing top portions of the first dielectric layer and NON hardmask, the first dielectric layer remains in direct contact with a bottom portion of the protective liner and the semiconductor substrate, removing the protective liner, the removing of the protective liner creates an opening between the first dielectric layer and the bottom portion of the fin that is subsequently filled with a second dielectric layer.
US10170581B2 FinFET with reduced parasitic capacitance
A method of fabricating a finFET semiconductor device, the method including forming a self-aligned silicide contact above and in direct contact with exposed portions of semiconductor fins not covered by a gate electrode, wherein an upper surface of the self-aligned silicide contact is substantially flush with an upper surface of an adjacent isolation region, patterning a blanket metal layer to form a source-drain contact on the upper surface of the self-aligned silicide contact, the self-aligned silicide contact provides an electrical path from the semiconductor fins to the source-drain contact, and recessing a portion of the self-aligned silicide contact without recessing the isolation region, the self-aligned silicide contact is recessed selective to a mask used to pattern the source-drain contact.
US10170579B2 Surface treatment and passivation for high electron mobility transistors
A High Electron Mobility Transistor (HEMT) and a method of forming the same are disclosed. The HEMT includes a first III-V compound layer having a first band gap and a second III-V compound layer having a second band gap over the first III-V compound layer, wherein the second band gap is greater than the first band gap. The HEMT further includes a first oxide layer over the second III-V compound layer; a first interfacial layer over the first oxide layer; and a passivation layer over the first interfacial layer.
US10170573B1 Semiconductor device and fabrication method thereof
A semiconductor device includes a substrate, a metal gate on the substrate, and a first inter-layer dielectric (ILD) layer around the metal gate. A top surface of the metal gate is lower than a top surface of the ILD layer thereby forming a recessed region atop the metal gate. A mask layer is disposed in the recessed region. A void is formed in the mask layer within the recessed region. A second ILD layer is disposed on the mask layer and the first ILD layer. A contact hole extends into the second ILD layer and the mask layer. The contact hole exposes the top surface of the metal gate and communicates with the void. A conductive layer is disposed in the contact hole and the void.
US10170571B1 Semiconductor device and manufacturing method thereof
A semiconductor device includes a composite gate structure formed over a semiconductor substrate. The composite gate structure includes a gate dielectric layer, a metal feature, and a semiconductor feature. The metal feature is disposed on the gate dielectric layer. The semiconductor feature is disposed on the gate dielectric layer. The metal feature and the semiconductor feature are stacked on the gate dielectric layer side by side.
US10170568B2 High voltage laterally diffused MOSFET with buried field shield and method to fabricate same
A structure includes a laterally diffused (LD) MOSFET with an n-type drift region disposed on a surface of a substrate and a p-type body region contained in the drift region. The structure further includes an n-type source region contained in the p-type body region; an n-type drain region contained in the n-type drift region; a gate electrode disposed on a gate dielectric overlying a portion of the p-type body region and the n-type drift region and an electrically conductive field shield member disposed within the n-type drift region at least partially beneath the p-type body region and generally parallel to the gate electrode. The electrically conductive buried field shield member is contained within and surrounded by a layer of buried field shield oxide and is common to both a first LD MOSFET and a second LD MOSFET that are connected in parallel. Methods to fabricate the structure are also disclosed.
US10170563B2 Gallium nitride semiconductor device with improved termination scheme
This invention discloses a gallium nitride based semiconductor power device disposed in a semiconductor substrate. The power device comprises a termination area disposed at a peripheral area of the semiconductor power device comprises a termination structure having at least a guard ring disposed in a trench filled with doped gallium-based epitaxial layer therein.
US10170559B1 Reverse conducting IGBT incorporating epitaxial layer field stop zone and fabrication method
An RC-IGBT includes a semiconductor body formed having a base region incorporating a field stop zone where the base region and the field stop zone are both formed using an epitaxial process and the field stop zone has an enhanced doping profile to realize improved soft-switching performance for the semiconductor device. In alternate embodiments, RC-IGBT device, including the epitaxial layer field stop zone, are realized through a fabrication process that uses front side processing only to form the backside contact regions and the front side device region. The fabrication method forms an RC-IGBT device using front side processing to form the backside contact regions and then using wafer bonding process to flip the semiconductor structure onto a carrier wafer so that front side processing is used again to form the device region.
US10170555B1 Intermetallic doping film with diffusion in source/drain
A method includes etching a substrate to form a first semiconductor strip. A first dummy gate structure is formed over a first channel region of the first semiconductor strip. First and second recesses are etched in the first semiconductor strip on either side of a first dummy gate. An intermetallic doping film is formed in the first recess and the second recess. A dopant of the intermetallic doping film is diffused into the first semiconductor strip proximate the recesses. Source/drain regions are epitaxially grown in the recesses. A device includes semiconductor strips and a plurality of gate stacks. A first epitaxial source/drain region is interposed between a first two of the plurality of gate stacks. A first dopant diffusion area surrounds the first epitaxial source/drain region and has a first concentration of a first dopant greater than a second concentration of the first dopant outside the first dopant diffusion area.
US10170553B2 Shaped terminals for a bipolar junction transistor
Device structure and fabrication methods for a bipolar junction transistor. An emitter layer is formed on a base layer and etched to form an emitter of the device structure. The emitter layer has a concentration of an element that varies as a function of the thickness of the emitter layer. The etch rate of the emitter layer varies as a function of the concentration of the element such that the emitter has a variable width over the thickness of the emitter layer.
US10170552B2 Co-integration of silicon and silicon-germanium channels for nanosheet devices
Nanosheet semiconductor devices and methods of forming the same include forming a first stack in a first device region, the first stack including layers of a first channel material and layers of a sacrificial material. A second stack is formed in a second device region, the second stack including layers of a second channel material, layers of the sacrificial material, and a liner formed around the layers of the second channel material. The sacrificial material is etched away using a wet etch that is selective to the sacrificial material and the second channel material and does not affect the first channel material or the liner. The liner protects the second channel material from the wet etch.
US10170551B2 Sidewall image transfer nanosheet
A method for forming active regions of a semiconductor device comprising forming a nanosheet stack on a substrate, forming the nanosheet stack comprising forming a sacrificial nanosheet layer on the substrate, and forming a nanosheet layer on the sacrificial nanosheet layer, forming an etch stop layer on the nanosheet stack, forming a mandrel layer on the etch stop layer, removing portions of the mandrel layer to form a mandrel on the etch stop layer, forming sidewalls adjacent to sidewalls of the mandrel, depositing a fill layer on exposed portions of the etch stop layer, removing the sidewalls and removing exposed portions of the etch stop layer and the nanosheet stack to expose portions of the substrate.
US10170548B2 Integrated capacitors with nanosheet transistors
A semiconductor device and process of making the same generally includes simultaneously forming nanosheet capacitors with nanosheet FET devices on the same substrate. The nanosheets in the capacitor have a width and are coupled to one another by sacrificial layers, wherein the sacrificial layers have a width smaller than the nanosheet width, and wherein the nanosheets and the sacrificial layers are conductively coupled to the substrate. The nanosheets in the FET devices are spaced apart and free of sacrificial layers. The nanosheets in the FET device have a width less than half the width of the nanosheets in the capacitor region.
US10170547B2 Nanodevice
A nanodevice capable of controlling the state of electric charge of a metal nanoparticle is provided. The device includes: nanogap electrodes 5 including one electrode 5A and the other electrode 5B disposed so as to have a nanosize gap in between; a nanoparticle 7 placed between the nanogap electrodes 5; and a plurality of gate electrodes 9. At least one of the plurality of gate electrodes 9 is used as a floating gate electrode to control the state of electric charge of the nanoparticle 7, which achieves a multivalued memory and rewritable logical operation.
US10170545B2 Memory arrays
The invention includes semiconductor constructions having trenched isolation regions. The trenches of the trenched isolation regions can include narrow bottom portions and upper wide portions over the bottom portions. Electrically insulative material can fill the upper wide portions while leaving voids within the narrow bottom portions. The trenched isolation regions can be incorporated into a memory array, and/or can be incorporated into an electronic system. The invention also includes methods of forming semiconductor constructions.
US10170543B2 Vertical fin field effect transistor with air gap spacers
A fin field effect transistor device with air gaps, including a source/drain layer on a substrate, one or more vertical fin(s) in contact with source/drain layer, a gate metal fill that forms a portion of a gate structure on each of the one or more vertical fin(s), and a bottom void space between the source/drain layer and the gate metal fill.
US10170540B2 Capacitors
Back end of the line (BEOL) capacitors and methods of manufacture are provided. The method includes forming wiring lines on a substrate, with spacing between adjacent wiring lines. The method further includes forming an air gap within spacing between the adjacent wiring lines by deposition of a capping material. The method further includes opening the air gap between selected adjacent wiring lines. The method further includes depositing conductive material within the opened air gap.
US10170539B2 Stacked capacitor with enhanced capacitance
A semiconductor device is provided. The semiconductor device includes a semiconductor substrate, a stacked structure and contact vias. The stacked structure includes a plurality of conductive layers, and two adjacent conductive layers are isolated from each other with at least one dielectric layer. The contact vias have different heights, and partially through the stacked structure. Each of the plurality of contact vias is electrically connected to a corresponding conductive layer.
US10170536B1 Magnetic memory with metal oxide etch stop layer and method for manufacturing the same
A semiconductor structure is disclosed. The semiconductor structure includes: a substrate; a first passivation layer over the substrate; a second passivation layer over the first passivation layer; a magnetic layer in the second passivation layer; and an etch stop layer between the magnetic layer and the first passivation layer, wherein the etch stop layer includes at least one acid resistant layer, and the acid resistant layer includes a metal oxide. A method for manufacturing a semiconductor structure is also disclosed.
US10170534B1 Display device
A display device includes: a substrate; a plurality of display elements in a display area of the substrate, where each of the plurality of display elements includes a pixel electrode, an opposite electrode, and an intermediate layer between the pixel electrode and the opposite electrode; a drive circuit on an outer side of the display area and including a thin film transistor; a first insulating layer on the drive circuit; a first power supply line layer on the first insulating layer and overlapping the drive circuit; a second insulating layer on the first power supply line layer; and a connection electrode layer on the second insulating layer, where the connection electrode layer electrically connects the first power supply line layer to the opposite electrode.
US10170531B2 Organic light emitting diode display including reaction blocking member on common voltage line
An organic light emitting diode (“OLED”) display includes: a substrate divided into a pixel area, and a peripheral area enclosing the pixel area; an OLED in the pixel area and including a first electrode, an organic emission layer and a second electrode; a common voltage line in the peripheral area and transmitting a common voltage to the second electrode; and a reaction blocking part overlapping the common voltage line.
US10170530B2 Display device including first and second substrates, one including a pad electrode
According to one embodiment, a display device includes a first substrate including as insulating substrate with a first through hole, a pad electrode positioned above the insulating substrate, and a signal line electrically connected to the pad electrode, a second substrate opposed to the first substrate, a sealant which adheres the first substrate and the second substrate, a line substrate including a connection line and disposed below the insulating substrate, and a conductive material which electrically connects the pad electrode and the connection line, wherein the sealant is less absorptive than is the insulating substrate as to a wavelength less than 350 nm.
US10170512B2 Uniform-size bonding patterns
A semiconductor device, and a method of fabrication, is introduced. In an embodiment, one or more passivation layers are formed over a first substrate. Recesses are formed in the passivation layers and a first plurality of bonding pads and a second plurality of bonding pads are formed in the recesses. In an embodiment, the first plurality of bonding pads have a first width and a first pitch, and the second plurality of bonding pads have the first width and are grouped into clusters. The first plurality of bonding pads and the second plurality of bonding pads in the first substrate are aligned to a third plurality of bonding pads in a second substrate and are bonded using a direct bonding method.
US10170507B2 Solid-state imaging device
A solid-state imaging device has a plurality of micro lenses, a first substrate, and a second substrate. The first substrate has a plurality of first photoelectric conversion units. Each of the plurality of first photoelectric conversion units corresponds to any one of the plurality of micro lenses. The second substrate has a plurality of second photoelectric conversion units and a plurality of third photoelectric conversion units. A plurality of pairs of photoelectric conversion units are disposed, and each of the plurality of pairs of photoelectric conversion units includes one of the second photoelectric conversion units and one of the third photoelectric conversion units. Each of the plurality of pairs of photoelectric conversion units corresponds to at least one of the plurality of first photoelectric conversion units. The second substrate further includes charge isolation regions disposed between the second photoelectric conversion units and the third photoelectric conversion units.
US10170503B2 Thin film transistor array substrate and liquid crystal panel
The present disclosure discloses a thin film transistor array substrate and a liquid crystal panel. The thin film transistor array substrate comprises a substrate, a silicon thin film transistor formed on the substrate, an oxide semiconductor transistor, and a capacitor. Wherein, the silicon thin film transistor and the oxide semiconductor transistor have a top gate structure, which is compatible with the manufacturing process of the silicon thin film transistor and the oxide semiconductor transistor, so that it can reduce the use frequency of the photoresist mask, and then reduce the production cost of the thin film transistor array substrate. In addition, the capacitor and the silicon thin film transistor or the capacitor and the oxide semiconductor transistor are overlapping arrangement, which can greatly increase the aperture ratio of the bottom emitting OLED.
US10170502B2 Transistor array panel and manufacturing method thereof
A transistor array panel is manufactured by a method that reduces or obviates the need for highly selective etching agents or complex processes requiring multiple photomasks to create contact holes. The panel includes: a substrate; a buffer layer positioned on the substrate; a semiconductor layer positioned on the buffer layer; an intermediate insulating layer positioned on the semiconductor layer; and an upper conductive layer positioned on the intermediate insulating layer, wherein the semiconductor layer includes a first contact hole, the intermediate insulating layer includes a second contact hole positioned in an overlapping relationship with the first contact hole, and the upper conductive layer is in contact with a side surface of the semiconductor layer in the first contact hole.
US10170498B2 Strained CMOS on strain relaxation buffer substrate
A method for constructing an advanced FinFET structure is described. A first long silicon fin for n-type FinFET devices and a first long silicon germanium fin for p-type FinFET devices are provided on a strain relaxation buffer (SRB) substrate. The first long silicon fin is cut forming a first and a second cut silicon fin so that the first and second cut silicon fin have a vertical face at a fin end. The first long silicon germanium fin is cut forming a first and a second cut silicon germanium fin, the first and the second cut silicon germanium cut fin have a vertical face at a fin end. A tensile dielectric structure is formed which contacts the vertical faces of the first and second cut silicon fins to maintain tensile strain in the first and second cut silicon fins. A compressive dielectric structure is formed which contacts the vertical faces of the silicon germanium fins to maintain compressive strain in the first and second cut silicon germanium fins.
US10170497B2 Method for manufacturing an electronic device and method for operating an electronic device
According to various embodiments, an electronic device may include a carrier including at least a first region and a second region being laterally adjacent to each other; an electrically insulating structure arranged in the first region of the carrier, wherein the second region of the carrier is free of the electrically insulating structure; a first electronic component arranged in the first region of the carrier over the electrically insulating structure; a second electronic component arranged in the second region of the carrier; wherein the electrically insulating structure includes one or more hollow chambers, wherein the sidewalls of the one or more hollow chambers are covered with an electrically insulating material.
US10170494B2 Semiconductor device and method for manufacturing the same
According to one embodiment, a semiconductor device includes an underlying metal film and a metal film. The underlying metal film is a tantalum-aluminum film having an aluminum content of more than 50 atomic % and less than 85 atomic %, a tungsten-zirconium film having a zirconium content of less than 40 atomic %, a tungsten-titanium film having a titanium content of less than 80 atomic %, or a tungsten film. The metal film is provided on the underlying metal film and in contact with the underlying metal film. The metal film contains at least one of tungsten and molybdenum, and has a main orientation of (100) or (111).
US10170491B2 Memory including blocking dielectric in etch stop tier
Vertical memories and methods of making the same are discussed generally herein. In one embodiment, a vertical memory can include a vertical pillar extending to a source, an etch stop tier over the source, and a stack of alternating dielectric tiers and conductive tiers over the etch stop tier. The etch stop tier can comprise a blocking dielectric adjacent to the pillar. In another embodiment, the etch stop tier can comprise a blocking dielectric adjacent to the pillar, and a plurality of dielectric films horizontally extending from the blocking dielectric into the etch stop tier.
US10170489B2 High-voltage transistor having shielding gate
A semiconductor device includes a plurality of high-voltage insulated-gate field-effect transistors arranged in a matrix form on the main surface of a semiconductor substrate and each having a gate electrode, a gate electrode contact formed on the gate electrode, and a wiring layer which is formed on the gate electrode contacts adjacent in a gate-width direction to electrically connect the gate electrodes arranged in the gate-width direction. And the device includes shielding gates provided on portions of an element isolation region which lie between the transistors adjacent in the gate-width direction and gate-length direction and used to apply reference potential or potential of a polarity different from that of potential applied to the gate of the transistor to turn on the current path of the transistor to the element isolation region.
US10170486B2 Semiconductor storage device comprising peripheral circuit, shielding layer, and memory cell array
Probability of malfunction of a semiconductor storage device is reduced. A shielding layer is provided between a memory cell array (e.g., a memory cell array including a transistor formed using an oxide semiconductor material) and a peripheral circuit (e.g., a peripheral circuit including a transistor formed using a semiconductor substrate), which are stacked. With this structure, the memory cell array and the peripheral circuit can be shielded from radiation noise generated between the memory cell array and the peripheral circuit. Thus, probability of malfunction of the semiconductor storage device can be reduced.
US10170484B1 Integrated circuit structure incorporating multiple gate-all-around field effect transistors having different drive currents and method
In a method of forming a structure with field effect transistors (FETs) having different drive currents, a stack is formed on a substrate. The substrate is a first semiconductor material and the stack includes alternating layers of a second and the first semiconductor material. Recess(es) filled with sacrificial material are formed in certain area(s) of the stack. The stack is patterned into fins and gate-all-around (GAA) FET processing is performed. GAAFET processing includes removing sacrificial gates to form gate openings for GAAFETs and removing the second semiconductor material and any sacrificial material (if present) from the gate openings such that, within each gate opening, nanoshape(s) that extend laterally between source/drain regions remain. Gate openings for GAAFETs where sacrificial material was removed will have fewer nanoshapes than other gate openings. Thus, in the structure, some GAAFETs will have fewer channel regions and, thereby lower drive currents than others.
US10170482B2 Structure to prevent lateral epitaxial growth in semiconductor devices
A method for preventing epitaxial growth in a semiconductor device is described. The method includes cutting the fins of FinFET structure to form a set of exposed fin ends. A set of sidewall spacers are formed on the set of exposed fin ends, forming a set of spacer covered fin ends. The set of sidewall spacers prevent epitaxial growth at the set of spacer covered fin ends. A semiconductor device includes a set of fin structures having a set of fin ends. A set of inhibitory layers are disposed at the set of fin ends to inhibit excessive epitaxial growth at the fin ends.
US10170479B2 Fabrication of vertical doped fins for complementary metal oxide semiconductor field effect transistors
A method of forming a fin field effect transistor (finFET) with a doped substrate region, including forming a plurality of vertical fins on a substrate, forming a first dopant source on one or more of the plurality of vertical fins, wherein the first dopant source is not formed on at least one vertical fin, forming a second dopant source on the at least one vertical fin that does not have a first dopant source formed thereon, and heat treating the plurality of vertical fins on the substrate, the first dopant source, and the second dopant source, wherein the heat treatment is sufficient to cause a first dopant from the first dopant source to diffuse into at least a first portion of the substrate, and a second dopant from the second dopant source to diffuse into at least a second portion of the substrate.
US10170475B2 Silicon-on-nothing transistor semiconductor structure with channel epitaxial silicon region
An improved transistor with channel epitaxial silicon. In one aspect, a method of fabrication includes: forming a gate stack structure on an epitaxial silicon region disposed on a substrate, a width dimension of the epitaxial silicon region approximating a width dimension of the gate stack structure; and growing a raised epitaxial source and drain from the substrate, the raised epitaxial source and drain in contact with the epitaxial silicon region and the gate stack structure. For a SRAM device, further: removing an epitaxial layer in contact with the silicon substrate and the raised source and drain and to which the epitaxial silicon region is coupled leaving a space above the silicon substrate and under the raised epitaxial source and drain; and filling the space with an insulating layer and isolating the raised epitaxial source and drain and a channel of the transistor from the silicon substrate.
US10170474B2 Two dimension material fin sidewall
A semiconductor structure, such as a microchip that includes a finFET, includes fins that have a 2D material, such as Graphene, upon at least the fin sidewalls. The thickness of the 2D material sidewall may be tuned to achieve desired finFET band gap control. Neighboring fins of the semiconductor structure form fin wells. The semiconductor structure may include a fin cap upon each fin and the 2D material is formed upon the sidewalls of the fin and the bottom surface of the fin wells. The semiconductor structure may include a well-plug at the bottom of the fin wells and the 2D material is formed upon the sidewalls and upper surface of the fins. The semiconductor structure may include both fin caps and well-plugs such that the 2D material is formed upon the sidewalls of the fins.
US10170470B2 Switching device
A switching device may include a semiconductor substrate; gate trenches; bottom insulating layers covering bottom surfaces of the gate trenches; gate insulating layers covering side surfaces of the gate trenches; and gate electrodes arranged in the gate trenches. The gate insulating layers in a center portion may have a first thickness and a first dielectric constant, and one or more of the gate insulating layers in a peripheral portion may have, within at least a part of the peripheral portion, a second thickness thicker than the first thickness and a second dielectric constant greater than the first dielectric constant. The semiconductor substrate may include a first region being in contact with the gate insulating layers, a body region being in contact with the gate insulating layers under the first region, and a second region being in contact with the gate insulating layers under the body region.
US10170469B2 Vertical field-effect-transistors having multiple threshold voltages
Various embodiments disclose a method for fabricating a semiconductor structure including a plurality of vertical transistors each having different threshold voltages. In one embodiment the method includes forming a structure having at least a substrate, a source contact layer on the substrate, a first spacer layer on the source contact layer, a replacement gate on the first spacer layer, a second spacer layer on the replacement gate, and an insulating layer on the second spacer layer. A first trench is formed in a first region of the structure. A first channel layer having a first doping concentration is epitaxially grown in the first trench. A second trench is formed in a second region of the structure. A second channel layer having a second doping concentration is epitaxially grown in the second trench. The second doping concentration is different from the first doping concentration.
US10170464B2 Compound semiconductor devices having buried resistors formed in buffer layer
Structures and methods are provided for fabricating a semiconductor device (e.g., III-V compound semiconductor device) having buried resistors formed within a buffer layer of the semiconductor device. For instance, a semiconductor device includes a buffer layer disposed on a substrate, a channel layer disposed on the buffer layer, and a buried resistor disposed within the buffer layer. The buffer and channel layers may be formed of compound semiconductor materials such as III-V compound semiconductor materials. Utilizing the buffer layer of a compound semiconductor structure to form buried resistors provides a space-efficient design with increased integration density since the resistors do not have to occupy a large amount of space on the active surface of a semiconductor integrated circuit chip.
US10170463B2 Bipolar transistor compatible with vertical FET fabrication
Methods of forming integrated chips include forming a gate stack around a first semiconductor fin and a second semiconductor fin. The gate stack around the second semiconductor fin is etched away. An extrinsic base is formed around the second semiconductor fin in a region exposed by etching away the gate stack.
US10170459B1 Methods for an ESD protection circuit including a floating ESD node
Methods to forming low trigger-voltage ESD protection circuit in FinFET IC devices and resulting devices. Embodiments include providing a substrate including a first-type well area in an ESD region; forming a base junction of the first-type along the perimeter of the ESD region; forming a shallow trench isolation (STI) region adjacent the base junction; forming alternate emitter and collector junctions of a second-type adjacent the STI region, parallel to and spaced from each other by parallel additional STI regions; forming at least one gate perpendicular to and over a collector junction; and forming a floating ESD nodes of the first-type in the collector junction adjacent one side of the at least one gate.
US10170458B2 Manufacturing method of package-on-package structure
A manufacturing method of a POP structure including at least the following steps is provided. A first package structure is formed and a second package structure is formed on the first package structure. The first package structure includes a circuit carrier and a die disposed on the circuit carrier. Forming the first package structure includes providing a conductive interposer on the circuit carrier, encapsulating the conductive interposer by an encapsulant and removing a portion of the encapsulant and the plate of the conductive interposer. The conductive interposer includes a plate, a plurality of conductive pillars and a conductive protrusion respectively extending from the plate to the circuit carrier and the die. The conductive protrusion disposed on the die, and the conductive pillars are electrically connected to the circuit carrier. The second package structure is electrically connected to the first package structure through the conductive interposer.
US10170452B2 Pixel unit structure and manufacturing method thereof
A pixel unit structure, as well as a manufacturing method thereof, is provided. The pixel unit structure includes a display medium module and an active switching element. The display medium module includes a first electrode, a second electrode and a display medium. The first electrode and the second electrode are separated from each other, and the display medium is disposed between the first electrode and the second electrode. The active switching element is electrically connected to the first electrode, for allowing the first electrode and the second electrode to change the state of the display medium. The active switching element includes a wafer portion and a transistor portion, which is formed on the wafer portion. Therefore, the active switching element can be manufactured independently without the restriction from the display medium module.
US10170445B2 Method for electrical coupling and electric coupling arrangement
A method for electrically coupling a pad and a front face of a pillar, including shaping the front face pillar, the front face having at least partially a convex surface, applying a suspension to the front face or to the pad, wherein the suspension includes a carrier fluid, electrically conducting microparticles and electrically conducting nanoparticles, arranging the front face of the pillar opposite to the pad at a distance such that the carrier fluid bridges at least partially a gap between the front face of the pillar and the pad, evaporating the carrier fluid thereby confining the microparticles and the nanoparticles, and thereby arranging the nanoparticles and the microparticles as percolation paths between the front face of the pillar and the pad, and sintering the arranged nanoparticles for forming metallic bonds at least between the nanoparticles and/or between the nanoparticles and the front face of the pillar or the pad.
US10170444B2 Packages for semiconductor devices, packaged semiconductor devices, and methods of packaging semiconductor devices
Packages for semiconductor devices, packaged semiconductor devices, and methods of packaging semiconductor devices are disclosed. In some embodiments, a package for a semiconductor device includes an integrated circuit die mounting region, a molding material around the integrated circuit die mounting region, and an interconnect structure over the molding material and the integrated circuit die mounting region. The interconnect structure has contact pads, and connectors are coupled to the contact pads. Two or more of the connectors have an alignment feature formed thereon.
US10170440B2 Semiconductor device and a method of manufacturing thereof
A semiconductor device comprises a semiconductor die, comprising a stacking structure, a first bonding pad, and a second bonding pad on a top surface of the stacking structure, wherein a shortest distance between the first bonding pad and the second bonding pad is less than 150 μm; a carrier comprising a connecting surface; a third bonding pad and a fourth bonding pad on the connecting surface of the carrier; and a conductive connecting layer comprising a current conductive area between the first bonding pad and the third bonding pad and between the second bonding pad and the fourth bonding pad.
US10170439B1 Chamfering for stress reduction on passivation layer
Devices are formed to have inner layers that have electronic devices, and an outer passivation layer. A patterned conductor is formed on a first surface of the inner layers, and through conductors (that extend through interior insulator layers) are positioned to electrically connect the patterned conductor to the electronic devices. The patterned conductor includes a pattern of connected linear sections that are parallel to the first surface of the inner layers. The linear sections of the patterned conductor meet at conductor corners, and at least one of the conductor corners of the patterned conductor includes a chamfer side that terminates at the linear sections. Further, the chamfer side is not perfectly diagonal, but instead forms unequal angles with the linear sections that intersect to form the corner.
US10170432B2 Semiconductor structure
A semiconductor structure is provided. The semiconductor structure includes a substrate, at least one semiconductor device, a through-substrate via (TSV), and a shield structure. The substrate has a front side surface and a back side surface. The semiconductor device is disposed on the front side surface. The TSV is disposed in the substrate. The TSV is exposed by the front side surface and the back side surface, and the TSV is electrically connected to the semiconductor device. The shield structure is disposed in the substrate and surrounds the TSV. The shield structure is exposed by the front side surface, the shield structure is electrically isolated from the TSV, and the shield structure is used to be electrically connected to a power terminal or a ground terminal.
US10170431B2 Electronic circuit package
Disclosed herein is an electronic circuit package includes a substrate having a power supply pattern, a first electronic component mounted on a first region of a front surface of the substrate, a mold resin that covers the front surface of the substrate so as to embed the first electronic component therein and has a concave portion above the first region, a magnetic film selectively provided in the concave portion, and a first metal film that is connected to the power supply pattern and covers the mold resin.
US10170428B2 Cavity generation for embedded interconnect bridges utilizing temporary structures
Embodiments are generally directed to cavity generation for an embedded interconnect bridge utilizing a temporary structure. An embodiment of a package includes a substrate; a silicon interconnect bridge including a plurality of interconnections, the interconnect bridge being embedded in the substrate; and a plurality of contacts on a surface of the substrate, the plurality of contacts being coupled with the plurality of interconnections of the interconnect bridge. The interconnect bridge is bonded in a cavity in the substrate, the cavity being formed by removal of at least one temporary structure from the substrate.
US10170427B2 Semiconductor device and method
A representative method for manufacturing a semiconductor device (e.g., a fin field-effect transistor) includes the steps of depositing a first insulating material over a substrate, and forming a first conductive contact in the first insulating material. The first conductive contact has a protruding uppermost surface, with a first height along a central portion of the first conductive contact, and a second height along a vertical vector projection of a sidewall of the first conductive contact. The first height is larger than the second height. A second insulating material is deposited over the first insulating material, and a second conductive contact is formed in the second insulating material. The second conductive contact is disposed over and at least partially within the first conductive contact. A distance between a bottommost surface of the second conductive contact and the protruding uppermost surface of the first conductive contact is less than about 1.0 nm.
US10170424B2 Cobalt first layer advanced metallization for interconnects
A method for fabricating an advanced metal conductor structure is described. A pattern in a dielectric layer is provided. The pattern includes a set of features in the dielectric for a set of metal conductor structures. An adhesion promoting layer is created over the patterned dielectric. A ruthenium layer is deposited over the adhesion promoting layer. Using a physical vapor deposition process, a cobalt layer is deposited over the ruthenium layer. A thermal anneal is performed which reflows the cobalt layer to fill the set of features to form a set of metal conductor structures.
US10170421B2 Logic semiconductor devices
A logic semiconductor device includes a plurality of active patterns extending in a horizontal direction and being spaced apart from each other in a vertical direction, an isolation layer defining the active patterns, a plurality of gate patterns extending in the vertical direction on the active patterns and the isolation layer, the gate patterns being spaced apart from each other in the horizontal direction, a plurality of lower wirings extending in the horizontal direction over the gate patterns, a plurality of upper wirings extending in the vertical direction over the lower wirings, a through contact connecting at least one upper wiring of the upper wirings and at least one gate pattern of the gate patterns, the through contact extending from a bottom surface of the upper wiring to a position under a bottom surface of one of the lower wirings relative to the active patterns.
US10170420B2 Patterning approach for improved via landing profile
The present disclosure is directed to a semiconductor structure that includes a semiconductor substrate. A first interconnect layer is disposed over the semiconductor substrate. The first interconnect layer includes a first dielectric material having a conductive body embedded therein. The conductive body includes a first sidewall, a second sidewall, and a bottom surface. A spacer element has a sidewall which contacts the first sidewall of the conductive body and which contacts the bottom surface of the conductive body. A second interconnect layer overlies the first interconnect layer and includes a second dielectric material with at least one via therein. The at least one via is filled with a conductive material which is electrically coupled to the conductive body of the first interconnect layer.
US10170419B2 Biconvex low resistance metal wire
At least one opening having a biconvex shape is formed into a dielectric material layer. A void-free metallization region (interconnect metallic region and/or metallic contact region) is provided to each of the openings. The void-free metallization region has the biconvex shape and exhibits a low wire resistance.
US10170417B2 Semiconductor structure
A semiconductor structure includes a substrate, a dielectric layer, a metal layer, and a tungsten layer. The dielectric layer is on the substrate and has a recess feature therein. The metal layer is in the recess feature. The metal layer has an oxygen content less than about 0.1 atomic percent. The tungsten layer is in the recess feature and in contact with the metal layer.
US10170413B2 Semiconductor device having buried metal line and fabrication method of the same
A device is disclosed that includes a memory bit cell, a first word line, a pair of metal islands and a pair of connection metal lines. The first word line is disposed in a first metal layer and is electrically coupled to the memory bit cell. The pair of metal islands are disposed in the first metal layer at opposite sides of the word line and are electrically coupled to a power supply. The pair of connection metal lines are disposed in a second metal layer and are configured to electrically couple the metal islands to the memory bit cell respectively.
US10170407B2 Electronic device and methods of providing and using electronic device
Some embodiments include a method of providing an electronic device. The method can comprise: providing a first device substrate; providing one or more first active sections over a second side of the first device substrate at a first device portion of the first device substrate; and after providing the first active section(s) over the second side of the first device substrate at the first device portion, folding a first perimeter portion of the first device substrate toward the first device portion at a first side of the first device substrate so that a first edge portion remains to at least partially frame the first device portion. The first edge portion can comprise a first edge portion width dimension smaller than a first smallest cross dimension of one or more pixel(s) of one or more semiconductor device(s) of the first active section(s). Other embodiments of related methods and devices are also disclosed.
US10170406B2 Trace/via hybrid structure and method of manufacture
A method of forming an interconnect that includes providing a sacrificial trace structure using an additive forming method. The sacrificial trace structure having a geometry for the interconnect. The method continuous with forming a continuous seed metal layer on the sacrificial trace structure; and removing the sacrificial trace structure, wherein the continuous seed metal layer remains. An interconnect metal layer may be formed on the continuous seed layer. A dielectric material may then be formed on the interconnect metal layer to encapsulate a majority of the interconnect metal layer, wherein ends of the interconnect metal layer are exposed through one surface of the dielectric material to provide an interconnect extending into a dielectric material.
US10170404B2 Monolithic 3D integration inter-tier vias insertion scheme and associated layout structure
A 3D-IC includes a first tier device and a second tier device. The first tier device and the second tier device are vertically stacked together. The first tier device includes a first substrate and a first interconnect structure formed over the first substrate. The second tier device includes a second substrate, a doped region formed in the second substrate, a dummy gate formed over the substrate, and a second interconnect structure formed over the second substrate. The 3D-IC also includes an inter-tier via extends vertically through the second substrate. The inter-tier via has a first end and a second end opposite the first end. The first end of the inter-tier via is coupled to the first interconnect structure. The second end of the inter-tier via is coupled to one of: the doped region, the dummy gate, or the second interconnect structure.
US10170397B2 Semiconductor devices, via structures and methods for forming the same
A semiconductor device includes a via structure penetrating through a substrate, a top metal layer and an electronic component over the via structure, and a bottom metal layer and another electronic component below the via structure. The via structure includes a through hole penetrating from a first surface to an opposite second surface of a substrate, a filling insulating layer within the through hole, a first conductive layer, which is within the through hole and surrounds the filling insulating layer, wherein a portion of the first conductive layer is below the filling insulating layer and at the bottom of the through hole. The via structure further includes a first insulating layer, which is on the sidewalls of the through hole and surrounds the first conductive layer.
US10170396B2 Through via structure extending to metallization layer
The integrated circuit device disclosed herein includes a substrate, an interlevel dielectric layer disposed over the substrate, an intermetal dielectric layer disposed over the interlevel dielectric layer, an interconnect structure extending through the intermetal dielectric layer, and a through via (TV) extending through the intermetal dielectric layer and at least a portion of the substrate, the through via having a top surface co-planar with a top surface of the interconnect structure. In some embodiments, the through via is formed before the interconnect structure. In other embodiments, the interconnect structure is formed before the through via. In an embodiment, a fin field effect transistor (FinFET) is formed over the substrate.
US10170394B2 Semiconductor device
A semiconductor device includes a laminated substrate having a circuit board; a semiconductor chip fixed to the circuit board; a terminal having a leading end portion with a cylindrical shape and a wiring portion with a shape other than the cylinder, the leading end portion and the wiring portion being formed of one conductive member; and a joining material which electrically and mechanically connects the circuit board and the leading end portion.
US10170391B2 Backside initiated uniform heat sink loading
A backside initiated uniform heat sink loading system includes a system board assembly, a heat sink assembly, a loading plate, and a fastener. The system board assembly includes at least one processing unit. The heat sink assembly is mounted upon the processing unit from a topside of the system board assembly and includes a plurality of tension members that extend through the system board assembly. The loading plate is mounted to the plurality of tension members from a backside of the system board assembly. The fastener engages with the loading plate from the backside and forces the loading plate away from the system board assembly. As a result, the tension members uniformly force the heat sink assembly upon the processing unit to seat the processing unit with the system board assembly and to thermally contact the heat sink assembly with the processing unit.
US10170389B2 Stacked semiconductor die assemblies with multiple thermal paths and associated systems and methods
Stacked semiconductor die assemblies with multiple thermal paths and associated systems and methods are disclosed herein. In one embodiment, a semiconductor die assembly can include a plurality of first semiconductor dies arranged in a stack and a second semiconductor die carrying the first semiconductor dies. The second semiconductor die can include a peripheral portion that extends laterally outward beyond at least one side of the first semiconductor dies. The semiconductor die assembly can further include a thermal transfer feature at the peripheral portion of the second semiconductor die. The first semiconductor dies can define a first thermal path, and the thermal transfer feature can define a second thermal path separate from the first semiconductor dies.
US10170388B2 Surface passivation having reduced interface defect density
Embodiments are directed to a method of passivating a surface of a high-mobility semiconductor and resulting structures having a reduced interface defect density. A semiconductor layer is formed on a substrate. A surface of the semiconductor layer is contacted with a sulfur source including thiourea at a temperature of up to about 90 degrees Celsius to form a sulfur passivation layer on the surface of the semiconductor layer. A dielectric layer is formed on the sulfur passivation layer and a minimum of interface trap density distribution at an interface between the semiconductor layer and the dielectric layer is less than about 2.0×1011 cm−2 eV−1.
US10170383B2 Semiconductor device
A semiconductor device includes: an insulating board; a circuit pattern disposed on the insulating board; a semiconductor chip connected to the circuit pattern; a case disposed on the insulating board to surround the circuit pattern and the semiconductor chip and not bonded to the insulating board; and a cured resin disposed in the case to seal the circuit pattern and the semiconductor chip.
US10170382B2 Fan-out semiconductor package
A fan-out semiconductor package includes: a first interconnection member having a through-hole; a semiconductor chip disposed in the through-hole, having an active surface having a connection pad disposed thereon and an inactive surface opposing the active surface, and having a protrusion bump disposed on the connection pad; an encapsulant encapsulating at least portions of the first interconnection member and the inactive surface of the semiconductor chip; and a second interconnection member disposed on the first interconnection member and the active surface of the semiconductor chip. In the fan-out semiconductor package, step portions of the protrusion bumps may be removed.
US10170381B2 Semiconductor wafer and method of backside probe testing through opening in film frame
A semiconductor test system has a film frame including a tape portion with one or more openings through the tape portion. The opening is disposed in a center region of the tape portion of the film frame. The film frame may have conductive traces formed on or through the tape portion. A thin semiconductor wafer includes a conductive layer formed over a surface of the semiconductor wafer. The semiconductor wafer is mounted over the opening in the tape portion of the film frame. A wafer probe chuck includes a lower surface and raised surface. The film frame is mounted to the wafer probe chuck with the raised surface extending through the opening in the tape portion to contact the conductive layer of the semiconductor wafer. The semiconductor wafer is probe tested through the opening in the tape portion of the film frame.
US10170380B2 Array substrate and display device
An array substrate and a display device are provided. The array substrate includes a display region and a peripheral circuit region, wherein a first gate line, a first data line and a pixel region are arranged in the display region; the pixel region includes a first pixel electrode and a thin film transistor, and the thin film transistor includes a first gate electrode, a first source electrode and a first drain electrode; the peripheral circuit region is provided with at least one test unit including: a second gate line; a second data line; a second testing pixel electrode; and a second testing thin film transistor. The second testing thin film transistor includes a second gate electrode, a second source electrode and a second drain electrode, wherein the second gate electrode, the second source electrode and the second drain electrode are provided with test ports exposed outside.
US10170379B2 Wafer processing system
Disclosed herein is a wafer processing system for processing wafers one at a time, the wafer processing system including: a plurality of trays each configured to accommodate a wafer; a conveyor configured to transfer the wafers accommodated in the trays; first and second tray holding apparatuses arranged to be spaced from each other along the conveyor, the first and second tray holding apparatuses unloading the trays from the conveyor and loading the unloaded trays onto the conveyor; and first and second apparatuses provided for the first and second tray holding apparatuses, respectively, the first and second apparatuses including a processing unit configured to process the wafers transferred by the conveyor, and a loading/unloading unit configured to unload a wafer from or load a wafer onto one of the trays that is held by the first or second tray holding apparatus.
US10170377B1 Memory cell with recessed source/drain contacts to reduce capacitance
A method includes forming a device above an active region defined in a semiconducting substrate. The device includes a plurality of gate structures, a spacer formed adjacent each of the plurality of gate structures, and conductive source/drain contact structures positioned adjacent each of the plurality of gate structures and separated from the associated gate structure by the spacer. A first portion of the conductive source/drain contact structures of a subset of the plurality of gate structures is recessed at a first axial position along a selected gate structure of the plurality of gate structures to define a cavity. A selected source/drain contact structure is not recessed. A first dielectric layer is formed in the cavity. A conductive line contacting the selected source/drain contact structure in the first axial position is formed.
US10170376B1 Device and forming method thereof
A device includes a first vertical nanowire, a second vertical nanowire and a gate. The first vertical nanowire is disposed on a substrate, wherein the first vertical nanowire includes a silicon germanium channel part. The second vertical nanowire is disposed on the substrate beside the first vertical nanowire, wherein the second vertical nanowire includes a silicon channel part. The gate encircles the silicon germanium channel part and the silicon channel part. The present invention provides a method of forming said device including the following steps. A substrate is provided. A silicon vertical nanowire is formed on the substrate. A germanium containing layer is formed on sidewalls of the silicon vertical nanowire. Germanium atoms of the germanium containing layer are driven into the silicon vertical nanowire, thereby forming a silicon germanium channel part of the silicon vertical nanowire. A gate encircling the silicon germanium channel part is formed.
US10170375B2 FinFET devices with unique fin shape and the fabrication thereof
A semiconductor device includes a PMOS FinFET and an NMOS FinFET. The PMOS FinFET includes a substrate, a silicon germanium layer disposed over the substrate, a silicon layer disposed over the silicon germanium layer, and a PMOS fin disposed over the silicon layer. The PMOS fin contains silicon germanium. The NMOS FinFET includes the substrate, a silicon germanium oxide layer disposed over the substrate, a silicon oxide layer disposed over the silicon germanium oxide layer, and an NMOS fin disposed over the silicon oxide layer. The NMOS fin contains silicon. The silicon germanium oxide layer and the silicon oxide layer collectively define a concave recess in a horizontal direction. The concave recess is partially disposed below the NMOS fin.
US10170371B2 Fabrication of a vertical fin field effect transistor with reduced dimensional variations
A method of forming a fin field effect transistor (finFET) having fin(s) with reduced dimensional variations, including forming a dummy fin trench within a perimeter of a fin pattern region on a substrate, forming a dummy fin fill in the dummy fin trench, forming a plurality of vertical fins within the perimeter of the fin pattern region, including border fins at the perimeter of the fin pattern region and interior fins located within the perimeter and inside the bounds of the border fins, wherein the border fins are formed from the dummy fin fill, and removing the border fins, wherein the border fins are dummy fins and the interior fins are active vertical fins.
US10170367B2 Semiconductor device and method
In an embodiment, a method includes: patterning a plurality of mandrels over a mask layer; forming an etch coating layer on top surfaces of the mask layer and the mandrels; depositing a dielectric layer over the mask layer and the mandrels, a first thickness of the dielectric layer along sidewalls of the mandrels being greater than a second thickness of the dielectric layer along the etch coating layer; removing horizontal portions of the dielectric layer; and patterning the mask layer using remaining vertical portions of the dielectric layer as an etching mask.
US10170362B2 Semiconductor memory device with bit line contact structure and method of forming the same
The present invention provides a method of forming a semiconductor device. First, providing a substrate, and an STI is forming in the substrate to define a plurality of active regions. Then a first etching process is performed to form a bit line contact opening, which is corresponding to one of the active regions. A second etching process is performed to remove a part of the active region and its adjacent STI so a top surface of active region is higher than a top surface of the STI. Next, a bit line contact is formed in the opening. The present invention further provides a semiconductor structure.
US10170360B2 Reflow enhancement layer for metallization structures
A reflow enhancement layer is formed in an opening prior to forming and reflowing a contact metal or metal alloy. The reflow enhancement layer facilitates the movement (i.e., flow) of the contact metal or metal alloy during a reflow anneal process such that a void-free metallization structure of the contact metal or metal alloy is provided.
US10170352B2 Manufacturing apparatus of semiconductor device, and manufacturing method of semiconductor device
A manufacturing apparatus includes a first supporting section to support a first tape section. The first tape section has a first surface facing away from the first supporting section. For example, a semiconductor chip can be disposed on the first surface. A second supporting section of the apparatus supports a second tape section in a facing arrangement with the first tape section. The second tape section has a second surface facing away from the second supporting section. For example, a semiconductor chip can be transferred from the first surface to the second surface in a manufacturing process. A ring element is between the first and second tape sections and surrounds a space between the first and second tape sections. The ring element has a port allowing fluid communication between the space and an outlet port.
US10170346B2 Resin sealing apparatus and resin sealing method
A lower mold has a bottom surface member and a side surface member. An upper end surface of the bottom surface member forms an inner bottom surface of a cavity and has a planar shape corresponding to an unusual planar shape of a sealing resin. A substrate is disposed on a mold surface of an upper mold such that a component to be sealed attached to the substrate faces downward, and the cavity is filled with a fluid resin. The upper mold and the lower mold are clamped, and the component is immersed in the fluid resin. The bottom surface member is raised, and the fluid resin is pressed at a prescribed resin pressure and cured to form the sealing resin. The bottom surface member and the side surface member are moved relatively, and thereby, a molded product is released from a mold surface of the lower mold.
US10170345B2 Substrate processing apparatus
Disclosed is a substrate processing apparatus that includes: a polishing table; an atomizer configured to spray a fluid to a polishing surface; a polishing liquid supply nozzle configured to drop a slurry at a position that corresponds to a slurry dropping position set on the polishing table and is lower than the top surface of the atomizer; a nozzle moving mechanism configured to move the polishing liquid supply nozzle above the atomizer between the retreat position set outside the polishing table and the slurry dropping position; and a nozzle tip retreating mechanism configured to bring the tip end of the polishing liquid supply nozzle into a retreated position above the top surface of the atomizer when the polishing liquid supply nozzle moves between the slurry dropping position and the retreat position.
US10170343B1 Post-CMP cleaning apparatus and method with brush self-cleaning function
Apparatuses and methods for performing a post-CMP cleaning are provided. The apparatus includes a chamber configured to receive a wafer in need of having CMP residue removed. The apparatus also includes a spray unit configured to apply a first cleaning solution to at least one surface of the wafer. The apparatus further includes a brush cleaner configured to scrub the at least one surface of the wafer. In addition, the apparatus includes at least one inner tank disposed in the chamber for storing a second cleaning solution that is used to clean the brush cleaner.
US10170341B1 Release film as isolation film in package
A method includes forming a release film over a carrier, attaching a device over the release film through a die-attach film, encapsulating the device in an encapsulating material, performing a planarization on the encapsulating material to expose the device, detaching the device and the encapsulating material from the carrier, etching the die-attach film to expose a back surface of the device, and applying a thermal conductive material on the back surface of the device.
US10170339B2 Semiconductor structure and a manufacturing method thereof
A method of manufacturing a semiconductor structure includes providing a substrate and a chip disposed over the substrate; disposing the substrate over a first molding member; disposing a second molding member over the substrate to encapsulate the chip; disposing a molding material around the chip; forming a molding over the substrate and around the chip; removing the first molding member; removing the second molding member; wherein the first molding member includes a curved surface protruded towards the substrate, the chip or the second molding member.
US10170338B2 Vertical nanoribbon array (VERNA) thermal interface materials with enhanced thermal transport properties
A thermal interface material (TIM) and method for manufacture is disclosed. A vertically aligned carbon nanotube (VACNT) array is formed on a substrate, then individual CNTs are cleaved to form a vertical nanoribbon array (VERNA). An array of aligned, upright, flat, highly-compliant ribbon elements permit a higher packing density, better ribbon-to-ribbon engagement factor, better contact with adjoining surfaces and potentially achievement of theoretical thermal conductance limit (˜1 GW/m2K) for such nanostructured polycyclic carbon materials. Methods for forming the VERNA include either or both of electrochemical and gas phase processing steps.
US10170337B2 Implant after through-silicon via (TSV) etch to getter mobile ions
A method of making a semiconductor device includes disposing a mask on a substrate; etching the mask to form an opening in the mask; etching a trench in the substrate beneath the opening in the mask; and implanting a dopant in an area of the substrate beneath the opening of the mask, the dopant capable of gettering mobile ions that can contaminate the substrate; wherein the dopant extends through the substrate from a sidewall of the trench and an endwall of the trench.
US10170334B2 Reduction of dishing during chemical mechanical polish of gate structure
A semiconductor device includes a semiconductor substrate, a gate structure and at least one CMP resistant structure. The gate structure is over the semiconductor substrate. The CMP resistant structure is embedded in a top surface of the gate structure. The CMP resistant structure has a CMP resistance property different from a CMP resistance property of the gate structure.
US10170331B2 Stacked nanowires
Techniques for producing stacked SiGe nanowires using a condensation process without parasitic Ge nanowires as an undesired by-product. In one aspect, a method of forming SiGe nanowires includes the steps of: forming a stack of alternating Si and SiGe layers on a wafer; patterning fins in the stack; selectively thinning the SiGe layers in the fins such that the Si and SiGe layers give the fins an hourglass shape; burying the fins in an oxide material; and annealing the fins under conditions sufficient to diffuse Ge from the SiGe layers in the fins to the Si layers in the fins to form the SiGe nanowires. A FET device and method for formation thereof are also provided.
US10170330B2 Method for recessing a carbon-doped layer of a semiconductor structure
Semiconductor structure and methods of fabrication thereof are provided which includes, for instance, providing a carbon-doped material layer within a recess of a semiconductor structure; removing, in part, carbon from the carbon-doped material layer to obtain, at least in part, a carbon-depleted region thereof, the carbon-depleted region having a modified etch property with an increased etch rate compared to an etch rate of the carbon-doped material layer; and recessing the carbon-depleted region of the carbon-doped material layer by an etching process, with the carbon-depleted region being recessed based upon, in part, the modified etch property of the carbon-depleted region.
US10170328B1 Semiconductor pattern having semiconductor structures of different lengths
The present disclosure provides a semiconductor pattern and a method for preparing the same. The semiconductor pattern includes a substrate, a plurality of first semiconductor structures disposed over the substrate, a plurality of second semiconductor structures disposed over the substrate, and a semiconductor frame structure disposed over the substrate. The first semiconductor structures and the second semiconductor structures are alternately arranged. The semiconductor frame structure encircles the first semiconductor structures and the second semiconductor structures. The first semiconductor structures include a first length, the second semiconductor structures include a second length, and the first length of the first semiconductor structures is less than the second length of the second semiconductor structures.
US10170326B2 Wafer element with an adjusted print resolution assist feature
A wafer element fabrication method is provided. The wafer element fabrication method includes forming a device element on a substrate such that the device element includes an upper surface and a sidewall extending from the upper surface to the substrate. The wafer element fabrication method further includes forming an adjusted print resolution assist feature (APRAF) on the substrate such that the APRAF is smaller than the device element in at least one dimension. In addition, the wafer element fabrication method includes depositing surrounding material, which is different from materials of the APRAF, to surround the APRAF and to lie on the upper surface in abutment with the sidewall of the device element.
US10170324B2 Technique to tune sidewall passivation deposition conformality for high aspect ratio cylinder etch
Methods, apparatus and systems for forming a recessed feature in dielectric material on a semiconductor substrate are provided. Separate etching and deposition operations are employed in a cyclic manner. Each etching operation partially etches the feature. Each deposition operation forms a protective film on the sidewalls of the feature to prevent lateral etch of the dielectric material during the etching operations. The protective film may be deposited under different conditions (e.g., pressure, duration of reactant delivery, duration of plasma exposure, RF power, and/or RF duty cycle, etc.) in different deposition operations. Such conditions may affect the degree of conformality at which the protective film forms. In various embodiments, one or more protective films may be sub-conformal. In these or other embodiments, one or more other protective films may be conformal.
US10170316B2 Controlling threshold voltage in nanosheet transistors
Embodiments are directed to a method of forming a semiconductor device and resulting structures for controlling a threshold voltage on a nanosheet-based transistor. A nanosheet stack is formed over a substrate. The nanosheet stack includes a first nanosheet vertically stacked over a second nanosheet. A tri-layer gate metal stack is formed on each nanosheet. The tri-layer gate metal stack includes an inner nitride layer formed on a surface of each nanosheet, a doped transition metal layer formed on each inner nitride layer, and an outer nitride layer formed on each doped transition metal layer.
US10170310B1 Method of forming patterned structure
A method of forming a patterned structure is provided in the present invention. A hard mask layer is formed on a material layer before a first etching process and a second etching process for forming a first opening and a second opening partially overlapping with each other in the hard mask layer. The hard mask layer having the first opening and the second opening is then used in a third etching process performed to the material layer. A fourth etching process is performed to the hard mask layer and a dielectric layer disposed under the material layer after the third etching process. The material of the hard mask layer is identical to the material of the dielectric layer, and the fourth etching process may be used to remove the hard mask layer and form a trench in the dielectric layer accordingly.
US10170309B2 Dummy pattern addition to improve CD uniformity
A multiple exposure patterning process includes the incorporation of a dummy feature into the integration flow. The dummy feature, which is placed to overlie an existing masking layer and thus does not alter the printed image, improves the critical dimension uniformity (CDU) of main critical (non-dummy) features at the same masking level.
US10170307B1 Method for patterning semiconductor device using masking layer
A semiconductor device and method includes a method. The method includes patterning a plurality of first mandrels over a first mask layer. The method further includes forming a first spacer layer on sidewalls and tops of the first mandrels. The method further includes removing horizontal portions of the first spacer layer, with remaining vertical portions of the first spacer layer forming first spacers. The method further includes, after removing the horizontal portions of the first spacer layer, depositing a reverse material between the first spacers. The method further includes patterning the first mask layer using the first spacers and the reverse material in combination as a first etching mask.
US10170303B2 Group IIIA nitride growth system and method
A system and method for growing a gallium nitride (GaN) structure that includes providing a template; and growing at least a first GaN layer on the template using a first sputtering process, wherein the first sputtering process includes: controlling a temperature of a sputtering target, and modulating between a gallium-rich condition and a gallium-lean condition, wherein the gallium-rich condition includes a gallium-to-nitrogen ratio having a first value that is greater than 1, and wherein the gallium-lean condition includes the gallium-to-nitrogen ratio having a second value that is less than the first value. Some embodiments include a load lock configured to load a substrate wafer into the system and remove the GaN structure from the system; and a plurality of deposition chambers, wherein the plurality of deposition chambers includes a GaN-deposition chamber configured to grow at least the first GaN layer on a template that includes the substrate wafer.
US10170301B2 Adhesion of polymers on silicon substrates
Embodiments are directed to a method and resulting structures for improving the adhesion of a polymer to the surface of a substrate. A substrate is formed and a surface of the substrate is modified to include X—H functional group terminations. A polymer is formed on the modified surface of the substrate. The polymer and substrate are heated to chemically bond the polymer to the surface of the substrate.
US10170293B1 Enhanced lighting ceramic metal-halide lamp assembly
An enhanced lighting ceramic metal-halide lamp assembly provides a ceramic metal-halide lamp that operates to illuminate at high temperatures, have an increased life span, and improved color temperatures, color renderings, and luminous efficacies. The lamp assembly includes an at least partially transparent container forming a vacuum. Inside the container, a plurality of ceramic arc tubes are connected by two U-shaped coupling mechanisms. The coupling mechanisms are conductive and resilient, so as to provide both conductivity, and a buffering clearance between the ceramic arc tubes. The lamp assembly is also unique in that it provides a 630 watt double ended ceramic metal-halide lamp, as the ceramic arc tube produces 630 watts, uses about 200 volts and 3 Amps when illuminating. At least one fastening bracket, having resiliency, extends between the ceramic arc tube and inner surface of the container to help stabilize the ceramic arc tubes inside the elongated container.
US10170292B2 Method and apparatus for injection of ions into an electrostatic ion trap
A method of injecting ions into an electrostatic trap, comprising: generating ions in an ion source; transporting the ions from the ion source to an ion store downstream of the ion source; releasing the ions from the ion store to an ion guide downstream of the ion store; and accelerating the ions from the ion guide as a pulse into an orbital electrostatic trap for mass analysis, wherein the average velocity of the ions as the ions exit from the ion guide is substantially higher than the average velocity of the ions as they exit from the ion store, wherein there is a delay between releasing the ions from the ion store and accelerating the ions from the ion guide. Also an apparatus suitable for the method.
US10170288B2 Sputtering apparatus
There is provided a sputtering apparatus in which a holding body holding a substrate by facing a target in a processing chamber is covered by a deposition preventive plate including a substrate retainer for covering a peripheral edge part of the substrate, and a thin film made of metal is deposited on a surface of the substrate exposed to an inside of the deposition preventive plate. A stopper protrusion protrudes at a portion in which the holding body and the deposition preventive plate face each other from one part to the other part, and face the holding body or the deposition preventive plate at a smaller interval than the interval between the deposition preventive plate and the substrate retainer. When the deposition preventive plate and the holding body are thermally deformed to approach each other during film deposition processing, the stopper protrusion contacts with the deposition preventive plate or the holding body, and the deposition preventive plate and the holding body contact with each other, such that, peeling-off a metal film at a contact portion and mixing in a film deposition region of the substrate are prevented.
US10170284B2 Plasma processing method and plasma processing apparatus
A plasma processing method according to an aspect includes: preparing a plasma processing apparatus including: a chamber; a lower electrode; an upper electrode; a focus ring surrounding a peripheral edge of the lower electrode; and an annular coil disposed on an upper portion of the upper electrode at a more outer position than the peripheral edge of the lower electrode; placing a substrate on the lower electrode, with a peripheral edge of the substrate surrounded by the focus ring; introducing process gas into the chamber; generating plasma of the process gas by applying high-frequency power across the upper electrode and the lower electrode; and leveling an interface of a plasma sheath on an upper portion of the substrate with that on an upper portion of the focus ring by generating a magnetic field by supplying a current to the annular coil.
US10170282B2 Insulated semiconductor faceplate designs
An exemplary faceplate may include a conductive plate defining a plurality of apertures. The faceplate may additionally include a plurality of inserts, and each one of the plurality of inserts may be disposed within one of the plurality of apertures. Each insert may define at least one channel through the insert to provide a flow path through the faceplate.